workqueue: cosmetic update in try_to_grab_pending()
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
42f8570f 44#include <linux/hashtable.h>
e22bee78 45
ea138446 46#include "workqueue_internal.h"
1da177e4 47
c8e55f36 48enum {
24647570
TH
49 /*
50 * worker_pool flags
bc2ae0f5 51 *
24647570 52 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 59 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5
TH
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
24647570
TH
62 * assoc_mutex to avoid changing binding state while
63 * create_worker() is in progress.
bc2ae0f5 64 */
11ebea50 65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
552a37e9 66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
24647570 67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 68 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 77
5f7dabfd 78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 79 WORKER_CPU_INTENSIVE,
db7bccf4 80
e34cdddb 81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 82
c8e55f36 83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 84
e22bee78
TH
85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
87
3233cdbd
TH
88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
89 /* call for help after 10ms
90 (min two ticks) */
e22bee78
TH
91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
92 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
93
94 /*
95 * Rescue workers are used only on emergencies and shared by
96 * all cpus. Give -20.
97 */
98 RESCUER_NICE_LEVEL = -20,
3270476a 99 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 100};
1da177e4
LT
101
102/*
4690c4ab
TH
103 * Structure fields follow one of the following exclusion rules.
104 *
e41e704b
TH
105 * I: Modifiable by initialization/destruction paths and read-only for
106 * everyone else.
4690c4ab 107 *
e22bee78
TH
108 * P: Preemption protected. Disabling preemption is enough and should
109 * only be modified and accessed from the local cpu.
110 *
d565ed63 111 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 112 *
d565ed63
TH
113 * X: During normal operation, modification requires pool->lock and should
114 * be done only from local cpu. Either disabling preemption on local
115 * cpu or grabbing pool->lock is enough for read access. If
116 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 117 *
73f53c4a
TH
118 * F: wq->flush_mutex protected.
119 *
4690c4ab 120 * W: workqueue_lock protected.
1da177e4 121 */
1da177e4 122
2eaebdb3 123/* struct worker is defined in workqueue_internal.h */
c34056a3 124
bd7bdd43 125struct worker_pool {
d565ed63 126 spinlock_t lock; /* the pool lock */
ec22ca5e 127 unsigned int cpu; /* I: the associated cpu */
9daf9e67 128 int id; /* I: pool ID */
11ebea50 129 unsigned int flags; /* X: flags */
bd7bdd43
TH
130
131 struct list_head worklist; /* L: list of pending works */
132 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
133
134 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
135 int nr_idle; /* L: currently idle ones */
136
137 struct list_head idle_list; /* X: list of idle workers */
138 struct timer_list idle_timer; /* L: worker idle timeout */
139 struct timer_list mayday_timer; /* L: SOS timer for workers */
140
c9e7cf27
TH
141 /* workers are chained either in busy_hash or idle_list */
142 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
143 /* L: hash of busy workers */
144
24647570 145 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
bd7bdd43 146 struct ida worker_ida; /* L: for worker IDs */
8b03ae3c
TH
147} ____cacheline_aligned_in_smp;
148
1da177e4 149/*
502ca9d8 150 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
151 * work_struct->data are used for flags and thus cwqs need to be
152 * aligned at two's power of the number of flag bits.
1da177e4
LT
153 */
154struct cpu_workqueue_struct {
bd7bdd43 155 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 156 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
157 int work_color; /* L: current color */
158 int flush_color; /* L: flushing color */
159 int nr_in_flight[WORK_NR_COLORS];
160 /* L: nr of in_flight works */
1e19ffc6 161 int nr_active; /* L: nr of active works */
a0a1a5fd 162 int max_active; /* L: max active works */
1e19ffc6 163 struct list_head delayed_works; /* L: delayed works */
0f900049 164};
1da177e4 165
73f53c4a
TH
166/*
167 * Structure used to wait for workqueue flush.
168 */
169struct wq_flusher {
170 struct list_head list; /* F: list of flushers */
171 int flush_color; /* F: flush color waiting for */
172 struct completion done; /* flush completion */
173};
174
f2e005aa
TH
175/*
176 * All cpumasks are assumed to be always set on UP and thus can't be
177 * used to determine whether there's something to be done.
