workqueue: introduce numa_pwq_tbl_install()
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
bce90380 47#include <linux/nodemask.h>
e22bee78 48
ea138446 49#include "workqueue_internal.h"
1da177e4 50
c8e55f36 51enum {
24647570
TH
52 /*
53 * worker_pool flags
bc2ae0f5 54 *
24647570 55 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
56 * While associated (!DISASSOCIATED), all workers are bound to the
57 * CPU and none has %WORKER_UNBOUND set and concurrency management
58 * is in effect.
59 *
60 * While DISASSOCIATED, the cpu may be offline and all workers have
61 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 62 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 63 *
bc3a1afc
TH
64 * Note that DISASSOCIATED should be flipped only while holding
65 * manager_mutex to avoid changing binding state while
24647570 66 * create_worker() is in progress.
bc2ae0f5 67 */
11ebea50 68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 69 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 70 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 71
c8e55f36
TH
72 /* worker flags */
73 WORKER_STARTED = 1 << 0, /* started */
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 76 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 80
a9ab775b
TH
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 83
e34cdddb 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 85
29c91e99 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 88
e22bee78
TH
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
3233cdbd
TH
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
e22bee78
TH
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
100 * all cpus. Give -20.
101 */
102 RESCUER_NICE_LEVEL = -20,
3270476a 103 HIGHPRI_NICE_LEVEL = -20,
ecf6881f
TH
104
105 WQ_NAME_LEN = 24,
c8e55f36 106};
1da177e4
LT
107
108/*
4690c4ab
TH
109 * Structure fields follow one of the following exclusion rules.
110 *
e41e704b
TH
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
4690c4ab 113 *
e22bee78
TH
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
d565ed63 117 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 118 *
d565ed63
TH
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 123 *
822d8405
TH
124 * MG: pool->manager_mutex and pool->lock protected. Writes require both
125 * locks. Reads can happen under either lock.
126 *
68e13a67 127 * PL: wq_pool_mutex protected.
5bcab335 128 *
68e13a67 129 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 130 *
3c25a55d
LJ
131 * WQ: wq->mutex protected.
132 *
b5927605 133 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
134 *
135 * MD: wq_mayday_lock protected.
1da177e4 136 */
1da177e4 137
2eaebdb3 138/* struct worker is defined in workqueue_internal.h */
c34056a3 139
bd7bdd43 140struct worker_pool {
d565ed63 141 spinlock_t lock; /* the pool lock */
d84ff051 142 int cpu; /* I: the associated cpu */
f3f90ad4 143 int node; /* I: the associated node ID */
9daf9e67 144 int id; /* I: pool ID */
11ebea50 145 unsigned int flags; /* X: flags */
bd7bdd43
TH
146
147 struct list_head worklist; /* L: list of pending works */
148 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
149
150 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
151 int nr_idle; /* L: currently idle ones */
152
153 struct list_head idle_list; /* X: list of idle workers */
154 struct timer_list idle_timer; /* L: worker idle timeout */
155 struct timer_list mayday_timer; /* L: SOS timer for workers */
156
c5aa87bb 157 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
158 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
159 /* L: hash of busy workers */
160
bc3a1afc 161 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 162 struct mutex manager_arb; /* manager arbitration */
bc3a1afc 163 struct mutex manager_mutex; /* manager exclusion */
822d8405 164 struct idr worker_idr; /* MG: worker IDs and iteration */
e19e397a 165
7a4e344c 166 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
167 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
168 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 169
e19e397a
TH
170 /*
171 * The current concurrency level. As it's likely to be accessed
172 * from other CPUs during try_to_wake_up(), put it in a separate
173 * cacheline.
174 */
175 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
176
177 /*
178 * Destruction of pool is sched-RCU protected to allow dereferences
179 * from get_work_pool().
180 */
181 struct rcu_head rcu;
8b03ae3c
TH
182} ____cacheline_aligned_in_smp;
183
1da177e4 184/*
112202d9
TH
185 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
186 * of work_struct->data are used for flags and the remaining high bits
187 * point to the pwq; thus, pwqs need to be aligned at two's power of the
188 * number of flag bits.
1da177e4 189 */
112202d9 190struct pool_workqueue {
bd7bdd43 191 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 192 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
193 int work_color; /* L: current color */
194 int flush_color; /* L: flushing color */
8864b4e5 195 int refcnt; /* L: reference count */
73f53c4a
TH
196 int nr_in_flight[WORK_NR_COLORS];
197 /* L: nr of in_flight works */
1e19ffc6 198 int nr_active; /* L: nr of active works */
a0a1a5fd 199 int max_active; /* L: max active works */
1e19ffc6 200 struct list_head delayed_works; /* L: delayed works */
3c25a55d 201 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 202 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
203
204 /*
205 * Release of unbound pwq is punted to system_wq. See put_pwq()
206 * and pwq_unbound_release_workfn() for details. pool_workqueue
207 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 208 * determined without grabbing wq->mutex.
8864b4e5
TH
209 */
210 struct work_struct unbound_release_work;
211 struct rcu_head rcu;
e904e6c2 212} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 213
73f53c4a
TH
214/*
215 * Structure used to wait for workqueue flush.
216 */
217struct wq_flusher {
3c25a55d
LJ
218 struct list_head list; /* WQ: list of flushers */
219 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
220 struct completion done; /* flush completion */
221};
222
226223ab
TH
223struct wq_device;
224
1da177e4 225/*
c5aa87bb
TH
226 * The externally visible workqueue. It relays the issued work items to
227 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
228 */
229struct workqueue_struct {
3c25a55d 230 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 231 struct list_head list; /* PL: list of all workqueues */
73f53c4a 232
3c25a55d
LJ
233 struct mutex mutex; /* protects this wq */
234 int work_color; /* WQ: current work color */
235 int flush_color; /* WQ: current flush color */
112202d9 236 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
237 struct wq_flusher *first_flusher; /* WQ: first flusher */
238 struct list_head flusher_queue; /* WQ: flush waiters */
239 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 240
2e109a28 241 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
242 struct worker *rescuer; /* I: rescue worker */
243
87fc741e 244 int nr_drainers; /* WQ: drain in progress */
a357fc03 245 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 246
6029a918
TH
247 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
248
226223ab
TH
249#ifdef CONFIG_SYSFS
250 struct wq_device *wq_dev; /* I: for sysfs interface */
251#endif
4e6045f1 252#ifdef CONFIG_LOCKDEP
4690c4ab 253 struct lockdep_map lockdep_map;
4e6045f1 254#endif
ecf6881f 255 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f
TH
256
257 /* hot fields used during command issue, aligned to cacheline */
258 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
259 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 260 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
261};
262
e904e6c2
TH
263static struct kmem_cache *pwq_cache;
264
bce90380
TH
265static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
266static cpumask_var_t *wq_numa_possible_cpumask;
267 /* possible CPUs of each node */
268
269static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
270
68e13a67 271static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 272static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 273
68e13a67
LJ
274static LIST_HEAD(workqueues); /* PL: list of all workqueues */
275static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
276
277/* the per-cpu worker pools */
278static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
279 cpu_worker_pools);
280
68e13a67 281static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 282
68e13a67 283/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
284static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
285
c5aa87bb 286/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
287static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
288
d320c038 289struct workqueue_struct *system_wq __read_mostly;
d320c038 290EXPORT_SYMBOL_GPL(system_wq);
044c782c 291struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 292EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 293struct workqueue_struct *system_long_wq __read_mostly;
d320c038 294EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 295struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 296EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 297struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 298EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 299
7d19c5ce
TH
300static int worker_thread(void *__worker);
301static void copy_workqueue_attrs(struct workqueue_attrs *to,
302 const struct workqueue_attrs *from);
303
97bd2347
TH
304#define CREATE_TRACE_POINTS
305#include <trace/events/workqueue.h>
306
68e13a67 307#define assert_rcu_or_pool_mutex() \
5bcab335 308 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
309 lockdep_is_held(&wq_pool_mutex), \
310 "sched RCU or wq_pool_mutex should be held")
5bcab335 311
b09f4fd3 312#define assert_rcu_or_wq_mutex(wq) \
76af4d93 313 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 314 lockdep_is_held(&wq->mutex), \
b09f4fd3 315 "sched RCU or wq->mutex should be held")
76af4d93 316
822d8405
TH
317#ifdef CONFIG_LOCKDEP
318#define assert_manager_or_pool_lock(pool) \
519e3c11
LJ
319 WARN_ONCE(debug_locks && \
320 !lockdep_is_held(&(pool)->manager_mutex) && \
822d8405
TH
321 !lockdep_is_held(&(pool)->lock), \
322 "pool->manager_mutex or ->lock should be held")
323#else
324#define assert_manager_or_pool_lock(pool) do { } while (0)
325#endif
326
f02ae73a
TH
327#define for_each_cpu_worker_pool(pool, cpu) \
328 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
329 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 330 (pool)++)
4ce62e9e 331
17116969
TH
332/**
333 * for_each_pool - iterate through all worker_pools in the system
334 * @pool: iteration cursor
611c92a0 335 * @pi: integer used for iteration
fa1b54e6 336 *
68e13a67
LJ
337 * This must be called either with wq_pool_mutex held or sched RCU read
338 * locked. If the pool needs to be used beyond the locking in effect, the
339 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
340 *
341 * The if/else clause exists only for the lockdep assertion and can be
342 * ignored.
17116969 343 */
611c92a0
TH
344#define for_each_pool(pool, pi) \
345 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 346 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 347 else
17116969 348
822d8405
TH
349/**
350 * for_each_pool_worker - iterate through all workers of a worker_pool
351 * @worker: iteration cursor
352 * @wi: integer used for iteration
353 * @pool: worker_pool to iterate workers of
354 *
355 * This must be called with either @pool->manager_mutex or ->lock held.
356 *
357 * The if/else clause exists only for the lockdep assertion and can be
358 * ignored.
359 */
360#define for_each_pool_worker(worker, wi, pool) \
361 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
362 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
363 else
364
49e3cf44
TH
365/**
366 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
367 * @pwq: iteration cursor
368 * @wq: the target workqueue
76af4d93 369 *
b09f4fd3 370 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
371 * If the pwq needs to be used beyond the locking in effect, the caller is
372 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
373 *
374 * The if/else clause exists only for the lockdep assertion and can be
375 * ignored.
49e3cf44
TH
376 */
377#define for_each_pwq(pwq, wq) \
76af4d93 378 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 379 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 380 else
f3421797 381
dc186ad7
TG
382#ifdef CONFIG_DEBUG_OBJECTS_WORK
383
384static struct debug_obj_descr work_debug_descr;
385
99777288
SG
386static void *work_debug_hint(void *addr)
387{
388 return ((struct work_struct *) addr)->func;
389}
390
dc186ad7
TG
391/*
392 * fixup_init is called when:
393 * - an active object is initialized
394 */
395static int work_fixup_init(void *addr, enum debug_obj_state state)
396{
397 struct work_struct *work = addr;
398
399 switch (state) {
400 case ODEBUG_STATE_ACTIVE:
401 cancel_work_sync(work);
402 debug_object_init(work, &work_debug_descr);
403 return 1;
404 default:
405 return 0;
406 }
407}
408
409/*
410 * fixup_activate is called when:
411 * - an active object is activated
412 * - an unknown object is activated (might be a statically initialized object)
413 */
414static int work_fixup_activate(void *addr, enum debug_obj_state state)
415{
416 struct work_struct *work = addr;
417
418 switch (state) {
419
420 case ODEBUG_STATE_NOTAVAILABLE:
421 /*
422 * This is not really a fixup. The work struct was
423 * statically initialized. We just make sure that it
424 * is tracked in the object tracker.
425 */
22df02bb 426 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
427 debug_object_init(work, &work_debug_descr);
428 debug_object_activate(work, &work_debug_descr);
429 return 0;
430 }
431 WARN_ON_ONCE(1);
432 return 0;
433
434 case ODEBUG_STATE_ACTIVE:
435 WARN_ON(1);
436
437 default:
438 return 0;
439 }
440}
441
442/*
443 * fixup_free is called when:
444 * - an active object is freed
445 */
446static int work_fixup_free(void *addr, enum debug_obj_state state)
447{
448 struct work_struct *work = addr;
449
450 switch (state) {
451 case ODEBUG_STATE_ACTIVE:
452 cancel_work_sync(work);
453 debug_object_free(work, &work_debug_descr);
454 return 1;
455 default:
456 return 0;
457 }
458}
459
460static struct debug_obj_descr work_debug_descr = {
461 .name = "work_struct",
99777288 462 .debug_hint = work_debug_hint,
dc186ad7
TG
463 .fixup_init = work_fixup_init,
464 .fixup_activate = work_fixup_activate,
465 .fixup_free = work_fixup_free,
466};
467
468static inline void debug_work_activate(struct work_struct *work)
469{
470 debug_object_activate(work, &work_debug_descr);
471}
472
473static inline void debug_work_deactivate(struct work_struct *work)
474{
475 debug_object_deactivate(work, &work_debug_descr);
476}
477
478void __init_work(struct work_struct *work, int onstack)
479{
480 if (onstack)
481 debug_object_init_on_stack(work, &work_debug_descr);
482 else
483 debug_object_init(work, &work_debug_descr);
484}
485EXPORT_SYMBOL_GPL(__init_work);
486
487void destroy_work_on_stack(struct work_struct *work)
488{
489 debug_object_free(work, &work_debug_descr);
490}
491EXPORT_SYMBOL_GPL(destroy_work_on_stack);
492
493#else
494static inline void debug_work_activate(struct work_struct *work) { }
495static inline void debug_work_deactivate(struct work_struct *work) { }
496#endif
497
9daf9e67
TH
498/* allocate ID and assign it to @pool */
499static int worker_pool_assign_id(struct worker_pool *pool)
500{
501 int ret;
502
68e13a67 503 lockdep_assert_held(&wq_pool_mutex);
5bcab335 504
fa1b54e6
TH
505 do {
506 if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
507 return -ENOMEM;
fa1b54e6 508 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
fa1b54e6 509 } while (ret == -EAGAIN);
9daf9e67 510
fa1b54e6 511 return ret;
7c3eed5c
TH
512}
513
76af4d93
TH
514/**
515 * first_pwq - return the first pool_workqueue of the specified workqueue
516 * @wq: the target workqueue
517 *
b09f4fd3 518 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
519 * If the pwq needs to be used beyond the locking in effect, the caller is
520 * responsible for guaranteeing that the pwq stays online.
76af4d93 521 */
7fb98ea7 522static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
b1f4ec17 523{
b09f4fd3 524 assert_rcu_or_wq_mutex(wq);
76af4d93
TH
525 return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
526 pwqs_node);
b1f4ec17
ON
527}
528
df2d5ae4
TH
529/**
530 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
531 * @wq: the target workqueue
532 * @node: the node ID
533 *
534 * This must be called either with pwq_lock held or sched RCU read locked.
535 * If the pwq needs to be used beyond the locking in effect, the caller is
536 * responsible for guaranteeing that the pwq stays online.
537 */
538static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
539 int node)
540{
541 assert_rcu_or_wq_mutex(wq);
542 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
543}
544
73f53c4a
TH
545static unsigned int work_color_to_flags(int color)
546{
547 return color << WORK_STRUCT_COLOR_SHIFT;
548}
549
550static int get_work_color(struct work_struct *work)
551{
552 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
553 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
554}
555
556static int work_next_color(int color)
557{
558 return (color + 1) % WORK_NR_COLORS;
559}
1da177e4 560
14441960 561/*
112202d9
TH
562 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
563 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 564 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 565 *
112202d9
TH
566 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
567 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
568 * work->data. These functions should only be called while the work is
569 * owned - ie. while the PENDING bit is set.
7a22ad75 570 *
112202d9 571 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 572 * corresponding to a work. Pool is available once the work has been
112202d9 573 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 574 * available only while the work item is queued.
7a22ad75 575 *
bbb68dfa
TH
576 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
577 * canceled. While being canceled, a work item may have its PENDING set
578 * but stay off timer and worklist for arbitrarily long and nobody should
579 * try to steal the PENDING bit.
14441960 580 */
7a22ad75
TH
581static inline void set_work_data(struct work_struct *work, unsigned long data,
582 unsigned long flags)
365970a1 583{
6183c009 584 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
585 atomic_long_set(&work->data, data | flags | work_static(work));
586}
365970a1 587
112202d9 588static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
589 unsigned long extra_flags)
590{
112202d9
TH
591 set_work_data(work, (unsigned long)pwq,
592 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
593}
594
4468a00f
LJ
595static void set_work_pool_and_keep_pending(struct work_struct *work,
596 int pool_id)
597{
598 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
599 WORK_STRUCT_PENDING);
600}
601
7c3eed5c
TH
602static void set_work_pool_and_clear_pending(struct work_struct *work,
603 int pool_id)
7a22ad75 604{
23657bb1
TH
605 /*
606 * The following wmb is paired with the implied mb in
607 * test_and_set_bit(PENDING) and ensures all updates to @work made
608 * here are visible to and precede any updates by the next PENDING
609 * owner.
610 */
611 smp_wmb();
7c3eed5c 612 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 613}
f756d5e2 614
7a22ad75 615static void clear_work_data(struct work_struct *work)
1da177e4 616{
7c3eed5c
TH
617 smp_wmb(); /* see set_work_pool_and_clear_pending() */
618 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
619}
620
112202d9 621static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 622{
e120153d 623 unsigned long data = atomic_long_read(&work->data);
7a22ad75 624
112202d9 625 if (data & WORK_STRUCT_PWQ)
e120153d
TH
626 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
627 else
628 return NULL;
4d707b9f
ON
629}
630
7c3eed5c
TH
631/**
632 * get_work_pool - return the worker_pool a given work was associated with
633 * @work: the work item of interest
634 *
635 * Return the worker_pool @work was last associated with. %NULL if none.
fa1b54e6 636 *
68e13a67
LJ
637 * Pools are created and destroyed under wq_pool_mutex, and allows read
638 * access under sched-RCU read lock. As such, this function should be
639 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
640 *
641 * All fields of the returned pool are accessible as long as the above
642 * mentioned locking is in effect. If the returned pool needs to be used
643 * beyond the critical section, the caller is responsible for ensuring the
644 * returned pool is and stays online.
7c3eed5c
TH
645 */
646static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 647{
e120153d 648 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 649 int pool_id;
7a22ad75 650
68e13a67 651 assert_rcu_or_pool_mutex();
fa1b54e6 652
112202d9
TH
653 if (data & WORK_STRUCT_PWQ)
654 return ((struct pool_workqueue *)
7c3eed5c 655 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 656
7c3eed5c
TH
657 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
658 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
659 return NULL;
660
fa1b54e6 661 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
662}
663
664/**
665 * get_work_pool_id - return the worker pool ID a given work is associated with
666 * @work: the work item of interest
667 *
668 * Return the worker_pool ID @work was last associated with.
669 * %WORK_OFFQ_POOL_NONE if none.
