workqueue: don't butcher idle workers on an offline CPU
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
e22bee78
TH
44
45#include "workqueue_sched.h"
1da177e4 46
c8e55f36 47enum {
bc2ae0f5
TH
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
61 * managership of all pools on the gcwq to avoid changing binding
62 * state while create_worker() is in progress.
63 */
11ebea50
TH
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
e22bee78 75 WORKER_REBIND = 1 << 5, /* mom is home, come back */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 78
403c821d
TH
79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
80 WORKER_CPU_INTENSIVE,
db7bccf4
TH
81
82 /* gcwq->trustee_state */
83 TRUSTEE_START = 0, /* start */
84 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */
85 TRUSTEE_BUTCHER = 2, /* butcher workers */
86 TRUSTEE_RELEASE = 3, /* release workers */
87 TRUSTEE_DONE = 4, /* trustee is done */
c8e55f36 88
3270476a 89 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
4ce62e9e 90
c8e55f36
TH
91 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
92 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
93 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4 94
e22bee78
TH
95 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
96 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
97
3233cdbd
TH
98 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
99 /* call for help after 10ms
100 (min two ticks) */
e22bee78
TH
101 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
102 CREATE_COOLDOWN = HZ, /* time to breath after fail */
db7bccf4 103 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */
e22bee78
TH
104
105 /*
106 * Rescue workers are used only on emergencies and shared by
107 * all cpus. Give -20.
108 */
109 RESCUER_NICE_LEVEL = -20,
3270476a 110 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 111};
1da177e4
LT
112
113/*
4690c4ab
TH
114 * Structure fields follow one of the following exclusion rules.
115 *
e41e704b
TH
116 * I: Modifiable by initialization/destruction paths and read-only for
117 * everyone else.
4690c4ab 118 *
e22bee78
TH
119 * P: Preemption protected. Disabling preemption is enough and should
120 * only be modified and accessed from the local cpu.
121 *
8b03ae3c 122 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 123 *
e22bee78
TH
124 * X: During normal operation, modification requires gcwq->lock and
125 * should be done only from local cpu. Either disabling preemption
126 * on local cpu or grabbing gcwq->lock is enough for read access.
f3421797 127 * If GCWQ_DISASSOCIATED is set, it's identical to L.
e22bee78 128 *
73f53c4a
TH
129 * F: wq->flush_mutex protected.
130 *
4690c4ab 131 * W: workqueue_lock protected.
1da177e4 132 */
1da177e4 133
8b03ae3c 134struct global_cwq;
bd7bdd43 135struct worker_pool;
25511a47 136struct idle_rebind;
1da177e4 137
e22bee78
TH
138/*
139 * The poor guys doing the actual heavy lifting. All on-duty workers
140 * are either serving the manager role, on idle list or on busy hash.
141 */
c34056a3 142struct worker {
c8e55f36
TH
143 /* on idle list while idle, on busy hash table while busy */
144 union {
145 struct list_head entry; /* L: while idle */
146 struct hlist_node hentry; /* L: while busy */
147 };
1da177e4 148
c34056a3 149 struct work_struct *current_work; /* L: work being processed */
8cca0eea 150 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 151 struct list_head scheduled; /* L: scheduled works */
c34056a3 152 struct task_struct *task; /* I: worker task */
bd7bdd43 153 struct worker_pool *pool; /* I: the associated pool */
e22bee78
TH
154 /* 64 bytes boundary on 64bit, 32 on 32bit */
155 unsigned long last_active; /* L: last active timestamp */
156 unsigned int flags; /* X: flags */
c34056a3 157 int id; /* I: worker id */
25511a47
TH
158
159 /* for rebinding worker to CPU */
160 struct idle_rebind *idle_rebind; /* L: for idle worker */
161 struct work_struct rebind_work; /* L: for busy worker */
c34056a3
TH
162};
163
bd7bdd43
TH
164struct worker_pool {
165 struct global_cwq *gcwq; /* I: the owning gcwq */
11ebea50 166 unsigned int flags; /* X: flags */
bd7bdd43
TH
167
168 struct list_head worklist; /* L: list of pending works */
169 int nr_workers; /* L: total number of workers */
170 int nr_idle; /* L: currently idle ones */
171
172 struct list_head idle_list; /* X: list of idle workers */
173 struct timer_list idle_timer; /* L: worker idle timeout */
174 struct timer_list mayday_timer; /* L: SOS timer for workers */
175
60373152 176 struct mutex manager_mutex; /* mutex manager should hold */
bd7bdd43 177 struct ida worker_ida; /* L: for worker IDs */
bd7bdd43
TH
178};
179
8b03ae3c 180/*
e22bee78
TH
181 * Global per-cpu workqueue. There's one and only one for each cpu
182 * and all works are queued and processed here regardless of their
183 * target workqueues.
8b03ae3c
TH
184 */
185struct global_cwq {
186 spinlock_t lock; /* the gcwq lock */
187 unsigned int cpu; /* I: the associated cpu */
db7bccf4 188 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36 189
bd7bdd43 190 /* workers are chained either in busy_hash or pool idle_list */
c8e55f36
TH
191 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
192 /* L: hash of busy workers */
193
3270476a 194 struct worker_pool pools[2]; /* normal and highpri pools */
db7bccf4 195
25511a47
TH
196 wait_queue_head_t rebind_hold; /* rebind hold wait */
197
db7bccf4
TH
198 struct task_struct *trustee; /* L: for gcwq shutdown */
199 unsigned int trustee_state; /* L: trustee state */
200 wait_queue_head_t trustee_wait; /* trustee wait */
8b03ae3c
TH
201} ____cacheline_aligned_in_smp;
202
1da177e4 203/*
502ca9d8 204 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
205 * work_struct->data are used for flags and thus cwqs need to be
206 * aligned at two's power of the number of flag bits.
1da177e4
LT
207 */
208struct cpu_workqueue_struct {
bd7bdd43 209 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 210 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
211 int work_color; /* L: current color */
212 int flush_color; /* L: flushing color */
213 int nr_in_flight[WORK_NR_COLORS];
214 /* L: nr of in_flight works */
1e19ffc6 215 int nr_active; /* L: nr of active works */
a0a1a5fd 216 int max_active; /* L: max active works */
1e19ffc6 217 struct list_head delayed_works; /* L: delayed works */
0f900049 218};
1da177e4 219
73f53c4a
TH
220/*
221 * Structure used to wait for workqueue flush.
222 */
223struct wq_flusher {
224 struct list_head list; /* F: list of flushers */
225 int flush_color; /* F: flush color waiting for */
226 struct completion done; /* flush completion */
227};
228
f2e005aa
TH
229/*
230 * All cpumasks are assumed to be always set on UP and thus can't be
231 * used to determine whether there's something to be done.
232 */
233#ifdef CONFIG_SMP
234typedef cpumask_var_t mayday_mask_t;
235#define mayday_test_and_set_cpu(cpu, mask) \
236 cpumask_test_and_set_cpu((cpu), (mask))
237#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
238#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 239#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
240#define free_mayday_mask(mask) free_cpumask_var((mask))
241#else
242typedef unsigned long mayday_mask_t;
243#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
244#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
245#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
246#define alloc_mayday_mask(maskp, gfp) true
247#define free_mayday_mask(mask) do { } while (0)
248#endif
1da177e4
LT
249
250/*
251 * The externally visible workqueue abstraction is an array of
252 * per-CPU workqueues:
253 */
254struct workqueue_struct {
9c5a2ba7 255 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
256 union {
257 struct cpu_workqueue_struct __percpu *pcpu;
258 struct cpu_workqueue_struct *single;
259 unsigned long v;
260 } cpu_wq; /* I: cwq's */
4690c4ab 261 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
262
263 struct mutex flush_mutex; /* protects wq flushing */
264 int work_color; /* F: current work color */
265 int flush_color; /* F: current flush color */
266 atomic_t nr_cwqs_to_flush; /* flush in progress */
267 struct wq_flusher *first_flusher; /* F: first flusher */
268 struct list_head flusher_queue; /* F: flush waiters */
269 struct list_head flusher_overflow; /* F: flush overflow list */
270
f2e005aa 271 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
272 struct worker *rescuer; /* I: rescue worker */
273
9c5a2ba7 274 int nr_drainers; /* W: drain in progress */
dcd989cb 275 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 276#ifdef CONFIG_LOCKDEP
4690c4ab 277 struct lockdep_map lockdep_map;
4e6045f1 278#endif
b196be89 279 char name[]; /* I: workqueue name */
1da177e4
LT
280};
281
d320c038
TH
282struct workqueue_struct *system_wq __read_mostly;
283struct workqueue_struct *system_long_wq __read_mostly;
284struct workqueue_struct *system_nrt_wq __read_mostly;
f3421797 285struct workqueue_struct *system_unbound_wq __read_mostly;
24d51add 286struct workqueue_struct *system_freezable_wq __read_mostly;
62d3c543 287struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
d320c038
TH
288EXPORT_SYMBOL_GPL(system_wq);
289EXPORT_SYMBOL_GPL(system_long_wq);
290EXPORT_SYMBOL_GPL(system_nrt_wq);
f3421797 291EXPORT_SYMBOL_GPL(system_unbound_wq);
24d51add 292EXPORT_SYMBOL_GPL(system_freezable_wq);
62d3c543 293EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
d320c038 294
97bd2347
TH
295#define CREATE_TRACE_POINTS
296#include <trace/events/workqueue.h>
297
4ce62e9e 298#define for_each_worker_pool(pool, gcwq) \
3270476a
TH
299 for ((pool) = &(gcwq)->pools[0]; \
300 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
4ce62e9e 301
db7bccf4
TH
302#define for_each_busy_worker(worker, i, pos, gcwq) \
303 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
304 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
305
f3421797
TH
306static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
307 unsigned int sw)
308{
309 if (cpu < nr_cpu_ids) {
310 if (sw & 1) {
311 cpu = cpumask_next(cpu, mask);
312 if (cpu < nr_cpu_ids)
313 return cpu;
314 }
315 if (sw & 2)
316 return WORK_CPU_UNBOUND;
317 }
318 return WORK_CPU_NONE;
319}
320
321static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
322 struct workqueue_struct *wq)
323{
324 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
325}
326
09884951
TH
327/*
328 * CPU iterators
329 *
330 * An extra gcwq is defined for an invalid cpu number
331 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
332 * specific CPU. The following iterators are similar to
333 * for_each_*_cpu() iterators but also considers the unbound gcwq.
334 *
335 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
336 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
337 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
338 * WORK_CPU_UNBOUND for unbound workqueues
339 */
f3421797
TH
340#define for_each_gcwq_cpu(cpu) \
341 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
342 (cpu) < WORK_CPU_NONE; \
343 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
344
345#define for_each_online_gcwq_cpu(cpu) \
346 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
347 (cpu) < WORK_CPU_NONE; \
348 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
349
350#define for_each_cwq_cpu(cpu, wq) \
351 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
352 (cpu) < WORK_CPU_NONE; \
353 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
354
dc186ad7
TG
355#ifdef CONFIG_DEBUG_OBJECTS_WORK
356
357static struct debug_obj_descr work_debug_descr;
358
99777288
SG
359static void *work_debug_hint(void *addr)
360{
361 return ((struct work_struct *) addr)->func;
362}
363
dc186ad7
TG
364/*
365 * fixup_init is called when:
366 * - an active object is initialized
367 */
368static int work_fixup_init(void *addr, enum debug_obj_state state)
369{
370 struct work_struct *work = addr;
371
372 switch (state) {
373 case ODEBUG_STATE_ACTIVE:
374 cancel_work_sync(work);
375 debug_object_init(work, &work_debug_descr);
376 return 1;
377 default:
378 return 0;
379 }
380}
381
382/*
383 * fixup_activate is called when:
384 * - an active object is activated
385 * - an unknown object is activated (might be a statically initialized object)
386 */
387static int work_fixup_activate(void *addr, enum debug_obj_state state)
388{
389 struct work_struct *work = addr;
390
391 switch (state) {
392
393 case ODEBUG_STATE_NOTAVAILABLE:
394 /*
395 * This is not really a fixup. The work struct was
396 * statically initialized. We just make sure that it
397 * is tracked in the object tracker.
398 */
22df02bb 399 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
400 debug_object_init(work, &work_debug_descr);
401 debug_object_activate(work, &work_debug_descr);
402 return 0;
403 }
404 WARN_ON_ONCE(1);
405 return 0;
406
407 case ODEBUG_STATE_ACTIVE:
408 WARN_ON(1);
409
410 default:
411 return 0;
412 }
413}
414
415/*
416 * fixup_free is called when:
417 * - an active object is freed
418 */
419static int work_fixup_free(void *addr, enum debug_obj_state state)
420{
421 struct work_struct *work = addr;
422
423 switch (state) {
424 case ODEBUG_STATE_ACTIVE:
425 cancel_work_sync(work);
426 debug_object_free(work, &work_debug_descr);
427 return 1;
428 default:
429 return 0;
430 }
431}
432
433static struct debug_obj_descr work_debug_descr = {
434 .name = "work_struct",
99777288 435 .debug_hint = work_debug_hint,
dc186ad7
TG
436 .fixup_init = work_fixup_init,
437 .fixup_activate = work_fixup_activate,
438 .fixup_free = work_fixup_free,
439};
440
441static inline void debug_work_activate(struct work_struct *work)
442{
443 debug_object_activate(work, &work_debug_descr);
444}
445
446static inline void debug_work_deactivate(struct work_struct *work)
447{
448 debug_object_deactivate(work, &work_debug_descr);
449}
450
451void __init_work(struct work_struct *work, int onstack)
452{
453 if (onstack)
454 debug_object_init_on_stack(work, &work_debug_descr);
455 else
456 debug_object_init(work, &work_debug_descr);
457}
458EXPORT_SYMBOL_GPL(__init_work);
459
460void destroy_work_on_stack(struct work_struct *work)
461{
462 debug_object_free(work, &work_debug_descr);
463}
464EXPORT_SYMBOL_GPL(destroy_work_on_stack);
465
466#else
467static inline void debug_work_activate(struct work_struct *work) { }
468static inline void debug_work_deactivate(struct work_struct *work) { }
469#endif
470
95402b38
GS
471/* Serializes the accesses to the list of workqueues. */
472static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 473static LIST_HEAD(workqueues);
a0a1a5fd 474static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 475
e22bee78
TH
476/*
477 * The almighty global cpu workqueues. nr_running is the only field
478 * which is expected to be used frequently by other cpus via
479 * try_to_wake_up(). Put it in a separate cacheline.
480 */
8b03ae3c 481static DEFINE_PER_CPU(struct global_cwq, global_cwq);
4ce62e9e 482static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
8b03ae3c 483
f3421797
TH
484/*
485 * Global cpu workqueue and nr_running counter for unbound gcwq. The
486 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
487 * workers have WORKER_UNBOUND set.
488 */
489static struct global_cwq unbound_global_cwq;
4ce62e9e
TH
490static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
491 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
492};
f3421797 493
c34056a3 494static int worker_thread(void *__worker);
1da177e4 495
3270476a
TH
496static int worker_pool_pri(struct worker_pool *pool)
497{
498 return pool - pool->gcwq->pools;
499}
500
8b03ae3c
TH
501static struct global_cwq *get_gcwq(unsigned int cpu)
502{
f3421797
TH
503 if (cpu != WORK_CPU_UNBOUND)
504 return &per_cpu(global_cwq, cpu);
505 else
506 return &unbound_global_cwq;
8b03ae3c
TH
507}
508
63d95a91 509static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 510{
63d95a91 511 int cpu = pool->gcwq->cpu;
3270476a 512 int idx = worker_pool_pri(pool);
63d95a91 513
f3421797 514 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 515 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 516 else
4ce62e9e 517 return &unbound_pool_nr_running[idx];
e22bee78
TH
518}
519
1537663f
TH
520static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
521 struct workqueue_struct *wq)
b1f4ec17 522{
f3421797 523 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 524 if (likely(cpu < nr_cpu_ids))
f3421797 525 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
526 } else if (likely(cpu == WORK_CPU_UNBOUND))
527 return wq->cpu_wq.single;
528 return NULL;
b1f4ec17
ON
529}
530
73f53c4a
TH
531static unsigned int work_color_to_flags(int color)
532{
533 return color << WORK_STRUCT_COLOR_SHIFT;
534}
535
536static int get_work_color(struct work_struct *work)
537{
538 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
539 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
540}
541
542static int work_next_color(int color)
543{
544 return (color + 1) % WORK_NR_COLORS;
545}
1da177e4 546
14441960 547/*
e120153d
TH
548 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
549 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
550 * cleared and the work data contains the cpu number it was last on.
7a22ad75
TH
551 *
552 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
553 * cwq, cpu or clear work->data. These functions should only be
554 * called while the work is owned - ie. while the PENDING bit is set.
555 *
556 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
557 * corresponding to a work. gcwq is available once the work has been
558 * queued anywhere after initialization. cwq is available only from
559 * queueing until execution starts.
