Merge branch 'for-3.10-subsys_virtual_register' into for-3.10
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
e22bee78 47
ea138446 48#include "workqueue_internal.h"
1da177e4 49
c8e55f36 50enum {
24647570
TH
51 /*
52 * worker_pool flags
bc2ae0f5 53 *
24647570 54 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
55 * While associated (!DISASSOCIATED), all workers are bound to the
56 * CPU and none has %WORKER_UNBOUND set and concurrency management
57 * is in effect.
58 *
59 * While DISASSOCIATED, the cpu may be offline and all workers have
60 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 61 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5
TH
62 *
63 * Note that DISASSOCIATED can be flipped only while holding
24647570
TH
64 * assoc_mutex to avoid changing binding state while
65 * create_worker() is in progress.
bc2ae0f5 66 */
11ebea50 67 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 68 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 69 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 70
c8e55f36
TH
71 /* worker flags */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 75 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 78
5f7dabfd 79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 80 WORKER_CPU_INTENSIVE,
db7bccf4 81
e34cdddb 82 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 83
29c91e99 84 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 85 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 86
e22bee78
TH
87 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
88 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
89
3233cdbd
TH
90 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
91 /* call for help after 10ms
92 (min two ticks) */
e22bee78
TH
93 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
94 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
95
96 /*
97 * Rescue workers are used only on emergencies and shared by
98 * all cpus. Give -20.
99 */
100 RESCUER_NICE_LEVEL = -20,
3270476a 101 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 102};
1da177e4
LT
103
104/*
4690c4ab
TH
105 * Structure fields follow one of the following exclusion rules.
106 *
e41e704b
TH
107 * I: Modifiable by initialization/destruction paths and read-only for
108 * everyone else.
4690c4ab 109 *
e22bee78
TH
110 * P: Preemption protected. Disabling preemption is enough and should
111 * only be modified and accessed from the local cpu.
112 *
d565ed63 113 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 114 *
d565ed63
TH
115 * X: During normal operation, modification requires pool->lock and should
116 * be done only from local cpu. Either disabling preemption on local
117 * cpu or grabbing pool->lock is enough for read access. If
118 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 119 *
73f53c4a
TH
120 * F: wq->flush_mutex protected.
121 *
4690c4ab 122 * W: workqueue_lock protected.
76af4d93
TH
123 *
124 * R: workqueue_lock protected for writes. Sched-RCU protected for reads.
75ccf595
TH
125 *
126 * FR: wq->flush_mutex and workqueue_lock protected for writes. Sched-RCU
127 * protected for reads.
1da177e4 128 */
1da177e4 129
2eaebdb3 130/* struct worker is defined in workqueue_internal.h */
c34056a3 131
bd7bdd43 132struct worker_pool {
d565ed63 133 spinlock_t lock; /* the pool lock */
d84ff051 134 int cpu; /* I: the associated cpu */
9daf9e67 135 int id; /* I: pool ID */
11ebea50 136 unsigned int flags; /* X: flags */
bd7bdd43
TH
137
138 struct list_head worklist; /* L: list of pending works */
139 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
140
141 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
142 int nr_idle; /* L: currently idle ones */
143
144 struct list_head idle_list; /* X: list of idle workers */
145 struct timer_list idle_timer; /* L: worker idle timeout */
146 struct timer_list mayday_timer; /* L: SOS timer for workers */
147
c9e7cf27
TH
148 /* workers are chained either in busy_hash or idle_list */
149 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
150 /* L: hash of busy workers */
151
34a06bd6 152 struct mutex manager_arb; /* manager arbitration */
24647570 153 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
bd7bdd43 154 struct ida worker_ida; /* L: for worker IDs */
e19e397a 155
7a4e344c 156 struct workqueue_attrs *attrs; /* I: worker attributes */
29c91e99
TH
157 struct hlist_node hash_node; /* R: unbound_pool_hash node */
158 int refcnt; /* refcnt for unbound pools */
7a4e344c 159
e19e397a
TH
160 /*
161 * The current concurrency level. As it's likely to be accessed
162 * from other CPUs during try_to_wake_up(), put it in a separate
163 * cacheline.
164 */
165 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
166
167 /*
168 * Destruction of pool is sched-RCU protected to allow dereferences
169 * from get_work_pool().
170 */
171 struct rcu_head rcu;
8b03ae3c
TH
172} ____cacheline_aligned_in_smp;
173
1da177e4 174/*
112202d9
TH
175 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
176 * of work_struct->data are used for flags and the remaining high bits
177 * point to the pwq; thus, pwqs need to be aligned at two's power of the
178 * number of flag bits.
1da177e4 179 */
112202d9 180struct pool_workqueue {
bd7bdd43 181 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 182 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
183 int work_color; /* L: current color */
184 int flush_color; /* L: flushing color */
8864b4e5 185 int refcnt; /* L: reference count */
73f53c4a
TH
186 int nr_in_flight[WORK_NR_COLORS];
187 /* L: nr of in_flight works */
1e19ffc6 188 int nr_active; /* L: nr of active works */
a0a1a5fd 189 int max_active; /* L: max active works */
1e19ffc6 190 struct list_head delayed_works; /* L: delayed works */
75ccf595 191 struct list_head pwqs_node; /* FR: node on wq->pwqs */
493a1724 192 struct list_head mayday_node; /* W: node on wq->maydays */
8864b4e5
TH
193
194 /*
195 * Release of unbound pwq is punted to system_wq. See put_pwq()
196 * and pwq_unbound_release_workfn() for details. pool_workqueue
197 * itself is also sched-RCU protected so that the first pwq can be
198 * determined without grabbing workqueue_lock.
199 */
200 struct work_struct unbound_release_work;
201 struct rcu_head rcu;
e904e6c2 202} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 203
73f53c4a
TH
204/*
205 * Structure used to wait for workqueue flush.
206 */
207struct wq_flusher {
208 struct list_head list; /* F: list of flushers */
209 int flush_color; /* F: flush color waiting for */
210 struct completion done; /* flush completion */
211};
212
1da177e4
LT
213/*
214 * The externally visible workqueue abstraction is an array of
215 * per-CPU workqueues:
216 */
217struct workqueue_struct {
9c5a2ba7 218 unsigned int flags; /* W: WQ_* flags */
420c0ddb 219 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
75ccf595 220 struct list_head pwqs; /* FR: all pwqs of this wq */
4690c4ab 221 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
222
223 struct mutex flush_mutex; /* protects wq flushing */
224 int work_color; /* F: current work color */
225 int flush_color; /* F: current flush color */
112202d9 226 atomic_t nr_pwqs_to_flush; /* flush in progress */
73f53c4a
TH
227 struct wq_flusher *first_flusher; /* F: first flusher */
228 struct list_head flusher_queue; /* F: flush waiters */
229 struct list_head flusher_overflow; /* F: flush overflow list */
230
493a1724 231 struct list_head maydays; /* W: pwqs requesting rescue */
e22bee78
TH
232 struct worker *rescuer; /* I: rescue worker */
233
9c5a2ba7 234 int nr_drainers; /* W: drain in progress */
112202d9 235 int saved_max_active; /* W: saved pwq max_active */
4e6045f1 236#ifdef CONFIG_LOCKDEP
4690c4ab 237 struct lockdep_map lockdep_map;
4e6045f1 238#endif
b196be89 239 char name[]; /* I: workqueue name */
1da177e4
LT
240};
241
e904e6c2
TH
242static struct kmem_cache *pwq_cache;
243
29c91e99
TH
244/* hash of all unbound pools keyed by pool->attrs */
245static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
246
247static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
248
d320c038 249struct workqueue_struct *system_wq __read_mostly;
d320c038 250EXPORT_SYMBOL_GPL(system_wq);
044c782c 251struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 252EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 253struct workqueue_struct *system_long_wq __read_mostly;
d320c038 254EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 255struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 256EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 257struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 258EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 259
97bd2347
TH
260#define CREATE_TRACE_POINTS
261#include <trace/events/workqueue.h>
262
76af4d93
TH
263#define assert_rcu_or_wq_lock() \
264 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
265 lockdep_is_held(&workqueue_lock), \
266 "sched RCU or workqueue lock should be held")
267
f02ae73a
TH
268#define for_each_cpu_worker_pool(pool, cpu) \
269 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
270 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 271 (pool)++)
4ce62e9e 272
b67bfe0d
SL
273#define for_each_busy_worker(worker, i, pool) \
274 hash_for_each(pool->busy_hash, i, worker, hentry)
db7bccf4 275
17116969
TH
276/**
277 * for_each_pool - iterate through all worker_pools in the system
278 * @pool: iteration cursor
279 * @id: integer used for iteration
fa1b54e6
TH
280 *
281 * This must be called either with workqueue_lock held or sched RCU read
282 * locked. If the pool needs to be used beyond the locking in effect, the
283 * caller is responsible for guaranteeing that the pool stays online.
284 *
285 * The if/else clause exists only for the lockdep assertion and can be
286 * ignored.
17116969
TH
287 */
288#define for_each_pool(pool, id) \
fa1b54e6
TH
289 idr_for_each_entry(&worker_pool_idr, pool, id) \
290 if (({ assert_rcu_or_wq_lock(); false; })) { } \
291 else
17116969 292
49e3cf44
TH
293/**
294 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
295 * @pwq: iteration cursor
296 * @wq: the target workqueue
76af4d93
TH
297 *
298 * This must be called either with workqueue_lock held or sched RCU read
299 * locked. If the pwq needs to be used beyond the locking in effect, the
300 * caller is responsible for guaranteeing that the pwq stays online.
301 *
302 * The if/else clause exists only for the lockdep assertion and can be
303 * ignored.
49e3cf44
TH
304 */
305#define for_each_pwq(pwq, wq) \
76af4d93
TH
306 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
307 if (({ assert_rcu_or_wq_lock(); false; })) { } \
308 else
f3421797 309
dc186ad7
TG
310#ifdef CONFIG_DEBUG_OBJECTS_WORK
311
312static struct debug_obj_descr work_debug_descr;
313
99777288
SG
314static void *work_debug_hint(void *addr)
315{
316 return ((struct work_struct *) addr)->func;
317}
318
dc186ad7
TG
319/*
320 * fixup_init is called when:
321 * - an active object is initialized
322 */
323static int work_fixup_init(void *addr, enum debug_obj_state state)
324{
325 struct work_struct *work = addr;
326
327 switch (state) {
328 case ODEBUG_STATE_ACTIVE:
329 cancel_work_sync(work);
330 debug_object_init(work, &work_debug_descr);
331 return 1;
332 default:
333 return 0;
334 }
335}
336
337/*
338 * fixup_activate is called when:
339 * - an active object is activated
340 * - an unknown object is activated (might be a statically initialized object)
341 */
342static int work_fixup_activate(void *addr, enum debug_obj_state state)
343{
344 struct work_struct *work = addr;
345
346 switch (state) {
347
348 case ODEBUG_STATE_NOTAVAILABLE:
349 /*
350 * This is not really a fixup. The work struct was
351 * statically initialized. We just make sure that it
352 * is tracked in the object tracker.
353 */
22df02bb 354 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
355 debug_object_init(work, &work_debug_descr);
356 debug_object_activate(work, &work_debug_descr);
357 return 0;
358 }
359 WARN_ON_ONCE(1);
360 return 0;
361
362 case ODEBUG_STATE_ACTIVE:
363 WARN_ON(1);
364
365 default:
366 return 0;
367 }
368}
369
370/*
371 * fixup_free is called when:
372 * - an active object is freed
373 */
374static int work_fixup_free(void *addr, enum debug_obj_state state)
375{
376 struct work_struct *work = addr;
377
378 switch (state) {
379 case ODEBUG_STATE_ACTIVE:
380 cancel_work_sync(work);
381 debug_object_free(work, &work_debug_descr);
382 return 1;
383 default:
384 return 0;
385 }
386}
387
388static struct debug_obj_descr work_debug_descr = {
389 .name = "work_struct",
99777288 390 .debug_hint = work_debug_hint,
dc186ad7
TG
391 .fixup_init = work_fixup_init,
392 .fixup_activate = work_fixup_activate,
393 .fixup_free = work_fixup_free,
394};
395
396static inline void debug_work_activate(struct work_struct *work)
397{
398 debug_object_activate(work, &work_debug_descr);
399}
400
401static inline void debug_work_deactivate(struct work_struct *work)
402{
403 debug_object_deactivate(work, &work_debug_descr);
404}
405
406void __init_work(struct work_struct *work, int onstack)
407{
408 if (onstack)
409 debug_object_init_on_stack(work, &work_debug_descr);
410 else
411 debug_object_init(work, &work_debug_descr);
412}
413EXPORT_SYMBOL_GPL(__init_work);
414
415void destroy_work_on_stack(struct work_struct *work)
416{
417 debug_object_free(work, &work_debug_descr);
418}
419EXPORT_SYMBOL_GPL(destroy_work_on_stack);
420
421#else
422static inline void debug_work_activate(struct work_struct *work) { }
423static inline void debug_work_deactivate(struct work_struct *work) { }
424#endif
425
95402b38
GS
426/* Serializes the accesses to the list of workqueues. */
427static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 428static LIST_HEAD(workqueues);
a0a1a5fd 429static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 430
e22bee78 431/*
e19e397a
TH
432 * The CPU and unbound standard worker pools. The unbound ones have
433 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
f3421797 434 */
e19e397a 435static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
f02ae73a 436 cpu_worker_pools);
f3421797 437
fa1b54e6
TH
438/*
439 * idr of all pools. Modifications are protected by workqueue_lock. Read
440 * accesses are protected by sched-RCU protected.
441 */
9daf9e67
TH
442static DEFINE_IDR(worker_pool_idr);
443
c34056a3 444static int worker_thread(void *__worker);
1da177e4 445
9daf9e67
TH
446/* allocate ID and assign it to @pool */
447static int worker_pool_assign_id(struct worker_pool *pool)
448{
449 int ret;
450
fa1b54e6
TH
451 do {
452 if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
453 return -ENOMEM;
9daf9e67 454
fa1b54e6
TH
455 spin_lock_irq(&workqueue_lock);
456 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
457 spin_unlock_irq(&workqueue_lock);
458 } while (ret == -EAGAIN);
9daf9e67 459
fa1b54e6 460 return ret;
7c3eed5c
TH
461}
462
76af4d93
TH
463/**
464 * first_pwq - return the first pool_workqueue of the specified workqueue
465 * @wq: the target workqueue
466 *
467 * This must be called either with workqueue_lock held or sched RCU read
468 * locked. If the pwq needs to be used beyond the locking in effect, the
469 * caller is responsible for guaranteeing that the pwq stays online.
470 */
7fb98ea7 471static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
b1f4ec17 472{
76af4d93
TH
473 assert_rcu_or_wq_lock();
474 return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
475 pwqs_node);
b1f4ec17
ON
476}
477
73f53c4a
TH
478static unsigned int work_color_to_flags(int color)
479{
480 return color << WORK_STRUCT_COLOR_SHIFT;
481}
482
483static int get_work_color(struct work_struct *work)
484{
485 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
486 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
487}
488
489static int work_next_color(int color)
490{
491 return (color + 1) % WORK_NR_COLORS;
492}
1da177e4 493
14441960 494/*
112202d9
TH
495 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
496 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 497 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 498 *
112202d9
TH
499 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
500 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
501 * work->data. These functions should only be called while the work is
502 * owned - ie. while the PENDING bit is set.
7a22ad75 503 *
112202d9 504 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 505 * corresponding to a work. Pool is available once the work has been
112202d9 506 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 507 * available only while the work item is queued.
7a22ad75 508 *
bbb68dfa
TH
509 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
510 * canceled. While being canceled, a work item may have its PENDING set
511 * but stay off timer and worklist for arbitrarily long and nobody should
512 * try to steal the PENDING bit.
14441960 513 */
7a22ad75
TH
514static inline void set_work_data(struct work_struct *work, unsigned long data,
515 unsigned long flags)
365970a1 516{
6183c009 517 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
518 atomic_long_set(&work->data, data | flags | work_static(work));
519}
365970a1 520
112202d9 521static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
522 unsigned long extra_flags)
523{
112202d9
TH
524 set_work_data(work, (unsigned long)pwq,
525 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
526}
527
4468a00f
LJ
528static void set_work_pool_and_keep_pending(struct work_struct *work,
529 int pool_id)
530{
531 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
532 WORK_STRUCT_PENDING);
533}
534
7c3eed5c
TH
535static void set_work_pool_and_clear_pending(struct work_struct *work,
536 int pool_id)
7a22ad75 537{
23657bb1
TH
538 /*
539 * The following wmb is paired with the implied mb in
540 * test_and_set_bit(PENDING) and ensures all updates to @work made
541 * here are visible to and precede any updates by the next PENDING
542 * owner.
543 */
544 smp_wmb();
7c3eed5c 545 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 546}
f756d5e2 547
7a22ad75 548static void clear_work_data(struct work_struct *work)
1da177e4 549{
7c3eed5c
TH
550 smp_wmb(); /* see set_work_pool_and_clear_pending() */
551 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
552}
553
112202d9 554static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 555{
e120153d 556 unsigned long data = atomic_long_read(&work->data);
7a22ad75 557
112202d9 558 if (data & WORK_STRUCT_PWQ)
e120153d
TH
559 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
560 else
561 return NULL;
4d707b9f
ON
562}
563
7c3eed5c
TH
564/**
565 * get_work_pool - return the worker_pool a given work was associated with
566 * @work: the work item of interest
567 *
568 * Return the worker_pool @work was last associated with. %NULL if none.
fa1b54e6
TH
569 *
570 * Pools are created and destroyed under workqueue_lock, and allows read
571 * access under sched-RCU read lock. As such, this function should be
572 * called under workqueue_lock or with preemption disabled.
573 *
574 * All fields of the returned pool are accessible as long as the above
575 * mentioned locking is in effect. If the returned pool needs to be used
576 * beyond the critical section, the caller is responsible for ensuring the
577 * returned pool is and stays online.
