workqueue: fix is_chained_work() regression
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
42f8570f 44#include <linux/hashtable.h>
e22bee78 45
ea138446 46#include "workqueue_internal.h"
1da177e4 47
c8e55f36 48enum {
24647570
TH
49 /*
50 * worker_pool flags
bc2ae0f5 51 *
24647570 52 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 59 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5
TH
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
24647570
TH
62 * assoc_mutex to avoid changing binding state while
63 * create_worker() is in progress.
bc2ae0f5 64 */
11ebea50 65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
552a37e9 66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
24647570 67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 68 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 77
5f7dabfd 78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 79 WORKER_CPU_INTENSIVE,
db7bccf4 80
e34cdddb 81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 82
c8e55f36 83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 84
e22bee78
TH
85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
87
3233cdbd
TH
88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
89 /* call for help after 10ms
90 (min two ticks) */
e22bee78
TH
91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
92 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
93
94 /*
95 * Rescue workers are used only on emergencies and shared by
96 * all cpus. Give -20.
97 */
98 RESCUER_NICE_LEVEL = -20,
3270476a 99 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 100};
1da177e4
LT
101
102/*
4690c4ab
TH
103 * Structure fields follow one of the following exclusion rules.
104 *
e41e704b
TH
105 * I: Modifiable by initialization/destruction paths and read-only for
106 * everyone else.
4690c4ab 107 *
e22bee78
TH
108 * P: Preemption protected. Disabling preemption is enough and should
109 * only be modified and accessed from the local cpu.
110 *
d565ed63 111 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 112 *
d565ed63
TH
113 * X: During normal operation, modification requires pool->lock and should
114 * be done only from local cpu. Either disabling preemption on local
115 * cpu or grabbing pool->lock is enough for read access. If
116 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 117 *
73f53c4a
TH
118 * F: wq->flush_mutex protected.
119 *
4690c4ab 120 * W: workqueue_lock protected.
1da177e4 121 */
1da177e4 122
2eaebdb3 123/* struct worker is defined in workqueue_internal.h */
c34056a3 124
bd7bdd43 125struct worker_pool {
d565ed63 126 spinlock_t lock; /* the pool lock */
ec22ca5e 127 unsigned int cpu; /* I: the associated cpu */
9daf9e67 128 int id; /* I: pool ID */
11ebea50 129 unsigned int flags; /* X: flags */
bd7bdd43
TH
130
131 struct list_head worklist; /* L: list of pending works */
132 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
133
134 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
135 int nr_idle; /* L: currently idle ones */
136
137 struct list_head idle_list; /* X: list of idle workers */
138 struct timer_list idle_timer; /* L: worker idle timeout */
139 struct timer_list mayday_timer; /* L: SOS timer for workers */
140
c9e7cf27
TH
141 /* workers are chained either in busy_hash or idle_list */
142 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
143 /* L: hash of busy workers */
144
24647570 145 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
bd7bdd43 146 struct ida worker_ida; /* L: for worker IDs */
e19e397a
TH
147
148 /*
149 * The current concurrency level. As it's likely to be accessed
150 * from other CPUs during try_to_wake_up(), put it in a separate
151 * cacheline.
152 */
153 atomic_t nr_running ____cacheline_aligned_in_smp;
8b03ae3c
TH
154} ____cacheline_aligned_in_smp;
155
1da177e4 156/*
502ca9d8 157 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
158 * work_struct->data are used for flags and thus cwqs need to be
159 * aligned at two's power of the number of flag bits.
1da177e4
LT
160 */
161struct cpu_workqueue_struct {
bd7bdd43 162 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 163 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
164 int work_color; /* L: current color */
165 int flush_color; /* L: flushing color */
166 int nr_in_flight[WORK_NR_COLORS];
167 /* L: nr of in_flight works */
1e19ffc6 168 int nr_active; /* L: nr of active works */
a0a1a5fd 169 int max_active; /* L: max active works */
1e19ffc6 170 struct list_head delayed_works; /* L: delayed works */
0f900049 171};
1da177e4 172
73f53c4a
TH
173/*
174 * Structure used to wait for workqueue flush.
175 */
176struct wq_flusher {
177 struct list_head list; /* F: list of flushers */
178 int flush_color; /* F: flush color waiting for */
179 struct completion done; /* flush completion */
180};
181
f2e005aa
TH
182/*
183 * All cpumasks are assumed to be always set on UP and thus can't be
184 * used to determine whether there's something to be done.
185 */
186#ifdef CONFIG_SMP
187typedef cpumask_var_t mayday_mask_t;
188#define mayday_test_and_set_cpu(cpu, mask) \
189 cpumask_test_and_set_cpu((cpu), (mask))
190#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
191#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 192#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
193#define free_mayday_mask(mask) free_cpumask_var((mask))
194#else
195typedef unsigned long mayday_mask_t;
196#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
197#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
198#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
199#define alloc_mayday_mask(maskp, gfp) true
200#define free_mayday_mask(mask) do { } while (0)
201#endif
1da177e4
LT
202
203/*
204 * The externally visible workqueue abstraction is an array of
205 * per-CPU workqueues:
206 */
207struct workqueue_struct {
9c5a2ba7 208 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
209 union {
210 struct cpu_workqueue_struct __percpu *pcpu;
211 struct cpu_workqueue_struct *single;
212 unsigned long v;
213 } cpu_wq; /* I: cwq's */
4690c4ab 214 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
215
216 struct mutex flush_mutex; /* protects wq flushing */
217 int work_color; /* F: current work color */
218 int flush_color; /* F: current flush color */
219 atomic_t nr_cwqs_to_flush; /* flush in progress */
220 struct wq_flusher *first_flusher; /* F: first flusher */
221 struct list_head flusher_queue; /* F: flush waiters */
222 struct list_head flusher_overflow; /* F: flush overflow list */
223
f2e005aa 224 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
225 struct worker *rescuer; /* I: rescue worker */
226
9c5a2ba7 227 int nr_drainers; /* W: drain in progress */
dcd989cb 228 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 229#ifdef CONFIG_LOCKDEP
4690c4ab 230 struct lockdep_map lockdep_map;
4e6045f1 231#endif
b196be89 232 char name[]; /* I: workqueue name */
1da177e4
LT
233};
234
d320c038 235struct workqueue_struct *system_wq __read_mostly;
d320c038 236EXPORT_SYMBOL_GPL(system_wq);
044c782c 237struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 238EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 239struct workqueue_struct *system_long_wq __read_mostly;
d320c038 240EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 241struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 242EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 243struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 244EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 245
97bd2347
TH
246#define CREATE_TRACE_POINTS
247#include <trace/events/workqueue.h>
248
38db41d9 249#define for_each_std_worker_pool(pool, cpu) \
a60dc39c
TH
250 for ((pool) = &std_worker_pools(cpu)[0]; \
251 (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
4ce62e9e 252
c9e7cf27
TH
253#define for_each_busy_worker(worker, i, pos, pool) \
254 hash_for_each(pool->busy_hash, i, pos, worker, hentry)
db7bccf4 255
706026c2
TH
256static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
257 unsigned int sw)
f3421797
TH
258{
259 if (cpu < nr_cpu_ids) {
260 if (sw & 1) {
261 cpu = cpumask_next(cpu, mask);
262 if (cpu < nr_cpu_ids)
263 return cpu;
264 }
265 if (sw & 2)
266 return WORK_CPU_UNBOUND;
267 }
6be19588 268 return WORK_CPU_END;
f3421797
TH
269}
270
706026c2
TH
271static inline int __next_cwq_cpu(int cpu, const struct cpumask *mask,
272 struct workqueue_struct *wq)
f3421797 273{
706026c2 274 return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
f3421797
TH
275}
276
09884951
TH
277/*
278 * CPU iterators
279 *
706026c2 280 * An extra cpu number is defined using an invalid cpu number
09884951 281 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
706026c2
TH
282 * specific CPU. The following iterators are similar to for_each_*_cpu()
283 * iterators but also considers the unbound CPU.
09884951 284 *
706026c2
TH
285 * for_each_wq_cpu() : possible CPUs + WORK_CPU_UNBOUND
286 * for_each_online_wq_cpu() : online CPUs + WORK_CPU_UNBOUND
09884951
TH
287 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
288 * WORK_CPU_UNBOUND for unbound workqueues
289 */
706026c2
TH
290#define for_each_wq_cpu(cpu) \
291 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3); \
6be19588 292 (cpu) < WORK_CPU_END; \
706026c2 293 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
f3421797 294
706026c2
TH
295#define for_each_online_wq_cpu(cpu) \
296 for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3); \
6be19588 297 (cpu) < WORK_CPU_END; \
706026c2 298 (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
f3421797
TH
299
300#define for_each_cwq_cpu(cpu, wq) \
706026c2 301 for ((cpu) = __next_cwq_cpu(-1, cpu_possible_mask, (wq)); \
6be19588 302 (cpu) < WORK_CPU_END; \
706026c2 303 (cpu) = __next_cwq_cpu((cpu), cpu_possible_mask, (wq)))
f3421797 304
dc186ad7
TG
305#ifdef CONFIG_DEBUG_OBJECTS_WORK
306
307static struct debug_obj_descr work_debug_descr;
308
99777288
SG
309static void *work_debug_hint(void *addr)
310{
311 return ((struct work_struct *) addr)->func;
312}
313
dc186ad7
TG
314/*
315 * fixup_init is called when:
316 * - an active object is initialized
317 */
318static int work_fixup_init(void *addr, enum debug_obj_state state)
319{
320 struct work_struct *work = addr;
321
322 switch (state) {
323 case ODEBUG_STATE_ACTIVE:
324 cancel_work_sync(work);
325 debug_object_init(work, &work_debug_descr);
326 return 1;
327 default:
328 return 0;
329 }
330}
331
332/*
333 * fixup_activate is called when:
334 * - an active object is activated
335 * - an unknown object is activated (might be a statically initialized object)
336 */
337static int work_fixup_activate(void *addr, enum debug_obj_state state)
338{
339 struct work_struct *work = addr;
340
341 switch (state) {
342
343 case ODEBUG_STATE_NOTAVAILABLE:
344 /*
345 * This is not really a fixup. The work struct was
346 * statically initialized. We just make sure that it
347 * is tracked in the object tracker.
348 */
22df02bb 349 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
350 debug_object_init(work, &work_debug_descr);
351 debug_object_activate(work, &work_debug_descr);
352 return 0;
353 }
354 WARN_ON_ONCE(1);
355 return 0;
356
357 case ODEBUG_STATE_ACTIVE:
358 WARN_ON(1);
359
360 default:
361 return 0;
362 }
363}
364
365/*
366 * fixup_free is called when:
367 * - an active object is freed
368 */
369static int work_fixup_free(void *addr, enum debug_obj_state state)
370{
371 struct work_struct *work = addr;
372
373 switch (state) {
374 case ODEBUG_STATE_ACTIVE:
375 cancel_work_sync(work);
376 debug_object_free(work, &work_debug_descr);
377 return 1;
378 default:
379 return 0;
380 }
381}
382
383static struct debug_obj_descr work_debug_descr = {
384 .name = "work_struct",
99777288 385 .debug_hint = work_debug_hint,
dc186ad7
TG
386 .fixup_init = work_fixup_init,
387 .fixup_activate = work_fixup_activate,
388 .fixup_free = work_fixup_free,
389};
390
391static inline void debug_work_activate(struct work_struct *work)
392{
393 debug_object_activate(work, &work_debug_descr);
394}
395
396static inline void debug_work_deactivate(struct work_struct *work)
397{
398 debug_object_deactivate(work, &work_debug_descr);
399}
400
401void __init_work(struct work_struct *work, int onstack)
402{
403 if (onstack)
404 debug_object_init_on_stack(work, &work_debug_descr);
405 else
406 debug_object_init(work, &work_debug_descr);
407}
408EXPORT_SYMBOL_GPL(__init_work);
409
410void destroy_work_on_stack(struct work_struct *work)
411{
412 debug_object_free(work, &work_debug_descr);
413}
414EXPORT_SYMBOL_GPL(destroy_work_on_stack);
415
416#else
417static inline void debug_work_activate(struct work_struct *work) { }
418static inline void debug_work_deactivate(struct work_struct *work) { }
419#endif
420
95402b38
GS
421/* Serializes the accesses to the list of workqueues. */
422static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 423static LIST_HEAD(workqueues);
a0a1a5fd 424static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 425
e22bee78 426/*
e19e397a
TH
427 * The CPU and unbound standard worker pools. The unbound ones have
428 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
f3421797 429 */
e19e397a
TH
430static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
431 cpu_std_worker_pools);
a60dc39c 432static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
f3421797 433
9daf9e67
TH
434/* idr of all pools */
435static DEFINE_MUTEX(worker_pool_idr_mutex);
436static DEFINE_IDR(worker_pool_idr);
437
c34056a3 438static int worker_thread(void *__worker);
1da177e4 439
a60dc39c 440static struct worker_pool *std_worker_pools(int cpu)
8b03ae3c 441{
f3421797 442 if (cpu != WORK_CPU_UNBOUND)
a60dc39c 443 return per_cpu(cpu_std_worker_pools, cpu);
f3421797 444 else
a60dc39c 445 return unbound_std_worker_pools;
8b03ae3c
TH
446}
447
4e8f0a60
TH
448static int std_worker_pool_pri(struct worker_pool *pool)
449{
a60dc39c 450 return pool - std_worker_pools(pool->cpu);
4e8f0a60
TH
451}
452
9daf9e67
TH
453/* allocate ID and assign it to @pool */
454static int worker_pool_assign_id(struct worker_pool *pool)
455{
456 int ret;
457
458 mutex_lock(&worker_pool_idr_mutex);
459 idr_pre_get(&worker_pool_idr, GFP_KERNEL);
460 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
461 mutex_unlock(&worker_pool_idr_mutex);
462
463 return ret;
464}
465
7c3eed5c
TH
466/*
467 * Lookup worker_pool by id. The idr currently is built during boot and
468 * never modified. Don't worry about locking for now.
469 */
470static struct worker_pool *worker_pool_by_id(int pool_id)
471{
472 return idr_find(&worker_pool_idr, pool_id);
473}
474
d565ed63
TH
475static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
476{
a60dc39c 477 struct worker_pool *pools = std_worker_pools(cpu);
d565ed63 478
a60dc39c 479 return &pools[highpri];
d565ed63
TH
480}
481
1537663f
TH
482static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
483 struct workqueue_struct *wq)
b1f4ec17 484{
f3421797 485 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 486 if (likely(cpu < nr_cpu_ids))
f3421797 487 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
488 } else if (likely(cpu == WORK_CPU_UNBOUND))
489 return wq->cpu_wq.single;
490 return NULL;
b1f4ec17
ON
491}
492
73f53c4a
TH
493static unsigned int work_color_to_flags(int color)
494{
495 return color << WORK_STRUCT_COLOR_SHIFT;
496}
497
498static int get_work_color(struct work_struct *work)
499{
500 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
501 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
502}
503
504static int work_next_color(int color)
505{
506 return (color + 1) % WORK_NR_COLORS;
507}
1da177e4 508
14441960 509/*
b5490077
TH
510 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
511 * contain the pointer to the queued cwq. Once execution starts, the flag
7c3eed5c 512 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 513 *
7c3eed5c
TH
514 * set_work_cwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
515 * and clear_work_data() can be used to set the cwq, pool or clear
bbb68dfa
TH
516 * work->data. These functions should only be called while the work is
517 * owned - ie. while the PENDING bit is set.
7a22ad75 518 *
7c3eed5c
TH
519 * get_work_pool() and get_work_cwq() can be used to obtain the pool or cwq
520 * corresponding to a work. Pool is available once the work has been
521 * queued anywhere after initialization until it is sync canceled. cwq is
522 * available only while the work item is queued.
7a22ad75 523 *
bbb68dfa
TH
524 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
525 * canceled. While being canceled, a work item may have its PENDING set
526 * but stay off timer and worklist for arbitrarily long and nobody should
527 * try to steal the PENDING bit.