14441960 560 */
7a22ad75
TH
561static inline void set_work_data(struct work_struct *work, unsigned long data,
562 unsigned long flags)
365970a1 563{
4594bf15 564 BUG_ON(!work_pending(work));
7a22ad75
TH
565 atomic_long_set(&work->data, data | flags | work_static(work));
566}
365970a1 567
7a22ad75
TH
568static void set_work_cwq(struct work_struct *work,
569 struct cpu_workqueue_struct *cwq,
570 unsigned long extra_flags)
571{
572 set_work_data(work, (unsigned long)cwq,
e120153d 573 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
574}
575
7a22ad75
TH
576static void set_work_cpu(struct work_struct *work, unsigned int cpu)
577{
578 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
579}
f756d5e2 580
7a22ad75 581static void clear_work_data(struct work_struct *work)
1da177e4 582{
7a22ad75 583 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
584}
585
7a22ad75 586static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 587{
e120153d 588 unsigned long data = atomic_long_read(&work->data);
7a22ad75 589
e120153d
TH
590 if (data & WORK_STRUCT_CWQ)
591 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
592 else
593 return NULL;
4d707b9f
ON
594}
595
7a22ad75 596static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 597{
e120153d 598 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
599 unsigned int cpu;
600
e120153d
TH
601 if (data & WORK_STRUCT_CWQ)
602 return ((struct cpu_workqueue_struct *)
bd7bdd43 603 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
7a22ad75
TH
604
605 cpu = data >> WORK_STRUCT_FLAG_BITS;
bdbc5dd7 606 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
607 return NULL;
608
f3421797 609 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 610 return get_gcwq(cpu);
b1f4ec17
ON
611}
612
e22bee78 613/*
3270476a
TH
614 * Policy functions. These define the policies on how the global worker
615 * pools are managed. Unless noted otherwise, these functions assume that
616 * they're being called with gcwq->lock held.
e22bee78
TH
617 */
618
63d95a91 619static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 620{
3270476a 621 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
622}
623
4594bf15 624/*
e22bee78
TH
625 * Need to wake up a worker? Called from anything but currently
626 * running workers.
974271c4
TH
627 *
628 * Note that, because unbound workers never contribute to nr_running, this
629 * function will always return %true for unbound gcwq as long as the
630 * worklist isn't empty.
4594bf15 631 */
63d95a91 632static bool need_more_worker(struct worker_pool *pool)
365970a1 633{
63d95a91 634 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 635}
4594bf15 636
e22bee78 637/* Can I start working? Called from busy but !running workers. */
63d95a91 638static bool may_start_working(struct worker_pool *pool)
e22bee78 639{
63d95a91 640 return pool->nr_idle;
e22bee78
TH
641}
642
643/* Do I need to keep working? Called from currently running workers. */
63d95a91 644static bool keep_working(struct worker_pool *pool)
e22bee78 645{
63d95a91 646 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 647
3270476a 648 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
649}
650
651/* Do we need a new worker? Called from manager. */
63d95a91 652static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 653{
63d95a91 654 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 655}
365970a1 656
e22bee78 657/* Do I need to be the manager? */
63d95a91 658static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 659{
63d95a91 660 return need_to_create_worker(pool) ||
11ebea50 661 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
662}
663
664/* Do we have too many workers and should some go away? */
63d95a91 665static bool too_many_workers(struct worker_pool *pool)
e22bee78 666{
60373152 667 bool managing = mutex_is_locked(&pool->manager_mutex);
63d95a91
TH
668 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
669 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
670
671 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
672}
673
4d707b9f 674/*
e22bee78
TH
675 * Wake up functions.
676 */
677
7e11629d 678/* Return the first worker. Safe with preemption disabled */
63d95a91 679static struct worker *first_worker(struct worker_pool *pool)
7e11629d 680{
63d95a91 681 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
682 return NULL;
683
63d95a91 684 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
685}
686
687/**
688 * wake_up_worker - wake up an idle worker
63d95a91 689 * @pool: worker pool to wake worker from
7e11629d 690 *
63d95a91 691 * Wake up the first idle worker of @pool.
7e11629d
TH
692 *
693 * CONTEXT:
694 * spin_lock_irq(gcwq->lock).
695 */
63d95a91 696static void wake_up_worker(struct worker_pool *pool)
7e11629d 697{
63d95a91 698 struct worker *worker = first_worker(pool);
7e11629d
TH
699
700 if (likely(worker))
701 wake_up_process(worker->task);
702}
703
d302f017 704/**
e22bee78
TH
705 * wq_worker_waking_up - a worker is waking up
706 * @task: task waking up
707 * @cpu: CPU @task is waking up to
708 *
709 * This function is called during try_to_wake_up() when a worker is
710 * being awoken.
711 *
712 * CONTEXT:
713 * spin_lock_irq(rq->lock)
714 */
715void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
716{
717 struct worker *worker = kthread_data(task);
718
2d64672e 719 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 720 atomic_inc(get_pool_nr_running(worker->pool));
e22bee78
TH
721}
722
723/**
724 * wq_worker_sleeping - a worker is going to sleep
725 * @task: task going to sleep
726 * @cpu: CPU in question, must be the current CPU number
727 *
728 * This function is called during schedule() when a busy worker is
729 * going to sleep. Worker on the same cpu can be woken up by
730 * returning pointer to its task.
731 *
732 * CONTEXT:
733 * spin_lock_irq(rq->lock)
734 *
735 * RETURNS:
736 * Worker task on @cpu to wake up, %NULL if none.
737 */
738struct task_struct *wq_worker_sleeping(struct task_struct *task,
739 unsigned int cpu)
740{
741 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
bd7bdd43 742 struct worker_pool *pool = worker->pool;
63d95a91 743 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 744
2d64672e 745 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
746 return NULL;
747
748 /* this can only happen on the local cpu */
749 BUG_ON(cpu != raw_smp_processor_id());
750
751 /*
752 * The counterpart of the following dec_and_test, implied mb,
753 * worklist not empty test sequence is in insert_work().
754 * Please read comment there.
755 *
756 * NOT_RUNNING is clear. This means that trustee is not in
757 * charge and we're running on the local cpu w/ rq lock held
758 * and preemption disabled, which in turn means that none else
759 * could be manipulating idle_list, so dereferencing idle_list
760 * without gcwq lock is safe.
761 */
bd7bdd43 762 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 763 to_wakeup = first_worker(pool);
e22bee78
TH
764 return to_wakeup ? to_wakeup->task : NULL;
765}
766
767/**
768 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 769 * @worker: self
d302f017
TH
770 * @flags: flags to set
771 * @wakeup: wakeup an idle worker if necessary
772 *
e22bee78
TH
773 * Set @flags in @worker->flags and adjust nr_running accordingly. If
774 * nr_running becomes zero and @wakeup is %true, an idle worker is
775 * woken up.
d302f017 776 *
cb444766
TH
777 * CONTEXT:
778 * spin_lock_irq(gcwq->lock)
d302f017
TH
779 */
780static inline void worker_set_flags(struct worker *worker, unsigned int flags,
781 bool wakeup)
782{
bd7bdd43 783 struct worker_pool *pool = worker->pool;
e22bee78 784
cb444766
TH
785 WARN_ON_ONCE(worker->task != current);
786
e22bee78
TH
787 /*
788 * If transitioning into NOT_RUNNING, adjust nr_running and
789 * wake up an idle worker as necessary if requested by
790 * @wakeup.
791 */
792 if ((flags & WORKER_NOT_RUNNING) &&
793 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 794 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
795
796 if (wakeup) {
797 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 798 !list_empty(&pool->worklist))
63d95a91 799 wake_up_worker(pool);
e22bee78
TH
800 } else
801 atomic_dec(nr_running);
802 }
803
d302f017
TH
804 worker->flags |= flags;
805}
806
807/**
e22bee78 808 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 809 * @worker: self
d302f017
TH
810 * @flags: flags to clear
811 *
e22bee78 812 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 813 *
cb444766
TH
814 * CONTEXT:
815 * spin_lock_irq(gcwq->lock)
d302f017
TH
816 */
817static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
818{
63d95a91 819 struct worker_pool *pool = worker->pool;
e22bee78
TH
820 unsigned int oflags = worker->flags;
821
cb444766
TH
822 WARN_ON_ONCE(worker->task != current);
823
d302f017 824 worker->flags &= ~flags;
e22bee78 825
42c025f3
TH
826 /*
827 * If transitioning out of NOT_RUNNING, increment nr_running. Note
828 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
829 * of multiple flags, not a single flag.
830 */
e22bee78
TH
831 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
832 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 833 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
834}
835
c8e55f36
TH
836/**
837 * busy_worker_head - return the busy hash head for a work
838 * @gcwq: gcwq of interest
839 * @work: work to be hashed
840 *
841 * Return hash head of @gcwq for @work.
842 *
843 * CONTEXT:
844 * spin_lock_irq(gcwq->lock).
845 *
846 * RETURNS:
847 * Pointer to the hash head.
848 */
849static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
850 struct work_struct *work)
851{
852 const int base_shift = ilog2(sizeof(struct work_struct));
853 unsigned long v = (unsigned long)work;
854
855 /* simple shift and fold hash, do we need something better? */
856 v >>= base_shift;
857 v += v >> BUSY_WORKER_HASH_ORDER;
858 v &= BUSY_WORKER_HASH_MASK;
859
860 return &gcwq->busy_hash[v];
861}
862
8cca0eea
TH
863/**
864 * __find_worker_executing_work - find worker which is executing a work
865 * @gcwq: gcwq of interest
866 * @bwh: hash head as returned by busy_worker_head()
867 * @work: work to find worker for
868 *
869 * Find a worker which is executing @work on @gcwq. @bwh should be
870 * the hash head obtained by calling busy_worker_head() with the same
871 * work.
872 *
873 * CONTEXT:
874 * spin_lock_irq(gcwq->lock).
875 *
876 * RETURNS:
877 * Pointer to worker which is executing @work if found, NULL
878 * otherwise.
879 */
880static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
881 struct hlist_head *bwh,
882 struct work_struct *work)
883{
884 struct worker *worker;
885 struct hlist_node *tmp;
886
887 hlist_for_each_entry(worker, tmp, bwh, hentry)
888 if (worker->current_work == work)
889 return worker;
890 return NULL;
891}
892
893/**
894 * find_worker_executing_work - find worker which is executing a work
895 * @gcwq: gcwq of interest
896 * @work: work to find worker for
897 *
898 * Find a worker which is executing @work on @gcwq. This function is
899 * identical to __find_worker_executing_work() except that this
900 * function calculates @bwh itself.
901 *
902 * CONTEXT:
903 * spin_lock_irq(gcwq->lock).
904 *
905 * RETURNS:
906 * Pointer to worker which is executing @work if found, NULL
907 * otherwise.
4d707b9f 908 */
8cca0eea
TH
909static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
910 struct work_struct *work)
4d707b9f 911{
8cca0eea
TH
912 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
913 work);
4d707b9f
ON
914}
915
4690c4ab 916/**
7e11629d 917 * insert_work - insert a work into gcwq
4690c4ab
TH
918 * @cwq: cwq @work belongs to
919 * @work: work to insert
920 * @head: insertion point
921 * @extra_flags: extra WORK_STRUCT_* flags to set
922 *
7e11629d
TH
923 * Insert @work which belongs to @cwq into @gcwq after @head.
924 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
925 *
926 * CONTEXT:
8b03ae3c 927 * spin_lock_irq(gcwq->lock).
4690c4ab 928 */
b89deed3 929static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
930 struct work_struct *work, struct list_head *head,
931 unsigned int extra_flags)
b89deed3 932{
63d95a91 933 struct worker_pool *pool = cwq->pool;
e22bee78 934
4690c4ab 935 /* we own @work, set data and link */
7a22ad75 936 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 937
6e84d644
ON
938 /*
939 * Ensure that we get the right work->data if we see the
940 * result of list_add() below, see try_to_grab_pending().
941 */
942 smp_wmb();
4690c4ab 943
1a4d9b0a 944 list_add_tail(&work->entry, head);
e22bee78
TH
945
946 /*
947 * Ensure either worker_sched_deactivated() sees the above
948 * list_add_tail() or we see zero nr_running to avoid workers
949 * lying around lazily while there are works to be processed.
950 */
951 smp_mb();
952
63d95a91
TH
953 if (__need_more_worker(pool))
954 wake_up_worker(pool);
b89deed3
ON
955}
956
c8efcc25
TH
957/*
958 * Test whether @work is being queued from another work executing on the
959 * same workqueue. This is rather expensive and should only be used from
960 * cold paths.
961 */
962static bool is_chained_work(struct workqueue_struct *wq)
963{
964 unsigned long flags;
965 unsigned int cpu;
966
967 for_each_gcwq_cpu(cpu) {
968 struct global_cwq *gcwq = get_gcwq(cpu);
969 struct worker *worker;
970 struct hlist_node *pos;
971 int i;
972
973 spin_lock_irqsave(&gcwq->lock, flags);
974 for_each_busy_worker(worker, i, pos, gcwq) {
975 if (worker->task != current)
976 continue;
977 spin_unlock_irqrestore(&gcwq->lock, flags);
978 /*
979 * I'm @worker, no locking necessary. See if @work
980 * is headed to the same workqueue.
981 */
982 return worker->current_cwq->wq == wq;
983 }
984 spin_unlock_irqrestore(&gcwq->lock, flags);
985 }
986 return false;
987}
988
4690c4ab 989static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
990 struct work_struct *work)
991{
502ca9d8
TH
992 struct global_cwq *gcwq;
993 struct cpu_workqueue_struct *cwq;
1e19ffc6 994 struct list_head *worklist;
8a2e8e5d 995 unsigned int work_flags;
1da177e4
LT
996 unsigned long flags;
997
dc186ad7 998 debug_work_activate(work);
1e19ffc6 999
c8efcc25 1000 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1001 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1002 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1003 return;
1004
c7fc77f7
TH
1005 /* determine gcwq to use */
1006 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
1007 struct global_cwq *last_gcwq;
1008
c7fc77f7
TH
1009 if (unlikely(cpu == WORK_CPU_UNBOUND))
1010 cpu = raw_smp_processor_id();
1011
18aa9eff
TH
1012 /*
1013 * It's multi cpu. If @wq is non-reentrant and @work
1014 * was previously on a different cpu, it might still
1015 * be running there, in which case the work needs to
1016 * be queued on that cpu to guarantee non-reentrance.
1017 */
502ca9d8 1018 gcwq = get_gcwq(cpu);
18aa9eff
TH
1019 if (wq->flags & WQ_NON_REENTRANT &&
1020 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1021 struct worker *worker;
1022
1023 spin_lock_irqsave(&last_gcwq->lock, flags);
1024
1025 worker = find_worker_executing_work(last_gcwq, work);
1026
1027 if (worker && worker->current_cwq->wq == wq)
1028 gcwq = last_gcwq;
1029 else {
1030 /* meh... not running there, queue here */
1031 spin_unlock_irqrestore(&last_gcwq->lock, flags);
1032 spin_lock_irqsave(&gcwq->lock, flags);
1033 }
1034 } else
1035 spin_lock_irqsave(&gcwq->lock, flags);
f3421797
TH
1036 } else {
1037 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1038 spin_lock_irqsave(&gcwq->lock, flags);
502ca9d8
TH
1039 }
1040
1041 /* gcwq determined, get cwq and queue */
1042 cwq = get_cwq(gcwq->cpu, wq);
cdadf009 1043 trace_workqueue_queue_work(cpu, cwq, work);
502ca9d8 1044
f5b2552b
DC
1045 if (WARN_ON(!list_empty(&work->entry))) {
1046 spin_unlock_irqrestore(&gcwq->lock, flags);
1047 return;
1048 }
1e19ffc6 1049
73f53c4a 1050 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1051 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1052
1053 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1054 trace_workqueue_activate_work(work);
1e19ffc6 1055 cwq->nr_active++;
3270476a 1056 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1057 } else {
1058 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1059 worklist = &cwq->delayed_works;
8a2e8e5d 1060 }
1e19ffc6 1061
8a2e8e5d 1062 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1063
8b03ae3c 1064 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4
LT
1065}
1066
0fcb78c2
REB
1067/**
1068 * queue_work - queue work on a workqueue
1069 * @wq: workqueue to use
1070 * @work: work to queue
1071 *
057647fc 1072 * Returns 0 if @work was already on a queue, non-zero otherwise.
1da177e4 1073 *
00dfcaf7
ON
1074 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1075 * it can be processed by another CPU.
1da177e4 1076 */
7ad5b3a5 1077int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 1078{
ef1ca236
ON
1079 int ret;
1080
1081 ret = queue_work_on(get_cpu(), wq, work);
1082 put_cpu();
1083
1da177e4
LT
1084 return ret;
1085}
ae90dd5d 1086EXPORT_SYMBOL_GPL(queue_work);
1da177e4 1087
c1a220e7
ZR
1088/**
1089 * queue_work_on - queue work on specific cpu
1090 * @cpu: CPU number to execute work on
1091 * @wq: workqueue to use
1092 * @work: work to queue
1093 *
1094 * Returns 0 if @work was already on a queue, non-zero otherwise.
1095 *
1096 * We queue the work to a specific CPU, the caller must ensure it
1097 * can't go away.