7c3eed5c
TH
578 */
579static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 580{
e120153d 581 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 582 int pool_id;
7a22ad75 583
fa1b54e6
TH
584 assert_rcu_or_wq_lock();
585
112202d9
TH
586 if (data & WORK_STRUCT_PWQ)
587 return ((struct pool_workqueue *)
7c3eed5c 588 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 589
7c3eed5c
TH
590 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
591 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
592 return NULL;
593
fa1b54e6 594 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
595}
596
597/**
598 * get_work_pool_id - return the worker pool ID a given work is associated with
599 * @work: the work item of interest
600 *
601 * Return the worker_pool ID @work was last associated with.
602 * %WORK_OFFQ_POOL_NONE if none.
603 */
604static int get_work_pool_id(struct work_struct *work)
605{
54d5b7d0
LJ
606 unsigned long data = atomic_long_read(&work->data);
607
112202d9
TH
608 if (data & WORK_STRUCT_PWQ)
609 return ((struct pool_workqueue *)
54d5b7d0 610 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 611
54d5b7d0 612 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
613}
614
bbb68dfa
TH
615static void mark_work_canceling(struct work_struct *work)
616{
7c3eed5c 617 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 618
7c3eed5c
TH
619 pool_id <<= WORK_OFFQ_POOL_SHIFT;
620 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
621}
622
623static bool work_is_canceling(struct work_struct *work)
624{
625 unsigned long data = atomic_long_read(&work->data);
626
112202d9 627 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
628}
629
e22bee78 630/*
3270476a
TH
631 * Policy functions. These define the policies on how the global worker
632 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 633 * they're being called with pool->lock held.
e22bee78
TH
634 */
635
63d95a91 636static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 637{
e19e397a 638 return !atomic_read(&pool->nr_running);
a848e3b6
ON
639}
640
4594bf15 641/*
e22bee78
TH
642 * Need to wake up a worker? Called from anything but currently
643 * running workers.
974271c4
TH
644 *
645 * Note that, because unbound workers never contribute to nr_running, this
706026c2 646 * function will always return %true for unbound pools as long as the
974271c4 647 * worklist isn't empty.
4594bf15 648 */
63d95a91 649static bool need_more_worker(struct worker_pool *pool)
365970a1 650{
63d95a91 651 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 652}
4594bf15 653
e22bee78 654/* Can I start working? Called from busy but !running workers. */
63d95a91 655static bool may_start_working(struct worker_pool *pool)
e22bee78 656{
63d95a91 657 return pool->nr_idle;
e22bee78
TH
658}
659
660/* Do I need to keep working? Called from currently running workers. */
63d95a91 661static bool keep_working(struct worker_pool *pool)
e22bee78 662{
e19e397a
TH
663 return !list_empty(&pool->worklist) &&
664 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
665}
666
667/* Do we need a new worker? Called from manager. */
63d95a91 668static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 669{
63d95a91 670 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 671}
365970a1 672
e22bee78 673/* Do I need to be the manager? */
63d95a91 674static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 675{
63d95a91 676 return need_to_create_worker(pool) ||
11ebea50 677 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
678}
679
680/* Do we have too many workers and should some go away? */
63d95a91 681static bool too_many_workers(struct worker_pool *pool)
e22bee78 682{
34a06bd6 683 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
684 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
685 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 686
ea1abd61
LJ
687 /*
688 * nr_idle and idle_list may disagree if idle rebinding is in
689 * progress. Never return %true if idle_list is empty.
690 */
691 if (list_empty(&pool->idle_list))
692 return false;
693
e22bee78 694 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
695}
696
4d707b9f 697/*
e22bee78
TH
698 * Wake up functions.
699 */
700
7e11629d 701/* Return the first worker. Safe with preemption disabled */
63d95a91 702static struct worker *first_worker(struct worker_pool *pool)
7e11629d 703{
63d95a91 704 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
705 return NULL;
706
63d95a91 707 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
708}
709
710/**
711 * wake_up_worker - wake up an idle worker
63d95a91 712 * @pool: worker pool to wake worker from
7e11629d 713 *
63d95a91 714 * Wake up the first idle worker of @pool.
7e11629d
TH
715 *
716 * CONTEXT:
d565ed63 717 * spin_lock_irq(pool->lock).
7e11629d 718 */
63d95a91 719static void wake_up_worker(struct worker_pool *pool)
7e11629d 720{
63d95a91 721 struct worker *worker = first_worker(pool);
7e11629d
TH
722
723 if (likely(worker))
724 wake_up_process(worker->task);
725}
726
d302f017 727/**
e22bee78
TH
728 * wq_worker_waking_up - a worker is waking up
729 * @task: task waking up
730 * @cpu: CPU @task is waking up to
731 *
732 * This function is called during try_to_wake_up() when a worker is
733 * being awoken.
734 *
735 * CONTEXT:
736 * spin_lock_irq(rq->lock)
737 */
d84ff051 738void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
739{
740 struct worker *worker = kthread_data(task);
741
36576000 742 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 743 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 744 atomic_inc(&worker->pool->nr_running);
36576000 745 }
e22bee78
TH
746}
747
748/**
749 * wq_worker_sleeping - a worker is going to sleep
750 * @task: task going to sleep
751 * @cpu: CPU in question, must be the current CPU number
752 *
753 * This function is called during schedule() when a busy worker is
754 * going to sleep. Worker on the same cpu can be woken up by
755 * returning pointer to its task.
756 *
757 * CONTEXT:
758 * spin_lock_irq(rq->lock)
759 *
760 * RETURNS:
761 * Worker task on @cpu to wake up, %NULL if none.
762 */
d84ff051 763struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
764{
765 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 766 struct worker_pool *pool;
e22bee78 767
111c225a
TH
768 /*
769 * Rescuers, which may not have all the fields set up like normal
770 * workers, also reach here, let's not access anything before
771 * checking NOT_RUNNING.
772 */
2d64672e 773 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
774 return NULL;
775
111c225a 776 pool = worker->pool;
111c225a 777
e22bee78 778 /* this can only happen on the local cpu */
6183c009
TH
779 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
780 return NULL;
e22bee78
TH
781
782 /*
783 * The counterpart of the following dec_and_test, implied mb,
784 * worklist not empty test sequence is in insert_work().
785 * Please read comment there.
786 *
628c78e7
TH
787 * NOT_RUNNING is clear. This means that we're bound to and
788 * running on the local cpu w/ rq lock held and preemption
789 * disabled, which in turn means that none else could be
d565ed63 790 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 791 * lock is safe.
e22bee78 792 */
e19e397a
TH
793 if (atomic_dec_and_test(&pool->nr_running) &&
794 !list_empty(&pool->worklist))
63d95a91 795 to_wakeup = first_worker(pool);
e22bee78
TH
796 return to_wakeup ? to_wakeup->task : NULL;
797}
798
799/**
800 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 801 * @worker: self
d302f017
TH
802 * @flags: flags to set
803 * @wakeup: wakeup an idle worker if necessary
804 *
e22bee78
TH
805 * Set @flags in @worker->flags and adjust nr_running accordingly. If
806 * nr_running becomes zero and @wakeup is %true, an idle worker is
807 * woken up.
d302f017 808 *
cb444766 809 * CONTEXT:
d565ed63 810 * spin_lock_irq(pool->lock)
d302f017
TH
811 */
812static inline void worker_set_flags(struct worker *worker, unsigned int flags,
813 bool wakeup)
814{
bd7bdd43 815 struct worker_pool *pool = worker->pool;
e22bee78 816
cb444766
TH
817 WARN_ON_ONCE(worker->task != current);
818
e22bee78
TH
819 /*
820 * If transitioning into NOT_RUNNING, adjust nr_running and
821 * wake up an idle worker as necessary if requested by
822 * @wakeup.
823 */
824 if ((flags & WORKER_NOT_RUNNING) &&
825 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 826 if (wakeup) {
e19e397a 827 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 828 !list_empty(&pool->worklist))
63d95a91 829 wake_up_worker(pool);
e22bee78 830 } else
e19e397a 831 atomic_dec(&pool->nr_running);
e22bee78
TH
832 }
833
d302f017
TH
834 worker->flags |= flags;
835}
836
837/**
e22bee78 838 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 839 * @worker: self
d302f017
TH
840 * @flags: flags to clear
841 *
e22bee78 842 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 843 *
cb444766 844 * CONTEXT:
d565ed63 845 * spin_lock_irq(pool->lock)
d302f017
TH
846 */
847static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
848{
63d95a91 849 struct worker_pool *pool = worker->pool;
e22bee78
TH
850 unsigned int oflags = worker->flags;
851
cb444766
TH
852 WARN_ON_ONCE(worker->task != current);
853
d302f017 854 worker->flags &= ~flags;
e22bee78 855
42c025f3
TH
856 /*
857 * If transitioning out of NOT_RUNNING, increment nr_running. Note
858 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
859 * of multiple flags, not a single flag.
860 */
e22bee78
TH
861 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
862 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 863 atomic_inc(&pool->nr_running);
d302f017
TH
864}
865
8cca0eea
TH
866/**
867 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 868 * @pool: pool of interest
8cca0eea
TH
869 * @work: work to find worker for
870 *
c9e7cf27
TH
871 * Find a worker which is executing @work on @pool by searching
872 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
873 * to match, its current execution should match the address of @work and
874 * its work function. This is to avoid unwanted dependency between
875 * unrelated work executions through a work item being recycled while still
876 * being executed.
877 *
878 * This is a bit tricky. A work item may be freed once its execution
879 * starts and nothing prevents the freed area from being recycled for
880 * another work item. If the same work item address ends up being reused
881 * before the original execution finishes, workqueue will identify the
882 * recycled work item as currently executing and make it wait until the
883 * current execution finishes, introducing an unwanted dependency.
884 *
885 * This function checks the work item address, work function and workqueue
886 * to avoid false positives. Note that this isn't complete as one may
887 * construct a work function which can introduce dependency onto itself
888 * through a recycled work item. Well, if somebody wants to shoot oneself
889 * in the foot that badly, there's only so much we can do, and if such
890 * deadlock actually occurs, it should be easy to locate the culprit work
891 * function.
8cca0eea
TH
892 *
893 * CONTEXT:
d565ed63 894 * spin_lock_irq(pool->lock).
8cca0eea
TH
895 *
896 * RETURNS:
897 * Pointer to worker which is executing @work if found, NULL
898 * otherwise.
4d707b9f 899 */
c9e7cf27 900static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 901 struct work_struct *work)
4d707b9f 902{
42f8570f 903 struct worker *worker;
42f8570f 904
b67bfe0d 905 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
906 (unsigned long)work)
907 if (worker->current_work == work &&
908 worker->current_func == work->func)
42f8570f
SL
909 return worker;
910
911 return NULL;
4d707b9f
ON
912}
913
bf4ede01
TH
914/**
915 * move_linked_works - move linked works to a list
916 * @work: start of series of works to be scheduled
917 * @head: target list to append @work to
918 * @nextp: out paramter for nested worklist walking
919 *
920 * Schedule linked works starting from @work to @head. Work series to
921 * be scheduled starts at @work and includes any consecutive work with
922 * WORK_STRUCT_LINKED set in its predecessor.
923 *
924 * If @nextp is not NULL, it's updated to point to the next work of
925 * the last scheduled work. This allows move_linked_works() to be
926 * nested inside outer list_for_each_entry_safe().
927 *
928 * CONTEXT:
d565ed63 929 * spin_lock_irq(pool->lock).
bf4ede01
TH
930 */
931static void move_linked_works(struct work_struct *work, struct list_head *head,
932 struct work_struct **nextp)
933{
934 struct work_struct *n;
935
936 /*
937 * Linked worklist will always end before the end of the list,
938 * use NULL for list head.
939 */
940 list_for_each_entry_safe_from(work, n, NULL, entry) {
941 list_move_tail(&work->entry, head);
942 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
943 break;
944 }
945
946 /*
947 * If we're already inside safe list traversal and have moved
948 * multiple works to the scheduled queue, the next position
949 * needs to be updated.
950 */
951 if (nextp)
952 *nextp = n;
953}
954
8864b4e5
TH
955/**
956 * get_pwq - get an extra reference on the specified pool_workqueue
957 * @pwq: pool_workqueue to get
958 *
959 * Obtain an extra reference on @pwq. The caller should guarantee that
960 * @pwq has positive refcnt and be holding the matching pool->lock.
961 */
962static void get_pwq(struct pool_workqueue *pwq)
963{
964 lockdep_assert_held(&pwq->pool->lock);
965 WARN_ON_ONCE(pwq->refcnt <= 0);
966 pwq->refcnt++;
967}
968
969/**
970 * put_pwq - put a pool_workqueue reference
971 * @pwq: pool_workqueue to put
972 *
973 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
974 * destruction. The caller should be holding the matching pool->lock.
975 */
976static void put_pwq(struct pool_workqueue *pwq)
977{
978 lockdep_assert_held(&pwq->pool->lock);
979 if (likely(--pwq->refcnt))
980 return;
981 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
982 return;
983 /*
984 * @pwq can't be released under pool->lock, bounce to
985 * pwq_unbound_release_workfn(). This never recurses on the same
986 * pool->lock as this path is taken only for unbound workqueues and
987 * the release work item is scheduled on a per-cpu workqueue. To
988 * avoid lockdep warning, unbound pool->locks are given lockdep
989 * subclass of 1 in get_unbound_pool().
990 */
991 schedule_work(&pwq->unbound_release_work);
992}
993
112202d9 994static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 995{
112202d9 996 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
997
998 trace_workqueue_activate_work(work);
112202d9 999 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1000 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1001 pwq->nr_active++;
bf4ede01
TH
1002}
1003
112202d9 1004static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1005{
112202d9 1006 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1007 struct work_struct, entry);
1008
112202d9 1009 pwq_activate_delayed_work(work);
3aa62497
LJ
1010}
1011
bf4ede01 1012/**
112202d9
TH
1013 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1014 * @pwq: pwq of interest
bf4ede01 1015 * @color: color of work which left the queue
bf4ede01
TH
1016 *
1017 * A work either has completed or is removed from pending queue,
112202d9 1018 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1019 *
1020 * CONTEXT:
d565ed63 1021 * spin_lock_irq(pool->lock).
bf4ede01 1022 */
112202d9 1023static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1024{
8864b4e5 1025 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1026 if (color == WORK_NO_COLOR)
8864b4e5 1027 goto out_put;
bf4ede01 1028
112202d9 1029 pwq->nr_in_flight[color]--;
bf4ede01 1030
112202d9
TH
1031 pwq->nr_active--;
1032 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1033 /* one down, submit a delayed one */
112202d9
TH
1034 if (pwq->nr_active < pwq->max_active)
1035 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1036 }
1037
1038 /* is flush in progress and are we at the flushing tip? */
112202d9 1039 if (likely(pwq->flush_color != color))
8864b4e5 1040 goto out_put;
bf4ede01
TH
1041
1042 /* are there still in-flight works? */
112202d9 1043 if (pwq->nr_in_flight[color])
8864b4e5 1044 goto out_put;
bf4ede01 1045
112202d9
TH
1046 /* this pwq is done, clear flush_color */
1047 pwq->flush_color = -1;
bf4ede01
TH
1048
1049 /*
112202d9 1050 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1051 * will handle the rest.
1052 */
112202d9
TH
1053 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1054 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1055out_put:
1056 put_pwq(pwq);
bf4ede01
TH
1057}
1058
36e227d2 1059/**
bbb68dfa 1060 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1061 * @work: work item to steal
1062 * @is_dwork: @work is a delayed_work
bbb68dfa 1063 * @flags: place to store irq state
36e227d2
TH
1064 *
1065 * Try to grab PENDING bit of @work. This function can handle @work in any
1066 * stable state - idle, on timer or on worklist. Return values are
1067 *
1068 * 1 if @work was pending and we successfully stole PENDING
1069 * 0 if @work was idle and we claimed PENDING
1070 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1071 * -ENOENT if someone else is canceling @work, this state may persist
1072 * for arbitrarily long
36e227d2 1073 *
bbb68dfa 1074 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1075 * interrupted while holding PENDING and @work off queue, irq must be
1076 * disabled on entry. This, combined with delayed_work->timer being
1077 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1078 *
1079 * On successful return, >= 0, irq is disabled and the caller is
1080 * responsible for releasing it using local_irq_restore(*@flags).
1081 *
e0aecdd8 1082 * This function is safe to call from any context including IRQ handler.
bf4ede01 1083 */
bbb68dfa
TH
1084static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1085 unsigned long *flags)
bf4ede01 1086{
d565ed63 1087 struct worker_pool *pool;
112202d9 1088 struct pool_workqueue *pwq;
bf4ede01 1089
bbb68dfa
TH
1090 local_irq_save(*flags);
1091
36e227d2
TH
1092 /* try to steal the timer if it exists */
1093 if (is_dwork) {
1094 struct delayed_work *dwork = to_delayed_work(work);
1095
e0aecdd8
TH
1096 /*
1097 * dwork->timer is irqsafe. If del_timer() fails, it's
1098 * guaranteed that the timer is not queued anywhere and not
1099 * running on the local CPU.
1100 */
36e227d2
TH
1101 if (likely(del_timer(&dwork->timer)))
1102 return 1;
1103 }
1104
1105 /* try to claim PENDING the normal way */
bf4ede01
TH
1106 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1107 return 0;
1108
1109 /*
1110 * The queueing is in progress, or it is already queued. Try to
1111 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1112 */
d565ed63
TH
1113 pool = get_work_pool(work);
1114 if (!pool)
bbb68dfa 1115 goto fail;
bf4ede01 1116
d565ed63 1117 spin_lock(&pool->lock);
0b3dae68 1118 /*
112202d9
TH
1119 * work->data is guaranteed to point to pwq only while the work
1120 * item is queued on pwq->wq, and both updating work->data to point
1121 * to pwq on queueing and to pool on dequeueing are done under
1122 * pwq->pool->lock. This in turn guarantees that, if work->data
1123 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1124 * item is currently queued on that pool.
1125 */
112202d9
TH
1126 pwq = get_work_pwq(work);
1127 if (pwq && pwq->pool == pool) {
16062836
TH
1128 debug_work_deactivate(work);
1129
1130 /*
1131 * A delayed work item cannot be grabbed directly because
1132 * it might have linked NO_COLOR work items which, if left
112202d9 1133 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1134 * management later on and cause stall. Make sure the work
1135 * item is activated before grabbing.