14441960 528 */
7a22ad75
TH
529static inline void set_work_data(struct work_struct *work, unsigned long data,
530 unsigned long flags)
365970a1 531{
4594bf15 532 BUG_ON(!work_pending(work));
7a22ad75
TH
533 atomic_long_set(&work->data, data | flags | work_static(work));
534}
365970a1 535
7a22ad75
TH
536static void set_work_cwq(struct work_struct *work,
537 struct cpu_workqueue_struct *cwq,
538 unsigned long extra_flags)
539{
540 set_work_data(work, (unsigned long)cwq,
e120153d 541 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
542}
543
4468a00f
LJ
544static void set_work_pool_and_keep_pending(struct work_struct *work,
545 int pool_id)
546{
547 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
548 WORK_STRUCT_PENDING);
549}
550
7c3eed5c
TH
551static void set_work_pool_and_clear_pending(struct work_struct *work,
552 int pool_id)
7a22ad75 553{
23657bb1
TH
554 /*
555 * The following wmb is paired with the implied mb in
556 * test_and_set_bit(PENDING) and ensures all updates to @work made
557 * here are visible to and precede any updates by the next PENDING
558 * owner.
559 */
560 smp_wmb();
7c3eed5c 561 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 562}
f756d5e2 563
7a22ad75 564static void clear_work_data(struct work_struct *work)
1da177e4 565{
7c3eed5c
TH
566 smp_wmb(); /* see set_work_pool_and_clear_pending() */
567 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
568}
569
7a22ad75 570static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 571{
e120153d 572 unsigned long data = atomic_long_read(&work->data);
7a22ad75 573
e120153d
TH
574 if (data & WORK_STRUCT_CWQ)
575 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
576 else
577 return NULL;
4d707b9f
ON
578}
579
7c3eed5c
TH
580/**
581 * get_work_pool - return the worker_pool a given work was associated with
582 * @work: the work item of interest
583 *
584 * Return the worker_pool @work was last associated with. %NULL if none.
585 */
586static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 587{
e120153d 588 unsigned long data = atomic_long_read(&work->data);
7c3eed5c
TH
589 struct worker_pool *pool;
590 int pool_id;
7a22ad75 591
e120153d
TH
592 if (data & WORK_STRUCT_CWQ)
593 return ((struct cpu_workqueue_struct *)
7c3eed5c 594 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 595
7c3eed5c
TH
596 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
597 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
598 return NULL;
599
7c3eed5c
TH
600 pool = worker_pool_by_id(pool_id);
601 WARN_ON_ONCE(!pool);
602 return pool;
603}
604
605/**
606 * get_work_pool_id - return the worker pool ID a given work is associated with
607 * @work: the work item of interest
608 *
609 * Return the worker_pool ID @work was last associated with.
610 * %WORK_OFFQ_POOL_NONE if none.
611 */
612static int get_work_pool_id(struct work_struct *work)
613{
54d5b7d0
LJ
614 unsigned long data = atomic_long_read(&work->data);
615
616 if (data & WORK_STRUCT_CWQ)
617 return ((struct cpu_workqueue_struct *)
618 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 619
54d5b7d0 620 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
621}
622
bbb68dfa
TH
623static void mark_work_canceling(struct work_struct *work)
624{
7c3eed5c 625 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 626
7c3eed5c
TH
627 pool_id <<= WORK_OFFQ_POOL_SHIFT;
628 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
629}
630
631static bool work_is_canceling(struct work_struct *work)
632{
633 unsigned long data = atomic_long_read(&work->data);
634
635 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
636}
637
e22bee78 638/*
3270476a
TH
639 * Policy functions. These define the policies on how the global worker
640 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 641 * they're being called with pool->lock held.
e22bee78
TH
642 */
643
63d95a91 644static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 645{
e19e397a 646 return !atomic_read(&pool->nr_running);
a848e3b6
ON
647}
648
4594bf15 649/*
e22bee78
TH
650 * Need to wake up a worker? Called from anything but currently
651 * running workers.
974271c4
TH
652 *
653 * Note that, because unbound workers never contribute to nr_running, this
706026c2 654 * function will always return %true for unbound pools as long as the
974271c4 655 * worklist isn't empty.
4594bf15 656 */
63d95a91 657static bool need_more_worker(struct worker_pool *pool)
365970a1 658{
63d95a91 659 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 660}
4594bf15 661
e22bee78 662/* Can I start working? Called from busy but !running workers. */
63d95a91 663static bool may_start_working(struct worker_pool *pool)
e22bee78 664{
63d95a91 665 return pool->nr_idle;
e22bee78
TH
666}
667
668/* Do I need to keep working? Called from currently running workers. */
63d95a91 669static bool keep_working(struct worker_pool *pool)
e22bee78 670{
e19e397a
TH
671 return !list_empty(&pool->worklist) &&
672 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
673}
674
675/* Do we need a new worker? Called from manager. */
63d95a91 676static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 677{
63d95a91 678 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 679}
365970a1 680
e22bee78 681/* Do I need to be the manager? */
63d95a91 682static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 683{
63d95a91 684 return need_to_create_worker(pool) ||
11ebea50 685 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
686}
687
688/* Do we have too many workers and should some go away? */
63d95a91 689static bool too_many_workers(struct worker_pool *pool)
e22bee78 690{
552a37e9 691 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
692 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
693 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 694
ea1abd61
LJ
695 /*
696 * nr_idle and idle_list may disagree if idle rebinding is in
697 * progress. Never return %true if idle_list is empty.
698 */
699 if (list_empty(&pool->idle_list))
700 return false;
701
e22bee78 702 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
703}
704
4d707b9f 705/*
e22bee78
TH
706 * Wake up functions.
707 */
708
7e11629d 709/* Return the first worker. Safe with preemption disabled */
63d95a91 710static struct worker *first_worker(struct worker_pool *pool)
7e11629d 711{
63d95a91 712 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
713 return NULL;
714
63d95a91 715 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
716}
717
718/**
719 * wake_up_worker - wake up an idle worker
63d95a91 720 * @pool: worker pool to wake worker from
7e11629d 721 *
63d95a91 722 * Wake up the first idle worker of @pool.
7e11629d
TH
723 *
724 * CONTEXT:
d565ed63 725 * spin_lock_irq(pool->lock).
7e11629d 726 */
63d95a91 727static void wake_up_worker(struct worker_pool *pool)
7e11629d 728{
63d95a91 729 struct worker *worker = first_worker(pool);
7e11629d
TH
730
731 if (likely(worker))
732 wake_up_process(worker->task);
733}
734
d302f017 735/**
e22bee78
TH
736 * wq_worker_waking_up - a worker is waking up
737 * @task: task waking up
738 * @cpu: CPU @task is waking up to
739 *
740 * This function is called during try_to_wake_up() when a worker is
741 * being awoken.
742 *
743 * CONTEXT:
744 * spin_lock_irq(rq->lock)
745 */
746void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
747{
748 struct worker *worker = kthread_data(task);
749
36576000 750 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 751 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 752 atomic_inc(&worker->pool->nr_running);
36576000 753 }
e22bee78
TH
754}
755
756/**
757 * wq_worker_sleeping - a worker is going to sleep
758 * @task: task going to sleep
759 * @cpu: CPU in question, must be the current CPU number
760 *
761 * This function is called during schedule() when a busy worker is
762 * going to sleep. Worker on the same cpu can be woken up by
763 * returning pointer to its task.
764 *
765 * CONTEXT:
766 * spin_lock_irq(rq->lock)
767 *
768 * RETURNS:
769 * Worker task on @cpu to wake up, %NULL if none.
770 */
771struct task_struct *wq_worker_sleeping(struct task_struct *task,
772 unsigned int cpu)
773{
774 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 775 struct worker_pool *pool;
e22bee78 776
111c225a
TH
777 /*
778 * Rescuers, which may not have all the fields set up like normal
779 * workers, also reach here, let's not access anything before
780 * checking NOT_RUNNING.
781 */
2d64672e 782 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
783 return NULL;
784
111c225a 785 pool = worker->pool;
111c225a 786
e22bee78
TH
787 /* this can only happen on the local cpu */
788 BUG_ON(cpu != raw_smp_processor_id());
789
790 /*
791 * The counterpart of the following dec_and_test, implied mb,
792 * worklist not empty test sequence is in insert_work().
793 * Please read comment there.
794 *
628c78e7
TH
795 * NOT_RUNNING is clear. This means that we're bound to and
796 * running on the local cpu w/ rq lock held and preemption
797 * disabled, which in turn means that none else could be
d565ed63 798 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 799 * lock is safe.
e22bee78 800 */
e19e397a
TH
801 if (atomic_dec_and_test(&pool->nr_running) &&
802 !list_empty(&pool->worklist))
63d95a91 803 to_wakeup = first_worker(pool);
e22bee78
TH
804 return to_wakeup ? to_wakeup->task : NULL;
805}
806
807/**
808 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 809 * @worker: self
d302f017
TH
810 * @flags: flags to set
811 * @wakeup: wakeup an idle worker if necessary
812 *
e22bee78
TH
813 * Set @flags in @worker->flags and adjust nr_running accordingly. If
814 * nr_running becomes zero and @wakeup is %true, an idle worker is
815 * woken up.
d302f017 816 *
cb444766 817 * CONTEXT:
d565ed63 818 * spin_lock_irq(pool->lock)
d302f017
TH
819 */
820static inline void worker_set_flags(struct worker *worker, unsigned int flags,
821 bool wakeup)
822{
bd7bdd43 823 struct worker_pool *pool = worker->pool;
e22bee78 824
cb444766
TH
825 WARN_ON_ONCE(worker->task != current);
826
e22bee78
TH
827 /*
828 * If transitioning into NOT_RUNNING, adjust nr_running and
829 * wake up an idle worker as necessary if requested by
830 * @wakeup.
831 */
832 if ((flags & WORKER_NOT_RUNNING) &&
833 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 834 if (wakeup) {
e19e397a 835 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 836 !list_empty(&pool->worklist))
63d95a91 837 wake_up_worker(pool);
e22bee78 838 } else
e19e397a 839 atomic_dec(&pool->nr_running);
e22bee78
TH
840 }
841
d302f017
TH
842 worker->flags |= flags;
843}
844
845/**
e22bee78 846 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 847 * @worker: self
d302f017
TH
848 * @flags: flags to clear
849 *
e22bee78 850 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 851 *
cb444766 852 * CONTEXT:
d565ed63 853 * spin_lock_irq(pool->lock)
d302f017
TH
854 */
855static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
856{
63d95a91 857 struct worker_pool *pool = worker->pool;
e22bee78
TH
858 unsigned int oflags = worker->flags;
859
cb444766
TH
860 WARN_ON_ONCE(worker->task != current);
861
d302f017 862 worker->flags &= ~flags;
e22bee78 863
42c025f3
TH
864 /*
865 * If transitioning out of NOT_RUNNING, increment nr_running. Note
866 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
867 * of multiple flags, not a single flag.
868 */
e22bee78
TH
869 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
870 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 871 atomic_inc(&pool->nr_running);
d302f017
TH
872}
873
8cca0eea
TH
874/**
875 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 876 * @pool: pool of interest
8cca0eea
TH
877 * @work: work to find worker for
878 *
c9e7cf27
TH
879 * Find a worker which is executing @work on @pool by searching
880 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
881 * to match, its current execution should match the address of @work and
882 * its work function. This is to avoid unwanted dependency between
883 * unrelated work executions through a work item being recycled while still
884 * being executed.
885 *
886 * This is a bit tricky. A work item may be freed once its execution
887 * starts and nothing prevents the freed area from being recycled for
888 * another work item. If the same work item address ends up being reused
889 * before the original execution finishes, workqueue will identify the
890 * recycled work item as currently executing and make it wait until the
891 * current execution finishes, introducing an unwanted dependency.
892 *
893 * This function checks the work item address, work function and workqueue
894 * to avoid false positives. Note that this isn't complete as one may
895 * construct a work function which can introduce dependency onto itself
896 * through a recycled work item. Well, if somebody wants to shoot oneself
897 * in the foot that badly, there's only so much we can do, and if such
898 * deadlock actually occurs, it should be easy to locate the culprit work
899 * function.
8cca0eea
TH
900 *
901 * CONTEXT:
d565ed63 902 * spin_lock_irq(pool->lock).
8cca0eea
TH
903 *
904 * RETURNS:
905 * Pointer to worker which is executing @work if found, NULL
906 * otherwise.
4d707b9f 907 */
c9e7cf27 908static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 909 struct work_struct *work)
4d707b9f 910{
42f8570f
SL
911 struct worker *worker;
912 struct hlist_node *tmp;
913
c9e7cf27 914 hash_for_each_possible(pool->busy_hash, worker, tmp, hentry,
a2c1c57b
TH
915 (unsigned long)work)
916 if (worker->current_work == work &&
917 worker->current_func == work->func)
42f8570f
SL
918 return worker;
919
920 return NULL;
4d707b9f
ON
921}
922
bf4ede01
TH
923/**
924 * move_linked_works - move linked works to a list
925 * @work: start of series of works to be scheduled
926 * @head: target list to append @work to
927 * @nextp: out paramter for nested worklist walking
928 *
929 * Schedule linked works starting from @work to @head. Work series to
930 * be scheduled starts at @work and includes any consecutive work with
931 * WORK_STRUCT_LINKED set in its predecessor.
932 *
933 * If @nextp is not NULL, it's updated to point to the next work of
934 * the last scheduled work. This allows move_linked_works() to be
935 * nested inside outer list_for_each_entry_safe().
936 *
937 * CONTEXT:
d565ed63 938 * spin_lock_irq(pool->lock).
bf4ede01
TH
939 */
940static void move_linked_works(struct work_struct *work, struct list_head *head,
941 struct work_struct **nextp)
942{
943 struct work_struct *n;
944
945 /*
946 * Linked worklist will always end before the end of the list,
947 * use NULL for list head.
948 */
949 list_for_each_entry_safe_from(work, n, NULL, entry) {
950 list_move_tail(&work->entry, head);
951 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
952 break;
953 }
954
955 /*
956 * If we're already inside safe list traversal and have moved
957 * multiple works to the scheduled queue, the next position
958 * needs to be updated.
959 */
960 if (nextp)
961 *nextp = n;
962}
963
3aa62497 964static void cwq_activate_delayed_work(struct work_struct *work)
bf4ede01 965{
3aa62497 966 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bf4ede01
TH
967
968 trace_workqueue_activate_work(work);
969 move_linked_works(work, &cwq->pool->worklist, NULL);
970 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
971 cwq->nr_active++;
972}
973
3aa62497
LJ
974static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
975{
976 struct work_struct *work = list_first_entry(&cwq->delayed_works,
977 struct work_struct, entry);
978
979 cwq_activate_delayed_work(work);
980}
981
bf4ede01
TH
982/**
983 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
984 * @cwq: cwq of interest
985 * @color: color of work which left the queue
bf4ede01
TH
986 *
987 * A work either has completed or is removed from pending queue,
988 * decrement nr_in_flight of its cwq and handle workqueue flushing.
989 *
990 * CONTEXT:
d565ed63 991 * spin_lock_irq(pool->lock).
bf4ede01 992 */
b3f9f405 993static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
bf4ede01
TH
994{
995 /* ignore uncolored works */
996 if (color == WORK_NO_COLOR)
997 return;
998
999 cwq->nr_in_flight[color]--;
1000
b3f9f405
LJ
1001 cwq->nr_active--;
1002 if (!list_empty(&cwq->delayed_works)) {
1003 /* one down, submit a delayed one */
1004 if (cwq->nr_active < cwq->max_active)
1005 cwq_activate_first_delayed(cwq);
bf4ede01
TH
1006 }
1007
1008 /* is flush in progress and are we at the flushing tip? */
1009 if (likely(cwq->flush_color != color))
1010 return;
1011
1012 /* are there still in-flight works? */
1013 if (cwq->nr_in_flight[color])
1014 return;
1015
1016 /* this cwq is done, clear flush_color */
1017 cwq->flush_color = -1;
1018
1019 /*
1020 * If this was the last cwq, wake up the first flusher. It
1021 * will handle the rest.
1022 */
1023 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1024 complete(&cwq->wq->first_flusher->done);
1025}
1026
36e227d2 1027/**
bbb68dfa 1028 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1029 * @work: work item to steal
1030 * @is_dwork: @work is a delayed_work
bbb68dfa 1031 * @flags: place to store irq state
36e227d2
TH
1032 *
1033 * Try to grab PENDING bit of @work. This function can handle @work in any
1034 * stable state - idle, on timer or on worklist. Return values are
1035 *
1036 * 1 if @work was pending and we successfully stole PENDING
1037 * 0 if @work was idle and we claimed PENDING
1038 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1039 * -ENOENT if someone else is canceling @work, this state may persist
1040 * for arbitrarily long
36e227d2 1041 *
bbb68dfa 1042 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1043 * interrupted while holding PENDING and @work off queue, irq must be
1044 * disabled on entry. This, combined with delayed_work->timer being
1045 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1046 *
1047 * On successful return, >= 0, irq is disabled and the caller is
1048 * responsible for releasing it using local_irq_restore(*@flags).