178 */
179#ifdef CONFIG_SMP
180typedef cpumask_var_t mayday_mask_t;
181#define mayday_test_and_set_cpu(cpu, mask) \
182 cpumask_test_and_set_cpu((cpu), (mask))
183#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
184#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 185#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
186#define free_mayday_mask(mask) free_cpumask_var((mask))
187#else
188typedef unsigned long mayday_mask_t;
189#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
190#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
191#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
192#define alloc_mayday_mask(maskp, gfp) true
193#define free_mayday_mask(mask) do { } while (0)
194#endif
1da177e4
LT
195
196/*
197 * The externally visible workqueue abstraction is an array of
198 * per-CPU workqueues:
199 */
200struct workqueue_struct {
9c5a2ba7 201 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
202 union {
203 struct cpu_workqueue_struct __percpu *pcpu;
204 struct cpu_workqueue_struct *single;
205 unsigned long v;
206 } cpu_wq; /* I: cwq's */
4690c4ab 207 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
208
209 struct mutex flush_mutex; /* protects wq flushing */
210 int work_color; /* F: current work color */
211 int flush_color; /* F: current flush color */
212 atomic_t nr_cwqs_to_flush; /* flush in progress */
213 struct wq_flusher *first_flusher; /* F: first flusher */
214 struct list_head flusher_queue; /* F: flush waiters */
215 struct list_head flusher_overflow; /* F: flush overflow list */
216
f2e005aa 217 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
218 struct worker *rescuer; /* I: rescue worker */
219
9c5a2ba7 220 int nr_drainers; /* W: drain in progress */
dcd989cb 221 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 222#ifdef CONFIG_LOCKDEP
4690c4ab 223 struct lockdep_map lockdep_map;
4e6045f1 224#endif
b196be89 225 char name[]; /* I: workqueue name */
1da177e4
LT
226};
227
d320c038 228struct workqueue_struct *system_wq __read_mostly;
d320c038 229EXPORT_SYMBOL_GPL(system_wq);
044c782c 230struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 231EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 232struct workqueue_struct *system_long_wq __read_mostly;
d320c038 233EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 234struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 235EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 236struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 237EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 238
97bd2347
TH
239#define CREATE_TRACE_POINTS
240#include <trace/events/workqueue.h>
241
38db41d9 242#define for_each_std_worker_pool(pool, cpu) \
a60dc39c
TH
243 for ((pool) = &std_worker_pools(cpu)[0]; \
244 (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
4ce62e9e 245
c9e7cf27
TH
246#define for_each_busy_worker(worker, i, pos, pool) \
247 hash_for_each(pool->busy_hash, i, pos, worker, hentry)
db7bccf4 248
706026c2
TH
249static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
250 unsigned int sw)
f3421797
TH
251{
252 if (cpu < nr_cpu_ids) {
253 if (sw & 1) {
254 cpu = cpumask_next(cpu, mask);
255 if (cpu < nr_cpu_ids)
256 return cpu;
257 }
258 if (sw & 2)
259 return WORK_CPU_UNBOUND;
260 }
6be19588 261 return WORK_CPU_END;
f3421797
TH
262}
263
706026c2
TH
264static inline int __next_cwq_cpu(int cpu, const struct cpumask *mask,
265 struct workqueue_struct *wq)
f3421797 266{
706026c2 267 return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
f3421797
TH
268}
269
09884951
TH
270/*
271 * CPU iterators
272 *
706026c2 273 * An extra cpu number is defined using an invalid cpu number
09884951 274 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
706026c2
TH
275 * specific CPU. The following iterators are similar to for_each_*_cpu()
276 * iterators but also considers the unbound CPU.
09884951 277 *
706026c2
TH
278 * for_each_wq_cpu() : possible CPUs + WORK_CPU_UNBOUND
279 * for_each_online_wq_cpu() : online CPUs + WORK_CPU_UNBOUND
09884951
TH
280 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
281 * WORK_CPU_UNBOUND for unbound workqueues
282 */
706026c2
TH
283#define for_each_wq_cpu(cpu) \
284 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3); \
6be19588 285 (cpu) < WORK_CPU_END; \
706026c2 286 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
f3421797 287
706026c2
TH
288#define for_each_online_wq_cpu(cpu) \
289 for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3); \
6be19588 290 (cpu) < WORK_CPU_END; \
706026c2 291 (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
f3421797
TH
292
293#define for_each_cwq_cpu(cpu, wq) \
706026c2 294 for ((cpu) = __next_cwq_cpu(-1, cpu_possible_mask, (wq)); \
6be19588 295 (cpu) < WORK_CPU_END; \
706026c2 296 (cpu) = __next_cwq_cpu((cpu), cpu_possible_mask, (wq)))
f3421797 297
dc186ad7
TG
298#ifdef CONFIG_DEBUG_OBJECTS_WORK
299
300static struct debug_obj_descr work_debug_descr;
301
99777288
SG
302static void *work_debug_hint(void *addr)
303{
304 return ((struct work_struct *) addr)->func;
305}
306
dc186ad7
TG
307/*
308 * fixup_init is called when:
309 * - an active object is initialized
310 */
311static int work_fixup_init(void *addr, enum debug_obj_state state)
312{
313 struct work_struct *work = addr;
314
315 switch (state) {
316 case ODEBUG_STATE_ACTIVE:
317 cancel_work_sync(work);
318 debug_object_init(work, &work_debug_descr);
319 return 1;
320 default:
321 return 0;
322 }
323}
324
325/*
326 * fixup_activate is called when:
327 * - an active object is activated
328 * - an unknown object is activated (might be a statically initialized object)
329 */
330static int work_fixup_activate(void *addr, enum debug_obj_state state)
331{
332 struct work_struct *work = addr;
333
334 switch (state) {
335
336 case ODEBUG_STATE_NOTAVAILABLE:
337 /*
338 * This is not really a fixup. The work struct was
339 * statically initialized. We just make sure that it
340 * is tracked in the object tracker.