1136 */
1137 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1138 pwq_activate_delayed_work(work);
16062836
TH
1139
1140 list_del_init(&work->entry);
112202d9 1141 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1142
112202d9 1143 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1144 set_work_pool_and_keep_pending(work, pool->id);
1145
1146 spin_unlock(&pool->lock);
1147 return 1;
bf4ede01 1148 }
d565ed63 1149 spin_unlock(&pool->lock);
bbb68dfa
TH
1150fail:
1151 local_irq_restore(*flags);
1152 if (work_is_canceling(work))
1153 return -ENOENT;
1154 cpu_relax();
36e227d2 1155 return -EAGAIN;
bf4ede01
TH
1156}
1157
4690c4ab 1158/**
706026c2 1159 * insert_work - insert a work into a pool
112202d9 1160 * @pwq: pwq @work belongs to
4690c4ab
TH
1161 * @work: work to insert
1162 * @head: insertion point
1163 * @extra_flags: extra WORK_STRUCT_* flags to set
1164 *
112202d9 1165 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1166 * work_struct flags.
4690c4ab
TH
1167 *
1168 * CONTEXT:
d565ed63 1169 * spin_lock_irq(pool->lock).
4690c4ab 1170 */
112202d9
TH
1171static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1172 struct list_head *head, unsigned int extra_flags)
b89deed3 1173{
112202d9 1174 struct worker_pool *pool = pwq->pool;
e22bee78 1175
4690c4ab 1176 /* we own @work, set data and link */
112202d9 1177 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1178 list_add_tail(&work->entry, head);
8864b4e5 1179 get_pwq(pwq);
e22bee78
TH
1180
1181 /*
1182 * Ensure either worker_sched_deactivated() sees the above
1183 * list_add_tail() or we see zero nr_running to avoid workers
1184 * lying around lazily while there are works to be processed.
1185 */
1186 smp_mb();
1187
63d95a91
TH
1188 if (__need_more_worker(pool))
1189 wake_up_worker(pool);
b89deed3
ON
1190}
1191
c8efcc25
TH
1192/*
1193 * Test whether @work is being queued from another work executing on the
8d03ecfe 1194 * same workqueue.
c8efcc25
TH
1195 */
1196static bool is_chained_work(struct workqueue_struct *wq)
1197{
8d03ecfe
TH
1198 struct worker *worker;
1199
1200 worker = current_wq_worker();
1201 /*
1202 * Return %true iff I'm a worker execuing a work item on @wq. If
1203 * I'm @worker, it's safe to dereference it without locking.
1204 */
112202d9 1205 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1206}
1207
d84ff051 1208static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1209 struct work_struct *work)
1210{
112202d9 1211 struct pool_workqueue *pwq;
c9178087 1212 struct worker_pool *last_pool;
1e19ffc6 1213 struct list_head *worklist;
8a2e8e5d 1214 unsigned int work_flags;
b75cac93 1215 unsigned int req_cpu = cpu;
8930caba
TH
1216
1217 /*
1218 * While a work item is PENDING && off queue, a task trying to
1219 * steal the PENDING will busy-loop waiting for it to either get
1220 * queued or lose PENDING. Grabbing PENDING and queueing should
1221 * happen with IRQ disabled.
1222 */
1223 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1224
dc186ad7 1225 debug_work_activate(work);
1e19ffc6 1226
c8efcc25 1227 /* if dying, only works from the same workqueue are allowed */
618b01eb 1228 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1229 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1230 return;
9e8cd2f5 1231retry:
c9178087 1232 /* pwq which will be used unless @work is executing elsewhere */
c7fc77f7 1233 if (!(wq->flags & WQ_UNBOUND)) {
57469821 1234 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7 1235 cpu = raw_smp_processor_id();
7fb98ea7 1236 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
c9178087
TH
1237 } else {
1238 pwq = first_pwq(wq);
1239 }
dbf2576e 1240
c9178087
TH
1241 /*
1242 * If @work was previously on a different pool, it might still be
1243 * running there, in which case the work needs to be queued on that
1244 * pool to guarantee non-reentrancy.
1245 */
1246 last_pool = get_work_pool(work);
1247 if (last_pool && last_pool != pwq->pool) {
1248 struct worker *worker;
18aa9eff 1249
c9178087 1250 spin_lock(&last_pool->lock);
18aa9eff 1251
c9178087 1252 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1253
c9178087
TH
1254 if (worker && worker->current_pwq->wq == wq) {
1255 pwq = worker->current_pwq;
8930caba 1256 } else {
c9178087
TH
1257 /* meh... not running there, queue here */
1258 spin_unlock(&last_pool->lock);
112202d9 1259 spin_lock(&pwq->pool->lock);
8930caba 1260 }
f3421797 1261 } else {
112202d9 1262 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1263 }
1264
9e8cd2f5
TH
1265 /*
1266 * pwq is determined and locked. For unbound pools, we could have
1267 * raced with pwq release and it could already be dead. If its
1268 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1269 * without another pwq replacing it as the first pwq or while a
1270 * work item is executing on it, so the retying is guaranteed to
1271 * make forward-progress.
1272 */
1273 if (unlikely(!pwq->refcnt)) {
1274 if (wq->flags & WQ_UNBOUND) {
1275 spin_unlock(&pwq->pool->lock);
1276 cpu_relax();
1277 goto retry;
1278 }
1279 /* oops */
1280 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1281 wq->name, cpu);
1282 }
1283
112202d9
TH
1284 /* pwq determined, queue */
1285 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1286
f5b2552b 1287 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1288 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1289 return;
1290 }
1e19ffc6 1291
112202d9
TH
1292 pwq->nr_in_flight[pwq->work_color]++;
1293 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1294
112202d9 1295 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1296 trace_workqueue_activate_work(work);
112202d9
TH
1297 pwq->nr_active++;
1298 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1299 } else {
1300 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1301 worklist = &pwq->delayed_works;
8a2e8e5d 1302 }
1e19ffc6 1303
112202d9 1304 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1305
112202d9 1306 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1307}
1308
0fcb78c2 1309/**
c1a220e7
ZR
1310 * queue_work_on - queue work on specific cpu
1311 * @cpu: CPU number to execute work on
0fcb78c2
REB
1312 * @wq: workqueue to use
1313 * @work: work to queue
1314 *
d4283e93 1315 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1316 *
c1a220e7
ZR
1317 * We queue the work to a specific CPU, the caller must ensure it
1318 * can't go away.
1da177e4 1319 */
d4283e93
TH
1320bool queue_work_on(int cpu, struct workqueue_struct *wq,
1321 struct work_struct *work)
1da177e4 1322{
d4283e93 1323 bool ret = false;
8930caba 1324 unsigned long flags;
ef1ca236 1325
8930caba 1326 local_irq_save(flags);
c1a220e7 1327
22df02bb 1328 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1329 __queue_work(cpu, wq, work);
d4283e93 1330 ret = true;
c1a220e7 1331 }
ef1ca236 1332
8930caba 1333 local_irq_restore(flags);
1da177e4
LT
1334 return ret;
1335}
c1a220e7 1336EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1337
c1a220e7 1338/**
0a13c00e 1339 * queue_work - queue work on a workqueue
c1a220e7
ZR
1340 * @wq: workqueue to use
1341 * @work: work to queue
1342 *
d4283e93 1343 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1344 *
0a13c00e
TH
1345 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1346 * it can be processed by another CPU.
c1a220e7 1347 */
d4283e93 1348bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1349{
57469821 1350 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1351}
0a13c00e 1352EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1353
d8e794df 1354void delayed_work_timer_fn(unsigned long __data)
1da177e4 1355{
52bad64d 1356 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1357
e0aecdd8 1358 /* should have been called from irqsafe timer with irq already off */
60c057bc 1359 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1360}
1438ade5 1361EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1362
7beb2edf
TH
1363static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1364 struct delayed_work *dwork, unsigned long delay)
1da177e4 1365{
7beb2edf
TH
1366 struct timer_list *timer = &dwork->timer;
1367 struct work_struct *work = &dwork->work;
7beb2edf
TH
1368
1369 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1370 timer->data != (unsigned long)dwork);
fc4b514f
TH
1371 WARN_ON_ONCE(timer_pending(timer));
1372 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1373
8852aac2
TH
1374 /*
1375 * If @delay is 0, queue @dwork->work immediately. This is for
1376 * both optimization and correctness. The earliest @timer can
1377 * expire is on the closest next tick and delayed_work users depend
1378 * on that there's no such delay when @delay is 0.
1379 */
1380 if (!delay) {
1381 __queue_work(cpu, wq, &dwork->work);
1382 return;
1383 }
1384
7beb2edf 1385 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1386
60c057bc 1387 dwork->wq = wq;
1265057f 1388 dwork->cpu = cpu;
7beb2edf
TH
1389 timer->expires = jiffies + delay;
1390
1391 if (unlikely(cpu != WORK_CPU_UNBOUND))
1392 add_timer_on(timer, cpu);
1393 else
1394 add_timer(timer);
1da177e4
LT
1395}
1396
0fcb78c2
REB
1397/**
1398 * queue_delayed_work_on - queue work on specific CPU after delay
1399 * @cpu: CPU number to execute work on
1400 * @wq: workqueue to use
af9997e4 1401 * @dwork: work to queue
0fcb78c2
REB
1402 * @delay: number of jiffies to wait before queueing
1403 *
715f1300
TH
1404 * Returns %false if @work was already on a queue, %true otherwise. If
1405 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1406 * execution.
0fcb78c2 1407 */
d4283e93
TH
1408bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1409 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1410{
52bad64d 1411 struct work_struct *work = &dwork->work;
d4283e93 1412 bool ret = false;
8930caba 1413 unsigned long flags;
7a6bc1cd 1414
8930caba
TH
1415 /* read the comment in __queue_work() */
1416 local_irq_save(flags);
7a6bc1cd 1417
22df02bb 1418 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1419 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1420 ret = true;
7a6bc1cd 1421 }
8a3e77cc 1422
8930caba 1423 local_irq_restore(flags);
7a6bc1cd
VP
1424 return ret;
1425}
ae90dd5d 1426EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1427
0a13c00e
TH
1428/**
1429 * queue_delayed_work - queue work on a workqueue after delay
1430 * @wq: workqueue to use
1431 * @dwork: delayable work to queue
1432 * @delay: number of jiffies to wait before queueing
1433 *
715f1300 1434 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1435 */
d4283e93 1436bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1437 struct delayed_work *dwork, unsigned long delay)
1438{
57469821 1439 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1440}
1441EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1442
8376fe22
TH
1443/**
1444 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1445 * @cpu: CPU number to execute work on
1446 * @wq: workqueue to use
1447 * @dwork: work to queue
1448 * @delay: number of jiffies to wait before queueing
1449 *
1450 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1451 * modify @dwork's timer so that it expires after @delay. If @delay is
1452 * zero, @work is guaranteed to be scheduled immediately regardless of its
1453 * current state.
1454 *
1455 * Returns %false if @dwork was idle and queued, %true if @dwork was
1456 * pending and its timer was modified.
1457 *
e0aecdd8 1458 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1459 * See try_to_grab_pending() for details.
1460 */
1461bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1462 struct delayed_work *dwork, unsigned long delay)
1463{
1464 unsigned long flags;
1465 int ret;
c7fc77f7 1466
8376fe22
TH
1467 do {
1468 ret = try_to_grab_pending(&dwork->work, true, &flags);
1469 } while (unlikely(ret == -EAGAIN));
63bc0362 1470
8376fe22
TH
1471 if (likely(ret >= 0)) {
1472 __queue_delayed_work(cpu, wq, dwork, delay);
1473 local_irq_restore(flags);
7a6bc1cd 1474 }
8376fe22
TH
1475
1476 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1477 return ret;
1478}
8376fe22
TH
1479EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1480
1481/**
1482 * mod_delayed_work - modify delay of or queue a delayed work
1483 * @wq: workqueue to use
1484 * @dwork: work to queue
1485 * @delay: number of jiffies to wait before queueing
1486 *
1487 * mod_delayed_work_on() on local CPU.
1488 */
1489bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1490 unsigned long delay)
1491{
1492 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1493}
1494EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1495
c8e55f36
TH
1496/**
1497 * worker_enter_idle - enter idle state
1498 * @worker: worker which is entering idle state
1499 *
1500 * @worker is entering idle state. Update stats and idle timer if
1501 * necessary.
1502 *
1503 * LOCKING:
d565ed63 1504 * spin_lock_irq(pool->lock).
c8e55f36
TH
1505 */
1506static void worker_enter_idle(struct worker *worker)
1da177e4 1507{
bd7bdd43 1508 struct worker_pool *pool = worker->pool;
c8e55f36 1509
6183c009
TH
1510 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1511 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1512 (worker->hentry.next || worker->hentry.pprev)))
1513 return;
c8e55f36 1514
cb444766
TH
1515 /* can't use worker_set_flags(), also called from start_worker() */
1516 worker->flags |= WORKER_IDLE;
bd7bdd43 1517 pool->nr_idle++;
e22bee78 1518 worker->last_active = jiffies;
c8e55f36
TH
1519
1520 /* idle_list is LIFO */
bd7bdd43 1521 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1522
628c78e7
TH
1523 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1524 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1525
544ecf31 1526 /*
706026c2 1527 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1528 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1529 * nr_running, the warning may trigger spuriously. Check iff
1530 * unbind is not in progress.
544ecf31 1531 */
24647570 1532 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1533 pool->nr_workers == pool->nr_idle &&
e19e397a 1534 atomic_read(&pool->nr_running));
c8e55f36
TH
1535}
1536
1537/**
1538 * worker_leave_idle - leave idle state
1539 * @worker: worker which is leaving idle state
1540 *
1541 * @worker is leaving idle state. Update stats.
1542 *
1543 * LOCKING:
d565ed63 1544 * spin_lock_irq(pool->lock).
c8e55f36
TH
1545 */
1546static void worker_leave_idle(struct worker *worker)
1547{
bd7bdd43 1548 struct worker_pool *pool = worker->pool;
c8e55f36 1549
6183c009
TH
1550 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1551 return;
d302f017 1552 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1553 pool->nr_idle--;
c8e55f36
TH
1554 list_del_init(&worker->entry);
1555}
1556
e22bee78 1557/**
f36dc67b
LJ
1558 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1559 * @pool: target worker_pool
1560 *
1561 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1562 *
1563 * Works which are scheduled while the cpu is online must at least be
1564 * scheduled to a worker which is bound to the cpu so that if they are
1565 * flushed from cpu callbacks while cpu is going down, they are
1566 * guaranteed to execute on the cpu.
1567 *
f5faa077 1568 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1569 * themselves to the target cpu and may race with cpu going down or
1570 * coming online. kthread_bind() can't be used because it may put the
1571 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1572 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1573 * [dis]associated in the meantime.
1574 *
706026c2 1575 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1576 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1577 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1578 * enters idle state or fetches works without dropping lock, it can
1579 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1580 *
1581 * CONTEXT:
d565ed63 1582 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1583 * held.
1584 *
1585 * RETURNS:
706026c2 1586 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1587 * bound), %false if offline.
1588 */
f36dc67b 1589static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1590__acquires(&pool->lock)
e22bee78 1591{
e22bee78 1592 while (true) {
4e6045f1 1593 /*
e22bee78
TH
1594 * The following call may fail, succeed or succeed
1595 * without actually migrating the task to the cpu if
1596 * it races with cpu hotunplug operation. Verify
24647570 1597 * against POOL_DISASSOCIATED.
4e6045f1 1598 */
24647570 1599 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1600 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1601
d565ed63 1602 spin_lock_irq(&pool->lock);
24647570 1603 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1604 return false;
f5faa077 1605 if (task_cpu(current) == pool->cpu &&
7a4e344c 1606 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1607 return true;
d565ed63 1608 spin_unlock_irq(&pool->lock);
e22bee78 1609
5035b20f
TH
1610 /*
1611 * We've raced with CPU hot[un]plug. Give it a breather
1612 * and retry migration. cond_resched() is required here;
1613 * otherwise, we might deadlock against cpu_stop trying to
1614 * bring down the CPU on non-preemptive kernel.
1615 */
e22bee78 1616 cpu_relax();
5035b20f 1617 cond_resched();
e22bee78
TH
1618 }
1619}
1620
25511a47 1621/*
ea1abd61 1622 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1623 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1624 */
1625static void idle_worker_rebind(struct worker *worker)
1626{
5f7dabfd 1627 /* CPU may go down again inbetween, clear UNBOUND only on success */
f36dc67b 1628 if (worker_maybe_bind_and_lock(worker->pool))
5f7dabfd 1629 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1630
ea1abd61
LJ
1631 /* rebind complete, become available again */
1632 list_add(&worker->entry, &worker->pool->idle_list);
d565ed63 1633 spin_unlock_irq(&worker->pool->lock);
25511a47
TH
1634}
1635
e22bee78 1636/*
25511a47 1637 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1638 * the associated cpu which is coming back online. This is scheduled by
1639 * cpu up but can race with other cpu hotplug operations and may be
1640 * executed twice without intervening cpu down.
e22bee78 1641 */
25511a47 1642static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1643{
1644 struct worker *worker = container_of(work, struct worker, rebind_work);
e22bee78 1645
f36dc67b 1646 if (worker_maybe_bind_and_lock(worker->pool))
eab6d828 1647 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78 1648
d565ed63 1649 spin_unlock_irq(&worker->pool->lock);
e22bee78
TH
1650}
1651
25511a47 1652/**
94cf58bb
TH
1653 * rebind_workers - rebind all workers of a pool to the associated CPU
1654 * @pool: pool of interest
25511a47 1655 *
94cf58bb 1656 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
25511a47
TH
1657 * is different for idle and busy ones.
1658 *
ea1abd61
LJ
1659 * Idle ones will be removed from the idle_list and woken up. They will
1660 * add themselves back after completing rebind. This ensures that the
1661 * idle_list doesn't contain any unbound workers when re-bound busy workers
1662 * try to perform local wake-ups for concurrency management.
25511a47 1663 *
ea1abd61
LJ
1664 * Busy workers can rebind after they finish their current work items.