1049 *
e0aecdd8 1050 * This function is safe to call from any context including IRQ handler.
bf4ede01 1051 */
bbb68dfa
TH
1052static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1053 unsigned long *flags)
bf4ede01 1054{
d565ed63 1055 struct worker_pool *pool;
0b3dae68 1056 struct cpu_workqueue_struct *cwq;
bf4ede01 1057
bbb68dfa
TH
1058 local_irq_save(*flags);
1059
36e227d2
TH
1060 /* try to steal the timer if it exists */
1061 if (is_dwork) {
1062 struct delayed_work *dwork = to_delayed_work(work);
1063
e0aecdd8
TH
1064 /*
1065 * dwork->timer is irqsafe. If del_timer() fails, it's
1066 * guaranteed that the timer is not queued anywhere and not
1067 * running on the local CPU.
1068 */
36e227d2
TH
1069 if (likely(del_timer(&dwork->timer)))
1070 return 1;
1071 }
1072
1073 /* try to claim PENDING the normal way */
bf4ede01
TH
1074 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1075 return 0;
1076
1077 /*
1078 * The queueing is in progress, or it is already queued. Try to
1079 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1080 */
d565ed63
TH
1081 pool = get_work_pool(work);
1082 if (!pool)
bbb68dfa 1083 goto fail;
bf4ede01 1084
d565ed63 1085 spin_lock(&pool->lock);
0b3dae68
LJ
1086 /*
1087 * work->data is guaranteed to point to cwq only while the work
1088 * item is queued on cwq->wq, and both updating work->data to point
1089 * to cwq on queueing and to pool on dequeueing are done under
1090 * cwq->pool->lock. This in turn guarantees that, if work->data
1091 * points to cwq which is associated with a locked pool, the work
1092 * item is currently queued on that pool.
1093 */
1094 cwq = get_work_cwq(work);
16062836
TH
1095 if (cwq && cwq->pool == pool) {
1096 debug_work_deactivate(work);
1097
1098 /*
1099 * A delayed work item cannot be grabbed directly because
1100 * it might have linked NO_COLOR work items which, if left
1101 * on the delayed_list, will confuse cwq->nr_active
1102 * management later on and cause stall. Make sure the work
1103 * item is activated before grabbing.
1104 */
1105 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1106 cwq_activate_delayed_work(work);
1107
1108 list_del_init(&work->entry);
1109 cwq_dec_nr_in_flight(get_work_cwq(work), get_work_color(work));
1110
1111 /* work->data points to cwq iff queued, point to pool */
1112 set_work_pool_and_keep_pending(work, pool->id);
1113
1114 spin_unlock(&pool->lock);
1115 return 1;
bf4ede01 1116 }
d565ed63 1117 spin_unlock(&pool->lock);
bbb68dfa
TH
1118fail:
1119 local_irq_restore(*flags);
1120 if (work_is_canceling(work))
1121 return -ENOENT;
1122 cpu_relax();
36e227d2 1123 return -EAGAIN;
bf4ede01
TH
1124}
1125
4690c4ab 1126/**
706026c2 1127 * insert_work - insert a work into a pool
4690c4ab
TH
1128 * @cwq: cwq @work belongs to
1129 * @work: work to insert
1130 * @head: insertion point
1131 * @extra_flags: extra WORK_STRUCT_* flags to set
1132 *
706026c2
TH
1133 * Insert @work which belongs to @cwq after @head. @extra_flags is or'd to
1134 * work_struct flags.
4690c4ab
TH
1135 *
1136 * CONTEXT:
d565ed63 1137 * spin_lock_irq(pool->lock).
4690c4ab 1138 */
b89deed3 1139static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
1140 struct work_struct *work, struct list_head *head,
1141 unsigned int extra_flags)
b89deed3 1142{
63d95a91 1143 struct worker_pool *pool = cwq->pool;
e22bee78 1144
4690c4ab 1145 /* we own @work, set data and link */
7a22ad75 1146 set_work_cwq(work, cwq, extra_flags);
1a4d9b0a 1147 list_add_tail(&work->entry, head);
e22bee78
TH
1148
1149 /*
1150 * Ensure either worker_sched_deactivated() sees the above
1151 * list_add_tail() or we see zero nr_running to avoid workers
1152 * lying around lazily while there are works to be processed.
1153 */
1154 smp_mb();
1155
63d95a91
TH
1156 if (__need_more_worker(pool))
1157 wake_up_worker(pool);
b89deed3
ON
1158}
1159
c8efcc25
TH
1160/*
1161 * Test whether @work is being queued from another work executing on the
1162 * same workqueue. This is rather expensive and should only be used from
1163 * cold paths.
1164 */
1165static bool is_chained_work(struct workqueue_struct *wq)
1166{
1167 unsigned long flags;
1168 unsigned int cpu;
1169
1dd63814 1170 for_each_cwq_cpu(cpu, wq) {
c9e7cf27
TH
1171 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
1172 struct worker_pool *pool = cwq->pool;
c8efcc25
TH
1173 struct worker *worker;
1174 struct hlist_node *pos;
1175 int i;
1176
d565ed63 1177 spin_lock_irqsave(&pool->lock, flags);
c9e7cf27 1178 for_each_busy_worker(worker, i, pos, pool) {
c8efcc25
TH
1179 if (worker->task != current)
1180 continue;
d565ed63 1181 spin_unlock_irqrestore(&pool->lock, flags);
c8efcc25
TH
1182 /*
1183 * I'm @worker, no locking necessary. See if @work
1184 * is headed to the same workqueue.
1185 */
1186 return worker->current_cwq->wq == wq;
1187 }
d565ed63 1188 spin_unlock_irqrestore(&pool->lock, flags);
c8efcc25
TH
1189 }
1190 return false;
1191}
1192
4690c4ab 1193static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1194 struct work_struct *work)
1195{
502ca9d8 1196 struct cpu_workqueue_struct *cwq;
1e19ffc6 1197 struct list_head *worklist;
8a2e8e5d 1198 unsigned int work_flags;
b75cac93 1199 unsigned int req_cpu = cpu;
8930caba
TH
1200
1201 /*
1202 * While a work item is PENDING && off queue, a task trying to
1203 * steal the PENDING will busy-loop waiting for it to either get
1204 * queued or lose PENDING. Grabbing PENDING and queueing should
1205 * happen with IRQ disabled.
1206 */
1207 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1208
dc186ad7 1209 debug_work_activate(work);
1e19ffc6 1210
c8efcc25 1211 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1212 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1213 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1214 return;
1215
8594fade 1216 /* determine the cwq to use */
c7fc77f7 1217 if (!(wq->flags & WQ_UNBOUND)) {
c9e7cf27 1218 struct worker_pool *last_pool;
18aa9eff 1219
57469821 1220 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1221 cpu = raw_smp_processor_id();
1222
18aa9eff 1223 /*
dbf2576e
TH
1224 * It's multi cpu. If @work was previously on a different
1225 * cpu, it might still be running there, in which case the
1226 * work needs to be queued on that cpu to guarantee
1227 * non-reentrancy.
18aa9eff 1228 */
8594fade 1229 cwq = get_cwq(cpu, wq);
c9e7cf27 1230 last_pool = get_work_pool(work);
dbf2576e 1231
8594fade 1232 if (last_pool && last_pool != cwq->pool) {
18aa9eff
TH
1233 struct worker *worker;
1234
d565ed63 1235 spin_lock(&last_pool->lock);
18aa9eff 1236
c9e7cf27 1237 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1238
8594fade
LJ
1239 if (worker && worker->current_cwq->wq == wq) {
1240 cwq = get_cwq(last_pool->cpu, wq);
1241 } else {
18aa9eff 1242 /* meh... not running there, queue here */
d565ed63 1243 spin_unlock(&last_pool->lock);
8594fade 1244 spin_lock(&cwq->pool->lock);
18aa9eff 1245 }
8930caba 1246 } else {
8594fade 1247 spin_lock(&cwq->pool->lock);
8930caba 1248 }
f3421797 1249 } else {
8594fade
LJ
1250 cwq = get_cwq(WORK_CPU_UNBOUND, wq);
1251 spin_lock(&cwq->pool->lock);
502ca9d8
TH
1252 }
1253
8594fade 1254 /* cwq determined, queue */
b75cac93 1255 trace_workqueue_queue_work(req_cpu, cwq, work);
502ca9d8 1256
f5b2552b 1257 if (WARN_ON(!list_empty(&work->entry))) {
8594fade 1258 spin_unlock(&cwq->pool->lock);
f5b2552b
DC
1259 return;
1260 }
1e19ffc6 1261
73f53c4a 1262 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1263 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1264
1265 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1266 trace_workqueue_activate_work(work);
1e19ffc6 1267 cwq->nr_active++;
3270476a 1268 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1269 } else {
1270 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1271 worklist = &cwq->delayed_works;
8a2e8e5d 1272 }
1e19ffc6 1273
8a2e8e5d 1274 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1275
8594fade 1276 spin_unlock(&cwq->pool->lock);
1da177e4
LT
1277}
1278
0fcb78c2 1279/**
c1a220e7
ZR
1280 * queue_work_on - queue work on specific cpu
1281 * @cpu: CPU number to execute work on
0fcb78c2
REB
1282 * @wq: workqueue to use
1283 * @work: work to queue
1284 *
d4283e93 1285 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1286 *
c1a220e7
ZR
1287 * We queue the work to a specific CPU, the caller must ensure it
1288 * can't go away.
1da177e4 1289 */
d4283e93
TH
1290bool queue_work_on(int cpu, struct workqueue_struct *wq,
1291 struct work_struct *work)
1da177e4 1292{
d4283e93 1293 bool ret = false;
8930caba 1294 unsigned long flags;
ef1ca236 1295
8930caba 1296 local_irq_save(flags);
c1a220e7 1297
22df02bb 1298 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1299 __queue_work(cpu, wq, work);
d4283e93 1300 ret = true;
c1a220e7 1301 }
ef1ca236 1302
8930caba 1303 local_irq_restore(flags);
1da177e4
LT
1304 return ret;
1305}
c1a220e7 1306EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1307
c1a220e7 1308/**
0a13c00e 1309 * queue_work - queue work on a workqueue
c1a220e7
ZR
1310 * @wq: workqueue to use
1311 * @work: work to queue
1312 *
d4283e93 1313 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1314 *
0a13c00e
TH
1315 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1316 * it can be processed by another CPU.
c1a220e7 1317 */
d4283e93 1318bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1319{
57469821 1320 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1321}
0a13c00e 1322EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1323
d8e794df 1324void delayed_work_timer_fn(unsigned long __data)
1da177e4 1325{
52bad64d 1326 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1327
e0aecdd8 1328 /* should have been called from irqsafe timer with irq already off */
60c057bc 1329 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1330}
d8e794df 1331EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1332
7beb2edf
TH
1333static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1334 struct delayed_work *dwork, unsigned long delay)
1da177e4 1335{
7beb2edf
TH
1336 struct timer_list *timer = &dwork->timer;
1337 struct work_struct *work = &dwork->work;
7beb2edf
TH
1338
1339 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1340 timer->data != (unsigned long)dwork);
fc4b514f
TH
1341 WARN_ON_ONCE(timer_pending(timer));
1342 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1343
8852aac2
TH
1344 /*
1345 * If @delay is 0, queue @dwork->work immediately. This is for
1346 * both optimization and correctness. The earliest @timer can
1347 * expire is on the closest next tick and delayed_work users depend
1348 * on that there's no such delay when @delay is 0.
1349 */
1350 if (!delay) {
1351 __queue_work(cpu, wq, &dwork->work);
1352 return;
1353 }
1354
7beb2edf 1355 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1356
60c057bc 1357 dwork->wq = wq;
1265057f 1358 dwork->cpu = cpu;
7beb2edf
TH
1359 timer->expires = jiffies + delay;
1360
1361 if (unlikely(cpu != WORK_CPU_UNBOUND))
1362 add_timer_on(timer, cpu);
1363 else
1364 add_timer(timer);
1da177e4
LT
1365}
1366
0fcb78c2
REB
1367/**
1368 * queue_delayed_work_on - queue work on specific CPU after delay
1369 * @cpu: CPU number to execute work on
1370 * @wq: workqueue to use
af9997e4 1371 * @dwork: work to queue
0fcb78c2
REB
1372 * @delay: number of jiffies to wait before queueing
1373 *
715f1300
TH
1374 * Returns %false if @work was already on a queue, %true otherwise. If
1375 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1376 * execution.
0fcb78c2 1377 */
d4283e93
TH
1378bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1379 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1380{
52bad64d 1381 struct work_struct *work = &dwork->work;
d4283e93 1382 bool ret = false;
8930caba 1383 unsigned long flags;
7a6bc1cd 1384
8930caba
TH
1385 /* read the comment in __queue_work() */
1386 local_irq_save(flags);
7a6bc1cd 1387
22df02bb 1388 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1389 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1390 ret = true;
7a6bc1cd 1391 }
8a3e77cc 1392
8930caba 1393 local_irq_restore(flags);
7a6bc1cd
VP
1394 return ret;
1395}
ae90dd5d 1396EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1397
0a13c00e
TH
1398/**
1399 * queue_delayed_work - queue work on a workqueue after delay
1400 * @wq: workqueue to use
1401 * @dwork: delayable work to queue
1402 * @delay: number of jiffies to wait before queueing
1403 *
715f1300 1404 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1405 */
d4283e93 1406bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1407 struct delayed_work *dwork, unsigned long delay)
1408{
57469821 1409 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1410}
1411EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1412
8376fe22
TH
1413/**
1414 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1415 * @cpu: CPU number to execute work on
1416 * @wq: workqueue to use
1417 * @dwork: work to queue
1418 * @delay: number of jiffies to wait before queueing
1419 *
1420 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1421 * modify @dwork's timer so that it expires after @delay. If @delay is
1422 * zero, @work is guaranteed to be scheduled immediately regardless of its
1423 * current state.
1424 *
1425 * Returns %false if @dwork was idle and queued, %true if @dwork was
1426 * pending and its timer was modified.
1427 *
e0aecdd8 1428 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1429 * See try_to_grab_pending() for details.
1430 */
1431bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1432 struct delayed_work *dwork, unsigned long delay)
1433{
1434 unsigned long flags;
1435 int ret;
c7fc77f7 1436
8376fe22
TH
1437 do {
1438 ret = try_to_grab_pending(&dwork->work, true, &flags);
1439 } while (unlikely(ret == -EAGAIN));
63bc0362 1440
8376fe22
TH
1441 if (likely(ret >= 0)) {
1442 __queue_delayed_work(cpu, wq, dwork, delay);
1443 local_irq_restore(flags);
7a6bc1cd 1444 }
8376fe22
TH
1445
1446 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1447 return ret;
1448}
8376fe22
TH
1449EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1450
1451/**
1452 * mod_delayed_work - modify delay of or queue a delayed work
1453 * @wq: workqueue to use
1454 * @dwork: work to queue
1455 * @delay: number of jiffies to wait before queueing
1456 *
1457 * mod_delayed_work_on() on local CPU.
1458 */
1459bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1460 unsigned long delay)
1461{
1462 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1463}
1464EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1465
c8e55f36
TH
1466/**
1467 * worker_enter_idle - enter idle state
1468 * @worker: worker which is entering idle state
1469 *
1470 * @worker is entering idle state. Update stats and idle timer if
1471 * necessary.
1472 *
1473 * LOCKING:
d565ed63 1474 * spin_lock_irq(pool->lock).
c8e55f36
TH
1475 */
1476static void worker_enter_idle(struct worker *worker)
1da177e4 1477{
bd7bdd43 1478 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1479
1480 BUG_ON(worker->flags & WORKER_IDLE);
1481 BUG_ON(!list_empty(&worker->entry) &&
1482 (worker->hentry.next || worker->hentry.pprev));
1483
cb444766
TH
1484 /* can't use worker_set_flags(), also called from start_worker() */
1485 worker->flags |= WORKER_IDLE;
bd7bdd43 1486 pool->nr_idle++;
e22bee78 1487 worker->last_active = jiffies;
c8e55f36
TH
1488
1489 /* idle_list is LIFO */
bd7bdd43 1490 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1491
628c78e7
TH
1492 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1493 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1494
544ecf31 1495 /*
706026c2 1496 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1497 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1498 * nr_running, the warning may trigger spuriously. Check iff
1499 * unbind is not in progress.
