workqueue: use enum value to set array size of pools in gcwq
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
e22bee78
TH
44
45#include "workqueue_sched.h"
1da177e4 46
c8e55f36 47enum {
bc2ae0f5
TH
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
61 * managership of all pools on the gcwq to avoid changing binding
62 * state while create_worker() is in progress.
63 */
11ebea50
TH
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
e22bee78 75 WORKER_REBIND = 1 << 5, /* mom is home, come back */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 78
403c821d
TH
79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
80 WORKER_CPU_INTENSIVE,
db7bccf4 81
3270476a 82 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
4ce62e9e 83
c8e55f36
TH
84 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
85 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
86 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4 87
e22bee78
TH
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
90
3233cdbd
TH
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
e22bee78
TH
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
96
97 /*
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
100 */
101 RESCUER_NICE_LEVEL = -20,
3270476a 102 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 103};
1da177e4
LT
104
105/*
4690c4ab
TH
106 * Structure fields follow one of the following exclusion rules.
107 *
e41e704b
TH
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
4690c4ab 110 *
e22bee78
TH
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
113 *
8b03ae3c 114 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 115 *
e22bee78
TH
116 * X: During normal operation, modification requires gcwq->lock and
117 * should be done only from local cpu. Either disabling preemption
118 * on local cpu or grabbing gcwq->lock is enough for read access.
f3421797 119 * If GCWQ_DISASSOCIATED is set, it's identical to L.
e22bee78 120 *
73f53c4a
TH
121 * F: wq->flush_mutex protected.
122 *
4690c4ab 123 * W: workqueue_lock protected.
1da177e4 124 */
1da177e4 125
8b03ae3c 126struct global_cwq;
bd7bdd43 127struct worker_pool;
25511a47 128struct idle_rebind;
1da177e4 129
e22bee78
TH
130/*
131 * The poor guys doing the actual heavy lifting. All on-duty workers
132 * are either serving the manager role, on idle list or on busy hash.
133 */
c34056a3 134struct worker {
c8e55f36
TH
135 /* on idle list while idle, on busy hash table while busy */
136 union {
137 struct list_head entry; /* L: while idle */
138 struct hlist_node hentry; /* L: while busy */
139 };
1da177e4 140
c34056a3 141 struct work_struct *current_work; /* L: work being processed */
8cca0eea 142 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 143 struct list_head scheduled; /* L: scheduled works */
c34056a3 144 struct task_struct *task; /* I: worker task */
bd7bdd43 145 struct worker_pool *pool; /* I: the associated pool */
e22bee78
TH
146 /* 64 bytes boundary on 64bit, 32 on 32bit */
147 unsigned long last_active; /* L: last active timestamp */
148 unsigned int flags; /* X: flags */
c34056a3 149 int id; /* I: worker id */
25511a47
TH
150
151 /* for rebinding worker to CPU */
152 struct idle_rebind *idle_rebind; /* L: for idle worker */
153 struct work_struct rebind_work; /* L: for busy worker */
c34056a3
TH
154};
155
bd7bdd43
TH
156struct worker_pool {
157 struct global_cwq *gcwq; /* I: the owning gcwq */
11ebea50 158 unsigned int flags; /* X: flags */
bd7bdd43
TH
159
160 struct list_head worklist; /* L: list of pending works */
161 int nr_workers; /* L: total number of workers */
162 int nr_idle; /* L: currently idle ones */
163
164 struct list_head idle_list; /* X: list of idle workers */
165 struct timer_list idle_timer; /* L: worker idle timeout */
166 struct timer_list mayday_timer; /* L: SOS timer for workers */
167
60373152 168 struct mutex manager_mutex; /* mutex manager should hold */
bd7bdd43 169 struct ida worker_ida; /* L: for worker IDs */
bd7bdd43
TH
170};
171
8b03ae3c 172/*
e22bee78
TH
173 * Global per-cpu workqueue. There's one and only one for each cpu
174 * and all works are queued and processed here regardless of their
175 * target workqueues.
8b03ae3c
TH
176 */
177struct global_cwq {
178 spinlock_t lock; /* the gcwq lock */
179 unsigned int cpu; /* I: the associated cpu */
db7bccf4 180 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36 181
bd7bdd43 182 /* workers are chained either in busy_hash or pool idle_list */
c8e55f36
TH
183 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
184 /* L: hash of busy workers */
185
330dad5b
JK
186 struct worker_pool pools[NR_WORKER_POOLS];
187 /* normal and highpri pools */
db7bccf4 188
25511a47 189 wait_queue_head_t rebind_hold; /* rebind hold wait */
8b03ae3c
TH
190} ____cacheline_aligned_in_smp;
191
1da177e4 192/*
502ca9d8 193 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
194 * work_struct->data are used for flags and thus cwqs need to be
195 * aligned at two's power of the number of flag bits.
1da177e4
LT
196 */
197struct cpu_workqueue_struct {
bd7bdd43 198 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 199 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
200 int work_color; /* L: current color */
201 int flush_color; /* L: flushing color */
202 int nr_in_flight[WORK_NR_COLORS];
203 /* L: nr of in_flight works */
1e19ffc6 204 int nr_active; /* L: nr of active works */
a0a1a5fd 205 int max_active; /* L: max active works */
1e19ffc6 206 struct list_head delayed_works; /* L: delayed works */
0f900049 207};
1da177e4 208
73f53c4a
TH
209/*
210 * Structure used to wait for workqueue flush.
211 */
212struct wq_flusher {
213 struct list_head list; /* F: list of flushers */
214 int flush_color; /* F: flush color waiting for */
215 struct completion done; /* flush completion */
216};
217
f2e005aa
TH
218/*
219 * All cpumasks are assumed to be always set on UP and thus can't be
220 * used to determine whether there's something to be done.
221 */
222#ifdef CONFIG_SMP
223typedef cpumask_var_t mayday_mask_t;
224#define mayday_test_and_set_cpu(cpu, mask) \
225 cpumask_test_and_set_cpu((cpu), (mask))
226#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
227#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 228#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
229#define free_mayday_mask(mask) free_cpumask_var((mask))
230#else
231typedef unsigned long mayday_mask_t;
232#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
233#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
234#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
235#define alloc_mayday_mask(maskp, gfp) true
236#define free_mayday_mask(mask) do { } while (0)
237#endif
1da177e4
LT
238
239/*
240 * The externally visible workqueue abstraction is an array of
241 * per-CPU workqueues:
242 */
243struct workqueue_struct {
9c5a2ba7 244 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
245 union {
246 struct cpu_workqueue_struct __percpu *pcpu;
247 struct cpu_workqueue_struct *single;
248 unsigned long v;
249 } cpu_wq; /* I: cwq's */
4690c4ab 250 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
251
252 struct mutex flush_mutex; /* protects wq flushing */
253 int work_color; /* F: current work color */
254 int flush_color; /* F: current flush color */
255 atomic_t nr_cwqs_to_flush; /* flush in progress */
256 struct wq_flusher *first_flusher; /* F: first flusher */
257 struct list_head flusher_queue; /* F: flush waiters */
258 struct list_head flusher_overflow; /* F: flush overflow list */
259
f2e005aa 260 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
261 struct worker *rescuer; /* I: rescue worker */
262
9c5a2ba7 263 int nr_drainers; /* W: drain in progress */
dcd989cb 264 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 265#ifdef CONFIG_LOCKDEP
4690c4ab 266 struct lockdep_map lockdep_map;
4e6045f1 267#endif
b196be89 268 char name[]; /* I: workqueue name */
1da177e4
LT
269};
270
d320c038
TH
271struct workqueue_struct *system_wq __read_mostly;
272struct workqueue_struct *system_long_wq __read_mostly;
273struct workqueue_struct *system_nrt_wq __read_mostly;
f3421797 274struct workqueue_struct *system_unbound_wq __read_mostly;
24d51add 275struct workqueue_struct *system_freezable_wq __read_mostly;
62d3c543 276struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
d320c038
TH
277EXPORT_SYMBOL_GPL(system_wq);
278EXPORT_SYMBOL_GPL(system_long_wq);
279EXPORT_SYMBOL_GPL(system_nrt_wq);
f3421797 280EXPORT_SYMBOL_GPL(system_unbound_wq);
24d51add 281EXPORT_SYMBOL_GPL(system_freezable_wq);
62d3c543 282EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
d320c038 283
97bd2347
TH
284#define CREATE_TRACE_POINTS
285#include <trace/events/workqueue.h>
286
4ce62e9e 287#define for_each_worker_pool(pool, gcwq) \
3270476a
TH
288 for ((pool) = &(gcwq)->pools[0]; \
289 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
4ce62e9e 290
db7bccf4
TH
291#define for_each_busy_worker(worker, i, pos, gcwq) \
292 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
293 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
294
f3421797
TH
295static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
296 unsigned int sw)
297{
298 if (cpu < nr_cpu_ids) {
299 if (sw & 1) {
300 cpu = cpumask_next(cpu, mask);
301 if (cpu < nr_cpu_ids)
302 return cpu;
303 }
304 if (sw & 2)
305 return WORK_CPU_UNBOUND;
306 }
307 return WORK_CPU_NONE;
308}
309
310static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
311 struct workqueue_struct *wq)
312{
313 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
314}
315
09884951
TH
316/*
317 * CPU iterators
318 *
319 * An extra gcwq is defined for an invalid cpu number
320 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
321 * specific CPU. The following iterators are similar to
322 * for_each_*_cpu() iterators but also considers the unbound gcwq.
323 *
324 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
325 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
326 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
327 * WORK_CPU_UNBOUND for unbound workqueues
328 */
f3421797
TH
329#define for_each_gcwq_cpu(cpu) \
330 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
331 (cpu) < WORK_CPU_NONE; \
332 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
333
334#define for_each_online_gcwq_cpu(cpu) \
335 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
336 (cpu) < WORK_CPU_NONE; \
337 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
338
339#define for_each_cwq_cpu(cpu, wq) \
340 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
341 (cpu) < WORK_CPU_NONE; \
342 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
343
dc186ad7
TG
344#ifdef CONFIG_DEBUG_OBJECTS_WORK
345
346static struct debug_obj_descr work_debug_descr;
347
99777288
SG
348static void *work_debug_hint(void *addr)
349{
350 return ((struct work_struct *) addr)->func;
351}
352
dc186ad7
TG
353/*
354 * fixup_init is called when:
355 * - an active object is initialized
356 */
357static int work_fixup_init(void *addr, enum debug_obj_state state)
358{
359 struct work_struct *work = addr;
360
361 switch (state) {
362 case ODEBUG_STATE_ACTIVE:
363 cancel_work_sync(work);
364 debug_object_init(work, &work_debug_descr);
365 return 1;
366 default:
367 return 0;
368 }
369}
370
371/*
372 * fixup_activate is called when:
373 * - an active object is activated
374 * - an unknown object is activated (might be a statically initialized object)
375 */
376static int work_fixup_activate(void *addr, enum debug_obj_state state)
377{
378 struct work_struct *work = addr;
379
380 switch (state) {
381
382 case ODEBUG_STATE_NOTAVAILABLE:
383 /*
384 * This is not really a fixup. The work struct was
385 * statically initialized. We just make sure that it
386 * is tracked in the object tracker.
387 */
22df02bb 388 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
389 debug_object_init(work, &work_debug_descr);
390 debug_object_activate(work, &work_debug_descr);
391 return 0;
392 }
393 WARN_ON_ONCE(1);
394 return 0;
395
396 case ODEBUG_STATE_ACTIVE:
397 WARN_ON(1);
398
399 default:
400 return 0;
401 }
402}
403
404/*
405 * fixup_free is called when:
406 * - an active object is freed
407 */
408static int work_fixup_free(void *addr, enum debug_obj_state state)
409{
410 struct work_struct *work = addr;
411
412 switch (state) {
413 case ODEBUG_STATE_ACTIVE:
414 cancel_work_sync(work);
415 debug_object_free(work, &work_debug_descr);
416 return 1;
417 default:
418 return 0;
419 }
420}
421
422static struct debug_obj_descr work_debug_descr = {
423 .name = "work_struct",
99777288 424 .debug_hint = work_debug_hint,
dc186ad7
TG
425 .fixup_init = work_fixup_init,
426 .fixup_activate = work_fixup_activate,
427 .fixup_free = work_fixup_free,
428};
429
430static inline void debug_work_activate(struct work_struct *work)
431{
432 debug_object_activate(work, &work_debug_descr);
433}
434
435static inline void debug_work_deactivate(struct work_struct *work)
436{
437 debug_object_deactivate(work, &work_debug_descr);
438}
439
440void __init_work(struct work_struct *work, int onstack)
441{
442 if (onstack)
443 debug_object_init_on_stack(work, &work_debug_descr);
444 else
445 debug_object_init(work, &work_debug_descr);
446}
447EXPORT_SYMBOL_GPL(__init_work);
448
449void destroy_work_on_stack(struct work_struct *work)
450{
451 debug_object_free(work, &work_debug_descr);
452}
453EXPORT_SYMBOL_GPL(destroy_work_on_stack);
454
455#else
456static inline void debug_work_activate(struct work_struct *work) { }
457static inline void debug_work_deactivate(struct work_struct *work) { }
458#endif
459
95402b38
GS
460/* Serializes the accesses to the list of workqueues. */
461static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 462static LIST_HEAD(workqueues);
a0a1a5fd 463static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 464
e22bee78
TH
465/*
466 * The almighty global cpu workqueues. nr_running is the only field
467 * which is expected to be used frequently by other cpus via
468 * try_to_wake_up(). Put it in a separate cacheline.
469 */
8b03ae3c 470static DEFINE_PER_CPU(struct global_cwq, global_cwq);
4ce62e9e 471static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
8b03ae3c 472
f3421797
TH
473/*
474 * Global cpu workqueue and nr_running counter for unbound gcwq. The
475 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
476 * workers have WORKER_UNBOUND set.
477 */
478static struct global_cwq unbound_global_cwq;
4ce62e9e
TH
479static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
480 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
481};
f3421797 482
c34056a3 483static int worker_thread(void *__worker);
1da177e4 484
3270476a
TH
485static int worker_pool_pri(struct worker_pool *pool)
486{
487 return pool - pool->gcwq->pools;
488}
489
8b03ae3c
TH
490static struct global_cwq *get_gcwq(unsigned int cpu)
491{
f3421797
TH
492 if (cpu != WORK_CPU_UNBOUND)
493 return &per_cpu(global_cwq, cpu);
494 else
495 return &unbound_global_cwq;
8b03ae3c
TH
496}
497
63d95a91 498static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 499{
63d95a91 500 int cpu = pool->gcwq->cpu;
3270476a 501 int idx = worker_pool_pri(pool);
63d95a91 502
f3421797 503 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 504 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 505 else
4ce62e9e 506 return &unbound_pool_nr_running[idx];
e22bee78
TH
507}
508
1537663f
TH
509static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
510 struct workqueue_struct *wq)
b1f4ec17 511{
f3421797 512 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 513 if (likely(cpu < nr_cpu_ids))
f3421797 514 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
515 } else if (likely(cpu == WORK_CPU_UNBOUND))
516 return wq->cpu_wq.single;
517 return NULL;
b1f4ec17
ON
518}
519
73f53c4a
TH
520static unsigned int work_color_to_flags(int color)
521{
522 return color << WORK_STRUCT_COLOR_SHIFT;
523}
524
525static int get_work_color(struct work_struct *work)
526{
527 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
528 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
529}
530
531static int work_next_color(int color)
532{
533 return (color + 1) % WORK_NR_COLORS;
534}
1da177e4 535
14441960 536/*
b5490077
TH
537 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
538 * contain the pointer to the queued cwq. Once execution starts, the flag
539 * is cleared and the high bits contain OFFQ flags and CPU number.
7a22ad75 540 *
bbb68dfa
TH
541 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
542 * and clear_work_data() can be used to set the cwq, cpu or clear
543 * work->data. These functions should only be called while the work is
544 * owned - ie. while the PENDING bit is set.
545 *
546 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
547 * a work. gcwq is available once the work has been queued anywhere after
548 * initialization until it is sync canceled. cwq is available only while
549 * the work item is queued.
550 *
551 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
552 * canceled. While being canceled, a work item may have its PENDING set
553 * but stay off timer and worklist for arbitrarily long and nobody should
554 * try to steal the PENDING bit.