1665 * Queueing the rebind work item at the head of the scheduled list is
1666 * enough. Note that nr_running will be properly bumped as busy workers
1667 * rebind.
25511a47 1668 *
ea1abd61
LJ
1669 * On return, all non-manager workers are scheduled for rebind - see
1670 * manage_workers() for the manager special case. Any idle worker
1671 * including the manager will not appear on @idle_list until rebind is
1672 * complete, making local wake-ups safe.
25511a47 1673 */
94cf58bb 1674static void rebind_workers(struct worker_pool *pool)
25511a47 1675{
ea1abd61 1676 struct worker *worker, *n;
25511a47
TH
1677 int i;
1678
94cf58bb
TH
1679 lockdep_assert_held(&pool->assoc_mutex);
1680 lockdep_assert_held(&pool->lock);
25511a47 1681
5f7dabfd 1682 /* dequeue and kick idle ones */
94cf58bb
TH
1683 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1684 /*
1685 * idle workers should be off @pool->idle_list until rebind
1686 * is complete to avoid receiving premature local wake-ups.
1687 */
1688 list_del_init(&worker->entry);
25511a47 1689
94cf58bb
TH
1690 /*
1691 * worker_thread() will see the above dequeuing and call
1692 * idle_worker_rebind().
1693 */
1694 wake_up_process(worker->task);
1695 }
25511a47 1696
94cf58bb 1697 /* rebind busy workers */
b67bfe0d 1698 for_each_busy_worker(worker, i, pool) {
94cf58bb
TH
1699 struct work_struct *rebind_work = &worker->rebind_work;
1700 struct workqueue_struct *wq;
25511a47 1701
94cf58bb
TH
1702 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1703 work_data_bits(rebind_work)))
1704 continue;
25511a47 1705
94cf58bb 1706 debug_work_activate(rebind_work);
90beca5d 1707
94cf58bb
TH
1708 /*
1709 * wq doesn't really matter but let's keep @worker->pool
112202d9 1710 * and @pwq->pool consistent for sanity.
94cf58bb 1711 */
7a4e344c 1712 if (worker->pool->attrs->nice < 0)
94cf58bb
TH
1713 wq = system_highpri_wq;
1714 else
1715 wq = system_wq;
1716
7fb98ea7 1717 insert_work(per_cpu_ptr(wq->cpu_pwqs, pool->cpu), rebind_work,
94cf58bb
TH
1718 worker->scheduled.next,
1719 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1720 }
25511a47
TH
1721}
1722
c34056a3
TH
1723static struct worker *alloc_worker(void)
1724{
1725 struct worker *worker;
1726
1727 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1728 if (worker) {
1729 INIT_LIST_HEAD(&worker->entry);
affee4b2 1730 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1731 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1732 /* on creation a worker is in !idle && prep state */
1733 worker->flags = WORKER_PREP;
c8e55f36 1734 }
c34056a3
TH
1735 return worker;
1736}
1737
1738/**
1739 * create_worker - create a new workqueue worker
63d95a91 1740 * @pool: pool the new worker will belong to
c34056a3 1741 *
63d95a91 1742 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1743 * can be started by calling start_worker() or destroyed using
1744 * destroy_worker().
1745 *
1746 * CONTEXT:
1747 * Might sleep. Does GFP_KERNEL allocations.
1748 *
1749 * RETURNS:
1750 * Pointer to the newly created worker.
1751 */
bc2ae0f5 1752static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1753{
7a4e344c 1754 const char *pri = pool->attrs->nice < 0 ? "H" : "";
c34056a3 1755 struct worker *worker = NULL;
f3421797 1756 int id = -1;
c34056a3 1757
d565ed63 1758 spin_lock_irq(&pool->lock);
bd7bdd43 1759 while (ida_get_new(&pool->worker_ida, &id)) {
d565ed63 1760 spin_unlock_irq(&pool->lock);
bd7bdd43 1761 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1762 goto fail;
d565ed63 1763 spin_lock_irq(&pool->lock);
c34056a3 1764 }
d565ed63 1765 spin_unlock_irq(&pool->lock);
c34056a3
TH
1766
1767 worker = alloc_worker();
1768 if (!worker)
1769 goto fail;
1770
bd7bdd43 1771 worker->pool = pool;
c34056a3
TH
1772 worker->id = id;
1773
29c91e99 1774 if (pool->cpu >= 0)
94dcf29a 1775 worker->task = kthread_create_on_node(worker_thread,
ec22ca5e 1776 worker, cpu_to_node(pool->cpu),
d84ff051 1777 "kworker/%d:%d%s", pool->cpu, id, pri);
f3421797
TH
1778 else
1779 worker->task = kthread_create(worker_thread, worker,
ac6104cd
TH
1780 "kworker/u%d:%d%s",
1781 pool->id, id, pri);
c34056a3
TH
1782 if (IS_ERR(worker->task))
1783 goto fail;
1784
7a4e344c
TH
1785 set_user_nice(worker->task, pool->attrs->nice);
1786 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1787
db7bccf4 1788 /*
7a4e344c
TH
1789 * %PF_THREAD_BOUND is used to prevent userland from meddling with
1790 * cpumask of workqueue workers. This is an abuse. We need
1791 * %PF_NO_SETAFFINITY.
db7bccf4 1792 */
7a4e344c
TH
1793 worker->task->flags |= PF_THREAD_BOUND;
1794
1795 /*
1796 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1797 * remains stable across this function. See the comments above the
1798 * flag definition for details.
1799 */
1800 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1801 worker->flags |= WORKER_UNBOUND;
c34056a3
TH
1802
1803 return worker;
1804fail:
1805 if (id >= 0) {
d565ed63 1806 spin_lock_irq(&pool->lock);
bd7bdd43 1807 ida_remove(&pool->worker_ida, id);
d565ed63 1808 spin_unlock_irq(&pool->lock);
c34056a3
TH
1809 }
1810 kfree(worker);
1811 return NULL;
1812}
1813
1814/**
1815 * start_worker - start a newly created worker
1816 * @worker: worker to start
1817 *
706026c2 1818 * Make the pool aware of @worker and start it.
c34056a3
TH
1819 *
1820 * CONTEXT:
d565ed63 1821 * spin_lock_irq(pool->lock).
c34056a3
TH
1822 */
1823static void start_worker(struct worker *worker)
1824{
cb444766 1825 worker->flags |= WORKER_STARTED;
bd7bdd43 1826 worker->pool->nr_workers++;
c8e55f36 1827 worker_enter_idle(worker);
c34056a3
TH
1828 wake_up_process(worker->task);
1829}
1830
1831/**
1832 * destroy_worker - destroy a workqueue worker
1833 * @worker: worker to be destroyed
1834 *
706026c2 1835 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1836 *
1837 * CONTEXT:
d565ed63 1838 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1839 */
1840static void destroy_worker(struct worker *worker)
1841{
bd7bdd43 1842 struct worker_pool *pool = worker->pool;
c34056a3
TH
1843 int id = worker->id;
1844
1845 /* sanity check frenzy */
6183c009
TH
1846 if (WARN_ON(worker->current_work) ||
1847 WARN_ON(!list_empty(&worker->scheduled)))
1848 return;
c34056a3 1849
c8e55f36 1850 if (worker->flags & WORKER_STARTED)
bd7bdd43 1851 pool->nr_workers--;
c8e55f36 1852 if (worker->flags & WORKER_IDLE)
bd7bdd43 1853 pool->nr_idle--;
c8e55f36
TH
1854
1855 list_del_init(&worker->entry);
cb444766 1856 worker->flags |= WORKER_DIE;
c8e55f36 1857
d565ed63 1858 spin_unlock_irq(&pool->lock);
c8e55f36 1859
c34056a3
TH
1860 kthread_stop(worker->task);
1861 kfree(worker);
1862
d565ed63 1863 spin_lock_irq(&pool->lock);
bd7bdd43 1864 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1865}
1866
63d95a91 1867static void idle_worker_timeout(unsigned long __pool)
e22bee78 1868{
63d95a91 1869 struct worker_pool *pool = (void *)__pool;
e22bee78 1870
d565ed63 1871 spin_lock_irq(&pool->lock);
e22bee78 1872
63d95a91 1873 if (too_many_workers(pool)) {
e22bee78
TH
1874 struct worker *worker;
1875 unsigned long expires;
1876
1877 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1878 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1879 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1880
1881 if (time_before(jiffies, expires))
63d95a91 1882 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1883 else {
1884 /* it's been idle for too long, wake up manager */
11ebea50 1885 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1886 wake_up_worker(pool);
d5abe669 1887 }
e22bee78
TH
1888 }
1889
d565ed63 1890 spin_unlock_irq(&pool->lock);
e22bee78 1891}
d5abe669 1892
493a1724 1893static void send_mayday(struct work_struct *work)
e22bee78 1894{
112202d9
TH
1895 struct pool_workqueue *pwq = get_work_pwq(work);
1896 struct workqueue_struct *wq = pwq->wq;
493a1724
TH
1897
1898 lockdep_assert_held(&workqueue_lock);
e22bee78 1899
493008a8 1900 if (!wq->rescuer)
493a1724 1901 return;
e22bee78
TH
1902
1903 /* mayday mayday mayday */
493a1724
TH
1904 if (list_empty(&pwq->mayday_node)) {
1905 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1906 wake_up_process(wq->rescuer->task);
493a1724 1907 }
e22bee78
TH
1908}
1909
706026c2 1910static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1911{
63d95a91 1912 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1913 struct work_struct *work;
1914
493a1724
TH
1915 spin_lock_irq(&workqueue_lock); /* for wq->maydays */
1916 spin_lock(&pool->lock);
e22bee78 1917
63d95a91 1918 if (need_to_create_worker(pool)) {
e22bee78
TH
1919 /*
1920 * We've been trying to create a new worker but
1921 * haven't been successful. We might be hitting an
1922 * allocation deadlock. Send distress signals to
1923 * rescuers.
1924 */
63d95a91 1925 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1926 send_mayday(work);
1da177e4 1927 }
e22bee78 1928
493a1724
TH
1929 spin_unlock(&pool->lock);
1930 spin_unlock_irq(&workqueue_lock);
e22bee78 1931
63d95a91 1932 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1933}
1934
e22bee78
TH
1935/**
1936 * maybe_create_worker - create a new worker if necessary
63d95a91 1937 * @pool: pool to create a new worker for
e22bee78 1938 *
63d95a91 1939 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1940 * have at least one idle worker on return from this function. If
1941 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1942 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1943 * possible allocation deadlock.
1944 *
1945 * On return, need_to_create_worker() is guaranteed to be false and
1946 * may_start_working() true.
1947 *
1948 * LOCKING:
d565ed63 1949 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1950 * multiple times. Does GFP_KERNEL allocations. Called only from
1951 * manager.
1952 *
1953 * RETURNS:
d565ed63 1954 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1955 * otherwise.
1956 */
63d95a91 1957static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1958__releases(&pool->lock)
1959__acquires(&pool->lock)
1da177e4 1960{
63d95a91 1961 if (!need_to_create_worker(pool))
e22bee78
TH
1962 return false;
1963restart:
d565ed63 1964 spin_unlock_irq(&pool->lock);
9f9c2364 1965
e22bee78 1966 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1967 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1968
1969 while (true) {
1970 struct worker *worker;
1971
bc2ae0f5 1972 worker = create_worker(pool);
e22bee78 1973 if (worker) {
63d95a91 1974 del_timer_sync(&pool->mayday_timer);
d565ed63 1975 spin_lock_irq(&pool->lock);
e22bee78 1976 start_worker(worker);
6183c009
TH
1977 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1978 goto restart;
e22bee78
TH
1979 return true;
1980 }
1981
63d95a91 1982 if (!need_to_create_worker(pool))
e22bee78 1983 break;
1da177e4 1984
e22bee78
TH
1985 __set_current_state(TASK_INTERRUPTIBLE);
1986 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1987
63d95a91 1988 if (!need_to_create_worker(pool))
e22bee78
TH
1989 break;
1990 }
1991
63d95a91 1992 del_timer_sync(&pool->mayday_timer);
d565ed63 1993 spin_lock_irq(&pool->lock);
63d95a91 1994 if (need_to_create_worker(pool))
e22bee78
TH
1995 goto restart;
1996 return true;
1997}
1998
1999/**
2000 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 2001 * @pool: pool to destroy workers for
e22bee78 2002 *
63d95a91 2003 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
2004 * IDLE_WORKER_TIMEOUT.
2005 *
2006 * LOCKING:
d565ed63 2007 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2008 * multiple times. Called only from manager.
2009 *
2010 * RETURNS:
d565ed63 2011 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
2012 * otherwise.
2013 */
63d95a91 2014static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2015{
2016 bool ret = false;
1da177e4 2017
63d95a91 2018 while (too_many_workers(pool)) {
e22bee78
TH
2019 struct worker *worker;
2020 unsigned long expires;
3af24433 2021
63d95a91 2022 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2023 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2024
e22bee78 2025 if (time_before(jiffies, expires)) {
63d95a91 2026 mod_timer(&pool->idle_timer, expires);
3af24433 2027 break;
e22bee78 2028 }
1da177e4 2029
e22bee78
TH
2030 destroy_worker(worker);
2031 ret = true;
1da177e4 2032 }
1e19ffc6 2033
e22bee78 2034 return ret;
1e19ffc6
TH
2035}
2036
73f53c4a 2037/**
e22bee78
TH
2038 * manage_workers - manage worker pool
2039 * @worker: self
73f53c4a 2040 *
706026c2 2041 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2042 * to. At any given time, there can be only zero or one manager per
706026c2 2043 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2044 *
2045 * The caller can safely start processing works on false return. On
2046 * true return, it's guaranteed that need_to_create_worker() is false
2047 * and may_start_working() is true.
73f53c4a
TH
2048 *
2049 * CONTEXT:
d565ed63 2050 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2051 * multiple times. Does GFP_KERNEL allocations.
2052 *
2053 * RETURNS:
d565ed63
TH
2054 * spin_lock_irq(pool->lock) which may be released and regrabbed
2055 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2056 */
e22bee78 2057static bool manage_workers(struct worker *worker)
73f53c4a 2058{
63d95a91 2059 struct worker_pool *pool = worker->pool;
e22bee78 2060 bool ret = false;
73f53c4a 2061
34a06bd6 2062 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2063 return ret;
1e19ffc6 2064
ee378aa4
LJ
2065 /*
2066 * To simplify both worker management and CPU hotplug, hold off
2067 * management while hotplug is in progress. CPU hotplug path can't
34a06bd6
TH
2068 * grab @pool->manager_arb to achieve this because that can lead to
2069 * idle worker depletion (all become busy thinking someone else is
2070 * managing) which in turn can result in deadlock under extreme
2071 * circumstances. Use @pool->assoc_mutex to synchronize manager
2072 * against CPU hotplug.
ee378aa4 2073 *
b2eb83d1 2074 * assoc_mutex would always be free unless CPU hotplug is in
d565ed63 2075 * progress. trylock first without dropping @pool->lock.
ee378aa4 2076 */
b2eb83d1 2077 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
d565ed63 2078 spin_unlock_irq(&pool->lock);
b2eb83d1 2079 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2080 /*
2081 * CPU hotplug could have happened while we were waiting
b2eb83d1 2082 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4 2083 * because manager isn't either on idle or busy list, and
706026c2 2084 * @pool's state and ours could have deviated.
ee378aa4 2085 *
b2eb83d1 2086 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4 2087 * simply try to bind. It will succeed or fail depending
706026c2 2088 * on @pool's current state. Try it and adjust
ee378aa4
LJ
2089 * %WORKER_UNBOUND accordingly.
2090 */
f36dc67b 2091 if (worker_maybe_bind_and_lock(pool))
ee378aa4
LJ
2092 worker->flags &= ~WORKER_UNBOUND;
2093 else
2094 worker->flags |= WORKER_UNBOUND;
73f53c4a 2095
ee378aa4
LJ
2096 ret = true;
2097 }
73f53c4a 2098
11ebea50 2099 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2100
2101 /*
e22bee78
TH
2102 * Destroy and then create so that may_start_working() is true
2103 * on return.
73f53c4a 2104 */
63d95a91
TH
2105 ret |= maybe_destroy_workers(pool);
2106 ret |= maybe_create_worker(pool);
e22bee78 2107
b2eb83d1 2108 mutex_unlock(&pool->assoc_mutex);
34a06bd6 2109 mutex_unlock(&pool->manager_arb);
e22bee78 2110 return ret;
73f53c4a
TH
2111}
2112
a62428c0
TH
2113/**
2114 * process_one_work - process single work
c34056a3 2115 * @worker: self
a62428c0
TH
2116 * @work: work to process
2117 *
2118 * Process @work. This function contains all the logics necessary to
2119 * process a single work including synchronization against and
2120 * interaction with other workers on the same cpu, queueing and
2121 * flushing. As long as context requirement is met, any worker can
2122 * call this function to process a work.
2123 *
2124 * CONTEXT:
d565ed63 2125 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2126 */
c34056a3 2127static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2128__releases(&pool->lock)
2129__acquires(&pool->lock)
a62428c0 2130{
112202d9 2131 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2132 struct worker_pool *pool = worker->pool;
112202d9 2133 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2134 int work_color;
7e11629d 2135 struct worker *collision;
a62428c0
TH
2136#ifdef CONFIG_LOCKDEP
2137 /*
2138 * It is permissible to free the struct work_struct from
2139 * inside the function that is called from it, this we need to
2140 * take into account for lockdep too. To avoid bogus "held
2141 * lock freed" warnings as well as problems when looking into
2142 * work->lockdep_map, make a copy and use that here.
2143 */
4d82a1de
PZ
2144 struct lockdep_map lockdep_map;
2145
2146 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2147#endif
6fec10a1
TH
2148 /*
2149 * Ensure we're on the correct CPU. DISASSOCIATED test is
2150 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2151 * unbound or a disassociated pool.
6fec10a1 2152 */
5f7dabfd 2153 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2154 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2155 raw_smp_processor_id() != pool->cpu);
25511a47 2156
7e11629d
TH
2157 /*
2158 * A single work shouldn't be executed concurrently by
2159 * multiple workers on a single cpu. Check whether anyone is
2160 * already processing the work. If so, defer the work to the
2161 * currently executing one.