670 */
671static int get_work_pool_id(struct work_struct *work)
672{
54d5b7d0
LJ
673 unsigned long data = atomic_long_read(&work->data);
674
112202d9
TH
675 if (data & WORK_STRUCT_PWQ)
676 return ((struct pool_workqueue *)
54d5b7d0 677 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 678
54d5b7d0 679 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
680}
681
bbb68dfa
TH
682static void mark_work_canceling(struct work_struct *work)
683{
7c3eed5c 684 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 685
7c3eed5c
TH
686 pool_id <<= WORK_OFFQ_POOL_SHIFT;
687 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
688}
689
690static bool work_is_canceling(struct work_struct *work)
691{
692 unsigned long data = atomic_long_read(&work->data);
693
112202d9 694 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
695}
696
e22bee78 697/*
3270476a
TH
698 * Policy functions. These define the policies on how the global worker
699 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 700 * they're being called with pool->lock held.
e22bee78
TH
701 */
702
63d95a91 703static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 704{
e19e397a 705 return !atomic_read(&pool->nr_running);
a848e3b6
ON
706}
707
4594bf15 708/*
e22bee78
TH
709 * Need to wake up a worker? Called from anything but currently
710 * running workers.
974271c4
TH
711 *
712 * Note that, because unbound workers never contribute to nr_running, this
706026c2 713 * function will always return %true for unbound pools as long as the
974271c4 714 * worklist isn't empty.
4594bf15 715 */
63d95a91 716static bool need_more_worker(struct worker_pool *pool)
365970a1 717{
63d95a91 718 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 719}
4594bf15 720
e22bee78 721/* Can I start working? Called from busy but !running workers. */
63d95a91 722static bool may_start_working(struct worker_pool *pool)
e22bee78 723{
63d95a91 724 return pool->nr_idle;
e22bee78
TH
725}
726
727/* Do I need to keep working? Called from currently running workers. */
63d95a91 728static bool keep_working(struct worker_pool *pool)
e22bee78 729{
e19e397a
TH
730 return !list_empty(&pool->worklist) &&
731 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
732}
733
734/* Do we need a new worker? Called from manager. */
63d95a91 735static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 736{
63d95a91 737 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 738}
365970a1 739
e22bee78 740/* Do I need to be the manager? */
63d95a91 741static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 742{
63d95a91 743 return need_to_create_worker(pool) ||
11ebea50 744 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
745}
746
747/* Do we have too many workers and should some go away? */
63d95a91 748static bool too_many_workers(struct worker_pool *pool)
e22bee78 749{
34a06bd6 750 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
751 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
752 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 753
ea1abd61
LJ
754 /*
755 * nr_idle and idle_list may disagree if idle rebinding is in
756 * progress. Never return %true if idle_list is empty.
757 */
758 if (list_empty(&pool->idle_list))
759 return false;
760
e22bee78 761 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
762}
763
4d707b9f 764/*
e22bee78
TH
765 * Wake up functions.
766 */
767
7e11629d 768/* Return the first worker. Safe with preemption disabled */
63d95a91 769static struct worker *first_worker(struct worker_pool *pool)
7e11629d 770{
63d95a91 771 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
772 return NULL;
773
63d95a91 774 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
775}
776
777/**
778 * wake_up_worker - wake up an idle worker
63d95a91 779 * @pool: worker pool to wake worker from
7e11629d 780 *
63d95a91 781 * Wake up the first idle worker of @pool.
7e11629d
TH
782 *
783 * CONTEXT:
d565ed63 784 * spin_lock_irq(pool->lock).
7e11629d 785 */
63d95a91 786static void wake_up_worker(struct worker_pool *pool)
7e11629d 787{
63d95a91 788 struct worker *worker = first_worker(pool);
7e11629d
TH
789
790 if (likely(worker))
791 wake_up_process(worker->task);
792}
793
d302f017 794/**
e22bee78
TH
795 * wq_worker_waking_up - a worker is waking up
796 * @task: task waking up
797 * @cpu: CPU @task is waking up to
798 *
799 * This function is called during try_to_wake_up() when a worker is
800 * being awoken.
801 *
802 * CONTEXT:
803 * spin_lock_irq(rq->lock)
804 */
d84ff051 805void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
806{
807 struct worker *worker = kthread_data(task);
808
36576000 809 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 810 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 811 atomic_inc(&worker->pool->nr_running);
36576000 812 }
e22bee78
TH
813}
814
815/**
816 * wq_worker_sleeping - a worker is going to sleep
817 * @task: task going to sleep
818 * @cpu: CPU in question, must be the current CPU number
819 *
820 * This function is called during schedule() when a busy worker is
821 * going to sleep. Worker on the same cpu can be woken up by
822 * returning pointer to its task.
823 *
824 * CONTEXT:
825 * spin_lock_irq(rq->lock)
826 *
827 * RETURNS:
828 * Worker task on @cpu to wake up, %NULL if none.
829 */
d84ff051 830struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
831{
832 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 833 struct worker_pool *pool;
e22bee78 834
111c225a
TH
835 /*
836 * Rescuers, which may not have all the fields set up like normal
837 * workers, also reach here, let's not access anything before
838 * checking NOT_RUNNING.
839 */
2d64672e 840 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
841 return NULL;
842
111c225a 843 pool = worker->pool;
111c225a 844
e22bee78 845 /* this can only happen on the local cpu */
6183c009
TH
846 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
847 return NULL;
e22bee78
TH
848
849 /*
850 * The counterpart of the following dec_and_test, implied mb,
851 * worklist not empty test sequence is in insert_work().
852 * Please read comment there.
853 *
628c78e7
TH
854 * NOT_RUNNING is clear. This means that we're bound to and
855 * running on the local cpu w/ rq lock held and preemption
856 * disabled, which in turn means that none else could be
d565ed63 857 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 858 * lock is safe.
e22bee78 859 */
e19e397a
TH
860 if (atomic_dec_and_test(&pool->nr_running) &&
861 !list_empty(&pool->worklist))
63d95a91 862 to_wakeup = first_worker(pool);
e22bee78
TH
863 return to_wakeup ? to_wakeup->task : NULL;
864}
865
866/**
867 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 868 * @worker: self
d302f017
TH
869 * @flags: flags to set
870 * @wakeup: wakeup an idle worker if necessary
871 *
e22bee78
TH
872 * Set @flags in @worker->flags and adjust nr_running accordingly. If
873 * nr_running becomes zero and @wakeup is %true, an idle worker is
874 * woken up.
d302f017 875 *
cb444766 876 * CONTEXT:
d565ed63 877 * spin_lock_irq(pool->lock)
d302f017
TH
878 */
879static inline void worker_set_flags(struct worker *worker, unsigned int flags,
880 bool wakeup)
881{
bd7bdd43 882 struct worker_pool *pool = worker->pool;
e22bee78 883
cb444766
TH
884 WARN_ON_ONCE(worker->task != current);
885
e22bee78
TH
886 /*
887 * If transitioning into NOT_RUNNING, adjust nr_running and
888 * wake up an idle worker as necessary if requested by
889 * @wakeup.
890 */
891 if ((flags & WORKER_NOT_RUNNING) &&
892 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 893 if (wakeup) {
e19e397a 894 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 895 !list_empty(&pool->worklist))
63d95a91 896 wake_up_worker(pool);
e22bee78 897 } else
e19e397a 898 atomic_dec(&pool->nr_running);
e22bee78
TH
899 }
900
d302f017
TH
901 worker->flags |= flags;
902}
903
904/**
e22bee78 905 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 906 * @worker: self
d302f017
TH
907 * @flags: flags to clear
908 *
e22bee78 909 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 910 *
cb444766 911 * CONTEXT:
d565ed63 912 * spin_lock_irq(pool->lock)
d302f017
TH
913 */
914static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
915{
63d95a91 916 struct worker_pool *pool = worker->pool;
e22bee78
TH
917 unsigned int oflags = worker->flags;
918
cb444766
TH
919 WARN_ON_ONCE(worker->task != current);
920
d302f017 921 worker->flags &= ~flags;
e22bee78 922
42c025f3
TH
923 /*
924 * If transitioning out of NOT_RUNNING, increment nr_running. Note
925 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
926 * of multiple flags, not a single flag.
927 */
e22bee78
TH
928 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
929 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 930 atomic_inc(&pool->nr_running);
d302f017
TH
931}
932
8cca0eea
TH
933/**
934 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 935 * @pool: pool of interest
8cca0eea
TH
936 * @work: work to find worker for
937 *
c9e7cf27
TH
938 * Find a worker which is executing @work on @pool by searching
939 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
940 * to match, its current execution should match the address of @work and
941 * its work function. This is to avoid unwanted dependency between
942 * unrelated work executions through a work item being recycled while still
943 * being executed.
944 *
945 * This is a bit tricky. A work item may be freed once its execution
946 * starts and nothing prevents the freed area from being recycled for
947 * another work item. If the same work item address ends up being reused
948 * before the original execution finishes, workqueue will identify the
949 * recycled work item as currently executing and make it wait until the
950 * current execution finishes, introducing an unwanted dependency.
951 *
c5aa87bb
TH
952 * This function checks the work item address and work function to avoid
953 * false positives. Note that this isn't complete as one may construct a
954 * work function which can introduce dependency onto itself through a
955 * recycled work item. Well, if somebody wants to shoot oneself in the
956 * foot that badly, there's only so much we can do, and if such deadlock
957 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
958 *
959 * CONTEXT:
d565ed63 960 * spin_lock_irq(pool->lock).
8cca0eea
TH
961 *
962 * RETURNS:
963 * Pointer to worker which is executing @work if found, NULL
964 * otherwise.
4d707b9f 965 */
c9e7cf27 966static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 967 struct work_struct *work)
4d707b9f 968{
42f8570f 969 struct worker *worker;
42f8570f 970
b67bfe0d 971 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
972 (unsigned long)work)
973 if (worker->current_work == work &&
974 worker->current_func == work->func)
42f8570f
SL
975 return worker;
976
977 return NULL;
4d707b9f
ON
978}
979
bf4ede01
TH
980/**
981 * move_linked_works - move linked works to a list
982 * @work: start of series of works to be scheduled
983 * @head: target list to append @work to
984 * @nextp: out paramter for nested worklist walking
985 *
986 * Schedule linked works starting from @work to @head. Work series to
987 * be scheduled starts at @work and includes any consecutive work with
988 * WORK_STRUCT_LINKED set in its predecessor.
989 *
990 * If @nextp is not NULL, it's updated to point to the next work of
991 * the last scheduled work. This allows move_linked_works() to be
992 * nested inside outer list_for_each_entry_safe().
993 *
994 * CONTEXT:
d565ed63 995 * spin_lock_irq(pool->lock).
bf4ede01
TH
996 */
997static void move_linked_works(struct work_struct *work, struct list_head *head,
998 struct work_struct **nextp)
999{
1000 struct work_struct *n;
1001
1002 /*
1003 * Linked worklist will always end before the end of the list,
1004 * use NULL for list head.
1005 */
1006 list_for_each_entry_safe_from(work, n, NULL, entry) {
1007 list_move_tail(&work->entry, head);
1008 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1009 break;
1010 }
1011
1012 /*
1013 * If we're already inside safe list traversal and have moved
1014 * multiple works to the scheduled queue, the next position
1015 * needs to be updated.
1016 */
1017 if (nextp)
1018 *nextp = n;
1019}
1020
8864b4e5
TH
1021/**
1022 * get_pwq - get an extra reference on the specified pool_workqueue
1023 * @pwq: pool_workqueue to get
1024 *
1025 * Obtain an extra reference on @pwq. The caller should guarantee that
1026 * @pwq has positive refcnt and be holding the matching pool->lock.
1027 */
1028static void get_pwq(struct pool_workqueue *pwq)
1029{
1030 lockdep_assert_held(&pwq->pool->lock);
1031 WARN_ON_ONCE(pwq->refcnt <= 0);
1032 pwq->refcnt++;
1033}
1034
1035/**
1036 * put_pwq - put a pool_workqueue reference
1037 * @pwq: pool_workqueue to put
1038 *
1039 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1040 * destruction. The caller should be holding the matching pool->lock.
1041 */
1042static void put_pwq(struct pool_workqueue *pwq)
1043{
1044 lockdep_assert_held(&pwq->pool->lock);
1045 if (likely(--pwq->refcnt))
1046 return;
1047 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1048 return;
1049 /*
1050 * @pwq can't be released under pool->lock, bounce to
1051 * pwq_unbound_release_workfn(). This never recurses on the same
1052 * pool->lock as this path is taken only for unbound workqueues and
1053 * the release work item is scheduled on a per-cpu workqueue. To
1054 * avoid lockdep warning, unbound pool->locks are given lockdep
1055 * subclass of 1 in get_unbound_pool().
1056 */
1057 schedule_work(&pwq->unbound_release_work);
1058}
1059
112202d9 1060static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1061{
112202d9 1062 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1063
1064 trace_workqueue_activate_work(work);
112202d9 1065 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1066 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1067 pwq->nr_active++;
bf4ede01
TH
1068}
1069
112202d9 1070static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1071{
112202d9 1072 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1073 struct work_struct, entry);
1074
112202d9 1075 pwq_activate_delayed_work(work);
3aa62497
LJ
1076}
1077
bf4ede01 1078/**
112202d9
TH
1079 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1080 * @pwq: pwq of interest
bf4ede01 1081 * @color: color of work which left the queue
bf4ede01
TH
1082 *
1083 * A work either has completed or is removed from pending queue,
112202d9 1084 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1085 *
1086 * CONTEXT:
d565ed63 1087 * spin_lock_irq(pool->lock).
bf4ede01 1088 */
112202d9 1089static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1090{
8864b4e5 1091 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1092 if (color == WORK_NO_COLOR)
8864b4e5 1093 goto out_put;
bf4ede01 1094
112202d9 1095 pwq->nr_in_flight[color]--;
bf4ede01 1096
112202d9
TH
1097 pwq->nr_active--;
1098 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1099 /* one down, submit a delayed one */
112202d9
TH
1100 if (pwq->nr_active < pwq->max_active)
1101 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1102 }
1103
1104 /* is flush in progress and are we at the flushing tip? */
112202d9 1105 if (likely(pwq->flush_color != color))
8864b4e5 1106 goto out_put;
bf4ede01
TH
1107
1108 /* are there still in-flight works? */
112202d9 1109 if (pwq->nr_in_flight[color])
8864b4e5 1110 goto out_put;
bf4ede01 1111
112202d9
TH
1112 /* this pwq is done, clear flush_color */
1113 pwq->flush_color = -1;
bf4ede01
TH
1114
1115 /*
112202d9 1116 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1117 * will handle the rest.
1118 */
112202d9
TH
1119 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1120 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1121out_put:
1122 put_pwq(pwq);
bf4ede01
TH
1123}
1124
36e227d2 1125/**
bbb68dfa 1126 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1127 * @work: work item to steal
1128 * @is_dwork: @work is a delayed_work
bbb68dfa 1129 * @flags: place to store irq state
36e227d2
TH
1130 *
1131 * Try to grab PENDING bit of @work. This function can handle @work in any
1132 * stable state - idle, on timer or on worklist. Return values are
1133 *
1134 * 1 if @work was pending and we successfully stole PENDING
1135 * 0 if @work was idle and we claimed PENDING
1136 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1137 * -ENOENT if someone else is canceling @work, this state may persist
1138 * for arbitrarily long
36e227d2 1139 *
bbb68dfa 1140 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1141 * interrupted while holding PENDING and @work off queue, irq must be
1142 * disabled on entry. This, combined with delayed_work->timer being
1143 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1144 *
1145 * On successful return, >= 0, irq is disabled and the caller is
1146 * responsible for releasing it using local_irq_restore(*@flags).
1147 *
e0aecdd8 1148 * This function is safe to call from any context including IRQ handler.
bf4ede01 1149 */
bbb68dfa
TH
1150static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1151 unsigned long *flags)
bf4ede01 1152{
d565ed63 1153 struct worker_pool *pool;
112202d9 1154 struct pool_workqueue *pwq;
bf4ede01 1155
bbb68dfa
TH
1156 local_irq_save(*flags);
1157
36e227d2
TH
1158 /* try to steal the timer if it exists */
1159 if (is_dwork) {
1160 struct delayed_work *dwork = to_delayed_work(work);
1161
e0aecdd8
TH
1162 /*
1163 * dwork->timer is irqsafe. If del_timer() fails, it's
1164 * guaranteed that the timer is not queued anywhere and not
1165 * running on the local CPU.
1166 */
36e227d2
TH
1167 if (likely(del_timer(&dwork->timer)))
1168 return 1;
1169 }
1170
1171 /* try to claim PENDING the normal way */
bf4ede01
TH
1172 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1173 return 0;
1174
1175 /*
1176 * The queueing is in progress, or it is already queued. Try to
1177 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1178 */
d565ed63
TH
1179 pool = get_work_pool(work);
1180 if (!pool)
bbb68dfa 1181 goto fail;
bf4ede01 1182
d565ed63 1183 spin_lock(&pool->lock);
0b3dae68 1184 /*
112202d9
TH
1185 * work->data is guaranteed to point to pwq only while the work
1186 * item is queued on pwq->wq, and both updating work->data to point
1187 * to pwq on queueing and to pool on dequeueing are done under
1188 * pwq->pool->lock. This in turn guarantees that, if work->data
1189 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1190 * item is currently queued on that pool.
1191 */
112202d9
TH
1192 pwq = get_work_pwq(work);
1193 if (pwq && pwq->pool == pool) {
16062836
TH
1194 debug_work_deactivate(work);
1195
1196 /*
1197 * A delayed work item cannot be grabbed directly because
1198 * it might have linked NO_COLOR work items which, if left
112202d9 1199 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1200 * management later on and cause stall. Make sure the work
1201 * item is activated before grabbing.
1202 */
1203 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1204 pwq_activate_delayed_work(work);
16062836
TH
1205
1206 list_del_init(&work->entry);
112202d9 1207 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1208
112202d9 1209 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1210 set_work_pool_and_keep_pending(work, pool->id);
1211
1212 spin_unlock(&pool->lock);
1213 return 1;
bf4ede01 1214 }
d565ed63 1215 spin_unlock(&pool->lock);
bbb68dfa
TH
1216fail:
1217 local_irq_restore(*flags);
1218 if (work_is_canceling(work))
1219 return -ENOENT;
1220 cpu_relax();
36e227d2 1221 return -EAGAIN;
bf4ede01
TH
1222}
1223
4690c4ab 1224/**
706026c2 1225 * insert_work - insert a work into a pool
112202d9 1226 * @pwq: pwq @work belongs to
4690c4ab
TH
1227 * @work: work to insert
1228 * @head: insertion point
1229 * @extra_flags: extra WORK_STRUCT_* flags to set
1230 *
112202d9 1231 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1232 * work_struct flags.
4690c4ab
TH
1233 *
1234 * CONTEXT:
d565ed63 1235 * spin_lock_irq(pool->lock).