1098 */
1099int
1100queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1101{
1102 int ret = 0;
1103
22df02bb 1104 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1105 __queue_work(cpu, wq, work);
c1a220e7
ZR
1106 ret = 1;
1107 }
1108 return ret;
1109}
1110EXPORT_SYMBOL_GPL(queue_work_on);
1111
6d141c3f 1112static void delayed_work_timer_fn(unsigned long __data)
1da177e4 1113{
52bad64d 1114 struct delayed_work *dwork = (struct delayed_work *)__data;
7a22ad75 1115 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1da177e4 1116
4690c4ab 1117 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1da177e4
LT
1118}
1119
0fcb78c2
REB
1120/**
1121 * queue_delayed_work - queue work on a workqueue after delay
1122 * @wq: workqueue to use
af9997e4 1123 * @dwork: delayable work to queue
0fcb78c2
REB
1124 * @delay: number of jiffies to wait before queueing
1125 *
057647fc 1126 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 1127 */
7ad5b3a5 1128int queue_delayed_work(struct workqueue_struct *wq,
52bad64d 1129 struct delayed_work *dwork, unsigned long delay)
1da177e4 1130{
52bad64d 1131 if (delay == 0)
63bc0362 1132 return queue_work(wq, &dwork->work);
1da177e4 1133
63bc0362 1134 return queue_delayed_work_on(-1, wq, dwork, delay);
1da177e4 1135}
ae90dd5d 1136EXPORT_SYMBOL_GPL(queue_delayed_work);
1da177e4 1137
0fcb78c2
REB
1138/**
1139 * queue_delayed_work_on - queue work on specific CPU after delay
1140 * @cpu: CPU number to execute work on
1141 * @wq: workqueue to use
af9997e4 1142 * @dwork: work to queue
0fcb78c2
REB
1143 * @delay: number of jiffies to wait before queueing
1144 *
057647fc 1145 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 1146 */
7a6bc1cd 1147int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
52bad64d 1148 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd
VP
1149{
1150 int ret = 0;
52bad64d
DH
1151 struct timer_list *timer = &dwork->timer;
1152 struct work_struct *work = &dwork->work;
7a6bc1cd 1153
22df02bb 1154 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
c7fc77f7 1155 unsigned int lcpu;
7a22ad75 1156
7a6bc1cd
VP
1157 BUG_ON(timer_pending(timer));
1158 BUG_ON(!list_empty(&work->entry));
1159
8a3e77cc
AL
1160 timer_stats_timer_set_start_info(&dwork->timer);
1161
7a22ad75
TH
1162 /*
1163 * This stores cwq for the moment, for the timer_fn.
1164 * Note that the work's gcwq is preserved to allow
1165 * reentrance detection for delayed works.
1166 */
c7fc77f7
TH
1167 if (!(wq->flags & WQ_UNBOUND)) {
1168 struct global_cwq *gcwq = get_work_gcwq(work);
1169
1170 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1171 lcpu = gcwq->cpu;
1172 else
1173 lcpu = raw_smp_processor_id();
1174 } else
1175 lcpu = WORK_CPU_UNBOUND;
1176
7a22ad75 1177 set_work_cwq(work, get_cwq(lcpu, wq), 0);
c7fc77f7 1178
7a6bc1cd 1179 timer->expires = jiffies + delay;
52bad64d 1180 timer->data = (unsigned long)dwork;
7a6bc1cd 1181 timer->function = delayed_work_timer_fn;
63bc0362
ON
1182
1183 if (unlikely(cpu >= 0))
1184 add_timer_on(timer, cpu);
1185 else
1186 add_timer(timer);
7a6bc1cd
VP
1187 ret = 1;
1188 }
1189 return ret;
1190}
ae90dd5d 1191EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 1192
c8e55f36
TH
1193/**
1194 * worker_enter_idle - enter idle state
1195 * @worker: worker which is entering idle state
1196 *
1197 * @worker is entering idle state. Update stats and idle timer if
1198 * necessary.
1199 *
1200 * LOCKING:
1201 * spin_lock_irq(gcwq->lock).
1202 */
1203static void worker_enter_idle(struct worker *worker)
1da177e4 1204{
bd7bdd43
TH
1205 struct worker_pool *pool = worker->pool;
1206 struct global_cwq *gcwq = pool->gcwq;
c8e55f36
TH
1207
1208 BUG_ON(worker->flags & WORKER_IDLE);
1209 BUG_ON(!list_empty(&worker->entry) &&
1210 (worker->hentry.next || worker->hentry.pprev));
1211
cb444766
TH
1212 /* can't use worker_set_flags(), also called from start_worker() */
1213 worker->flags |= WORKER_IDLE;
bd7bdd43 1214 pool->nr_idle++;
e22bee78 1215 worker->last_active = jiffies;
c8e55f36
TH
1216
1217 /* idle_list is LIFO */
bd7bdd43 1218 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1219
403c821d 1220 if (likely(gcwq->trustee_state != TRUSTEE_DONE)) {
63d95a91 1221 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
bd7bdd43 1222 mod_timer(&pool->idle_timer,
e22bee78
TH
1223 jiffies + IDLE_WORKER_TIMEOUT);
1224 } else
db7bccf4 1225 wake_up_all(&gcwq->trustee_wait);
cb444766 1226
544ecf31
TH
1227 /*
1228 * Sanity check nr_running. Because trustee releases gcwq->lock
403c821d 1229 * between setting %WORKER_UNBOUND and zapping nr_running, the
544ecf31
TH
1230 * warning may trigger spuriously. Check iff trustee is idle.
1231 */
1232 WARN_ON_ONCE(gcwq->trustee_state == TRUSTEE_DONE &&
bd7bdd43 1233 pool->nr_workers == pool->nr_idle &&
63d95a91 1234 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1235}
1236
1237/**
1238 * worker_leave_idle - leave idle state
1239 * @worker: worker which is leaving idle state
1240 *
1241 * @worker is leaving idle state. Update stats.
1242 *
1243 * LOCKING:
1244 * spin_lock_irq(gcwq->lock).
1245 */
1246static void worker_leave_idle(struct worker *worker)
1247{
bd7bdd43 1248 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1249
1250 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1251 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1252 pool->nr_idle--;
c8e55f36
TH
1253 list_del_init(&worker->entry);
1254}
1255
e22bee78
TH
1256/**
1257 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1258 * @worker: self
1259 *
1260 * Works which are scheduled while the cpu is online must at least be
1261 * scheduled to a worker which is bound to the cpu so that if they are
1262 * flushed from cpu callbacks while cpu is going down, they are
1263 * guaranteed to execute on the cpu.
1264 *
1265 * This function is to be used by rogue workers and rescuers to bind
1266 * themselves to the target cpu and may race with cpu going down or
1267 * coming online. kthread_bind() can't be used because it may put the
1268 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1269 * verbatim as it's best effort and blocking and gcwq may be
1270 * [dis]associated in the meantime.
1271 *
f2d5a0ee
TH
1272 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1273 * binding against %GCWQ_DISASSOCIATED which is set during
1274 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1275 * enters idle state or fetches works without dropping lock, it can
1276 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1277 *
1278 * CONTEXT:
1279 * Might sleep. Called without any lock but returns with gcwq->lock
1280 * held.
1281 *
1282 * RETURNS:
1283 * %true if the associated gcwq is online (@worker is successfully
1284 * bound), %false if offline.
1285 */
1286static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1287__acquires(&gcwq->lock)
e22bee78 1288{
bd7bdd43 1289 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1290 struct task_struct *task = worker->task;
1291
1292 while (true) {
4e6045f1 1293 /*
e22bee78
TH
1294 * The following call may fail, succeed or succeed
1295 * without actually migrating the task to the cpu if
1296 * it races with cpu hotunplug operation. Verify
1297 * against GCWQ_DISASSOCIATED.
4e6045f1 1298 */
f3421797
TH
1299 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1300 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1301
1302 spin_lock_irq(&gcwq->lock);
1303 if (gcwq->flags & GCWQ_DISASSOCIATED)
1304 return false;
1305 if (task_cpu(task) == gcwq->cpu &&
1306 cpumask_equal(&current->cpus_allowed,
1307 get_cpu_mask(gcwq->cpu)))
1308 return true;
1309 spin_unlock_irq(&gcwq->lock);
1310
5035b20f
TH
1311 /*
1312 * We've raced with CPU hot[un]plug. Give it a breather
1313 * and retry migration. cond_resched() is required here;
1314 * otherwise, we might deadlock against cpu_stop trying to
1315 * bring down the CPU on non-preemptive kernel.
1316 */
e22bee78 1317 cpu_relax();
5035b20f 1318 cond_resched();
e22bee78
TH
1319 }
1320}
1321
25511a47
TH
1322struct idle_rebind {
1323 int cnt; /* # workers to be rebound */
1324 struct completion done; /* all workers rebound */
1325};
1326
1327/*
1328 * Rebind an idle @worker to its CPU. During CPU onlining, this has to
1329 * happen synchronously for idle workers. worker_thread() will test
1330 * %WORKER_REBIND before leaving idle and call this function.
1331 */
1332static void idle_worker_rebind(struct worker *worker)
1333{
1334 struct global_cwq *gcwq = worker->pool->gcwq;
1335
1336 /* CPU must be online at this point */
1337 WARN_ON(!worker_maybe_bind_and_lock(worker));
1338 if (!--worker->idle_rebind->cnt)
1339 complete(&worker->idle_rebind->done);
1340 spin_unlock_irq(&worker->pool->gcwq->lock);
1341
1342 /* we did our part, wait for rebind_workers() to finish up */
1343 wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
1344}
1345
e22bee78 1346/*
25511a47 1347 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1348 * the associated cpu which is coming back online. This is scheduled by
1349 * cpu up but can race with other cpu hotplug operations and may be
1350 * executed twice without intervening cpu down.
e22bee78 1351 */
25511a47 1352static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1353{
1354 struct worker *worker = container_of(work, struct worker, rebind_work);
bd7bdd43 1355 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1356
1357 if (worker_maybe_bind_and_lock(worker))
1358 worker_clr_flags(worker, WORKER_REBIND);
1359
1360 spin_unlock_irq(&gcwq->lock);
1361}
1362
25511a47
TH
1363/**
1364 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1365 * @gcwq: gcwq of interest
1366 *
1367 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1368 * is different for idle and busy ones.
1369 *
1370 * The idle ones should be rebound synchronously and idle rebinding should
1371 * be complete before any worker starts executing work items with
1372 * concurrency management enabled; otherwise, scheduler may oops trying to
1373 * wake up non-local idle worker from wq_worker_sleeping().
1374 *
1375 * This is achieved by repeatedly requesting rebinding until all idle
1376 * workers are known to have been rebound under @gcwq->lock and holding all
1377 * idle workers from becoming busy until idle rebinding is complete.
1378 *
1379 * Once idle workers are rebound, busy workers can be rebound as they
1380 * finish executing their current work items. Queueing the rebind work at
1381 * the head of their scheduled lists is enough. Note that nr_running will
1382 * be properbly bumped as busy workers rebind.
1383 *
1384 * On return, all workers are guaranteed to either be bound or have rebind
1385 * work item scheduled.
1386 */
1387static void rebind_workers(struct global_cwq *gcwq)
1388 __releases(&gcwq->lock) __acquires(&gcwq->lock)
1389{
1390 struct idle_rebind idle_rebind;
1391 struct worker_pool *pool;
1392 struct worker *worker;
1393 struct hlist_node *pos;
1394 int i;
1395
1396 lockdep_assert_held(&gcwq->lock);
1397
1398 for_each_worker_pool(pool, gcwq)
1399 lockdep_assert_held(&pool->manager_mutex);
1400
1401 /*
1402 * Rebind idle workers. Interlocked both ways. We wait for
1403 * workers to rebind via @idle_rebind.done. Workers will wait for
1404 * us to finish up by watching %WORKER_REBIND.
1405 */
1406 init_completion(&idle_rebind.done);
1407retry:
1408 idle_rebind.cnt = 1;
1409 INIT_COMPLETION(idle_rebind.done);
1410
1411 /* set REBIND and kick idle ones, we'll wait for these later */
1412 for_each_worker_pool(pool, gcwq) {
1413 list_for_each_entry(worker, &pool->idle_list, entry) {
1414 if (worker->flags & WORKER_REBIND)
1415 continue;
1416
1417 /* morph UNBOUND to REBIND */
1418 worker->flags &= ~WORKER_UNBOUND;
1419 worker->flags |= WORKER_REBIND;
1420
1421 idle_rebind.cnt++;
1422 worker->idle_rebind = &idle_rebind;
1423
1424 /* worker_thread() will call idle_worker_rebind() */
1425 wake_up_process(worker->task);
1426 }
1427 }
1428
1429 if (--idle_rebind.cnt) {
1430 spin_unlock_irq(&gcwq->lock);
1431 wait_for_completion(&idle_rebind.done);
1432 spin_lock_irq(&gcwq->lock);
1433 /* busy ones might have become idle while waiting, retry */
1434 goto retry;
1435 }
1436
1437 /*
1438 * All idle workers are rebound and waiting for %WORKER_REBIND to
1439 * be cleared inside idle_worker_rebind(). Clear and release.
1440 * Clearing %WORKER_REBIND from this foreign context is safe
1441 * because these workers are still guaranteed to be idle.
1442 */
1443 for_each_worker_pool(pool, gcwq)
1444 list_for_each_entry(worker, &pool->idle_list, entry)
1445 worker->flags &= ~WORKER_REBIND;
1446
1447 wake_up_all(&gcwq->rebind_hold);
1448
1449 /* rebind busy workers */
1450 for_each_busy_worker(worker, i, pos, gcwq) {
1451 struct work_struct *rebind_work = &worker->rebind_work;
1452
1453 /* morph UNBOUND to REBIND */
1454 worker->flags &= ~WORKER_UNBOUND;
1455 worker->flags |= WORKER_REBIND;
1456
1457 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1458 work_data_bits(rebind_work)))
1459 continue;
1460
1461 /* wq doesn't matter, use the default one */
1462 debug_work_activate(rebind_work);
1463 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
1464 worker->scheduled.next,
1465 work_color_to_flags(WORK_NO_COLOR));
1466 }
1467}
1468
c34056a3
TH
1469static struct worker *alloc_worker(void)
1470{
1471 struct worker *worker;
1472
1473 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1474 if (worker) {
1475 INIT_LIST_HEAD(&worker->entry);
affee4b2 1476 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1477 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1478 /* on creation a worker is in !idle && prep state */
1479 worker->flags = WORKER_PREP;
c8e55f36 1480 }
c34056a3
TH
1481 return worker;
1482}
1483
1484/**
1485 * create_worker - create a new workqueue worker
63d95a91 1486 * @pool: pool the new worker will belong to
c34056a3 1487 *
63d95a91 1488 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1489 * can be started by calling start_worker() or destroyed using
1490 * destroy_worker().
1491 *
1492 * CONTEXT:
1493 * Might sleep. Does GFP_KERNEL allocations.
1494 *
1495 * RETURNS:
1496 * Pointer to the newly created worker.
1497 */
bc2ae0f5 1498static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1499{
63d95a91 1500 struct global_cwq *gcwq = pool->gcwq;
3270476a 1501 const char *pri = worker_pool_pri(pool) ? "H" : "";
c34056a3 1502 struct worker *worker = NULL;
f3421797 1503 int id = -1;
c34056a3 1504
8b03ae3c 1505 spin_lock_irq(&gcwq->lock);
bd7bdd43 1506 while (ida_get_new(&pool->worker_ida, &id)) {
8b03ae3c 1507 spin_unlock_irq(&gcwq->lock);
bd7bdd43 1508 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1509 goto fail;
8b03ae3c 1510 spin_lock_irq(&gcwq->lock);
c34056a3 1511 }
8b03ae3c 1512 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1513
1514 worker = alloc_worker();
1515 if (!worker)
1516 goto fail;
1517
bd7bdd43 1518 worker->pool = pool;
c34056a3
TH
1519 worker->id = id;
1520
bc2ae0f5 1521 if (gcwq->cpu != WORK_CPU_UNBOUND)
94dcf29a 1522 worker->task = kthread_create_on_node(worker_thread,
3270476a
TH
1523 worker, cpu_to_node(gcwq->cpu),
1524 "kworker/%u:%d%s", gcwq->cpu, id, pri);
f3421797
TH
1525 else
1526 worker->task = kthread_create(worker_thread, worker,
3270476a 1527 "kworker/u:%d%s", id, pri);
c34056a3
TH
1528 if (IS_ERR(worker->task))
1529 goto fail;
1530
3270476a
TH
1531 if (worker_pool_pri(pool))
1532 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1533
db7bccf4 1534 /*
bc2ae0f5
TH
1535 * Determine CPU binding of the new worker depending on
1536 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1537 * flag remains stable across this function. See the comments
1538 * above the flag definition for details.
1539 *
1540 * As an unbound worker may later become a regular one if CPU comes
1541 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1542 */
bc2ae0f5 1543 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
8b03ae3c 1544 kthread_bind(worker->task, gcwq->cpu);
bc2ae0f5 1545 } else {
db7bccf4 1546 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1547 worker->flags |= WORKER_UNBOUND;
f3421797 1548 }
c34056a3
TH
1549
1550 return worker;
1551fail:
1552 if (id >= 0) {
8b03ae3c 1553 spin_lock_irq(&gcwq->lock);
bd7bdd43 1554 ida_remove(&pool->worker_ida, id);
8b03ae3c 1555 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1556 }
1557 kfree(worker);
1558 return NULL;
1559}
1560
1561/**
1562 * start_worker - start a newly created worker
1563 * @worker: worker to start
1564 *
c8e55f36 1565 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1566 *
1567 * CONTEXT:
8b03ae3c 1568 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1569 */
1570static void start_worker(struct worker *worker)
1571{
cb444766 1572 worker->flags |= WORKER_STARTED;
bd7bdd43 1573 worker->pool->nr_workers++;
c8e55f36 1574 worker_enter_idle(worker);
c34056a3
TH
1575 wake_up_process(worker->task);
1576}
1577
1578/**
1579 * destroy_worker - destroy a workqueue worker
1580 * @worker: worker to be destroyed
1581 *
c8e55f36
TH
1582 * Destroy @worker and adjust @gcwq stats accordingly.