2162 */
c9e7cf27 2163 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2164 if (unlikely(collision)) {
2165 move_linked_works(work, &collision->scheduled, NULL);
2166 return;
2167 }
2168
8930caba 2169 /* claim and dequeue */
a62428c0 2170 debug_work_deactivate(work);
c9e7cf27 2171 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2172 worker->current_work = work;
a2c1c57b 2173 worker->current_func = work->func;
112202d9 2174 worker->current_pwq = pwq;
73f53c4a 2175 work_color = get_work_color(work);
7a22ad75 2176
a62428c0
TH
2177 list_del_init(&work->entry);
2178
fb0e7beb
TH
2179 /*
2180 * CPU intensive works don't participate in concurrency
2181 * management. They're the scheduler's responsibility.
2182 */
2183 if (unlikely(cpu_intensive))
2184 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2185
974271c4 2186 /*
d565ed63 2187 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2188 * executed ASAP. Wake up another worker if necessary.
2189 */
63d95a91
TH
2190 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2191 wake_up_worker(pool);
974271c4 2192
8930caba 2193 /*
7c3eed5c 2194 * Record the last pool and clear PENDING which should be the last
d565ed63 2195 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2196 * PENDING and queued state changes happen together while IRQ is
2197 * disabled.
8930caba 2198 */
7c3eed5c 2199 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2200
d565ed63 2201 spin_unlock_irq(&pool->lock);
a62428c0 2202
112202d9 2203 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2204 lock_map_acquire(&lockdep_map);
e36c886a 2205 trace_workqueue_execute_start(work);
a2c1c57b 2206 worker->current_func(work);
e36c886a
AV
2207 /*
2208 * While we must be careful to not use "work" after this, the trace
2209 * point will only record its address.
2210 */
2211 trace_workqueue_execute_end(work);
a62428c0 2212 lock_map_release(&lockdep_map);
112202d9 2213 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2214
2215 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2216 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2217 " last function: %pf\n",
a2c1c57b
TH
2218 current->comm, preempt_count(), task_pid_nr(current),
2219 worker->current_func);
a62428c0
TH
2220 debug_show_held_locks(current);
2221 dump_stack();
2222 }
2223
d565ed63 2224 spin_lock_irq(&pool->lock);
a62428c0 2225
fb0e7beb
TH
2226 /* clear cpu intensive status */
2227 if (unlikely(cpu_intensive))
2228 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2229
a62428c0 2230 /* we're done with it, release */
42f8570f 2231 hash_del(&worker->hentry);
c34056a3 2232 worker->current_work = NULL;
a2c1c57b 2233 worker->current_func = NULL;
112202d9
TH
2234 worker->current_pwq = NULL;
2235 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2236}
2237
affee4b2
TH
2238/**
2239 * process_scheduled_works - process scheduled works
2240 * @worker: self
2241 *
2242 * Process all scheduled works. Please note that the scheduled list
2243 * may change while processing a work, so this function repeatedly
2244 * fetches a work from the top and executes it.
2245 *
2246 * CONTEXT:
d565ed63 2247 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2248 * multiple times.
2249 */
2250static void process_scheduled_works(struct worker *worker)
1da177e4 2251{
affee4b2
TH
2252 while (!list_empty(&worker->scheduled)) {
2253 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2254 struct work_struct, entry);
c34056a3 2255 process_one_work(worker, work);
1da177e4 2256 }
1da177e4
LT
2257}
2258
4690c4ab
TH
2259/**
2260 * worker_thread - the worker thread function
c34056a3 2261 * @__worker: self
4690c4ab 2262 *
706026c2
TH
2263 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools
2264 * of these per each cpu. These workers process all works regardless of
e22bee78
TH
2265 * their specific target workqueue. The only exception is works which
2266 * belong to workqueues with a rescuer which will be explained in
2267 * rescuer_thread().
4690c4ab 2268 */
c34056a3 2269static int worker_thread(void *__worker)
1da177e4 2270{
c34056a3 2271 struct worker *worker = __worker;
bd7bdd43 2272 struct worker_pool *pool = worker->pool;
1da177e4 2273
e22bee78
TH
2274 /* tell the scheduler that this is a workqueue worker */
2275 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2276woke_up:
d565ed63 2277 spin_lock_irq(&pool->lock);
1da177e4 2278
5f7dabfd
LJ
2279 /* we are off idle list if destruction or rebind is requested */
2280 if (unlikely(list_empty(&worker->entry))) {
d565ed63 2281 spin_unlock_irq(&pool->lock);
25511a47 2282
5f7dabfd 2283 /* if DIE is set, destruction is requested */
25511a47
TH
2284 if (worker->flags & WORKER_DIE) {
2285 worker->task->flags &= ~PF_WQ_WORKER;
2286 return 0;
2287 }
2288
5f7dabfd 2289 /* otherwise, rebind */
25511a47
TH
2290 idle_worker_rebind(worker);
2291 goto woke_up;
c8e55f36 2292 }
affee4b2 2293
c8e55f36 2294 worker_leave_idle(worker);
db7bccf4 2295recheck:
e22bee78 2296 /* no more worker necessary? */
63d95a91 2297 if (!need_more_worker(pool))
e22bee78
TH
2298 goto sleep;
2299
2300 /* do we need to manage? */
63d95a91 2301 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2302 goto recheck;
2303
c8e55f36
TH
2304 /*
2305 * ->scheduled list can only be filled while a worker is
2306 * preparing to process a work or actually processing it.
2307 * Make sure nobody diddled with it while I was sleeping.
2308 */
6183c009 2309 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2310
e22bee78
TH
2311 /*
2312 * When control reaches this point, we're guaranteed to have
2313 * at least one idle worker or that someone else has already
2314 * assumed the manager role.
2315 */
2316 worker_clr_flags(worker, WORKER_PREP);
2317
2318 do {
c8e55f36 2319 struct work_struct *work =
bd7bdd43 2320 list_first_entry(&pool->worklist,
c8e55f36
TH
2321 struct work_struct, entry);
2322
2323 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2324 /* optimization path, not strictly necessary */
2325 process_one_work(worker, work);
2326 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2327 process_scheduled_works(worker);
c8e55f36
TH
2328 } else {
2329 move_linked_works(work, &worker->scheduled, NULL);
2330 process_scheduled_works(worker);
affee4b2 2331 }
63d95a91 2332 } while (keep_working(pool));
e22bee78
TH
2333
2334 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2335sleep:
63d95a91 2336 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2337 goto recheck;
d313dd85 2338
c8e55f36 2339 /*
d565ed63
TH
2340 * pool->lock is held and there's no work to process and no need to
2341 * manage, sleep. Workers are woken up only while holding
2342 * pool->lock or from local cpu, so setting the current state
2343 * before releasing pool->lock is enough to prevent losing any
2344 * event.
c8e55f36
TH
2345 */
2346 worker_enter_idle(worker);
2347 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2348 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2349 schedule();
2350 goto woke_up;
1da177e4
LT
2351}
2352
e22bee78
TH
2353/**
2354 * rescuer_thread - the rescuer thread function
111c225a 2355 * @__rescuer: self
e22bee78
TH
2356 *
2357 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2358 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2359 *
706026c2 2360 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2361 * worker which uses GFP_KERNEL allocation which has slight chance of
2362 * developing into deadlock if some works currently on the same queue
2363 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2364 * the problem rescuer solves.
2365 *
706026c2
TH
2366 * When such condition is possible, the pool summons rescuers of all
2367 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2368 * those works so that forward progress can be guaranteed.
2369 *
2370 * This should happen rarely.
2371 */
111c225a 2372static int rescuer_thread(void *__rescuer)
e22bee78 2373{
111c225a
TH
2374 struct worker *rescuer = __rescuer;
2375 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2376 struct list_head *scheduled = &rescuer->scheduled;
e22bee78
TH
2377
2378 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2379
2380 /*
2381 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2382 * doesn't participate in concurrency management.
2383 */
2384 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2385repeat:
2386 set_current_state(TASK_INTERRUPTIBLE);
2387
412d32e6
MG
2388 if (kthread_should_stop()) {
2389 __set_current_state(TASK_RUNNING);
111c225a 2390 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2391 return 0;
412d32e6 2392 }
e22bee78 2393
493a1724
TH
2394 /* see whether any pwq is asking for help */
2395 spin_lock_irq(&workqueue_lock);
2396
2397 while (!list_empty(&wq->maydays)) {
2398 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2399 struct pool_workqueue, mayday_node);
112202d9 2400 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2401 struct work_struct *work, *n;
2402
2403 __set_current_state(TASK_RUNNING);
493a1724
TH
2404 list_del_init(&pwq->mayday_node);
2405
2406 spin_unlock_irq(&workqueue_lock);
e22bee78
TH
2407
2408 /* migrate to the target cpu if possible */
f36dc67b 2409 worker_maybe_bind_and_lock(pool);
b3104104 2410 rescuer->pool = pool;
e22bee78
TH
2411
2412 /*
2413 * Slurp in all works issued via this workqueue and
2414 * process'em.
2415 */
6183c009 2416 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2417 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2418 if (get_work_pwq(work) == pwq)
e22bee78
TH
2419 move_linked_works(work, scheduled, &n);
2420
2421 process_scheduled_works(rescuer);
7576958a
TH
2422
2423 /*
d565ed63 2424 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2425 * regular worker; otherwise, we end up with 0 concurrency
2426 * and stalling the execution.
2427 */
63d95a91
TH
2428 if (keep_working(pool))
2429 wake_up_worker(pool);
7576958a 2430
b3104104 2431 rescuer->pool = NULL;
493a1724
TH
2432 spin_unlock(&pool->lock);
2433 spin_lock(&workqueue_lock);
e22bee78
TH
2434 }
2435
493a1724
TH
2436 spin_unlock_irq(&workqueue_lock);
2437
111c225a
TH
2438 /* rescuers should never participate in concurrency management */
2439 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2440 schedule();
2441 goto repeat;
1da177e4
LT
2442}
2443
fc2e4d70
ON
2444struct wq_barrier {
2445 struct work_struct work;
2446 struct completion done;
2447};
2448
2449static void wq_barrier_func(struct work_struct *work)
2450{
2451 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2452 complete(&barr->done);
2453}
2454
4690c4ab
TH
2455/**
2456 * insert_wq_barrier - insert a barrier work
112202d9 2457 * @pwq: pwq to insert barrier into
4690c4ab 2458 * @barr: wq_barrier to insert
affee4b2
TH
2459 * @target: target work to attach @barr to
2460 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2461 *
affee4b2
TH
2462 * @barr is linked to @target such that @barr is completed only after
2463 * @target finishes execution. Please note that the ordering
2464 * guarantee is observed only with respect to @target and on the local
2465 * cpu.
2466 *
2467 * Currently, a queued barrier can't be canceled. This is because
2468 * try_to_grab_pending() can't determine whether the work to be
2469 * grabbed is at the head of the queue and thus can't clear LINKED
2470 * flag of the previous work while there must be a valid next work
2471 * after a work with LINKED flag set.
2472 *
2473 * Note that when @worker is non-NULL, @target may be modified
112202d9 2474 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2475 *
2476 * CONTEXT:
d565ed63 2477 * spin_lock_irq(pool->lock).
4690c4ab 2478 */
112202d9 2479static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2480 struct wq_barrier *barr,
2481 struct work_struct *target, struct worker *worker)
fc2e4d70 2482{
affee4b2
TH
2483 struct list_head *head;
2484 unsigned int linked = 0;
2485
dc186ad7 2486 /*
d565ed63 2487 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2488 * as we know for sure that this will not trigger any of the
2489 * checks and call back into the fixup functions where we
2490 * might deadlock.
2491 */
ca1cab37 2492 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2493 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2494 init_completion(&barr->done);
83c22520 2495
affee4b2
TH
2496 /*
2497 * If @target is currently being executed, schedule the
2498 * barrier to the worker; otherwise, put it after @target.
2499 */
2500 if (worker)
2501 head = worker->scheduled.next;
2502 else {
2503 unsigned long *bits = work_data_bits(target);
2504
2505 head = target->entry.next;
2506 /* there can already be other linked works, inherit and set */
2507 linked = *bits & WORK_STRUCT_LINKED;
2508 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2509 }
2510
dc186ad7 2511 debug_work_activate(&barr->work);
112202d9 2512 insert_work(pwq, &barr->work, head,
affee4b2 2513 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2514}
2515
73f53c4a 2516/**
112202d9 2517 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2518 * @wq: workqueue being flushed
2519 * @flush_color: new flush color, < 0 for no-op
2520 * @work_color: new work color, < 0 for no-op
2521 *
112202d9 2522 * Prepare pwqs for workqueue flushing.
73f53c4a 2523 *
112202d9
TH
2524 * If @flush_color is non-negative, flush_color on all pwqs should be
2525 * -1. If no pwq has in-flight commands at the specified color, all
2526 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2527 * has in flight commands, its pwq->flush_color is set to
2528 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2529 * wakeup logic is armed and %true is returned.
2530 *
2531 * The caller should have initialized @wq->first_flusher prior to
2532 * calling this function with non-negative @flush_color. If
2533 * @flush_color is negative, no flush color update is done and %false
2534 * is returned.
2535 *
112202d9 2536 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2537 * work_color which is previous to @work_color and all will be
2538 * advanced to @work_color.
2539 *
2540 * CONTEXT:
2541 * mutex_lock(wq->flush_mutex).
2542 *
2543 * RETURNS:
2544 * %true if @flush_color >= 0 and there's something to flush. %false
2545 * otherwise.
2546 */
112202d9 2547static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2548 int flush_color, int work_color)
1da177e4 2549{
73f53c4a 2550 bool wait = false;
49e3cf44 2551 struct pool_workqueue *pwq;
1da177e4 2552
73f53c4a 2553 if (flush_color >= 0) {
6183c009 2554 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2555 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2556 }
2355b70f 2557
76af4d93
TH
2558 local_irq_disable();
2559
49e3cf44 2560 for_each_pwq(pwq, wq) {
112202d9 2561 struct worker_pool *pool = pwq->pool;
fc2e4d70 2562
76af4d93 2563 spin_lock(&pool->lock);
83c22520 2564
73f53c4a 2565 if (flush_color >= 0) {
6183c009 2566 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2567
112202d9
TH
2568 if (pwq->nr_in_flight[flush_color]) {
2569 pwq->flush_color = flush_color;
2570 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2571 wait = true;
2572 }
2573 }
1da177e4 2574
73f53c4a 2575 if (work_color >= 0) {
6183c009 2576 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2577 pwq->work_color = work_color;
73f53c4a 2578 }
1da177e4 2579
76af4d93 2580 spin_unlock(&pool->lock);
1da177e4 2581 }
2355b70f 2582
76af4d93
TH
2583 local_irq_enable();
2584
112202d9 2585 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2586 complete(&wq->first_flusher->done);
14441960 2587
73f53c4a 2588 return wait;
1da177e4
LT
2589}
2590
0fcb78c2 2591/**
1da177e4 2592 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2593 * @wq: workqueue to flush
1da177e4
LT
2594 *
2595 * Forces execution of the workqueue and blocks until its completion.
2596 * This is typically used in driver shutdown handlers.
2597 *
fc2e4d70
ON
2598 * We sleep until all works which were queued on entry have been handled,
2599 * but we are not livelocked by new incoming ones.
1da177e4 2600 */
7ad5b3a5 2601void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2602{
73f53c4a
TH
2603 struct wq_flusher this_flusher = {
2604 .list = LIST_HEAD_INIT(this_flusher.list),
2605 .flush_color = -1,
2606 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2607 };
2608 int next_color;
1da177e4 2609
3295f0ef
IM
2610 lock_map_acquire(&wq->lockdep_map);
2611 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2612
2613 mutex_lock(&wq->flush_mutex);
2614
2615 /*
2616 * Start-to-wait phase
2617 */
2618 next_color = work_next_color(wq->work_color);
2619
2620 if (next_color != wq->flush_color) {
2621 /*
2622 * Color space is not full. The current work_color
2623 * becomes our flush_color and work_color is advanced
2624 * by one.
2625 */
6183c009 2626 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2627 this_flusher.flush_color = wq->work_color;
2628 wq->work_color = next_color;
2629
2630 if (!wq->first_flusher) {
2631 /* no flush in progress, become the first flusher */
6183c009 2632 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2633
2634 wq->first_flusher = &this_flusher;
2635
112202d9 2636 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2637 wq->work_color)) {
2638 /* nothing to flush, done */
2639 wq->flush_color = next_color;
2640 wq->first_flusher = NULL;
2641 goto out_unlock;
2642 }
2643 } else {
2644 /* wait in queue */
6183c009 2645 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2646 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2647 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2648 }
2649 } else {
2650 /*
2651 * Oops, color space is full, wait on overflow queue.
2652 * The next flush completion will assign us
2653 * flush_color and transfer to flusher_queue.
2654 */
2655 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2656 }
2657
2658 mutex_unlock(&wq->flush_mutex);
2659
2660 wait_for_completion(&this_flusher.done);
2661
2662 /*
2663 * Wake-up-and-cascade phase
2664 *
2665 * First flushers are responsible for cascading flushes and
2666 * handling overflow. Non-first flushers can simply return.
2667 */
2668 if (wq->first_flusher != &this_flusher)
2669 return;
2670
2671 mutex_lock(&wq->flush_mutex);
2672
4ce48b37
TH
2673 /* we might have raced, check again with mutex held */
2674 if (wq->first_flusher != &this_flusher)
2675 goto out_unlock;
2676
73f53c4a
TH
2677 wq->first_flusher = NULL;
2678
6183c009
TH
2679 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2680 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2681
2682 while (true) {
2683 struct wq_flusher *next, *tmp;
2684
2685 /* complete all the flushers sharing the current flush color */
2686 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2687 if (next->flush_color != wq->flush_color)
2688 break;
2689 list_del_init(&next->list);
2690 complete(&next->done);
2691 }
2692
6183c009
TH
2693 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2694 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2695
2696 /* this flush_color is finished, advance by one */
2697 wq->flush_color = work_next_color(wq->flush_color);
2698
2699 /* one color has been freed, handle overflow queue */
2700 if (!list_empty(&wq->flusher_overflow)) {
2701 /*
2702 * Assign the same color to all overflowed
2703 * flushers, advance work_color and append to
2704 * flusher_queue. This is the start-to-wait
2705 * phase for these overflowed flushers.