4690c4ab 1236 */
112202d9
TH
1237static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1238 struct list_head *head, unsigned int extra_flags)
b89deed3 1239{
112202d9 1240 struct worker_pool *pool = pwq->pool;
e22bee78 1241
4690c4ab 1242 /* we own @work, set data and link */
112202d9 1243 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1244 list_add_tail(&work->entry, head);
8864b4e5 1245 get_pwq(pwq);
e22bee78
TH
1246
1247 /*
c5aa87bb
TH
1248 * Ensure either wq_worker_sleeping() sees the above
1249 * list_add_tail() or we see zero nr_running to avoid workers lying
1250 * around lazily while there are works to be processed.
e22bee78
TH
1251 */
1252 smp_mb();
1253
63d95a91
TH
1254 if (__need_more_worker(pool))
1255 wake_up_worker(pool);
b89deed3
ON
1256}
1257
c8efcc25
TH
1258/*
1259 * Test whether @work is being queued from another work executing on the
8d03ecfe 1260 * same workqueue.
c8efcc25
TH
1261 */
1262static bool is_chained_work(struct workqueue_struct *wq)
1263{
8d03ecfe
TH
1264 struct worker *worker;
1265
1266 worker = current_wq_worker();
1267 /*
1268 * Return %true iff I'm a worker execuing a work item on @wq. If
1269 * I'm @worker, it's safe to dereference it without locking.
1270 */
112202d9 1271 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1272}
1273
d84ff051 1274static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1275 struct work_struct *work)
1276{
112202d9 1277 struct pool_workqueue *pwq;
c9178087 1278 struct worker_pool *last_pool;
1e19ffc6 1279 struct list_head *worklist;
8a2e8e5d 1280 unsigned int work_flags;
b75cac93 1281 unsigned int req_cpu = cpu;
8930caba
TH
1282
1283 /*
1284 * While a work item is PENDING && off queue, a task trying to
1285 * steal the PENDING will busy-loop waiting for it to either get
1286 * queued or lose PENDING. Grabbing PENDING and queueing should
1287 * happen with IRQ disabled.
1288 */
1289 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1290
dc186ad7 1291 debug_work_activate(work);
1e19ffc6 1292
c8efcc25 1293 /* if dying, only works from the same workqueue are allowed */
618b01eb 1294 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1295 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1296 return;
9e8cd2f5 1297retry:
df2d5ae4
TH
1298 if (req_cpu == WORK_CPU_UNBOUND)
1299 cpu = raw_smp_processor_id();
1300
c9178087 1301 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1302 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1303 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1304 else
1305 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1306
c9178087
TH
1307 /*
1308 * If @work was previously on a different pool, it might still be
1309 * running there, in which case the work needs to be queued on that
1310 * pool to guarantee non-reentrancy.
1311 */
1312 last_pool = get_work_pool(work);
1313 if (last_pool && last_pool != pwq->pool) {
1314 struct worker *worker;
18aa9eff 1315
c9178087 1316 spin_lock(&last_pool->lock);
18aa9eff 1317
c9178087 1318 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1319
c9178087
TH
1320 if (worker && worker->current_pwq->wq == wq) {
1321 pwq = worker->current_pwq;
8930caba 1322 } else {
c9178087
TH
1323 /* meh... not running there, queue here */
1324 spin_unlock(&last_pool->lock);
112202d9 1325 spin_lock(&pwq->pool->lock);
8930caba 1326 }
f3421797 1327 } else {
112202d9 1328 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1329 }
1330
9e8cd2f5
TH
1331 /*
1332 * pwq is determined and locked. For unbound pools, we could have
1333 * raced with pwq release and it could already be dead. If its
1334 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1335 * without another pwq replacing it in the numa_pwq_tbl or while
1336 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1337 * make forward-progress.
1338 */
1339 if (unlikely(!pwq->refcnt)) {
1340 if (wq->flags & WQ_UNBOUND) {
1341 spin_unlock(&pwq->pool->lock);
1342 cpu_relax();
1343 goto retry;
1344 }
1345 /* oops */
1346 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1347 wq->name, cpu);
1348 }
1349
112202d9
TH
1350 /* pwq determined, queue */
1351 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1352
f5b2552b 1353 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1354 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1355 return;
1356 }
1e19ffc6 1357
112202d9
TH
1358 pwq->nr_in_flight[pwq->work_color]++;
1359 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1360
112202d9 1361 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1362 trace_workqueue_activate_work(work);
112202d9
TH
1363 pwq->nr_active++;
1364 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1365 } else {
1366 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1367 worklist = &pwq->delayed_works;
8a2e8e5d 1368 }
1e19ffc6 1369
112202d9 1370 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1371
112202d9 1372 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1373}
1374
0fcb78c2 1375/**
c1a220e7
ZR
1376 * queue_work_on - queue work on specific cpu
1377 * @cpu: CPU number to execute work on
0fcb78c2
REB
1378 * @wq: workqueue to use
1379 * @work: work to queue
1380 *
d4283e93 1381 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1382 *
c1a220e7
ZR
1383 * We queue the work to a specific CPU, the caller must ensure it
1384 * can't go away.
1da177e4 1385 */
d4283e93
TH
1386bool queue_work_on(int cpu, struct workqueue_struct *wq,
1387 struct work_struct *work)
1da177e4 1388{
d4283e93 1389 bool ret = false;
8930caba 1390 unsigned long flags;
ef1ca236 1391
8930caba 1392 local_irq_save(flags);
c1a220e7 1393
22df02bb 1394 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1395 __queue_work(cpu, wq, work);
d4283e93 1396 ret = true;
c1a220e7 1397 }
ef1ca236 1398
8930caba 1399 local_irq_restore(flags);
1da177e4
LT
1400 return ret;
1401}
c1a220e7 1402EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1403
d8e794df 1404void delayed_work_timer_fn(unsigned long __data)
1da177e4 1405{
52bad64d 1406 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1407
e0aecdd8 1408 /* should have been called from irqsafe timer with irq already off */
60c057bc 1409 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1410}
1438ade5 1411EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1412
7beb2edf
TH
1413static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1414 struct delayed_work *dwork, unsigned long delay)
1da177e4 1415{
7beb2edf
TH
1416 struct timer_list *timer = &dwork->timer;
1417 struct work_struct *work = &dwork->work;
7beb2edf
TH
1418
1419 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1420 timer->data != (unsigned long)dwork);
fc4b514f
TH
1421 WARN_ON_ONCE(timer_pending(timer));
1422 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1423
8852aac2
TH
1424 /*
1425 * If @delay is 0, queue @dwork->work immediately. This is for
1426 * both optimization and correctness. The earliest @timer can
1427 * expire is on the closest next tick and delayed_work users depend
1428 * on that there's no such delay when @delay is 0.
1429 */
1430 if (!delay) {
1431 __queue_work(cpu, wq, &dwork->work);
1432 return;
1433 }
1434
7beb2edf 1435 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1436
60c057bc 1437 dwork->wq = wq;
1265057f 1438 dwork->cpu = cpu;
7beb2edf
TH
1439 timer->expires = jiffies + delay;
1440
1441 if (unlikely(cpu != WORK_CPU_UNBOUND))
1442 add_timer_on(timer, cpu);
1443 else
1444 add_timer(timer);
1da177e4
LT
1445}
1446
0fcb78c2
REB
1447/**
1448 * queue_delayed_work_on - queue work on specific CPU after delay
1449 * @cpu: CPU number to execute work on
1450 * @wq: workqueue to use
af9997e4 1451 * @dwork: work to queue
0fcb78c2
REB
1452 * @delay: number of jiffies to wait before queueing
1453 *
715f1300
TH
1454 * Returns %false if @work was already on a queue, %true otherwise. If
1455 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1456 * execution.
0fcb78c2 1457 */
d4283e93
TH
1458bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1459 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1460{
52bad64d 1461 struct work_struct *work = &dwork->work;
d4283e93 1462 bool ret = false;
8930caba 1463 unsigned long flags;
7a6bc1cd 1464
8930caba
TH
1465 /* read the comment in __queue_work() */
1466 local_irq_save(flags);
7a6bc1cd 1467
22df02bb 1468 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1469 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1470 ret = true;
7a6bc1cd 1471 }
8a3e77cc 1472
8930caba 1473 local_irq_restore(flags);
7a6bc1cd
VP
1474 return ret;
1475}
ae90dd5d 1476EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1477
8376fe22
TH
1478/**
1479 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1480 * @cpu: CPU number to execute work on
1481 * @wq: workqueue to use
1482 * @dwork: work to queue
1483 * @delay: number of jiffies to wait before queueing
1484 *
1485 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1486 * modify @dwork's timer so that it expires after @delay. If @delay is
1487 * zero, @work is guaranteed to be scheduled immediately regardless of its
1488 * current state.
1489 *
1490 * Returns %false if @dwork was idle and queued, %true if @dwork was
1491 * pending and its timer was modified.
1492 *
e0aecdd8 1493 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1494 * See try_to_grab_pending() for details.
1495 */
1496bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1497 struct delayed_work *dwork, unsigned long delay)
1498{
1499 unsigned long flags;
1500 int ret;
c7fc77f7 1501
8376fe22
TH
1502 do {
1503 ret = try_to_grab_pending(&dwork->work, true, &flags);
1504 } while (unlikely(ret == -EAGAIN));
63bc0362 1505
8376fe22
TH
1506 if (likely(ret >= 0)) {
1507 __queue_delayed_work(cpu, wq, dwork, delay);
1508 local_irq_restore(flags);
7a6bc1cd 1509 }
8376fe22
TH
1510
1511 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1512 return ret;
1513}
8376fe22
TH
1514EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1515
c8e55f36
TH
1516/**
1517 * worker_enter_idle - enter idle state
1518 * @worker: worker which is entering idle state
1519 *
1520 * @worker is entering idle state. Update stats and idle timer if
1521 * necessary.
1522 *
1523 * LOCKING:
d565ed63 1524 * spin_lock_irq(pool->lock).
c8e55f36
TH
1525 */
1526static void worker_enter_idle(struct worker *worker)
1da177e4 1527{
bd7bdd43 1528 struct worker_pool *pool = worker->pool;
c8e55f36 1529
6183c009
TH
1530 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1531 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1532 (worker->hentry.next || worker->hentry.pprev)))
1533 return;
c8e55f36 1534
cb444766
TH
1535 /* can't use worker_set_flags(), also called from start_worker() */
1536 worker->flags |= WORKER_IDLE;
bd7bdd43 1537 pool->nr_idle++;
e22bee78 1538 worker->last_active = jiffies;
c8e55f36
TH
1539
1540 /* idle_list is LIFO */
bd7bdd43 1541 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1542
628c78e7
TH
1543 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1544 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1545
544ecf31 1546 /*
706026c2 1547 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1548 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1549 * nr_running, the warning may trigger spuriously. Check iff
1550 * unbind is not in progress.
544ecf31 1551 */
24647570 1552 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1553 pool->nr_workers == pool->nr_idle &&
e19e397a 1554 atomic_read(&pool->nr_running));
c8e55f36
TH
1555}
1556
1557/**
1558 * worker_leave_idle - leave idle state
1559 * @worker: worker which is leaving idle state
1560 *
1561 * @worker is leaving idle state. Update stats.
1562 *
1563 * LOCKING:
d565ed63 1564 * spin_lock_irq(pool->lock).
c8e55f36
TH
1565 */
1566static void worker_leave_idle(struct worker *worker)
1567{
bd7bdd43 1568 struct worker_pool *pool = worker->pool;
c8e55f36 1569
6183c009
TH
1570 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1571 return;
d302f017 1572 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1573 pool->nr_idle--;
c8e55f36
TH
1574 list_del_init(&worker->entry);
1575}
1576
e22bee78 1577/**
f36dc67b
LJ
1578 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1579 * @pool: target worker_pool
1580 *
1581 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1582 *
1583 * Works which are scheduled while the cpu is online must at least be
1584 * scheduled to a worker which is bound to the cpu so that if they are
1585 * flushed from cpu callbacks while cpu is going down, they are
1586 * guaranteed to execute on the cpu.
1587 *
f5faa077 1588 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1589 * themselves to the target cpu and may race with cpu going down or
1590 * coming online. kthread_bind() can't be used because it may put the
1591 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1592 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1593 * [dis]associated in the meantime.
1594 *
706026c2 1595 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1596 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1597 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1598 * enters idle state or fetches works without dropping lock, it can
1599 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1600 *
1601 * CONTEXT:
d565ed63 1602 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1603 * held.
1604 *
1605 * RETURNS:
706026c2 1606 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1607 * bound), %false if offline.
1608 */
f36dc67b 1609static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1610__acquires(&pool->lock)
e22bee78 1611{
e22bee78 1612 while (true) {
4e6045f1 1613 /*
e22bee78
TH
1614 * The following call may fail, succeed or succeed
1615 * without actually migrating the task to the cpu if
1616 * it races with cpu hotunplug operation. Verify
24647570 1617 * against POOL_DISASSOCIATED.
4e6045f1 1618 */
24647570 1619 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1620 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1621
d565ed63 1622 spin_lock_irq(&pool->lock);
24647570 1623 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1624 return false;
f5faa077 1625 if (task_cpu(current) == pool->cpu &&
7a4e344c 1626 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1627 return true;
d565ed63 1628 spin_unlock_irq(&pool->lock);
e22bee78 1629
5035b20f
TH
1630 /*
1631 * We've raced with CPU hot[un]plug. Give it a breather
1632 * and retry migration. cond_resched() is required here;
1633 * otherwise, we might deadlock against cpu_stop trying to
1634 * bring down the CPU on non-preemptive kernel.
1635 */
e22bee78 1636 cpu_relax();
5035b20f 1637 cond_resched();
e22bee78
TH
1638 }
1639}
1640
c34056a3
TH
1641static struct worker *alloc_worker(void)
1642{
1643 struct worker *worker;
1644
1645 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1646 if (worker) {
1647 INIT_LIST_HEAD(&worker->entry);
affee4b2 1648 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1649 /* on creation a worker is in !idle && prep state */
1650 worker->flags = WORKER_PREP;
c8e55f36 1651 }
c34056a3
TH
1652 return worker;
1653}
1654
1655/**
1656 * create_worker - create a new workqueue worker
63d95a91 1657 * @pool: pool the new worker will belong to
c34056a3 1658 *
63d95a91 1659 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1660 * can be started by calling start_worker() or destroyed using
1661 * destroy_worker().
1662 *
1663 * CONTEXT:
1664 * Might sleep. Does GFP_KERNEL allocations.
1665 *
1666 * RETURNS:
1667 * Pointer to the newly created worker.
1668 */
bc2ae0f5 1669static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1670{
c34056a3 1671 struct worker *worker = NULL;
f3421797 1672 int id = -1;
e3c916a4 1673 char id_buf[16];
c34056a3 1674
cd549687
TH
1675 lockdep_assert_held(&pool->manager_mutex);
1676
822d8405
TH
1677 /*
1678 * ID is needed to determine kthread name. Allocate ID first
1679 * without installing the pointer.
1680 */
1681 idr_preload(GFP_KERNEL);
d565ed63 1682 spin_lock_irq(&pool->lock);
822d8405
TH
1683
1684 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1685
d565ed63 1686 spin_unlock_irq(&pool->lock);
822d8405
TH
1687 idr_preload_end();
1688 if (id < 0)
1689 goto fail;
c34056a3
TH
1690
1691 worker = alloc_worker();
1692 if (!worker)
1693 goto fail;
1694
bd7bdd43 1695 worker->pool = pool;
c34056a3
TH
1696 worker->id = id;
1697
29c91e99 1698 if (pool->cpu >= 0)
e3c916a4
TH
1699 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1700 pool->attrs->nice < 0 ? "H" : "");
f3421797 1701 else
e3c916a4
TH
1702 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1703
f3f90ad4 1704 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1705 "kworker/%s", id_buf);
c34056a3
TH
1706 if (IS_ERR(worker->task))
1707 goto fail;
1708
c5aa87bb
TH
1709 /*
1710 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1711 * online CPUs. It'll be re-applied when any of the CPUs come up.
1712 */
7a4e344c
TH
1713 set_user_nice(worker->task, pool->attrs->nice);
1714 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1715
14a40ffc
TH
1716 /* prevent userland from meddling with cpumask of workqueue workers */
1717 worker->task->flags |= PF_NO_SETAFFINITY;
7a4e344c
TH
1718
1719 /*
1720 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1721 * remains stable across this function. See the comments above the
1722 * flag definition for details.
1723 */
1724 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1725 worker->flags |= WORKER_UNBOUND;
c34056a3 1726
822d8405
TH
1727 /* successful, commit the pointer to idr */
1728 spin_lock_irq(&pool->lock);
1729 idr_replace(&pool->worker_idr, worker, worker->id);
1730 spin_unlock_irq(&pool->lock);
1731
c34056a3 1732 return worker;
822d8405 1733
c34056a3
TH
1734fail:
1735 if (id >= 0) {
d565ed63 1736 spin_lock_irq(&pool->lock);
822d8405 1737 idr_remove(&pool->worker_idr, id);
d565ed63 1738 spin_unlock_irq(&pool->lock);
c34056a3
TH
1739 }
1740 kfree(worker);
1741 return NULL;
1742}
1743
1744/**
1745 * start_worker - start a newly created worker
1746 * @worker: worker to start
1747 *
706026c2 1748 * Make the pool aware of @worker and start it.
c34056a3
TH
1749 *
1750 * CONTEXT:
d565ed63 1751 * spin_lock_irq(pool->lock).
c34056a3
TH
1752 */
1753static void start_worker(struct worker *worker)
1754{
cb444766 1755 worker->flags |= WORKER_STARTED;
bd7bdd43 1756 worker->pool->nr_workers++;
c8e55f36 1757 worker_enter_idle(worker);
c34056a3
TH
1758 wake_up_process(worker->task);
1759}
1760
ebf44d16
TH
1761/**
1762 * create_and_start_worker - create and start a worker for a pool
1763 * @pool: the target pool
1764 *
cd549687 1765 * Grab the managership of @pool and create and start a new worker for it.
ebf44d16
TH
1766 */
1767static int create_and_start_worker(struct worker_pool *pool)
1768{
1769 struct worker *worker;
1770
cd549687
TH
1771 mutex_lock(&pool->manager_mutex);
1772
ebf44d16
TH
1773 worker = create_worker(pool);
1774 if (worker) {
1775 spin_lock_irq(&pool->lock);
1776 start_worker(worker);
1777 spin_unlock_irq(&pool->lock);
1778 }
1779
cd549687
TH
1780 mutex_unlock(&pool->manager_mutex);
1781
ebf44d16
TH
1782 return worker ? 0 : -ENOMEM;
1783}
1784
c34056a3
TH
1785/**
1786 * destroy_worker - destroy a workqueue worker
1787 * @worker: worker to be destroyed
1788 *
706026c2 1789 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1790 *
1791 * CONTEXT:
d565ed63 1792 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1793 */
1794static void destroy_worker(struct worker *worker)
1795{
bd7bdd43 1796 struct worker_pool *pool = worker->pool;
c34056a3 1797
cd549687
TH
1798 lockdep_assert_held(&pool->manager_mutex);
1799 lockdep_assert_held(&pool->lock);
1800
c34056a3 1801 /* sanity check frenzy */
6183c009
TH
1802 if (WARN_ON(worker->current_work) ||
1803 WARN_ON(!list_empty(&worker->scheduled)))
1804 return;
c34056a3 1805
c8e55f36 1806 if (worker->flags & WORKER_STARTED)
bd7bdd43 1807 pool->nr_workers--;
c8e55f36 1808 if (worker->flags & WORKER_IDLE)
bd7bdd43 1809 pool->nr_idle--;
c8e55f36
TH
1810
1811 list_del_init(&worker->entry);
cb444766 1812 worker->flags |= WORKER_DIE;
c8e55f36 1813
822d8405
TH
1814 idr_remove(&pool->worker_idr, worker->id);
1815
d565ed63 1816 spin_unlock_irq(&pool->lock);
c8e55f36 1817
c34056a3
TH
1818 kthread_stop(worker->task);
1819 kfree(worker);
1820
d565ed63 1821 spin_lock_irq(&pool->lock);
c34056a3
TH
1822}
1823
63d95a91 1824static void idle_worker_timeout(unsigned long __pool)
e22bee78 1825{
63d95a91 1826 struct worker_pool *pool = (void *)__pool;
e22bee78 1827
d565ed63 1828 spin_lock_irq(&pool->lock);
e22bee78 1829
63d95a91 1830 if (too_many_workers(pool)) {
e22bee78
TH
1831 struct worker *worker;
1832 unsigned long expires;
1833
1834 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1835 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1836 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1837
1838 if (time_before(jiffies, expires))
63d95a91 1839 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1840 else {
1841 /* it's been idle for too long, wake up manager */
11ebea50 1842 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1843 wake_up_worker(pool);
d5abe669 1844 }
e22bee78
TH
1845 }
1846
d565ed63 1847 spin_unlock_irq(&pool->lock);
e22bee78 1848}
d5abe669 1849
493a1724 1850static void send_mayday(struct work_struct *work)
e22bee78 1851{
112202d9
TH
1852 struct pool_workqueue *pwq = get_work_pwq(work);
1853 struct workqueue_struct *wq = pwq->wq;
493a1724 1854
2e109a28 1855 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1856
493008a8 1857 if (!wq->rescuer)
493a1724 1858 return;
e22bee78
TH
1859
1860 /* mayday mayday mayday */
493a1724
TH
1861 if (list_empty(&pwq->mayday_node)) {
1862 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1863 wake_up_process(wq->rescuer->task);
493a1724 1864 }
e22bee78
TH
1865}
1866
706026c2 1867static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1868{
63d95a91 1869 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1870 struct work_struct *work;
1871
2e109a28 1872 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1873 spin_lock(&pool->lock);
e22bee78 1874
63d95a91 1875 if (need_to_create_worker(pool)) {
e22bee78
TH
1876 /*
1877 * We've been trying to create a new worker but
1878 * haven't been successful. We might be hitting an
1879 * allocation deadlock. Send distress signals to
1880 * rescuers.