1583 *
1584 * CONTEXT:
1585 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1586 */
1587static void destroy_worker(struct worker *worker)
1588{
bd7bdd43
TH
1589 struct worker_pool *pool = worker->pool;
1590 struct global_cwq *gcwq = pool->gcwq;
c34056a3
TH
1591 int id = worker->id;
1592
1593 /* sanity check frenzy */
1594 BUG_ON(worker->current_work);
affee4b2 1595 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1596
c8e55f36 1597 if (worker->flags & WORKER_STARTED)
bd7bdd43 1598 pool->nr_workers--;
c8e55f36 1599 if (worker->flags & WORKER_IDLE)
bd7bdd43 1600 pool->nr_idle--;
c8e55f36
TH
1601
1602 list_del_init(&worker->entry);
cb444766 1603 worker->flags |= WORKER_DIE;
c8e55f36
TH
1604
1605 spin_unlock_irq(&gcwq->lock);
1606
c34056a3
TH
1607 kthread_stop(worker->task);
1608 kfree(worker);
1609
8b03ae3c 1610 spin_lock_irq(&gcwq->lock);
bd7bdd43 1611 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1612}
1613
63d95a91 1614static void idle_worker_timeout(unsigned long __pool)
e22bee78 1615{
63d95a91
TH
1616 struct worker_pool *pool = (void *)__pool;
1617 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1618
1619 spin_lock_irq(&gcwq->lock);
1620
63d95a91 1621 if (too_many_workers(pool)) {
e22bee78
TH
1622 struct worker *worker;
1623 unsigned long expires;
1624
1625 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1626 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1627 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1628
1629 if (time_before(jiffies, expires))
63d95a91 1630 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1631 else {
1632 /* it's been idle for too long, wake up manager */
11ebea50 1633 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1634 wake_up_worker(pool);
d5abe669 1635 }
e22bee78
TH
1636 }
1637
1638 spin_unlock_irq(&gcwq->lock);
1639}
d5abe669 1640
e22bee78
TH
1641static bool send_mayday(struct work_struct *work)
1642{
1643 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1644 struct workqueue_struct *wq = cwq->wq;
f3421797 1645 unsigned int cpu;
e22bee78
TH
1646
1647 if (!(wq->flags & WQ_RESCUER))
1648 return false;
1649
1650 /* mayday mayday mayday */
bd7bdd43 1651 cpu = cwq->pool->gcwq->cpu;
f3421797
TH
1652 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1653 if (cpu == WORK_CPU_UNBOUND)
1654 cpu = 0;
f2e005aa 1655 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1656 wake_up_process(wq->rescuer->task);
1657 return true;
1658}
1659
63d95a91 1660static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1661{
63d95a91
TH
1662 struct worker_pool *pool = (void *)__pool;
1663 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1664 struct work_struct *work;
1665
1666 spin_lock_irq(&gcwq->lock);
1667
63d95a91 1668 if (need_to_create_worker(pool)) {
e22bee78
TH
1669 /*
1670 * We've been trying to create a new worker but
1671 * haven't been successful. We might be hitting an
1672 * allocation deadlock. Send distress signals to
1673 * rescuers.
1674 */
63d95a91 1675 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1676 send_mayday(work);
1da177e4 1677 }
e22bee78
TH
1678
1679 spin_unlock_irq(&gcwq->lock);
1680
63d95a91 1681 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1682}
1683
e22bee78
TH
1684/**
1685 * maybe_create_worker - create a new worker if necessary
63d95a91 1686 * @pool: pool to create a new worker for
e22bee78 1687 *
63d95a91 1688 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1689 * have at least one idle worker on return from this function. If
1690 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1691 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1692 * possible allocation deadlock.
1693 *
1694 * On return, need_to_create_worker() is guaranteed to be false and
1695 * may_start_working() true.
1696 *
1697 * LOCKING:
1698 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1699 * multiple times. Does GFP_KERNEL allocations. Called only from
1700 * manager.
1701 *
1702 * RETURNS:
1703 * false if no action was taken and gcwq->lock stayed locked, true
1704 * otherwise.
1705 */
63d95a91 1706static bool maybe_create_worker(struct worker_pool *pool)
06bd6ebf
NK
1707__releases(&gcwq->lock)
1708__acquires(&gcwq->lock)
1da177e4 1709{
63d95a91
TH
1710 struct global_cwq *gcwq = pool->gcwq;
1711
1712 if (!need_to_create_worker(pool))
e22bee78
TH
1713 return false;
1714restart:
9f9c2364
TH
1715 spin_unlock_irq(&gcwq->lock);
1716
e22bee78 1717 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1718 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1719
1720 while (true) {
1721 struct worker *worker;
1722
bc2ae0f5 1723 worker = create_worker(pool);
e22bee78 1724 if (worker) {
63d95a91 1725 del_timer_sync(&pool->mayday_timer);
e22bee78
TH
1726 spin_lock_irq(&gcwq->lock);
1727 start_worker(worker);
63d95a91 1728 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
1729 return true;
1730 }
1731
63d95a91 1732 if (!need_to_create_worker(pool))
e22bee78 1733 break;
1da177e4 1734
e22bee78
TH
1735 __set_current_state(TASK_INTERRUPTIBLE);
1736 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1737
63d95a91 1738 if (!need_to_create_worker(pool))
e22bee78
TH
1739 break;
1740 }
1741
63d95a91 1742 del_timer_sync(&pool->mayday_timer);
e22bee78 1743 spin_lock_irq(&gcwq->lock);
63d95a91 1744 if (need_to_create_worker(pool))
e22bee78
TH
1745 goto restart;
1746 return true;
1747}
1748
1749/**
1750 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1751 * @pool: pool to destroy workers for
e22bee78 1752 *
63d95a91 1753 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1754 * IDLE_WORKER_TIMEOUT.
1755 *
1756 * LOCKING:
1757 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1758 * multiple times. Called only from manager.
1759 *
1760 * RETURNS:
1761 * false if no action was taken and gcwq->lock stayed locked, true
1762 * otherwise.
1763 */
63d95a91 1764static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1765{
1766 bool ret = false;
1da177e4 1767
63d95a91 1768 while (too_many_workers(pool)) {
e22bee78
TH
1769 struct worker *worker;
1770 unsigned long expires;
3af24433 1771
63d95a91 1772 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1773 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1774
e22bee78 1775 if (time_before(jiffies, expires)) {
63d95a91 1776 mod_timer(&pool->idle_timer, expires);
3af24433 1777 break;
e22bee78 1778 }
1da177e4 1779
e22bee78
TH
1780 destroy_worker(worker);
1781 ret = true;
1da177e4 1782 }
3af24433 1783
e22bee78
TH
1784 return ret;
1785}
1786
1787/**
1788 * manage_workers - manage worker pool
1789 * @worker: self
1790 *
1791 * Assume the manager role and manage gcwq worker pool @worker belongs
1792 * to. At any given time, there can be only zero or one manager per
1793 * gcwq. The exclusion is handled automatically by this function.
1794 *
1795 * The caller can safely start processing works on false return. On
1796 * true return, it's guaranteed that need_to_create_worker() is false
1797 * and may_start_working() is true.
1798 *
1799 * CONTEXT:
1800 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1801 * multiple times. Does GFP_KERNEL allocations.
1802 *
1803 * RETURNS:
1804 * false if no action was taken and gcwq->lock stayed locked, true if
1805 * some action was taken.
1806 */
1807static bool manage_workers(struct worker *worker)
1808{
63d95a91 1809 struct worker_pool *pool = worker->pool;
e22bee78
TH
1810 bool ret = false;
1811
60373152 1812 if (!mutex_trylock(&pool->manager_mutex))
e22bee78
TH
1813 return ret;
1814
11ebea50 1815 pool->flags &= ~POOL_MANAGE_WORKERS;
e22bee78
TH
1816
1817 /*
1818 * Destroy and then create so that may_start_working() is true
1819 * on return.
1820 */
63d95a91
TH
1821 ret |= maybe_destroy_workers(pool);
1822 ret |= maybe_create_worker(pool);
e22bee78 1823
60373152 1824 mutex_unlock(&pool->manager_mutex);
e22bee78
TH
1825 return ret;
1826}
1827
affee4b2
TH
1828/**
1829 * move_linked_works - move linked works to a list
1830 * @work: start of series of works to be scheduled
1831 * @head: target list to append @work to
1832 * @nextp: out paramter for nested worklist walking
1833 *
1834 * Schedule linked works starting from @work to @head. Work series to
1835 * be scheduled starts at @work and includes any consecutive work with
1836 * WORK_STRUCT_LINKED set in its predecessor.
1837 *
1838 * If @nextp is not NULL, it's updated to point to the next work of
1839 * the last scheduled work. This allows move_linked_works() to be
1840 * nested inside outer list_for_each_entry_safe().
1841 *
1842 * CONTEXT:
8b03ae3c 1843 * spin_lock_irq(gcwq->lock).
affee4b2
TH
1844 */
1845static void move_linked_works(struct work_struct *work, struct list_head *head,
1846 struct work_struct **nextp)
1847{
1848 struct work_struct *n;
1849
1850 /*
1851 * Linked worklist will always end before the end of the list,
1852 * use NULL for list head.
1853 */
1854 list_for_each_entry_safe_from(work, n, NULL, entry) {
1855 list_move_tail(&work->entry, head);
1856 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1857 break;
1858 }
1859
1860 /*
1861 * If we're already inside safe list traversal and have moved
1862 * multiple works to the scheduled queue, the next position
1863 * needs to be updated.
1864 */
1865 if (nextp)
1866 *nextp = n;
1867}
1868
1e19ffc6
TH
1869static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1870{
1871 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1872 struct work_struct, entry);
1873
cdadf009 1874 trace_workqueue_activate_work(work);
3270476a 1875 move_linked_works(work, &cwq->pool->worklist, NULL);
8a2e8e5d 1876 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1e19ffc6
TH
1877 cwq->nr_active++;
1878}
1879
73f53c4a
TH
1880/**
1881 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1882 * @cwq: cwq of interest
1883 * @color: color of work which left the queue
8a2e8e5d 1884 * @delayed: for a delayed work
73f53c4a
TH
1885 *
1886 * A work either has completed or is removed from pending queue,
1887 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1888 *
1889 * CONTEXT:
8b03ae3c 1890 * spin_lock_irq(gcwq->lock).
73f53c4a 1891 */
8a2e8e5d
TH
1892static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1893 bool delayed)
73f53c4a
TH
1894{
1895 /* ignore uncolored works */
1896 if (color == WORK_NO_COLOR)
1897 return;
1898
1899 cwq->nr_in_flight[color]--;
1e19ffc6 1900
8a2e8e5d
TH
1901 if (!delayed) {
1902 cwq->nr_active--;
1903 if (!list_empty(&cwq->delayed_works)) {
1904 /* one down, submit a delayed one */
1905 if (cwq->nr_active < cwq->max_active)
1906 cwq_activate_first_delayed(cwq);
1907 }
502ca9d8 1908 }
73f53c4a
TH
1909
1910 /* is flush in progress and are we at the flushing tip? */
1911 if (likely(cwq->flush_color != color))
1912 return;
1913
1914 /* are there still in-flight works? */
1915 if (cwq->nr_in_flight[color])
1916 return;
1917
1918 /* this cwq is done, clear flush_color */
1919 cwq->flush_color = -1;
1920
1921 /*
1922 * If this was the last cwq, wake up the first flusher. It
1923 * will handle the rest.
1924 */
1925 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1926 complete(&cwq->wq->first_flusher->done);
1927}
1928
a62428c0
TH
1929/**
1930 * process_one_work - process single work
c34056a3 1931 * @worker: self
a62428c0
TH
1932 * @work: work to process
1933 *
1934 * Process @work. This function contains all the logics necessary to
1935 * process a single work including synchronization against and
1936 * interaction with other workers on the same cpu, queueing and
1937 * flushing. As long as context requirement is met, any worker can
1938 * call this function to process a work.
1939 *
1940 * CONTEXT:
8b03ae3c 1941 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 1942 */
c34056a3 1943static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
1944__releases(&gcwq->lock)
1945__acquires(&gcwq->lock)
a62428c0 1946{
7e11629d 1947 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43
TH
1948 struct worker_pool *pool = worker->pool;
1949 struct global_cwq *gcwq = pool->gcwq;
c8e55f36 1950 struct hlist_head *bwh = busy_worker_head(gcwq, work);
fb0e7beb 1951 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
a62428c0 1952 work_func_t f = work->func;
73f53c4a 1953 int work_color;
7e11629d 1954 struct worker *collision;
a62428c0
TH
1955#ifdef CONFIG_LOCKDEP
1956 /*
1957 * It is permissible to free the struct work_struct from
1958 * inside the function that is called from it, this we need to
1959 * take into account for lockdep too. To avoid bogus "held
1960 * lock freed" warnings as well as problems when looking into
1961 * work->lockdep_map, make a copy and use that here.
1962 */
4d82a1de
PZ
1963 struct lockdep_map lockdep_map;
1964
1965 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 1966#endif
25511a47
TH
1967 WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
1968 raw_smp_processor_id() != gcwq->cpu);
1969
7e11629d
TH
1970 /*
1971 * A single work shouldn't be executed concurrently by
1972 * multiple workers on a single cpu. Check whether anyone is
1973 * already processing the work. If so, defer the work to the
1974 * currently executing one.
1975 */
1976 collision = __find_worker_executing_work(gcwq, bwh, work);
1977 if (unlikely(collision)) {
1978 move_linked_works(work, &collision->scheduled, NULL);
1979 return;
1980 }
1981
a62428c0 1982 /* claim and process */
a62428c0 1983 debug_work_deactivate(work);
c8e55f36 1984 hlist_add_head(&worker->hentry, bwh);
c34056a3 1985 worker->current_work = work;
8cca0eea 1986 worker->current_cwq = cwq;
73f53c4a 1987 work_color = get_work_color(work);
7a22ad75 1988
7a22ad75
TH
1989 /* record the current cpu number in the work data and dequeue */
1990 set_work_cpu(work, gcwq->cpu);
a62428c0
TH
1991 list_del_init(&work->entry);
1992
fb0e7beb
TH
1993 /*
1994 * CPU intensive works don't participate in concurrency
1995 * management. They're the scheduler's responsibility.
1996 */
1997 if (unlikely(cpu_intensive))
1998 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1999
974271c4
TH
2000 /*
2001 * Unbound gcwq isn't concurrency managed and work items should be
2002 * executed ASAP. Wake up another worker if necessary.
2003 */
63d95a91
TH
2004 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2005 wake_up_worker(pool);
974271c4 2006
8b03ae3c 2007 spin_unlock_irq(&gcwq->lock);
a62428c0 2008
a62428c0 2009 work_clear_pending(work);
e159489b 2010 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2011 lock_map_acquire(&lockdep_map);
e36c886a 2012 trace_workqueue_execute_start(work);
a62428c0 2013 f(work);
e36c886a
AV
2014 /*
2015 * While we must be careful to not use "work" after this, the trace
2016 * point will only record its address.
2017 */
2018 trace_workqueue_execute_end(work);
a62428c0
TH
2019 lock_map_release(&lockdep_map);
2020 lock_map_release(&cwq->wq->lockdep_map);
2021
2022 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2023 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
2024 "%s/0x%08x/%d\n",
2025 current->comm, preempt_count(), task_pid_nr(current));
2026 printk(KERN_ERR " last function: ");
2027 print_symbol("%s\n", (unsigned long)f);
2028 debug_show_held_locks(current);
2029 dump_stack();
2030 }
2031
8b03ae3c 2032 spin_lock_irq(&gcwq->lock);
a62428c0 2033
fb0e7beb
TH
2034 /* clear cpu intensive status */
2035 if (unlikely(cpu_intensive))
2036 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2037
a62428c0 2038 /* we're done with it, release */
c8e55f36 2039 hlist_del_init(&worker->hentry);
c34056a3 2040 worker->current_work = NULL;
8cca0eea 2041 worker->current_cwq = NULL;
8a2e8e5d 2042 cwq_dec_nr_in_flight(cwq, work_color, false);
a62428c0
TH
2043}
2044
affee4b2
TH
2045/**
2046 * process_scheduled_works - process scheduled works
2047 * @worker: self
2048 *
2049 * Process all scheduled works. Please note that the scheduled list
2050 * may change while processing a work, so this function repeatedly
2051 * fetches a work from the top and executes it.
2052 *
2053 * CONTEXT:
8b03ae3c 2054 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
2055 * multiple times.