14441960 555 */
7a22ad75
TH
556static inline void set_work_data(struct work_struct *work, unsigned long data,
557 unsigned long flags)
365970a1 558{
4594bf15 559 BUG_ON(!work_pending(work));
7a22ad75
TH
560 atomic_long_set(&work->data, data | flags | work_static(work));
561}
365970a1 562
7a22ad75
TH
563static void set_work_cwq(struct work_struct *work,
564 struct cpu_workqueue_struct *cwq,
565 unsigned long extra_flags)
566{
567 set_work_data(work, (unsigned long)cwq,
e120153d 568 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
569}
570
8930caba
TH
571static void set_work_cpu_and_clear_pending(struct work_struct *work,
572 unsigned int cpu)
7a22ad75 573{
23657bb1
TH
574 /*
575 * The following wmb is paired with the implied mb in
576 * test_and_set_bit(PENDING) and ensures all updates to @work made
577 * here are visible to and precede any updates by the next PENDING
578 * owner.
579 */
580 smp_wmb();
b5490077 581 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
7a22ad75 582}
f756d5e2 583
7a22ad75 584static void clear_work_data(struct work_struct *work)
1da177e4 585{
23657bb1 586 smp_wmb(); /* see set_work_cpu_and_clear_pending() */
7a22ad75 587 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
588}
589
7a22ad75 590static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 591{
e120153d 592 unsigned long data = atomic_long_read(&work->data);
7a22ad75 593
e120153d
TH
594 if (data & WORK_STRUCT_CWQ)
595 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
596 else
597 return NULL;
4d707b9f
ON
598}
599
7a22ad75 600static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 601{
e120153d 602 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
603 unsigned int cpu;
604
e120153d
TH
605 if (data & WORK_STRUCT_CWQ)
606 return ((struct cpu_workqueue_struct *)
bd7bdd43 607 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
7a22ad75 608
b5490077 609 cpu = data >> WORK_OFFQ_CPU_SHIFT;
bdbc5dd7 610 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
611 return NULL;
612
f3421797 613 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 614 return get_gcwq(cpu);
b1f4ec17
ON
615}
616
bbb68dfa
TH
617static void mark_work_canceling(struct work_struct *work)
618{
619 struct global_cwq *gcwq = get_work_gcwq(work);
620 unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;
621
622 set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
623 WORK_STRUCT_PENDING);
624}
625
626static bool work_is_canceling(struct work_struct *work)
627{
628 unsigned long data = atomic_long_read(&work->data);
629
630 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
631}
632
e22bee78 633/*
3270476a
TH
634 * Policy functions. These define the policies on how the global worker
635 * pools are managed. Unless noted otherwise, these functions assume that
636 * they're being called with gcwq->lock held.
e22bee78
TH
637 */
638
63d95a91 639static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 640{
3270476a 641 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
642}
643
4594bf15 644/*
e22bee78
TH
645 * Need to wake up a worker? Called from anything but currently
646 * running workers.
974271c4
TH
647 *
648 * Note that, because unbound workers never contribute to nr_running, this
649 * function will always return %true for unbound gcwq as long as the
650 * worklist isn't empty.
4594bf15 651 */
63d95a91 652static bool need_more_worker(struct worker_pool *pool)
365970a1 653{
63d95a91 654 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 655}
4594bf15 656
e22bee78 657/* Can I start working? Called from busy but !running workers. */
63d95a91 658static bool may_start_working(struct worker_pool *pool)
e22bee78 659{
63d95a91 660 return pool->nr_idle;
e22bee78
TH
661}
662
663/* Do I need to keep working? Called from currently running workers. */
63d95a91 664static bool keep_working(struct worker_pool *pool)
e22bee78 665{
63d95a91 666 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 667
3270476a 668 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
669}
670
671/* Do we need a new worker? Called from manager. */
63d95a91 672static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 673{
63d95a91 674 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 675}
365970a1 676
e22bee78 677/* Do I need to be the manager? */
63d95a91 678static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 679{
63d95a91 680 return need_to_create_worker(pool) ||
11ebea50 681 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
682}
683
684/* Do we have too many workers and should some go away? */
63d95a91 685static bool too_many_workers(struct worker_pool *pool)
e22bee78 686{
60373152 687 bool managing = mutex_is_locked(&pool->manager_mutex);
63d95a91
TH
688 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
689 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
690
691 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
692}
693
4d707b9f 694/*
e22bee78
TH
695 * Wake up functions.
696 */
697
7e11629d 698/* Return the first worker. Safe with preemption disabled */
63d95a91 699static struct worker *first_worker(struct worker_pool *pool)
7e11629d 700{
63d95a91 701 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
702 return NULL;
703
63d95a91 704 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
705}
706
707/**
708 * wake_up_worker - wake up an idle worker
63d95a91 709 * @pool: worker pool to wake worker from
7e11629d 710 *
63d95a91 711 * Wake up the first idle worker of @pool.
7e11629d
TH
712 *
713 * CONTEXT:
714 * spin_lock_irq(gcwq->lock).
715 */
63d95a91 716static void wake_up_worker(struct worker_pool *pool)
7e11629d 717{
63d95a91 718 struct worker *worker = first_worker(pool);
7e11629d
TH
719
720 if (likely(worker))
721 wake_up_process(worker->task);
722}
723
d302f017 724/**
e22bee78
TH
725 * wq_worker_waking_up - a worker is waking up
726 * @task: task waking up
727 * @cpu: CPU @task is waking up to
728 *
729 * This function is called during try_to_wake_up() when a worker is
730 * being awoken.
731 *
732 * CONTEXT:
733 * spin_lock_irq(rq->lock)
734 */
735void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
736{
737 struct worker *worker = kthread_data(task);
738
2d64672e 739 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 740 atomic_inc(get_pool_nr_running(worker->pool));
e22bee78
TH
741}
742
743/**
744 * wq_worker_sleeping - a worker is going to sleep
745 * @task: task going to sleep
746 * @cpu: CPU in question, must be the current CPU number
747 *
748 * This function is called during schedule() when a busy worker is
749 * going to sleep. Worker on the same cpu can be woken up by
750 * returning pointer to its task.
751 *
752 * CONTEXT:
753 * spin_lock_irq(rq->lock)
754 *
755 * RETURNS:
756 * Worker task on @cpu to wake up, %NULL if none.
757 */
758struct task_struct *wq_worker_sleeping(struct task_struct *task,
759 unsigned int cpu)
760{
761 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
bd7bdd43 762 struct worker_pool *pool = worker->pool;
63d95a91 763 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 764
2d64672e 765 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
766 return NULL;
767
768 /* this can only happen on the local cpu */
769 BUG_ON(cpu != raw_smp_processor_id());
770
771 /*
772 * The counterpart of the following dec_and_test, implied mb,
773 * worklist not empty test sequence is in insert_work().
774 * Please read comment there.
775 *
628c78e7
TH
776 * NOT_RUNNING is clear. This means that we're bound to and
777 * running on the local cpu w/ rq lock held and preemption
778 * disabled, which in turn means that none else could be
779 * manipulating idle_list, so dereferencing idle_list without gcwq
780 * lock is safe.
e22bee78 781 */
bd7bdd43 782 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 783 to_wakeup = first_worker(pool);
e22bee78
TH
784 return to_wakeup ? to_wakeup->task : NULL;
785}
786
787/**
788 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 789 * @worker: self
d302f017
TH
790 * @flags: flags to set
791 * @wakeup: wakeup an idle worker if necessary
792 *
e22bee78
TH
793 * Set @flags in @worker->flags and adjust nr_running accordingly. If
794 * nr_running becomes zero and @wakeup is %true, an idle worker is
795 * woken up.
d302f017 796 *
cb444766
TH
797 * CONTEXT:
798 * spin_lock_irq(gcwq->lock)
d302f017
TH
799 */
800static inline void worker_set_flags(struct worker *worker, unsigned int flags,
801 bool wakeup)
802{
bd7bdd43 803 struct worker_pool *pool = worker->pool;
e22bee78 804
cb444766
TH
805 WARN_ON_ONCE(worker->task != current);
806
e22bee78
TH
807 /*
808 * If transitioning into NOT_RUNNING, adjust nr_running and
809 * wake up an idle worker as necessary if requested by
810 * @wakeup.
811 */
812 if ((flags & WORKER_NOT_RUNNING) &&
813 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 814 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
815
816 if (wakeup) {
817 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 818 !list_empty(&pool->worklist))
63d95a91 819 wake_up_worker(pool);
e22bee78
TH
820 } else
821 atomic_dec(nr_running);
822 }
823
d302f017
TH
824 worker->flags |= flags;
825}
826
827/**
e22bee78 828 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 829 * @worker: self
d302f017
TH
830 * @flags: flags to clear
831 *
e22bee78 832 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 833 *
cb444766
TH
834 * CONTEXT:
835 * spin_lock_irq(gcwq->lock)
d302f017
TH
836 */
837static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
838{
63d95a91 839 struct worker_pool *pool = worker->pool;
e22bee78
TH
840 unsigned int oflags = worker->flags;
841
cb444766
TH
842 WARN_ON_ONCE(worker->task != current);
843
d302f017 844 worker->flags &= ~flags;
e22bee78 845
42c025f3
TH
846 /*
847 * If transitioning out of NOT_RUNNING, increment nr_running. Note
848 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
849 * of multiple flags, not a single flag.
850 */
e22bee78
TH
851 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
852 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 853 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
854}
855
c8e55f36
TH
856/**
857 * busy_worker_head - return the busy hash head for a work
858 * @gcwq: gcwq of interest
859 * @work: work to be hashed
860 *
861 * Return hash head of @gcwq for @work.
862 *
863 * CONTEXT:
864 * spin_lock_irq(gcwq->lock).
865 *
866 * RETURNS:
867 * Pointer to the hash head.
868 */
869static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
870 struct work_struct *work)
871{
872 const int base_shift = ilog2(sizeof(struct work_struct));
873 unsigned long v = (unsigned long)work;
874
875 /* simple shift and fold hash, do we need something better? */
876 v >>= base_shift;
877 v += v >> BUSY_WORKER_HASH_ORDER;
878 v &= BUSY_WORKER_HASH_MASK;
879
880 return &gcwq->busy_hash[v];
881}
882
8cca0eea
TH
883/**
884 * __find_worker_executing_work - find worker which is executing a work
885 * @gcwq: gcwq of interest
886 * @bwh: hash head as returned by busy_worker_head()
887 * @work: work to find worker for
888 *
889 * Find a worker which is executing @work on @gcwq. @bwh should be
890 * the hash head obtained by calling busy_worker_head() with the same
891 * work.
892 *
893 * CONTEXT:
894 * spin_lock_irq(gcwq->lock).
895 *
896 * RETURNS:
897 * Pointer to worker which is executing @work if found, NULL
898 * otherwise.
899 */
900static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
901 struct hlist_head *bwh,
902 struct work_struct *work)
903{
904 struct worker *worker;
905 struct hlist_node *tmp;
906
907 hlist_for_each_entry(worker, tmp, bwh, hentry)
908 if (worker->current_work == work)
909 return worker;
910 return NULL;
911}
912
913/**
914 * find_worker_executing_work - find worker which is executing a work
915 * @gcwq: gcwq of interest
916 * @work: work to find worker for
917 *
918 * Find a worker which is executing @work on @gcwq. This function is
919 * identical to __find_worker_executing_work() except that this
920 * function calculates @bwh itself.
921 *
922 * CONTEXT:
923 * spin_lock_irq(gcwq->lock).
924 *
925 * RETURNS:
926 * Pointer to worker which is executing @work if found, NULL
927 * otherwise.
4d707b9f 928 */
8cca0eea
TH
929static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
930 struct work_struct *work)
4d707b9f 931{
8cca0eea
TH
932 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
933 work);
4d707b9f
ON
934}
935
bf4ede01
TH
936/**
937 * move_linked_works - move linked works to a list
938 * @work: start of series of works to be scheduled
939 * @head: target list to append @work to
940 * @nextp: out paramter for nested worklist walking
941 *
942 * Schedule linked works starting from @work to @head. Work series to
943 * be scheduled starts at @work and includes any consecutive work with
944 * WORK_STRUCT_LINKED set in its predecessor.
945 *
946 * If @nextp is not NULL, it's updated to point to the next work of
947 * the last scheduled work. This allows move_linked_works() to be
948 * nested inside outer list_for_each_entry_safe().
949 *
950 * CONTEXT:
951 * spin_lock_irq(gcwq->lock).
952 */
953static void move_linked_works(struct work_struct *work, struct list_head *head,
954 struct work_struct **nextp)
955{
956 struct work_struct *n;
957
958 /*
959 * Linked worklist will always end before the end of the list,
960 * use NULL for list head.
961 */
962 list_for_each_entry_safe_from(work, n, NULL, entry) {
963 list_move_tail(&work->entry, head);
964 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
965 break;
966 }
967
968 /*
969 * If we're already inside safe list traversal and have moved
970 * multiple works to the scheduled queue, the next position
971 * needs to be updated.
972 */
973 if (nextp)
974 *nextp = n;
975}
976
977static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
978{
979 struct work_struct *work = list_first_entry(&cwq->delayed_works,
980 struct work_struct, entry);
981
982 trace_workqueue_activate_work(work);
983 move_linked_works(work, &cwq->pool->worklist, NULL);
984 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
985 cwq->nr_active++;
986}
987
988/**
989 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
990 * @cwq: cwq of interest
991 * @color: color of work which left the queue
992 * @delayed: for a delayed work
993 *
994 * A work either has completed or is removed from pending queue,
995 * decrement nr_in_flight of its cwq and handle workqueue flushing.
996 *
997 * CONTEXT:
998 * spin_lock_irq(gcwq->lock).
999 */
1000static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1001 bool delayed)
1002{
1003 /* ignore uncolored works */
1004 if (color == WORK_NO_COLOR)
1005 return;
1006
1007 cwq->nr_in_flight[color]--;
1008
1009 if (!delayed) {
1010 cwq->nr_active--;
1011 if (!list_empty(&cwq->delayed_works)) {
1012 /* one down, submit a delayed one */
1013 if (cwq->nr_active < cwq->max_active)
1014 cwq_activate_first_delayed(cwq);
1015 }
1016 }
1017
1018 /* is flush in progress and are we at the flushing tip? */
1019 if (likely(cwq->flush_color != color))
1020 return;
1021
1022 /* are there still in-flight works? */
1023 if (cwq->nr_in_flight[color])
1024 return;
1025
1026 /* this cwq is done, clear flush_color */
1027 cwq->flush_color = -1;
1028
1029 /*
1030 * If this was the last cwq, wake up the first flusher. It
1031 * will handle the rest.
1032 */
1033 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1034 complete(&cwq->wq->first_flusher->done);
1035}
1036
36e227d2 1037/**
bbb68dfa 1038 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1039 * @work: work item to steal
1040 * @is_dwork: @work is a delayed_work
bbb68dfa 1041 * @flags: place to store irq state
36e227d2
TH
1042 *
1043 * Try to grab PENDING bit of @work. This function can handle @work in any
1044 * stable state - idle, on timer or on worklist. Return values are
1045 *
1046 * 1 if @work was pending and we successfully stole PENDING
1047 * 0 if @work was idle and we claimed PENDING
1048 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1049 * -ENOENT if someone else is canceling @work, this state may persist
1050 * for arbitrarily long
36e227d2 1051 *
bbb68dfa
TH
1052 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1053 * preempted while holding PENDING and @work off queue, preemption must be
1054 * disabled on entry. This ensures that we don't return -EAGAIN while
1055 * another task is preempted in this function.
1056 *
1057 * On successful return, >= 0, irq is disabled and the caller is
1058 * responsible for releasing it using local_irq_restore(*@flags).
1059 *
1060 * This function is safe to call from any context other than IRQ handler.
1061 * An IRQ handler may run on top of delayed_work_timer_fn() which can make
1062 * this function return -EAGAIN perpetually.
bf4ede01 1063 */
bbb68dfa
TH
1064static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1065 unsigned long *flags)
bf4ede01
TH
1066{
1067 struct global_cwq *gcwq;
bf4ede01 1068
bbb68dfa
TH
1069 WARN_ON_ONCE(in_irq());
1070
1071 local_irq_save(*flags);
1072
36e227d2
TH
1073 /* try to steal the timer if it exists */
1074 if (is_dwork) {
1075 struct delayed_work *dwork = to_delayed_work(work);
1076
1077 if (likely(del_timer(&dwork->timer)))
1078 return 1;
1079 }
1080
1081 /* try to claim PENDING the normal way */
bf4ede01
TH
1082 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1083 return 0;
1084
1085 /*
1086 * The queueing is in progress, or it is already queued. Try to
1087 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1088 */
1089 gcwq = get_work_gcwq(work);
1090 if (!gcwq)
bbb68dfa 1091 goto fail;
bf4ede01 1092
bbb68dfa 1093 spin_lock(&gcwq->lock);
bf4ede01
TH
1094 if (!list_empty(&work->entry)) {
1095 /*
1096 * This work is queued, but perhaps we locked the wrong gcwq.