1881 */
63d95a91 1882 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1883 send_mayday(work);
1da177e4 1884 }
e22bee78 1885
493a1724 1886 spin_unlock(&pool->lock);
2e109a28 1887 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1888
63d95a91 1889 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1890}
1891
e22bee78
TH
1892/**
1893 * maybe_create_worker - create a new worker if necessary
63d95a91 1894 * @pool: pool to create a new worker for
e22bee78 1895 *
63d95a91 1896 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1897 * have at least one idle worker on return from this function. If
1898 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1899 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1900 * possible allocation deadlock.
1901 *
c5aa87bb
TH
1902 * On return, need_to_create_worker() is guaranteed to be %false and
1903 * may_start_working() %true.
e22bee78
TH
1904 *
1905 * LOCKING:
d565ed63 1906 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1907 * multiple times. Does GFP_KERNEL allocations. Called only from
1908 * manager.
1909 *
1910 * RETURNS:
c5aa87bb 1911 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1912 * otherwise.
1913 */
63d95a91 1914static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1915__releases(&pool->lock)
1916__acquires(&pool->lock)
1da177e4 1917{
63d95a91 1918 if (!need_to_create_worker(pool))
e22bee78
TH
1919 return false;
1920restart:
d565ed63 1921 spin_unlock_irq(&pool->lock);
9f9c2364 1922
e22bee78 1923 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1924 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1925
1926 while (true) {
1927 struct worker *worker;
1928
bc2ae0f5 1929 worker = create_worker(pool);
e22bee78 1930 if (worker) {
63d95a91 1931 del_timer_sync(&pool->mayday_timer);
d565ed63 1932 spin_lock_irq(&pool->lock);
e22bee78 1933 start_worker(worker);
6183c009
TH
1934 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1935 goto restart;
e22bee78
TH
1936 return true;
1937 }
1938
63d95a91 1939 if (!need_to_create_worker(pool))
e22bee78 1940 break;
1da177e4 1941
e22bee78
TH
1942 __set_current_state(TASK_INTERRUPTIBLE);
1943 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1944
63d95a91 1945 if (!need_to_create_worker(pool))
e22bee78
TH
1946 break;
1947 }
1948
63d95a91 1949 del_timer_sync(&pool->mayday_timer);
d565ed63 1950 spin_lock_irq(&pool->lock);
63d95a91 1951 if (need_to_create_worker(pool))
e22bee78
TH
1952 goto restart;
1953 return true;
1954}
1955
1956/**
1957 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1958 * @pool: pool to destroy workers for
e22bee78 1959 *
63d95a91 1960 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1961 * IDLE_WORKER_TIMEOUT.
1962 *
1963 * LOCKING:
d565ed63 1964 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1965 * multiple times. Called only from manager.
1966 *
1967 * RETURNS:
c5aa87bb 1968 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1969 * otherwise.
1970 */
63d95a91 1971static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1972{
1973 bool ret = false;
1da177e4 1974
63d95a91 1975 while (too_many_workers(pool)) {
e22bee78
TH
1976 struct worker *worker;
1977 unsigned long expires;
3af24433 1978
63d95a91 1979 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1980 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1981
e22bee78 1982 if (time_before(jiffies, expires)) {
63d95a91 1983 mod_timer(&pool->idle_timer, expires);
3af24433 1984 break;
e22bee78 1985 }
1da177e4 1986
e22bee78
TH
1987 destroy_worker(worker);
1988 ret = true;
1da177e4 1989 }
1e19ffc6 1990
e22bee78 1991 return ret;
1e19ffc6
TH
1992}
1993
73f53c4a 1994/**
e22bee78
TH
1995 * manage_workers - manage worker pool
1996 * @worker: self
73f53c4a 1997 *
706026c2 1998 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1999 * to. At any given time, there can be only zero or one manager per
706026c2 2000 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2001 *
2002 * The caller can safely start processing works on false return. On
2003 * true return, it's guaranteed that need_to_create_worker() is false
2004 * and may_start_working() is true.
73f53c4a
TH
2005 *
2006 * CONTEXT:
d565ed63 2007 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2008 * multiple times. Does GFP_KERNEL allocations.
2009 *
2010 * RETURNS:
d565ed63
TH
2011 * spin_lock_irq(pool->lock) which may be released and regrabbed
2012 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2013 */
e22bee78 2014static bool manage_workers(struct worker *worker)
73f53c4a 2015{
63d95a91 2016 struct worker_pool *pool = worker->pool;
e22bee78 2017 bool ret = false;
73f53c4a 2018
bc3a1afc
TH
2019 /*
2020 * Managership is governed by two mutexes - manager_arb and
2021 * manager_mutex. manager_arb handles arbitration of manager role.
2022 * Anyone who successfully grabs manager_arb wins the arbitration
2023 * and becomes the manager. mutex_trylock() on pool->manager_arb
2024 * failure while holding pool->lock reliably indicates that someone
2025 * else is managing the pool and the worker which failed trylock
2026 * can proceed to executing work items. This means that anyone
2027 * grabbing manager_arb is responsible for actually performing
2028 * manager duties. If manager_arb is grabbed and released without
2029 * actual management, the pool may stall indefinitely.
2030 *
2031 * manager_mutex is used for exclusion of actual management
2032 * operations. The holder of manager_mutex can be sure that none
2033 * of management operations, including creation and destruction of
2034 * workers, won't take place until the mutex is released. Because
2035 * manager_mutex doesn't interfere with manager role arbitration,
2036 * it is guaranteed that the pool's management, while may be
2037 * delayed, won't be disturbed by someone else grabbing
2038 * manager_mutex.
2039 */
34a06bd6 2040 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2041 return ret;
1e19ffc6 2042
ee378aa4 2043 /*
bc3a1afc
TH
2044 * With manager arbitration won, manager_mutex would be free in
2045 * most cases. trylock first without dropping @pool->lock.
ee378aa4 2046 */
bc3a1afc 2047 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
d565ed63 2048 spin_unlock_irq(&pool->lock);
bc3a1afc 2049 mutex_lock(&pool->manager_mutex);
ee378aa4
LJ
2050 ret = true;
2051 }
73f53c4a 2052
11ebea50 2053 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2054
2055 /*
e22bee78
TH
2056 * Destroy and then create so that may_start_working() is true
2057 * on return.
73f53c4a 2058 */
63d95a91
TH
2059 ret |= maybe_destroy_workers(pool);
2060 ret |= maybe_create_worker(pool);
e22bee78 2061
bc3a1afc 2062 mutex_unlock(&pool->manager_mutex);
34a06bd6 2063 mutex_unlock(&pool->manager_arb);
e22bee78 2064 return ret;
73f53c4a
TH
2065}
2066
a62428c0
TH
2067/**
2068 * process_one_work - process single work
c34056a3 2069 * @worker: self
a62428c0
TH
2070 * @work: work to process
2071 *
2072 * Process @work. This function contains all the logics necessary to
2073 * process a single work including synchronization against and
2074 * interaction with other workers on the same cpu, queueing and
2075 * flushing. As long as context requirement is met, any worker can
2076 * call this function to process a work.
2077 *
2078 * CONTEXT:
d565ed63 2079 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2080 */
c34056a3 2081static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2082__releases(&pool->lock)
2083__acquires(&pool->lock)
a62428c0 2084{
112202d9 2085 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2086 struct worker_pool *pool = worker->pool;
112202d9 2087 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2088 int work_color;
7e11629d 2089 struct worker *collision;
a62428c0
TH
2090#ifdef CONFIG_LOCKDEP
2091 /*
2092 * It is permissible to free the struct work_struct from
2093 * inside the function that is called from it, this we need to
2094 * take into account for lockdep too. To avoid bogus "held
2095 * lock freed" warnings as well as problems when looking into
2096 * work->lockdep_map, make a copy and use that here.
2097 */
4d82a1de
PZ
2098 struct lockdep_map lockdep_map;
2099
2100 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2101#endif
6fec10a1
TH
2102 /*
2103 * Ensure we're on the correct CPU. DISASSOCIATED test is
2104 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2105 * unbound or a disassociated pool.
6fec10a1 2106 */
5f7dabfd 2107 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2108 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2109 raw_smp_processor_id() != pool->cpu);
25511a47 2110
7e11629d
TH
2111 /*
2112 * A single work shouldn't be executed concurrently by
2113 * multiple workers on a single cpu. Check whether anyone is
2114 * already processing the work. If so, defer the work to the
2115 * currently executing one.
2116 */
c9e7cf27 2117 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2118 if (unlikely(collision)) {
2119 move_linked_works(work, &collision->scheduled, NULL);
2120 return;
2121 }
2122
8930caba 2123 /* claim and dequeue */
a62428c0 2124 debug_work_deactivate(work);
c9e7cf27 2125 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2126 worker->current_work = work;
a2c1c57b 2127 worker->current_func = work->func;
112202d9 2128 worker->current_pwq = pwq;
73f53c4a 2129 work_color = get_work_color(work);
7a22ad75 2130
a62428c0
TH
2131 list_del_init(&work->entry);
2132
fb0e7beb
TH
2133 /*
2134 * CPU intensive works don't participate in concurrency
2135 * management. They're the scheduler's responsibility.
2136 */
2137 if (unlikely(cpu_intensive))
2138 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2139
974271c4 2140 /*
d565ed63 2141 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2142 * executed ASAP. Wake up another worker if necessary.
2143 */
63d95a91
TH
2144 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2145 wake_up_worker(pool);
974271c4 2146
8930caba 2147 /*
7c3eed5c 2148 * Record the last pool and clear PENDING which should be the last
d565ed63 2149 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2150 * PENDING and queued state changes happen together while IRQ is
2151 * disabled.
8930caba 2152 */
7c3eed5c 2153 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2154
d565ed63 2155 spin_unlock_irq(&pool->lock);
a62428c0 2156
112202d9 2157 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2158 lock_map_acquire(&lockdep_map);
e36c886a 2159 trace_workqueue_execute_start(work);
a2c1c57b 2160 worker->current_func(work);
e36c886a
AV
2161 /*
2162 * While we must be careful to not use "work" after this, the trace
2163 * point will only record its address.
2164 */
2165 trace_workqueue_execute_end(work);
a62428c0 2166 lock_map_release(&lockdep_map);
112202d9 2167 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2168
2169 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2170 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2171 " last function: %pf\n",
a2c1c57b
TH
2172 current->comm, preempt_count(), task_pid_nr(current),
2173 worker->current_func);
a62428c0
TH
2174 debug_show_held_locks(current);
2175 dump_stack();
2176 }
2177
d565ed63 2178 spin_lock_irq(&pool->lock);
a62428c0 2179
fb0e7beb
TH
2180 /* clear cpu intensive status */
2181 if (unlikely(cpu_intensive))
2182 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2183
a62428c0 2184 /* we're done with it, release */
42f8570f 2185 hash_del(&worker->hentry);
c34056a3 2186 worker->current_work = NULL;
a2c1c57b 2187 worker->current_func = NULL;
112202d9
TH
2188 worker->current_pwq = NULL;
2189 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2190}
2191
affee4b2
TH
2192/**
2193 * process_scheduled_works - process scheduled works
2194 * @worker: self
2195 *
2196 * Process all scheduled works. Please note that the scheduled list
2197 * may change while processing a work, so this function repeatedly
2198 * fetches a work from the top and executes it.
2199 *
2200 * CONTEXT:
d565ed63 2201 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2202 * multiple times.
2203 */
2204static void process_scheduled_works(struct worker *worker)
1da177e4 2205{
affee4b2
TH
2206 while (!list_empty(&worker->scheduled)) {
2207 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2208 struct work_struct, entry);
c34056a3 2209 process_one_work(worker, work);
1da177e4 2210 }
1da177e4
LT
2211}
2212
4690c4ab
TH
2213/**
2214 * worker_thread - the worker thread function
c34056a3 2215 * @__worker: self
4690c4ab 2216 *
c5aa87bb
TH
2217 * The worker thread function. All workers belong to a worker_pool -
2218 * either a per-cpu one or dynamic unbound one. These workers process all
2219 * work items regardless of their specific target workqueue. The only
2220 * exception is work items which belong to workqueues with a rescuer which
2221 * will be explained in rescuer_thread().
4690c4ab 2222 */
c34056a3 2223static int worker_thread(void *__worker)
1da177e4 2224{
c34056a3 2225 struct worker *worker = __worker;
bd7bdd43 2226 struct worker_pool *pool = worker->pool;
1da177e4 2227
e22bee78
TH
2228 /* tell the scheduler that this is a workqueue worker */
2229 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2230woke_up:
d565ed63 2231 spin_lock_irq(&pool->lock);
1da177e4 2232
a9ab775b
TH
2233 /* am I supposed to die? */
2234 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2235 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2236 WARN_ON_ONCE(!list_empty(&worker->entry));
2237 worker->task->flags &= ~PF_WQ_WORKER;
2238 return 0;
c8e55f36 2239 }
affee4b2 2240
c8e55f36 2241 worker_leave_idle(worker);
db7bccf4 2242recheck:
e22bee78 2243 /* no more worker necessary? */
63d95a91 2244 if (!need_more_worker(pool))
e22bee78
TH
2245 goto sleep;
2246
2247 /* do we need to manage? */
63d95a91 2248 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2249 goto recheck;
2250
c8e55f36
TH
2251 /*
2252 * ->scheduled list can only be filled while a worker is
2253 * preparing to process a work or actually processing it.
2254 * Make sure nobody diddled with it while I was sleeping.
2255 */
6183c009 2256 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2257
e22bee78 2258 /*
a9ab775b
TH
2259 * Finish PREP stage. We're guaranteed to have at least one idle
2260 * worker or that someone else has already assumed the manager
2261 * role. This is where @worker starts participating in concurrency
2262 * management if applicable and concurrency management is restored
2263 * after being rebound. See rebind_workers() for details.
e22bee78 2264 */
a9ab775b 2265 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2266
2267 do {
c8e55f36 2268 struct work_struct *work =
bd7bdd43 2269 list_first_entry(&pool->worklist,
c8e55f36
TH
2270 struct work_struct, entry);
2271
2272 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2273 /* optimization path, not strictly necessary */
2274 process_one_work(worker, work);
2275 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2276 process_scheduled_works(worker);
c8e55f36
TH
2277 } else {
2278 move_linked_works(work, &worker->scheduled, NULL);
2279 process_scheduled_works(worker);
affee4b2 2280 }
63d95a91 2281 } while (keep_working(pool));
e22bee78
TH
2282
2283 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2284sleep:
63d95a91 2285 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2286 goto recheck;
d313dd85 2287
c8e55f36 2288 /*
d565ed63
TH
2289 * pool->lock is held and there's no work to process and no need to
2290 * manage, sleep. Workers are woken up only while holding
2291 * pool->lock or from local cpu, so setting the current state
2292 * before releasing pool->lock is enough to prevent losing any
2293 * event.
c8e55f36
TH
2294 */
2295 worker_enter_idle(worker);
2296 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2297 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2298 schedule();
2299 goto woke_up;
1da177e4
LT
2300}
2301
e22bee78
TH
2302/**
2303 * rescuer_thread - the rescuer thread function
111c225a 2304 * @__rescuer: self
e22bee78
TH
2305 *
2306 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2307 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2308 *
706026c2 2309 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2310 * worker which uses GFP_KERNEL allocation which has slight chance of
2311 * developing into deadlock if some works currently on the same queue
2312 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2313 * the problem rescuer solves.
2314 *
706026c2
TH
2315 * When such condition is possible, the pool summons rescuers of all
2316 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2317 * those works so that forward progress can be guaranteed.
2318 *
2319 * This should happen rarely.
2320 */
111c225a 2321static int rescuer_thread(void *__rescuer)
e22bee78 2322{
111c225a
TH
2323 struct worker *rescuer = __rescuer;
2324 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2325 struct list_head *scheduled = &rescuer->scheduled;
e22bee78
TH
2326
2327 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2328
2329 /*
2330 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2331 * doesn't participate in concurrency management.