341 */
22df02bb 342 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
343 debug_object_init(work, &work_debug_descr);
344 debug_object_activate(work, &work_debug_descr);
345 return 0;
346 }
347 WARN_ON_ONCE(1);
348 return 0;
349
350 case ODEBUG_STATE_ACTIVE:
351 WARN_ON(1);
352
353 default:
354 return 0;
355 }
356}
357
358/*
359 * fixup_free is called when:
360 * - an active object is freed
361 */
362static int work_fixup_free(void *addr, enum debug_obj_state state)
363{
364 struct work_struct *work = addr;
365
366 switch (state) {
367 case ODEBUG_STATE_ACTIVE:
368 cancel_work_sync(work);
369 debug_object_free(work, &work_debug_descr);
370 return 1;
371 default:
372 return 0;
373 }
374}
375
376static struct debug_obj_descr work_debug_descr = {
377 .name = "work_struct",
99777288 378 .debug_hint = work_debug_hint,
dc186ad7
TG
379 .fixup_init = work_fixup_init,
380 .fixup_activate = work_fixup_activate,
381 .fixup_free = work_fixup_free,
382};
383
384static inline void debug_work_activate(struct work_struct *work)
385{
386 debug_object_activate(work, &work_debug_descr);
387}
388
389static inline void debug_work_deactivate(struct work_struct *work)
390{
391 debug_object_deactivate(work, &work_debug_descr);
392}
393
394void __init_work(struct work_struct *work, int onstack)
395{
396 if (onstack)
397 debug_object_init_on_stack(work, &work_debug_descr);
398 else
399 debug_object_init(work, &work_debug_descr);
400}
401EXPORT_SYMBOL_GPL(__init_work);
402
403void destroy_work_on_stack(struct work_struct *work)
404{
405 debug_object_free(work, &work_debug_descr);
406}
407EXPORT_SYMBOL_GPL(destroy_work_on_stack);
408
409#else
410static inline void debug_work_activate(struct work_struct *work) { }
411static inline void debug_work_deactivate(struct work_struct *work) { }
412#endif
413
95402b38
GS
414/* Serializes the accesses to the list of workqueues. */
415static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 416static LIST_HEAD(workqueues);
a0a1a5fd 417static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 418
e22bee78 419/*
a60dc39c
TH
420 * The CPU standard worker pools. nr_running is the only field which is
421 * expected to be used frequently by other cpus via try_to_wake_up(). Put
422 * it in a separate cacheline.
e22bee78 423 */
a60dc39c
TH
424static DEFINE_PER_CPU(struct worker_pool [NR_STD_WORKER_POOLS],
425 cpu_std_worker_pools);
e6e380ed
TH
426static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t [NR_STD_WORKER_POOLS],
427 cpu_std_pool_nr_running);
8b03ae3c 428
f3421797 429/*
a60dc39c
TH
430 * Standard worker pools and nr_running counter for unbound CPU. The pools
431 * have POOL_DISASSOCIATED set, and all workers have WORKER_UNBOUND set.