1097 * In that case we must see the new value after rmb(), see
1098 * insert_work()->wmb().
1099 */
1100 smp_rmb();
1101 if (gcwq == get_work_gcwq(work)) {
1102 debug_work_deactivate(work);
1103 list_del_init(&work->entry);
1104 cwq_dec_nr_in_flight(get_work_cwq(work),
1105 get_work_color(work),
1106 *work_data_bits(work) & WORK_STRUCT_DELAYED);
36e227d2 1107
bbb68dfa 1108 spin_unlock(&gcwq->lock);
36e227d2 1109 return 1;
bf4ede01
TH
1110 }
1111 }
bbb68dfa
TH
1112 spin_unlock(&gcwq->lock);
1113fail:
1114 local_irq_restore(*flags);
1115 if (work_is_canceling(work))
1116 return -ENOENT;
1117 cpu_relax();
36e227d2 1118 return -EAGAIN;
bf4ede01
TH
1119}
1120
4690c4ab 1121/**
7e11629d 1122 * insert_work - insert a work into gcwq
4690c4ab
TH
1123 * @cwq: cwq @work belongs to
1124 * @work: work to insert
1125 * @head: insertion point
1126 * @extra_flags: extra WORK_STRUCT_* flags to set
1127 *
7e11629d
TH
1128 * Insert @work which belongs to @cwq into @gcwq after @head.
1129 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
1130 *
1131 * CONTEXT:
8b03ae3c 1132 * spin_lock_irq(gcwq->lock).
4690c4ab 1133 */
b89deed3 1134static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
1135 struct work_struct *work, struct list_head *head,
1136 unsigned int extra_flags)
b89deed3 1137{
63d95a91 1138 struct worker_pool *pool = cwq->pool;
e22bee78 1139
4690c4ab 1140 /* we own @work, set data and link */
7a22ad75 1141 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 1142
6e84d644
ON
1143 /*
1144 * Ensure that we get the right work->data if we see the
1145 * result of list_add() below, see try_to_grab_pending().
1146 */
1147 smp_wmb();
4690c4ab 1148
1a4d9b0a 1149 list_add_tail(&work->entry, head);
e22bee78
TH
1150
1151 /*
1152 * Ensure either worker_sched_deactivated() sees the above
1153 * list_add_tail() or we see zero nr_running to avoid workers
1154 * lying around lazily while there are works to be processed.
1155 */
1156 smp_mb();
1157
63d95a91
TH
1158 if (__need_more_worker(pool))
1159 wake_up_worker(pool);
b89deed3
ON
1160}
1161
c8efcc25
TH
1162/*
1163 * Test whether @work is being queued from another work executing on the
1164 * same workqueue. This is rather expensive and should only be used from
1165 * cold paths.
1166 */
1167static bool is_chained_work(struct workqueue_struct *wq)
1168{
1169 unsigned long flags;
1170 unsigned int cpu;
1171
1172 for_each_gcwq_cpu(cpu) {
1173 struct global_cwq *gcwq = get_gcwq(cpu);
1174 struct worker *worker;
1175 struct hlist_node *pos;
1176 int i;
1177
1178 spin_lock_irqsave(&gcwq->lock, flags);
1179 for_each_busy_worker(worker, i, pos, gcwq) {
1180 if (worker->task != current)
1181 continue;
1182 spin_unlock_irqrestore(&gcwq->lock, flags);
1183 /*
1184 * I'm @worker, no locking necessary. See if @work
1185 * is headed to the same workqueue.
1186 */
1187 return worker->current_cwq->wq == wq;
1188 }
1189 spin_unlock_irqrestore(&gcwq->lock, flags);
1190 }
1191 return false;
1192}
1193
4690c4ab 1194static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1195 struct work_struct *work)
1196{
502ca9d8
TH
1197 struct global_cwq *gcwq;
1198 struct cpu_workqueue_struct *cwq;
1e19ffc6 1199 struct list_head *worklist;
8a2e8e5d 1200 unsigned int work_flags;
8930caba
TH
1201
1202 /*
1203 * While a work item is PENDING && off queue, a task trying to
1204 * steal the PENDING will busy-loop waiting for it to either get
1205 * queued or lose PENDING. Grabbing PENDING and queueing should
1206 * happen with IRQ disabled.
1207 */
1208 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1209
dc186ad7 1210 debug_work_activate(work);
1e19ffc6 1211
c8efcc25 1212 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1213 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1214 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1215 return;
1216
c7fc77f7
TH
1217 /* determine gcwq to use */
1218 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
1219 struct global_cwq *last_gcwq;
1220
57469821 1221 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1222 cpu = raw_smp_processor_id();
1223
18aa9eff
TH
1224 /*
1225 * It's multi cpu. If @wq is non-reentrant and @work
1226 * was previously on a different cpu, it might still
1227 * be running there, in which case the work needs to
1228 * be queued on that cpu to guarantee non-reentrance.
1229 */
502ca9d8 1230 gcwq = get_gcwq(cpu);
18aa9eff
TH
1231 if (wq->flags & WQ_NON_REENTRANT &&
1232 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1233 struct worker *worker;
1234
8930caba 1235 spin_lock(&last_gcwq->lock);
18aa9eff
TH
1236
1237 worker = find_worker_executing_work(last_gcwq, work);
1238
1239 if (worker && worker->current_cwq->wq == wq)
1240 gcwq = last_gcwq;
1241 else {
1242 /* meh... not running there, queue here */
8930caba
TH
1243 spin_unlock(&last_gcwq->lock);
1244 spin_lock(&gcwq->lock);
18aa9eff 1245 }
8930caba
TH
1246 } else {
1247 spin_lock(&gcwq->lock);
1248 }
f3421797
TH
1249 } else {
1250 gcwq = get_gcwq(WORK_CPU_UNBOUND);
8930caba 1251 spin_lock(&gcwq->lock);
502ca9d8
TH
1252 }
1253
1254 /* gcwq determined, get cwq and queue */
1255 cwq = get_cwq(gcwq->cpu, wq);
cdadf009 1256 trace_workqueue_queue_work(cpu, cwq, work);
502ca9d8 1257
f5b2552b 1258 if (WARN_ON(!list_empty(&work->entry))) {
8930caba 1259 spin_unlock(&gcwq->lock);
f5b2552b
DC
1260 return;
1261 }
1e19ffc6 1262
73f53c4a 1263 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1264 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1265
1266 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1267 trace_workqueue_activate_work(work);
1e19ffc6 1268 cwq->nr_active++;
3270476a 1269 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1270 } else {
1271 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1272 worklist = &cwq->delayed_works;
8a2e8e5d 1273 }
1e19ffc6 1274
8a2e8e5d 1275 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1276
8930caba 1277 spin_unlock(&gcwq->lock);
1da177e4
LT
1278}
1279
c1a220e7
ZR
1280/**
1281 * queue_work_on - queue work on specific cpu
1282 * @cpu: CPU number to execute work on
1283 * @wq: workqueue to use
1284 * @work: work to queue
1285 *
d4283e93 1286 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7
ZR
1287 *
1288 * We queue the work to a specific CPU, the caller must ensure it
1289 * can't go away.
1290 */
d4283e93
TH
1291bool queue_work_on(int cpu, struct workqueue_struct *wq,
1292 struct work_struct *work)
c1a220e7 1293{
d4283e93 1294 bool ret = false;
8930caba
TH
1295 unsigned long flags;
1296
1297 local_irq_save(flags);
c1a220e7 1298
22df02bb 1299 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1300 __queue_work(cpu, wq, work);
d4283e93 1301 ret = true;
c1a220e7 1302 }
8930caba
TH
1303
1304 local_irq_restore(flags);
c1a220e7
ZR
1305 return ret;
1306}
1307EXPORT_SYMBOL_GPL(queue_work_on);
1308
0fcb78c2 1309/**
0a13c00e 1310 * queue_work - queue work on a workqueue
0fcb78c2 1311 * @wq: workqueue to use
0a13c00e 1312 * @work: work to queue
0fcb78c2 1313 *
d4283e93 1314 * Returns %false if @work was already on a queue, %true otherwise.
0a13c00e
TH
1315 *
1316 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1317 * it can be processed by another CPU.
0fcb78c2 1318 */
d4283e93 1319bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 1320{
57469821 1321 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
0a13c00e
TH
1322}
1323EXPORT_SYMBOL_GPL(queue_work);
1324
d8e794df 1325void delayed_work_timer_fn(unsigned long __data)
0a13c00e
TH
1326{
1327 struct delayed_work *dwork = (struct delayed_work *)__data;
1328 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1329
8930caba 1330 local_irq_disable();
1265057f 1331 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
8930caba 1332 local_irq_enable();
1da177e4 1333}
d8e794df 1334EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1335
7beb2edf
TH
1336static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1337 struct delayed_work *dwork, unsigned long delay)
1338{
1339 struct timer_list *timer = &dwork->timer;
1340 struct work_struct *work = &dwork->work;
1341 unsigned int lcpu;
1342
1343 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1344 timer->data != (unsigned long)dwork);
1345 BUG_ON(timer_pending(timer));
1346 BUG_ON(!list_empty(&work->entry));
1347
1348 timer_stats_timer_set_start_info(&dwork->timer);
1349
1350 /*
1351 * This stores cwq for the moment, for the timer_fn. Note that the
1352 * work's gcwq is preserved to allow reentrance detection for
1353 * delayed works.
1354 */
1355 if (!(wq->flags & WQ_UNBOUND)) {
1356 struct global_cwq *gcwq = get_work_gcwq(work);
1357
1358 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1359 lcpu = gcwq->cpu;
1360 else
1361 lcpu = raw_smp_processor_id();
1362 } else {
1363 lcpu = WORK_CPU_UNBOUND;
1364 }
1365
1366 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1367
1265057f 1368 dwork->cpu = cpu;
7beb2edf
TH
1369 timer->expires = jiffies + delay;
1370
1371 if (unlikely(cpu != WORK_CPU_UNBOUND))
1372 add_timer_on(timer, cpu);
1373 else
1374 add_timer(timer);
1375}
1376
0fcb78c2
REB
1377/**
1378 * queue_delayed_work_on - queue work on specific CPU after delay
1379 * @cpu: CPU number to execute work on
1380 * @wq: workqueue to use
af9997e4 1381 * @dwork: work to queue
0fcb78c2
REB
1382 * @delay: number of jiffies to wait before queueing
1383 *
715f1300
TH
1384 * Returns %false if @work was already on a queue, %true otherwise. If
1385 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1386 * execution.
0fcb78c2 1387 */
d4283e93
TH
1388bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1389 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1390{
52bad64d 1391 struct work_struct *work = &dwork->work;
d4283e93 1392 bool ret = false;
8930caba
TH
1393 unsigned long flags;
1394
715f1300
TH
1395 if (!delay)
1396 return queue_work_on(cpu, wq, &dwork->work);
1397
8930caba
TH
1398 /* read the comment in __queue_work() */
1399 local_irq_save(flags);
7a6bc1cd 1400
22df02bb 1401 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1402 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1403 ret = true;
7a6bc1cd 1404 }
8930caba
TH
1405
1406 local_irq_restore(flags);
7a6bc1cd
VP
1407 return ret;
1408}
ae90dd5d 1409EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 1410
0a13c00e
TH
1411/**
1412 * queue_delayed_work - queue work on a workqueue after delay
1413 * @wq: workqueue to use
1414 * @dwork: delayable work to queue
1415 * @delay: number of jiffies to wait before queueing
1416 *
715f1300 1417 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1418 */
d4283e93 1419bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1420 struct delayed_work *dwork, unsigned long delay)
1421{
57469821 1422 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1423}
1424EXPORT_SYMBOL_GPL(queue_delayed_work);
1425
8376fe22
TH
1426/**
1427 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1428 * @cpu: CPU number to execute work on
1429 * @wq: workqueue to use
1430 * @dwork: work to queue
1431 * @delay: number of jiffies to wait before queueing
1432 *
1433 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1434 * modify @dwork's timer so that it expires after @delay. If @delay is
1435 * zero, @work is guaranteed to be scheduled immediately regardless of its
1436 * current state.
1437 *
1438 * Returns %false if @dwork was idle and queued, %true if @dwork was
1439 * pending and its timer was modified.
1440 *
1441 * This function is safe to call from any context other than IRQ handler.
1442 * See try_to_grab_pending() for details.
1443 */
1444bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1445 struct delayed_work *dwork, unsigned long delay)
1446{
1447 unsigned long flags;
1448 int ret;
1449
1450 do {
1451 ret = try_to_grab_pending(&dwork->work, true, &flags);
1452 } while (unlikely(ret == -EAGAIN));
1453
1454 if (likely(ret >= 0)) {
1455 __queue_delayed_work(cpu, wq, dwork, delay);
1456 local_irq_restore(flags);
1457 }
1458
1459 /* -ENOENT from try_to_grab_pending() becomes %true */
1460 return ret;
1461}
1462EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1463
1464/**
1465 * mod_delayed_work - modify delay of or queue a delayed work
1466 * @wq: workqueue to use
1467 * @dwork: work to queue
1468 * @delay: number of jiffies to wait before queueing
1469 *
1470 * mod_delayed_work_on() on local CPU.
1471 */
1472bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1473 unsigned long delay)
1474{
1475 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1476}
1477EXPORT_SYMBOL_GPL(mod_delayed_work);
1478
c8e55f36
TH
1479/**
1480 * worker_enter_idle - enter idle state
1481 * @worker: worker which is entering idle state
1482 *
1483 * @worker is entering idle state. Update stats and idle timer if
1484 * necessary.
1485 *
1486 * LOCKING:
1487 * spin_lock_irq(gcwq->lock).
1488 */
1489static void worker_enter_idle(struct worker *worker)
1da177e4 1490{
bd7bdd43
TH
1491 struct worker_pool *pool = worker->pool;
1492 struct global_cwq *gcwq = pool->gcwq;
c8e55f36
TH
1493
1494 BUG_ON(worker->flags & WORKER_IDLE);
1495 BUG_ON(!list_empty(&worker->entry) &&
1496 (worker->hentry.next || worker->hentry.pprev));
1497
cb444766
TH
1498 /* can't use worker_set_flags(), also called from start_worker() */
1499 worker->flags |= WORKER_IDLE;
bd7bdd43 1500 pool->nr_idle++;
e22bee78 1501 worker->last_active = jiffies;
c8e55f36
TH
1502
1503 /* idle_list is LIFO */
bd7bdd43 1504 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1505
628c78e7
TH
1506 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1507 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1508
544ecf31 1509 /*
628c78e7
TH
1510 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1511 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1512 * nr_running, the warning may trigger spuriously. Check iff
1513 * unbind is not in progress.
544ecf31 1514 */
628c78e7 1515 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
bd7bdd43 1516 pool->nr_workers == pool->nr_idle &&
63d95a91 1517 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1518}
1519
1520/**
1521 * worker_leave_idle - leave idle state
1522 * @worker: worker which is leaving idle state
1523 *
1524 * @worker is leaving idle state. Update stats.
1525 *
1526 * LOCKING:
1527 * spin_lock_irq(gcwq->lock).
1528 */
1529static void worker_leave_idle(struct worker *worker)
1530{
bd7bdd43 1531 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1532
1533 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1534 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1535 pool->nr_idle--;
c8e55f36
TH
1536 list_del_init(&worker->entry);
1537}
1538
e22bee78
TH
1539/**
1540 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1541 * @worker: self
1542 *
1543 * Works which are scheduled while the cpu is online must at least be
1544 * scheduled to a worker which is bound to the cpu so that if they are
1545 * flushed from cpu callbacks while cpu is going down, they are
1546 * guaranteed to execute on the cpu.
1547 *
1548 * This function is to be used by rogue workers and rescuers to bind
1549 * themselves to the target cpu and may race with cpu going down or
1550 * coming online. kthread_bind() can't be used because it may put the
1551 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1552 * verbatim as it's best effort and blocking and gcwq may be
1553 * [dis]associated in the meantime.
1554 *
f2d5a0ee
TH
1555 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1556 * binding against %GCWQ_DISASSOCIATED which is set during
1557 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1558 * enters idle state or fetches works without dropping lock, it can
1559 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1560 *
1561 * CONTEXT:
1562 * Might sleep. Called without any lock but returns with gcwq->lock
1563 * held.
1564 *
1565 * RETURNS:
1566 * %true if the associated gcwq is online (@worker is successfully
1567 * bound), %false if offline.