544ecf31 1500 */
24647570 1501 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1502 pool->nr_workers == pool->nr_idle &&
e19e397a 1503 atomic_read(&pool->nr_running));
c8e55f36
TH
1504}
1505
1506/**
1507 * worker_leave_idle - leave idle state
1508 * @worker: worker which is leaving idle state
1509 *
1510 * @worker is leaving idle state. Update stats.
1511 *
1512 * LOCKING:
d565ed63 1513 * spin_lock_irq(pool->lock).
c8e55f36
TH
1514 */
1515static void worker_leave_idle(struct worker *worker)
1516{
bd7bdd43 1517 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1518
1519 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1520 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1521 pool->nr_idle--;
c8e55f36
TH
1522 list_del_init(&worker->entry);
1523}
1524
e22bee78 1525/**
706026c2 1526 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock pool
e22bee78
TH
1527 * @worker: self
1528 *
1529 * Works which are scheduled while the cpu is online must at least be
1530 * scheduled to a worker which is bound to the cpu so that if they are
1531 * flushed from cpu callbacks while cpu is going down, they are
1532 * guaranteed to execute on the cpu.
1533 *
1534 * This function is to be used by rogue workers and rescuers to bind
1535 * themselves to the target cpu and may race with cpu going down or
1536 * coming online. kthread_bind() can't be used because it may put the
1537 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1538 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1539 * [dis]associated in the meantime.
1540 *
706026c2 1541 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1542 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1543 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1544 * enters idle state or fetches works without dropping lock, it can
1545 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1546 *
1547 * CONTEXT:
d565ed63 1548 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1549 * held.
1550 *
1551 * RETURNS:
706026c2 1552 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1553 * bound), %false if offline.
1554 */
1555static bool worker_maybe_bind_and_lock(struct worker *worker)
d565ed63 1556__acquires(&pool->lock)
e22bee78 1557{
24647570 1558 struct worker_pool *pool = worker->pool;
e22bee78
TH
1559 struct task_struct *task = worker->task;
1560
1561 while (true) {
4e6045f1 1562 /*
e22bee78
TH
1563 * The following call may fail, succeed or succeed
1564 * without actually migrating the task to the cpu if
1565 * it races with cpu hotunplug operation. Verify
24647570 1566 * against POOL_DISASSOCIATED.
4e6045f1 1567 */
24647570 1568 if (!(pool->flags & POOL_DISASSOCIATED))
ec22ca5e 1569 set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu));
e22bee78 1570
d565ed63 1571 spin_lock_irq(&pool->lock);
24647570 1572 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1573 return false;
ec22ca5e 1574 if (task_cpu(task) == pool->cpu &&
e22bee78 1575 cpumask_equal(&current->cpus_allowed,
ec22ca5e 1576 get_cpu_mask(pool->cpu)))
e22bee78 1577 return true;
d565ed63 1578 spin_unlock_irq(&pool->lock);
e22bee78 1579
5035b20f
TH
1580 /*
1581 * We've raced with CPU hot[un]plug. Give it a breather
1582 * and retry migration. cond_resched() is required here;
1583 * otherwise, we might deadlock against cpu_stop trying to
1584 * bring down the CPU on non-preemptive kernel.
1585 */
e22bee78 1586 cpu_relax();
5035b20f 1587 cond_resched();
e22bee78
TH
1588 }
1589}
1590
25511a47 1591/*
ea1abd61 1592 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1593 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1594 */
1595static void idle_worker_rebind(struct worker *worker)
1596{
5f7dabfd
LJ
1597 /* CPU may go down again inbetween, clear UNBOUND only on success */
1598 if (worker_maybe_bind_and_lock(worker))
1599 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1600
ea1abd61
LJ
1601 /* rebind complete, become available again */
1602 list_add(&worker->entry, &worker->pool->idle_list);
d565ed63 1603 spin_unlock_irq(&worker->pool->lock);
25511a47
TH
1604}
1605
e22bee78 1606/*
25511a47 1607 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1608 * the associated cpu which is coming back online. This is scheduled by
1609 * cpu up but can race with other cpu hotplug operations and may be
1610 * executed twice without intervening cpu down.
e22bee78 1611 */
25511a47 1612static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1613{
1614 struct worker *worker = container_of(work, struct worker, rebind_work);
e22bee78 1615
eab6d828
LJ
1616 if (worker_maybe_bind_and_lock(worker))
1617 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78 1618
d565ed63 1619 spin_unlock_irq(&worker->pool->lock);
e22bee78
TH
1620}
1621
25511a47 1622/**
94cf58bb
TH
1623 * rebind_workers - rebind all workers of a pool to the associated CPU
1624 * @pool: pool of interest
25511a47 1625 *
94cf58bb 1626 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
25511a47
TH
1627 * is different for idle and busy ones.
1628 *
ea1abd61
LJ
1629 * Idle ones will be removed from the idle_list and woken up. They will
1630 * add themselves back after completing rebind. This ensures that the
1631 * idle_list doesn't contain any unbound workers when re-bound busy workers
1632 * try to perform local wake-ups for concurrency management.
25511a47 1633 *
ea1abd61
LJ
1634 * Busy workers can rebind after they finish their current work items.
1635 * Queueing the rebind work item at the head of the scheduled list is
1636 * enough. Note that nr_running will be properly bumped as busy workers
1637 * rebind.
25511a47 1638 *
ea1abd61
LJ
1639 * On return, all non-manager workers are scheduled for rebind - see
1640 * manage_workers() for the manager special case. Any idle worker
1641 * including the manager will not appear on @idle_list until rebind is
1642 * complete, making local wake-ups safe.
25511a47 1643 */
94cf58bb 1644static void rebind_workers(struct worker_pool *pool)
25511a47 1645{
ea1abd61 1646 struct worker *worker, *n;
25511a47
TH
1647 struct hlist_node *pos;
1648 int i;
1649
94cf58bb
TH
1650 lockdep_assert_held(&pool->assoc_mutex);
1651 lockdep_assert_held(&pool->lock);
25511a47 1652
5f7dabfd 1653 /* dequeue and kick idle ones */
94cf58bb
TH
1654 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1655 /*
1656 * idle workers should be off @pool->idle_list until rebind
1657 * is complete to avoid receiving premature local wake-ups.
1658 */
1659 list_del_init(&worker->entry);
25511a47 1660
94cf58bb
TH
1661 /*
1662 * worker_thread() will see the above dequeuing and call
1663 * idle_worker_rebind().
1664 */
1665 wake_up_process(worker->task);
1666 }
25511a47 1667
94cf58bb
TH
1668 /* rebind busy workers */
1669 for_each_busy_worker(worker, i, pos, pool) {
1670 struct work_struct *rebind_work = &worker->rebind_work;
1671 struct workqueue_struct *wq;
25511a47 1672
94cf58bb
TH
1673 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1674 work_data_bits(rebind_work)))
1675 continue;
25511a47 1676
94cf58bb 1677 debug_work_activate(rebind_work);
90beca5d 1678
94cf58bb
TH
1679 /*
1680 * wq doesn't really matter but let's keep @worker->pool
1681 * and @cwq->pool consistent for sanity.
1682 */
1683 if (std_worker_pool_pri(worker->pool))
1684 wq = system_highpri_wq;
1685 else
1686 wq = system_wq;
1687
1688 insert_work(get_cwq(pool->cpu, wq), rebind_work,
1689 worker->scheduled.next,
1690 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1691 }
25511a47
TH
1692}
1693
c34056a3
TH
1694static struct worker *alloc_worker(void)
1695{
1696 struct worker *worker;
1697
1698 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1699 if (worker) {
1700 INIT_LIST_HEAD(&worker->entry);
affee4b2 1701 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1702 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1703 /* on creation a worker is in !idle && prep state */
1704 worker->flags = WORKER_PREP;
c8e55f36 1705 }
c34056a3
TH
1706 return worker;
1707}
1708
1709/**
1710 * create_worker - create a new workqueue worker
63d95a91 1711 * @pool: pool the new worker will belong to
c34056a3 1712 *
63d95a91 1713 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1714 * can be started by calling start_worker() or destroyed using
1715 * destroy_worker().
1716 *
1717 * CONTEXT:
1718 * Might sleep. Does GFP_KERNEL allocations.
1719 *
1720 * RETURNS:
1721 * Pointer to the newly created worker.
1722 */
bc2ae0f5 1723static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1724{
e34cdddb 1725 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
c34056a3 1726 struct worker *worker = NULL;
f3421797 1727 int id = -1;
c34056a3 1728
d565ed63 1729 spin_lock_irq(&pool->lock);
bd7bdd43 1730 while (ida_get_new(&pool->worker_ida, &id)) {
d565ed63 1731 spin_unlock_irq(&pool->lock);
bd7bdd43 1732 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1733 goto fail;
d565ed63 1734 spin_lock_irq(&pool->lock);
c34056a3 1735 }
d565ed63 1736 spin_unlock_irq(&pool->lock);
c34056a3
TH
1737
1738 worker = alloc_worker();
1739 if (!worker)
1740 goto fail;
1741
bd7bdd43 1742 worker->pool = pool;
c34056a3
TH
1743 worker->id = id;
1744
ec22ca5e 1745 if (pool->cpu != WORK_CPU_UNBOUND)
94dcf29a 1746 worker->task = kthread_create_on_node(worker_thread,
ec22ca5e
TH
1747 worker, cpu_to_node(pool->cpu),
1748 "kworker/%u:%d%s", pool->cpu, id, pri);
f3421797
TH
1749 else
1750 worker->task = kthread_create(worker_thread, worker,
3270476a 1751 "kworker/u:%d%s", id, pri);
c34056a3
TH
1752 if (IS_ERR(worker->task))
1753 goto fail;
1754
e34cdddb 1755 if (std_worker_pool_pri(pool))
3270476a
TH
1756 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1757
db7bccf4 1758 /*
bc2ae0f5 1759 * Determine CPU binding of the new worker depending on
24647570 1760 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
bc2ae0f5
TH
1761 * flag remains stable across this function. See the comments
1762 * above the flag definition for details.
1763 *
1764 * As an unbound worker may later become a regular one if CPU comes
1765 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1766 */
24647570 1767 if (!(pool->flags & POOL_DISASSOCIATED)) {
ec22ca5e 1768 kthread_bind(worker->task, pool->cpu);
bc2ae0f5 1769 } else {
db7bccf4 1770 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1771 worker->flags |= WORKER_UNBOUND;
f3421797 1772 }
c34056a3
TH
1773
1774 return worker;
1775fail:
1776 if (id >= 0) {
d565ed63 1777 spin_lock_irq(&pool->lock);
bd7bdd43 1778 ida_remove(&pool->worker_ida, id);
d565ed63 1779 spin_unlock_irq(&pool->lock);
c34056a3
TH
1780 }
1781 kfree(worker);
1782 return NULL;
1783}
1784
1785/**
1786 * start_worker - start a newly created worker
1787 * @worker: worker to start
1788 *
706026c2 1789 * Make the pool aware of @worker and start it.
c34056a3
TH
1790 *
1791 * CONTEXT:
d565ed63 1792 * spin_lock_irq(pool->lock).
c34056a3
TH
1793 */
1794static void start_worker(struct worker *worker)
1795{
cb444766 1796 worker->flags |= WORKER_STARTED;
bd7bdd43 1797 worker->pool->nr_workers++;
c8e55f36 1798 worker_enter_idle(worker);
c34056a3
TH
1799 wake_up_process(worker->task);
1800}
1801
1802/**
1803 * destroy_worker - destroy a workqueue worker
1804 * @worker: worker to be destroyed
1805 *
706026c2 1806 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1807 *
1808 * CONTEXT:
d565ed63 1809 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1810 */
1811static void destroy_worker(struct worker *worker)
1812{
bd7bdd43 1813 struct worker_pool *pool = worker->pool;
c34056a3
TH
1814 int id = worker->id;
1815
1816 /* sanity check frenzy */
1817 BUG_ON(worker->current_work);
affee4b2 1818 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1819
c8e55f36 1820 if (worker->flags & WORKER_STARTED)
bd7bdd43 1821 pool->nr_workers--;
c8e55f36 1822 if (worker->flags & WORKER_IDLE)
bd7bdd43 1823 pool->nr_idle--;
c8e55f36
TH
1824
1825 list_del_init(&worker->entry);
cb444766 1826 worker->flags |= WORKER_DIE;
c8e55f36 1827
d565ed63 1828 spin_unlock_irq(&pool->lock);
c8e55f36 1829
c34056a3
TH
1830 kthread_stop(worker->task);
1831 kfree(worker);
1832
d565ed63 1833 spin_lock_irq(&pool->lock);
bd7bdd43 1834 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1835}
1836
63d95a91 1837static void idle_worker_timeout(unsigned long __pool)
e22bee78 1838{
63d95a91 1839 struct worker_pool *pool = (void *)__pool;
e22bee78 1840
d565ed63 1841 spin_lock_irq(&pool->lock);
e22bee78 1842
63d95a91 1843 if (too_many_workers(pool)) {
e22bee78
TH
1844 struct worker *worker;
1845 unsigned long expires;
1846
1847 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1848 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1849 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1850
1851 if (time_before(jiffies, expires))
63d95a91 1852 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1853 else {
1854 /* it's been idle for too long, wake up manager */
11ebea50 1855 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1856 wake_up_worker(pool);
d5abe669 1857 }
e22bee78
TH
1858 }
1859
d565ed63 1860 spin_unlock_irq(&pool->lock);
e22bee78 1861}
d5abe669 1862
e22bee78
TH
1863static bool send_mayday(struct work_struct *work)
1864{
1865 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1866 struct workqueue_struct *wq = cwq->wq;
f3421797 1867 unsigned int cpu;
e22bee78
TH
1868
1869 if (!(wq->flags & WQ_RESCUER))
1870 return false;
1871
1872 /* mayday mayday mayday */
ec22ca5e 1873 cpu = cwq->pool->cpu;
f3421797
TH
1874 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1875 if (cpu == WORK_CPU_UNBOUND)
1876 cpu = 0;
f2e005aa 1877 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1878 wake_up_process(wq->rescuer->task);
1879 return true;
1880}
1881
706026c2 1882static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1883{
63d95a91 1884 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1885 struct work_struct *work;
1886
d565ed63 1887 spin_lock_irq(&pool->lock);
e22bee78 1888
63d95a91 1889 if (need_to_create_worker(pool)) {
e22bee78
TH
1890 /*
1891 * We've been trying to create a new worker but
1892 * haven't been successful. We might be hitting an
1893 * allocation deadlock. Send distress signals to
1894 * rescuers.
1895 */
63d95a91 1896 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1897 send_mayday(work);
1da177e4 1898 }
e22bee78 1899
d565ed63 1900 spin_unlock_irq(&pool->lock);
e22bee78 1901
63d95a91 1902 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1903}
1904
e22bee78
TH
1905/**
1906 * maybe_create_worker - create a new worker if necessary
63d95a91 1907 * @pool: pool to create a new worker for
e22bee78 1908 *
63d95a91 1909 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1910 * have at least one idle worker on return from this function. If
1911 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1912 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1913 * possible allocation deadlock.
1914 *
1915 * On return, need_to_create_worker() is guaranteed to be false and
1916 * may_start_working() true.
1917 *
1918 * LOCKING:
d565ed63 1919 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1920 * multiple times. Does GFP_KERNEL allocations. Called only from
1921 * manager.
1922 *
1923 * RETURNS:
d565ed63 1924 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1925 * otherwise.