f3421797 432 */
a60dc39c 433static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
e6e380ed 434static atomic_t unbound_std_pool_nr_running[NR_STD_WORKER_POOLS] = {
e34cdddb 435 [0 ... NR_STD_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
4ce62e9e 436};
f3421797 437
9daf9e67
TH
438/* idr of all pools */
439static DEFINE_MUTEX(worker_pool_idr_mutex);
440static DEFINE_IDR(worker_pool_idr);
441
c34056a3 442static int worker_thread(void *__worker);
1da177e4 443
a60dc39c 444static struct worker_pool *std_worker_pools(int cpu)
8b03ae3c 445{
f3421797 446 if (cpu != WORK_CPU_UNBOUND)
a60dc39c 447 return per_cpu(cpu_std_worker_pools, cpu);
f3421797 448 else
a60dc39c 449 return unbound_std_worker_pools;
8b03ae3c
TH
450}
451
4e8f0a60
TH
452static int std_worker_pool_pri(struct worker_pool *pool)
453{
a60dc39c 454 return pool - std_worker_pools(pool->cpu);
4e8f0a60
TH
455}
456
9daf9e67
TH
457/* allocate ID and assign it to @pool */
458static int worker_pool_assign_id(struct worker_pool *pool)
459{
460 int ret;
461
462 mutex_lock(&worker_pool_idr_mutex);
463 idr_pre_get(&worker_pool_idr, GFP_KERNEL);
464 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
465 mutex_unlock(&worker_pool_idr_mutex);
466
467 return ret;
468}
469
7c3eed5c
TH
470/*
471 * Lookup worker_pool by id. The idr currently is built during boot and
472 * never modified. Don't worry about locking for now.
473 */
474static struct worker_pool *worker_pool_by_id(int pool_id)
475{
476 return idr_find(&worker_pool_idr, pool_id);
477}
478
d565ed63
TH
479static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
480{
a60dc39c 481 struct worker_pool *pools = std_worker_pools(cpu);
d565ed63 482
a60dc39c 483 return &pools[highpri];
d565ed63
TH
484}
485
63d95a91 486static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 487{
ec22ca5e 488 int cpu = pool->cpu;
e34cdddb 489 int idx = std_worker_pool_pri(pool);
63d95a91 490
f3421797 491 if (cpu != WORK_CPU_UNBOUND)
e6e380ed 492 return &per_cpu(cpu_std_pool_nr_running, cpu)[idx];
f3421797 493 else
e6e380ed 494 return &unbound_std_pool_nr_running[idx];
e22bee78
TH
495}
496
1537663f
TH
497static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
498 struct workqueue_struct *wq)
b1f4ec17 499{
f3421797 500 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 501 if (likely(cpu < nr_cpu_ids))
f3421797 502 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
503 } else if (likely(cpu == WORK_CPU_UNBOUND))
504 return wq->cpu_wq.single;
505 return NULL;
b1f4ec17
ON
506}
507
73f53c4a
TH
508static unsigned int work_color_to_flags(int color)
509{
510 return color << WORK_STRUCT_COLOR_SHIFT;
511}
512
513static int get_work_color(struct work_struct *work)
514{
515 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
516 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
517}
518
519static int work_next_color(int color)
520{
521 return (color + 1) % WORK_NR_COLORS;
522}
1da177e4 523
14441960 524/*
b5490077
TH
525 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
526 * contain the pointer to the queued cwq. Once execution starts, the flag
7c3eed5c 527 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 528 *
7c3eed5c
TH
529 * set_work_cwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
530 * and clear_work_data() can be used to set the cwq, pool or clear
bbb68dfa
TH
531 * work->data. These functions should only be called while the work is
532 * owned - ie. while the PENDING bit is set.
7a22ad75 533 *
7c3eed5c
TH
534 * get_work_pool() and get_work_cwq() can be used to obtain the pool or cwq
535 * corresponding to a work. Pool is available once the work has been
536 * queued anywhere after initialization until it is sync canceled. cwq is
537 * available only while the work item is queued.
7a22ad75 538 *
bbb68dfa
TH
539 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
540 * canceled. While being canceled, a work item may have its PENDING set
541 * but stay off timer and worklist for arbitrarily long and nobody should
542 * try to steal the PENDING bit.
14441960 543 */
7a22ad75
TH
544static inline void set_work_data(struct work_struct *work, unsigned long data,
545 unsigned long flags)
365970a1 546{
4594bf15 547 BUG_ON(!work_pending(work));
7a22ad75
TH
548 atomic_long_set(&work->data, data | flags | work_static(work));
549}
365970a1 550
7a22ad75
TH
551static void set_work_cwq(struct work_struct *work,
552 struct cpu_workqueue_struct *cwq,
553 unsigned long extra_flags)
554{
555 set_work_data(work, (unsigned long)cwq,
e120153d 556 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
557}
558
4468a00f
LJ
559static void set_work_pool_and_keep_pending(struct work_struct *work,
560 int pool_id)
561{
562 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
563 WORK_STRUCT_PENDING);
564}
565
7c3eed5c
TH
566static void set_work_pool_and_clear_pending(struct work_struct *work,
567 int pool_id)
7a22ad75 568{
23657bb1
TH
569 /*
570 * The following wmb is paired with the implied mb in
571 * test_and_set_bit(PENDING) and ensures all updates to @work made
572 * here are visible to and precede any updates by the next PENDING
573 * owner.