2332 */
2333 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2334repeat:
2335 set_current_state(TASK_INTERRUPTIBLE);
2336
412d32e6
MG
2337 if (kthread_should_stop()) {
2338 __set_current_state(TASK_RUNNING);
111c225a 2339 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2340 return 0;
412d32e6 2341 }
e22bee78 2342
493a1724 2343 /* see whether any pwq is asking for help */
2e109a28 2344 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2345
2346 while (!list_empty(&wq->maydays)) {
2347 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2348 struct pool_workqueue, mayday_node);
112202d9 2349 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2350 struct work_struct *work, *n;
2351
2352 __set_current_state(TASK_RUNNING);
493a1724
TH
2353 list_del_init(&pwq->mayday_node);
2354
2e109a28 2355 spin_unlock_irq(&wq_mayday_lock);
e22bee78
TH
2356
2357 /* migrate to the target cpu if possible */
f36dc67b 2358 worker_maybe_bind_and_lock(pool);
b3104104 2359 rescuer->pool = pool;
e22bee78
TH
2360
2361 /*
2362 * Slurp in all works issued via this workqueue and
2363 * process'em.
2364 */
6183c009 2365 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2366 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2367 if (get_work_pwq(work) == pwq)
e22bee78
TH
2368 move_linked_works(work, scheduled, &n);
2369
2370 process_scheduled_works(rescuer);
7576958a
TH
2371
2372 /*
d565ed63 2373 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2374 * regular worker; otherwise, we end up with 0 concurrency
2375 * and stalling the execution.
2376 */
63d95a91
TH
2377 if (keep_working(pool))
2378 wake_up_worker(pool);
7576958a 2379
b3104104 2380 rescuer->pool = NULL;
493a1724 2381 spin_unlock(&pool->lock);
2e109a28 2382 spin_lock(&wq_mayday_lock);
e22bee78
TH
2383 }
2384
2e109a28 2385 spin_unlock_irq(&wq_mayday_lock);
493a1724 2386
111c225a
TH
2387 /* rescuers should never participate in concurrency management */
2388 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2389 schedule();
2390 goto repeat;
1da177e4
LT
2391}
2392
fc2e4d70
ON
2393struct wq_barrier {
2394 struct work_struct work;
2395 struct completion done;
2396};
2397
2398static void wq_barrier_func(struct work_struct *work)
2399{
2400 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2401 complete(&barr->done);
2402}
2403
4690c4ab
TH
2404/**
2405 * insert_wq_barrier - insert a barrier work
112202d9 2406 * @pwq: pwq to insert barrier into
4690c4ab 2407 * @barr: wq_barrier to insert
affee4b2
TH
2408 * @target: target work to attach @barr to
2409 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2410 *
affee4b2
TH
2411 * @barr is linked to @target such that @barr is completed only after
2412 * @target finishes execution. Please note that the ordering
2413 * guarantee is observed only with respect to @target and on the local
2414 * cpu.
2415 *
2416 * Currently, a queued barrier can't be canceled. This is because
2417 * try_to_grab_pending() can't determine whether the work to be
2418 * grabbed is at the head of the queue and thus can't clear LINKED
2419 * flag of the previous work while there must be a valid next work
2420 * after a work with LINKED flag set.
2421 *
2422 * Note that when @worker is non-NULL, @target may be modified
112202d9 2423 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2424 *
2425 * CONTEXT:
d565ed63 2426 * spin_lock_irq(pool->lock).
4690c4ab 2427 */
112202d9 2428static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2429 struct wq_barrier *barr,
2430 struct work_struct *target, struct worker *worker)
fc2e4d70 2431{
affee4b2
TH
2432 struct list_head *head;
2433 unsigned int linked = 0;
2434
dc186ad7 2435 /*
d565ed63 2436 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2437 * as we know for sure that this will not trigger any of the
2438 * checks and call back into the fixup functions where we
2439 * might deadlock.
2440 */
ca1cab37 2441 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2442 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2443 init_completion(&barr->done);
83c22520 2444
affee4b2
TH
2445 /*
2446 * If @target is currently being executed, schedule the
2447 * barrier to the worker; otherwise, put it after @target.
2448 */
2449 if (worker)
2450 head = worker->scheduled.next;
2451 else {
2452 unsigned long *bits = work_data_bits(target);
2453
2454 head = target->entry.next;
2455 /* there can already be other linked works, inherit and set */
2456 linked = *bits & WORK_STRUCT_LINKED;
2457 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2458 }
2459
dc186ad7 2460 debug_work_activate(&barr->work);
112202d9 2461 insert_work(pwq, &barr->work, head,
affee4b2 2462 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2463}
2464
73f53c4a 2465/**
112202d9 2466 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2467 * @wq: workqueue being flushed
2468 * @flush_color: new flush color, < 0 for no-op
2469 * @work_color: new work color, < 0 for no-op
2470 *
112202d9 2471 * Prepare pwqs for workqueue flushing.
73f53c4a 2472 *
112202d9
TH
2473 * If @flush_color is non-negative, flush_color on all pwqs should be
2474 * -1. If no pwq has in-flight commands at the specified color, all
2475 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2476 * has in flight commands, its pwq->flush_color is set to
2477 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2478 * wakeup logic is armed and %true is returned.
2479 *
2480 * The caller should have initialized @wq->first_flusher prior to
2481 * calling this function with non-negative @flush_color. If
2482 * @flush_color is negative, no flush color update is done and %false
2483 * is returned.
2484 *
112202d9 2485 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2486 * work_color which is previous to @work_color and all will be
2487 * advanced to @work_color.
2488 *
2489 * CONTEXT:
3c25a55d 2490 * mutex_lock(wq->mutex).
73f53c4a
TH
2491 *
2492 * RETURNS:
2493 * %true if @flush_color >= 0 and there's something to flush. %false
2494 * otherwise.
2495 */
112202d9 2496static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2497 int flush_color, int work_color)
1da177e4 2498{
73f53c4a 2499 bool wait = false;
49e3cf44 2500 struct pool_workqueue *pwq;
1da177e4 2501
73f53c4a 2502 if (flush_color >= 0) {
6183c009 2503 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2504 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2505 }
2355b70f 2506
49e3cf44 2507 for_each_pwq(pwq, wq) {
112202d9 2508 struct worker_pool *pool = pwq->pool;
fc2e4d70 2509
b09f4fd3 2510 spin_lock_irq(&pool->lock);
83c22520 2511
73f53c4a 2512 if (flush_color >= 0) {
6183c009 2513 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2514
112202d9
TH
2515 if (pwq->nr_in_flight[flush_color]) {
2516 pwq->flush_color = flush_color;
2517 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2518 wait = true;
2519 }
2520 }
1da177e4 2521
73f53c4a 2522 if (work_color >= 0) {
6183c009 2523 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2524 pwq->work_color = work_color;
73f53c4a 2525 }
1da177e4 2526
b09f4fd3 2527 spin_unlock_irq(&pool->lock);
1da177e4 2528 }
2355b70f 2529
112202d9 2530 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2531 complete(&wq->first_flusher->done);
14441960 2532
73f53c4a 2533 return wait;
1da177e4
LT
2534}
2535
0fcb78c2 2536/**
1da177e4 2537 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2538 * @wq: workqueue to flush
1da177e4 2539 *
c5aa87bb
TH
2540 * This function sleeps until all work items which were queued on entry
2541 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2542 */
7ad5b3a5 2543void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2544{
73f53c4a
TH
2545 struct wq_flusher this_flusher = {
2546 .list = LIST_HEAD_INIT(this_flusher.list),
2547 .flush_color = -1,
2548 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2549 };
2550 int next_color;
1da177e4 2551
3295f0ef
IM
2552 lock_map_acquire(&wq->lockdep_map);
2553 lock_map_release(&wq->lockdep_map);
73f53c4a 2554
3c25a55d 2555 mutex_lock(&wq->mutex);
73f53c4a
TH
2556
2557 /*
2558 * Start-to-wait phase
2559 */
2560 next_color = work_next_color(wq->work_color);
2561
2562 if (next_color != wq->flush_color) {
2563 /*
2564 * Color space is not full. The current work_color
2565 * becomes our flush_color and work_color is advanced
2566 * by one.
2567 */
6183c009 2568 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2569 this_flusher.flush_color = wq->work_color;
2570 wq->work_color = next_color;
2571
2572 if (!wq->first_flusher) {
2573 /* no flush in progress, become the first flusher */
6183c009 2574 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2575
2576 wq->first_flusher = &this_flusher;
2577
112202d9 2578 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2579 wq->work_color)) {
2580 /* nothing to flush, done */
2581 wq->flush_color = next_color;
2582 wq->first_flusher = NULL;
2583 goto out_unlock;
2584 }
2585 } else {
2586 /* wait in queue */
6183c009 2587 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2588 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2589 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2590 }
2591 } else {
2592 /*
2593 * Oops, color space is full, wait on overflow queue.
2594 * The next flush completion will assign us
2595 * flush_color and transfer to flusher_queue.
2596 */
2597 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2598 }
2599
3c25a55d 2600 mutex_unlock(&wq->mutex);
73f53c4a
TH
2601
2602 wait_for_completion(&this_flusher.done);
2603
2604 /*
2605 * Wake-up-and-cascade phase
2606 *
2607 * First flushers are responsible for cascading flushes and
2608 * handling overflow. Non-first flushers can simply return.
2609 */
2610 if (wq->first_flusher != &this_flusher)
2611 return;
2612
3c25a55d 2613 mutex_lock(&wq->mutex);
73f53c4a 2614
4ce48b37
TH
2615 /* we might have raced, check again with mutex held */
2616 if (wq->first_flusher != &this_flusher)
2617 goto out_unlock;
2618
73f53c4a
TH
2619 wq->first_flusher = NULL;
2620
6183c009
TH
2621 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2622 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2623
2624 while (true) {
2625 struct wq_flusher *next, *tmp;
2626
2627 /* complete all the flushers sharing the current flush color */
2628 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2629 if (next->flush_color != wq->flush_color)
2630 break;
2631 list_del_init(&next->list);
2632 complete(&next->done);
2633 }
2634
6183c009
TH
2635 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2636 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2637
2638 /* this flush_color is finished, advance by one */
2639 wq->flush_color = work_next_color(wq->flush_color);
2640
2641 /* one color has been freed, handle overflow queue */
2642 if (!list_empty(&wq->flusher_overflow)) {
2643 /*
2644 * Assign the same color to all overflowed
2645 * flushers, advance work_color and append to
2646 * flusher_queue. This is the start-to-wait
2647 * phase for these overflowed flushers.
2648 */
2649 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2650 tmp->flush_color = wq->work_color;
2651
2652 wq->work_color = work_next_color(wq->work_color);
2653
2654 list_splice_tail_init(&wq->flusher_overflow,
2655 &wq->flusher_queue);
112202d9 2656 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2657 }
2658
2659 if (list_empty(&wq->flusher_queue)) {
6183c009 2660 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2661 break;
2662 }
2663
2664 /*
2665 * Need to flush more colors. Make the next flusher
112202d9 2666 * the new first flusher and arm pwqs.
73f53c4a 2667 */
6183c009
TH
2668 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2669 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2670
2671 list_del_init(&next->list);
2672 wq->first_flusher = next;
2673
112202d9 2674 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2675 break;
2676
2677 /*
2678 * Meh... this color is already done, clear first
2679 * flusher and repeat cascading.
2680 */
2681 wq->first_flusher = NULL;
2682 }
2683
2684out_unlock:
3c25a55d 2685 mutex_unlock(&wq->mutex);
1da177e4 2686}
ae90dd5d 2687EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2688
9c5a2ba7
TH
2689/**
2690 * drain_workqueue - drain a workqueue
2691 * @wq: workqueue to drain
2692 *
2693 * Wait until the workqueue becomes empty. While draining is in progress,
2694 * only chain queueing is allowed. IOW, only currently pending or running
2695 * work items on @wq can queue further work items on it. @wq is flushed
2696 * repeatedly until it becomes empty. The number of flushing is detemined
2697 * by the depth of chaining and should be relatively short. Whine if it
2698 * takes too long.
2699 */
2700void drain_workqueue(struct workqueue_struct *wq)
2701{
2702 unsigned int flush_cnt = 0;
49e3cf44 2703 struct pool_workqueue *pwq;
9c5a2ba7
TH
2704
2705 /*
2706 * __queue_work() needs to test whether there are drainers, is much
2707 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2708 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2709 */
87fc741e 2710 mutex_lock(&wq->mutex);
9c5a2ba7 2711 if (!wq->nr_drainers++)
618b01eb 2712 wq->flags |= __WQ_DRAINING;
87fc741e 2713 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2714reflush:
2715 flush_workqueue(wq);
2716
b09f4fd3 2717 mutex_lock(&wq->mutex);
76af4d93 2718
49e3cf44 2719 for_each_pwq(pwq, wq) {
fa2563e4 2720 bool drained;
9c5a2ba7 2721
b09f4fd3 2722 spin_lock_irq(&pwq->pool->lock);
112202d9 2723 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2724 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2725
2726 if (drained)
9c5a2ba7
TH
2727 continue;
2728
2729 if (++flush_cnt == 10 ||
2730 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2731 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2732 wq->name, flush_cnt);
76af4d93 2733
b09f4fd3 2734 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2735 goto reflush;
2736 }
2737
9c5a2ba7 2738 if (!--wq->nr_drainers)
618b01eb 2739 wq->flags &= ~__WQ_DRAINING;
87fc741e 2740 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2741}
2742EXPORT_SYMBOL_GPL(drain_workqueue);
2743
606a5020 2744static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2745{
affee4b2 2746 struct worker *worker = NULL;
c9e7cf27 2747 struct worker_pool *pool;
112202d9 2748 struct pool_workqueue *pwq;
db700897
ON
2749
2750 might_sleep();
fa1b54e6
TH
2751
2752 local_irq_disable();
c9e7cf27 2753 pool = get_work_pool(work);
fa1b54e6
TH
2754 if (!pool) {
2755 local_irq_enable();
baf59022 2756 return false;
fa1b54e6 2757 }
db700897 2758
fa1b54e6 2759 spin_lock(&pool->lock);
0b3dae68 2760 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2761 pwq = get_work_pwq(work);
2762 if (pwq) {
2763 if (unlikely(pwq->pool != pool))
4690c4ab 2764 goto already_gone;
606a5020 2765 } else {
c9e7cf27 2766 worker = find_worker_executing_work(pool, work);
affee4b2 2767 if (!worker)
4690c4ab 2768 goto already_gone;
112202d9 2769 pwq = worker->current_pwq;
606a5020 2770 }
db700897 2771
112202d9 2772 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2773 spin_unlock_irq(&pool->lock);
7a22ad75 2774
e159489b
TH
2775 /*
2776 * If @max_active is 1 or rescuer is in use, flushing another work
2777 * item on the same workqueue may lead to deadlock. Make sure the
2778 * flusher is not running on the same workqueue by verifying write
2779 * access.
2780 */
493008a8 2781 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2782 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2783 else
112202d9
TH
2784 lock_map_acquire_read(&pwq->wq->lockdep_map);
2785 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2786
401a8d04 2787 return true;
4690c4ab 2788already_gone:
d565ed63 2789 spin_unlock_irq(&pool->lock);
401a8d04 2790 return false;
db700897 2791}
baf59022
TH
2792
2793/**
2794 * flush_work - wait for a work to finish executing the last queueing instance
2795 * @work: the work to flush
2796 *
606a5020
TH
2797 * Wait until @work has finished execution. @work is guaranteed to be idle
2798 * on return if it hasn't been requeued since flush started.
baf59022
TH
2799 *
2800 * RETURNS:
2801 * %true if flush_work() waited for the work to finish execution,
2802 * %false if it was already idle.
2803 */
2804bool flush_work(struct work_struct *work)
2805{
2806 struct wq_barrier barr;
2807
0976dfc1
SB
2808 lock_map_acquire(&work->lockdep_map);
2809 lock_map_release(&work->lockdep_map);
2810
606a5020 2811 if (start_flush_work(work, &barr)) {
401a8d04
TH
2812 wait_for_completion(&barr.done);
2813 destroy_work_on_stack(&barr.work);
2814 return true;
606a5020 2815 } else {
401a8d04 2816 return false;
6e84d644 2817 }
6e84d644 2818}
606a5020 2819EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2820
36e227d2 2821static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2822{
bbb68dfa 2823 unsigned long flags;
1f1f642e
ON
2824 int ret;
2825
2826 do {
bbb68dfa
TH
2827 ret = try_to_grab_pending(work, is_dwork, &flags);
2828 /*
2829 * If someone else is canceling, wait for the same event it
2830 * would be waiting for before retrying.
2831 */
2832 if (unlikely(ret == -ENOENT))
606a5020 2833 flush_work(work);
1f1f642e
ON
2834 } while (unlikely(ret < 0));
2835
bbb68dfa
TH
2836 /* tell other tasks trying to grab @work to back off */
2837 mark_work_canceling(work);
2838 local_irq_restore(flags);
2839
606a5020 2840 flush_work(work);
7a22ad75 2841 clear_work_data(work);
1f1f642e
ON
2842 return ret;
2843}
2844
6e84d644 2845/**
401a8d04
TH
2846 * cancel_work_sync - cancel a work and wait for it to finish
2847 * @work: the work to cancel
6e84d644 2848 *
401a8d04
TH
2849 * Cancel @work and wait for its execution to finish. This function
2850 * can be used even if the work re-queues itself or migrates to
2851 * another workqueue. On return from this function, @work is
2852 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2853 *
401a8d04
TH
2854 * cancel_work_sync(&delayed_work->work) must not be used for
2855 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2856 *
401a8d04 2857 * The caller must ensure that the workqueue on which @work was last
6e84d644 2858 * queued can't be destroyed before this function returns.
401a8d04
TH
2859 *
2860 * RETURNS:
2861 * %true if @work was pending, %false otherwise.
6e84d644 2862 */
401a8d04 2863bool cancel_work_sync(struct work_struct *work)
6e84d644 2864{
36e227d2 2865 return __cancel_work_timer(work, false);
b89deed3 2866}
28e53bdd 2867EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2868
6e84d644 2869/**
401a8d04
TH
2870 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2871 * @dwork: the delayed work to flush
6e84d644 2872 *
401a8d04
TH
2873 * Delayed timer is cancelled and the pending work is queued for
2874 * immediate execution. Like flush_work(), this function only
2875 * considers the last queueing instance of @dwork.
1f1f642e 2876 *
401a8d04
TH
2877 * RETURNS:
2878 * %true if flush_work() waited for the work to finish execution,
2879 * %false if it was already idle.
6e84d644 2880 */
401a8d04
TH
2881bool flush_delayed_work(struct delayed_work *dwork)
2882{
8930caba 2883 local_irq_disable();
401a8d04 2884 if (del_timer_sync(&dwork->timer))
60c057bc 2885 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2886 local_irq_enable();
401a8d04
TH
2887 return flush_work(&dwork->work);
2888}
2889EXPORT_SYMBOL(flush_delayed_work);
2890
09383498 2891/**
57b30ae7
TH
2892 * cancel_delayed_work - cancel a delayed work
2893 * @dwork: delayed_work to cancel
09383498 2894 *
57b30ae7
TH
2895 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2896 * and canceled; %false if wasn't pending. Note that the work callback
2897 * function may still be running on return, unless it returns %true and the
2898 * work doesn't re-arm itself. Explicitly flush or use
2899 * cancel_delayed_work_sync() to wait on it.
09383498 2900 *
57b30ae7 2901 * This function is safe to call from any context including IRQ handler.