2056 */
2057static void process_scheduled_works(struct worker *worker)
1da177e4 2058{
affee4b2
TH
2059 while (!list_empty(&worker->scheduled)) {
2060 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2061 struct work_struct, entry);
c34056a3 2062 process_one_work(worker, work);
1da177e4 2063 }
1da177e4
LT
2064}
2065
4690c4ab
TH
2066/**
2067 * worker_thread - the worker thread function
c34056a3 2068 * @__worker: self
4690c4ab 2069 *
e22bee78
TH
2070 * The gcwq worker thread function. There's a single dynamic pool of
2071 * these per each cpu. These workers process all works regardless of
2072 * their specific target workqueue. The only exception is works which
2073 * belong to workqueues with a rescuer which will be explained in
2074 * rescuer_thread().
4690c4ab 2075 */
c34056a3 2076static int worker_thread(void *__worker)
1da177e4 2077{
c34056a3 2078 struct worker *worker = __worker;
bd7bdd43
TH
2079 struct worker_pool *pool = worker->pool;
2080 struct global_cwq *gcwq = pool->gcwq;
1da177e4 2081
e22bee78
TH
2082 /* tell the scheduler that this is a workqueue worker */
2083 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2084woke_up:
c8e55f36 2085 spin_lock_irq(&gcwq->lock);
1da177e4 2086
25511a47
TH
2087 /*
2088 * DIE can be set only while idle and REBIND set while busy has
2089 * @worker->rebind_work scheduled. Checking here is enough.
2090 */
2091 if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
c8e55f36 2092 spin_unlock_irq(&gcwq->lock);
25511a47
TH
2093
2094 if (worker->flags & WORKER_DIE) {
2095 worker->task->flags &= ~PF_WQ_WORKER;
2096 return 0;
2097 }
2098
2099 idle_worker_rebind(worker);
2100 goto woke_up;
c8e55f36 2101 }
affee4b2 2102
c8e55f36 2103 worker_leave_idle(worker);
db7bccf4 2104recheck:
e22bee78 2105 /* no more worker necessary? */
63d95a91 2106 if (!need_more_worker(pool))
e22bee78
TH
2107 goto sleep;
2108
2109 /* do we need to manage? */
63d95a91 2110 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2111 goto recheck;
2112
c8e55f36
TH
2113 /*
2114 * ->scheduled list can only be filled while a worker is
2115 * preparing to process a work or actually processing it.
2116 * Make sure nobody diddled with it while I was sleeping.
2117 */
2118 BUG_ON(!list_empty(&worker->scheduled));
2119
e22bee78
TH
2120 /*
2121 * When control reaches this point, we're guaranteed to have
2122 * at least one idle worker or that someone else has already
2123 * assumed the manager role.
2124 */
2125 worker_clr_flags(worker, WORKER_PREP);
2126
2127 do {
c8e55f36 2128 struct work_struct *work =
bd7bdd43 2129 list_first_entry(&pool->worklist,
c8e55f36
TH
2130 struct work_struct, entry);
2131
2132 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2133 /* optimization path, not strictly necessary */
2134 process_one_work(worker, work);
2135 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2136 process_scheduled_works(worker);
c8e55f36
TH
2137 } else {
2138 move_linked_works(work, &worker->scheduled, NULL);
2139 process_scheduled_works(worker);
affee4b2 2140 }
63d95a91 2141 } while (keep_working(pool));
e22bee78
TH
2142
2143 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2144sleep:
63d95a91 2145 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2146 goto recheck;
d313dd85 2147
c8e55f36 2148 /*
e22bee78
TH
2149 * gcwq->lock is held and there's no work to process and no
2150 * need to manage, sleep. Workers are woken up only while
2151 * holding gcwq->lock or from local cpu, so setting the
2152 * current state before releasing gcwq->lock is enough to
2153 * prevent losing any event.
c8e55f36
TH
2154 */
2155 worker_enter_idle(worker);
2156 __set_current_state(TASK_INTERRUPTIBLE);
2157 spin_unlock_irq(&gcwq->lock);
2158 schedule();
2159 goto woke_up;
1da177e4
LT
2160}
2161
e22bee78
TH
2162/**
2163 * rescuer_thread - the rescuer thread function
2164 * @__wq: the associated workqueue
2165 *
2166 * Workqueue rescuer thread function. There's one rescuer for each
2167 * workqueue which has WQ_RESCUER set.
2168 *
2169 * Regular work processing on a gcwq may block trying to create a new
2170 * worker which uses GFP_KERNEL allocation which has slight chance of
2171 * developing into deadlock if some works currently on the same queue
2172 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2173 * the problem rescuer solves.
2174 *
2175 * When such condition is possible, the gcwq summons rescuers of all
2176 * workqueues which have works queued on the gcwq and let them process
2177 * those works so that forward progress can be guaranteed.
2178 *
2179 * This should happen rarely.
2180 */
2181static int rescuer_thread(void *__wq)
2182{
2183 struct workqueue_struct *wq = __wq;
2184 struct worker *rescuer = wq->rescuer;
2185 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2186 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2187 unsigned int cpu;
2188
2189 set_user_nice(current, RESCUER_NICE_LEVEL);
2190repeat:
2191 set_current_state(TASK_INTERRUPTIBLE);
2192
2193 if (kthread_should_stop())
2194 return 0;
2195
f3421797
TH
2196 /*
2197 * See whether any cpu is asking for help. Unbounded
2198 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2199 */
f2e005aa 2200 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2201 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2202 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43
TH
2203 struct worker_pool *pool = cwq->pool;
2204 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
2205 struct work_struct *work, *n;
2206
2207 __set_current_state(TASK_RUNNING);
f2e005aa 2208 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2209
2210 /* migrate to the target cpu if possible */
bd7bdd43 2211 rescuer->pool = pool;
e22bee78
TH
2212 worker_maybe_bind_and_lock(rescuer);
2213
2214 /*
2215 * Slurp in all works issued via this workqueue and
2216 * process'em.
2217 */
2218 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2219 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2220 if (get_work_cwq(work) == cwq)
2221 move_linked_works(work, scheduled, &n);
2222
2223 process_scheduled_works(rescuer);
7576958a
TH
2224
2225 /*
2226 * Leave this gcwq. If keep_working() is %true, notify a
2227 * regular worker; otherwise, we end up with 0 concurrency
2228 * and stalling the execution.
2229 */
63d95a91
TH
2230 if (keep_working(pool))
2231 wake_up_worker(pool);
7576958a 2232
e22bee78
TH
2233 spin_unlock_irq(&gcwq->lock);
2234 }
2235
2236 schedule();
2237 goto repeat;
1da177e4
LT
2238}
2239
fc2e4d70
ON
2240struct wq_barrier {
2241 struct work_struct work;
2242 struct completion done;
2243};
2244
2245static void wq_barrier_func(struct work_struct *work)
2246{
2247 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2248 complete(&barr->done);
2249}
2250
4690c4ab
TH
2251/**
2252 * insert_wq_barrier - insert a barrier work
2253 * @cwq: cwq to insert barrier into
2254 * @barr: wq_barrier to insert
affee4b2
TH
2255 * @target: target work to attach @barr to
2256 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2257 *
affee4b2
TH
2258 * @barr is linked to @target such that @barr is completed only after
2259 * @target finishes execution. Please note that the ordering
2260 * guarantee is observed only with respect to @target and on the local
2261 * cpu.
2262 *
2263 * Currently, a queued barrier can't be canceled. This is because
2264 * try_to_grab_pending() can't determine whether the work to be
2265 * grabbed is at the head of the queue and thus can't clear LINKED
2266 * flag of the previous work while there must be a valid next work
2267 * after a work with LINKED flag set.
2268 *
2269 * Note that when @worker is non-NULL, @target may be modified
2270 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2271 *
2272 * CONTEXT:
8b03ae3c 2273 * spin_lock_irq(gcwq->lock).
4690c4ab 2274 */
83c22520 2275static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2276 struct wq_barrier *barr,
2277 struct work_struct *target, struct worker *worker)
fc2e4d70 2278{
affee4b2
TH
2279 struct list_head *head;
2280 unsigned int linked = 0;
2281
dc186ad7 2282 /*
8b03ae3c 2283 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2284 * as we know for sure that this will not trigger any of the
2285 * checks and call back into the fixup functions where we
2286 * might deadlock.
2287 */
ca1cab37 2288 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2289 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2290 init_completion(&barr->done);
83c22520 2291
affee4b2
TH
2292 /*
2293 * If @target is currently being executed, schedule the
2294 * barrier to the worker; otherwise, put it after @target.
2295 */
2296 if (worker)
2297 head = worker->scheduled.next;
2298 else {
2299 unsigned long *bits = work_data_bits(target);
2300
2301 head = target->entry.next;
2302 /* there can already be other linked works, inherit and set */
2303 linked = *bits & WORK_STRUCT_LINKED;
2304 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2305 }
2306
dc186ad7 2307 debug_work_activate(&barr->work);
affee4b2
TH
2308 insert_work(cwq, &barr->work, head,
2309 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2310}
2311
73f53c4a
TH
2312/**
2313 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2314 * @wq: workqueue being flushed
2315 * @flush_color: new flush color, < 0 for no-op
2316 * @work_color: new work color, < 0 for no-op
2317 *
2318 * Prepare cwqs for workqueue flushing.
2319 *
2320 * If @flush_color is non-negative, flush_color on all cwqs should be
2321 * -1. If no cwq has in-flight commands at the specified color, all
2322 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2323 * has in flight commands, its cwq->flush_color is set to
2324 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2325 * wakeup logic is armed and %true is returned.
2326 *
2327 * The caller should have initialized @wq->first_flusher prior to
2328 * calling this function with non-negative @flush_color. If
2329 * @flush_color is negative, no flush color update is done and %false
2330 * is returned.
2331 *
2332 * If @work_color is non-negative, all cwqs should have the same
2333 * work_color which is previous to @work_color and all will be
2334 * advanced to @work_color.
2335 *
2336 * CONTEXT:
2337 * mutex_lock(wq->flush_mutex).
2338 *
2339 * RETURNS:
2340 * %true if @flush_color >= 0 and there's something to flush. %false
2341 * otherwise.
2342 */
2343static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2344 int flush_color, int work_color)
1da177e4 2345{
73f53c4a
TH
2346 bool wait = false;
2347 unsigned int cpu;
1da177e4 2348
73f53c4a
TH
2349 if (flush_color >= 0) {
2350 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2351 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2352 }
2355b70f 2353
f3421797 2354 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2355 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bd7bdd43 2356 struct global_cwq *gcwq = cwq->pool->gcwq;
fc2e4d70 2357
8b03ae3c 2358 spin_lock_irq(&gcwq->lock);
83c22520 2359
73f53c4a
TH
2360 if (flush_color >= 0) {
2361 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2362
73f53c4a
TH
2363 if (cwq->nr_in_flight[flush_color]) {
2364 cwq->flush_color = flush_color;
2365 atomic_inc(&wq->nr_cwqs_to_flush);
2366 wait = true;
2367 }
2368 }
1da177e4 2369
73f53c4a
TH
2370 if (work_color >= 0) {
2371 BUG_ON(work_color != work_next_color(cwq->work_color));
2372 cwq->work_color = work_color;
2373 }
1da177e4 2374
8b03ae3c 2375 spin_unlock_irq(&gcwq->lock);
1da177e4 2376 }
2355b70f 2377
73f53c4a
TH
2378 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2379 complete(&wq->first_flusher->done);
14441960 2380
73f53c4a 2381 return wait;
1da177e4
LT
2382}
2383
0fcb78c2 2384/**
1da177e4 2385 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2386 * @wq: workqueue to flush
1da177e4
LT
2387 *
2388 * Forces execution of the workqueue and blocks until its completion.
2389 * This is typically used in driver shutdown handlers.
2390 *
fc2e4d70
ON
2391 * We sleep until all works which were queued on entry have been handled,
2392 * but we are not livelocked by new incoming ones.
1da177e4 2393 */
7ad5b3a5 2394void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2395{
73f53c4a
TH
2396 struct wq_flusher this_flusher = {
2397 .list = LIST_HEAD_INIT(this_flusher.list),
2398 .flush_color = -1,
2399 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2400 };
2401 int next_color;
1da177e4 2402
3295f0ef
IM
2403 lock_map_acquire(&wq->lockdep_map);
2404 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2405
2406 mutex_lock(&wq->flush_mutex);
2407
2408 /*
2409 * Start-to-wait phase
2410 */
2411 next_color = work_next_color(wq->work_color);
2412
2413 if (next_color != wq->flush_color) {
2414 /*
2415 * Color space is not full. The current work_color
2416 * becomes our flush_color and work_color is advanced
2417 * by one.
2418 */
2419 BUG_ON(!list_empty(&wq->flusher_overflow));
2420 this_flusher.flush_color = wq->work_color;
2421 wq->work_color = next_color;
2422
2423 if (!wq->first_flusher) {
2424 /* no flush in progress, become the first flusher */
2425 BUG_ON(wq->flush_color != this_flusher.flush_color);
2426
2427 wq->first_flusher = &this_flusher;
2428
2429 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2430 wq->work_color)) {
2431 /* nothing to flush, done */
2432 wq->flush_color = next_color;
2433 wq->first_flusher = NULL;
2434 goto out_unlock;
2435 }
2436 } else {
2437 /* wait in queue */
2438 BUG_ON(wq->flush_color == this_flusher.flush_color);
2439 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2440 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2441 }
2442 } else {
2443 /*
2444 * Oops, color space is full, wait on overflow queue.
2445 * The next flush completion will assign us
2446 * flush_color and transfer to flusher_queue.
2447 */
2448 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2449 }
2450
2451 mutex_unlock(&wq->flush_mutex);
2452
2453 wait_for_completion(&this_flusher.done);
2454
2455 /*
2456 * Wake-up-and-cascade phase
2457 *
2458 * First flushers are responsible for cascading flushes and
2459 * handling overflow. Non-first flushers can simply return.
2460 */
2461 if (wq->first_flusher != &this_flusher)
2462 return;
2463
2464 mutex_lock(&wq->flush_mutex);
2465
4ce48b37
TH
2466 /* we might have raced, check again with mutex held */
2467 if (wq->first_flusher != &this_flusher)
2468 goto out_unlock;
2469
73f53c4a
TH
2470 wq->first_flusher = NULL;
2471
2472 BUG_ON(!list_empty(&this_flusher.list));
2473 BUG_ON(wq->flush_color != this_flusher.flush_color);
2474
2475 while (true) {
2476 struct wq_flusher *next, *tmp;
2477
2478 /* complete all the flushers sharing the current flush color */
2479 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2480 if (next->flush_color != wq->flush_color)
2481 break;
2482 list_del_init(&next->list);
2483 complete(&next->done);
2484 }
2485
2486 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2487 wq->flush_color != work_next_color(wq->work_color));
2488
2489 /* this flush_color is finished, advance by one */
2490 wq->flush_color = work_next_color(wq->flush_color);
2491
2492 /* one color has been freed, handle overflow queue */
2493 if (!list_empty(&wq->flusher_overflow)) {
2494 /*
2495 * Assign the same color to all overflowed
2496 * flushers, advance work_color and append to
2497 * flusher_queue. This is the start-to-wait
2498 * phase for these overflowed flushers.
2499 */
2500 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2501 tmp->flush_color = wq->work_color;
2502
2503 wq->work_color = work_next_color(wq->work_color);
2504
2505 list_splice_tail_init(&wq->flusher_overflow,
2506 &wq->flusher_queue);
2507 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2508 }
2509
2510 if (list_empty(&wq->flusher_queue)) {
2511 BUG_ON(wq->flush_color != wq->work_color);
2512 break;
2513 }
2514
2515 /*
2516 * Need to flush more colors. Make the next flusher
2517 * the new first flusher and arm cwqs.
2518 */
2519 BUG_ON(wq->flush_color == wq->work_color);
2520 BUG_ON(wq->flush_color != next->flush_color);
2521
2522 list_del_init(&next->list);
2523 wq->first_flusher = next;
2524
2525 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2526 break;
2527
2528 /*
2529 * Meh... this color is already done, clear first
2530 * flusher and repeat cascading.
2531 */
2532 wq->first_flusher = NULL;
2533 }
2534
2535out_unlock:
2536 mutex_unlock(&wq->flush_mutex);
1da177e4 2537}
ae90dd5d 2538EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2539
9c5a2ba7
TH
2540/**
2541 * drain_workqueue - drain a workqueue
2542 * @wq: workqueue to drain
2543 *
2544 * Wait until the workqueue becomes empty. While draining is in progress,
2545 * only chain queueing is allowed. IOW, only currently pending or running
2546 * work items on @wq can queue further work items on it. @wq is flushed
2547 * repeatedly until it becomes empty. The number of flushing is detemined
2548 * by the depth of chaining and should be relatively short. Whine if it
2549 * takes too long.
2550 */
2551void drain_workqueue(struct workqueue_struct *wq)
2552{
2553 unsigned int flush_cnt = 0;
2554 unsigned int cpu;
2555
2556 /*
2557 * __queue_work() needs to test whether there are drainers, is much
2558 * hotter than drain_workqueue() and already looks at @wq->flags.