1568 */
1569static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1570__acquires(&gcwq->lock)
e22bee78 1571{
bd7bdd43 1572 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1573 struct task_struct *task = worker->task;
1574
1575 while (true) {
4e6045f1 1576 /*
e22bee78
TH
1577 * The following call may fail, succeed or succeed
1578 * without actually migrating the task to the cpu if
1579 * it races with cpu hotunplug operation. Verify
1580 * against GCWQ_DISASSOCIATED.
4e6045f1 1581 */
f3421797
TH
1582 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1583 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1584
1585 spin_lock_irq(&gcwq->lock);
1586 if (gcwq->flags & GCWQ_DISASSOCIATED)
1587 return false;
1588 if (task_cpu(task) == gcwq->cpu &&
1589 cpumask_equal(&current->cpus_allowed,
1590 get_cpu_mask(gcwq->cpu)))
1591 return true;
1592 spin_unlock_irq(&gcwq->lock);
1593
5035b20f
TH
1594 /*
1595 * We've raced with CPU hot[un]plug. Give it a breather
1596 * and retry migration. cond_resched() is required here;
1597 * otherwise, we might deadlock against cpu_stop trying to
1598 * bring down the CPU on non-preemptive kernel.
1599 */
e22bee78 1600 cpu_relax();
5035b20f 1601 cond_resched();
e22bee78
TH
1602 }
1603}
1604
25511a47
TH
1605struct idle_rebind {
1606 int cnt; /* # workers to be rebound */
1607 struct completion done; /* all workers rebound */
1608};
1609
1610/*
1611 * Rebind an idle @worker to its CPU. During CPU onlining, this has to
1612 * happen synchronously for idle workers. worker_thread() will test
1613 * %WORKER_REBIND before leaving idle and call this function.
1614 */
1615static void idle_worker_rebind(struct worker *worker)
1616{
1617 struct global_cwq *gcwq = worker->pool->gcwq;
1618
1619 /* CPU must be online at this point */
1620 WARN_ON(!worker_maybe_bind_and_lock(worker));
1621 if (!--worker->idle_rebind->cnt)
1622 complete(&worker->idle_rebind->done);
1623 spin_unlock_irq(&worker->pool->gcwq->lock);
1624
1625 /* we did our part, wait for rebind_workers() to finish up */
1626 wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
1627}
1628
e22bee78 1629/*
25511a47 1630 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1631 * the associated cpu which is coming back online. This is scheduled by
1632 * cpu up but can race with other cpu hotplug operations and may be
1633 * executed twice without intervening cpu down.
e22bee78 1634 */
25511a47 1635static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1636{
1637 struct worker *worker = container_of(work, struct worker, rebind_work);
bd7bdd43 1638 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1639
1640 if (worker_maybe_bind_and_lock(worker))
1641 worker_clr_flags(worker, WORKER_REBIND);
1642
1643 spin_unlock_irq(&gcwq->lock);
1644}
1645
25511a47
TH
1646/**
1647 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1648 * @gcwq: gcwq of interest
1649 *
1650 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1651 * is different for idle and busy ones.
1652 *
1653 * The idle ones should be rebound synchronously and idle rebinding should
1654 * be complete before any worker starts executing work items with
1655 * concurrency management enabled; otherwise, scheduler may oops trying to
1656 * wake up non-local idle worker from wq_worker_sleeping().
1657 *
1658 * This is achieved by repeatedly requesting rebinding until all idle
1659 * workers are known to have been rebound under @gcwq->lock and holding all
1660 * idle workers from becoming busy until idle rebinding is complete.
1661 *
1662 * Once idle workers are rebound, busy workers can be rebound as they
1663 * finish executing their current work items. Queueing the rebind work at
1664 * the head of their scheduled lists is enough. Note that nr_running will
1665 * be properbly bumped as busy workers rebind.
1666 *
1667 * On return, all workers are guaranteed to either be bound or have rebind
1668 * work item scheduled.
1669 */
1670static void rebind_workers(struct global_cwq *gcwq)
1671 __releases(&gcwq->lock) __acquires(&gcwq->lock)
1672{
1673 struct idle_rebind idle_rebind;
1674 struct worker_pool *pool;
1675 struct worker *worker;
1676 struct hlist_node *pos;
1677 int i;
1678
1679 lockdep_assert_held(&gcwq->lock);
1680
1681 for_each_worker_pool(pool, gcwq)
1682 lockdep_assert_held(&pool->manager_mutex);
1683
1684 /*
1685 * Rebind idle workers. Interlocked both ways. We wait for
1686 * workers to rebind via @idle_rebind.done. Workers will wait for
1687 * us to finish up by watching %WORKER_REBIND.
1688 */
1689 init_completion(&idle_rebind.done);
1690retry:
1691 idle_rebind.cnt = 1;
1692 INIT_COMPLETION(idle_rebind.done);
1693
1694 /* set REBIND and kick idle ones, we'll wait for these later */
1695 for_each_worker_pool(pool, gcwq) {
1696 list_for_each_entry(worker, &pool->idle_list, entry) {
1697 if (worker->flags & WORKER_REBIND)
1698 continue;
1699
1700 /* morph UNBOUND to REBIND */
1701 worker->flags &= ~WORKER_UNBOUND;
1702 worker->flags |= WORKER_REBIND;
1703
1704 idle_rebind.cnt++;
1705 worker->idle_rebind = &idle_rebind;
1706
1707 /* worker_thread() will call idle_worker_rebind() */
1708 wake_up_process(worker->task);
1709 }
1710 }
1711
1712 if (--idle_rebind.cnt) {
1713 spin_unlock_irq(&gcwq->lock);
1714 wait_for_completion(&idle_rebind.done);
1715 spin_lock_irq(&gcwq->lock);
1716 /* busy ones might have become idle while waiting, retry */
1717 goto retry;
1718 }
1719
1720 /*
1721 * All idle workers are rebound and waiting for %WORKER_REBIND to
1722 * be cleared inside idle_worker_rebind(). Clear and release.
1723 * Clearing %WORKER_REBIND from this foreign context is safe
1724 * because these workers are still guaranteed to be idle.
1725 */
1726 for_each_worker_pool(pool, gcwq)
1727 list_for_each_entry(worker, &pool->idle_list, entry)
1728 worker->flags &= ~WORKER_REBIND;
1729
1730 wake_up_all(&gcwq->rebind_hold);
1731
1732 /* rebind busy workers */
1733 for_each_busy_worker(worker, i, pos, gcwq) {
1734 struct work_struct *rebind_work = &worker->rebind_work;
1735
1736 /* morph UNBOUND to REBIND */
1737 worker->flags &= ~WORKER_UNBOUND;
1738 worker->flags |= WORKER_REBIND;
1739
1740 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1741 work_data_bits(rebind_work)))
1742 continue;
1743
1744 /* wq doesn't matter, use the default one */
1745 debug_work_activate(rebind_work);
1746 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
1747 worker->scheduled.next,
1748 work_color_to_flags(WORK_NO_COLOR));
1749 }
1750}
1751
c34056a3
TH
1752static struct worker *alloc_worker(void)
1753{
1754 struct worker *worker;
1755
1756 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1757 if (worker) {
1758 INIT_LIST_HEAD(&worker->entry);
affee4b2 1759 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1760 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1761 /* on creation a worker is in !idle && prep state */
1762 worker->flags = WORKER_PREP;
c8e55f36 1763 }
c34056a3
TH
1764 return worker;
1765}
1766
1767/**
1768 * create_worker - create a new workqueue worker
63d95a91 1769 * @pool: pool the new worker will belong to
c34056a3 1770 *
63d95a91 1771 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1772 * can be started by calling start_worker() or destroyed using
1773 * destroy_worker().
1774 *
1775 * CONTEXT:
1776 * Might sleep. Does GFP_KERNEL allocations.
1777 *
1778 * RETURNS:
1779 * Pointer to the newly created worker.
1780 */
bc2ae0f5 1781static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1782{
63d95a91 1783 struct global_cwq *gcwq = pool->gcwq;
3270476a 1784 const char *pri = worker_pool_pri(pool) ? "H" : "";
c34056a3 1785 struct worker *worker = NULL;
f3421797 1786 int id = -1;
c34056a3 1787
8b03ae3c 1788 spin_lock_irq(&gcwq->lock);
bd7bdd43 1789 while (ida_get_new(&pool->worker_ida, &id)) {
8b03ae3c 1790 spin_unlock_irq(&gcwq->lock);
bd7bdd43 1791 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1792 goto fail;
8b03ae3c 1793 spin_lock_irq(&gcwq->lock);
c34056a3 1794 }
8b03ae3c 1795 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1796
1797 worker = alloc_worker();
1798 if (!worker)
1799 goto fail;
1800
bd7bdd43 1801 worker->pool = pool;
c34056a3
TH
1802 worker->id = id;
1803
bc2ae0f5 1804 if (gcwq->cpu != WORK_CPU_UNBOUND)
94dcf29a 1805 worker->task = kthread_create_on_node(worker_thread,
3270476a
TH
1806 worker, cpu_to_node(gcwq->cpu),
1807 "kworker/%u:%d%s", gcwq->cpu, id, pri);
f3421797
TH
1808 else
1809 worker->task = kthread_create(worker_thread, worker,
3270476a 1810 "kworker/u:%d%s", id, pri);
c34056a3
TH
1811 if (IS_ERR(worker->task))
1812 goto fail;
1813
3270476a
TH
1814 if (worker_pool_pri(pool))
1815 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1816
db7bccf4 1817 /*
bc2ae0f5
TH
1818 * Determine CPU binding of the new worker depending on
1819 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1820 * flag remains stable across this function. See the comments
1821 * above the flag definition for details.
1822 *
1823 * As an unbound worker may later become a regular one if CPU comes
1824 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1825 */
bc2ae0f5 1826 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
8b03ae3c 1827 kthread_bind(worker->task, gcwq->cpu);
bc2ae0f5 1828 } else {
db7bccf4 1829 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1830 worker->flags |= WORKER_UNBOUND;
f3421797 1831 }
c34056a3
TH
1832
1833 return worker;
1834fail:
1835 if (id >= 0) {
8b03ae3c 1836 spin_lock_irq(&gcwq->lock);
bd7bdd43 1837 ida_remove(&pool->worker_ida, id);
8b03ae3c 1838 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1839 }
1840 kfree(worker);
1841 return NULL;
1842}
1843
1844/**
1845 * start_worker - start a newly created worker
1846 * @worker: worker to start
1847 *
c8e55f36 1848 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1849 *
1850 * CONTEXT:
8b03ae3c 1851 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1852 */
1853static void start_worker(struct worker *worker)
1854{
cb444766 1855 worker->flags |= WORKER_STARTED;
bd7bdd43 1856 worker->pool->nr_workers++;
c8e55f36 1857 worker_enter_idle(worker);
c34056a3
TH
1858 wake_up_process(worker->task);
1859}
1860
1861/**
1862 * destroy_worker - destroy a workqueue worker
1863 * @worker: worker to be destroyed
1864 *
c8e55f36
TH
1865 * Destroy @worker and adjust @gcwq stats accordingly.
1866 *
1867 * CONTEXT:
1868 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1869 */
1870static void destroy_worker(struct worker *worker)
1871{
bd7bdd43
TH
1872 struct worker_pool *pool = worker->pool;
1873 struct global_cwq *gcwq = pool->gcwq;
c34056a3
TH
1874 int id = worker->id;
1875
1876 /* sanity check frenzy */
1877 BUG_ON(worker->current_work);
affee4b2 1878 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1879
c8e55f36 1880 if (worker->flags & WORKER_STARTED)
bd7bdd43 1881 pool->nr_workers--;
c8e55f36 1882 if (worker->flags & WORKER_IDLE)
bd7bdd43 1883 pool->nr_idle--;
c8e55f36
TH
1884
1885 list_del_init(&worker->entry);
cb444766 1886 worker->flags |= WORKER_DIE;
c8e55f36
TH
1887
1888 spin_unlock_irq(&gcwq->lock);
1889
c34056a3
TH
1890 kthread_stop(worker->task);
1891 kfree(worker);
1892
8b03ae3c 1893 spin_lock_irq(&gcwq->lock);
bd7bdd43 1894 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1895}
1896
63d95a91 1897static void idle_worker_timeout(unsigned long __pool)
e22bee78 1898{
63d95a91
TH
1899 struct worker_pool *pool = (void *)__pool;
1900 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1901
1902 spin_lock_irq(&gcwq->lock);
1903
63d95a91 1904 if (too_many_workers(pool)) {
e22bee78
TH
1905 struct worker *worker;
1906 unsigned long expires;
1907
1908 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1909 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1910 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1911
1912 if (time_before(jiffies, expires))
63d95a91 1913 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1914 else {
1915 /* it's been idle for too long, wake up manager */
11ebea50 1916 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1917 wake_up_worker(pool);
d5abe669 1918 }
e22bee78
TH
1919 }
1920
1921 spin_unlock_irq(&gcwq->lock);
1922}
d5abe669 1923
e22bee78
TH
1924static bool send_mayday(struct work_struct *work)
1925{
1926 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1927 struct workqueue_struct *wq = cwq->wq;
f3421797 1928 unsigned int cpu;
e22bee78
TH
1929
1930 if (!(wq->flags & WQ_RESCUER))
1931 return false;
1932
1933 /* mayday mayday mayday */
bd7bdd43 1934 cpu = cwq->pool->gcwq->cpu;
f3421797
TH
1935 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1936 if (cpu == WORK_CPU_UNBOUND)
1937 cpu = 0;
f2e005aa 1938 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1939 wake_up_process(wq->rescuer->task);
1940 return true;
1941}
1942
63d95a91 1943static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1944{
63d95a91
TH
1945 struct worker_pool *pool = (void *)__pool;
1946 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1947 struct work_struct *work;
1948
1949 spin_lock_irq(&gcwq->lock);
1950
63d95a91 1951 if (need_to_create_worker(pool)) {
e22bee78
TH
1952 /*
1953 * We've been trying to create a new worker but
1954 * haven't been successful. We might be hitting an
1955 * allocation deadlock. Send distress signals to
1956 * rescuers.
1957 */
63d95a91 1958 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1959 send_mayday(work);
1da177e4 1960 }
e22bee78
TH
1961
1962 spin_unlock_irq(&gcwq->lock);
1963
63d95a91 1964 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1965}
1966
e22bee78
TH
1967/**
1968 * maybe_create_worker - create a new worker if necessary
63d95a91 1969 * @pool: pool to create a new worker for
e22bee78 1970 *
63d95a91 1971 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1972 * have at least one idle worker on return from this function. If
1973 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1974 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1975 * possible allocation deadlock.
1976 *
1977 * On return, need_to_create_worker() is guaranteed to be false and
1978 * may_start_working() true.
1979 *
1980 * LOCKING:
1981 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1982 * multiple times. Does GFP_KERNEL allocations. Called only from
1983 * manager.
1984 *
1985 * RETURNS:
1986 * false if no action was taken and gcwq->lock stayed locked, true
1987 * otherwise.
1988 */
63d95a91 1989static bool maybe_create_worker(struct worker_pool *pool)
06bd6ebf
NK
1990__releases(&gcwq->lock)
1991__acquires(&gcwq->lock)
1da177e4 1992{
63d95a91
TH
1993 struct global_cwq *gcwq = pool->gcwq;
1994
1995 if (!need_to_create_worker(pool))
e22bee78
TH
1996 return false;
1997restart:
9f9c2364
TH
1998 spin_unlock_irq(&gcwq->lock);
1999
e22bee78 2000 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2001 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2002
2003 while (true) {
2004 struct worker *worker;
2005
bc2ae0f5 2006 worker = create_worker(pool);
e22bee78 2007 if (worker) {
63d95a91 2008 del_timer_sync(&pool->mayday_timer);
e22bee78
TH
2009 spin_lock_irq(&gcwq->lock);
2010 start_worker(worker);
63d95a91 2011 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
2012 return true;
2013 }
2014
63d95a91 2015 if (!need_to_create_worker(pool))
e22bee78 2016 break;
1da177e4 2017
e22bee78
TH
2018 __set_current_state(TASK_INTERRUPTIBLE);
2019 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 2020
63d95a91 2021 if (!need_to_create_worker(pool))
e22bee78
TH
2022 break;
2023 }
2024
63d95a91 2025 del_timer_sync(&pool->mayday_timer);
e22bee78 2026 spin_lock_irq(&gcwq->lock);
63d95a91 2027 if (need_to_create_worker(pool))
e22bee78
TH
2028 goto restart;
2029 return true;
2030}
2031
2032/**
2033 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 2034 * @pool: pool to destroy workers for
e22bee78 2035 *
63d95a91 2036 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
2037 * IDLE_WORKER_TIMEOUT.
2038 *
2039 * LOCKING:
2040 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2041 * multiple times. Called only from manager.