2706 */
2707 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2708 tmp->flush_color = wq->work_color;
2709
2710 wq->work_color = work_next_color(wq->work_color);
2711
2712 list_splice_tail_init(&wq->flusher_overflow,
2713 &wq->flusher_queue);
112202d9 2714 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2715 }
2716
2717 if (list_empty(&wq->flusher_queue)) {
6183c009 2718 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2719 break;
2720 }
2721
2722 /*
2723 * Need to flush more colors. Make the next flusher
112202d9 2724 * the new first flusher and arm pwqs.
73f53c4a 2725 */
6183c009
TH
2726 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2727 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2728
2729 list_del_init(&next->list);
2730 wq->first_flusher = next;
2731
112202d9 2732 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2733 break;
2734
2735 /*
2736 * Meh... this color is already done, clear first
2737 * flusher and repeat cascading.
2738 */
2739 wq->first_flusher = NULL;
2740 }
2741
2742out_unlock:
2743 mutex_unlock(&wq->flush_mutex);
1da177e4 2744}
ae90dd5d 2745EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2746
9c5a2ba7
TH
2747/**
2748 * drain_workqueue - drain a workqueue
2749 * @wq: workqueue to drain
2750 *
2751 * Wait until the workqueue becomes empty. While draining is in progress,
2752 * only chain queueing is allowed. IOW, only currently pending or running
2753 * work items on @wq can queue further work items on it. @wq is flushed
2754 * repeatedly until it becomes empty. The number of flushing is detemined
2755 * by the depth of chaining and should be relatively short. Whine if it
2756 * takes too long.
2757 */
2758void drain_workqueue(struct workqueue_struct *wq)
2759{
2760 unsigned int flush_cnt = 0;
49e3cf44 2761 struct pool_workqueue *pwq;
9c5a2ba7
TH
2762
2763 /*
2764 * __queue_work() needs to test whether there are drainers, is much
2765 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2766 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2767 */
e98d5b16 2768 spin_lock_irq(&workqueue_lock);
9c5a2ba7 2769 if (!wq->nr_drainers++)
618b01eb 2770 wq->flags |= __WQ_DRAINING;
e98d5b16 2771 spin_unlock_irq(&workqueue_lock);
9c5a2ba7
TH
2772reflush:
2773 flush_workqueue(wq);
2774
76af4d93
TH
2775 local_irq_disable();
2776
49e3cf44 2777 for_each_pwq(pwq, wq) {
fa2563e4 2778 bool drained;
9c5a2ba7 2779
76af4d93 2780 spin_lock(&pwq->pool->lock);
112202d9 2781 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
76af4d93 2782 spin_unlock(&pwq->pool->lock);
fa2563e4
TT
2783
2784 if (drained)
9c5a2ba7
TH
2785 continue;
2786
2787 if (++flush_cnt == 10 ||
2788 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2789 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2790 wq->name, flush_cnt);
76af4d93
TH
2791
2792 local_irq_enable();
9c5a2ba7
TH
2793 goto reflush;
2794 }
2795
76af4d93 2796 spin_lock(&workqueue_lock);
9c5a2ba7 2797 if (!--wq->nr_drainers)
618b01eb 2798 wq->flags &= ~__WQ_DRAINING;
76af4d93
TH
2799 spin_unlock(&workqueue_lock);
2800
2801 local_irq_enable();
9c5a2ba7
TH
2802}
2803EXPORT_SYMBOL_GPL(drain_workqueue);
2804
606a5020 2805static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2806{
affee4b2 2807 struct worker *worker = NULL;
c9e7cf27 2808 struct worker_pool *pool;
112202d9 2809 struct pool_workqueue *pwq;
db700897
ON
2810
2811 might_sleep();
fa1b54e6
TH
2812
2813 local_irq_disable();
c9e7cf27 2814 pool = get_work_pool(work);
fa1b54e6
TH
2815 if (!pool) {
2816 local_irq_enable();
baf59022 2817 return false;
fa1b54e6 2818 }
db700897 2819
fa1b54e6 2820 spin_lock(&pool->lock);
0b3dae68 2821 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2822 pwq = get_work_pwq(work);
2823 if (pwq) {
2824 if (unlikely(pwq->pool != pool))
4690c4ab 2825 goto already_gone;
606a5020 2826 } else {
c9e7cf27 2827 worker = find_worker_executing_work(pool, work);
affee4b2 2828 if (!worker)
4690c4ab 2829 goto already_gone;
112202d9 2830 pwq = worker->current_pwq;
606a5020 2831 }
db700897 2832
112202d9 2833 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2834 spin_unlock_irq(&pool->lock);
7a22ad75 2835
e159489b
TH
2836 /*
2837 * If @max_active is 1 or rescuer is in use, flushing another work
2838 * item on the same workqueue may lead to deadlock. Make sure the
2839 * flusher is not running on the same workqueue by verifying write
2840 * access.
2841 */
493008a8 2842 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2843 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2844 else
112202d9
TH
2845 lock_map_acquire_read(&pwq->wq->lockdep_map);
2846 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2847
401a8d04 2848 return true;
4690c4ab 2849already_gone:
d565ed63 2850 spin_unlock_irq(&pool->lock);
401a8d04 2851 return false;
db700897 2852}
baf59022
TH
2853
2854/**
2855 * flush_work - wait for a work to finish executing the last queueing instance
2856 * @work: the work to flush
2857 *
606a5020
TH
2858 * Wait until @work has finished execution. @work is guaranteed to be idle
2859 * on return if it hasn't been requeued since flush started.
baf59022
TH
2860 *
2861 * RETURNS:
2862 * %true if flush_work() waited for the work to finish execution,
2863 * %false if it was already idle.
2864 */
2865bool flush_work(struct work_struct *work)
2866{
2867 struct wq_barrier barr;
2868
0976dfc1
SB
2869 lock_map_acquire(&work->lockdep_map);
2870 lock_map_release(&work->lockdep_map);
2871
606a5020 2872 if (start_flush_work(work, &barr)) {
401a8d04
TH
2873 wait_for_completion(&barr.done);
2874 destroy_work_on_stack(&barr.work);
2875 return true;
606a5020 2876 } else {
401a8d04 2877 return false;
6e84d644 2878 }
6e84d644 2879}
606a5020 2880EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2881
36e227d2 2882static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2883{
bbb68dfa 2884 unsigned long flags;
1f1f642e
ON
2885 int ret;
2886
2887 do {
bbb68dfa
TH
2888 ret = try_to_grab_pending(work, is_dwork, &flags);
2889 /*
2890 * If someone else is canceling, wait for the same event it
2891 * would be waiting for before retrying.
2892 */
2893 if (unlikely(ret == -ENOENT))
606a5020 2894 flush_work(work);
1f1f642e
ON
2895 } while (unlikely(ret < 0));
2896
bbb68dfa
TH
2897 /* tell other tasks trying to grab @work to back off */
2898 mark_work_canceling(work);
2899 local_irq_restore(flags);
2900
606a5020 2901 flush_work(work);
7a22ad75 2902 clear_work_data(work);
1f1f642e
ON
2903 return ret;
2904}
2905
6e84d644 2906/**
401a8d04
TH
2907 * cancel_work_sync - cancel a work and wait for it to finish
2908 * @work: the work to cancel
6e84d644 2909 *
401a8d04
TH
2910 * Cancel @work and wait for its execution to finish. This function
2911 * can be used even if the work re-queues itself or migrates to
2912 * another workqueue. On return from this function, @work is
2913 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2914 *
401a8d04
TH
2915 * cancel_work_sync(&delayed_work->work) must not be used for
2916 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2917 *
401a8d04 2918 * The caller must ensure that the workqueue on which @work was last
6e84d644 2919 * queued can't be destroyed before this function returns.
401a8d04
TH
2920 *
2921 * RETURNS:
2922 * %true if @work was pending, %false otherwise.
6e84d644 2923 */
401a8d04 2924bool cancel_work_sync(struct work_struct *work)
6e84d644 2925{
36e227d2 2926 return __cancel_work_timer(work, false);
b89deed3 2927}
28e53bdd 2928EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2929
6e84d644 2930/**
401a8d04
TH
2931 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2932 * @dwork: the delayed work to flush
6e84d644 2933 *
401a8d04
TH
2934 * Delayed timer is cancelled and the pending work is queued for
2935 * immediate execution. Like flush_work(), this function only
2936 * considers the last queueing instance of @dwork.
1f1f642e 2937 *
401a8d04
TH
2938 * RETURNS:
2939 * %true if flush_work() waited for the work to finish execution,
2940 * %false if it was already idle.
6e84d644 2941 */
401a8d04
TH
2942bool flush_delayed_work(struct delayed_work *dwork)
2943{
8930caba 2944 local_irq_disable();
401a8d04 2945 if (del_timer_sync(&dwork->timer))
60c057bc 2946 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2947 local_irq_enable();
401a8d04
TH
2948 return flush_work(&dwork->work);
2949}
2950EXPORT_SYMBOL(flush_delayed_work);
2951
09383498 2952/**
57b30ae7
TH
2953 * cancel_delayed_work - cancel a delayed work
2954 * @dwork: delayed_work to cancel
09383498 2955 *
57b30ae7
TH
2956 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2957 * and canceled; %false if wasn't pending. Note that the work callback
2958 * function may still be running on return, unless it returns %true and the
2959 * work doesn't re-arm itself. Explicitly flush or use
2960 * cancel_delayed_work_sync() to wait on it.
09383498 2961 *
57b30ae7 2962 * This function is safe to call from any context including IRQ handler.
09383498 2963 */
57b30ae7 2964bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2965{
57b30ae7
TH
2966 unsigned long flags;
2967 int ret;
2968
2969 do {
2970 ret = try_to_grab_pending(&dwork->work, true, &flags);
2971 } while (unlikely(ret == -EAGAIN));
2972
2973 if (unlikely(ret < 0))
2974 return false;
2975
7c3eed5c
TH
2976 set_work_pool_and_clear_pending(&dwork->work,
2977 get_work_pool_id(&dwork->work));
57b30ae7 2978 local_irq_restore(flags);
c0158ca6 2979 return ret;
09383498 2980}
57b30ae7 2981EXPORT_SYMBOL(cancel_delayed_work);
09383498 2982
401a8d04
TH
2983/**
2984 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2985 * @dwork: the delayed work cancel
2986 *
2987 * This is cancel_work_sync() for delayed works.
2988 *
2989 * RETURNS:
2990 * %true if @dwork was pending, %false otherwise.
2991 */
2992bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2993{
36e227d2 2994 return __cancel_work_timer(&dwork->work, true);
6e84d644 2995}
f5a421a4 2996EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2997
0fcb78c2 2998/**
c1a220e7
ZR
2999 * schedule_work_on - put work task on a specific cpu
3000 * @cpu: cpu to put the work task on
3001 * @work: job to be done
3002 *
3003 * This puts a job on a specific cpu
3004 */
d4283e93 3005bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 3006{
d320c038 3007 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
3008}
3009EXPORT_SYMBOL(schedule_work_on);
3010
0fcb78c2 3011/**
0fcb78c2
REB
3012 * schedule_work - put work task in global workqueue
3013 * @work: job to be done
0fcb78c2 3014 *
d4283e93
TH
3015 * Returns %false if @work was already on the kernel-global workqueue and
3016 * %true otherwise.
5b0f437d
BVA
3017 *
3018 * This puts a job in the kernel-global workqueue if it was not already
3019 * queued and leaves it in the same position on the kernel-global
3020 * workqueue otherwise.
0fcb78c2 3021 */
d4283e93 3022bool schedule_work(struct work_struct *work)
1da177e4 3023{
d320c038 3024 return queue_work(system_wq, work);
1da177e4 3025}
ae90dd5d 3026EXPORT_SYMBOL(schedule_work);
1da177e4 3027
0fcb78c2
REB
3028/**
3029 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3030 * @cpu: cpu to use
52bad64d 3031 * @dwork: job to be done
0fcb78c2
REB
3032 * @delay: number of jiffies to wait
3033 *
3034 * After waiting for a given time this puts a job in the kernel-global
3035 * workqueue on the specified CPU.
3036 */
d4283e93
TH
3037bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3038 unsigned long delay)
1da177e4 3039{
d320c038 3040 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 3041}
ae90dd5d 3042EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 3043
0fcb78c2
REB
3044/**
3045 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3046 * @dwork: job to be done
3047 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3048 *
3049 * After waiting for a given time this puts a job in the kernel-global
3050 * workqueue.
3051 */
d4283e93 3052bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3053{
d320c038 3054 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3055}
ae90dd5d 3056EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3057
b6136773 3058/**
31ddd871 3059 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3060 * @func: the function to call
b6136773 3061 *
31ddd871
TH
3062 * schedule_on_each_cpu() executes @func on each online CPU using the
3063 * system workqueue and blocks until all CPUs have completed.
b6136773 3064 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3065 *
3066 * RETURNS:
3067 * 0 on success, -errno on failure.
b6136773 3068 */
65f27f38 3069int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3070{
3071 int cpu;
38f51568 3072 struct work_struct __percpu *works;
15316ba8 3073
b6136773
AM
3074 works = alloc_percpu(struct work_struct);
3075 if (!works)
15316ba8 3076 return -ENOMEM;
b6136773 3077
93981800
TH
3078 get_online_cpus();
3079
15316ba8 3080 for_each_online_cpu(cpu) {
9bfb1839
IM
3081 struct work_struct *work = per_cpu_ptr(works, cpu);
3082
3083 INIT_WORK(work, func);
b71ab8c2 3084 schedule_work_on(cpu, work);
65a64464 3085 }
93981800
TH
3086
3087 for_each_online_cpu(cpu)
3088 flush_work(per_cpu_ptr(works, cpu));
3089
95402b38 3090 put_online_cpus();
b6136773 3091 free_percpu(works);
15316ba8
CL
3092 return 0;
3093}
3094
eef6a7d5
AS
3095/**
3096 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3097 *
3098 * Forces execution of the kernel-global workqueue and blocks until its
3099 * completion.
3100 *
3101 * Think twice before calling this function! It's very easy to get into
3102 * trouble if you don't take great care. Either of the following situations
3103 * will lead to deadlock:
3104 *
3105 * One of the work items currently on the workqueue needs to acquire
3106 * a lock held by your code or its caller.
3107 *
3108 * Your code is running in the context of a work routine.
3109 *
3110 * They will be detected by lockdep when they occur, but the first might not
3111 * occur very often. It depends on what work items are on the workqueue and
3112 * what locks they need, which you have no control over.
3113 *
3114 * In most situations flushing the entire workqueue is overkill; you merely
3115 * need to know that a particular work item isn't queued and isn't running.
3116 * In such cases you should use cancel_delayed_work_sync() or
3117 * cancel_work_sync() instead.
3118 */
1da177e4
LT
3119void flush_scheduled_work(void)
3120{
d320c038 3121 flush_workqueue(system_wq);
1da177e4 3122}
ae90dd5d 3123EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3124
1fa44eca
JB
3125/**
3126 * execute_in_process_context - reliably execute the routine with user context
3127 * @fn: the function to execute
1fa44eca
JB
3128 * @ew: guaranteed storage for the execute work structure (must
3129 * be available when the work executes)
3130 *
3131 * Executes the function immediately if process context is available,
3132 * otherwise schedules the function for delayed execution.
3133 *
3134 * Returns: 0 - function was executed
3135 * 1 - function was scheduled for execution
3136 */
65f27f38 3137int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3138{
3139 if (!in_interrupt()) {
65f27f38 3140 fn(&ew->work);
1fa44eca
JB
3141 return 0;
3142 }
3143
65f27f38 3144 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3145 schedule_work(&ew->work);
3146
3147 return 1;
3148}
3149EXPORT_SYMBOL_GPL(execute_in_process_context);
3150
1da177e4
LT
3151int keventd_up(void)
3152{
d320c038 3153 return system_wq != NULL;
1da177e4
LT
3154}
3155
7a4e344c
TH
3156/**
3157 * free_workqueue_attrs - free a workqueue_attrs
3158 * @attrs: workqueue_attrs to free
3159 *
3160 * Undo alloc_workqueue_attrs().
3161 */
3162void free_workqueue_attrs(struct workqueue_attrs *attrs)
3163{
3164 if (attrs) {
3165 free_cpumask_var(attrs->cpumask);
3166 kfree(attrs);
3167 }
3168}
3169
3170/**
3171 * alloc_workqueue_attrs - allocate a workqueue_attrs
3172 * @gfp_mask: allocation mask to use
3173 *
3174 * Allocate a new workqueue_attrs, initialize with default settings and
3175 * return it. Returns NULL on failure.
3176 */
3177struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3178{
3179 struct workqueue_attrs *attrs;
3180
3181 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3182 if (!attrs)
3183 goto fail;
3184 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3185 goto fail;
3186
3187 cpumask_setall(attrs->cpumask);
3188 return attrs;
3189fail:
3190 free_workqueue_attrs(attrs);
3191 return NULL;
3192}
3193
29c91e99
TH
3194static void copy_workqueue_attrs(struct workqueue_attrs *to,
3195 const struct workqueue_attrs *from)
3196{
3197 to->nice = from->nice;
3198 cpumask_copy(to->cpumask, from->cpumask);
3199}
3200
3201/*
3202 * Hacky implementation of jhash of bitmaps which only considers the
3203 * specified number of bits. We probably want a proper implementation in
3204 * include/linux/jhash.h.