1926 */
63d95a91 1927static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1928__releases(&pool->lock)
1929__acquires(&pool->lock)
1da177e4 1930{
63d95a91 1931 if (!need_to_create_worker(pool))
e22bee78
TH
1932 return false;
1933restart:
d565ed63 1934 spin_unlock_irq(&pool->lock);
9f9c2364 1935
e22bee78 1936 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1937 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1938
1939 while (true) {
1940 struct worker *worker;
1941
bc2ae0f5 1942 worker = create_worker(pool);
e22bee78 1943 if (worker) {
63d95a91 1944 del_timer_sync(&pool->mayday_timer);
d565ed63 1945 spin_lock_irq(&pool->lock);
e22bee78 1946 start_worker(worker);
63d95a91 1947 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
1948 return true;
1949 }
1950
63d95a91 1951 if (!need_to_create_worker(pool))
e22bee78 1952 break;
1da177e4 1953
e22bee78
TH
1954 __set_current_state(TASK_INTERRUPTIBLE);
1955 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1956
63d95a91 1957 if (!need_to_create_worker(pool))
e22bee78
TH
1958 break;
1959 }
1960
63d95a91 1961 del_timer_sync(&pool->mayday_timer);
d565ed63 1962 spin_lock_irq(&pool->lock);
63d95a91 1963 if (need_to_create_worker(pool))
e22bee78
TH
1964 goto restart;
1965 return true;
1966}
1967
1968/**
1969 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1970 * @pool: pool to destroy workers for
e22bee78 1971 *
63d95a91 1972 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1973 * IDLE_WORKER_TIMEOUT.
1974 *
1975 * LOCKING:
d565ed63 1976 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1977 * multiple times. Called only from manager.
1978 *
1979 * RETURNS:
d565ed63 1980 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1981 * otherwise.
1982 */
63d95a91 1983static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1984{
1985 bool ret = false;
1da177e4 1986
63d95a91 1987 while (too_many_workers(pool)) {
e22bee78
TH
1988 struct worker *worker;
1989 unsigned long expires;
3af24433 1990
63d95a91 1991 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1992 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1993
e22bee78 1994 if (time_before(jiffies, expires)) {
63d95a91 1995 mod_timer(&pool->idle_timer, expires);
3af24433 1996 break;
e22bee78 1997 }
1da177e4 1998
e22bee78
TH
1999 destroy_worker(worker);
2000 ret = true;
1da177e4 2001 }
1e19ffc6 2002
e22bee78 2003 return ret;
1e19ffc6
TH
2004}
2005
73f53c4a 2006/**
e22bee78
TH
2007 * manage_workers - manage worker pool
2008 * @worker: self
73f53c4a 2009 *
706026c2 2010 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2011 * to. At any given time, there can be only zero or one manager per
706026c2 2012 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2013 *
2014 * The caller can safely start processing works on false return. On
2015 * true return, it's guaranteed that need_to_create_worker() is false
2016 * and may_start_working() is true.
73f53c4a
TH
2017 *
2018 * CONTEXT:
d565ed63 2019 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2020 * multiple times. Does GFP_KERNEL allocations.
2021 *
2022 * RETURNS:
d565ed63
TH
2023 * spin_lock_irq(pool->lock) which may be released and regrabbed
2024 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2025 */
e22bee78 2026static bool manage_workers(struct worker *worker)
73f53c4a 2027{
63d95a91 2028 struct worker_pool *pool = worker->pool;
e22bee78 2029 bool ret = false;
73f53c4a 2030
ee378aa4 2031 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78 2032 return ret;
1e19ffc6 2033
552a37e9 2034 pool->flags |= POOL_MANAGING_WORKERS;
73f53c4a 2035
ee378aa4
LJ
2036 /*
2037 * To simplify both worker management and CPU hotplug, hold off
2038 * management while hotplug is in progress. CPU hotplug path can't
2039 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2040 * lead to idle worker depletion (all become busy thinking someone
2041 * else is managing) which in turn can result in deadlock under
b2eb83d1 2042 * extreme circumstances. Use @pool->assoc_mutex to synchronize
ee378aa4
LJ
2043 * manager against CPU hotplug.
2044 *
b2eb83d1 2045 * assoc_mutex would always be free unless CPU hotplug is in
d565ed63 2046 * progress. trylock first without dropping @pool->lock.
ee378aa4 2047 */
b2eb83d1 2048 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
d565ed63 2049 spin_unlock_irq(&pool->lock);
b2eb83d1 2050 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2051 /*
2052 * CPU hotplug could have happened while we were waiting
b2eb83d1 2053 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4 2054 * because manager isn't either on idle or busy list, and
706026c2 2055 * @pool's state and ours could have deviated.
ee378aa4 2056 *
b2eb83d1 2057 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4 2058 * simply try to bind. It will succeed or fail depending
706026c2 2059 * on @pool's current state. Try it and adjust
ee378aa4
LJ
2060 * %WORKER_UNBOUND accordingly.
2061 */
2062 if (worker_maybe_bind_and_lock(worker))
2063 worker->flags &= ~WORKER_UNBOUND;
2064 else
2065 worker->flags |= WORKER_UNBOUND;
73f53c4a 2066
ee378aa4
LJ
2067 ret = true;
2068 }
73f53c4a 2069
11ebea50 2070 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2071
2072 /*
e22bee78
TH
2073 * Destroy and then create so that may_start_working() is true
2074 * on return.
73f53c4a 2075 */
63d95a91
TH
2076 ret |= maybe_destroy_workers(pool);
2077 ret |= maybe_create_worker(pool);
e22bee78 2078
552a37e9 2079 pool->flags &= ~POOL_MANAGING_WORKERS;
b2eb83d1 2080 mutex_unlock(&pool->assoc_mutex);
e22bee78 2081 return ret;
73f53c4a
TH
2082}
2083
a62428c0
TH
2084/**
2085 * process_one_work - process single work
c34056a3 2086 * @worker: self
a62428c0
TH
2087 * @work: work to process
2088 *
2089 * Process @work. This function contains all the logics necessary to
2090 * process a single work including synchronization against and
2091 * interaction with other workers on the same cpu, queueing and
2092 * flushing. As long as context requirement is met, any worker can
2093 * call this function to process a work.
2094 *
2095 * CONTEXT:
d565ed63 2096 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2097 */
c34056a3 2098static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2099__releases(&pool->lock)
2100__acquires(&pool->lock)
a62428c0 2101{
7e11629d 2102 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43 2103 struct worker_pool *pool = worker->pool;
fb0e7beb 2104 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2105 int work_color;
7e11629d 2106 struct worker *collision;
a62428c0
TH
2107#ifdef CONFIG_LOCKDEP
2108 /*
2109 * It is permissible to free the struct work_struct from
2110 * inside the function that is called from it, this we need to
2111 * take into account for lockdep too. To avoid bogus "held
2112 * lock freed" warnings as well as problems when looking into
2113 * work->lockdep_map, make a copy and use that here.
2114 */
4d82a1de
PZ
2115 struct lockdep_map lockdep_map;
2116
2117 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2118#endif
6fec10a1
TH
2119 /*
2120 * Ensure we're on the correct CPU. DISASSOCIATED test is
2121 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2122 * unbound or a disassociated pool.
6fec10a1 2123 */
5f7dabfd 2124 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2125 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2126 raw_smp_processor_id() != pool->cpu);
25511a47 2127
7e11629d
TH
2128 /*
2129 * A single work shouldn't be executed concurrently by
2130 * multiple workers on a single cpu. Check whether anyone is
2131 * already processing the work. If so, defer the work to the
2132 * currently executing one.
2133 */
c9e7cf27 2134 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2135 if (unlikely(collision)) {
2136 move_linked_works(work, &collision->scheduled, NULL);
2137 return;
2138 }
2139
8930caba 2140 /* claim and dequeue */
a62428c0 2141 debug_work_deactivate(work);
c9e7cf27 2142 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2143 worker->current_work = work;
a2c1c57b 2144 worker->current_func = work->func;
8cca0eea 2145 worker->current_cwq = cwq;
73f53c4a 2146 work_color = get_work_color(work);
7a22ad75 2147
a62428c0
TH
2148 list_del_init(&work->entry);
2149
fb0e7beb
TH
2150 /*
2151 * CPU intensive works don't participate in concurrency
2152 * management. They're the scheduler's responsibility.
2153 */
2154 if (unlikely(cpu_intensive))
2155 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2156
974271c4 2157 /*
d565ed63 2158 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2159 * executed ASAP. Wake up another worker if necessary.
2160 */
63d95a91
TH
2161 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2162 wake_up_worker(pool);
974271c4 2163
8930caba 2164 /*
7c3eed5c 2165 * Record the last pool and clear PENDING which should be the last
d565ed63 2166 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2167 * PENDING and queued state changes happen together while IRQ is
2168 * disabled.
8930caba 2169 */
7c3eed5c 2170 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2171
d565ed63 2172 spin_unlock_irq(&pool->lock);
a62428c0 2173
e159489b 2174 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2175 lock_map_acquire(&lockdep_map);
e36c886a 2176 trace_workqueue_execute_start(work);
a2c1c57b 2177 worker->current_func(work);
e36c886a
AV
2178 /*
2179 * While we must be careful to not use "work" after this, the trace
2180 * point will only record its address.
2181 */
2182 trace_workqueue_execute_end(work);
a62428c0
TH
2183 lock_map_release(&lockdep_map);
2184 lock_map_release(&cwq->wq->lockdep_map);
2185
2186 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2187 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2188 " last function: %pf\n",
a2c1c57b
TH
2189 current->comm, preempt_count(), task_pid_nr(current),
2190 worker->current_func);
a62428c0
TH
2191 debug_show_held_locks(current);
2192 dump_stack();
2193 }
2194
d565ed63 2195 spin_lock_irq(&pool->lock);
a62428c0 2196
fb0e7beb
TH
2197 /* clear cpu intensive status */
2198 if (unlikely(cpu_intensive))
2199 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2200
a62428c0 2201 /* we're done with it, release */
42f8570f 2202 hash_del(&worker->hentry);
c34056a3 2203 worker->current_work = NULL;
a2c1c57b 2204 worker->current_func = NULL;
8cca0eea 2205 worker->current_cwq = NULL;
b3f9f405 2206 cwq_dec_nr_in_flight(cwq, work_color);
a62428c0
TH
2207}
2208
affee4b2
TH
2209/**
2210 * process_scheduled_works - process scheduled works
2211 * @worker: self
2212 *
2213 * Process all scheduled works. Please note that the scheduled list
2214 * may change while processing a work, so this function repeatedly
2215 * fetches a work from the top and executes it.
2216 *
2217 * CONTEXT:
d565ed63 2218 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2219 * multiple times.
2220 */
2221static void process_scheduled_works(struct worker *worker)
1da177e4 2222{
affee4b2
TH
2223 while (!list_empty(&worker->scheduled)) {
2224 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2225 struct work_struct, entry);
c34056a3 2226 process_one_work(worker, work);
1da177e4 2227 }
1da177e4
LT
2228}
2229
4690c4ab
TH
2230/**
2231 * worker_thread - the worker thread function
c34056a3 2232 * @__worker: self
4690c4ab 2233 *
706026c2
TH
2234 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools
2235 * of these per each cpu. These workers process all works regardless of
e22bee78
TH
2236 * their specific target workqueue. The only exception is works which
2237 * belong to workqueues with a rescuer which will be explained in
2238 * rescuer_thread().
4690c4ab 2239 */
c34056a3 2240static int worker_thread(void *__worker)
1da177e4 2241{
c34056a3 2242 struct worker *worker = __worker;
bd7bdd43 2243 struct worker_pool *pool = worker->pool;
1da177e4 2244
e22bee78
TH
2245 /* tell the scheduler that this is a workqueue worker */
2246 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2247woke_up:
d565ed63 2248 spin_lock_irq(&pool->lock);
1da177e4 2249
5f7dabfd
LJ
2250 /* we are off idle list if destruction or rebind is requested */
2251 if (unlikely(list_empty(&worker->entry))) {
d565ed63 2252 spin_unlock_irq(&pool->lock);
25511a47 2253
5f7dabfd 2254 /* if DIE is set, destruction is requested */
25511a47
TH
2255 if (worker->flags & WORKER_DIE) {
2256 worker->task->flags &= ~PF_WQ_WORKER;
2257 return 0;
2258 }
2259
5f7dabfd 2260 /* otherwise, rebind */
25511a47
TH
2261 idle_worker_rebind(worker);
2262 goto woke_up;
c8e55f36 2263 }
affee4b2 2264
c8e55f36 2265 worker_leave_idle(worker);
db7bccf4 2266recheck:
e22bee78 2267 /* no more worker necessary? */
63d95a91 2268 if (!need_more_worker(pool))
e22bee78
TH
2269 goto sleep;
2270
2271 /* do we need to manage? */
63d95a91 2272 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2273 goto recheck;
2274
c8e55f36
TH
2275 /*
2276 * ->scheduled list can only be filled while a worker is
2277 * preparing to process a work or actually processing it.
2278 * Make sure nobody diddled with it while I was sleeping.
2279 */
2280 BUG_ON(!list_empty(&worker->scheduled));
2281
e22bee78
TH
2282 /*
2283 * When control reaches this point, we're guaranteed to have
2284 * at least one idle worker or that someone else has already
2285 * assumed the manager role.
2286 */
2287 worker_clr_flags(worker, WORKER_PREP);
2288
2289 do {
c8e55f36 2290 struct work_struct *work =
bd7bdd43 2291 list_first_entry(&pool->worklist,
c8e55f36
TH
2292 struct work_struct, entry);
2293
2294 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2295 /* optimization path, not strictly necessary */
2296 process_one_work(worker, work);
2297 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2298 process_scheduled_works(worker);
c8e55f36
TH
2299 } else {
2300 move_linked_works(work, &worker->scheduled, NULL);
2301 process_scheduled_works(worker);
affee4b2 2302 }
63d95a91 2303 } while (keep_working(pool));
e22bee78
TH
2304
2305 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2306sleep:
63d95a91 2307 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2308 goto recheck;
d313dd85 2309
c8e55f36 2310 /*
d565ed63
TH
2311 * pool->lock is held and there's no work to process and no need to
2312 * manage, sleep. Workers are woken up only while holding
2313 * pool->lock or from local cpu, so setting the current state
2314 * before releasing pool->lock is enough to prevent losing any
2315 * event.
c8e55f36
TH
2316 */
2317 worker_enter_idle(worker);
2318 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2319 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2320 schedule();
2321 goto woke_up;
1da177e4
LT
2322}
2323
e22bee78
TH
2324/**
2325 * rescuer_thread - the rescuer thread function
111c225a 2326 * @__rescuer: self
e22bee78
TH
2327 *
2328 * Workqueue rescuer thread function. There's one rescuer for each
2329 * workqueue which has WQ_RESCUER set.
2330 *
706026c2 2331 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2332 * worker which uses GFP_KERNEL allocation which has slight chance of
2333 * developing into deadlock if some works currently on the same queue
2334 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2335 * the problem rescuer solves.
2336 *
706026c2
TH
2337 * When such condition is possible, the pool summons rescuers of all
2338 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2339 * those works so that forward progress can be guaranteed.
2340 *
2341 * This should happen rarely.
2342 */
111c225a 2343static int rescuer_thread(void *__rescuer)
e22bee78 2344{
111c225a
TH
2345 struct worker *rescuer = __rescuer;
2346 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2347 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2348 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2349 unsigned int cpu;
2350
2351 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2352
2353 /*
2354 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2355 * doesn't participate in concurrency management.
2356 */
2357 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2358repeat:
2359 set_current_state(TASK_INTERRUPTIBLE);
2360
412d32e6
MG
2361 if (kthread_should_stop()) {
2362 __set_current_state(TASK_RUNNING);
111c225a 2363 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2364 return 0;
412d32e6 2365 }
e22bee78 2366
f3421797
TH
2367 /*
2368 * See whether any cpu is asking for help. Unbounded
2369 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2370 */
f2e005aa 2371 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2372 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2373 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43 2374 struct worker_pool *pool = cwq->pool;
e22bee78
TH
2375 struct work_struct *work, *n;
2376
2377 __set_current_state(TASK_RUNNING);
f2e005aa 2378 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2379
2380 /* migrate to the target cpu if possible */
bd7bdd43 2381 rescuer->pool = pool;
e22bee78
TH
2382 worker_maybe_bind_and_lock(rescuer);
2383
2384 /*
2385 * Slurp in all works issued via this workqueue and
2386 * process'em.
2387 */
2388 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2389 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2390 if (get_work_cwq(work) == cwq)
2391 move_linked_works(work, scheduled, &n);
2392
2393 process_scheduled_works(rescuer);
7576958a
TH
2394
2395 /*
d565ed63 2396 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2397 * regular worker; otherwise, we end up with 0 concurrency
2398 * and stalling the execution.