09383498 2902 */
57b30ae7 2903bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2904{
57b30ae7
TH
2905 unsigned long flags;
2906 int ret;
2907
2908 do {
2909 ret = try_to_grab_pending(&dwork->work, true, &flags);
2910 } while (unlikely(ret == -EAGAIN));
2911
2912 if (unlikely(ret < 0))
2913 return false;
2914
7c3eed5c
TH
2915 set_work_pool_and_clear_pending(&dwork->work,
2916 get_work_pool_id(&dwork->work));
57b30ae7 2917 local_irq_restore(flags);
c0158ca6 2918 return ret;
09383498 2919}
57b30ae7 2920EXPORT_SYMBOL(cancel_delayed_work);
09383498 2921
401a8d04
TH
2922/**
2923 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2924 * @dwork: the delayed work cancel
2925 *
2926 * This is cancel_work_sync() for delayed works.
2927 *
2928 * RETURNS:
2929 * %true if @dwork was pending, %false otherwise.
2930 */
2931bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2932{
36e227d2 2933 return __cancel_work_timer(&dwork->work, true);
6e84d644 2934}
f5a421a4 2935EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2936
b6136773 2937/**
31ddd871 2938 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2939 * @func: the function to call
b6136773 2940 *
31ddd871
TH
2941 * schedule_on_each_cpu() executes @func on each online CPU using the
2942 * system workqueue and blocks until all CPUs have completed.
b6136773 2943 * schedule_on_each_cpu() is very slow.
31ddd871
TH
2944 *
2945 * RETURNS:
2946 * 0 on success, -errno on failure.
b6136773 2947 */
65f27f38 2948int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2949{
2950 int cpu;
38f51568 2951 struct work_struct __percpu *works;
15316ba8 2952
b6136773
AM
2953 works = alloc_percpu(struct work_struct);
2954 if (!works)
15316ba8 2955 return -ENOMEM;
b6136773 2956
93981800
TH
2957 get_online_cpus();
2958
15316ba8 2959 for_each_online_cpu(cpu) {
9bfb1839
IM
2960 struct work_struct *work = per_cpu_ptr(works, cpu);
2961
2962 INIT_WORK(work, func);
b71ab8c2 2963 schedule_work_on(cpu, work);
65a64464 2964 }
93981800
TH
2965
2966 for_each_online_cpu(cpu)
2967 flush_work(per_cpu_ptr(works, cpu));
2968
95402b38 2969 put_online_cpus();
b6136773 2970 free_percpu(works);
15316ba8
CL
2971 return 0;
2972}
2973
eef6a7d5
AS
2974/**
2975 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2976 *
2977 * Forces execution of the kernel-global workqueue and blocks until its
2978 * completion.
2979 *
2980 * Think twice before calling this function! It's very easy to get into
2981 * trouble if you don't take great care. Either of the following situations
2982 * will lead to deadlock:
2983 *
2984 * One of the work items currently on the workqueue needs to acquire
2985 * a lock held by your code or its caller.
2986 *
2987 * Your code is running in the context of a work routine.
2988 *
2989 * They will be detected by lockdep when they occur, but the first might not
2990 * occur very often. It depends on what work items are on the workqueue and
2991 * what locks they need, which you have no control over.
2992 *
2993 * In most situations flushing the entire workqueue is overkill; you merely
2994 * need to know that a particular work item isn't queued and isn't running.
2995 * In such cases you should use cancel_delayed_work_sync() or
2996 * cancel_work_sync() instead.
2997 */
1da177e4
LT
2998void flush_scheduled_work(void)
2999{
d320c038 3000 flush_workqueue(system_wq);
1da177e4 3001}
ae90dd5d 3002EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3003
1fa44eca
JB
3004/**
3005 * execute_in_process_context - reliably execute the routine with user context
3006 * @fn: the function to execute
1fa44eca
JB
3007 * @ew: guaranteed storage for the execute work structure (must
3008 * be available when the work executes)
3009 *
3010 * Executes the function immediately if process context is available,
3011 * otherwise schedules the function for delayed execution.
3012 *
3013 * Returns: 0 - function was executed
3014 * 1 - function was scheduled for execution
3015 */
65f27f38 3016int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3017{
3018 if (!in_interrupt()) {
65f27f38 3019 fn(&ew->work);
1fa44eca
JB
3020 return 0;
3021 }
3022
65f27f38 3023 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3024 schedule_work(&ew->work);
3025
3026 return 1;
3027}
3028EXPORT_SYMBOL_GPL(execute_in_process_context);
3029
226223ab
TH
3030#ifdef CONFIG_SYSFS
3031/*
3032 * Workqueues with WQ_SYSFS flag set is visible to userland via
3033 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3034 * following attributes.
3035 *
3036 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3037 * max_active RW int : maximum number of in-flight work items
3038 *
3039 * Unbound workqueues have the following extra attributes.
3040 *
3041 * id RO int : the associated pool ID
3042 * nice RW int : nice value of the workers
3043 * cpumask RW mask : bitmask of allowed CPUs for the workers
3044 */
3045struct wq_device {
3046 struct workqueue_struct *wq;
3047 struct device dev;
3048};
3049
3050static struct workqueue_struct *dev_to_wq(struct device *dev)
3051{
3052 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3053
3054 return wq_dev->wq;
3055}
3056
3057static ssize_t wq_per_cpu_show(struct device *dev,
3058 struct device_attribute *attr, char *buf)
3059{
3060 struct workqueue_struct *wq = dev_to_wq(dev);
3061
3062 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3063}
3064
3065static ssize_t wq_max_active_show(struct device *dev,
3066 struct device_attribute *attr, char *buf)
3067{
3068 struct workqueue_struct *wq = dev_to_wq(dev);
3069
3070 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3071}
3072
3073static ssize_t wq_max_active_store(struct device *dev,
3074 struct device_attribute *attr,
3075 const char *buf, size_t count)
3076{
3077 struct workqueue_struct *wq = dev_to_wq(dev);
3078 int val;
3079
3080 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3081 return -EINVAL;
3082
3083 workqueue_set_max_active(wq, val);
3084 return count;
3085}
3086
3087static struct device_attribute wq_sysfs_attrs[] = {
3088 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3089 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3090 __ATTR_NULL,
3091};
3092
3093static ssize_t wq_pool_id_show(struct device *dev,
3094 struct device_attribute *attr, char *buf)
3095{
3096 struct workqueue_struct *wq = dev_to_wq(dev);
3097 struct worker_pool *pool;
3098 int written;
3099
3100 rcu_read_lock_sched();
3101 pool = first_pwq(wq)->pool;
3102 written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
3103 rcu_read_unlock_sched();
3104
3105 return written;
3106}
3107
3108static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3109 char *buf)
3110{
3111 struct workqueue_struct *wq = dev_to_wq(dev);
3112 int written;
3113
6029a918
TH
3114 mutex_lock(&wq->mutex);
3115 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3116 mutex_unlock(&wq->mutex);
226223ab
TH
3117
3118 return written;
3119}
3120
3121/* prepare workqueue_attrs for sysfs store operations */
3122static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3123{
3124 struct workqueue_attrs *attrs;
3125
3126 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3127 if (!attrs)
3128 return NULL;
3129
6029a918
TH
3130 mutex_lock(&wq->mutex);
3131 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3132 mutex_unlock(&wq->mutex);
226223ab
TH
3133 return attrs;
3134}
3135
3136static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3137 const char *buf, size_t count)
3138{
3139 struct workqueue_struct *wq = dev_to_wq(dev);
3140 struct workqueue_attrs *attrs;
3141 int ret;
3142
3143 attrs = wq_sysfs_prep_attrs(wq);
3144 if (!attrs)
3145 return -ENOMEM;
3146
3147 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3148 attrs->nice >= -20 && attrs->nice <= 19)
3149 ret = apply_workqueue_attrs(wq, attrs);
3150 else
3151 ret = -EINVAL;
3152
3153 free_workqueue_attrs(attrs);
3154 return ret ?: count;
3155}
3156
3157static ssize_t wq_cpumask_show(struct device *dev,
3158 struct device_attribute *attr, char *buf)
3159{
3160 struct workqueue_struct *wq = dev_to_wq(dev);
3161 int written;
3162
6029a918
TH
3163 mutex_lock(&wq->mutex);
3164 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3165 mutex_unlock(&wq->mutex);
226223ab
TH
3166
3167 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3168 return written;
3169}
3170
3171static ssize_t wq_cpumask_store(struct device *dev,
3172 struct device_attribute *attr,
3173 const char *buf, size_t count)
3174{
3175 struct workqueue_struct *wq = dev_to_wq(dev);
3176 struct workqueue_attrs *attrs;
3177 int ret;
3178
3179 attrs = wq_sysfs_prep_attrs(wq);
3180 if (!attrs)
3181 return -ENOMEM;
3182
3183 ret = cpumask_parse(buf, attrs->cpumask);
3184 if (!ret)
3185 ret = apply_workqueue_attrs(wq, attrs);
3186
3187 free_workqueue_attrs(attrs);
3188 return ret ?: count;
3189}
3190
3191static struct device_attribute wq_sysfs_unbound_attrs[] = {
3192 __ATTR(pool_id, 0444, wq_pool_id_show, NULL),
3193 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3194 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3195 __ATTR_NULL,
3196};
3197
3198static struct bus_type wq_subsys = {
3199 .name = "workqueue",
3200 .dev_attrs = wq_sysfs_attrs,
3201};
3202
3203static int __init wq_sysfs_init(void)
3204{
3205 return subsys_virtual_register(&wq_subsys, NULL);
3206}
3207core_initcall(wq_sysfs_init);
3208
3209static void wq_device_release(struct device *dev)
3210{
3211 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3212
3213 kfree(wq_dev);
3214}
3215
3216/**
3217 * workqueue_sysfs_register - make a workqueue visible in sysfs
3218 * @wq: the workqueue to register
3219 *
3220 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3221 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3222 * which is the preferred method.
3223 *
3224 * Workqueue user should use this function directly iff it wants to apply
3225 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3226 * apply_workqueue_attrs() may race against userland updating the
3227 * attributes.
3228 *
3229 * Returns 0 on success, -errno on failure.
3230 */
3231int workqueue_sysfs_register(struct workqueue_struct *wq)
3232{
3233 struct wq_device *wq_dev;
3234 int ret;
3235
3236 /*
3237 * Adjusting max_active or creating new pwqs by applyting
3238 * attributes breaks ordering guarantee. Disallow exposing ordered
3239 * workqueues.
3240 */
3241 if (WARN_ON(wq->flags & __WQ_ORDERED))
3242 return -EINVAL;
3243
3244 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3245 if (!wq_dev)
3246 return -ENOMEM;
3247
3248 wq_dev->wq = wq;
3249 wq_dev->dev.bus = &wq_subsys;
3250 wq_dev->dev.init_name = wq->name;
3251 wq_dev->dev.release = wq_device_release;
3252
3253 /*
3254 * unbound_attrs are created separately. Suppress uevent until
3255 * everything is ready.
3256 */
3257 dev_set_uevent_suppress(&wq_dev->dev, true);
3258
3259 ret = device_register(&wq_dev->dev);
3260 if (ret) {
3261 kfree(wq_dev);
3262 wq->wq_dev = NULL;
3263 return ret;
3264 }
3265
3266 if (wq->flags & WQ_UNBOUND) {
3267 struct device_attribute *attr;
3268
3269 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3270 ret = device_create_file(&wq_dev->dev, attr);
3271 if (ret) {
3272 device_unregister(&wq_dev->dev);
3273 wq->wq_dev = NULL;
3274 return ret;
3275 }
3276 }
3277 }
3278
3279 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3280 return 0;
3281}
3282
3283/**
3284 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3285 * @wq: the workqueue to unregister
3286 *
3287 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3288 */
3289static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3290{
3291 struct wq_device *wq_dev = wq->wq_dev;
3292
3293 if (!wq->wq_dev)
3294 return;
3295
3296 wq->wq_dev = NULL;
3297 device_unregister(&wq_dev->dev);
3298}
3299#else /* CONFIG_SYSFS */
3300static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3301#endif /* CONFIG_SYSFS */
3302
7a4e344c
TH
3303/**
3304 * free_workqueue_attrs - free a workqueue_attrs
3305 * @attrs: workqueue_attrs to free
3306 *
3307 * Undo alloc_workqueue_attrs().
3308 */
3309void free_workqueue_attrs(struct workqueue_attrs *attrs)
3310{
3311 if (attrs) {
3312 free_cpumask_var(attrs->cpumask);
3313 kfree(attrs);
3314 }
3315}
3316
3317/**
3318 * alloc_workqueue_attrs - allocate a workqueue_attrs
3319 * @gfp_mask: allocation mask to use
3320 *
3321 * Allocate a new workqueue_attrs, initialize with default settings and
3322 * return it. Returns NULL on failure.
3323 */
3324struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3325{
3326 struct workqueue_attrs *attrs;
3327
3328 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3329 if (!attrs)
3330 goto fail;
3331 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3332 goto fail;
3333
13e2e556 3334 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3335 return attrs;
3336fail:
3337 free_workqueue_attrs(attrs);
3338 return NULL;
3339}
3340
29c91e99
TH
3341static void copy_workqueue_attrs(struct workqueue_attrs *to,
3342 const struct workqueue_attrs *from)
3343{
3344 to->nice = from->nice;
3345 cpumask_copy(to->cpumask, from->cpumask);
3346}
3347
29c91e99
TH
3348/* hash value of the content of @attr */
3349static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3350{
3351 u32 hash = 0;
3352
3353 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3354 hash = jhash(cpumask_bits(attrs->cpumask),
3355 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3356 return hash;
3357}
3358
3359/* content equality test */
3360static bool wqattrs_equal(const struct workqueue_attrs *a,
3361 const struct workqueue_attrs *b)
3362{
3363 if (a->nice != b->nice)
3364 return false;
3365 if (!cpumask_equal(a->cpumask, b->cpumask))
3366 return false;
3367 return true;
3368}
3369
7a4e344c
TH
3370/**
3371 * init_worker_pool - initialize a newly zalloc'd worker_pool
3372 * @pool: worker_pool to initialize
3373 *
3374 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
29c91e99
TH
3375 * Returns 0 on success, -errno on failure. Even on failure, all fields
3376 * inside @pool proper are initialized and put_unbound_pool() can be called
3377 * on @pool safely to release it.
7a4e344c
TH
3378 */
3379static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3380{
3381 spin_lock_init(&pool->lock);
29c91e99
TH
3382 pool->id = -1;
3383 pool->cpu = -1;
f3f90ad4 3384 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3385 pool->flags |= POOL_DISASSOCIATED;
3386 INIT_LIST_HEAD(&pool->worklist);
3387 INIT_LIST_HEAD(&pool->idle_list);
3388 hash_init(pool->busy_hash);
3389
3390 init_timer_deferrable(&pool->idle_timer);
3391 pool->idle_timer.function = idle_worker_timeout;
3392 pool->idle_timer.data = (unsigned long)pool;
3393
3394 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3395 (unsigned long)pool);
3396
3397 mutex_init(&pool->manager_arb);
bc3a1afc 3398 mutex_init(&pool->manager_mutex);
822d8405 3399 idr_init(&pool->worker_idr);
7a4e344c 3400
29c91e99
TH
3401 INIT_HLIST_NODE(&pool->hash_node);
3402 pool->refcnt = 1;
3403
3404 /* shouldn't fail above this point */
7a4e344c
TH
3405 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3406 if (!pool->attrs)
3407 return -ENOMEM;
3408 return 0;
4e1a1f9a
TH
3409}
3410
29c91e99
TH
3411static void rcu_free_pool(struct rcu_head *rcu)
3412{
3413 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3414
822d8405 3415 idr_destroy(&pool->worker_idr);
29c91e99
TH
3416 free_workqueue_attrs(pool->attrs);
3417 kfree(pool);
3418}
3419
3420/**
3421 * put_unbound_pool - put a worker_pool
3422 * @pool: worker_pool to put
3423 *
3424 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3425 * safe manner. get_unbound_pool() calls this function on its failure path
3426 * and this function should be able to release pools which went through,
3427 * successfully or not, init_worker_pool().
a892cacc
TH
3428 *
3429 * Should be called with wq_pool_mutex held.
29c91e99
TH
3430 */
3431static void put_unbound_pool(struct worker_pool *pool)
3432{
3433 struct worker *worker;
3434
a892cacc
TH
3435 lockdep_assert_held(&wq_pool_mutex);
3436
3437 if (--pool->refcnt)
29c91e99 3438 return;
29c91e99
TH
3439
3440 /* sanity checks */
3441 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
a892cacc 3442 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3443 return;
29c91e99
TH
3444
3445 /* release id and unhash */
3446 if (pool->id >= 0)
3447 idr_remove(&worker_pool_idr, pool->id);
3448 hash_del(&pool->hash_node);
3449
c5aa87bb
TH
3450 /*
3451 * Become the manager and destroy all workers. Grabbing
3452 * manager_arb prevents @pool's workers from blocking on
3453 * manager_mutex.
3454 */
29c91e99 3455 mutex_lock(&pool->manager_arb);
cd549687 3456 mutex_lock(&pool->manager_mutex);
29c91e99
TH
3457 spin_lock_irq(&pool->lock);
3458
3459 while ((worker = first_worker(pool)))
3460 destroy_worker(worker);
3461 WARN_ON(pool->nr_workers || pool->nr_idle);
3462
3463 spin_unlock_irq(&pool->lock);
cd549687 3464 mutex_unlock(&pool->manager_mutex);
29c91e99
TH
3465 mutex_unlock(&pool->manager_arb);
3466
3467 /* shut down the timers */
3468 del_timer_sync(&pool->idle_timer);
3469 del_timer_sync(&pool->mayday_timer);
3470
3471 /* sched-RCU protected to allow dereferences from get_work_pool() */
3472 call_rcu_sched(&pool->rcu, rcu_free_pool);
3473}
3474
3475/**
3476 * get_unbound_pool - get a worker_pool with the specified attributes
3477 * @attrs: the attributes of the worker_pool to get
3478 *
3479 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3480 * reference count and return it. If there already is a matching
3481 * worker_pool, it will be used; otherwise, this function attempts to
3482 * create a new one. On failure, returns NULL.
a892cacc
TH
3483 *
3484 * Should be called with wq_pool_mutex held.