3205 */
3206static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
3207{
3208 int nr_longs = bits / BITS_PER_LONG;
3209 int nr_leftover = bits % BITS_PER_LONG;
3210 unsigned long leftover = 0;
3211
3212 if (nr_longs)
3213 hash = jhash(bitmap, nr_longs * sizeof(long), hash);
3214 if (nr_leftover) {
3215 bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
3216 hash = jhash(&leftover, sizeof(long), hash);
3217 }
3218 return hash;
3219}
3220
3221/* hash value of the content of @attr */
3222static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3223{
3224 u32 hash = 0;
3225
3226 hash = jhash_1word(attrs->nice, hash);
3227 hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
3228 return hash;
3229}
3230
3231/* content equality test */
3232static bool wqattrs_equal(const struct workqueue_attrs *a,
3233 const struct workqueue_attrs *b)
3234{
3235 if (a->nice != b->nice)
3236 return false;
3237 if (!cpumask_equal(a->cpumask, b->cpumask))
3238 return false;
3239 return true;
3240}
3241
7a4e344c
TH
3242/**
3243 * init_worker_pool - initialize a newly zalloc'd worker_pool
3244 * @pool: worker_pool to initialize
3245 *
3246 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
29c91e99
TH
3247 * Returns 0 on success, -errno on failure. Even on failure, all fields
3248 * inside @pool proper are initialized and put_unbound_pool() can be called
3249 * on @pool safely to release it.
7a4e344c
TH
3250 */
3251static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3252{
3253 spin_lock_init(&pool->lock);
29c91e99
TH
3254 pool->id = -1;
3255 pool->cpu = -1;
4e1a1f9a
TH
3256 pool->flags |= POOL_DISASSOCIATED;
3257 INIT_LIST_HEAD(&pool->worklist);
3258 INIT_LIST_HEAD(&pool->idle_list);
3259 hash_init(pool->busy_hash);
3260
3261 init_timer_deferrable(&pool->idle_timer);
3262 pool->idle_timer.function = idle_worker_timeout;
3263 pool->idle_timer.data = (unsigned long)pool;
3264
3265 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3266 (unsigned long)pool);
3267
3268 mutex_init(&pool->manager_arb);
3269 mutex_init(&pool->assoc_mutex);
3270 ida_init(&pool->worker_ida);
7a4e344c 3271
29c91e99
TH
3272 INIT_HLIST_NODE(&pool->hash_node);
3273 pool->refcnt = 1;
3274
3275 /* shouldn't fail above this point */
7a4e344c
TH
3276 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3277 if (!pool->attrs)
3278 return -ENOMEM;
3279 return 0;
4e1a1f9a
TH
3280}
3281
29c91e99
TH
3282static void rcu_free_pool(struct rcu_head *rcu)
3283{
3284 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3285
3286 ida_destroy(&pool->worker_ida);
3287 free_workqueue_attrs(pool->attrs);
3288 kfree(pool);
3289}
3290
3291/**
3292 * put_unbound_pool - put a worker_pool
3293 * @pool: worker_pool to put
3294 *
3295 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3296 * safe manner.
3297 */
3298static void put_unbound_pool(struct worker_pool *pool)
3299{
3300 struct worker *worker;
3301
3302 spin_lock_irq(&workqueue_lock);
3303 if (--pool->refcnt) {
3304 spin_unlock_irq(&workqueue_lock);
3305 return;
3306 }
3307
3308 /* sanity checks */
3309 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3310 WARN_ON(!list_empty(&pool->worklist))) {
3311 spin_unlock_irq(&workqueue_lock);
3312 return;
3313 }
3314
3315 /* release id and unhash */
3316 if (pool->id >= 0)
3317 idr_remove(&worker_pool_idr, pool->id);
3318 hash_del(&pool->hash_node);
3319
3320 spin_unlock_irq(&workqueue_lock);
3321
3322 /* lock out manager and destroy all workers */
3323 mutex_lock(&pool->manager_arb);
3324 spin_lock_irq(&pool->lock);
3325
3326 while ((worker = first_worker(pool)))
3327 destroy_worker(worker);
3328 WARN_ON(pool->nr_workers || pool->nr_idle);
3329
3330 spin_unlock_irq(&pool->lock);
3331 mutex_unlock(&pool->manager_arb);
3332
3333 /* shut down the timers */
3334 del_timer_sync(&pool->idle_timer);
3335 del_timer_sync(&pool->mayday_timer);
3336
3337 /* sched-RCU protected to allow dereferences from get_work_pool() */
3338 call_rcu_sched(&pool->rcu, rcu_free_pool);
3339}
3340
3341/**
3342 * get_unbound_pool - get a worker_pool with the specified attributes
3343 * @attrs: the attributes of the worker_pool to get
3344 *
3345 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3346 * reference count and return it. If there already is a matching
3347 * worker_pool, it will be used; otherwise, this function attempts to
3348 * create a new one. On failure, returns NULL.
3349 */
3350static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3351{
3352 static DEFINE_MUTEX(create_mutex);
3353 u32 hash = wqattrs_hash(attrs);
3354 struct worker_pool *pool;
3355 struct worker *worker;
3356
3357 mutex_lock(&create_mutex);
3358
3359 /* do we already have a matching pool? */
3360 spin_lock_irq(&workqueue_lock);
3361 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3362 if (wqattrs_equal(pool->attrs, attrs)) {
3363 pool->refcnt++;
3364 goto out_unlock;
3365 }
3366 }
3367 spin_unlock_irq(&workqueue_lock);
3368
3369 /* nope, create a new one */
3370 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3371 if (!pool || init_worker_pool(pool) < 0)
3372 goto fail;
3373
8864b4e5 3374 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3375 copy_workqueue_attrs(pool->attrs, attrs);
3376
3377 if (worker_pool_assign_id(pool) < 0)
3378 goto fail;
3379
3380 /* create and start the initial worker */
3381 worker = create_worker(pool);
3382 if (!worker)
3383 goto fail;
3384
3385 spin_lock_irq(&pool->lock);
3386 start_worker(worker);
3387 spin_unlock_irq(&pool->lock);
3388
3389 /* install */
3390 spin_lock_irq(&workqueue_lock);
3391 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3392out_unlock:
3393 spin_unlock_irq(&workqueue_lock);
3394 mutex_unlock(&create_mutex);
3395 return pool;
3396fail:
3397 mutex_unlock(&create_mutex);
3398 if (pool)
3399 put_unbound_pool(pool);
3400 return NULL;
3401}
3402
8864b4e5
TH
3403static void rcu_free_pwq(struct rcu_head *rcu)
3404{
3405 kmem_cache_free(pwq_cache,
3406 container_of(rcu, struct pool_workqueue, rcu));
3407}
3408
3409/*
3410 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3411 * and needs to be destroyed.
3412 */
3413static void pwq_unbound_release_workfn(struct work_struct *work)
3414{
3415 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3416 unbound_release_work);
3417 struct workqueue_struct *wq = pwq->wq;
3418 struct worker_pool *pool = pwq->pool;
3419
3420 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3421 return;
3422
75ccf595
TH
3423 /*
3424 * Unlink @pwq. Synchronization against flush_mutex isn't strictly
3425 * necessary on release but do it anyway. It's easier to verify
3426 * and consistent with the linking path.
3427 */
3428 mutex_lock(&wq->flush_mutex);
8864b4e5
TH
3429 spin_lock_irq(&workqueue_lock);
3430 list_del_rcu(&pwq->pwqs_node);
3431 spin_unlock_irq(&workqueue_lock);
75ccf595 3432 mutex_unlock(&wq->flush_mutex);
8864b4e5
TH
3433
3434 put_unbound_pool(pool);
3435 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3436
3437 /*
3438 * If we're the last pwq going away, @wq is already dead and no one
3439 * is gonna access it anymore. Free it.
3440 */
3441 if (list_empty(&wq->pwqs))
3442 kfree(wq);
3443}
3444
d2c1d404
TH
3445static void init_and_link_pwq(struct pool_workqueue *pwq,
3446 struct workqueue_struct *wq,
9e8cd2f5
TH
3447 struct worker_pool *pool,
3448 struct pool_workqueue **p_last_pwq)
d2c1d404
TH
3449{
3450 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3451
3452 pwq->pool = pool;
3453 pwq->wq = wq;
3454 pwq->flush_color = -1;
8864b4e5 3455 pwq->refcnt = 1;
d2c1d404
TH
3456 pwq->max_active = wq->saved_max_active;
3457 INIT_LIST_HEAD(&pwq->delayed_works);
3458 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3459 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
d2c1d404 3460
75ccf595
TH
3461 /*
3462 * Link @pwq and set the matching work_color. This is synchronized
3463 * with flush_mutex to avoid confusing flush_workqueue().
3464 */
3465 mutex_lock(&wq->flush_mutex);
3466 spin_lock_irq(&workqueue_lock);
3467
9e8cd2f5
TH
3468 if (p_last_pwq)
3469 *p_last_pwq = first_pwq(wq);
75ccf595 3470 pwq->work_color = wq->work_color;
9e8cd2f5 3471 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
75ccf595
TH
3472
3473 spin_unlock_irq(&workqueue_lock);
3474 mutex_unlock(&wq->flush_mutex);
d2c1d404
TH
3475}
3476
9e8cd2f5
TH
3477/**
3478 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3479 * @wq: the target workqueue
3480 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3481 *
3482 * Apply @attrs to an unbound workqueue @wq. If @attrs doesn't match the
3483 * current attributes, a new pwq is created and made the first pwq which
3484 * will serve all new work items. Older pwqs are released as in-flight
3485 * work items finish. Note that a work item which repeatedly requeues
3486 * itself back-to-back will stay on its current pwq.
3487 *
3488 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3489 * failure.
3490 */
3491int apply_workqueue_attrs(struct workqueue_struct *wq,
3492 const struct workqueue_attrs *attrs)
3493{
3494 struct pool_workqueue *pwq, *last_pwq;
3495 struct worker_pool *pool;
3496
8719dcea 3497 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3498 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3499 return -EINVAL;
3500
8719dcea
TH
3501 /* creating multiple pwqs breaks ordering guarantee */
3502 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3503 return -EINVAL;
3504
9e8cd2f5
TH
3505 pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
3506 if (!pwq)
3507 return -ENOMEM;
3508
3509 pool = get_unbound_pool(attrs);
3510 if (!pool) {
3511 kmem_cache_free(pwq_cache, pwq);
3512 return -ENOMEM;
3513 }
3514
3515 init_and_link_pwq(pwq, wq, pool, &last_pwq);
3516 if (last_pwq) {
3517 spin_lock_irq(&last_pwq->pool->lock);
3518 put_pwq(last_pwq);
3519 spin_unlock_irq(&last_pwq->pool->lock);
3520 }
3521
3522 return 0;
3523}
3524
30cdf249 3525static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3526{
49e3cf44 3527 bool highpri = wq->flags & WQ_HIGHPRI;
30cdf249
TH
3528 int cpu;
3529
3530 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3531 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3532 if (!wq->cpu_pwqs)
30cdf249
TH
3533 return -ENOMEM;
3534
3535 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3536 struct pool_workqueue *pwq =
3537 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3538 struct worker_pool *cpu_pools =
f02ae73a 3539 per_cpu(cpu_worker_pools, cpu);
f3421797 3540
9e8cd2f5 3541 init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
30cdf249 3542 }
9e8cd2f5 3543 return 0;
30cdf249 3544 } else {
9e8cd2f5 3545 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3546 }
0f900049
TH
3547}
3548
f3421797
TH
3549static int wq_clamp_max_active(int max_active, unsigned int flags,
3550 const char *name)
b71ab8c2 3551{
f3421797
TH
3552 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3553
3554 if (max_active < 1 || max_active > lim)
044c782c
VI
3555 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3556 max_active, name, 1, lim);
b71ab8c2 3557
f3421797 3558 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3559}
3560
b196be89 3561struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3562 unsigned int flags,
3563 int max_active,
3564 struct lock_class_key *key,
b196be89 3565 const char *lock_name, ...)
1da177e4 3566{
b196be89 3567 va_list args, args1;
1da177e4 3568 struct workqueue_struct *wq;
49e3cf44 3569 struct pool_workqueue *pwq;
b196be89
TH
3570 size_t namelen;
3571
3572 /* determine namelen, allocate wq and format name */
3573 va_start(args, lock_name);
3574 va_copy(args1, args);
3575 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3576
3577 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3578 if (!wq)
d2c1d404 3579 return NULL;
b196be89
TH
3580
3581 vsnprintf(wq->name, namelen, fmt, args1);
3582 va_end(args);
3583 va_end(args1);
1da177e4 3584
d320c038 3585 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3586 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3587
b196be89 3588 /* init wq */
97e37d7b 3589 wq->flags = flags;
a0a1a5fd 3590 wq->saved_max_active = max_active;
73f53c4a 3591 mutex_init(&wq->flush_mutex);
112202d9 3592 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3593 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3594 INIT_LIST_HEAD(&wq->flusher_queue);
3595 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3596 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3597
eb13ba87 3598 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3599 INIT_LIST_HEAD(&wq->list);
3af24433 3600
30cdf249 3601 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 3602 goto err_free_wq;
1537663f 3603
493008a8
TH
3604 /*
3605 * Workqueues which may be used during memory reclaim should
3606 * have a rescuer to guarantee forward progress.
3607 */
3608 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
3609 struct worker *rescuer;
3610
d2c1d404 3611 rescuer = alloc_worker();
e22bee78 3612 if (!rescuer)
d2c1d404 3613 goto err_destroy;
e22bee78 3614
111c225a
TH
3615 rescuer->rescue_wq = wq;
3616 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3617 wq->name);
d2c1d404
TH
3618 if (IS_ERR(rescuer->task)) {
3619 kfree(rescuer);
3620 goto err_destroy;
3621 }
e22bee78 3622
d2c1d404 3623 wq->rescuer = rescuer;
e22bee78
TH
3624 rescuer->task->flags |= PF_THREAD_BOUND;
3625 wake_up_process(rescuer->task);
3af24433
ON
3626 }
3627
a0a1a5fd
TH
3628 /*
3629 * workqueue_lock protects global freeze state and workqueues
3630 * list. Grab it, set max_active accordingly and add the new
3631 * workqueue to workqueues list.
3632 */
e98d5b16 3633 spin_lock_irq(&workqueue_lock);
a0a1a5fd 3634
58a69cb4 3635 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
49e3cf44
TH
3636 for_each_pwq(pwq, wq)
3637 pwq->max_active = 0;
a0a1a5fd 3638
1537663f 3639 list_add(&wq->list, &workqueues);
a0a1a5fd 3640
e98d5b16 3641 spin_unlock_irq(&workqueue_lock);
1537663f 3642
3af24433 3643 return wq;
d2c1d404
TH
3644
3645err_free_wq:
3646 kfree(wq);
3647 return NULL;
3648err_destroy:
3649 destroy_workqueue(wq);
4690c4ab 3650 return NULL;
3af24433 3651}
d320c038 3652EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3653
3af24433
ON
3654/**
3655 * destroy_workqueue - safely terminate a workqueue
3656 * @wq: target workqueue
3657 *
3658 * Safely destroy a workqueue. All work currently pending will be done first.
3659 */
3660void destroy_workqueue(struct workqueue_struct *wq)
3661{
49e3cf44 3662 struct pool_workqueue *pwq;
3af24433 3663
9c5a2ba7
TH
3664 /* drain it before proceeding with destruction */
3665 drain_workqueue(wq);
c8efcc25 3666
76af4d93
TH
3667 spin_lock_irq(&workqueue_lock);
3668
6183c009 3669 /* sanity checks */
49e3cf44 3670 for_each_pwq(pwq, wq) {
6183c009
TH
3671 int i;
3672
76af4d93
TH
3673 for (i = 0; i < WORK_NR_COLORS; i++) {
3674 if (WARN_ON(pwq->nr_in_flight[i])) {
3675 spin_unlock_irq(&workqueue_lock);
6183c009 3676 return;
76af4d93
TH
3677 }
3678 }
3679
8864b4e5
TH
3680 if (WARN_ON(pwq->refcnt > 1) ||
3681 WARN_ON(pwq->nr_active) ||
76af4d93
TH
3682 WARN_ON(!list_empty(&pwq->delayed_works))) {
3683 spin_unlock_irq(&workqueue_lock);
6183c009 3684 return;
76af4d93 3685 }
6183c009
TH
3686 }
3687
a0a1a5fd
TH
3688 /*
3689 * wq list is used to freeze wq, remove from list after
3690 * flushing is complete in case freeze races us.
3691 */
d2c1d404 3692 list_del_init(&wq->list);
76af4d93 3693
e98d5b16 3694 spin_unlock_irq(&workqueue_lock);
3af24433 3695
493008a8 3696 if (wq->rescuer) {
e22bee78 3697 kthread_stop(wq->rescuer->task);
8d9df9f0 3698 kfree(wq->rescuer);
493008a8 3699 wq->rescuer = NULL;
e22bee78
TH
3700 }
3701
8864b4e5
TH
3702 if (!(wq->flags & WQ_UNBOUND)) {
3703 /*
3704 * The base ref is never dropped on per-cpu pwqs. Directly
3705 * free the pwqs and wq.
3706 */
3707 free_percpu(wq->cpu_pwqs);
3708 kfree(wq);
3709 } else {
3710 /*
3711 * We're the sole accessor of @wq at this point. Directly
3712 * access the first pwq and put the base ref. As both pwqs
3713 * and pools are sched-RCU protected, the lock operations
3714 * are safe. @wq will be freed when the last pwq is
3715 * released.
3716 */
29c91e99
TH
3717 pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
3718 pwqs_node);
8864b4e5
TH
3719 spin_lock_irq(&pwq->pool->lock);
3720 put_pwq(pwq);
3721 spin_unlock_irq(&pwq->pool->lock);
29c91e99 3722 }
3af24433
ON
3723}
3724EXPORT_SYMBOL_GPL(destroy_workqueue);
3725
9f4bd4cd 3726/**
112202d9
TH
3727 * pwq_set_max_active - adjust max_active of a pwq
3728 * @pwq: target pool_workqueue
9f4bd4cd
LJ
3729 * @max_active: new max_active value.
3730 *
112202d9 3731 * Set @pwq->max_active to @max_active and activate delayed works if
9f4bd4cd
LJ
3732 * increased.
3733 *
3734 * CONTEXT:
d565ed63 3735 * spin_lock_irq(pool->lock).