2399 */
63d95a91
TH
2400 if (keep_working(pool))
2401 wake_up_worker(pool);
7576958a 2402
d565ed63 2403 spin_unlock_irq(&pool->lock);
e22bee78
TH
2404 }
2405
111c225a
TH
2406 /* rescuers should never participate in concurrency management */
2407 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2408 schedule();
2409 goto repeat;
1da177e4
LT
2410}
2411
fc2e4d70
ON
2412struct wq_barrier {
2413 struct work_struct work;
2414 struct completion done;
2415};
2416
2417static void wq_barrier_func(struct work_struct *work)
2418{
2419 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2420 complete(&barr->done);
2421}
2422
4690c4ab
TH
2423/**
2424 * insert_wq_barrier - insert a barrier work
2425 * @cwq: cwq to insert barrier into
2426 * @barr: wq_barrier to insert
affee4b2
TH
2427 * @target: target work to attach @barr to
2428 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2429 *
affee4b2
TH
2430 * @barr is linked to @target such that @barr is completed only after
2431 * @target finishes execution. Please note that the ordering
2432 * guarantee is observed only with respect to @target and on the local
2433 * cpu.
2434 *
2435 * Currently, a queued barrier can't be canceled. This is because
2436 * try_to_grab_pending() can't determine whether the work to be
2437 * grabbed is at the head of the queue and thus can't clear LINKED
2438 * flag of the previous work while there must be a valid next work
2439 * after a work with LINKED flag set.
2440 *
2441 * Note that when @worker is non-NULL, @target may be modified
2442 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2443 *
2444 * CONTEXT:
d565ed63 2445 * spin_lock_irq(pool->lock).
4690c4ab 2446 */
83c22520 2447static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2448 struct wq_barrier *barr,
2449 struct work_struct *target, struct worker *worker)
fc2e4d70 2450{
affee4b2
TH
2451 struct list_head *head;
2452 unsigned int linked = 0;
2453
dc186ad7 2454 /*
d565ed63 2455 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2456 * as we know for sure that this will not trigger any of the
2457 * checks and call back into the fixup functions where we
2458 * might deadlock.
2459 */
ca1cab37 2460 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2461 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2462 init_completion(&barr->done);
83c22520 2463
affee4b2
TH
2464 /*
2465 * If @target is currently being executed, schedule the
2466 * barrier to the worker; otherwise, put it after @target.
2467 */
2468 if (worker)
2469 head = worker->scheduled.next;
2470 else {
2471 unsigned long *bits = work_data_bits(target);
2472
2473 head = target->entry.next;
2474 /* there can already be other linked works, inherit and set */
2475 linked = *bits & WORK_STRUCT_LINKED;
2476 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2477 }
2478
dc186ad7 2479 debug_work_activate(&barr->work);
affee4b2
TH
2480 insert_work(cwq, &barr->work, head,
2481 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2482}
2483
73f53c4a
TH
2484/**
2485 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2486 * @wq: workqueue being flushed
2487 * @flush_color: new flush color, < 0 for no-op
2488 * @work_color: new work color, < 0 for no-op
2489 *
2490 * Prepare cwqs for workqueue flushing.
2491 *
2492 * If @flush_color is non-negative, flush_color on all cwqs should be
2493 * -1. If no cwq has in-flight commands at the specified color, all
2494 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2495 * has in flight commands, its cwq->flush_color is set to
2496 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2497 * wakeup logic is armed and %true is returned.
2498 *
2499 * The caller should have initialized @wq->first_flusher prior to
2500 * calling this function with non-negative @flush_color. If
2501 * @flush_color is negative, no flush color update is done and %false
2502 * is returned.
2503 *
2504 * If @work_color is non-negative, all cwqs should have the same
2505 * work_color which is previous to @work_color and all will be
2506 * advanced to @work_color.
2507 *
2508 * CONTEXT:
2509 * mutex_lock(wq->flush_mutex).
2510 *
2511 * RETURNS:
2512 * %true if @flush_color >= 0 and there's something to flush. %false
2513 * otherwise.
2514 */
2515static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2516 int flush_color, int work_color)
1da177e4 2517{
73f53c4a
TH
2518 bool wait = false;
2519 unsigned int cpu;
1da177e4 2520
73f53c4a
TH
2521 if (flush_color >= 0) {
2522 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2523 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2524 }
2355b70f 2525
f3421797 2526 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2527 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
d565ed63 2528 struct worker_pool *pool = cwq->pool;
fc2e4d70 2529
d565ed63 2530 spin_lock_irq(&pool->lock);
83c22520 2531
73f53c4a
TH
2532 if (flush_color >= 0) {
2533 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2534
73f53c4a
TH
2535 if (cwq->nr_in_flight[flush_color]) {
2536 cwq->flush_color = flush_color;
2537 atomic_inc(&wq->nr_cwqs_to_flush);
2538 wait = true;
2539 }
2540 }
1da177e4 2541
73f53c4a
TH
2542 if (work_color >= 0) {
2543 BUG_ON(work_color != work_next_color(cwq->work_color));
2544 cwq->work_color = work_color;
2545 }
1da177e4 2546
d565ed63 2547 spin_unlock_irq(&pool->lock);
1da177e4 2548 }
2355b70f 2549
73f53c4a
TH
2550 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2551 complete(&wq->first_flusher->done);
14441960 2552
73f53c4a 2553 return wait;
1da177e4
LT
2554}
2555
0fcb78c2 2556/**
1da177e4 2557 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2558 * @wq: workqueue to flush
1da177e4
LT
2559 *
2560 * Forces execution of the workqueue and blocks until its completion.
2561 * This is typically used in driver shutdown handlers.
2562 *
fc2e4d70
ON
2563 * We sleep until all works which were queued on entry have been handled,
2564 * but we are not livelocked by new incoming ones.
1da177e4 2565 */
7ad5b3a5 2566void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2567{
73f53c4a
TH
2568 struct wq_flusher this_flusher = {
2569 .list = LIST_HEAD_INIT(this_flusher.list),
2570 .flush_color = -1,
2571 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2572 };
2573 int next_color;
1da177e4 2574
3295f0ef
IM
2575 lock_map_acquire(&wq->lockdep_map);
2576 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2577
2578 mutex_lock(&wq->flush_mutex);
2579
2580 /*
2581 * Start-to-wait phase
2582 */
2583 next_color = work_next_color(wq->work_color);
2584
2585 if (next_color != wq->flush_color) {
2586 /*
2587 * Color space is not full. The current work_color
2588 * becomes our flush_color and work_color is advanced
2589 * by one.
2590 */
2591 BUG_ON(!list_empty(&wq->flusher_overflow));
2592 this_flusher.flush_color = wq->work_color;
2593 wq->work_color = next_color;
2594
2595 if (!wq->first_flusher) {
2596 /* no flush in progress, become the first flusher */
2597 BUG_ON(wq->flush_color != this_flusher.flush_color);
2598
2599 wq->first_flusher = &this_flusher;
2600
2601 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2602 wq->work_color)) {
2603 /* nothing to flush, done */
2604 wq->flush_color = next_color;
2605 wq->first_flusher = NULL;
2606 goto out_unlock;
2607 }
2608 } else {
2609 /* wait in queue */
2610 BUG_ON(wq->flush_color == this_flusher.flush_color);
2611 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2612 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2613 }
2614 } else {
2615 /*
2616 * Oops, color space is full, wait on overflow queue.
2617 * The next flush completion will assign us
2618 * flush_color and transfer to flusher_queue.
2619 */
2620 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2621 }
2622
2623 mutex_unlock(&wq->flush_mutex);
2624
2625 wait_for_completion(&this_flusher.done);
2626
2627 /*
2628 * Wake-up-and-cascade phase
2629 *
2630 * First flushers are responsible for cascading flushes and
2631 * handling overflow. Non-first flushers can simply return.
2632 */
2633 if (wq->first_flusher != &this_flusher)
2634 return;
2635
2636 mutex_lock(&wq->flush_mutex);
2637
4ce48b37
TH
2638 /* we might have raced, check again with mutex held */
2639 if (wq->first_flusher != &this_flusher)
2640 goto out_unlock;
2641
73f53c4a
TH
2642 wq->first_flusher = NULL;
2643
2644 BUG_ON(!list_empty(&this_flusher.list));
2645 BUG_ON(wq->flush_color != this_flusher.flush_color);
2646
2647 while (true) {
2648 struct wq_flusher *next, *tmp;
2649
2650 /* complete all the flushers sharing the current flush color */
2651 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2652 if (next->flush_color != wq->flush_color)
2653 break;
2654 list_del_init(&next->list);
2655 complete(&next->done);
2656 }
2657
2658 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2659 wq->flush_color != work_next_color(wq->work_color));
2660
2661 /* this flush_color is finished, advance by one */
2662 wq->flush_color = work_next_color(wq->flush_color);
2663
2664 /* one color has been freed, handle overflow queue */
2665 if (!list_empty(&wq->flusher_overflow)) {
2666 /*
2667 * Assign the same color to all overflowed
2668 * flushers, advance work_color and append to
2669 * flusher_queue. This is the start-to-wait
2670 * phase for these overflowed flushers.
2671 */
2672 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2673 tmp->flush_color = wq->work_color;
2674
2675 wq->work_color = work_next_color(wq->work_color);
2676
2677 list_splice_tail_init(&wq->flusher_overflow,
2678 &wq->flusher_queue);
2679 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2680 }
2681
2682 if (list_empty(&wq->flusher_queue)) {
2683 BUG_ON(wq->flush_color != wq->work_color);
2684 break;
2685 }
2686
2687 /*
2688 * Need to flush more colors. Make the next flusher
2689 * the new first flusher and arm cwqs.
2690 */
2691 BUG_ON(wq->flush_color == wq->work_color);
2692 BUG_ON(wq->flush_color != next->flush_color);
2693
2694 list_del_init(&next->list);
2695 wq->first_flusher = next;
2696
2697 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2698 break;
2699
2700 /*
2701 * Meh... this color is already done, clear first
2702 * flusher and repeat cascading.
2703 */
2704 wq->first_flusher = NULL;
2705 }
2706
2707out_unlock:
2708 mutex_unlock(&wq->flush_mutex);
1da177e4 2709}
ae90dd5d 2710EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2711
9c5a2ba7
TH
2712/**
2713 * drain_workqueue - drain a workqueue
2714 * @wq: workqueue to drain
2715 *
2716 * Wait until the workqueue becomes empty. While draining is in progress,
2717 * only chain queueing is allowed. IOW, only currently pending or running
2718 * work items on @wq can queue further work items on it. @wq is flushed
2719 * repeatedly until it becomes empty. The number of flushing is detemined
2720 * by the depth of chaining and should be relatively short. Whine if it
2721 * takes too long.
2722 */
2723void drain_workqueue(struct workqueue_struct *wq)
2724{
2725 unsigned int flush_cnt = 0;
2726 unsigned int cpu;
2727
2728 /*
2729 * __queue_work() needs to test whether there are drainers, is much
2730 * hotter than drain_workqueue() and already looks at @wq->flags.
2731 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2732 */
2733 spin_lock(&workqueue_lock);
2734 if (!wq->nr_drainers++)
2735 wq->flags |= WQ_DRAINING;
2736 spin_unlock(&workqueue_lock);
2737reflush:
2738 flush_workqueue(wq);
2739
2740 for_each_cwq_cpu(cpu, wq) {
2741 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2742 bool drained;
9c5a2ba7 2743
d565ed63 2744 spin_lock_irq(&cwq->pool->lock);
fa2563e4 2745 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
d565ed63 2746 spin_unlock_irq(&cwq->pool->lock);
fa2563e4
TT
2747
2748 if (drained)
9c5a2ba7
TH
2749 continue;
2750
2751 if (++flush_cnt == 10 ||
2752 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2753 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2754 wq->name, flush_cnt);
9c5a2ba7
TH
2755 goto reflush;
2756 }
2757
2758 spin_lock(&workqueue_lock);
2759 if (!--wq->nr_drainers)
2760 wq->flags &= ~WQ_DRAINING;
2761 spin_unlock(&workqueue_lock);
2762}
2763EXPORT_SYMBOL_GPL(drain_workqueue);
2764
606a5020 2765static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2766{
affee4b2 2767 struct worker *worker = NULL;
c9e7cf27 2768 struct worker_pool *pool;
db700897 2769 struct cpu_workqueue_struct *cwq;
db700897
ON
2770
2771 might_sleep();
c9e7cf27
TH
2772 pool = get_work_pool(work);
2773 if (!pool)
baf59022 2774 return false;
db700897 2775
d565ed63 2776 spin_lock_irq(&pool->lock);
0b3dae68
LJ
2777 /* see the comment in try_to_grab_pending() with the same code */
2778 cwq = get_work_cwq(work);
2779 if (cwq) {
2780 if (unlikely(cwq->pool != pool))
4690c4ab 2781 goto already_gone;
606a5020 2782 } else {
c9e7cf27 2783 worker = find_worker_executing_work(pool, work);
affee4b2 2784 if (!worker)
4690c4ab 2785 goto already_gone;
7a22ad75 2786 cwq = worker->current_cwq;
606a5020 2787 }
db700897 2788
baf59022 2789 insert_wq_barrier(cwq, barr, work, worker);
d565ed63 2790 spin_unlock_irq(&pool->lock);
7a22ad75 2791
e159489b
TH
2792 /*
2793 * If @max_active is 1 or rescuer is in use, flushing another work
2794 * item on the same workqueue may lead to deadlock. Make sure the
2795 * flusher is not running on the same workqueue by verifying write
2796 * access.
2797 */
2798 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2799 lock_map_acquire(&cwq->wq->lockdep_map);
2800 else
2801 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2802 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2803
401a8d04 2804 return true;
4690c4ab 2805already_gone:
d565ed63 2806 spin_unlock_irq(&pool->lock);
401a8d04 2807 return false;
db700897 2808}
baf59022
TH
2809
2810/**
2811 * flush_work - wait for a work to finish executing the last queueing instance
2812 * @work: the work to flush
2813 *
606a5020
TH
2814 * Wait until @work has finished execution. @work is guaranteed to be idle
2815 * on return if it hasn't been requeued since flush started.
baf59022
TH
2816 *
2817 * RETURNS:
2818 * %true if flush_work() waited for the work to finish execution,
2819 * %false if it was already idle.
2820 */
2821bool flush_work(struct work_struct *work)
2822{
2823 struct wq_barrier barr;
2824
0976dfc1
SB
2825 lock_map_acquire(&work->lockdep_map);
2826 lock_map_release(&work->lockdep_map);
2827
606a5020 2828 if (start_flush_work(work, &barr)) {
401a8d04
TH
2829 wait_for_completion(&barr.done);
2830 destroy_work_on_stack(&barr.work);
2831 return true;
606a5020 2832 } else {
401a8d04 2833 return false;
6e84d644 2834 }
6e84d644 2835}
606a5020 2836EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2837
36e227d2 2838static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2839{
bbb68dfa 2840 unsigned long flags;
1f1f642e
ON
2841 int ret;
2842
2843 do {
bbb68dfa
TH
2844 ret = try_to_grab_pending(work, is_dwork, &flags);
2845 /*
2846 * If someone else is canceling, wait for the same event it
2847 * would be waiting for before retrying.
2848 */
2849 if (unlikely(ret == -ENOENT))
606a5020 2850 flush_work(work);
1f1f642e
ON
2851 } while (unlikely(ret < 0));
2852
bbb68dfa
TH
2853 /* tell other tasks trying to grab @work to back off */
2854 mark_work_canceling(work);
2855 local_irq_restore(flags);
2856
606a5020 2857 flush_work(work);
7a22ad75 2858 clear_work_data(work);
1f1f642e
ON
2859 return ret;
2860}
2861
6e84d644 2862/**
401a8d04
TH
2863 * cancel_work_sync - cancel a work and wait for it to finish
2864 * @work: the work to cancel
6e84d644 2865 *
401a8d04
TH
2866 * Cancel @work and wait for its execution to finish. This function
2867 * can be used even if the work re-queues itself or migrates to
2868 * another workqueue. On return from this function, @work is
2869 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2870 *
401a8d04
TH
2871 * cancel_work_sync(&delayed_work->work) must not be used for
2872 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2873 *
401a8d04 2874 * The caller must ensure that the workqueue on which @work was last
6e84d644 2875 * queued can't be destroyed before this function returns.
401a8d04
TH
2876 *
2877 * RETURNS:
2878 * %true if @work was pending, %false otherwise.