2559 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2560 */
2561 spin_lock(&workqueue_lock);
2562 if (!wq->nr_drainers++)
2563 wq->flags |= WQ_DRAINING;
2564 spin_unlock(&workqueue_lock);
2565reflush:
2566 flush_workqueue(wq);
2567
2568 for_each_cwq_cpu(cpu, wq) {
2569 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2570 bool drained;
9c5a2ba7 2571
bd7bdd43 2572 spin_lock_irq(&cwq->pool->gcwq->lock);
fa2563e4 2573 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
bd7bdd43 2574 spin_unlock_irq(&cwq->pool->gcwq->lock);
fa2563e4
TT
2575
2576 if (drained)
9c5a2ba7
TH
2577 continue;
2578
2579 if (++flush_cnt == 10 ||
2580 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2581 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2582 wq->name, flush_cnt);
2583 goto reflush;
2584 }
2585
2586 spin_lock(&workqueue_lock);
2587 if (!--wq->nr_drainers)
2588 wq->flags &= ~WQ_DRAINING;
2589 spin_unlock(&workqueue_lock);
2590}
2591EXPORT_SYMBOL_GPL(drain_workqueue);
2592
baf59022
TH
2593static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2594 bool wait_executing)
db700897 2595{
affee4b2 2596 struct worker *worker = NULL;
8b03ae3c 2597 struct global_cwq *gcwq;
db700897 2598 struct cpu_workqueue_struct *cwq;
db700897
ON
2599
2600 might_sleep();
7a22ad75
TH
2601 gcwq = get_work_gcwq(work);
2602 if (!gcwq)
baf59022 2603 return false;
db700897 2604
8b03ae3c 2605 spin_lock_irq(&gcwq->lock);
db700897
ON
2606 if (!list_empty(&work->entry)) {
2607 /*
2608 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2609 * If it was re-queued to a different gcwq under us, we
2610 * are not going to wait.
db700897
ON
2611 */
2612 smp_rmb();
7a22ad75 2613 cwq = get_work_cwq(work);
bd7bdd43 2614 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
4690c4ab 2615 goto already_gone;
baf59022 2616 } else if (wait_executing) {
7a22ad75 2617 worker = find_worker_executing_work(gcwq, work);
affee4b2 2618 if (!worker)
4690c4ab 2619 goto already_gone;
7a22ad75 2620 cwq = worker->current_cwq;
baf59022
TH
2621 } else
2622 goto already_gone;
db700897 2623
baf59022 2624 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2625 spin_unlock_irq(&gcwq->lock);
7a22ad75 2626
e159489b
TH
2627 /*
2628 * If @max_active is 1 or rescuer is in use, flushing another work
2629 * item on the same workqueue may lead to deadlock. Make sure the
2630 * flusher is not running on the same workqueue by verifying write
2631 * access.
2632 */
2633 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2634 lock_map_acquire(&cwq->wq->lockdep_map);
2635 else
2636 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2637 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2638
401a8d04 2639 return true;
4690c4ab 2640already_gone:
8b03ae3c 2641 spin_unlock_irq(&gcwq->lock);
401a8d04 2642 return false;
db700897 2643}
baf59022
TH
2644
2645/**
2646 * flush_work - wait for a work to finish executing the last queueing instance
2647 * @work: the work to flush
2648 *
2649 * Wait until @work has finished execution. This function considers
2650 * only the last queueing instance of @work. If @work has been
2651 * enqueued across different CPUs on a non-reentrant workqueue or on
2652 * multiple workqueues, @work might still be executing on return on
2653 * some of the CPUs from earlier queueing.
2654 *
2655 * If @work was queued only on a non-reentrant, ordered or unbound
2656 * workqueue, @work is guaranteed to be idle on return if it hasn't
2657 * been requeued since flush started.
2658 *
2659 * RETURNS:
2660 * %true if flush_work() waited for the work to finish execution,
2661 * %false if it was already idle.
2662 */
2663bool flush_work(struct work_struct *work)
2664{
2665 struct wq_barrier barr;
2666
0976dfc1
SB
2667 lock_map_acquire(&work->lockdep_map);
2668 lock_map_release(&work->lockdep_map);
2669
baf59022
TH
2670 if (start_flush_work(work, &barr, true)) {
2671 wait_for_completion(&barr.done);
2672 destroy_work_on_stack(&barr.work);
2673 return true;
2674 } else
2675 return false;
2676}
db700897
ON
2677EXPORT_SYMBOL_GPL(flush_work);
2678
401a8d04
TH
2679static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2680{
2681 struct wq_barrier barr;
2682 struct worker *worker;
2683
2684 spin_lock_irq(&gcwq->lock);
2685
2686 worker = find_worker_executing_work(gcwq, work);
2687 if (unlikely(worker))
2688 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2689
2690 spin_unlock_irq(&gcwq->lock);
2691
2692 if (unlikely(worker)) {
2693 wait_for_completion(&barr.done);
2694 destroy_work_on_stack(&barr.work);
2695 return true;
2696 } else
2697 return false;
2698}
2699
2700static bool wait_on_work(struct work_struct *work)
2701{
2702 bool ret = false;
2703 int cpu;
2704
2705 might_sleep();
2706
2707 lock_map_acquire(&work->lockdep_map);
2708 lock_map_release(&work->lockdep_map);
2709
2710 for_each_gcwq_cpu(cpu)
2711 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2712 return ret;
2713}
2714
09383498
TH
2715/**
2716 * flush_work_sync - wait until a work has finished execution
2717 * @work: the work to flush
2718 *
2719 * Wait until @work has finished execution. On return, it's
2720 * guaranteed that all queueing instances of @work which happened
2721 * before this function is called are finished. In other words, if
2722 * @work hasn't been requeued since this function was called, @work is
2723 * guaranteed to be idle on return.
2724 *
2725 * RETURNS:
2726 * %true if flush_work_sync() waited for the work to finish execution,
2727 * %false if it was already idle.
2728 */
2729bool flush_work_sync(struct work_struct *work)
2730{
2731 struct wq_barrier barr;
2732 bool pending, waited;
2733
2734 /* we'll wait for executions separately, queue barr only if pending */
2735 pending = start_flush_work(work, &barr, false);
2736
2737 /* wait for executions to finish */
2738 waited = wait_on_work(work);
2739
2740 /* wait for the pending one */
2741 if (pending) {
2742 wait_for_completion(&barr.done);
2743 destroy_work_on_stack(&barr.work);
2744 }
2745
2746 return pending || waited;
2747}
2748EXPORT_SYMBOL_GPL(flush_work_sync);
2749
6e84d644 2750/*
1f1f642e 2751 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
6e84d644
ON
2752 * so this work can't be re-armed in any way.
2753 */
2754static int try_to_grab_pending(struct work_struct *work)
2755{
8b03ae3c 2756 struct global_cwq *gcwq;
1f1f642e 2757 int ret = -1;
6e84d644 2758
22df02bb 2759 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1f1f642e 2760 return 0;
6e84d644
ON
2761
2762 /*
2763 * The queueing is in progress, or it is already queued. Try to
2764 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2765 */
7a22ad75
TH
2766 gcwq = get_work_gcwq(work);
2767 if (!gcwq)
6e84d644
ON
2768 return ret;
2769
8b03ae3c 2770 spin_lock_irq(&gcwq->lock);
6e84d644
ON
2771 if (!list_empty(&work->entry)) {
2772 /*
7a22ad75 2773 * This work is queued, but perhaps we locked the wrong gcwq.
6e84d644
ON
2774 * In that case we must see the new value after rmb(), see
2775 * insert_work()->wmb().
2776 */
2777 smp_rmb();
7a22ad75 2778 if (gcwq == get_work_gcwq(work)) {
dc186ad7 2779 debug_work_deactivate(work);
6e84d644 2780 list_del_init(&work->entry);
7a22ad75 2781 cwq_dec_nr_in_flight(get_work_cwq(work),
8a2e8e5d
TH
2782 get_work_color(work),
2783 *work_data_bits(work) & WORK_STRUCT_DELAYED);
6e84d644
ON
2784 ret = 1;
2785 }
2786 }
8b03ae3c 2787 spin_unlock_irq(&gcwq->lock);
6e84d644
ON
2788
2789 return ret;
2790}
2791
401a8d04 2792static bool __cancel_work_timer(struct work_struct *work,
1f1f642e
ON
2793 struct timer_list* timer)
2794{
2795 int ret;
2796
2797 do {
2798 ret = (timer && likely(del_timer(timer)));
2799 if (!ret)
2800 ret = try_to_grab_pending(work);
2801 wait_on_work(work);
2802 } while (unlikely(ret < 0));
2803
7a22ad75 2804 clear_work_data(work);
1f1f642e
ON
2805 return ret;
2806}
2807
6e84d644 2808/**
401a8d04
TH
2809 * cancel_work_sync - cancel a work and wait for it to finish
2810 * @work: the work to cancel
6e84d644 2811 *
401a8d04
TH
2812 * Cancel @work and wait for its execution to finish. This function
2813 * can be used even if the work re-queues itself or migrates to
2814 * another workqueue. On return from this function, @work is
2815 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2816 *
401a8d04
TH
2817 * cancel_work_sync(&delayed_work->work) must not be used for
2818 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2819 *
401a8d04 2820 * The caller must ensure that the workqueue on which @work was last
6e84d644 2821 * queued can't be destroyed before this function returns.
401a8d04
TH
2822 *
2823 * RETURNS:
2824 * %true if @work was pending, %false otherwise.
6e84d644 2825 */
401a8d04 2826bool cancel_work_sync(struct work_struct *work)
6e84d644 2827{
1f1f642e 2828 return __cancel_work_timer(work, NULL);
b89deed3 2829}
28e53bdd 2830EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2831
6e84d644 2832/**
401a8d04
TH
2833 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2834 * @dwork: the delayed work to flush
6e84d644 2835 *
401a8d04
TH
2836 * Delayed timer is cancelled and the pending work is queued for
2837 * immediate execution. Like flush_work(), this function only
2838 * considers the last queueing instance of @dwork.
1f1f642e 2839 *
401a8d04
TH
2840 * RETURNS:
2841 * %true if flush_work() waited for the work to finish execution,
2842 * %false if it was already idle.
6e84d644 2843 */
401a8d04
TH
2844bool flush_delayed_work(struct delayed_work *dwork)
2845{
2846 if (del_timer_sync(&dwork->timer))
2847 __queue_work(raw_smp_processor_id(),
2848 get_work_cwq(&dwork->work)->wq, &dwork->work);
2849 return flush_work(&dwork->work);
2850}
2851EXPORT_SYMBOL(flush_delayed_work);
2852
09383498
TH
2853/**
2854 * flush_delayed_work_sync - wait for a dwork to finish
2855 * @dwork: the delayed work to flush
2856 *
2857 * Delayed timer is cancelled and the pending work is queued for
2858 * execution immediately. Other than timer handling, its behavior
2859 * is identical to flush_work_sync().
2860 *
2861 * RETURNS:
2862 * %true if flush_work_sync() waited for the work to finish execution,
2863 * %false if it was already idle.
2864 */
2865bool flush_delayed_work_sync(struct delayed_work *dwork)
2866{
2867 if (del_timer_sync(&dwork->timer))
2868 __queue_work(raw_smp_processor_id(),
2869 get_work_cwq(&dwork->work)->wq, &dwork->work);
2870 return flush_work_sync(&dwork->work);
2871}
2872EXPORT_SYMBOL(flush_delayed_work_sync);
2873
401a8d04
TH
2874/**
2875 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2876 * @dwork: the delayed work cancel
2877 *
2878 * This is cancel_work_sync() for delayed works.
2879 *
2880 * RETURNS:
2881 * %true if @dwork was pending, %false otherwise.
2882 */
2883bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2884{
1f1f642e 2885 return __cancel_work_timer(&dwork->work, &dwork->timer);
6e84d644 2886}
f5a421a4 2887EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2888
0fcb78c2
REB
2889/**
2890 * schedule_work - put work task in global workqueue
2891 * @work: job to be done
2892 *
5b0f437d
BVA
2893 * Returns zero if @work was already on the kernel-global workqueue and
2894 * non-zero otherwise.
2895 *
2896 * This puts a job in the kernel-global workqueue if it was not already
2897 * queued and leaves it in the same position on the kernel-global
2898 * workqueue otherwise.
0fcb78c2 2899 */
7ad5b3a5 2900int schedule_work(struct work_struct *work)
1da177e4 2901{
d320c038 2902 return queue_work(system_wq, work);
1da177e4 2903}
ae90dd5d 2904EXPORT_SYMBOL(schedule_work);
1da177e4 2905
c1a220e7
ZR
2906/*
2907 * schedule_work_on - put work task on a specific cpu
2908 * @cpu: cpu to put the work task on
2909 * @work: job to be done
2910 *
2911 * This puts a job on a specific cpu
2912 */
2913int schedule_work_on(int cpu, struct work_struct *work)
2914{
d320c038 2915 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2916}
2917EXPORT_SYMBOL(schedule_work_on);
2918
0fcb78c2
REB
2919/**
2920 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
2921 * @dwork: job to be done
2922 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
2923 *
2924 * After waiting for a given time this puts a job in the kernel-global
2925 * workqueue.
2926 */
7ad5b3a5 2927int schedule_delayed_work(struct delayed_work *dwork,
82f67cd9 2928 unsigned long delay)
1da177e4 2929{
d320c038 2930 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 2931}
ae90dd5d 2932EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 2933
0fcb78c2
REB
2934/**
2935 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2936 * @cpu: cpu to use
52bad64d 2937 * @dwork: job to be done
0fcb78c2
REB
2938 * @delay: number of jiffies to wait
2939 *
2940 * After waiting for a given time this puts a job in the kernel-global
2941 * workqueue on the specified CPU.
2942 */
1da177e4 2943int schedule_delayed_work_on(int cpu,
52bad64d 2944 struct delayed_work *dwork, unsigned long delay)
1da177e4 2945{
d320c038 2946 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 2947}
ae90dd5d 2948EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 2949
b6136773 2950/**
31ddd871 2951 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2952 * @func: the function to call
b6136773 2953 *
31ddd871
TH
2954 * schedule_on_each_cpu() executes @func on each online CPU using the
2955 * system workqueue and blocks until all CPUs have completed.
b6136773 2956 * schedule_on_each_cpu() is very slow.
31ddd871
TH
2957 *
2958 * RETURNS:
2959 * 0 on success, -errno on failure.
b6136773 2960 */
65f27f38 2961int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2962{
2963 int cpu;
38f51568 2964 struct work_struct __percpu *works;
15316ba8 2965
b6136773
AM
2966 works = alloc_percpu(struct work_struct);
2967 if (!works)
15316ba8 2968 return -ENOMEM;
b6136773 2969
93981800
TH
2970 get_online_cpus();
2971
15316ba8 2972 for_each_online_cpu(cpu) {
9bfb1839
IM
2973 struct work_struct *work = per_cpu_ptr(works, cpu);
2974
2975 INIT_WORK(work, func);
b71ab8c2 2976 schedule_work_on(cpu, work);
65a64464 2977 }
93981800
TH
2978
2979 for_each_online_cpu(cpu)
2980 flush_work(per_cpu_ptr(works, cpu));
2981
95402b38 2982 put_online_cpus();
b6136773 2983 free_percpu(works);
15316ba8
CL
2984 return 0;
2985}
2986
eef6a7d5
AS
2987/**
2988 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2989 *
2990 * Forces execution of the kernel-global workqueue and blocks until its
2991 * completion.
2992 *
2993 * Think twice before calling this function! It's very easy to get into
2994 * trouble if you don't take great care. Either of the following situations
2995 * will lead to deadlock:
2996 *
2997 * One of the work items currently on the workqueue needs to acquire
2998 * a lock held by your code or its caller.
2999 *
3000 * Your code is running in the context of a work routine.
3001 *
3002 * They will be detected by lockdep when they occur, but the first might not
3003 * occur very often. It depends on what work items are on the workqueue and
3004 * what locks they need, which you have no control over.
3005 *
3006 * In most situations flushing the entire workqueue is overkill; you merely
3007 * need to know that a particular work item isn't queued and isn't running.
3008 * In such cases you should use cancel_delayed_work_sync() or
3009 * cancel_work_sync() instead.
3010 */
1da177e4
LT
3011void flush_scheduled_work(void)
3012{
d320c038 3013 flush_workqueue(system_wq);
1da177e4 3014}
ae90dd5d 3015EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3016
1fa44eca
JB
3017/**
3018 * execute_in_process_context - reliably execute the routine with user context
3019 * @fn: the function to execute
1fa44eca
JB
3020 * @ew: guaranteed storage for the execute work structure (must
3021 * be available when the work executes)
3022 *
3023 * Executes the function immediately if process context is available,
3024 * otherwise schedules the function for delayed execution.
3025 *
3026 * Returns: 0 - function was executed
3027 * 1 - function was scheduled for execution
3028 */
65f27f38 3029int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3030{
3031 if (!in_interrupt()) {
65f27f38 3032 fn(&ew->work);
1fa44eca
JB
3033 return 0;
3034 }
3035
65f27f38 3036 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3037 schedule_work(&ew->work);
3038
3039 return 1;
3040}
3041EXPORT_SYMBOL_GPL(execute_in_process_context);
3042
1da177e4
LT
3043int keventd_up(void)
3044{
d320c038 3045 return system_wq != NULL;
1da177e4
LT
3046}
3047
bdbc5dd7 3048static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3049{
65a64464 3050 /*
0f900049
TH
3051 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3052 * Make sure that the alignment isn't lower than that of
3053 * unsigned long long.