2042 *
2043 * RETURNS:
2044 * false if no action was taken and gcwq->lock stayed locked, true
2045 * otherwise.
2046 */
63d95a91 2047static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2048{
2049 bool ret = false;
1da177e4 2050
63d95a91 2051 while (too_many_workers(pool)) {
e22bee78
TH
2052 struct worker *worker;
2053 unsigned long expires;
3af24433 2054
63d95a91 2055 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2056 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2057
e22bee78 2058 if (time_before(jiffies, expires)) {
63d95a91 2059 mod_timer(&pool->idle_timer, expires);
3af24433 2060 break;
e22bee78 2061 }
1da177e4 2062
e22bee78
TH
2063 destroy_worker(worker);
2064 ret = true;
1da177e4 2065 }
3af24433 2066
e22bee78
TH
2067 return ret;
2068}
2069
2070/**
2071 * manage_workers - manage worker pool
2072 * @worker: self
2073 *
2074 * Assume the manager role and manage gcwq worker pool @worker belongs
2075 * to. At any given time, there can be only zero or one manager per
2076 * gcwq. The exclusion is handled automatically by this function.
2077 *
2078 * The caller can safely start processing works on false return. On
2079 * true return, it's guaranteed that need_to_create_worker() is false
2080 * and may_start_working() is true.
2081 *
2082 * CONTEXT:
2083 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2084 * multiple times. Does GFP_KERNEL allocations.
2085 *
2086 * RETURNS:
2087 * false if no action was taken and gcwq->lock stayed locked, true if
2088 * some action was taken.
2089 */
2090static bool manage_workers(struct worker *worker)
2091{
63d95a91 2092 struct worker_pool *pool = worker->pool;
e22bee78
TH
2093 bool ret = false;
2094
60373152 2095 if (!mutex_trylock(&pool->manager_mutex))
e22bee78
TH
2096 return ret;
2097
11ebea50 2098 pool->flags &= ~POOL_MANAGE_WORKERS;
e22bee78
TH
2099
2100 /*
2101 * Destroy and then create so that may_start_working() is true
2102 * on return.
2103 */
63d95a91
TH
2104 ret |= maybe_destroy_workers(pool);
2105 ret |= maybe_create_worker(pool);
e22bee78 2106
60373152 2107 mutex_unlock(&pool->manager_mutex);
e22bee78
TH
2108 return ret;
2109}
2110
a62428c0
TH
2111/**
2112 * process_one_work - process single work
c34056a3 2113 * @worker: self
a62428c0
TH
2114 * @work: work to process
2115 *
2116 * Process @work. This function contains all the logics necessary to
2117 * process a single work including synchronization against and
2118 * interaction with other workers on the same cpu, queueing and
2119 * flushing. As long as context requirement is met, any worker can
2120 * call this function to process a work.
2121 *
2122 * CONTEXT:
8b03ae3c 2123 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 2124 */
c34056a3 2125static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
2126__releases(&gcwq->lock)
2127__acquires(&gcwq->lock)
a62428c0 2128{
7e11629d 2129 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43
TH
2130 struct worker_pool *pool = worker->pool;
2131 struct global_cwq *gcwq = pool->gcwq;
c8e55f36 2132 struct hlist_head *bwh = busy_worker_head(gcwq, work);
fb0e7beb 2133 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
a62428c0 2134 work_func_t f = work->func;
73f53c4a 2135 int work_color;
7e11629d 2136 struct worker *collision;
a62428c0
TH
2137#ifdef CONFIG_LOCKDEP
2138 /*
2139 * It is permissible to free the struct work_struct from
2140 * inside the function that is called from it, this we need to
2141 * take into account for lockdep too. To avoid bogus "held
2142 * lock freed" warnings as well as problems when looking into
2143 * work->lockdep_map, make a copy and use that here.
2144 */
4d82a1de
PZ
2145 struct lockdep_map lockdep_map;
2146
2147 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2148#endif
6fec10a1
TH
2149 /*
2150 * Ensure we're on the correct CPU. DISASSOCIATED test is
2151 * necessary to avoid spurious warnings from rescuers servicing the
2152 * unbound or a disassociated gcwq.
2153 */
25511a47 2154 WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
6fec10a1 2155 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
25511a47
TH
2156 raw_smp_processor_id() != gcwq->cpu);
2157
7e11629d
TH
2158 /*
2159 * A single work shouldn't be executed concurrently by
2160 * multiple workers on a single cpu. Check whether anyone is
2161 * already processing the work. If so, defer the work to the
2162 * currently executing one.
2163 */
2164 collision = __find_worker_executing_work(gcwq, bwh, work);
2165 if (unlikely(collision)) {
2166 move_linked_works(work, &collision->scheduled, NULL);
2167 return;
2168 }
2169
8930caba 2170 /* claim and dequeue */
a62428c0 2171 debug_work_deactivate(work);
c8e55f36 2172 hlist_add_head(&worker->hentry, bwh);
c34056a3 2173 worker->current_work = work;
8cca0eea 2174 worker->current_cwq = cwq;
73f53c4a 2175 work_color = get_work_color(work);
7a22ad75 2176
a62428c0
TH
2177 list_del_init(&work->entry);
2178
fb0e7beb
TH
2179 /*
2180 * CPU intensive works don't participate in concurrency
2181 * management. They're the scheduler's responsibility.
2182 */
2183 if (unlikely(cpu_intensive))
2184 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2185
974271c4
TH
2186 /*
2187 * Unbound gcwq isn't concurrency managed and work items should be
2188 * executed ASAP. Wake up another worker if necessary.
2189 */
63d95a91
TH
2190 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2191 wake_up_worker(pool);
974271c4 2192
8930caba 2193 /*
23657bb1
TH
2194 * Record the last CPU and clear PENDING which should be the last
2195 * update to @work. Also, do this inside @gcwq->lock so that
2196 * PENDING and queued state changes happen together while IRQ is
2197 * disabled.
8930caba 2198 */
8930caba 2199 set_work_cpu_and_clear_pending(work, gcwq->cpu);
a62428c0 2200
8930caba 2201 spin_unlock_irq(&gcwq->lock);
959d1af8 2202
e159489b 2203 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2204 lock_map_acquire(&lockdep_map);
e36c886a 2205 trace_workqueue_execute_start(work);
a62428c0 2206 f(work);
e36c886a
AV
2207 /*
2208 * While we must be careful to not use "work" after this, the trace
2209 * point will only record its address.
2210 */
2211 trace_workqueue_execute_end(work);
a62428c0
TH
2212 lock_map_release(&lockdep_map);
2213 lock_map_release(&cwq->wq->lockdep_map);
2214
2215 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2216 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
2217 "%s/0x%08x/%d\n",
2218 current->comm, preempt_count(), task_pid_nr(current));
2219 printk(KERN_ERR " last function: ");
2220 print_symbol("%s\n", (unsigned long)f);
2221 debug_show_held_locks(current);
2222 dump_stack();
2223 }
2224
8b03ae3c 2225 spin_lock_irq(&gcwq->lock);
a62428c0 2226
fb0e7beb
TH
2227 /* clear cpu intensive status */
2228 if (unlikely(cpu_intensive))
2229 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2230
a62428c0 2231 /* we're done with it, release */
c8e55f36 2232 hlist_del_init(&worker->hentry);
c34056a3 2233 worker->current_work = NULL;
8cca0eea 2234 worker->current_cwq = NULL;
8a2e8e5d 2235 cwq_dec_nr_in_flight(cwq, work_color, false);
a62428c0
TH
2236}
2237
affee4b2
TH
2238/**
2239 * process_scheduled_works - process scheduled works
2240 * @worker: self
2241 *
2242 * Process all scheduled works. Please note that the scheduled list
2243 * may change while processing a work, so this function repeatedly
2244 * fetches a work from the top and executes it.
2245 *
2246 * CONTEXT:
8b03ae3c 2247 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
2248 * multiple times.
2249 */
2250static void process_scheduled_works(struct worker *worker)
1da177e4 2251{
affee4b2
TH
2252 while (!list_empty(&worker->scheduled)) {
2253 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2254 struct work_struct, entry);
c34056a3 2255 process_one_work(worker, work);
1da177e4 2256 }
1da177e4
LT
2257}
2258
4690c4ab
TH
2259/**
2260 * worker_thread - the worker thread function
c34056a3 2261 * @__worker: self
4690c4ab 2262 *
e22bee78
TH
2263 * The gcwq worker thread function. There's a single dynamic pool of
2264 * these per each cpu. These workers process all works regardless of
2265 * their specific target workqueue. The only exception is works which
2266 * belong to workqueues with a rescuer which will be explained in
2267 * rescuer_thread().
4690c4ab 2268 */
c34056a3 2269static int worker_thread(void *__worker)
1da177e4 2270{
c34056a3 2271 struct worker *worker = __worker;
bd7bdd43
TH
2272 struct worker_pool *pool = worker->pool;
2273 struct global_cwq *gcwq = pool->gcwq;
1da177e4 2274
e22bee78
TH
2275 /* tell the scheduler that this is a workqueue worker */
2276 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2277woke_up:
c8e55f36 2278 spin_lock_irq(&gcwq->lock);
1da177e4 2279
25511a47
TH
2280 /*
2281 * DIE can be set only while idle and REBIND set while busy has
2282 * @worker->rebind_work scheduled. Checking here is enough.
2283 */
2284 if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
c8e55f36 2285 spin_unlock_irq(&gcwq->lock);
25511a47
TH
2286
2287 if (worker->flags & WORKER_DIE) {
2288 worker->task->flags &= ~PF_WQ_WORKER;
2289 return 0;
2290 }
2291
2292 idle_worker_rebind(worker);
2293 goto woke_up;
c8e55f36 2294 }
affee4b2 2295
c8e55f36 2296 worker_leave_idle(worker);
db7bccf4 2297recheck:
e22bee78 2298 /* no more worker necessary? */
63d95a91 2299 if (!need_more_worker(pool))
e22bee78
TH
2300 goto sleep;
2301
2302 /* do we need to manage? */
63d95a91 2303 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2304 goto recheck;
2305
c8e55f36
TH
2306 /*
2307 * ->scheduled list can only be filled while a worker is
2308 * preparing to process a work or actually processing it.
2309 * Make sure nobody diddled with it while I was sleeping.
2310 */
2311 BUG_ON(!list_empty(&worker->scheduled));
2312
e22bee78
TH
2313 /*
2314 * When control reaches this point, we're guaranteed to have
2315 * at least one idle worker or that someone else has already
2316 * assumed the manager role.
2317 */
2318 worker_clr_flags(worker, WORKER_PREP);
2319
2320 do {
c8e55f36 2321 struct work_struct *work =
bd7bdd43 2322 list_first_entry(&pool->worklist,
c8e55f36
TH
2323 struct work_struct, entry);
2324
2325 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2326 /* optimization path, not strictly necessary */
2327 process_one_work(worker, work);
2328 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2329 process_scheduled_works(worker);
c8e55f36
TH
2330 } else {
2331 move_linked_works(work, &worker->scheduled, NULL);
2332 process_scheduled_works(worker);
affee4b2 2333 }
63d95a91 2334 } while (keep_working(pool));
e22bee78
TH
2335
2336 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2337sleep:
63d95a91 2338 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2339 goto recheck;
d313dd85 2340
c8e55f36 2341 /*
e22bee78
TH
2342 * gcwq->lock is held and there's no work to process and no
2343 * need to manage, sleep. Workers are woken up only while
2344 * holding gcwq->lock or from local cpu, so setting the
2345 * current state before releasing gcwq->lock is enough to
2346 * prevent losing any event.
c8e55f36
TH
2347 */
2348 worker_enter_idle(worker);
2349 __set_current_state(TASK_INTERRUPTIBLE);
2350 spin_unlock_irq(&gcwq->lock);
2351 schedule();
2352 goto woke_up;
1da177e4
LT
2353}
2354
e22bee78
TH
2355/**
2356 * rescuer_thread - the rescuer thread function
2357 * @__wq: the associated workqueue
2358 *
2359 * Workqueue rescuer thread function. There's one rescuer for each
2360 * workqueue which has WQ_RESCUER set.
2361 *
2362 * Regular work processing on a gcwq may block trying to create a new
2363 * worker which uses GFP_KERNEL allocation which has slight chance of
2364 * developing into deadlock if some works currently on the same queue
2365 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2366 * the problem rescuer solves.
2367 *
2368 * When such condition is possible, the gcwq summons rescuers of all
2369 * workqueues which have works queued on the gcwq and let them process
2370 * those works so that forward progress can be guaranteed.
2371 *
2372 * This should happen rarely.
2373 */
2374static int rescuer_thread(void *__wq)
2375{
2376 struct workqueue_struct *wq = __wq;
2377 struct worker *rescuer = wq->rescuer;
2378 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2379 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2380 unsigned int cpu;
2381
2382 set_user_nice(current, RESCUER_NICE_LEVEL);
2383repeat:
2384 set_current_state(TASK_INTERRUPTIBLE);
2385
2386 if (kthread_should_stop())
2387 return 0;
2388
f3421797
TH
2389 /*
2390 * See whether any cpu is asking for help. Unbounded
2391 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2392 */
f2e005aa 2393 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2394 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2395 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43
TH
2396 struct worker_pool *pool = cwq->pool;
2397 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
2398 struct work_struct *work, *n;
2399
2400 __set_current_state(TASK_RUNNING);
f2e005aa 2401 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2402
2403 /* migrate to the target cpu if possible */
bd7bdd43 2404 rescuer->pool = pool;
e22bee78
TH
2405 worker_maybe_bind_and_lock(rescuer);
2406
2407 /*
2408 * Slurp in all works issued via this workqueue and
2409 * process'em.
2410 */
2411 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2412 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2413 if (get_work_cwq(work) == cwq)
2414 move_linked_works(work, scheduled, &n);
2415
2416 process_scheduled_works(rescuer);
7576958a
TH
2417
2418 /*
2419 * Leave this gcwq. If keep_working() is %true, notify a
2420 * regular worker; otherwise, we end up with 0 concurrency
2421 * and stalling the execution.
2422 */
63d95a91
TH
2423 if (keep_working(pool))
2424 wake_up_worker(pool);
7576958a 2425
e22bee78
TH
2426 spin_unlock_irq(&gcwq->lock);
2427 }
2428
2429 schedule();
2430 goto repeat;
1da177e4
LT
2431}
2432
fc2e4d70
ON
2433struct wq_barrier {
2434 struct work_struct work;
2435 struct completion done;
2436};
2437
2438static void wq_barrier_func(struct work_struct *work)
2439{
2440 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2441 complete(&barr->done);
2442}
2443
4690c4ab
TH
2444/**
2445 * insert_wq_barrier - insert a barrier work
2446 * @cwq: cwq to insert barrier into
2447 * @barr: wq_barrier to insert
affee4b2
TH
2448 * @target: target work to attach @barr to
2449 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2450 *
affee4b2
TH
2451 * @barr is linked to @target such that @barr is completed only after
2452 * @target finishes execution. Please note that the ordering
2453 * guarantee is observed only with respect to @target and on the local
2454 * cpu.
2455 *
2456 * Currently, a queued barrier can't be canceled. This is because
2457 * try_to_grab_pending() can't determine whether the work to be
2458 * grabbed is at the head of the queue and thus can't clear LINKED
2459 * flag of the previous work while there must be a valid next work
2460 * after a work with LINKED flag set.
2461 *
2462 * Note that when @worker is non-NULL, @target may be modified
2463 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2464 *
2465 * CONTEXT:
8b03ae3c 2466 * spin_lock_irq(gcwq->lock).
4690c4ab 2467 */
83c22520 2468static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2469 struct wq_barrier *barr,
2470 struct work_struct *target, struct worker *worker)
fc2e4d70 2471{
affee4b2
TH
2472 struct list_head *head;
2473 unsigned int linked = 0;
2474
dc186ad7 2475 /*
8b03ae3c 2476 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2477 * as we know for sure that this will not trigger any of the
2478 * checks and call back into the fixup functions where we
2479 * might deadlock.
2480 */
ca1cab37 2481 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2482 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2483 init_completion(&barr->done);
83c22520 2484
affee4b2
TH
2485 /*
2486 * If @target is currently being executed, schedule the
2487 * barrier to the worker; otherwise, put it after @target.