6e84d644 2879 */
401a8d04 2880bool cancel_work_sync(struct work_struct *work)
6e84d644 2881{
36e227d2 2882 return __cancel_work_timer(work, false);
b89deed3 2883}
28e53bdd 2884EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2885
6e84d644 2886/**
401a8d04
TH
2887 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2888 * @dwork: the delayed work to flush
6e84d644 2889 *
401a8d04
TH
2890 * Delayed timer is cancelled and the pending work is queued for
2891 * immediate execution. Like flush_work(), this function only
2892 * considers the last queueing instance of @dwork.
1f1f642e 2893 *
401a8d04
TH
2894 * RETURNS:
2895 * %true if flush_work() waited for the work to finish execution,
2896 * %false if it was already idle.
6e84d644 2897 */
401a8d04
TH
2898bool flush_delayed_work(struct delayed_work *dwork)
2899{
8930caba 2900 local_irq_disable();
401a8d04 2901 if (del_timer_sync(&dwork->timer))
60c057bc 2902 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2903 local_irq_enable();
401a8d04
TH
2904 return flush_work(&dwork->work);
2905}
2906EXPORT_SYMBOL(flush_delayed_work);
2907
09383498 2908/**
57b30ae7
TH
2909 * cancel_delayed_work - cancel a delayed work
2910 * @dwork: delayed_work to cancel
09383498 2911 *
57b30ae7
TH
2912 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2913 * and canceled; %false if wasn't pending. Note that the work callback
2914 * function may still be running on return, unless it returns %true and the
2915 * work doesn't re-arm itself. Explicitly flush or use
2916 * cancel_delayed_work_sync() to wait on it.
09383498 2917 *
57b30ae7 2918 * This function is safe to call from any context including IRQ handler.
09383498 2919 */
57b30ae7 2920bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2921{
57b30ae7
TH
2922 unsigned long flags;
2923 int ret;
2924
2925 do {
2926 ret = try_to_grab_pending(&dwork->work, true, &flags);
2927 } while (unlikely(ret == -EAGAIN));
2928
2929 if (unlikely(ret < 0))
2930 return false;
2931
7c3eed5c
TH
2932 set_work_pool_and_clear_pending(&dwork->work,
2933 get_work_pool_id(&dwork->work));
57b30ae7 2934 local_irq_restore(flags);
c0158ca6 2935 return ret;
09383498 2936}
57b30ae7 2937EXPORT_SYMBOL(cancel_delayed_work);
09383498 2938
401a8d04
TH
2939/**
2940 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2941 * @dwork: the delayed work cancel
2942 *
2943 * This is cancel_work_sync() for delayed works.
2944 *
2945 * RETURNS:
2946 * %true if @dwork was pending, %false otherwise.
2947 */
2948bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2949{
36e227d2 2950 return __cancel_work_timer(&dwork->work, true);
6e84d644 2951}
f5a421a4 2952EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2953
0fcb78c2 2954/**
c1a220e7
ZR
2955 * schedule_work_on - put work task on a specific cpu
2956 * @cpu: cpu to put the work task on
2957 * @work: job to be done
2958 *
2959 * This puts a job on a specific cpu
2960 */
d4283e93 2961bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 2962{
d320c038 2963 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2964}
2965EXPORT_SYMBOL(schedule_work_on);
2966
0fcb78c2 2967/**
0fcb78c2
REB
2968 * schedule_work - put work task in global workqueue
2969 * @work: job to be done
0fcb78c2 2970 *
d4283e93
TH
2971 * Returns %false if @work was already on the kernel-global workqueue and
2972 * %true otherwise.
5b0f437d
BVA
2973 *
2974 * This puts a job in the kernel-global workqueue if it was not already
2975 * queued and leaves it in the same position on the kernel-global
2976 * workqueue otherwise.
0fcb78c2 2977 */
d4283e93 2978bool schedule_work(struct work_struct *work)
1da177e4 2979{
d320c038 2980 return queue_work(system_wq, work);
1da177e4 2981}
ae90dd5d 2982EXPORT_SYMBOL(schedule_work);
1da177e4 2983
0fcb78c2
REB
2984/**
2985 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2986 * @cpu: cpu to use
52bad64d 2987 * @dwork: job to be done
0fcb78c2
REB
2988 * @delay: number of jiffies to wait
2989 *
2990 * After waiting for a given time this puts a job in the kernel-global
2991 * workqueue on the specified CPU.
2992 */
d4283e93
TH
2993bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2994 unsigned long delay)
1da177e4 2995{
d320c038 2996 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 2997}
ae90dd5d 2998EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 2999
0fcb78c2
REB
3000/**
3001 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3002 * @dwork: job to be done
3003 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3004 *
3005 * After waiting for a given time this puts a job in the kernel-global
3006 * workqueue.
3007 */
d4283e93 3008bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3009{
d320c038 3010 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3011}
ae90dd5d 3012EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3013
b6136773 3014/**
31ddd871 3015 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3016 * @func: the function to call
b6136773 3017 *
31ddd871
TH
3018 * schedule_on_each_cpu() executes @func on each online CPU using the
3019 * system workqueue and blocks until all CPUs have completed.
b6136773 3020 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3021 *
3022 * RETURNS:
3023 * 0 on success, -errno on failure.
b6136773 3024 */
65f27f38 3025int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3026{
3027 int cpu;
38f51568 3028 struct work_struct __percpu *works;
15316ba8 3029
b6136773
AM
3030 works = alloc_percpu(struct work_struct);
3031 if (!works)
15316ba8 3032 return -ENOMEM;
b6136773 3033
93981800
TH
3034 get_online_cpus();
3035
15316ba8 3036 for_each_online_cpu(cpu) {
9bfb1839
IM
3037 struct work_struct *work = per_cpu_ptr(works, cpu);
3038
3039 INIT_WORK(work, func);
b71ab8c2 3040 schedule_work_on(cpu, work);
65a64464 3041 }
93981800
TH
3042
3043 for_each_online_cpu(cpu)
3044 flush_work(per_cpu_ptr(works, cpu));
3045
95402b38 3046 put_online_cpus();
b6136773 3047 free_percpu(works);
15316ba8
CL
3048 return 0;
3049}
3050
eef6a7d5
AS
3051/**
3052 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3053 *
3054 * Forces execution of the kernel-global workqueue and blocks until its
3055 * completion.
3056 *
3057 * Think twice before calling this function! It's very easy to get into
3058 * trouble if you don't take great care. Either of the following situations
3059 * will lead to deadlock:
3060 *
3061 * One of the work items currently on the workqueue needs to acquire
3062 * a lock held by your code or its caller.
3063 *
3064 * Your code is running in the context of a work routine.
3065 *
3066 * They will be detected by lockdep when they occur, but the first might not
3067 * occur very often. It depends on what work items are on the workqueue and
3068 * what locks they need, which you have no control over.
3069 *
3070 * In most situations flushing the entire workqueue is overkill; you merely
3071 * need to know that a particular work item isn't queued and isn't running.
3072 * In such cases you should use cancel_delayed_work_sync() or
3073 * cancel_work_sync() instead.
3074 */
1da177e4
LT
3075void flush_scheduled_work(void)
3076{
d320c038 3077 flush_workqueue(system_wq);
1da177e4 3078}
ae90dd5d 3079EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3080
1fa44eca
JB
3081/**
3082 * execute_in_process_context - reliably execute the routine with user context
3083 * @fn: the function to execute
1fa44eca
JB
3084 * @ew: guaranteed storage for the execute work structure (must
3085 * be available when the work executes)
3086 *
3087 * Executes the function immediately if process context is available,
3088 * otherwise schedules the function for delayed execution.
3089 *
3090 * Returns: 0 - function was executed
3091 * 1 - function was scheduled for execution
3092 */
65f27f38 3093int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3094{
3095 if (!in_interrupt()) {
65f27f38 3096 fn(&ew->work);
1fa44eca
JB
3097 return 0;
3098 }
3099
65f27f38 3100 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3101 schedule_work(&ew->work);
3102
3103 return 1;
3104}
3105EXPORT_SYMBOL_GPL(execute_in_process_context);
3106
1da177e4
LT
3107int keventd_up(void)
3108{
d320c038 3109 return system_wq != NULL;
1da177e4
LT
3110}
3111
bdbc5dd7 3112static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3113{
65a64464 3114 /*
0f900049
TH
3115 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3116 * Make sure that the alignment isn't lower than that of
3117 * unsigned long long.
65a64464 3118 */
0f900049
TH
3119 const size_t size = sizeof(struct cpu_workqueue_struct);
3120 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3121 __alignof__(unsigned long long));
65a64464 3122
e06ffa1e 3123 if (!(wq->flags & WQ_UNBOUND))
f3421797 3124 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3125 else {
f3421797
TH
3126 void *ptr;
3127
3128 /*
3129 * Allocate enough room to align cwq and put an extra
3130 * pointer at the end pointing back to the originally
3131 * allocated pointer which will be used for free.
3132 */
3133 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3134 if (ptr) {
3135 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3136 *(void **)(wq->cpu_wq.single + 1) = ptr;
3137 }
bdbc5dd7 3138 }
f3421797 3139
0415b00d 3140 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3141 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3142 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3143}
3144
bdbc5dd7 3145static void free_cwqs(struct workqueue_struct *wq)
0f900049 3146{
e06ffa1e 3147 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3148 free_percpu(wq->cpu_wq.pcpu);
3149 else if (wq->cpu_wq.single) {
3150 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3151 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3152 }
0f900049
TH
3153}
3154
f3421797
TH
3155static int wq_clamp_max_active(int max_active, unsigned int flags,
3156 const char *name)
b71ab8c2 3157{
f3421797
TH
3158 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3159
3160 if (max_active < 1 || max_active > lim)
044c782c
VI
3161 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3162 max_active, name, 1, lim);
b71ab8c2 3163
f3421797 3164 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3165}
3166
b196be89 3167struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3168 unsigned int flags,
3169 int max_active,
3170 struct lock_class_key *key,
b196be89 3171 const char *lock_name, ...)
1da177e4 3172{
b196be89 3173 va_list args, args1;
1da177e4 3174 struct workqueue_struct *wq;
c34056a3 3175 unsigned int cpu;
b196be89
TH
3176 size_t namelen;
3177
3178 /* determine namelen, allocate wq and format name */
3179 va_start(args, lock_name);
3180 va_copy(args1, args);
3181 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3182
3183 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3184 if (!wq)
3185 goto err;
3186
3187 vsnprintf(wq->name, namelen, fmt, args1);
3188 va_end(args);
3189 va_end(args1);
1da177e4 3190
6370a6ad
TH
3191 /*
3192 * Workqueues which may be used during memory reclaim should
3193 * have a rescuer to guarantee forward progress.
3194 */
3195 if (flags & WQ_MEM_RECLAIM)
3196 flags |= WQ_RESCUER;
3197
d320c038 3198 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3199 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3200
b196be89 3201 /* init wq */
97e37d7b 3202 wq->flags = flags;
a0a1a5fd 3203 wq->saved_max_active = max_active;
73f53c4a
TH
3204 mutex_init(&wq->flush_mutex);
3205 atomic_set(&wq->nr_cwqs_to_flush, 0);
3206 INIT_LIST_HEAD(&wq->flusher_queue);
3207 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3208
eb13ba87 3209 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3210 INIT_LIST_HEAD(&wq->list);
3af24433 3211
bdbc5dd7
TH
3212 if (alloc_cwqs(wq) < 0)
3213 goto err;
3214
f3421797 3215 for_each_cwq_cpu(cpu, wq) {
1537663f
TH
3216 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3217
0f900049 3218 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
a60dc39c 3219 cwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI);
c34056a3 3220 cwq->wq = wq;
73f53c4a 3221 cwq->flush_color = -1;
1e19ffc6 3222 cwq->max_active = max_active;
1e19ffc6 3223 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3224 }
1537663f 3225
e22bee78
TH
3226 if (flags & WQ_RESCUER) {
3227 struct worker *rescuer;
3228
f2e005aa 3229 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3230 goto err;
3231
3232 wq->rescuer = rescuer = alloc_worker();
3233 if (!rescuer)
3234 goto err;
3235
111c225a
TH
3236 rescuer->rescue_wq = wq;
3237 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3238 wq->name);
e22bee78
TH
3239 if (IS_ERR(rescuer->task))
3240 goto err;
3241
e22bee78
TH
3242 rescuer->task->flags |= PF_THREAD_BOUND;
3243 wake_up_process(rescuer->task);
3af24433
ON
3244 }
3245
a0a1a5fd
TH
3246 /*
3247 * workqueue_lock protects global freeze state and workqueues
3248 * list. Grab it, set max_active accordingly and add the new
3249 * workqueue to workqueues list.
3250 */
1537663f 3251 spin_lock(&workqueue_lock);
a0a1a5fd 3252
58a69cb4 3253 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3254 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3255 get_cwq(cpu, wq)->max_active = 0;
3256
1537663f 3257 list_add(&wq->list, &workqueues);
a0a1a5fd 3258
1537663f
TH
3259 spin_unlock(&workqueue_lock);
3260
3af24433 3261 return wq;
4690c4ab
TH
3262err:
3263 if (wq) {
bdbc5dd7 3264 free_cwqs(wq);
f2e005aa 3265 free_mayday_mask(wq->mayday_mask);
e22bee78 3266 kfree(wq->rescuer);
4690c4ab
TH
3267 kfree(wq);
3268 }
3269 return NULL;
3af24433 3270}
d320c038 3271EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3272
3af24433
ON
3273/**
3274 * destroy_workqueue - safely terminate a workqueue
3275 * @wq: target workqueue
3276 *
3277 * Safely destroy a workqueue. All work currently pending will be done first.
3278 */
3279void destroy_workqueue(struct workqueue_struct *wq)
3280{
c8e55f36 3281 unsigned int cpu;
3af24433 3282
9c5a2ba7
TH
3283 /* drain it before proceeding with destruction */
3284 drain_workqueue(wq);
c8efcc25 3285
a0a1a5fd
TH
3286 /*
3287 * wq list is used to freeze wq, remove from list after
3288 * flushing is complete in case freeze races us.
3289 */
95402b38 3290 spin_lock(&workqueue_lock);
b1f4ec17 3291 list_del(&wq->list);
95402b38 3292 spin_unlock(&workqueue_lock);
3af24433 3293
e22bee78 3294 /* sanity check */
f3421797 3295 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3296 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3297 int i;
3298
73f53c4a
TH
3299 for (i = 0; i < WORK_NR_COLORS; i++)
3300 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3301 BUG_ON(cwq->nr_active);
3302 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3303 }
9b41ea72 3304
e22bee78
TH
3305 if (wq->flags & WQ_RESCUER) {
3306 kthread_stop(wq->rescuer->task);
f2e005aa 3307 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3308 kfree(wq->rescuer);
e22bee78
TH
3309 }
3310
bdbc5dd7 3311 free_cwqs(wq);
3af24433
ON
3312 kfree(wq);
3313}
3314EXPORT_SYMBOL_GPL(destroy_workqueue);
3315
9f4bd4cd
LJ
3316/**
3317 * cwq_set_max_active - adjust max_active of a cwq
3318 * @cwq: target cpu_workqueue_struct
3319 * @max_active: new max_active value.
3320 *
3321 * Set @cwq->max_active to @max_active and activate delayed works if
3322 * increased.
3323 *
3324 * CONTEXT:
d565ed63 3325 * spin_lock_irq(pool->lock).
9f4bd4cd
LJ
3326 */
3327static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
3328{
3329 cwq->max_active = max_active;
3330
3331 while (!list_empty(&cwq->delayed_works) &&
3332 cwq->nr_active < cwq->max_active)
3333 cwq_activate_first_delayed(cwq);
3334}
3335
dcd989cb
TH
3336/**
3337 * workqueue_set_max_active - adjust max_active of a workqueue
3338 * @wq: target workqueue
3339 * @max_active: new max_active value.
3340 *
3341 * Set max_active of @wq to @max_active.
3342 *
3343 * CONTEXT:
3344 * Don't call from IRQ context.