9f4bd4cd 3736 */
112202d9 3737static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
9f4bd4cd 3738{
112202d9 3739 pwq->max_active = max_active;
9f4bd4cd 3740
112202d9
TH
3741 while (!list_empty(&pwq->delayed_works) &&
3742 pwq->nr_active < pwq->max_active)
3743 pwq_activate_first_delayed(pwq);
9f4bd4cd
LJ
3744}
3745
dcd989cb
TH
3746/**
3747 * workqueue_set_max_active - adjust max_active of a workqueue
3748 * @wq: target workqueue
3749 * @max_active: new max_active value.
3750 *
3751 * Set max_active of @wq to @max_active.
3752 *
3753 * CONTEXT:
3754 * Don't call from IRQ context.
3755 */
3756void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3757{
49e3cf44 3758 struct pool_workqueue *pwq;
dcd989cb 3759
8719dcea
TH
3760 /* disallow meddling with max_active for ordered workqueues */
3761 if (WARN_ON(wq->flags & __WQ_ORDERED))
3762 return;
3763
f3421797 3764 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 3765
e98d5b16 3766 spin_lock_irq(&workqueue_lock);
dcd989cb
TH
3767
3768 wq->saved_max_active = max_active;
3769
49e3cf44 3770 for_each_pwq(pwq, wq) {
112202d9 3771 struct worker_pool *pool = pwq->pool;
dcd989cb 3772
e98d5b16 3773 spin_lock(&pool->lock);
dcd989cb 3774
58a69cb4 3775 if (!(wq->flags & WQ_FREEZABLE) ||
35b6bb63 3776 !(pool->flags & POOL_FREEZING))
112202d9 3777 pwq_set_max_active(pwq, max_active);
9bfb1839 3778
e98d5b16 3779 spin_unlock(&pool->lock);
65a64464 3780 }
93981800 3781
e98d5b16 3782 spin_unlock_irq(&workqueue_lock);
15316ba8 3783}
dcd989cb 3784EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3785
eef6a7d5 3786/**
dcd989cb
TH
3787 * workqueue_congested - test whether a workqueue is congested
3788 * @cpu: CPU in question
3789 * @wq: target workqueue
eef6a7d5 3790 *
dcd989cb
TH
3791 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3792 * no synchronization around this function and the test result is
3793 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3794 *
dcd989cb
TH
3795 * RETURNS:
3796 * %true if congested, %false otherwise.
eef6a7d5 3797 */
d84ff051 3798bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 3799{
7fb98ea7 3800 struct pool_workqueue *pwq;
76af4d93
TH
3801 bool ret;
3802
3803 preempt_disable();
7fb98ea7
TH
3804
3805 if (!(wq->flags & WQ_UNBOUND))
3806 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
3807 else
3808 pwq = first_pwq(wq);
dcd989cb 3809
76af4d93
TH
3810 ret = !list_empty(&pwq->delayed_works);
3811 preempt_enable();
3812
3813 return ret;
1da177e4 3814}
dcd989cb 3815EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3816
dcd989cb
TH
3817/**
3818 * work_busy - test whether a work is currently pending or running
3819 * @work: the work to be tested
3820 *
3821 * Test whether @work is currently pending or running. There is no
3822 * synchronization around this function and the test result is
3823 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
3824 *
3825 * RETURNS:
3826 * OR'd bitmask of WORK_BUSY_* bits.
3827 */
3828unsigned int work_busy(struct work_struct *work)
1da177e4 3829{
fa1b54e6 3830 struct worker_pool *pool;
dcd989cb
TH
3831 unsigned long flags;
3832 unsigned int ret = 0;
1da177e4 3833
dcd989cb
TH
3834 if (work_pending(work))
3835 ret |= WORK_BUSY_PENDING;
1da177e4 3836
fa1b54e6
TH
3837 local_irq_save(flags);
3838 pool = get_work_pool(work);
038366c5 3839 if (pool) {
fa1b54e6 3840 spin_lock(&pool->lock);
038366c5
LJ
3841 if (find_worker_executing_work(pool, work))
3842 ret |= WORK_BUSY_RUNNING;
fa1b54e6 3843 spin_unlock(&pool->lock);
038366c5 3844 }
fa1b54e6 3845 local_irq_restore(flags);
1da177e4 3846
dcd989cb 3847 return ret;
1da177e4 3848}
dcd989cb 3849EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3850
db7bccf4
TH
3851/*
3852 * CPU hotplug.
3853 *
e22bee78 3854 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 3855 * are a lot of assumptions on strong associations among work, pwq and
706026c2 3856 * pool which make migrating pending and scheduled works very
e22bee78 3857 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 3858 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
3859 * blocked draining impractical.
3860 *
24647570 3861 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
3862 * running as an unbound one and allowing it to be reattached later if the
3863 * cpu comes back online.
db7bccf4 3864 */
1da177e4 3865
706026c2 3866static void wq_unbind_fn(struct work_struct *work)
3af24433 3867{
38db41d9 3868 int cpu = smp_processor_id();
4ce62e9e 3869 struct worker_pool *pool;
db7bccf4 3870 struct worker *worker;
db7bccf4 3871 int i;
3af24433 3872
f02ae73a 3873 for_each_cpu_worker_pool(pool, cpu) {
6183c009 3874 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 3875
94cf58bb
TH
3876 mutex_lock(&pool->assoc_mutex);
3877 spin_lock_irq(&pool->lock);
3af24433 3878
94cf58bb
TH
3879 /*
3880 * We've claimed all manager positions. Make all workers
3881 * unbound and set DISASSOCIATED. Before this, all workers
3882 * except for the ones which are still executing works from
3883 * before the last CPU down must be on the cpu. After
3884 * this, they may become diasporas.
3885 */
4ce62e9e 3886 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3887 worker->flags |= WORKER_UNBOUND;
3af24433 3888
b67bfe0d 3889 for_each_busy_worker(worker, i, pool)
c9e7cf27 3890 worker->flags |= WORKER_UNBOUND;
06ba38a9 3891
24647570 3892 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 3893
94cf58bb
TH
3894 spin_unlock_irq(&pool->lock);
3895 mutex_unlock(&pool->assoc_mutex);
3896 }
628c78e7 3897
e22bee78 3898 /*
403c821d 3899 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3900 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3901 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3902 */
e22bee78 3903 schedule();
06ba38a9 3904
e22bee78 3905 /*
628c78e7
TH
3906 * Sched callbacks are disabled now. Zap nr_running. After this,
3907 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
3908 * are always true as long as the worklist is not empty. Pools on
3909 * @cpu now behave as unbound (in terms of concurrency management)
3910 * pools which are served by workers tied to the CPU.
628c78e7
TH
3911 *
3912 * On return from this function, the current worker would trigger
3913 * unbound chain execution of pending work items if other workers
3914 * didn't already.
e22bee78 3915 */
f02ae73a 3916 for_each_cpu_worker_pool(pool, cpu)
e19e397a 3917 atomic_set(&pool->nr_running, 0);
3af24433 3918}
3af24433 3919
8db25e78
TH
3920/*
3921 * Workqueues should be brought up before normal priority CPU notifiers.
3922 * This will be registered high priority CPU notifier.
3923 */
9fdf9b73 3924static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3925 unsigned long action,
3926 void *hcpu)
3af24433 3927{
d84ff051 3928 int cpu = (unsigned long)hcpu;
4ce62e9e 3929 struct worker_pool *pool;
3ce63377 3930
8db25e78 3931 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3932 case CPU_UP_PREPARE:
f02ae73a 3933 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
3934 struct worker *worker;
3935
3936 if (pool->nr_workers)
3937 continue;
3938
3939 worker = create_worker(pool);
3940 if (!worker)
3941 return NOTIFY_BAD;
3942
d565ed63 3943 spin_lock_irq(&pool->lock);
3ce63377 3944 start_worker(worker);
d565ed63 3945 spin_unlock_irq(&pool->lock);
3af24433 3946 }
8db25e78 3947 break;
3af24433 3948
db7bccf4
TH
3949 case CPU_DOWN_FAILED:
3950 case CPU_ONLINE:
f02ae73a 3951 for_each_cpu_worker_pool(pool, cpu) {
94cf58bb
TH
3952 mutex_lock(&pool->assoc_mutex);
3953 spin_lock_irq(&pool->lock);
3954
24647570 3955 pool->flags &= ~POOL_DISASSOCIATED;
94cf58bb
TH
3956 rebind_workers(pool);
3957
3958 spin_unlock_irq(&pool->lock);
3959 mutex_unlock(&pool->assoc_mutex);
3960 }
db7bccf4 3961 break;
00dfcaf7 3962 }
65758202
TH
3963 return NOTIFY_OK;
3964}
3965
3966/*
3967 * Workqueues should be brought down after normal priority CPU notifiers.
3968 * This will be registered as low priority CPU notifier.
3969 */
9fdf9b73 3970static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3971 unsigned long action,
3972 void *hcpu)
3973{
d84ff051 3974 int cpu = (unsigned long)hcpu;
8db25e78
TH
3975 struct work_struct unbind_work;
3976
65758202
TH
3977 switch (action & ~CPU_TASKS_FROZEN) {
3978 case CPU_DOWN_PREPARE:
8db25e78 3979 /* unbinding should happen on the local CPU */
706026c2 3980 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 3981 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3982 flush_work(&unbind_work);
3983 break;
65758202
TH
3984 }
3985 return NOTIFY_OK;
3986}
3987
2d3854a3 3988#ifdef CONFIG_SMP
8ccad40d 3989
2d3854a3 3990struct work_for_cpu {
ed48ece2 3991 struct work_struct work;
2d3854a3
RR
3992 long (*fn)(void *);
3993 void *arg;
3994 long ret;
3995};
3996
ed48ece2 3997static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3998{
ed48ece2
TH
3999 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4000
2d3854a3
RR
4001 wfc->ret = wfc->fn(wfc->arg);
4002}
4003
4004/**
4005 * work_on_cpu - run a function in user context on a particular cpu
4006 * @cpu: the cpu to run on
4007 * @fn: the function to run
4008 * @arg: the function arg
4009 *
31ad9081
RR
4010 * This will return the value @fn returns.
4011 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4012 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3 4013 */
d84ff051 4014long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4015{
ed48ece2 4016 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4017
ed48ece2
TH
4018 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4019 schedule_work_on(cpu, &wfc.work);
4020 flush_work(&wfc.work);
2d3854a3
RR
4021 return wfc.ret;
4022}
4023EXPORT_SYMBOL_GPL(work_on_cpu);
4024#endif /* CONFIG_SMP */
4025
a0a1a5fd
TH
4026#ifdef CONFIG_FREEZER
4027
4028/**
4029 * freeze_workqueues_begin - begin freezing workqueues
4030 *
58a69cb4
TH
4031 * Start freezing workqueues. After this function returns, all freezable
4032 * workqueues will queue new works to their frozen_works list instead of
706026c2 4033 * pool->worklist.
a0a1a5fd
TH
4034 *
4035 * CONTEXT:
d565ed63 4036 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
4037 */
4038void freeze_workqueues_begin(void)
4039{
17116969 4040 struct worker_pool *pool;
24b8a847
TH
4041 struct workqueue_struct *wq;
4042 struct pool_workqueue *pwq;
17116969 4043 int id;
a0a1a5fd 4044
e98d5b16 4045 spin_lock_irq(&workqueue_lock);
a0a1a5fd 4046
6183c009 4047 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4048 workqueue_freezing = true;
4049
24b8a847 4050 /* set FREEZING */
17116969 4051 for_each_pool(pool, id) {
17116969 4052 spin_lock(&pool->lock);
17116969
TH
4053 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4054 pool->flags |= POOL_FREEZING;
24b8a847
TH
4055 spin_unlock(&pool->lock);
4056 }
a0a1a5fd 4057
24b8a847
TH
4058 /* suppress further executions by setting max_active to zero */
4059 list_for_each_entry(wq, &workqueues, list) {
4060 if (!(wq->flags & WQ_FREEZABLE))
4061 continue;
8b03ae3c 4062
24b8a847
TH
4063 for_each_pwq(pwq, wq) {
4064 spin_lock(&pwq->pool->lock);
4065 pwq->max_active = 0;
4066 spin_unlock(&pwq->pool->lock);
a1056305 4067 }
a0a1a5fd
TH
4068 }
4069
e98d5b16 4070 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
4071}
4072
4073/**
58a69cb4 4074 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4075 *
4076 * Check whether freezing is complete. This function must be called
4077 * between freeze_workqueues_begin() and thaw_workqueues().
4078 *
4079 * CONTEXT:
4080 * Grabs and releases workqueue_lock.
4081 *
4082 * RETURNS:
58a69cb4
TH
4083 * %true if some freezable workqueues are still busy. %false if freezing
4084 * is complete.
a0a1a5fd
TH
4085 */
4086bool freeze_workqueues_busy(void)
4087{
a0a1a5fd 4088 bool busy = false;
24b8a847
TH
4089 struct workqueue_struct *wq;
4090 struct pool_workqueue *pwq;
a0a1a5fd 4091
e98d5b16 4092 spin_lock_irq(&workqueue_lock);
a0a1a5fd 4093
6183c009 4094 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4095
24b8a847
TH
4096 list_for_each_entry(wq, &workqueues, list) {
4097 if (!(wq->flags & WQ_FREEZABLE))
4098 continue;
a0a1a5fd
TH
4099 /*
4100 * nr_active is monotonically decreasing. It's safe
4101 * to peek without lock.
4102 */
24b8a847 4103 for_each_pwq(pwq, wq) {
6183c009 4104 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4105 if (pwq->nr_active) {
a0a1a5fd
TH
4106 busy = true;
4107 goto out_unlock;
4108 }
4109 }
4110 }
4111out_unlock:
e98d5b16 4112 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
4113 return busy;
4114}
4115
4116/**
4117 * thaw_workqueues - thaw workqueues
4118 *
4119 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4120 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4121 *
4122 * CONTEXT:
d565ed63 4123 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
4124 */
4125void thaw_workqueues(void)
4126{
24b8a847
TH
4127 struct workqueue_struct *wq;
4128 struct pool_workqueue *pwq;
4129 struct worker_pool *pool;
4130 int id;
a0a1a5fd 4131
e98d5b16 4132 spin_lock_irq(&workqueue_lock);
a0a1a5fd
TH
4133
4134 if (!workqueue_freezing)
4135 goto out_unlock;
4136
24b8a847
TH
4137 /* clear FREEZING */
4138 for_each_pool(pool, id) {
4139 spin_lock(&pool->lock);
4140 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4141 pool->flags &= ~POOL_FREEZING;
4142 spin_unlock(&pool->lock);
4143 }
8b03ae3c 4144
24b8a847
TH
4145 /* restore max_active and repopulate worklist */
4146 list_for_each_entry(wq, &workqueues, list) {
4147 if (!(wq->flags & WQ_FREEZABLE))
4148 continue;
a1056305 4149
24b8a847
TH
4150 for_each_pwq(pwq, wq) {
4151 spin_lock(&pwq->pool->lock);
4152 pwq_set_max_active(pwq, wq->saved_max_active);
4153 spin_unlock(&pwq->pool->lock);
d565ed63 4154 }
a0a1a5fd
TH
4155 }
4156
24b8a847
TH
4157 /* kick workers */
4158 for_each_pool(pool, id) {
4159 spin_lock(&pool->lock);
4160 wake_up_worker(pool);
4161 spin_unlock(&pool->lock);
4162 }
4163
a0a1a5fd
TH
4164 workqueue_freezing = false;
4165out_unlock:
e98d5b16 4166 spin_unlock_irq(&workqueue_lock);
a0a1a5fd
TH
4167}
4168#endif /* CONFIG_FREEZER */
4169
6ee0578b 4170static int __init init_workqueues(void)
1da177e4 4171{
7a4e344c
TH
4172 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4173 int i, cpu;
c34056a3 4174
7c3eed5c
TH
4175 /* make sure we have enough bits for OFFQ pool ID */
4176 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 4177 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 4178
e904e6c2
TH
4179 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4180
4181 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4182
65758202 4183 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 4184 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 4185
706026c2 4186 /* initialize CPU pools */
29c91e99 4187 for_each_possible_cpu(cpu) {
4ce62e9e 4188 struct worker_pool *pool;
8b03ae3c 4189
7a4e344c 4190 i = 0;
f02ae73a 4191 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 4192 BUG_ON(init_worker_pool(pool));
ec22ca5e 4193 pool->cpu = cpu;
29c91e99 4194 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c
TH
4195 pool->attrs->nice = std_nice[i++];
4196
9daf9e67
TH
4197 /* alloc pool ID */
4198 BUG_ON(worker_pool_assign_id(pool));
4ce62e9e 4199 }
8b03ae3c
TH
4200 }
4201
e22bee78 4202 /* create the initial worker */
29c91e99 4203 for_each_online_cpu(cpu) {
4ce62e9e 4204 struct worker_pool *pool;
e22bee78 4205
f02ae73a 4206 for_each_cpu_worker_pool(pool, cpu) {
4ce62e9e
TH
4207 struct worker *worker;
4208
29c91e99 4209 pool->flags &= ~POOL_DISASSOCIATED;
24647570 4210
bc2ae0f5 4211 worker = create_worker(pool);
4ce62e9e 4212 BUG_ON(!worker);
d565ed63 4213 spin_lock_irq(&pool->lock);
4ce62e9e 4214 start_worker(worker);
d565ed63 4215 spin_unlock_irq(&pool->lock);
4ce62e9e 4216 }
e22bee78
TH
4217 }
4218
29c91e99
TH
4219 /* create default unbound wq attrs */
4220 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4221 struct workqueue_attrs *attrs;
4222
4223 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4224
4225 attrs->nice = std_nice[i];
4226 cpumask_setall(attrs->cpumask);
4227
4228 unbound_std_wq_attrs[i] = attrs;
4229 }
4230
d320c038 4231 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 4232 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 4233 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
4234 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4235 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
4236 system_freezable_wq = alloc_workqueue("events_freezable",
4237 WQ_FREEZABLE, 0);
1aabe902 4238 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 4239 !system_unbound_wq || !system_freezable_wq);
6ee0578b 4240 return 0;
1da177e4 4241}
6ee0578b 4242early_initcall(init_workqueues);