2488 */
2489 if (worker)
2490 head = worker->scheduled.next;
2491 else {
2492 unsigned long *bits = work_data_bits(target);
2493
2494 head = target->entry.next;
2495 /* there can already be other linked works, inherit and set */
2496 linked = *bits & WORK_STRUCT_LINKED;
2497 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2498 }
2499
dc186ad7 2500 debug_work_activate(&barr->work);
affee4b2
TH
2501 insert_work(cwq, &barr->work, head,
2502 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2503}
2504
73f53c4a
TH
2505/**
2506 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2507 * @wq: workqueue being flushed
2508 * @flush_color: new flush color, < 0 for no-op
2509 * @work_color: new work color, < 0 for no-op
2510 *
2511 * Prepare cwqs for workqueue flushing.
2512 *
2513 * If @flush_color is non-negative, flush_color on all cwqs should be
2514 * -1. If no cwq has in-flight commands at the specified color, all
2515 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2516 * has in flight commands, its cwq->flush_color is set to
2517 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2518 * wakeup logic is armed and %true is returned.
2519 *
2520 * The caller should have initialized @wq->first_flusher prior to
2521 * calling this function with non-negative @flush_color. If
2522 * @flush_color is negative, no flush color update is done and %false
2523 * is returned.
2524 *
2525 * If @work_color is non-negative, all cwqs should have the same
2526 * work_color which is previous to @work_color and all will be
2527 * advanced to @work_color.
2528 *
2529 * CONTEXT:
2530 * mutex_lock(wq->flush_mutex).
2531 *
2532 * RETURNS:
2533 * %true if @flush_color >= 0 and there's something to flush. %false
2534 * otherwise.
2535 */
2536static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2537 int flush_color, int work_color)
1da177e4 2538{
73f53c4a
TH
2539 bool wait = false;
2540 unsigned int cpu;
1da177e4 2541
73f53c4a
TH
2542 if (flush_color >= 0) {
2543 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2544 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2545 }
2355b70f 2546
f3421797 2547 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2548 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bd7bdd43 2549 struct global_cwq *gcwq = cwq->pool->gcwq;
fc2e4d70 2550
8b03ae3c 2551 spin_lock_irq(&gcwq->lock);
83c22520 2552
73f53c4a
TH
2553 if (flush_color >= 0) {
2554 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2555
73f53c4a
TH
2556 if (cwq->nr_in_flight[flush_color]) {
2557 cwq->flush_color = flush_color;
2558 atomic_inc(&wq->nr_cwqs_to_flush);
2559 wait = true;
2560 }
2561 }
1da177e4 2562
73f53c4a
TH
2563 if (work_color >= 0) {
2564 BUG_ON(work_color != work_next_color(cwq->work_color));
2565 cwq->work_color = work_color;
2566 }
1da177e4 2567
8b03ae3c 2568 spin_unlock_irq(&gcwq->lock);
1da177e4 2569 }
2355b70f 2570
73f53c4a
TH
2571 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2572 complete(&wq->first_flusher->done);
14441960 2573
73f53c4a 2574 return wait;
1da177e4
LT
2575}
2576
0fcb78c2 2577/**
1da177e4 2578 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2579 * @wq: workqueue to flush
1da177e4
LT
2580 *
2581 * Forces execution of the workqueue and blocks until its completion.
2582 * This is typically used in driver shutdown handlers.
2583 *
fc2e4d70
ON
2584 * We sleep until all works which were queued on entry have been handled,
2585 * but we are not livelocked by new incoming ones.
1da177e4 2586 */
7ad5b3a5 2587void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2588{
73f53c4a
TH
2589 struct wq_flusher this_flusher = {
2590 .list = LIST_HEAD_INIT(this_flusher.list),
2591 .flush_color = -1,
2592 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2593 };
2594 int next_color;
1da177e4 2595
3295f0ef
IM
2596 lock_map_acquire(&wq->lockdep_map);
2597 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2598
2599 mutex_lock(&wq->flush_mutex);
2600
2601 /*
2602 * Start-to-wait phase
2603 */
2604 next_color = work_next_color(wq->work_color);
2605
2606 if (next_color != wq->flush_color) {
2607 /*
2608 * Color space is not full. The current work_color
2609 * becomes our flush_color and work_color is advanced
2610 * by one.
2611 */
2612 BUG_ON(!list_empty(&wq->flusher_overflow));
2613 this_flusher.flush_color = wq->work_color;
2614 wq->work_color = next_color;
2615
2616 if (!wq->first_flusher) {
2617 /* no flush in progress, become the first flusher */
2618 BUG_ON(wq->flush_color != this_flusher.flush_color);
2619
2620 wq->first_flusher = &this_flusher;
2621
2622 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2623 wq->work_color)) {
2624 /* nothing to flush, done */
2625 wq->flush_color = next_color;
2626 wq->first_flusher = NULL;
2627 goto out_unlock;
2628 }
2629 } else {
2630 /* wait in queue */
2631 BUG_ON(wq->flush_color == this_flusher.flush_color);
2632 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2633 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2634 }
2635 } else {
2636 /*
2637 * Oops, color space is full, wait on overflow queue.
2638 * The next flush completion will assign us
2639 * flush_color and transfer to flusher_queue.
2640 */
2641 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2642 }
2643
2644 mutex_unlock(&wq->flush_mutex);
2645
2646 wait_for_completion(&this_flusher.done);
2647
2648 /*
2649 * Wake-up-and-cascade phase
2650 *
2651 * First flushers are responsible for cascading flushes and
2652 * handling overflow. Non-first flushers can simply return.
2653 */
2654 if (wq->first_flusher != &this_flusher)
2655 return;
2656
2657 mutex_lock(&wq->flush_mutex);
2658
4ce48b37
TH
2659 /* we might have raced, check again with mutex held */
2660 if (wq->first_flusher != &this_flusher)
2661 goto out_unlock;
2662
73f53c4a
TH
2663 wq->first_flusher = NULL;
2664
2665 BUG_ON(!list_empty(&this_flusher.list));
2666 BUG_ON(wq->flush_color != this_flusher.flush_color);
2667
2668 while (true) {
2669 struct wq_flusher *next, *tmp;
2670
2671 /* complete all the flushers sharing the current flush color */
2672 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2673 if (next->flush_color != wq->flush_color)
2674 break;
2675 list_del_init(&next->list);
2676 complete(&next->done);
2677 }
2678
2679 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2680 wq->flush_color != work_next_color(wq->work_color));
2681
2682 /* this flush_color is finished, advance by one */
2683 wq->flush_color = work_next_color(wq->flush_color);
2684
2685 /* one color has been freed, handle overflow queue */
2686 if (!list_empty(&wq->flusher_overflow)) {
2687 /*
2688 * Assign the same color to all overflowed
2689 * flushers, advance work_color and append to
2690 * flusher_queue. This is the start-to-wait
2691 * phase for these overflowed flushers.
2692 */
2693 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2694 tmp->flush_color = wq->work_color;
2695
2696 wq->work_color = work_next_color(wq->work_color);
2697
2698 list_splice_tail_init(&wq->flusher_overflow,
2699 &wq->flusher_queue);
2700 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2701 }
2702
2703 if (list_empty(&wq->flusher_queue)) {
2704 BUG_ON(wq->flush_color != wq->work_color);
2705 break;
2706 }
2707
2708 /*
2709 * Need to flush more colors. Make the next flusher
2710 * the new first flusher and arm cwqs.
2711 */
2712 BUG_ON(wq->flush_color == wq->work_color);
2713 BUG_ON(wq->flush_color != next->flush_color);
2714
2715 list_del_init(&next->list);
2716 wq->first_flusher = next;
2717
2718 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2719 break;
2720
2721 /*
2722 * Meh... this color is already done, clear first
2723 * flusher and repeat cascading.
2724 */
2725 wq->first_flusher = NULL;
2726 }
2727
2728out_unlock:
2729 mutex_unlock(&wq->flush_mutex);
1da177e4 2730}
ae90dd5d 2731EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2732
9c5a2ba7
TH
2733/**
2734 * drain_workqueue - drain a workqueue
2735 * @wq: workqueue to drain
2736 *
2737 * Wait until the workqueue becomes empty. While draining is in progress,
2738 * only chain queueing is allowed. IOW, only currently pending or running
2739 * work items on @wq can queue further work items on it. @wq is flushed
2740 * repeatedly until it becomes empty. The number of flushing is detemined
2741 * by the depth of chaining and should be relatively short. Whine if it
2742 * takes too long.
2743 */
2744void drain_workqueue(struct workqueue_struct *wq)
2745{
2746 unsigned int flush_cnt = 0;
2747 unsigned int cpu;
2748
2749 /*
2750 * __queue_work() needs to test whether there are drainers, is much
2751 * hotter than drain_workqueue() and already looks at @wq->flags.
2752 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2753 */
2754 spin_lock(&workqueue_lock);
2755 if (!wq->nr_drainers++)
2756 wq->flags |= WQ_DRAINING;
2757 spin_unlock(&workqueue_lock);
2758reflush:
2759 flush_workqueue(wq);
2760
2761 for_each_cwq_cpu(cpu, wq) {
2762 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2763 bool drained;
9c5a2ba7 2764
bd7bdd43 2765 spin_lock_irq(&cwq->pool->gcwq->lock);
fa2563e4 2766 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
bd7bdd43 2767 spin_unlock_irq(&cwq->pool->gcwq->lock);
fa2563e4
TT
2768
2769 if (drained)
9c5a2ba7
TH
2770 continue;
2771
2772 if (++flush_cnt == 10 ||
2773 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2774 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2775 wq->name, flush_cnt);
2776 goto reflush;
2777 }
2778
2779 spin_lock(&workqueue_lock);
2780 if (!--wq->nr_drainers)
2781 wq->flags &= ~WQ_DRAINING;
2782 spin_unlock(&workqueue_lock);
2783}
2784EXPORT_SYMBOL_GPL(drain_workqueue);
2785
baf59022
TH
2786static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2787 bool wait_executing)
db700897 2788{
affee4b2 2789 struct worker *worker = NULL;
8b03ae3c 2790 struct global_cwq *gcwq;
db700897 2791 struct cpu_workqueue_struct *cwq;
db700897
ON
2792
2793 might_sleep();
7a22ad75
TH
2794 gcwq = get_work_gcwq(work);
2795 if (!gcwq)
baf59022 2796 return false;
db700897 2797
8b03ae3c 2798 spin_lock_irq(&gcwq->lock);
db700897
ON
2799 if (!list_empty(&work->entry)) {
2800 /*
2801 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2802 * If it was re-queued to a different gcwq under us, we
2803 * are not going to wait.
db700897
ON
2804 */
2805 smp_rmb();
7a22ad75 2806 cwq = get_work_cwq(work);
bd7bdd43 2807 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
4690c4ab 2808 goto already_gone;
baf59022 2809 } else if (wait_executing) {
7a22ad75 2810 worker = find_worker_executing_work(gcwq, work);
affee4b2 2811 if (!worker)
4690c4ab 2812 goto already_gone;
7a22ad75 2813 cwq = worker->current_cwq;
baf59022
TH
2814 } else
2815 goto already_gone;
db700897 2816
baf59022 2817 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2818 spin_unlock_irq(&gcwq->lock);
7a22ad75 2819
e159489b
TH
2820 /*
2821 * If @max_active is 1 or rescuer is in use, flushing another work
2822 * item on the same workqueue may lead to deadlock. Make sure the
2823 * flusher is not running on the same workqueue by verifying write
2824 * access.
2825 */
2826 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2827 lock_map_acquire(&cwq->wq->lockdep_map);
2828 else
2829 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2830 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2831
401a8d04 2832 return true;
4690c4ab 2833already_gone:
8b03ae3c 2834 spin_unlock_irq(&gcwq->lock);
401a8d04 2835 return false;
db700897 2836}
baf59022
TH
2837
2838/**
2839 * flush_work - wait for a work to finish executing the last queueing instance
2840 * @work: the work to flush
2841 *
2842 * Wait until @work has finished execution. This function considers
2843 * only the last queueing instance of @work. If @work has been
2844 * enqueued across different CPUs on a non-reentrant workqueue or on
2845 * multiple workqueues, @work might still be executing on return on
2846 * some of the CPUs from earlier queueing.
2847 *
2848 * If @work was queued only on a non-reentrant, ordered or unbound
2849 * workqueue, @work is guaranteed to be idle on return if it hasn't
2850 * been requeued since flush started.
2851 *
2852 * RETURNS:
2853 * %true if flush_work() waited for the work to finish execution,
2854 * %false if it was already idle.
2855 */
2856bool flush_work(struct work_struct *work)
2857{
2858 struct wq_barrier barr;
2859
0976dfc1
SB
2860 lock_map_acquire(&work->lockdep_map);
2861 lock_map_release(&work->lockdep_map);
2862
baf59022
TH
2863 if (start_flush_work(work, &barr, true)) {
2864 wait_for_completion(&barr.done);
2865 destroy_work_on_stack(&barr.work);
2866 return true;
2867 } else
2868 return false;
2869}
db700897
ON
2870EXPORT_SYMBOL_GPL(flush_work);
2871
401a8d04
TH
2872static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2873{
2874 struct wq_barrier barr;
2875 struct worker *worker;
2876
2877 spin_lock_irq(&gcwq->lock);
2878
2879 worker = find_worker_executing_work(gcwq, work);
2880 if (unlikely(worker))
2881 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2882
2883 spin_unlock_irq(&gcwq->lock);
2884
2885 if (unlikely(worker)) {
2886 wait_for_completion(&barr.done);
2887 destroy_work_on_stack(&barr.work);
2888 return true;
2889 } else
2890 return false;
2891}
2892
2893static bool wait_on_work(struct work_struct *work)
2894{
2895 bool ret = false;
2896 int cpu;
2897
2898 might_sleep();
2899
2900 lock_map_acquire(&work->lockdep_map);
2901 lock_map_release(&work->lockdep_map);
2902
2903 for_each_gcwq_cpu(cpu)
2904 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2905 return ret;
2906}
2907
09383498
TH
2908/**
2909 * flush_work_sync - wait until a work has finished execution
2910 * @work: the work to flush
2911 *
2912 * Wait until @work has finished execution. On return, it's
2913 * guaranteed that all queueing instances of @work which happened
2914 * before this function is called are finished. In other words, if
2915 * @work hasn't been requeued since this function was called, @work is
2916 * guaranteed to be idle on return.
2917 *
2918 * RETURNS:
2919 * %true if flush_work_sync() waited for the work to finish execution,
2920 * %false if it was already idle.
2921 */
2922bool flush_work_sync(struct work_struct *work)
2923{
2924 struct wq_barrier barr;
2925 bool pending, waited;
2926
2927 /* we'll wait for executions separately, queue barr only if pending */
2928 pending = start_flush_work(work, &barr, false);
2929
2930 /* wait for executions to finish */
2931 waited = wait_on_work(work);
2932
2933 /* wait for the pending one */
2934 if (pending) {
2935 wait_for_completion(&barr.done);
2936 destroy_work_on_stack(&barr.work);
2937 }
2938
2939 return pending || waited;
2940}
2941EXPORT_SYMBOL_GPL(flush_work_sync);
2942
36e227d2 2943static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2944{
bbb68dfa 2945 unsigned long flags;
1f1f642e
ON
2946 int ret;
2947
2948 do {
bbb68dfa
TH
2949 ret = try_to_grab_pending(work, is_dwork, &flags);
2950 /*
2951 * If someone else is canceling, wait for the same event it
2952 * would be waiting for before retrying.
2953 */
2954 if (unlikely(ret == -ENOENT))
2955 wait_on_work(work);
1f1f642e
ON
2956 } while (unlikely(ret < 0));
2957
bbb68dfa
TH
2958 /* tell other tasks trying to grab @work to back off */
2959 mark_work_canceling(work);
2960 local_irq_restore(flags);
2961
2962 wait_on_work(work);
7a22ad75 2963 clear_work_data(work);
1f1f642e
ON
2964 return ret;
2965}
2966
6e84d644 2967/**
401a8d04
TH
2968 * cancel_work_sync - cancel a work and wait for it to finish
2969 * @work: the work to cancel
6e84d644 2970 *
401a8d04
TH
2971 * Cancel @work and wait for its execution to finish. This function
2972 * can be used even if the work re-queues itself or migrates to
2973 * another workqueue. On return from this function, @work is
2974 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2975 *
401a8d04
TH
2976 * cancel_work_sync(&delayed_work->work) must not be used for
2977 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2978 *
401a8d04 2979 * The caller must ensure that the workqueue on which @work was last
6e84d644 2980 * queued can't be destroyed before this function returns.
401a8d04
TH
2981 *
2982 * RETURNS:
2983 * %true if @work was pending, %false otherwise.
6e84d644 2984 */
401a8d04 2985bool cancel_work_sync(struct work_struct *work)
6e84d644 2986{
36e227d2 2987 return __cancel_work_timer(work, false);
b89deed3 2988}
28e53bdd 2989EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2990
6e84d644 2991/**
401a8d04
TH
2992 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2993 * @dwork: the delayed work to flush
6e84d644 2994 *
401a8d04
TH
2995 * Delayed timer is cancelled and the pending work is queued for
2996 * immediate execution. Like flush_work(), this function only
2997 * considers the last queueing instance of @dwork.