29c91e99
TH
3485 */
3486static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3487{
29c91e99
TH
3488 u32 hash = wqattrs_hash(attrs);
3489 struct worker_pool *pool;
f3f90ad4 3490 int node;
29c91e99 3491
a892cacc 3492 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3493
3494 /* do we already have a matching pool? */
29c91e99
TH
3495 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3496 if (wqattrs_equal(pool->attrs, attrs)) {
3497 pool->refcnt++;
3498 goto out_unlock;
3499 }
3500 }
29c91e99
TH
3501
3502 /* nope, create a new one */
3503 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3504 if (!pool || init_worker_pool(pool) < 0)
3505 goto fail;
3506
12ee4fc6
LJ
3507 if (workqueue_freezing)
3508 pool->flags |= POOL_FREEZING;
3509
8864b4e5 3510 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3511 copy_workqueue_attrs(pool->attrs, attrs);
3512
f3f90ad4
TH
3513 /* if cpumask is contained inside a NUMA node, we belong to that node */
3514 if (wq_numa_enabled) {
3515 for_each_node(node) {
3516 if (cpumask_subset(pool->attrs->cpumask,
3517 wq_numa_possible_cpumask[node])) {
3518 pool->node = node;
3519 break;
3520 }
3521 }
3522 }
3523
29c91e99
TH
3524 if (worker_pool_assign_id(pool) < 0)
3525 goto fail;
3526
3527 /* create and start the initial worker */
ebf44d16 3528 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3529 goto fail;
3530
29c91e99 3531 /* install */
29c91e99
TH
3532 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3533out_unlock:
29c91e99
TH
3534 return pool;
3535fail:
29c91e99
TH
3536 if (pool)
3537 put_unbound_pool(pool);
3538 return NULL;
3539}
3540
8864b4e5
TH
3541static void rcu_free_pwq(struct rcu_head *rcu)
3542{
3543 kmem_cache_free(pwq_cache,
3544 container_of(rcu, struct pool_workqueue, rcu));
3545}
3546
3547/*
3548 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3549 * and needs to be destroyed.
3550 */
3551static void pwq_unbound_release_workfn(struct work_struct *work)
3552{
3553 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3554 unbound_release_work);
3555 struct workqueue_struct *wq = pwq->wq;
3556 struct worker_pool *pool = pwq->pool;
bc0caf09 3557 bool is_last;
8864b4e5
TH
3558
3559 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3560 return;
3561
75ccf595 3562 /*
3c25a55d 3563 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3564 * necessary on release but do it anyway. It's easier to verify
3565 * and consistent with the linking path.
3566 */
3c25a55d 3567 mutex_lock(&wq->mutex);
8864b4e5 3568 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3569 is_last = list_empty(&wq->pwqs);
3c25a55d 3570 mutex_unlock(&wq->mutex);
8864b4e5 3571
a892cacc 3572 mutex_lock(&wq_pool_mutex);
8864b4e5 3573 put_unbound_pool(pool);
a892cacc
TH
3574 mutex_unlock(&wq_pool_mutex);
3575
8864b4e5
TH
3576 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3577
3578 /*
3579 * If we're the last pwq going away, @wq is already dead and no one
3580 * is gonna access it anymore. Free it.
3581 */
6029a918
TH
3582 if (is_last) {
3583 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3584 kfree(wq);
6029a918 3585 }
8864b4e5
TH
3586}
3587
0fbd95aa 3588/**
699ce097 3589 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3590 * @pwq: target pool_workqueue
0fbd95aa 3591 *
699ce097
TH
3592 * If @pwq isn't freezing, set @pwq->max_active to the associated
3593 * workqueue's saved_max_active and activate delayed work items
3594 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3595 */
699ce097 3596static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3597{
699ce097
TH
3598 struct workqueue_struct *wq = pwq->wq;
3599 bool freezable = wq->flags & WQ_FREEZABLE;
3600
3601 /* for @wq->saved_max_active */
a357fc03 3602 lockdep_assert_held(&wq->mutex);
699ce097
TH
3603
3604 /* fast exit for non-freezable wqs */
3605 if (!freezable && pwq->max_active == wq->saved_max_active)
3606 return;
3607
a357fc03 3608 spin_lock_irq(&pwq->pool->lock);
699ce097
TH
3609
3610 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3611 pwq->max_active = wq->saved_max_active;
0fbd95aa 3612
699ce097
TH
3613 while (!list_empty(&pwq->delayed_works) &&
3614 pwq->nr_active < pwq->max_active)
3615 pwq_activate_first_delayed(pwq);
951a078a
LJ
3616
3617 /*
3618 * Need to kick a worker after thawed or an unbound wq's
3619 * max_active is bumped. It's a slow path. Do it always.
3620 */
3621 wake_up_worker(pwq->pool);
699ce097
TH
3622 } else {
3623 pwq->max_active = 0;
3624 }
3625
a357fc03 3626 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3627}
3628
e50aba9a 3629/* initialize newly alloced @pwq which is associated with @wq and @pool */
f147f29e
TH
3630static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3631 struct worker_pool *pool)
d2c1d404
TH
3632{
3633 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3634
e50aba9a
TH
3635 memset(pwq, 0, sizeof(*pwq));
3636
d2c1d404
TH
3637 pwq->pool = pool;
3638 pwq->wq = wq;
3639 pwq->flush_color = -1;
8864b4e5 3640 pwq->refcnt = 1;
d2c1d404 3641 INIT_LIST_HEAD(&pwq->delayed_works);
1befcf30 3642 INIT_LIST_HEAD(&pwq->pwqs_node);
d2c1d404 3643 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3644 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
f147f29e 3645}
d2c1d404 3646
f147f29e 3647/* sync @pwq with the current state of its associated wq and link it */
1befcf30 3648static void link_pwq(struct pool_workqueue *pwq)
f147f29e
TH
3649{
3650 struct workqueue_struct *wq = pwq->wq;
3651
3652 lockdep_assert_held(&wq->mutex);
75ccf595 3653
1befcf30
TH
3654 /* may be called multiple times, ignore if already linked */
3655 if (!list_empty(&pwq->pwqs_node))
3656 return;
3657
983ca25e
TH
3658 /*
3659 * Set the matching work_color. This is synchronized with
3c25a55d 3660 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3661 */
75ccf595 3662 pwq->work_color = wq->work_color;
983ca25e
TH
3663
3664 /* sync max_active to the current setting */
3665 pwq_adjust_max_active(pwq);
3666
3667 /* link in @pwq */
9e8cd2f5 3668 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
f147f29e 3669}
a357fc03 3670
f147f29e
TH
3671/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3672static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3673 const struct workqueue_attrs *attrs)
3674{
3675 struct worker_pool *pool;
3676 struct pool_workqueue *pwq;
3677
3678 lockdep_assert_held(&wq_pool_mutex);
3679
3680 pool = get_unbound_pool(attrs);
3681 if (!pool)
3682 return NULL;
3683
e50aba9a 3684 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
f147f29e
TH
3685 if (!pwq) {
3686 put_unbound_pool(pool);
3687 return NULL;
df2d5ae4 3688 }
6029a918 3689
f147f29e
TH
3690 init_pwq(pwq, wq, pool);
3691 return pwq;
d2c1d404
TH
3692}
3693
1befcf30
TH
3694/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3695static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3696 int node,
3697 struct pool_workqueue *pwq)
3698{
3699 struct pool_workqueue *old_pwq;
3700
3701 lockdep_assert_held(&wq->mutex);
3702
3703 /* link_pwq() can handle duplicate calls */
3704 link_pwq(pwq);
3705
3706 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3707 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3708 return old_pwq;
3709}
3710
9e8cd2f5
TH
3711/**
3712 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3713 * @wq: the target workqueue
3714 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3715 *
3716 * Apply @attrs to an unbound workqueue @wq. If @attrs doesn't match the
3717 * current attributes, a new pwq is created and made the first pwq which
3718 * will serve all new work items. Older pwqs are released as in-flight
3719 * work items finish. Note that a work item which repeatedly requeues
3720 * itself back-to-back will stay on its current pwq.
3721 *
3722 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3723 * failure.
3724 */
3725int apply_workqueue_attrs(struct workqueue_struct *wq,
3726 const struct workqueue_attrs *attrs)
3727{
13e2e556 3728 struct workqueue_attrs *new_attrs;
1befcf30 3729 struct pool_workqueue *pwq, *last_pwq = NULL;
f147f29e 3730 int node, ret;
9e8cd2f5 3731
8719dcea 3732 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3733 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3734 return -EINVAL;
3735
8719dcea
TH
3736 /* creating multiple pwqs breaks ordering guarantee */
3737 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3738 return -EINVAL;
3739
13e2e556
TH
3740 /* make a copy of @attrs and sanitize it */
3741 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3742 if (!new_attrs)
3743 goto enomem;
3744
3745 copy_workqueue_attrs(new_attrs, attrs);
3746 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3747
a892cacc 3748 mutex_lock(&wq_pool_mutex);
f147f29e
TH
3749 pwq = alloc_unbound_pwq(wq, new_attrs);
3750 mutex_unlock(&wq_pool_mutex);
3751 if (!pwq)
13e2e556 3752 goto enomem;
9e8cd2f5 3753
f147f29e 3754 mutex_lock(&wq->mutex);
a892cacc 3755
f147f29e
TH
3756 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3757 for_each_node(node)
1befcf30 3758 last_pwq = numa_pwq_tbl_install(wq, node, pwq);
f147f29e
TH
3759
3760 mutex_unlock(&wq->mutex);
9e8cd2f5 3761
9e8cd2f5
TH
3762 if (last_pwq) {
3763 spin_lock_irq(&last_pwq->pool->lock);
3764 put_pwq(last_pwq);
3765 spin_unlock_irq(&last_pwq->pool->lock);
3766 }
3767
4862125b
TH
3768 ret = 0;
3769 /* fall through */
3770out_free:
3771 free_workqueue_attrs(new_attrs);
3772 return ret;
13e2e556
TH
3773
3774enomem:
4862125b
TH
3775 ret = -ENOMEM;
3776 goto out_free;
9e8cd2f5
TH
3777}
3778
30cdf249 3779static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3780{
49e3cf44 3781 bool highpri = wq->flags & WQ_HIGHPRI;
30cdf249
TH
3782 int cpu;
3783
3784 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3785 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3786 if (!wq->cpu_pwqs)
30cdf249
TH
3787 return -ENOMEM;
3788
3789 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3790 struct pool_workqueue *pwq =
3791 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3792 struct worker_pool *cpu_pools =
f02ae73a 3793 per_cpu(cpu_worker_pools, cpu);
f3421797 3794
f147f29e
TH
3795 init_pwq(pwq, wq, &cpu_pools[highpri]);
3796
3797 mutex_lock(&wq->mutex);
1befcf30 3798 link_pwq(pwq);
f147f29e 3799 mutex_unlock(&wq->mutex);
30cdf249 3800 }
9e8cd2f5 3801 return 0;
30cdf249 3802 } else {
9e8cd2f5 3803 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3804 }
0f900049
TH
3805}
3806
f3421797
TH
3807static int wq_clamp_max_active(int max_active, unsigned int flags,
3808 const char *name)
b71ab8c2 3809{
f3421797
TH
3810 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3811
3812 if (max_active < 1 || max_active > lim)
044c782c
VI
3813 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3814 max_active, name, 1, lim);
b71ab8c2 3815
f3421797 3816 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3817}
3818
b196be89 3819struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3820 unsigned int flags,
3821 int max_active,
3822 struct lock_class_key *key,
b196be89 3823 const char *lock_name, ...)
1da177e4 3824{
df2d5ae4 3825 size_t tbl_size = 0;
ecf6881f 3826 va_list args;
1da177e4 3827 struct workqueue_struct *wq;
49e3cf44 3828 struct pool_workqueue *pwq;
b196be89 3829
ecf6881f 3830 /* allocate wq and format name */
df2d5ae4
TH
3831 if (flags & WQ_UNBOUND)
3832 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
3833
3834 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 3835 if (!wq)
d2c1d404 3836 return NULL;
b196be89 3837
6029a918
TH
3838 if (flags & WQ_UNBOUND) {
3839 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3840 if (!wq->unbound_attrs)
3841 goto err_free_wq;
3842 }
3843
ecf6881f
TH
3844 va_start(args, lock_name);
3845 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 3846 va_end(args);
1da177e4 3847
d320c038 3848 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3849 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3850
b196be89 3851 /* init wq */
97e37d7b 3852 wq->flags = flags;
a0a1a5fd 3853 wq->saved_max_active = max_active;
3c25a55d 3854 mutex_init(&wq->mutex);
112202d9 3855 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3856 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3857 INIT_LIST_HEAD(&wq->flusher_queue);
3858 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3859 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3860
eb13ba87 3861 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3862 INIT_LIST_HEAD(&wq->list);
3af24433 3863
30cdf249 3864 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 3865 goto err_free_wq;
1537663f 3866
493008a8
TH
3867 /*
3868 * Workqueues which may be used during memory reclaim should
3869 * have a rescuer to guarantee forward progress.
3870 */
3871 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
3872 struct worker *rescuer;
3873
d2c1d404 3874 rescuer = alloc_worker();
e22bee78 3875 if (!rescuer)
d2c1d404 3876 goto err_destroy;
e22bee78 3877
111c225a
TH
3878 rescuer->rescue_wq = wq;
3879 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3880 wq->name);
d2c1d404
TH
3881 if (IS_ERR(rescuer->task)) {
3882 kfree(rescuer);
3883 goto err_destroy;
3884 }
e22bee78 3885
d2c1d404 3886 wq->rescuer = rescuer;
14a40ffc 3887 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 3888 wake_up_process(rescuer->task);
3af24433
ON
3889 }
3890
226223ab
TH
3891 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3892 goto err_destroy;
3893
a0a1a5fd 3894 /*
68e13a67
LJ
3895 * wq_pool_mutex protects global freeze state and workqueues list.
3896 * Grab it, adjust max_active and add the new @wq to workqueues
3897 * list.
a0a1a5fd 3898 */
68e13a67 3899 mutex_lock(&wq_pool_mutex);
a0a1a5fd 3900
a357fc03 3901 mutex_lock(&wq->mutex);
699ce097
TH
3902 for_each_pwq(pwq, wq)
3903 pwq_adjust_max_active(pwq);
a357fc03 3904 mutex_unlock(&wq->mutex);
a0a1a5fd 3905
1537663f 3906 list_add(&wq->list, &workqueues);
a0a1a5fd 3907
68e13a67 3908 mutex_unlock(&wq_pool_mutex);
1537663f 3909
3af24433 3910 return wq;
d2c1d404
TH
3911
3912err_free_wq:
6029a918 3913 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
3914 kfree(wq);
3915 return NULL;
3916err_destroy:
3917 destroy_workqueue(wq);
4690c4ab 3918 return NULL;
3af24433 3919}
d320c038 3920EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3921
3af24433
ON
3922/**
3923 * destroy_workqueue - safely terminate a workqueue
3924 * @wq: target workqueue
3925 *
3926 * Safely destroy a workqueue. All work currently pending will be done first.
3927 */
3928void destroy_workqueue(struct workqueue_struct *wq)
3929{
49e3cf44 3930 struct pool_workqueue *pwq;
3af24433 3931
9c5a2ba7
TH
3932 /* drain it before proceeding with destruction */
3933 drain_workqueue(wq);
c8efcc25 3934
6183c009 3935 /* sanity checks */
b09f4fd3 3936 mutex_lock(&wq->mutex);
49e3cf44 3937 for_each_pwq(pwq, wq) {
6183c009
TH
3938 int i;
3939
76af4d93
TH
3940 for (i = 0; i < WORK_NR_COLORS; i++) {
3941 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 3942 mutex_unlock(&wq->mutex);
6183c009 3943 return;
76af4d93
TH
3944 }
3945 }
3946
8864b4e5
TH
3947 if (WARN_ON(pwq->refcnt > 1) ||
3948 WARN_ON(pwq->nr_active) ||
76af4d93 3949 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 3950 mutex_unlock(&wq->mutex);
6183c009 3951 return;
76af4d93 3952 }
6183c009 3953 }
b09f4fd3 3954 mutex_unlock(&wq->mutex);
6183c009 3955
a0a1a5fd
TH
3956 /*
3957 * wq list is used to freeze wq, remove from list after
3958 * flushing is complete in case freeze races us.
3959 */
68e13a67 3960 mutex_lock(&wq_pool_mutex);
d2c1d404 3961 list_del_init(&wq->list);
68e13a67 3962 mutex_unlock(&wq_pool_mutex);
3af24433 3963
226223ab
TH
3964 workqueue_sysfs_unregister(wq);
3965
493008a8 3966 if (wq->rescuer) {
e22bee78 3967 kthread_stop(wq->rescuer->task);
8d9df9f0 3968 kfree(wq->rescuer);
493008a8 3969 wq->rescuer = NULL;
e22bee78
TH
3970 }
3971
8864b4e5
TH
3972 if (!(wq->flags & WQ_UNBOUND)) {
3973 /*
3974 * The base ref is never dropped on per-cpu pwqs. Directly
3975 * free the pwqs and wq.
3976 */
3977 free_percpu(wq->cpu_pwqs);
3978 kfree(wq);
3979 } else {
3980 /*
3981 * We're the sole accessor of @wq at this point. Directly
3982 * access the first pwq and put the base ref. As both pwqs
3983 * and pools are sched-RCU protected, the lock operations
3984 * are safe. @wq will be freed when the last pwq is
3985 * released.
3986 */
29c91e99
TH
3987 pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
3988 pwqs_node);
8864b4e5
TH
3989 spin_lock_irq(&pwq->pool->lock);
3990 put_pwq(pwq);
3991 spin_unlock_irq(&pwq->pool->lock);
29c91e99 3992 }
3af24433
ON
3993}
3994EXPORT_SYMBOL_GPL(destroy_workqueue);
3995
dcd989cb
TH
3996/**
3997 * workqueue_set_max_active - adjust max_active of a workqueue
3998 * @wq: target workqueue
3999 * @max_active: new max_active value.
4000 *
4001 * Set max_active of @wq to @max_active.
4002 *
4003 * CONTEXT:
4004 * Don't call from IRQ context.
4005 */
4006void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4007{
49e3cf44 4008 struct pool_workqueue *pwq;
dcd989cb 4009
8719dcea
TH
4010 /* disallow meddling with max_active for ordered workqueues */
4011 if (WARN_ON(wq->flags & __WQ_ORDERED))
4012 return;
4013
f3421797 4014 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4015
a357fc03 4016 mutex_lock(&wq->mutex);
dcd989cb
TH
4017
4018 wq->saved_max_active = max_active;
4019
699ce097
TH
4020 for_each_pwq(pwq, wq)
4021 pwq_adjust_max_active(pwq);
93981800 4022
a357fc03 4023 mutex_unlock(&wq->mutex);
15316ba8 4024}
dcd989cb 4025EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4026
e6267616
TH
4027/**
4028 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4029 *
4030 * Determine whether %current is a workqueue rescuer. Can be used from
4031 * work functions to determine whether it's being run off the rescuer task.
4032 */
4033bool current_is_workqueue_rescuer(void)
4034{
4035 struct worker *worker = current_wq_worker();
4036
6a092dfd 4037 return worker && worker->rescue_wq;
e6267616
TH
4038}
4039
eef6a7d5 4040/**
dcd989cb
TH
4041 * workqueue_congested - test whether a workqueue is congested
4042 * @cpu: CPU in question
4043 * @wq: target workqueue
eef6a7d5 4044 *
dcd989cb
TH
4045 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4046 * no synchronization around this function and the test result is
4047 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4048 *
dcd989cb
TH
4049 * RETURNS:
4050 * %true if congested, %false otherwise.
eef6a7d5 4051 */
d84ff051 4052bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4053{
7fb98ea7 4054 struct pool_workqueue *pwq;
76af4d93
TH
4055 bool ret;
4056
88109453 4057 rcu_read_lock_sched();
7fb98ea7
TH
4058
4059 if (!(wq->flags & WQ_UNBOUND))
4060 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4061 else
df2d5ae4 4062 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4063
76af4d93 4064 ret = !list_empty(&pwq->delayed_works);
88109453 4065 rcu_read_unlock_sched();
76af4d93
TH
4066
4067 return ret;
1da177e4 4068}
dcd989cb 4069EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4070
dcd989cb
TH
4071/**
4072 * work_busy - test whether a work is currently pending or running
4073 * @work: the work to be tested
4074 *
4075 * Test whether @work is currently pending or running. There is no
4076 * synchronization around this function and the test result is
4077 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
4078 *
4079 * RETURNS:
4080 * OR'd bitmask of WORK_BUSY_* bits.