65a64464 3054 */
0f900049
TH
3055 const size_t size = sizeof(struct cpu_workqueue_struct);
3056 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3057 __alignof__(unsigned long long));
65a64464 3058
e06ffa1e 3059 if (!(wq->flags & WQ_UNBOUND))
f3421797 3060 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3061 else {
f3421797
TH
3062 void *ptr;
3063
3064 /*
3065 * Allocate enough room to align cwq and put an extra
3066 * pointer at the end pointing back to the originally
3067 * allocated pointer which will be used for free.
3068 */
3069 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3070 if (ptr) {
3071 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3072 *(void **)(wq->cpu_wq.single + 1) = ptr;
3073 }
bdbc5dd7 3074 }
f3421797 3075
0415b00d 3076 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3077 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3078 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3079}
3080
bdbc5dd7 3081static void free_cwqs(struct workqueue_struct *wq)
0f900049 3082{
e06ffa1e 3083 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3084 free_percpu(wq->cpu_wq.pcpu);
3085 else if (wq->cpu_wq.single) {
3086 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3087 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3088 }
0f900049
TH
3089}
3090
f3421797
TH
3091static int wq_clamp_max_active(int max_active, unsigned int flags,
3092 const char *name)
b71ab8c2 3093{
f3421797
TH
3094 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3095
3096 if (max_active < 1 || max_active > lim)
b71ab8c2
TH
3097 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
3098 "is out of range, clamping between %d and %d\n",
f3421797 3099 max_active, name, 1, lim);
b71ab8c2 3100
f3421797 3101 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3102}
3103
b196be89 3104struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3105 unsigned int flags,
3106 int max_active,
3107 struct lock_class_key *key,
b196be89 3108 const char *lock_name, ...)
1da177e4 3109{
b196be89 3110 va_list args, args1;
1da177e4 3111 struct workqueue_struct *wq;
c34056a3 3112 unsigned int cpu;
b196be89
TH
3113 size_t namelen;
3114
3115 /* determine namelen, allocate wq and format name */
3116 va_start(args, lock_name);
3117 va_copy(args1, args);
3118 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3119
3120 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3121 if (!wq)
3122 goto err;
3123
3124 vsnprintf(wq->name, namelen, fmt, args1);
3125 va_end(args);
3126 va_end(args1);
1da177e4 3127
6370a6ad
TH
3128 /*
3129 * Workqueues which may be used during memory reclaim should
3130 * have a rescuer to guarantee forward progress.
3131 */
3132 if (flags & WQ_MEM_RECLAIM)
3133 flags |= WQ_RESCUER;
3134
d320c038 3135 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3136 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3137
b196be89 3138 /* init wq */
97e37d7b 3139 wq->flags = flags;
a0a1a5fd 3140 wq->saved_max_active = max_active;
73f53c4a
TH
3141 mutex_init(&wq->flush_mutex);
3142 atomic_set(&wq->nr_cwqs_to_flush, 0);
3143 INIT_LIST_HEAD(&wq->flusher_queue);
3144 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3145
eb13ba87 3146 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3147 INIT_LIST_HEAD(&wq->list);
3af24433 3148
bdbc5dd7
TH
3149 if (alloc_cwqs(wq) < 0)
3150 goto err;
3151
f3421797 3152 for_each_cwq_cpu(cpu, wq) {
1537663f 3153 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3154 struct global_cwq *gcwq = get_gcwq(cpu);
3270476a 3155 int pool_idx = (bool)(flags & WQ_HIGHPRI);
1537663f 3156
0f900049 3157 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3270476a 3158 cwq->pool = &gcwq->pools[pool_idx];
c34056a3 3159 cwq->wq = wq;
73f53c4a 3160 cwq->flush_color = -1;
1e19ffc6 3161 cwq->max_active = max_active;
1e19ffc6 3162 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3163 }
1537663f 3164
e22bee78
TH
3165 if (flags & WQ_RESCUER) {
3166 struct worker *rescuer;
3167
f2e005aa 3168 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3169 goto err;
3170
3171 wq->rescuer = rescuer = alloc_worker();
3172 if (!rescuer)
3173 goto err;
3174
b196be89
TH
3175 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3176 wq->name);
e22bee78
TH
3177 if (IS_ERR(rescuer->task))
3178 goto err;
3179
e22bee78
TH
3180 rescuer->task->flags |= PF_THREAD_BOUND;
3181 wake_up_process(rescuer->task);
3af24433
ON
3182 }
3183
a0a1a5fd
TH
3184 /*
3185 * workqueue_lock protects global freeze state and workqueues
3186 * list. Grab it, set max_active accordingly and add the new
3187 * workqueue to workqueues list.
3188 */
1537663f 3189 spin_lock(&workqueue_lock);
a0a1a5fd 3190
58a69cb4 3191 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3192 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3193 get_cwq(cpu, wq)->max_active = 0;
3194
1537663f 3195 list_add(&wq->list, &workqueues);
a0a1a5fd 3196
1537663f
TH
3197 spin_unlock(&workqueue_lock);
3198
3af24433 3199 return wq;
4690c4ab
TH
3200err:
3201 if (wq) {
bdbc5dd7 3202 free_cwqs(wq);
f2e005aa 3203 free_mayday_mask(wq->mayday_mask);
e22bee78 3204 kfree(wq->rescuer);
4690c4ab
TH
3205 kfree(wq);
3206 }
3207 return NULL;
3af24433 3208}
d320c038 3209EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3210
3af24433
ON
3211/**
3212 * destroy_workqueue - safely terminate a workqueue
3213 * @wq: target workqueue
3214 *
3215 * Safely destroy a workqueue. All work currently pending will be done first.
3216 */
3217void destroy_workqueue(struct workqueue_struct *wq)
3218{
c8e55f36 3219 unsigned int cpu;
3af24433 3220
9c5a2ba7
TH
3221 /* drain it before proceeding with destruction */
3222 drain_workqueue(wq);
c8efcc25 3223
a0a1a5fd
TH
3224 /*
3225 * wq list is used to freeze wq, remove from list after
3226 * flushing is complete in case freeze races us.
3227 */
95402b38 3228 spin_lock(&workqueue_lock);
b1f4ec17 3229 list_del(&wq->list);
95402b38 3230 spin_unlock(&workqueue_lock);
3af24433 3231
e22bee78 3232 /* sanity check */
f3421797 3233 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3234 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3235 int i;
3236
73f53c4a
TH
3237 for (i = 0; i < WORK_NR_COLORS; i++)
3238 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3239 BUG_ON(cwq->nr_active);
3240 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3241 }
9b41ea72 3242
e22bee78
TH
3243 if (wq->flags & WQ_RESCUER) {
3244 kthread_stop(wq->rescuer->task);
f2e005aa 3245 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3246 kfree(wq->rescuer);
e22bee78
TH
3247 }
3248
bdbc5dd7 3249 free_cwqs(wq);
3af24433
ON
3250 kfree(wq);
3251}
3252EXPORT_SYMBOL_GPL(destroy_workqueue);
3253
dcd989cb
TH
3254/**
3255 * workqueue_set_max_active - adjust max_active of a workqueue
3256 * @wq: target workqueue
3257 * @max_active: new max_active value.
3258 *
3259 * Set max_active of @wq to @max_active.
3260 *
3261 * CONTEXT:
3262 * Don't call from IRQ context.
3263 */
3264void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3265{
3266 unsigned int cpu;
3267
f3421797 3268 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3269
3270 spin_lock(&workqueue_lock);
3271
3272 wq->saved_max_active = max_active;
3273
f3421797 3274 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
3275 struct global_cwq *gcwq = get_gcwq(cpu);
3276
3277 spin_lock_irq(&gcwq->lock);
3278
58a69cb4 3279 if (!(wq->flags & WQ_FREEZABLE) ||
dcd989cb
TH
3280 !(gcwq->flags & GCWQ_FREEZING))
3281 get_cwq(gcwq->cpu, wq)->max_active = max_active;
9bfb1839 3282
dcd989cb 3283 spin_unlock_irq(&gcwq->lock);
65a64464 3284 }
93981800 3285
dcd989cb 3286 spin_unlock(&workqueue_lock);
15316ba8 3287}
dcd989cb 3288EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3289
eef6a7d5 3290/**
dcd989cb
TH
3291 * workqueue_congested - test whether a workqueue is congested
3292 * @cpu: CPU in question
3293 * @wq: target workqueue
eef6a7d5 3294 *
dcd989cb
TH
3295 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3296 * no synchronization around this function and the test result is
3297 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3298 *
dcd989cb
TH
3299 * RETURNS:
3300 * %true if congested, %false otherwise.
eef6a7d5 3301 */
dcd989cb 3302bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3303{
dcd989cb
TH
3304 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3305
3306 return !list_empty(&cwq->delayed_works);
1da177e4 3307}
dcd989cb 3308EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3309
1fa44eca 3310/**
dcd989cb
TH
3311 * work_cpu - return the last known associated cpu for @work
3312 * @work: the work of interest
1fa44eca 3313 *
dcd989cb 3314 * RETURNS:
bdbc5dd7 3315 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3316 */
dcd989cb 3317unsigned int work_cpu(struct work_struct *work)
1fa44eca 3318{
dcd989cb 3319 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3320
bdbc5dd7 3321 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3322}
dcd989cb 3323EXPORT_SYMBOL_GPL(work_cpu);
1fa44eca 3324
dcd989cb
TH
3325/**
3326 * work_busy - test whether a work is currently pending or running
3327 * @work: the work to be tested
3328 *
3329 * Test whether @work is currently pending or running. There is no
3330 * synchronization around this function and the test result is
3331 * unreliable and only useful as advisory hints or for debugging.
3332 * Especially for reentrant wqs, the pending state might hide the
3333 * running state.
3334 *
3335 * RETURNS:
3336 * OR'd bitmask of WORK_BUSY_* bits.
3337 */
3338unsigned int work_busy(struct work_struct *work)
1da177e4 3339{
dcd989cb
TH
3340 struct global_cwq *gcwq = get_work_gcwq(work);
3341 unsigned long flags;
3342 unsigned int ret = 0;
1da177e4 3343
dcd989cb
TH
3344 if (!gcwq)
3345 return false;
1da177e4 3346
dcd989cb 3347 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3348
dcd989cb
TH
3349 if (work_pending(work))
3350 ret |= WORK_BUSY_PENDING;
3351 if (find_worker_executing_work(gcwq, work))
3352 ret |= WORK_BUSY_RUNNING;
1da177e4 3353
dcd989cb 3354 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3355
dcd989cb 3356 return ret;
1da177e4 3357}
dcd989cb 3358EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3359
db7bccf4
TH
3360/*
3361 * CPU hotplug.
3362 *
e22bee78
TH
3363 * There are two challenges in supporting CPU hotplug. Firstly, there
3364 * are a lot of assumptions on strong associations among work, cwq and
3365 * gcwq which make migrating pending and scheduled works very
3366 * difficult to implement without impacting hot paths. Secondly,
3367 * gcwqs serve mix of short, long and very long running works making
3368 * blocked draining impractical.
3369 *
403c821d
TH
3370 * This is solved by allowing a gcwq to be detached from CPU, running it
3371 * with unbound workers and allowing it to be reattached later if the cpu
3372 * comes back online. A separate thread is created to govern a gcwq in
3373 * such state and is called the trustee of the gcwq.
db7bccf4
TH
3374 *
3375 * Trustee states and their descriptions.
3376 *
3377 * START Command state used on startup. On CPU_DOWN_PREPARE, a
3378 * new trustee is started with this state.
3379 *
3380 * IN_CHARGE Once started, trustee will enter this state after
e22bee78
TH
3381 * assuming the manager role and making all existing
3382 * workers rogue. DOWN_PREPARE waits for trustee to
3383 * enter this state. After reaching IN_CHARGE, trustee
3384 * tries to execute the pending worklist until it's empty
3385 * and the state is set to BUTCHER, or the state is set
3386 * to RELEASE.
db7bccf4
TH
3387 *
3388 * BUTCHER Command state which is set by the cpu callback after
3389 * the cpu has went down. Once this state is set trustee
3390 * knows that there will be no new works on the worklist
3391 * and once the worklist is empty it can proceed to
3392 * killing idle workers.
3393 *
3394 * RELEASE Command state which is set by the cpu callback if the
3395 * cpu down has been canceled or it has come online
3396 * again. After recognizing this state, trustee stops
e22bee78
TH
3397 * trying to drain or butcher and clears ROGUE, rebinds
3398 * all remaining workers back to the cpu and releases
3399 * manager role.
db7bccf4
TH
3400 *
3401 * DONE Trustee will enter this state after BUTCHER or RELEASE
3402 * is complete.
3403 *
3404 * trustee CPU draining
3405 * took over down complete
3406 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3407 * | | ^
3408 * | CPU is back online v return workers |
3409 * ----------------> RELEASE --------------
3410 */
1da177e4 3411
60373152
TH
3412/* claim manager positions of all pools */
3413static void gcwq_claim_management(struct global_cwq *gcwq)
3414{
3415 struct worker_pool *pool;
3416
3417 for_each_worker_pool(pool, gcwq)
3418 mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
3419}
3420
3421/* release manager positions */
3422static void gcwq_release_management(struct global_cwq *gcwq)
3423{
3424 struct worker_pool *pool;
3425
3426 for_each_worker_pool(pool, gcwq)
3427 mutex_unlock(&pool->manager_mutex);
3428}
3429
db7bccf4
TH
3430/**
3431 * trustee_wait_event_timeout - timed event wait for trustee
3432 * @cond: condition to wait for
3433 * @timeout: timeout in jiffies
3434 *
3435 * wait_event_timeout() for trustee to use. Handles locking and
3436 * checks for RELEASE request.
3437 *
3438 * CONTEXT:
3439 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3440 * multiple times. To be used by trustee.
3441 *
3442 * RETURNS:
3443 * Positive indicating left time if @cond is satisfied, 0 if timed
3444 * out, -1 if canceled.
3445 */
3446#define trustee_wait_event_timeout(cond, timeout) ({ \
3447 long __ret = (timeout); \
3448 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
3449 __ret) { \
3450 spin_unlock_irq(&gcwq->lock); \
3451 __wait_event_timeout(gcwq->trustee_wait, (cond) || \
3452 (gcwq->trustee_state == TRUSTEE_RELEASE), \
3453 __ret); \
3454 spin_lock_irq(&gcwq->lock); \
3455 } \
3456 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
3457})
3af24433 3458
db7bccf4
TH
3459/**
3460 * trustee_wait_event - event wait for trustee
3461 * @cond: condition to wait for
3462 *
3463 * wait_event() for trustee to use. Automatically handles locking and
3464 * checks for CANCEL request.
3465 *
3466 * CONTEXT:
3467 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3468 * multiple times. To be used by trustee.
3469 *
3470 * RETURNS:
3471 * 0 if @cond is satisfied, -1 if canceled.
3472 */
3473#define trustee_wait_event(cond) ({ \
3474 long __ret1; \
3475 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3476 __ret1 < 0 ? -1 : 0; \
3477})
1da177e4 3478
db7bccf4 3479static int __cpuinit trustee_thread(void *__gcwq)
3af24433 3480{
db7bccf4 3481 struct global_cwq *gcwq = __gcwq;
4ce62e9e 3482 struct worker_pool *pool;
db7bccf4 3483 struct worker *worker;
e22bee78 3484 struct work_struct *work;
db7bccf4
TH
3485 struct hlist_node *pos;
3486 int i;
3af24433 3487
db7bccf4
TH
3488 BUG_ON(gcwq->cpu != smp_processor_id());
3489
60373152 3490 gcwq_claim_management(gcwq);
db7bccf4 3491 spin_lock_irq(&gcwq->lock);
3af24433 3492
f2d5a0ee
TH
3493 /*
3494 * We've claimed all manager positions. Make all workers unbound
3495 * and set DISASSOCIATED. Before this, all workers except for the
3496 * ones which are still executing works from before the last CPU
3497 * down must be on the cpu. After this, they may become diasporas.
3498 */
60373152 3499 for_each_worker_pool(pool, gcwq)
4ce62e9e 3500 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3501 worker->flags |= WORKER_UNBOUND;
3af24433 3502
db7bccf4 3503 for_each_busy_worker(worker, i, pos, gcwq)
403c821d 3504 worker->flags |= WORKER_UNBOUND;
06ba38a9 3505
f2d5a0ee
TH
3506 gcwq->flags |= GCWQ_DISASSOCIATED;
3507
e22bee78 3508 /*
403c821d
TH
3509 * Call schedule() so that we cross rq->lock and thus can guarantee
3510 * sched callbacks see the unbound flag. This is necessary as
3511 * scheduler callbacks may be invoked from other cpus.
e22bee78
TH
3512 */
3513 spin_unlock_irq(&gcwq->lock);
3514 schedule();
3515 spin_lock_irq(&gcwq->lock);
06ba38a9 3516
e22bee78 3517 /*
cb444766
TH
3518 * Sched callbacks are disabled now. Zap nr_running. After
3519 * this, nr_running stays zero and need_more_worker() and
3520 * keep_working() are always true as long as the worklist is
3521 * not empty.
e22bee78 3522 */
4ce62e9e
TH
3523 for_each_worker_pool(pool, gcwq)
3524 atomic_set(get_pool_nr_running(pool), 0);
1da177e4 3525
e22bee78 3526 spin_unlock_irq(&gcwq->lock);
4ce62e9e
TH
3527 for_each_worker_pool(pool, gcwq)
3528 del_timer_sync(&pool->idle_timer);
e22bee78 3529 spin_lock_irq(&gcwq->lock);
3af24433 3530
db7bccf4
TH
3531 /*
3532 * We're now in charge. Notify and proceed to drain. We need
3533 * to keep the gcwq running during the whole CPU down
3534 * procedure as other cpu hotunplug callbacks may need to
3535 * flush currently running tasks.