1f1f642e 2998 *
401a8d04
TH
2999 * RETURNS:
3000 * %true if flush_work() waited for the work to finish execution,
3001 * %false if it was already idle.
6e84d644 3002 */
401a8d04
TH
3003bool flush_delayed_work(struct delayed_work *dwork)
3004{
8930caba 3005 local_irq_disable();
401a8d04 3006 if (del_timer_sync(&dwork->timer))
1265057f 3007 __queue_work(dwork->cpu,
401a8d04 3008 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 3009 local_irq_enable();
401a8d04
TH
3010 return flush_work(&dwork->work);
3011}
3012EXPORT_SYMBOL(flush_delayed_work);
3013
09383498
TH
3014/**
3015 * flush_delayed_work_sync - wait for a dwork to finish
3016 * @dwork: the delayed work to flush
3017 *
3018 * Delayed timer is cancelled and the pending work is queued for
3019 * execution immediately. Other than timer handling, its behavior
3020 * is identical to flush_work_sync().
3021 *
3022 * RETURNS:
3023 * %true if flush_work_sync() waited for the work to finish execution,
3024 * %false if it was already idle.
3025 */
3026bool flush_delayed_work_sync(struct delayed_work *dwork)
3027{
8930caba 3028 local_irq_disable();
09383498 3029 if (del_timer_sync(&dwork->timer))
1265057f 3030 __queue_work(dwork->cpu,
09383498 3031 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 3032 local_irq_enable();
09383498
TH
3033 return flush_work_sync(&dwork->work);
3034}
3035EXPORT_SYMBOL(flush_delayed_work_sync);
3036
401a8d04
TH
3037/**
3038 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3039 * @dwork: the delayed work cancel
3040 *
3041 * This is cancel_work_sync() for delayed works.
3042 *
3043 * RETURNS:
3044 * %true if @dwork was pending, %false otherwise.
3045 */
3046bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3047{
36e227d2 3048 return __cancel_work_timer(&dwork->work, true);
6e84d644 3049}
f5a421a4 3050EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3051
d4283e93 3052/**
0a13c00e
TH
3053 * schedule_work_on - put work task on a specific cpu
3054 * @cpu: cpu to put the work task on
3055 * @work: job to be done
3056 *
3057 * This puts a job on a specific cpu
3058 */
d4283e93 3059bool schedule_work_on(int cpu, struct work_struct *work)
0a13c00e
TH
3060{
3061 return queue_work_on(cpu, system_wq, work);
3062}
3063EXPORT_SYMBOL(schedule_work_on);
3064
0fcb78c2
REB
3065/**
3066 * schedule_work - put work task in global workqueue
3067 * @work: job to be done
3068 *
d4283e93
TH
3069 * Returns %false if @work was already on the kernel-global workqueue and
3070 * %true otherwise.
5b0f437d
BVA
3071 *
3072 * This puts a job in the kernel-global workqueue if it was not already
3073 * queued and leaves it in the same position on the kernel-global
3074 * workqueue otherwise.
0fcb78c2 3075 */
d4283e93 3076bool schedule_work(struct work_struct *work)
1da177e4 3077{
d320c038 3078 return queue_work(system_wq, work);
1da177e4 3079}
ae90dd5d 3080EXPORT_SYMBOL(schedule_work);
1da177e4 3081
0a13c00e
TH
3082/**
3083 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3084 * @cpu: cpu to use
3085 * @dwork: job to be done
3086 * @delay: number of jiffies to wait
c1a220e7 3087 *
0a13c00e
TH
3088 * After waiting for a given time this puts a job in the kernel-global
3089 * workqueue on the specified CPU.
c1a220e7 3090 */
d4283e93
TH
3091bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3092 unsigned long delay)
c1a220e7 3093{
0a13c00e 3094 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
c1a220e7 3095}
0a13c00e 3096EXPORT_SYMBOL(schedule_delayed_work_on);
c1a220e7 3097
0fcb78c2
REB
3098/**
3099 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3100 * @dwork: job to be done
3101 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3102 *
3103 * After waiting for a given time this puts a job in the kernel-global
3104 * workqueue.
3105 */
d4283e93 3106bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3107{
d320c038 3108 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3109}
ae90dd5d 3110EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3111
b6136773 3112/**
31ddd871 3113 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3114 * @func: the function to call
b6136773 3115 *
31ddd871
TH
3116 * schedule_on_each_cpu() executes @func on each online CPU using the
3117 * system workqueue and blocks until all CPUs have completed.
b6136773 3118 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3119 *
3120 * RETURNS:
3121 * 0 on success, -errno on failure.
b6136773 3122 */
65f27f38 3123int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3124{
3125 int cpu;
38f51568 3126 struct work_struct __percpu *works;
15316ba8 3127
b6136773
AM
3128 works = alloc_percpu(struct work_struct);
3129 if (!works)
15316ba8 3130 return -ENOMEM;
b6136773 3131
93981800
TH
3132 get_online_cpus();
3133
15316ba8 3134 for_each_online_cpu(cpu) {
9bfb1839
IM
3135 struct work_struct *work = per_cpu_ptr(works, cpu);
3136
3137 INIT_WORK(work, func);
b71ab8c2 3138 schedule_work_on(cpu, work);
65a64464 3139 }
93981800
TH
3140
3141 for_each_online_cpu(cpu)
3142 flush_work(per_cpu_ptr(works, cpu));
3143
95402b38 3144 put_online_cpus();
b6136773 3145 free_percpu(works);
15316ba8
CL
3146 return 0;
3147}
3148
eef6a7d5
AS
3149/**
3150 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3151 *
3152 * Forces execution of the kernel-global workqueue and blocks until its
3153 * completion.
3154 *
3155 * Think twice before calling this function! It's very easy to get into
3156 * trouble if you don't take great care. Either of the following situations
3157 * will lead to deadlock:
3158 *
3159 * One of the work items currently on the workqueue needs to acquire
3160 * a lock held by your code or its caller.
3161 *
3162 * Your code is running in the context of a work routine.
3163 *
3164 * They will be detected by lockdep when they occur, but the first might not
3165 * occur very often. It depends on what work items are on the workqueue and
3166 * what locks they need, which you have no control over.
3167 *
3168 * In most situations flushing the entire workqueue is overkill; you merely
3169 * need to know that a particular work item isn't queued and isn't running.
3170 * In such cases you should use cancel_delayed_work_sync() or
3171 * cancel_work_sync() instead.
3172 */
1da177e4
LT
3173void flush_scheduled_work(void)
3174{
d320c038 3175 flush_workqueue(system_wq);
1da177e4 3176}
ae90dd5d 3177EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3178
1fa44eca
JB
3179/**
3180 * execute_in_process_context - reliably execute the routine with user context
3181 * @fn: the function to execute
1fa44eca
JB
3182 * @ew: guaranteed storage for the execute work structure (must
3183 * be available when the work executes)
3184 *
3185 * Executes the function immediately if process context is available,
3186 * otherwise schedules the function for delayed execution.
3187 *
3188 * Returns: 0 - function was executed
3189 * 1 - function was scheduled for execution
3190 */
65f27f38 3191int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3192{
3193 if (!in_interrupt()) {
65f27f38 3194 fn(&ew->work);
1fa44eca
JB
3195 return 0;
3196 }
3197
65f27f38 3198 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3199 schedule_work(&ew->work);
3200
3201 return 1;
3202}
3203EXPORT_SYMBOL_GPL(execute_in_process_context);
3204
1da177e4
LT
3205int keventd_up(void)
3206{
d320c038 3207 return system_wq != NULL;
1da177e4
LT
3208}
3209
bdbc5dd7 3210static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3211{
65a64464 3212 /*
0f900049
TH
3213 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3214 * Make sure that the alignment isn't lower than that of
3215 * unsigned long long.
65a64464 3216 */
0f900049
TH
3217 const size_t size = sizeof(struct cpu_workqueue_struct);
3218 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3219 __alignof__(unsigned long long));
65a64464 3220
e06ffa1e 3221 if (!(wq->flags & WQ_UNBOUND))
f3421797 3222 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3223 else {
f3421797
TH
3224 void *ptr;
3225
3226 /*
3227 * Allocate enough room to align cwq and put an extra
3228 * pointer at the end pointing back to the originally
3229 * allocated pointer which will be used for free.
3230 */
3231 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3232 if (ptr) {
3233 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3234 *(void **)(wq->cpu_wq.single + 1) = ptr;
3235 }
bdbc5dd7 3236 }
f3421797 3237
0415b00d 3238 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3239 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3240 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3241}
3242
bdbc5dd7 3243static void free_cwqs(struct workqueue_struct *wq)
0f900049 3244{
e06ffa1e 3245 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3246 free_percpu(wq->cpu_wq.pcpu);
3247 else if (wq->cpu_wq.single) {
3248 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3249 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3250 }
0f900049
TH
3251}
3252
f3421797
TH
3253static int wq_clamp_max_active(int max_active, unsigned int flags,
3254 const char *name)
b71ab8c2 3255{
f3421797
TH
3256 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3257
3258 if (max_active < 1 || max_active > lim)
b71ab8c2
TH
3259 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
3260 "is out of range, clamping between %d and %d\n",
f3421797 3261 max_active, name, 1, lim);
b71ab8c2 3262
f3421797 3263 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3264}
3265
b196be89 3266struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3267 unsigned int flags,
3268 int max_active,
3269 struct lock_class_key *key,
b196be89 3270 const char *lock_name, ...)
1da177e4 3271{
b196be89 3272 va_list args, args1;
1da177e4 3273 struct workqueue_struct *wq;
c34056a3 3274 unsigned int cpu;
b196be89
TH
3275 size_t namelen;
3276
3277 /* determine namelen, allocate wq and format name */
3278 va_start(args, lock_name);
3279 va_copy(args1, args);
3280 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3281
3282 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3283 if (!wq)
3284 goto err;
3285
3286 vsnprintf(wq->name, namelen, fmt, args1);
3287 va_end(args);
3288 va_end(args1);
1da177e4 3289
6370a6ad
TH
3290 /*
3291 * Workqueues which may be used during memory reclaim should
3292 * have a rescuer to guarantee forward progress.
3293 */
3294 if (flags & WQ_MEM_RECLAIM)
3295 flags |= WQ_RESCUER;
3296
d320c038 3297 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3298 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3299
b196be89 3300 /* init wq */
97e37d7b 3301 wq->flags = flags;
a0a1a5fd 3302 wq->saved_max_active = max_active;
73f53c4a
TH
3303 mutex_init(&wq->flush_mutex);
3304 atomic_set(&wq->nr_cwqs_to_flush, 0);
3305 INIT_LIST_HEAD(&wq->flusher_queue);
3306 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3307
eb13ba87 3308 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3309 INIT_LIST_HEAD(&wq->list);
3af24433 3310
bdbc5dd7
TH
3311 if (alloc_cwqs(wq) < 0)
3312 goto err;
3313
f3421797 3314 for_each_cwq_cpu(cpu, wq) {
1537663f 3315 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3316 struct global_cwq *gcwq = get_gcwq(cpu);
3270476a 3317 int pool_idx = (bool)(flags & WQ_HIGHPRI);
1537663f 3318
0f900049 3319 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3270476a 3320 cwq->pool = &gcwq->pools[pool_idx];
c34056a3 3321 cwq->wq = wq;
73f53c4a 3322 cwq->flush_color = -1;
1e19ffc6 3323 cwq->max_active = max_active;
1e19ffc6 3324 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3325 }
1537663f 3326
e22bee78
TH
3327 if (flags & WQ_RESCUER) {
3328 struct worker *rescuer;
3329
f2e005aa 3330 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3331 goto err;
3332
3333 wq->rescuer = rescuer = alloc_worker();
3334 if (!rescuer)
3335 goto err;
3336
b196be89
TH
3337 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3338 wq->name);
e22bee78
TH
3339 if (IS_ERR(rescuer->task))
3340 goto err;
3341
e22bee78
TH
3342 rescuer->task->flags |= PF_THREAD_BOUND;
3343 wake_up_process(rescuer->task);
3af24433
ON
3344 }
3345
a0a1a5fd
TH
3346 /*
3347 * workqueue_lock protects global freeze state and workqueues
3348 * list. Grab it, set max_active accordingly and add the new
3349 * workqueue to workqueues list.
3350 */
1537663f 3351 spin_lock(&workqueue_lock);
a0a1a5fd 3352
58a69cb4 3353 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3354 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3355 get_cwq(cpu, wq)->max_active = 0;
3356
1537663f 3357 list_add(&wq->list, &workqueues);
a0a1a5fd 3358
1537663f
TH
3359 spin_unlock(&workqueue_lock);
3360
3af24433 3361 return wq;
4690c4ab
TH
3362err:
3363 if (wq) {
bdbc5dd7 3364 free_cwqs(wq);
f2e005aa 3365 free_mayday_mask(wq->mayday_mask);
e22bee78 3366 kfree(wq->rescuer);
4690c4ab
TH
3367 kfree(wq);
3368 }
3369 return NULL;
3af24433 3370}
d320c038 3371EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3372
3af24433
ON
3373/**
3374 * destroy_workqueue - safely terminate a workqueue
3375 * @wq: target workqueue
3376 *
3377 * Safely destroy a workqueue. All work currently pending will be done first.
3378 */
3379void destroy_workqueue(struct workqueue_struct *wq)
3380{
c8e55f36 3381 unsigned int cpu;
3af24433 3382
9c5a2ba7
TH
3383 /* drain it before proceeding with destruction */
3384 drain_workqueue(wq);
c8efcc25 3385
a0a1a5fd
TH
3386 /*
3387 * wq list is used to freeze wq, remove from list after
3388 * flushing is complete in case freeze races us.
3389 */
95402b38 3390 spin_lock(&workqueue_lock);
b1f4ec17 3391 list_del(&wq->list);
95402b38 3392 spin_unlock(&workqueue_lock);
3af24433 3393
e22bee78 3394 /* sanity check */
f3421797 3395 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3396 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3397 int i;
3398
73f53c4a
TH
3399 for (i = 0; i < WORK_NR_COLORS; i++)
3400 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3401 BUG_ON(cwq->nr_active);
3402 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3403 }
9b41ea72 3404
e22bee78
TH
3405 if (wq->flags & WQ_RESCUER) {
3406 kthread_stop(wq->rescuer->task);
f2e005aa 3407 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3408 kfree(wq->rescuer);
e22bee78
TH
3409 }
3410
bdbc5dd7 3411 free_cwqs(wq);
3af24433
ON
3412 kfree(wq);
3413}
3414EXPORT_SYMBOL_GPL(destroy_workqueue);
3415
dcd989cb
TH
3416/**
3417 * workqueue_set_max_active - adjust max_active of a workqueue
3418 * @wq: target workqueue
3419 * @max_active: new max_active value.
3420 *
3421 * Set max_active of @wq to @max_active.
3422 *
3423 * CONTEXT:
3424 * Don't call from IRQ context.
3425 */
3426void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3427{
3428 unsigned int cpu;
3429
f3421797 3430 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3431
3432 spin_lock(&workqueue_lock);
3433
3434 wq->saved_max_active = max_active;
3435
f3421797 3436 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
3437 struct global_cwq *gcwq = get_gcwq(cpu);
3438
3439 spin_lock_irq(&gcwq->lock);
3440
58a69cb4 3441 if (!(wq->flags & WQ_FREEZABLE) ||
dcd989cb
TH
3442 !(gcwq->flags & GCWQ_FREEZING))
3443 get_cwq(gcwq->cpu, wq)->max_active = max_active;
9bfb1839 3444
dcd989cb 3445 spin_unlock_irq(&gcwq->lock);
65a64464 3446 }
93981800 3447
dcd989cb 3448 spin_unlock(&workqueue_lock);
15316ba8 3449}
dcd989cb 3450EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3451
eef6a7d5 3452/**
dcd989cb
TH
3453 * workqueue_congested - test whether a workqueue is congested
3454 * @cpu: CPU in question
3455 * @wq: target workqueue
eef6a7d5 3456 *
dcd989cb
TH
3457 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3458 * no synchronization around this function and the test result is
3459 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3460 *
dcd989cb
TH
3461 * RETURNS:
3462 * %true if congested, %false otherwise.
eef6a7d5 3463 */
dcd989cb 3464bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3465{
dcd989cb
TH
3466 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3467
3468 return !list_empty(&cwq->delayed_works);
1da177e4 3469}
dcd989cb 3470EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3471
1fa44eca 3472/**
dcd989cb
TH
3473 * work_cpu - return the last known associated cpu for @work
3474 * @work: the work of interest
1fa44eca 3475 *
dcd989cb 3476 * RETURNS:
bdbc5dd7 3477 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3478 */
dcd989cb 3479unsigned int work_cpu(struct work_struct *work)
1fa44eca 3480{
dcd989cb 3481 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3482
bdbc5dd7 3483 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3484}
dcd989cb 3485EXPORT_SYMBOL_GPL(work_cpu);
1fa44eca 3486
dcd989cb
TH
3487/**
3488 * work_busy - test whether a work is currently pending or running
3489 * @work: the work to be tested
3490 *
3491 * Test whether @work is currently pending or running. There is no
3492 * synchronization around this function and the test result is
3493 * unreliable and only useful as advisory hints or for debugging.