4081 */
4082unsigned int work_busy(struct work_struct *work)
1da177e4 4083{
fa1b54e6 4084 struct worker_pool *pool;
dcd989cb
TH
4085 unsigned long flags;
4086 unsigned int ret = 0;
1da177e4 4087
dcd989cb
TH
4088 if (work_pending(work))
4089 ret |= WORK_BUSY_PENDING;
1da177e4 4090
fa1b54e6
TH
4091 local_irq_save(flags);
4092 pool = get_work_pool(work);
038366c5 4093 if (pool) {
fa1b54e6 4094 spin_lock(&pool->lock);
038366c5
LJ
4095 if (find_worker_executing_work(pool, work))
4096 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4097 spin_unlock(&pool->lock);
038366c5 4098 }
fa1b54e6 4099 local_irq_restore(flags);
1da177e4 4100
dcd989cb 4101 return ret;
1da177e4 4102}
dcd989cb 4103EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4104
db7bccf4
TH
4105/*
4106 * CPU hotplug.
4107 *
e22bee78 4108 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4109 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4110 * pool which make migrating pending and scheduled works very
e22bee78 4111 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4112 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4113 * blocked draining impractical.
4114 *
24647570 4115 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4116 * running as an unbound one and allowing it to be reattached later if the
4117 * cpu comes back online.
db7bccf4 4118 */
1da177e4 4119
706026c2 4120static void wq_unbind_fn(struct work_struct *work)
3af24433 4121{
38db41d9 4122 int cpu = smp_processor_id();
4ce62e9e 4123 struct worker_pool *pool;
db7bccf4 4124 struct worker *worker;
a9ab775b 4125 int wi;
3af24433 4126
f02ae73a 4127 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4128 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4129
bc3a1afc 4130 mutex_lock(&pool->manager_mutex);
94cf58bb 4131 spin_lock_irq(&pool->lock);
3af24433 4132
94cf58bb 4133 /*
bc3a1afc 4134 * We've blocked all manager operations. Make all workers
94cf58bb
TH
4135 * unbound and set DISASSOCIATED. Before this, all workers
4136 * except for the ones which are still executing works from
4137 * before the last CPU down must be on the cpu. After
4138 * this, they may become diasporas.
4139 */
a9ab775b 4140 for_each_pool_worker(worker, wi, pool)
c9e7cf27 4141 worker->flags |= WORKER_UNBOUND;
06ba38a9 4142
24647570 4143 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4144
94cf58bb 4145 spin_unlock_irq(&pool->lock);
bc3a1afc 4146 mutex_unlock(&pool->manager_mutex);
94cf58bb 4147 }
628c78e7 4148
e22bee78 4149 /*
403c821d 4150 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
4151 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
4152 * as scheduler callbacks may be invoked from other cpus.
e22bee78 4153 */
e22bee78 4154 schedule();
06ba38a9 4155
e22bee78 4156 /*
628c78e7
TH
4157 * Sched callbacks are disabled now. Zap nr_running. After this,
4158 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
4159 * are always true as long as the worklist is not empty. Pools on
4160 * @cpu now behave as unbound (in terms of concurrency management)
4161 * pools which are served by workers tied to the CPU.
628c78e7
TH
4162 *
4163 * On return from this function, the current worker would trigger
4164 * unbound chain execution of pending work items if other workers
4165 * didn't already.
e22bee78 4166 */
f02ae73a 4167 for_each_cpu_worker_pool(pool, cpu)
e19e397a 4168 atomic_set(&pool->nr_running, 0);
3af24433 4169}
3af24433 4170
bd7c089e
TH
4171/**
4172 * rebind_workers - rebind all workers of a pool to the associated CPU
4173 * @pool: pool of interest
4174 *
a9ab775b 4175 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4176 */
4177static void rebind_workers(struct worker_pool *pool)
4178{
a9ab775b
TH
4179 struct worker *worker;
4180 int wi;
bd7c089e
TH
4181
4182 lockdep_assert_held(&pool->manager_mutex);
bd7c089e 4183
a9ab775b
TH
4184 /*
4185 * Restore CPU affinity of all workers. As all idle workers should
4186 * be on the run-queue of the associated CPU before any local
4187 * wake-ups for concurrency management happen, restore CPU affinty
4188 * of all workers first and then clear UNBOUND. As we're called
4189 * from CPU_ONLINE, the following shouldn't fail.
4190 */
4191 for_each_pool_worker(worker, wi, pool)
4192 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4193 pool->attrs->cpumask) < 0);
bd7c089e 4194
a9ab775b 4195 spin_lock_irq(&pool->lock);
bd7c089e 4196
a9ab775b
TH
4197 for_each_pool_worker(worker, wi, pool) {
4198 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4199
4200 /*
a9ab775b
TH
4201 * A bound idle worker should actually be on the runqueue
4202 * of the associated CPU for local wake-ups targeting it to
4203 * work. Kick all idle workers so that they migrate to the
4204 * associated CPU. Doing this in the same loop as
4205 * replacing UNBOUND with REBOUND is safe as no worker will
4206 * be bound before @pool->lock is released.
bd7c089e 4207 */
a9ab775b
TH
4208 if (worker_flags & WORKER_IDLE)
4209 wake_up_process(worker->task);
bd7c089e 4210
a9ab775b
TH
4211 /*
4212 * We want to clear UNBOUND but can't directly call
4213 * worker_clr_flags() or adjust nr_running. Atomically
4214 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4215 * @worker will clear REBOUND using worker_clr_flags() when
4216 * it initiates the next execution cycle thus restoring
4217 * concurrency management. Note that when or whether
4218 * @worker clears REBOUND doesn't affect correctness.
4219 *
4220 * ACCESS_ONCE() is necessary because @worker->flags may be
4221 * tested without holding any lock in
4222 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4223 * fail incorrectly leading to premature concurrency
4224 * management operations.
4225 */
4226 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4227 worker_flags |= WORKER_REBOUND;
4228 worker_flags &= ~WORKER_UNBOUND;
4229 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4230 }
a9ab775b
TH
4231
4232 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4233}
4234
7dbc725e
TH
4235/**
4236 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4237 * @pool: unbound pool of interest
4238 * @cpu: the CPU which is coming up
4239 *
4240 * An unbound pool may end up with a cpumask which doesn't have any online
4241 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4242 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4243 * online CPU before, cpus_allowed of all its workers should be restored.
4244 */
4245static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4246{
4247 static cpumask_t cpumask;
4248 struct worker *worker;
4249 int wi;
4250
4251 lockdep_assert_held(&pool->manager_mutex);
4252
4253 /* is @cpu allowed for @pool? */
4254 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4255 return;
4256
4257 /* is @cpu the only online CPU? */
4258 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4259 if (cpumask_weight(&cpumask) != 1)
4260 return;
4261
4262 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4263 for_each_pool_worker(worker, wi, pool)
4264 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4265 pool->attrs->cpumask) < 0);
4266}
4267
8db25e78
TH
4268/*
4269 * Workqueues should be brought up before normal priority CPU notifiers.
4270 * This will be registered high priority CPU notifier.
4271 */
9fdf9b73 4272static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4273 unsigned long action,
4274 void *hcpu)
3af24433 4275{
d84ff051 4276 int cpu = (unsigned long)hcpu;
4ce62e9e 4277 struct worker_pool *pool;
7dbc725e 4278 int pi;
3ce63377 4279
8db25e78 4280 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4281 case CPU_UP_PREPARE:
f02ae73a 4282 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4283 if (pool->nr_workers)
4284 continue;
ebf44d16 4285 if (create_and_start_worker(pool) < 0)
3ce63377 4286 return NOTIFY_BAD;
3af24433 4287 }
8db25e78 4288 break;
3af24433 4289
db7bccf4
TH
4290 case CPU_DOWN_FAILED:
4291 case CPU_ONLINE:
68e13a67 4292 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4293
4294 for_each_pool(pool, pi) {
bc3a1afc 4295 mutex_lock(&pool->manager_mutex);
94cf58bb 4296
7dbc725e
TH
4297 if (pool->cpu == cpu) {
4298 spin_lock_irq(&pool->lock);
4299 pool->flags &= ~POOL_DISASSOCIATED;
4300 spin_unlock_irq(&pool->lock);
a9ab775b 4301
7dbc725e
TH
4302 rebind_workers(pool);
4303 } else if (pool->cpu < 0) {
4304 restore_unbound_workers_cpumask(pool, cpu);
4305 }
94cf58bb 4306
bc3a1afc 4307 mutex_unlock(&pool->manager_mutex);
94cf58bb 4308 }
7dbc725e 4309
68e13a67 4310 mutex_unlock(&wq_pool_mutex);
db7bccf4 4311 break;
00dfcaf7 4312 }
65758202
TH
4313 return NOTIFY_OK;
4314}
4315
4316/*
4317 * Workqueues should be brought down after normal priority CPU notifiers.
4318 * This will be registered as low priority CPU notifier.
4319 */
9fdf9b73 4320static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4321 unsigned long action,
4322 void *hcpu)
4323{
d84ff051 4324 int cpu = (unsigned long)hcpu;
8db25e78
TH
4325 struct work_struct unbind_work;
4326
65758202
TH
4327 switch (action & ~CPU_TASKS_FROZEN) {
4328 case CPU_DOWN_PREPARE:
8db25e78 4329 /* unbinding should happen on the local CPU */
706026c2 4330 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4331 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
4332 flush_work(&unbind_work);
4333 break;
65758202
TH
4334 }
4335 return NOTIFY_OK;
4336}
4337
2d3854a3 4338#ifdef CONFIG_SMP
8ccad40d 4339
2d3854a3 4340struct work_for_cpu {
ed48ece2 4341 struct work_struct work;
2d3854a3
RR
4342 long (*fn)(void *);
4343 void *arg;
4344 long ret;
4345};
4346
ed48ece2 4347static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4348{
ed48ece2
TH
4349 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4350
2d3854a3
RR
4351 wfc->ret = wfc->fn(wfc->arg);
4352}
4353
4354/**
4355 * work_on_cpu - run a function in user context on a particular cpu
4356 * @cpu: the cpu to run on
4357 * @fn: the function to run
4358 * @arg: the function arg
4359 *
31ad9081
RR
4360 * This will return the value @fn returns.
4361 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4362 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3 4363 */
d84ff051 4364long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4365{
ed48ece2 4366 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4367
ed48ece2
TH
4368 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4369 schedule_work_on(cpu, &wfc.work);
4370 flush_work(&wfc.work);
2d3854a3
RR
4371 return wfc.ret;
4372}
4373EXPORT_SYMBOL_GPL(work_on_cpu);
4374#endif /* CONFIG_SMP */
4375
a0a1a5fd
TH
4376#ifdef CONFIG_FREEZER
4377
4378/**
4379 * freeze_workqueues_begin - begin freezing workqueues
4380 *
58a69cb4 4381 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4382 * workqueues will queue new works to their delayed_works list instead of
706026c2 4383 * pool->worklist.
a0a1a5fd
TH
4384 *
4385 * CONTEXT:
a357fc03 4386 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4387 */
4388void freeze_workqueues_begin(void)
4389{
17116969 4390 struct worker_pool *pool;
24b8a847
TH
4391 struct workqueue_struct *wq;
4392 struct pool_workqueue *pwq;
611c92a0 4393 int pi;
a0a1a5fd 4394
68e13a67 4395 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4396
6183c009 4397 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4398 workqueue_freezing = true;
4399
24b8a847 4400 /* set FREEZING */
611c92a0 4401 for_each_pool(pool, pi) {
5bcab335 4402 spin_lock_irq(&pool->lock);
17116969
TH
4403 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4404 pool->flags |= POOL_FREEZING;
5bcab335 4405 spin_unlock_irq(&pool->lock);
24b8a847 4406 }
a0a1a5fd 4407
24b8a847 4408 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4409 mutex_lock(&wq->mutex);
699ce097
TH
4410 for_each_pwq(pwq, wq)
4411 pwq_adjust_max_active(pwq);
a357fc03 4412 mutex_unlock(&wq->mutex);
a0a1a5fd 4413 }
5bcab335 4414
68e13a67 4415 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4416}
4417
4418/**
58a69cb4 4419 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4420 *
4421 * Check whether freezing is complete. This function must be called
4422 * between freeze_workqueues_begin() and thaw_workqueues().
4423 *
4424 * CONTEXT:
68e13a67 4425 * Grabs and releases wq_pool_mutex.
a0a1a5fd
TH
4426 *
4427 * RETURNS:
58a69cb4
TH
4428 * %true if some freezable workqueues are still busy. %false if freezing
4429 * is complete.
a0a1a5fd
TH
4430 */
4431bool freeze_workqueues_busy(void)
4432{
a0a1a5fd 4433 bool busy = false;
24b8a847
TH
4434 struct workqueue_struct *wq;
4435 struct pool_workqueue *pwq;
a0a1a5fd 4436
68e13a67 4437 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4438
6183c009 4439 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4440
24b8a847
TH
4441 list_for_each_entry(wq, &workqueues, list) {
4442 if (!(wq->flags & WQ_FREEZABLE))
4443 continue;
a0a1a5fd
TH
4444 /*
4445 * nr_active is monotonically decreasing. It's safe
4446 * to peek without lock.
4447 */
88109453 4448 rcu_read_lock_sched();
24b8a847 4449 for_each_pwq(pwq, wq) {
6183c009 4450 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4451 if (pwq->nr_active) {
a0a1a5fd 4452 busy = true;
88109453 4453 rcu_read_unlock_sched();
a0a1a5fd
TH
4454 goto out_unlock;
4455 }
4456 }
88109453 4457 rcu_read_unlock_sched();
a0a1a5fd
TH
4458 }
4459out_unlock:
68e13a67 4460 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4461 return busy;
4462}
4463
4464/**
4465 * thaw_workqueues - thaw workqueues
4466 *
4467 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4468 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4469 *
4470 * CONTEXT:
a357fc03 4471 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4472 */
4473void thaw_workqueues(void)
4474{
24b8a847
TH
4475 struct workqueue_struct *wq;
4476 struct pool_workqueue *pwq;
4477 struct worker_pool *pool;
611c92a0 4478 int pi;
a0a1a5fd 4479
68e13a67 4480 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4481
4482 if (!workqueue_freezing)
4483 goto out_unlock;
4484
24b8a847 4485 /* clear FREEZING */
611c92a0 4486 for_each_pool(pool, pi) {
5bcab335 4487 spin_lock_irq(&pool->lock);
24b8a847
TH
4488 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4489 pool->flags &= ~POOL_FREEZING;
5bcab335 4490 spin_unlock_irq(&pool->lock);
24b8a847 4491 }
8b03ae3c 4492
24b8a847
TH
4493 /* restore max_active and repopulate worklist */
4494 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4495 mutex_lock(&wq->mutex);
699ce097
TH
4496 for_each_pwq(pwq, wq)
4497 pwq_adjust_max_active(pwq);
a357fc03 4498 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
4499 }
4500
4501 workqueue_freezing = false;
4502out_unlock:
68e13a67 4503 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4504}
4505#endif /* CONFIG_FREEZER */
4506
bce90380
TH
4507static void __init wq_numa_init(void)
4508{
4509 cpumask_var_t *tbl;
4510 int node, cpu;
4511
4512 /* determine NUMA pwq table len - highest node id + 1 */
4513 for_each_node(node)
4514 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4515
4516 if (num_possible_nodes() <= 1)
4517 return;
4518
4519 /*
4520 * We want masks of possible CPUs of each node which isn't readily
4521 * available. Build one from cpu_to_node() which should have been
4522 * fully initialized by now.
4523 */
4524 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4525 BUG_ON(!tbl);
4526
4527 for_each_node(node)
4528 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL, node));
4529
4530 for_each_possible_cpu(cpu) {
4531 node = cpu_to_node(cpu);
4532 if (WARN_ON(node == NUMA_NO_NODE)) {
4533 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4534 /* happens iff arch is bonkers, let's just proceed */
4535 return;
4536 }
4537 cpumask_set_cpu(cpu, tbl[node]);
4538 }
4539
4540 wq_numa_possible_cpumask = tbl;
4541 wq_numa_enabled = true;
4542}
4543
6ee0578b 4544static int __init init_workqueues(void)
1da177e4 4545{
7a4e344c
TH
4546 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4547 int i, cpu;
c34056a3 4548
7c3eed5c
TH
4549 /* make sure we have enough bits for OFFQ pool ID */
4550 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 4551 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 4552
e904e6c2
TH
4553 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4554
4555 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4556
65758202 4557 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 4558 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 4559
bce90380
TH
4560 wq_numa_init();
4561
706026c2 4562 /* initialize CPU pools */
29c91e99 4563 for_each_possible_cpu(cpu) {
4ce62e9e 4564 struct worker_pool *pool;
8b03ae3c 4565
7a4e344c 4566 i = 0;
f02ae73a 4567 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 4568 BUG_ON(init_worker_pool(pool));
ec22ca5e 4569 pool->cpu = cpu;
29c91e99 4570 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 4571 pool->attrs->nice = std_nice[i++];
f3f90ad4 4572 pool->node = cpu_to_node(cpu);
7a4e344c 4573
9daf9e67 4574 /* alloc pool ID */
68e13a67 4575 mutex_lock(&wq_pool_mutex);
9daf9e67 4576 BUG_ON(worker_pool_assign_id(pool));
68e13a67 4577 mutex_unlock(&wq_pool_mutex);
4ce62e9e 4578 }
8b03ae3c
TH
4579 }
4580
e22bee78 4581 /* create the initial worker */
29c91e99 4582 for_each_online_cpu(cpu) {
4ce62e9e 4583 struct worker_pool *pool;
e22bee78 4584
f02ae73a 4585 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 4586 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 4587 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 4588 }
e22bee78
TH
4589 }
4590
29c91e99
TH
4591 /* create default unbound wq attrs */
4592 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4593 struct workqueue_attrs *attrs;
4594
4595 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 4596 attrs->nice = std_nice[i];
29c91e99
TH
4597 unbound_std_wq_attrs[i] = attrs;
4598 }
4599
d320c038 4600 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 4601 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 4602 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
4603 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4604 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
4605 system_freezable_wq = alloc_workqueue("events_freezable",
4606 WQ_FREEZABLE, 0);
1aabe902 4607 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 4608 !system_unbound_wq || !system_freezable_wq);
6ee0578b 4609 return 0;
1da177e4 4610}
6ee0578b 4611early_initcall(init_workqueues);