3536 */
3537 gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3538 wake_up_all(&gcwq->trustee_wait);
3af24433 3539
db7bccf4
TH
3540 /*
3541 * The original cpu is in the process of dying and may go away
3542 * anytime now. When that happens, we and all workers would
e22bee78
TH
3543 * be migrated to other cpus. Try draining any left work. We
3544 * want to get it over with ASAP - spam rescuers, wake up as
3545 * many idlers as necessary and create new ones till the
3546 * worklist is empty. Note that if the gcwq is frozen, there
58a69cb4 3547 * may be frozen works in freezable cwqs. Don't declare
e22bee78 3548 * completion while frozen.
db7bccf4 3549 */
4ce62e9e
TH
3550 while (true) {
3551 bool busy = false;
e22bee78 3552
4ce62e9e
TH
3553 for_each_worker_pool(pool, gcwq)
3554 busy |= pool->nr_workers != pool->nr_idle;
3af24433 3555
4ce62e9e
TH
3556 if (!busy && !(gcwq->flags & GCWQ_FREEZING) &&
3557 gcwq->trustee_state != TRUSTEE_IN_CHARGE)
3558 break;
e22bee78 3559
4ce62e9e
TH
3560 for_each_worker_pool(pool, gcwq) {
3561 int nr_works = 0;
3562
3563 list_for_each_entry(work, &pool->worklist, entry) {
3564 send_mayday(work);
3565 nr_works++;
3566 }
3567
3568 list_for_each_entry(worker, &pool->idle_list, entry) {
3569 if (!nr_works--)
3570 break;
3571 wake_up_process(worker->task);
3572 }
3573
3574 if (need_to_create_worker(pool)) {
3575 spin_unlock_irq(&gcwq->lock);
bc2ae0f5 3576 worker = create_worker(pool);
4ce62e9e 3577 spin_lock_irq(&gcwq->lock);
bc2ae0f5 3578 if (worker)
4ce62e9e 3579 start_worker(worker);
e22bee78 3580 }
1da177e4 3581 }
3af24433 3582
db7bccf4
TH
3583 /* give a breather */
3584 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3585 break;
3af24433 3586 }
1da177e4 3587
60373152 3588 gcwq_release_management(gcwq);
e22bee78 3589
db7bccf4
TH
3590 /* notify completion */
3591 gcwq->trustee = NULL;
3592 gcwq->trustee_state = TRUSTEE_DONE;
3593 wake_up_all(&gcwq->trustee_wait);
3594 spin_unlock_irq(&gcwq->lock);
3595 return 0;
3af24433
ON
3596}
3597
3598/**
db7bccf4
TH
3599 * wait_trustee_state - wait for trustee to enter the specified state
3600 * @gcwq: gcwq the trustee of interest belongs to
3601 * @state: target state to wait for
3af24433 3602 *
db7bccf4
TH
3603 * Wait for the trustee to reach @state. DONE is already matched.
3604 *
3605 * CONTEXT:
3606 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3607 * multiple times. To be used by cpu_callback.
3af24433 3608 */
db7bccf4 3609static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
06bd6ebf
NK
3610__releases(&gcwq->lock)
3611__acquires(&gcwq->lock)
3af24433 3612{
db7bccf4
TH
3613 if (!(gcwq->trustee_state == state ||
3614 gcwq->trustee_state == TRUSTEE_DONE)) {
3615 spin_unlock_irq(&gcwq->lock);
3616 __wait_event(gcwq->trustee_wait,
3617 gcwq->trustee_state == state ||
3618 gcwq->trustee_state == TRUSTEE_DONE);
3619 spin_lock_irq(&gcwq->lock);
3620 }
3af24433 3621}
3af24433
ON
3622
3623static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3624 unsigned long action,
3625 void *hcpu)
3626{
3627 unsigned int cpu = (unsigned long)hcpu;
db7bccf4
TH
3628 struct global_cwq *gcwq = get_gcwq(cpu);
3629 struct task_struct *new_trustee = NULL;
4ce62e9e 3630 struct worker_pool *pool;
db7bccf4 3631 unsigned long flags;
3af24433 3632
8bb78442
RW
3633 action &= ~CPU_TASKS_FROZEN;
3634
3af24433 3635 switch (action) {
db7bccf4
TH
3636 case CPU_DOWN_PREPARE:
3637 new_trustee = kthread_create(trustee_thread, gcwq,
3638 "workqueue_trustee/%d\n", cpu);
3639 if (IS_ERR(new_trustee))
3640 return notifier_from_errno(PTR_ERR(new_trustee));
3641 kthread_bind(new_trustee, cpu);
3ce63377
TH
3642 break;
3643
3af24433 3644 case CPU_UP_PREPARE:
4ce62e9e 3645 for_each_worker_pool(pool, gcwq) {
3ce63377
TH
3646 struct worker *worker;
3647
3648 if (pool->nr_workers)
3649 continue;
3650
3651 worker = create_worker(pool);
3652 if (!worker)
3653 return NOTIFY_BAD;
3654
3655 spin_lock_irq(&gcwq->lock);
3656 start_worker(worker);
3657 spin_unlock_irq(&gcwq->lock);
3af24433 3658 }
1da177e4
LT
3659 }
3660
db7bccf4
TH
3661 /* some are called w/ irq disabled, don't disturb irq status */
3662 spin_lock_irqsave(&gcwq->lock, flags);
3af24433 3663
00dfcaf7 3664 switch (action) {
db7bccf4
TH
3665 case CPU_DOWN_PREPARE:
3666 /* initialize trustee and tell it to acquire the gcwq */
3667 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3668 gcwq->trustee = new_trustee;
3669 gcwq->trustee_state = TRUSTEE_START;
3670 wake_up_process(gcwq->trustee);
3671 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
e22bee78
TH
3672 break;
3673
3da1c84c 3674 case CPU_POST_DEAD:
db7bccf4
TH
3675 gcwq->trustee_state = TRUSTEE_BUTCHER;
3676 break;
3677
3678 case CPU_DOWN_FAILED:
3679 case CPU_ONLINE:
3680 if (gcwq->trustee_state != TRUSTEE_DONE) {
3681 gcwq->trustee_state = TRUSTEE_RELEASE;
3682 wake_up_process(gcwq->trustee);
3683 wait_trustee_state(gcwq, TRUSTEE_DONE);
3af24433 3684 }
db7bccf4 3685
25511a47
TH
3686 spin_unlock_irq(&gcwq->lock);
3687 gcwq_claim_management(gcwq);
3688 spin_lock_irq(&gcwq->lock);
3689
bc2ae0f5
TH
3690 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3691
25511a47
TH
3692 rebind_workers(gcwq);
3693
3694 gcwq_release_management(gcwq);
db7bccf4 3695 break;
00dfcaf7
ON
3696 }
3697
db7bccf4
TH
3698 spin_unlock_irqrestore(&gcwq->lock, flags);
3699
1537663f 3700 return notifier_from_errno(0);
1da177e4 3701}
1da177e4 3702
65758202
TH
3703/*
3704 * Workqueues should be brought up before normal priority CPU notifiers.
3705 * This will be registered high priority CPU notifier.
3706 */
3707static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3708 unsigned long action,
3709 void *hcpu)
3710{
3711 switch (action & ~CPU_TASKS_FROZEN) {
3712 case CPU_UP_PREPARE:
65758202
TH
3713 case CPU_DOWN_FAILED:
3714 case CPU_ONLINE:
3715 return workqueue_cpu_callback(nfb, action, hcpu);
3716 }
3717 return NOTIFY_OK;
3718}
3719
3720/*
3721 * Workqueues should be brought down after normal priority CPU notifiers.
3722 * This will be registered as low priority CPU notifier.
3723 */
3724static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3725 unsigned long action,
3726 void *hcpu)
3727{
3728 switch (action & ~CPU_TASKS_FROZEN) {
3729 case CPU_DOWN_PREPARE:
65758202
TH
3730 case CPU_POST_DEAD:
3731 return workqueue_cpu_callback(nfb, action, hcpu);
3732 }
3733 return NOTIFY_OK;
3734}
3735
2d3854a3 3736#ifdef CONFIG_SMP
8ccad40d 3737
2d3854a3 3738struct work_for_cpu {
6b44003e 3739 struct completion completion;
2d3854a3
RR
3740 long (*fn)(void *);
3741 void *arg;
3742 long ret;
3743};
3744
6b44003e 3745static int do_work_for_cpu(void *_wfc)
2d3854a3 3746{
6b44003e 3747 struct work_for_cpu *wfc = _wfc;
2d3854a3 3748 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
3749 complete(&wfc->completion);
3750 return 0;
2d3854a3
RR
3751}
3752
3753/**
3754 * work_on_cpu - run a function in user context on a particular cpu
3755 * @cpu: the cpu to run on
3756 * @fn: the function to run
3757 * @arg: the function arg
3758 *
31ad9081
RR
3759 * This will return the value @fn returns.
3760 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3761 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3762 */
3763long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3764{
6b44003e
AM
3765 struct task_struct *sub_thread;
3766 struct work_for_cpu wfc = {
3767 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3768 .fn = fn,
3769 .arg = arg,
3770 };
3771
3772 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3773 if (IS_ERR(sub_thread))
3774 return PTR_ERR(sub_thread);
3775 kthread_bind(sub_thread, cpu);
3776 wake_up_process(sub_thread);
3777 wait_for_completion(&wfc.completion);
2d3854a3
RR
3778 return wfc.ret;
3779}
3780EXPORT_SYMBOL_GPL(work_on_cpu);
3781#endif /* CONFIG_SMP */
3782
a0a1a5fd
TH
3783#ifdef CONFIG_FREEZER
3784
3785/**
3786 * freeze_workqueues_begin - begin freezing workqueues
3787 *
58a69cb4
TH
3788 * Start freezing workqueues. After this function returns, all freezable
3789 * workqueues will queue new works to their frozen_works list instead of
3790 * gcwq->worklist.
a0a1a5fd
TH
3791 *
3792 * CONTEXT:
8b03ae3c 3793 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3794 */
3795void freeze_workqueues_begin(void)
3796{
a0a1a5fd
TH
3797 unsigned int cpu;
3798
3799 spin_lock(&workqueue_lock);
3800
3801 BUG_ON(workqueue_freezing);
3802 workqueue_freezing = true;
3803
f3421797 3804 for_each_gcwq_cpu(cpu) {
8b03ae3c 3805 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3806 struct workqueue_struct *wq;
8b03ae3c
TH
3807
3808 spin_lock_irq(&gcwq->lock);
3809
db7bccf4
TH
3810 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3811 gcwq->flags |= GCWQ_FREEZING;
3812
a0a1a5fd
TH
3813 list_for_each_entry(wq, &workqueues, list) {
3814 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3815
58a69cb4 3816 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3817 cwq->max_active = 0;
a0a1a5fd 3818 }
8b03ae3c
TH
3819
3820 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3821 }
3822
3823 spin_unlock(&workqueue_lock);
3824}
3825
3826/**
58a69cb4 3827 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3828 *
3829 * Check whether freezing is complete. This function must be called
3830 * between freeze_workqueues_begin() and thaw_workqueues().
3831 *
3832 * CONTEXT:
3833 * Grabs and releases workqueue_lock.
3834 *
3835 * RETURNS:
58a69cb4
TH
3836 * %true if some freezable workqueues are still busy. %false if freezing
3837 * is complete.
a0a1a5fd
TH
3838 */
3839bool freeze_workqueues_busy(void)
3840{
a0a1a5fd
TH
3841 unsigned int cpu;
3842 bool busy = false;
3843
3844 spin_lock(&workqueue_lock);
3845
3846 BUG_ON(!workqueue_freezing);
3847
f3421797 3848 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3849 struct workqueue_struct *wq;
a0a1a5fd
TH
3850 /*
3851 * nr_active is monotonically decreasing. It's safe
3852 * to peek without lock.
3853 */
3854 list_for_each_entry(wq, &workqueues, list) {
3855 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3856
58a69cb4 3857 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3858 continue;
3859
3860 BUG_ON(cwq->nr_active < 0);
3861 if (cwq->nr_active) {
3862 busy = true;
3863 goto out_unlock;
3864 }
3865 }
3866 }
3867out_unlock:
3868 spin_unlock(&workqueue_lock);
3869 return busy;
3870}
3871
3872/**
3873 * thaw_workqueues - thaw workqueues
3874 *
3875 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3876 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3877 *
3878 * CONTEXT:
8b03ae3c 3879 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3880 */
3881void thaw_workqueues(void)
3882{
a0a1a5fd
TH
3883 unsigned int cpu;
3884
3885 spin_lock(&workqueue_lock);
3886
3887 if (!workqueue_freezing)
3888 goto out_unlock;
3889
f3421797 3890 for_each_gcwq_cpu(cpu) {
8b03ae3c 3891 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3892 struct worker_pool *pool;
bdbc5dd7 3893 struct workqueue_struct *wq;
8b03ae3c
TH
3894
3895 spin_lock_irq(&gcwq->lock);
3896
db7bccf4
TH
3897 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3898 gcwq->flags &= ~GCWQ_FREEZING;
3899
a0a1a5fd
TH
3900 list_for_each_entry(wq, &workqueues, list) {
3901 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3902
58a69cb4 3903 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3904 continue;
3905
a0a1a5fd
TH
3906 /* restore max_active and repopulate worklist */
3907 cwq->max_active = wq->saved_max_active;
3908
3909 while (!list_empty(&cwq->delayed_works) &&
3910 cwq->nr_active < cwq->max_active)
3911 cwq_activate_first_delayed(cwq);
a0a1a5fd 3912 }
8b03ae3c 3913
4ce62e9e
TH
3914 for_each_worker_pool(pool, gcwq)
3915 wake_up_worker(pool);
e22bee78 3916
8b03ae3c 3917 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3918 }
3919
3920 workqueue_freezing = false;
3921out_unlock:
3922 spin_unlock(&workqueue_lock);
3923}
3924#endif /* CONFIG_FREEZER */
3925
6ee0578b 3926static int __init init_workqueues(void)
1da177e4 3927{
c34056a3 3928 unsigned int cpu;
c8e55f36 3929 int i;
c34056a3 3930
65758202
TH
3931 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3932 cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c
TH
3933
3934 /* initialize gcwqs */
f3421797 3935 for_each_gcwq_cpu(cpu) {
8b03ae3c 3936 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3937 struct worker_pool *pool;
8b03ae3c
TH
3938
3939 spin_lock_init(&gcwq->lock);
3940 gcwq->cpu = cpu;
477a3c33 3941 gcwq->flags |= GCWQ_DISASSOCIATED;
8b03ae3c 3942
c8e55f36
TH
3943 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3944 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3945
4ce62e9e
TH
3946 for_each_worker_pool(pool, gcwq) {
3947 pool->gcwq = gcwq;
3948 INIT_LIST_HEAD(&pool->worklist);
3949 INIT_LIST_HEAD(&pool->idle_list);
e7577c50 3950
4ce62e9e
TH
3951 init_timer_deferrable(&pool->idle_timer);
3952 pool->idle_timer.function = idle_worker_timeout;
3953 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3954
4ce62e9e
TH
3955 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3956 (unsigned long)pool);
3957
60373152 3958 mutex_init(&pool->manager_mutex);
4ce62e9e
TH
3959 ida_init(&pool->worker_ida);
3960 }
db7bccf4 3961
25511a47
TH
3962 init_waitqueue_head(&gcwq->rebind_hold);
3963
db7bccf4
TH
3964 gcwq->trustee_state = TRUSTEE_DONE;
3965 init_waitqueue_head(&gcwq->trustee_wait);
8b03ae3c
TH
3966 }
3967
e22bee78 3968 /* create the initial worker */
f3421797 3969 for_each_online_gcwq_cpu(cpu) {
e22bee78 3970 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3971 struct worker_pool *pool;
e22bee78 3972
477a3c33
TH
3973 if (cpu != WORK_CPU_UNBOUND)
3974 gcwq->flags &= ~GCWQ_DISASSOCIATED;
4ce62e9e
TH
3975
3976 for_each_worker_pool(pool, gcwq) {
3977 struct worker *worker;
3978
bc2ae0f5 3979 worker = create_worker(pool);
4ce62e9e
TH
3980 BUG_ON(!worker);
3981 spin_lock_irq(&gcwq->lock);
3982 start_worker(worker);
3983 spin_unlock_irq(&gcwq->lock);
3984 }
e22bee78
TH
3985 }
3986
d320c038
TH
3987 system_wq = alloc_workqueue("events", 0, 0);
3988 system_long_wq = alloc_workqueue("events_long", 0, 0);
3989 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
f3421797
TH
3990 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3991 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3992 system_freezable_wq = alloc_workqueue("events_freezable",
3993 WQ_FREEZABLE, 0);
62d3c543
AS
3994 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3995 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
e5cba24e 3996 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
62d3c543
AS
3997 !system_unbound_wq || !system_freezable_wq ||
3998 !system_nrt_freezable_wq);
6ee0578b 3999 return 0;
1da177e4 4000}
6ee0578b 4001early_initcall(init_workqueues);