3494 * Especially for reentrant wqs, the pending state might hide the
3495 * running state.
3496 *
3497 * RETURNS:
3498 * OR'd bitmask of WORK_BUSY_* bits.
3499 */
3500unsigned int work_busy(struct work_struct *work)
1da177e4 3501{
dcd989cb
TH
3502 struct global_cwq *gcwq = get_work_gcwq(work);
3503 unsigned long flags;
3504 unsigned int ret = 0;
1da177e4 3505
dcd989cb
TH
3506 if (!gcwq)
3507 return false;
1da177e4 3508
dcd989cb 3509 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3510
dcd989cb
TH
3511 if (work_pending(work))
3512 ret |= WORK_BUSY_PENDING;
3513 if (find_worker_executing_work(gcwq, work))
3514 ret |= WORK_BUSY_RUNNING;
1da177e4 3515
dcd989cb 3516 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3517
dcd989cb 3518 return ret;
1da177e4 3519}
dcd989cb 3520EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3521
db7bccf4
TH
3522/*
3523 * CPU hotplug.
3524 *
e22bee78
TH
3525 * There are two challenges in supporting CPU hotplug. Firstly, there
3526 * are a lot of assumptions on strong associations among work, cwq and
3527 * gcwq which make migrating pending and scheduled works very
3528 * difficult to implement without impacting hot paths. Secondly,
3529 * gcwqs serve mix of short, long and very long running works making
3530 * blocked draining impractical.
3531 *
628c78e7
TH
3532 * This is solved by allowing a gcwq to be disassociated from the CPU
3533 * running as an unbound one and allowing it to be reattached later if the
3534 * cpu comes back online.
db7bccf4 3535 */
1da177e4 3536
60373152 3537/* claim manager positions of all pools */
8db25e78 3538static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
60373152
TH
3539{
3540 struct worker_pool *pool;
3541
3542 for_each_worker_pool(pool, gcwq)
3543 mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
8db25e78 3544 spin_lock_irq(&gcwq->lock);
60373152
TH
3545}
3546
3547/* release manager positions */
8db25e78 3548static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
60373152
TH
3549{
3550 struct worker_pool *pool;
3551
8db25e78 3552 spin_unlock_irq(&gcwq->lock);
60373152
TH
3553 for_each_worker_pool(pool, gcwq)
3554 mutex_unlock(&pool->manager_mutex);
3555}
3556
628c78e7 3557static void gcwq_unbind_fn(struct work_struct *work)
3af24433 3558{
628c78e7 3559 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
4ce62e9e 3560 struct worker_pool *pool;
db7bccf4
TH
3561 struct worker *worker;
3562 struct hlist_node *pos;
3563 int i;
3af24433 3564
db7bccf4
TH
3565 BUG_ON(gcwq->cpu != smp_processor_id());
3566
8db25e78 3567 gcwq_claim_management_and_lock(gcwq);
3af24433 3568
f2d5a0ee
TH
3569 /*
3570 * We've claimed all manager positions. Make all workers unbound
3571 * and set DISASSOCIATED. Before this, all workers except for the
3572 * ones which are still executing works from before the last CPU
3573 * down must be on the cpu. After this, they may become diasporas.
3574 */
60373152 3575 for_each_worker_pool(pool, gcwq)
4ce62e9e 3576 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3577 worker->flags |= WORKER_UNBOUND;
3af24433 3578
db7bccf4 3579 for_each_busy_worker(worker, i, pos, gcwq)
403c821d 3580 worker->flags |= WORKER_UNBOUND;
06ba38a9 3581
f2d5a0ee
TH
3582 gcwq->flags |= GCWQ_DISASSOCIATED;
3583
8db25e78 3584 gcwq_release_management_and_unlock(gcwq);
628c78e7 3585
e22bee78 3586 /*
403c821d 3587 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3588 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3589 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3590 */
e22bee78 3591 schedule();
06ba38a9 3592
e22bee78 3593 /*
628c78e7
TH
3594 * Sched callbacks are disabled now. Zap nr_running. After this,
3595 * nr_running stays zero and need_more_worker() and keep_working()
3596 * are always true as long as the worklist is not empty. @gcwq now
3597 * behaves as unbound (in terms of concurrency management) gcwq
3598 * which is served by workers tied to the CPU.
3599 *
3600 * On return from this function, the current worker would trigger
3601 * unbound chain execution of pending work items if other workers
3602 * didn't already.
e22bee78 3603 */
4ce62e9e
TH
3604 for_each_worker_pool(pool, gcwq)
3605 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3606}
3af24433 3607
8db25e78
TH
3608/*
3609 * Workqueues should be brought up before normal priority CPU notifiers.
3610 * This will be registered high priority CPU notifier.
3611 */
3612static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3613 unsigned long action,
3614 void *hcpu)
3af24433
ON
3615{
3616 unsigned int cpu = (unsigned long)hcpu;
db7bccf4 3617 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3618 struct worker_pool *pool;
3ce63377 3619
8db25e78 3620 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3621 case CPU_UP_PREPARE:
4ce62e9e 3622 for_each_worker_pool(pool, gcwq) {
3ce63377
TH
3623 struct worker *worker;
3624
3625 if (pool->nr_workers)
3626 continue;
3627
3628 worker = create_worker(pool);
3629 if (!worker)
3630 return NOTIFY_BAD;
3631
3632 spin_lock_irq(&gcwq->lock);
3633 start_worker(worker);
3634 spin_unlock_irq(&gcwq->lock);
3af24433 3635 }
8db25e78 3636 break;
3af24433 3637
db7bccf4
TH
3638 case CPU_DOWN_FAILED:
3639 case CPU_ONLINE:
8db25e78 3640 gcwq_claim_management_and_lock(gcwq);
bc2ae0f5 3641 gcwq->flags &= ~GCWQ_DISASSOCIATED;
25511a47 3642 rebind_workers(gcwq);
8db25e78 3643 gcwq_release_management_and_unlock(gcwq);
db7bccf4 3644 break;
00dfcaf7 3645 }
65758202
TH
3646 return NOTIFY_OK;
3647}
3648
3649/*
3650 * Workqueues should be brought down after normal priority CPU notifiers.
3651 * This will be registered as low priority CPU notifier.
3652 */
3653static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3654 unsigned long action,
3655 void *hcpu)
3656{
8db25e78
TH
3657 unsigned int cpu = (unsigned long)hcpu;
3658 struct work_struct unbind_work;
3659
65758202
TH
3660 switch (action & ~CPU_TASKS_FROZEN) {
3661 case CPU_DOWN_PREPARE:
8db25e78
TH
3662 /* unbinding should happen on the local CPU */
3663 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3664 schedule_work_on(cpu, &unbind_work);
3665 flush_work(&unbind_work);
3666 break;
65758202
TH
3667 }
3668 return NOTIFY_OK;
3669}
3670
2d3854a3 3671#ifdef CONFIG_SMP
8ccad40d 3672
2d3854a3 3673struct work_for_cpu {
6b44003e 3674 struct completion completion;
2d3854a3
RR
3675 long (*fn)(void *);
3676 void *arg;
3677 long ret;
3678};
3679
6b44003e 3680static int do_work_for_cpu(void *_wfc)
2d3854a3 3681{
6b44003e 3682 struct work_for_cpu *wfc = _wfc;
2d3854a3 3683 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
3684 complete(&wfc->completion);
3685 return 0;
2d3854a3
RR
3686}
3687
3688/**
3689 * work_on_cpu - run a function in user context on a particular cpu
3690 * @cpu: the cpu to run on
3691 * @fn: the function to run
3692 * @arg: the function arg
3693 *
31ad9081
RR
3694 * This will return the value @fn returns.
3695 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3696 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3697 */
3698long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3699{
6b44003e
AM
3700 struct task_struct *sub_thread;
3701 struct work_for_cpu wfc = {
3702 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3703 .fn = fn,
3704 .arg = arg,
3705 };
3706
3707 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3708 if (IS_ERR(sub_thread))
3709 return PTR_ERR(sub_thread);
3710 kthread_bind(sub_thread, cpu);
3711 wake_up_process(sub_thread);
3712 wait_for_completion(&wfc.completion);
2d3854a3
RR
3713 return wfc.ret;
3714}
3715EXPORT_SYMBOL_GPL(work_on_cpu);
3716#endif /* CONFIG_SMP */
3717
a0a1a5fd
TH
3718#ifdef CONFIG_FREEZER
3719
3720/**
3721 * freeze_workqueues_begin - begin freezing workqueues
3722 *
58a69cb4
TH
3723 * Start freezing workqueues. After this function returns, all freezable
3724 * workqueues will queue new works to their frozen_works list instead of
3725 * gcwq->worklist.
a0a1a5fd
TH
3726 *
3727 * CONTEXT:
8b03ae3c 3728 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3729 */
3730void freeze_workqueues_begin(void)
3731{
a0a1a5fd
TH
3732 unsigned int cpu;
3733
3734 spin_lock(&workqueue_lock);
3735
3736 BUG_ON(workqueue_freezing);
3737 workqueue_freezing = true;
3738
f3421797 3739 for_each_gcwq_cpu(cpu) {
8b03ae3c 3740 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3741 struct workqueue_struct *wq;
8b03ae3c
TH
3742
3743 spin_lock_irq(&gcwq->lock);
3744
db7bccf4
TH
3745 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3746 gcwq->flags |= GCWQ_FREEZING;
3747
a0a1a5fd
TH
3748 list_for_each_entry(wq, &workqueues, list) {
3749 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3750
58a69cb4 3751 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3752 cwq->max_active = 0;
a0a1a5fd 3753 }
8b03ae3c
TH
3754
3755 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3756 }
3757
3758 spin_unlock(&workqueue_lock);
3759}
3760
3761/**
58a69cb4 3762 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3763 *
3764 * Check whether freezing is complete. This function must be called
3765 * between freeze_workqueues_begin() and thaw_workqueues().
3766 *
3767 * CONTEXT:
3768 * Grabs and releases workqueue_lock.
3769 *
3770 * RETURNS:
58a69cb4
TH
3771 * %true if some freezable workqueues are still busy. %false if freezing
3772 * is complete.
a0a1a5fd
TH
3773 */
3774bool freeze_workqueues_busy(void)
3775{
a0a1a5fd
TH
3776 unsigned int cpu;
3777 bool busy = false;
3778
3779 spin_lock(&workqueue_lock);
3780
3781 BUG_ON(!workqueue_freezing);
3782
f3421797 3783 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3784 struct workqueue_struct *wq;
a0a1a5fd
TH
3785 /*
3786 * nr_active is monotonically decreasing. It's safe
3787 * to peek without lock.
3788 */
3789 list_for_each_entry(wq, &workqueues, list) {
3790 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3791
58a69cb4 3792 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3793 continue;
3794
3795 BUG_ON(cwq->nr_active < 0);
3796 if (cwq->nr_active) {
3797 busy = true;
3798 goto out_unlock;
3799 }
3800 }
3801 }
3802out_unlock:
3803 spin_unlock(&workqueue_lock);
3804 return busy;
3805}
3806
3807/**
3808 * thaw_workqueues - thaw workqueues
3809 *
3810 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3811 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3812 *
3813 * CONTEXT:
8b03ae3c 3814 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3815 */
3816void thaw_workqueues(void)
3817{
a0a1a5fd
TH
3818 unsigned int cpu;
3819
3820 spin_lock(&workqueue_lock);
3821
3822 if (!workqueue_freezing)
3823 goto out_unlock;
3824
f3421797 3825 for_each_gcwq_cpu(cpu) {
8b03ae3c 3826 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3827 struct worker_pool *pool;
bdbc5dd7 3828 struct workqueue_struct *wq;
8b03ae3c
TH
3829
3830 spin_lock_irq(&gcwq->lock);
3831
db7bccf4
TH
3832 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3833 gcwq->flags &= ~GCWQ_FREEZING;
3834
a0a1a5fd
TH
3835 list_for_each_entry(wq, &workqueues, list) {
3836 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3837
58a69cb4 3838 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3839 continue;
3840
a0a1a5fd
TH
3841 /* restore max_active and repopulate worklist */
3842 cwq->max_active = wq->saved_max_active;
3843
3844 while (!list_empty(&cwq->delayed_works) &&
3845 cwq->nr_active < cwq->max_active)
3846 cwq_activate_first_delayed(cwq);
a0a1a5fd 3847 }
8b03ae3c 3848
4ce62e9e
TH
3849 for_each_worker_pool(pool, gcwq)
3850 wake_up_worker(pool);
e22bee78 3851
8b03ae3c 3852 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3853 }
3854
3855 workqueue_freezing = false;
3856out_unlock:
3857 spin_unlock(&workqueue_lock);
3858}
3859#endif /* CONFIG_FREEZER */
3860
6ee0578b 3861static int __init init_workqueues(void)
1da177e4 3862{
c34056a3 3863 unsigned int cpu;
c8e55f36 3864 int i;
c34056a3 3865
b5490077
TH
3866 /* make sure we have enough bits for OFFQ CPU number */
3867 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3868 WORK_CPU_LAST);
3869
65758202
TH
3870 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3871 cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c
TH
3872
3873 /* initialize gcwqs */
f3421797 3874 for_each_gcwq_cpu(cpu) {
8b03ae3c 3875 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3876 struct worker_pool *pool;
8b03ae3c
TH
3877
3878 spin_lock_init(&gcwq->lock);
3879 gcwq->cpu = cpu;
477a3c33 3880 gcwq->flags |= GCWQ_DISASSOCIATED;
8b03ae3c 3881
c8e55f36
TH
3882 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3883 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3884
4ce62e9e
TH
3885 for_each_worker_pool(pool, gcwq) {
3886 pool->gcwq = gcwq;
3887 INIT_LIST_HEAD(&pool->worklist);
3888 INIT_LIST_HEAD(&pool->idle_list);
e7577c50 3889
4ce62e9e
TH
3890 init_timer_deferrable(&pool->idle_timer);
3891 pool->idle_timer.function = idle_worker_timeout;
3892 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3893
4ce62e9e
TH
3894 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3895 (unsigned long)pool);
3896
60373152 3897 mutex_init(&pool->manager_mutex);
4ce62e9e
TH
3898 ida_init(&pool->worker_ida);
3899 }
db7bccf4 3900
25511a47 3901 init_waitqueue_head(&gcwq->rebind_hold);
8b03ae3c
TH
3902 }
3903
e22bee78 3904 /* create the initial worker */
f3421797 3905 for_each_online_gcwq_cpu(cpu) {
e22bee78 3906 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3907 struct worker_pool *pool;
e22bee78 3908
477a3c33
TH
3909 if (cpu != WORK_CPU_UNBOUND)
3910 gcwq->flags &= ~GCWQ_DISASSOCIATED;
4ce62e9e
TH
3911
3912 for_each_worker_pool(pool, gcwq) {
3913 struct worker *worker;
3914
bc2ae0f5 3915 worker = create_worker(pool);
4ce62e9e
TH
3916 BUG_ON(!worker);
3917 spin_lock_irq(&gcwq->lock);
3918 start_worker(worker);
3919 spin_unlock_irq(&gcwq->lock);
3920 }
e22bee78
TH
3921 }
3922
d320c038
TH
3923 system_wq = alloc_workqueue("events", 0, 0);
3924 system_long_wq = alloc_workqueue("events_long", 0, 0);
3925 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
f3421797
TH
3926 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3927 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3928 system_freezable_wq = alloc_workqueue("events_freezable",
3929 WQ_FREEZABLE, 0);
62d3c543
AS
3930 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3931 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
e5cba24e 3932 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
62d3c543
AS
3933 !system_unbound_wq || !system_freezable_wq ||
3934 !system_nrt_freezable_wq);
6ee0578b 3935 return 0;
1da177e4 3936}
6ee0578b 3937early_initcall(init_workqueues);