3345 */
3346void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3347{
3348 unsigned int cpu;
3349
f3421797 3350 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3351
3352 spin_lock(&workqueue_lock);
3353
3354 wq->saved_max_active = max_active;
3355
f3421797 3356 for_each_cwq_cpu(cpu, wq) {
35b6bb63
TH
3357 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3358 struct worker_pool *pool = cwq->pool;
dcd989cb 3359
d565ed63 3360 spin_lock_irq(&pool->lock);
dcd989cb 3361
58a69cb4 3362 if (!(wq->flags & WQ_FREEZABLE) ||
35b6bb63
TH
3363 !(pool->flags & POOL_FREEZING))
3364 cwq_set_max_active(cwq, max_active);
9bfb1839 3365
d565ed63 3366 spin_unlock_irq(&pool->lock);
65a64464 3367 }
93981800 3368
dcd989cb 3369 spin_unlock(&workqueue_lock);
15316ba8 3370}
dcd989cb 3371EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3372
eef6a7d5 3373/**
dcd989cb
TH
3374 * workqueue_congested - test whether a workqueue is congested
3375 * @cpu: CPU in question
3376 * @wq: target workqueue
eef6a7d5 3377 *
dcd989cb
TH
3378 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3379 * no synchronization around this function and the test result is
3380 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3381 *
dcd989cb
TH
3382 * RETURNS:
3383 * %true if congested, %false otherwise.
eef6a7d5 3384 */
dcd989cb 3385bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3386{
dcd989cb
TH
3387 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3388
3389 return !list_empty(&cwq->delayed_works);
1da177e4 3390}
dcd989cb 3391EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3392
dcd989cb
TH
3393/**
3394 * work_busy - test whether a work is currently pending or running
3395 * @work: the work to be tested
3396 *
3397 * Test whether @work is currently pending or running. There is no
3398 * synchronization around this function and the test result is
3399 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
3400 *
3401 * RETURNS:
3402 * OR'd bitmask of WORK_BUSY_* bits.
3403 */
3404unsigned int work_busy(struct work_struct *work)
1da177e4 3405{
c9e7cf27 3406 struct worker_pool *pool = get_work_pool(work);
dcd989cb
TH
3407 unsigned long flags;
3408 unsigned int ret = 0;
1da177e4 3409
dcd989cb
TH
3410 if (work_pending(work))
3411 ret |= WORK_BUSY_PENDING;
1da177e4 3412
038366c5
LJ
3413 if (pool) {
3414 spin_lock_irqsave(&pool->lock, flags);
3415 if (find_worker_executing_work(pool, work))
3416 ret |= WORK_BUSY_RUNNING;
3417 spin_unlock_irqrestore(&pool->lock, flags);
3418 }
1da177e4 3419
dcd989cb 3420 return ret;
1da177e4 3421}
dcd989cb 3422EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3423
db7bccf4
TH
3424/*
3425 * CPU hotplug.
3426 *
e22bee78
TH
3427 * There are two challenges in supporting CPU hotplug. Firstly, there
3428 * are a lot of assumptions on strong associations among work, cwq and
706026c2 3429 * pool which make migrating pending and scheduled works very
e22bee78 3430 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 3431 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
3432 * blocked draining impractical.
3433 *
24647570 3434 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
3435 * running as an unbound one and allowing it to be reattached later if the
3436 * cpu comes back online.
db7bccf4 3437 */
1da177e4 3438
706026c2 3439static void wq_unbind_fn(struct work_struct *work)
3af24433 3440{
38db41d9 3441 int cpu = smp_processor_id();
4ce62e9e 3442 struct worker_pool *pool;
db7bccf4
TH
3443 struct worker *worker;
3444 struct hlist_node *pos;
3445 int i;
3af24433 3446
38db41d9
TH
3447 for_each_std_worker_pool(pool, cpu) {
3448 BUG_ON(cpu != smp_processor_id());
db7bccf4 3449
94cf58bb
TH
3450 mutex_lock(&pool->assoc_mutex);
3451 spin_lock_irq(&pool->lock);
3af24433 3452
94cf58bb
TH
3453 /*
3454 * We've claimed all manager positions. Make all workers
3455 * unbound and set DISASSOCIATED. Before this, all workers
3456 * except for the ones which are still executing works from
3457 * before the last CPU down must be on the cpu. After
3458 * this, they may become diasporas.
3459 */
4ce62e9e 3460 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3461 worker->flags |= WORKER_UNBOUND;
3af24433 3462
c9e7cf27
TH
3463 for_each_busy_worker(worker, i, pos, pool)
3464 worker->flags |= WORKER_UNBOUND;
06ba38a9 3465
24647570 3466 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 3467
94cf58bb
TH
3468 spin_unlock_irq(&pool->lock);
3469 mutex_unlock(&pool->assoc_mutex);
3470 }
628c78e7 3471
e22bee78 3472 /*
403c821d 3473 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3474 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3475 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3476 */
e22bee78 3477 schedule();
06ba38a9 3478
e22bee78 3479 /*
628c78e7
TH
3480 * Sched callbacks are disabled now. Zap nr_running. After this,
3481 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
3482 * are always true as long as the worklist is not empty. Pools on
3483 * @cpu now behave as unbound (in terms of concurrency management)
3484 * pools which are served by workers tied to the CPU.
628c78e7
TH
3485 *
3486 * On return from this function, the current worker would trigger
3487 * unbound chain execution of pending work items if other workers
3488 * didn't already.
e22bee78 3489 */
38db41d9 3490 for_each_std_worker_pool(pool, cpu)
e19e397a 3491 atomic_set(&pool->nr_running, 0);
3af24433 3492}
3af24433 3493
8db25e78
TH
3494/*
3495 * Workqueues should be brought up before normal priority CPU notifiers.
3496 * This will be registered high priority CPU notifier.
3497 */
9fdf9b73 3498static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3499 unsigned long action,
3500 void *hcpu)
3af24433
ON
3501{
3502 unsigned int cpu = (unsigned long)hcpu;
4ce62e9e 3503 struct worker_pool *pool;
3ce63377 3504
8db25e78 3505 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3506 case CPU_UP_PREPARE:
38db41d9 3507 for_each_std_worker_pool(pool, cpu) {
3ce63377
TH
3508 struct worker *worker;
3509
3510 if (pool->nr_workers)
3511 continue;
3512
3513 worker = create_worker(pool);
3514 if (!worker)
3515 return NOTIFY_BAD;
3516
d565ed63 3517 spin_lock_irq(&pool->lock);
3ce63377 3518 start_worker(worker);
d565ed63 3519 spin_unlock_irq(&pool->lock);
3af24433 3520 }
8db25e78 3521 break;
3af24433 3522
db7bccf4
TH
3523 case CPU_DOWN_FAILED:
3524 case CPU_ONLINE:
38db41d9 3525 for_each_std_worker_pool(pool, cpu) {
94cf58bb
TH
3526 mutex_lock(&pool->assoc_mutex);
3527 spin_lock_irq(&pool->lock);
3528
24647570 3529 pool->flags &= ~POOL_DISASSOCIATED;
94cf58bb
TH
3530 rebind_workers(pool);
3531
3532 spin_unlock_irq(&pool->lock);
3533 mutex_unlock(&pool->assoc_mutex);
3534 }
db7bccf4 3535 break;
00dfcaf7 3536 }
65758202
TH
3537 return NOTIFY_OK;
3538}
3539
3540/*
3541 * Workqueues should be brought down after normal priority CPU notifiers.
3542 * This will be registered as low priority CPU notifier.
3543 */
9fdf9b73 3544static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3545 unsigned long action,
3546 void *hcpu)
3547{
8db25e78
TH
3548 unsigned int cpu = (unsigned long)hcpu;
3549 struct work_struct unbind_work;
3550
65758202
TH
3551 switch (action & ~CPU_TASKS_FROZEN) {
3552 case CPU_DOWN_PREPARE:
8db25e78 3553 /* unbinding should happen on the local CPU */
706026c2 3554 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 3555 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3556 flush_work(&unbind_work);
3557 break;
65758202
TH
3558 }
3559 return NOTIFY_OK;
3560}
3561
2d3854a3 3562#ifdef CONFIG_SMP
8ccad40d 3563
2d3854a3 3564struct work_for_cpu {
ed48ece2 3565 struct work_struct work;
2d3854a3
RR
3566 long (*fn)(void *);
3567 void *arg;
3568 long ret;
3569};
3570
ed48ece2 3571static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3572{
ed48ece2
TH
3573 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3574
2d3854a3
RR
3575 wfc->ret = wfc->fn(wfc->arg);
3576}
3577
3578/**
3579 * work_on_cpu - run a function in user context on a particular cpu
3580 * @cpu: the cpu to run on
3581 * @fn: the function to run
3582 * @arg: the function arg
3583 *
31ad9081
RR
3584 * This will return the value @fn returns.
3585 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3586 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3587 */
3588long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3589{
ed48ece2 3590 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 3591
ed48ece2
TH
3592 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3593 schedule_work_on(cpu, &wfc.work);
3594 flush_work(&wfc.work);
2d3854a3
RR
3595 return wfc.ret;
3596}
3597EXPORT_SYMBOL_GPL(work_on_cpu);
3598#endif /* CONFIG_SMP */
3599
a0a1a5fd
TH
3600#ifdef CONFIG_FREEZER
3601
3602/**
3603 * freeze_workqueues_begin - begin freezing workqueues
3604 *
58a69cb4
TH
3605 * Start freezing workqueues. After this function returns, all freezable
3606 * workqueues will queue new works to their frozen_works list instead of
706026c2 3607 * pool->worklist.
a0a1a5fd
TH
3608 *
3609 * CONTEXT:
d565ed63 3610 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3611 */
3612void freeze_workqueues_begin(void)
3613{
a0a1a5fd
TH
3614 unsigned int cpu;
3615
3616 spin_lock(&workqueue_lock);
3617
3618 BUG_ON(workqueue_freezing);
3619 workqueue_freezing = true;
3620
706026c2 3621 for_each_wq_cpu(cpu) {
35b6bb63 3622 struct worker_pool *pool;
bdbc5dd7 3623 struct workqueue_struct *wq;
8b03ae3c 3624
38db41d9 3625 for_each_std_worker_pool(pool, cpu) {
a1056305 3626 spin_lock_irq(&pool->lock);
d565ed63 3627
35b6bb63
TH
3628 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3629 pool->flags |= POOL_FREEZING;
db7bccf4 3630
a1056305
TH
3631 list_for_each_entry(wq, &workqueues, list) {
3632 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
a0a1a5fd 3633
a1056305
TH
3634 if (cwq && cwq->pool == pool &&
3635 (wq->flags & WQ_FREEZABLE))
3636 cwq->max_active = 0;
3637 }
8b03ae3c 3638
a1056305
TH
3639 spin_unlock_irq(&pool->lock);
3640 }
a0a1a5fd
TH
3641 }
3642
3643 spin_unlock(&workqueue_lock);
3644}
3645
3646/**
58a69cb4 3647 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3648 *
3649 * Check whether freezing is complete. This function must be called
3650 * between freeze_workqueues_begin() and thaw_workqueues().
3651 *
3652 * CONTEXT:
3653 * Grabs and releases workqueue_lock.
3654 *
3655 * RETURNS:
58a69cb4
TH
3656 * %true if some freezable workqueues are still busy. %false if freezing
3657 * is complete.
a0a1a5fd
TH
3658 */
3659bool freeze_workqueues_busy(void)
3660{
a0a1a5fd
TH
3661 unsigned int cpu;
3662 bool busy = false;
3663
3664 spin_lock(&workqueue_lock);
3665
3666 BUG_ON(!workqueue_freezing);
3667
706026c2 3668 for_each_wq_cpu(cpu) {
bdbc5dd7 3669 struct workqueue_struct *wq;
a0a1a5fd
TH
3670 /*
3671 * nr_active is monotonically decreasing. It's safe
3672 * to peek without lock.
3673 */
3674 list_for_each_entry(wq, &workqueues, list) {
3675 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3676
58a69cb4 3677 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3678 continue;
3679
3680 BUG_ON(cwq->nr_active < 0);
3681 if (cwq->nr_active) {
3682 busy = true;
3683 goto out_unlock;
3684 }
3685 }
3686 }
3687out_unlock:
3688 spin_unlock(&workqueue_lock);
3689 return busy;
3690}
3691
3692/**
3693 * thaw_workqueues - thaw workqueues
3694 *
3695 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 3696 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
3697 *
3698 * CONTEXT:
d565ed63 3699 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3700 */
3701void thaw_workqueues(void)
3702{
a0a1a5fd
TH
3703 unsigned int cpu;
3704
3705 spin_lock(&workqueue_lock);
3706
3707 if (!workqueue_freezing)
3708 goto out_unlock;
3709
706026c2 3710 for_each_wq_cpu(cpu) {
4ce62e9e 3711 struct worker_pool *pool;
bdbc5dd7 3712 struct workqueue_struct *wq;
8b03ae3c 3713
38db41d9 3714 for_each_std_worker_pool(pool, cpu) {
a1056305 3715 spin_lock_irq(&pool->lock);
d565ed63 3716
35b6bb63
TH
3717 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3718 pool->flags &= ~POOL_FREEZING;
db7bccf4 3719
a1056305
TH
3720 list_for_each_entry(wq, &workqueues, list) {
3721 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
a0a1a5fd 3722
a1056305
TH
3723 if (!cwq || cwq->pool != pool ||
3724 !(wq->flags & WQ_FREEZABLE))
3725 continue;
a0a1a5fd 3726
a1056305
TH
3727 /* restore max_active and repopulate worklist */
3728 cwq_set_max_active(cwq, wq->saved_max_active);
3729 }
8b03ae3c 3730
4ce62e9e 3731 wake_up_worker(pool);
a1056305
TH
3732
3733 spin_unlock_irq(&pool->lock);
d565ed63 3734 }
a0a1a5fd
TH
3735 }
3736
3737 workqueue_freezing = false;
3738out_unlock:
3739 spin_unlock(&workqueue_lock);
3740}
3741#endif /* CONFIG_FREEZER */
3742
6ee0578b 3743static int __init init_workqueues(void)
1da177e4 3744{
c34056a3
TH
3745 unsigned int cpu;
3746
7c3eed5c
TH
3747 /* make sure we have enough bits for OFFQ pool ID */
3748 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 3749 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 3750
65758202 3751 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 3752 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 3753
706026c2
TH
3754 /* initialize CPU pools */
3755 for_each_wq_cpu(cpu) {
4ce62e9e 3756 struct worker_pool *pool;
8b03ae3c 3757
38db41d9 3758 for_each_std_worker_pool(pool, cpu) {
d565ed63 3759 spin_lock_init(&pool->lock);
ec22ca5e 3760 pool->cpu = cpu;
24647570 3761 pool->flags |= POOL_DISASSOCIATED;
4ce62e9e
TH
3762 INIT_LIST_HEAD(&pool->worklist);
3763 INIT_LIST_HEAD(&pool->idle_list);
c9e7cf27 3764 hash_init(pool->busy_hash);
e7577c50 3765
4ce62e9e
TH
3766 init_timer_deferrable(&pool->idle_timer);
3767 pool->idle_timer.function = idle_worker_timeout;
3768 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3769
706026c2 3770 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
4ce62e9e
TH
3771 (unsigned long)pool);
3772
b2eb83d1 3773 mutex_init(&pool->assoc_mutex);
4ce62e9e 3774 ida_init(&pool->worker_ida);
9daf9e67
TH
3775
3776 /* alloc pool ID */
3777 BUG_ON(worker_pool_assign_id(pool));
4ce62e9e 3778 }
8b03ae3c
TH
3779 }
3780
e22bee78 3781 /* create the initial worker */
706026c2 3782 for_each_online_wq_cpu(cpu) {
4ce62e9e 3783 struct worker_pool *pool;
e22bee78 3784
38db41d9 3785 for_each_std_worker_pool(pool, cpu) {
4ce62e9e
TH
3786 struct worker *worker;
3787
24647570
TH
3788 if (cpu != WORK_CPU_UNBOUND)
3789 pool->flags &= ~POOL_DISASSOCIATED;
3790
bc2ae0f5 3791 worker = create_worker(pool);
4ce62e9e 3792 BUG_ON(!worker);
d565ed63 3793 spin_lock_irq(&pool->lock);
4ce62e9e 3794 start_worker(worker);
d565ed63 3795 spin_unlock_irq(&pool->lock);
4ce62e9e 3796 }
e22bee78
TH
3797 }
3798
d320c038 3799 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3800 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 3801 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
3802 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3803 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3804 system_freezable_wq = alloc_workqueue("events_freezable",
3805 WQ_FREEZABLE, 0);
1aabe902 3806 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 3807 !system_unbound_wq || !system_freezable_wq);
6ee0578b 3808 return 0;
1da177e4 3809}
6ee0578b 3810early_initcall(init_workqueues);