574 */
575 smp_wmb();
7c3eed5c 576 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 577}
f756d5e2 578
7a22ad75 579static void clear_work_data(struct work_struct *work)
1da177e4 580{
7c3eed5c
TH
581 smp_wmb(); /* see set_work_pool_and_clear_pending() */
582 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
583}
584
7a22ad75 585static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 586{
e120153d 587 unsigned long data = atomic_long_read(&work->data);
7a22ad75 588
e120153d
TH
589 if (data & WORK_STRUCT_CWQ)
590 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
591 else
592 return NULL;
4d707b9f
ON
593}
594
7c3eed5c
TH
595/**
596 * get_work_pool - return the worker_pool a given work was associated with
597 * @work: the work item of interest
598 *
599 * Return the worker_pool @work was last associated with. %NULL if none.
600 */
601static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 602{
e120153d 603 unsigned long data = atomic_long_read(&work->data);
7c3eed5c
TH
604 struct worker_pool *pool;
605 int pool_id;
7a22ad75 606
e120153d
TH
607 if (data & WORK_STRUCT_CWQ)
608 return ((struct cpu_workqueue_struct *)
7c3eed5c 609 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 610
7c3eed5c
TH
611 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
612 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
613 return NULL;
614
7c3eed5c
TH
615 pool = worker_pool_by_id(pool_id);
616 WARN_ON_ONCE(!pool);
617 return pool;
618}
619
620/**
621 * get_work_pool_id - return the worker pool ID a given work is associated with
622 * @work: the work item of interest
623 *
624 * Return the worker_pool ID @work was last associated with.
625 * %WORK_OFFQ_POOL_NONE if none.
626 */
627static int get_work_pool_id(struct work_struct *work)
628{
629 struct worker_pool *pool = get_work_pool(work);
630
631 return pool ? pool->id : WORK_OFFQ_POOL_NONE;
632}
633
bbb68dfa
TH
634static void mark_work_canceling(struct work_struct *work)
635{
7c3eed5c 636 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 637
7c3eed5c
TH
638 pool_id <<= WORK_OFFQ_POOL_SHIFT;
639 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
640}
641
642static bool work_is_canceling(struct work_struct *work)
643{
644 unsigned long data = atomic_long_read(&work->data);
645
646 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
647}
648
e22bee78 649/*
3270476a
TH
650 * Policy functions. These define the policies on how the global worker
651 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 652 * they're being called with pool->lock held.
e22bee78
TH
653 */
654
63d95a91 655static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 656{
3270476a 657 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
658}
659
4594bf15 660/*
e22bee78
TH
661 * Need to wake up a worker? Called from anything but currently
662 * running workers.
974271c4
TH
663 *
664 * Note that, because unbound workers never contribute to nr_running, this
706026c2 665 * function will always return %true for unbound pools as long as the
974271c4 666 * worklist isn't empty.
4594bf15 667 */
63d95a91 668static bool need_more_worker(struct worker_pool *pool)
365970a1 669{
63d95a91 670 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 671}
4594bf15 672
e22bee78 673/* Can I start working? Called from busy but !running workers. */
63d95a91 674static bool may_start_working(struct worker_pool *pool)
e22bee78 675{
63d95a91 676 return pool->nr_idle;
e22bee78
TH
677}
678
679/* Do I need to keep working? Called from currently running workers. */
63d95a91 680static bool keep_working(struct worker_pool *pool)
e22bee78 681{
63d95a91 682 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 683
3270476a 684 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
685}
686
687/* Do we need a new worker? Called from manager. */
63d95a91 688static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 689{
63d95a91 690 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 691}
365970a1 692
e22bee78 693/* Do I need to be the manager? */
63d95a91 694static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 695{
63d95a91 696 return need_to_create_worker(pool) ||
11ebea50 697 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
698}
699
700/* Do we have too many workers and should some go away? */
63d95a91 701static bool too_many_workers(struct worker_pool *pool)
e22bee78 702{
552a37e9 703 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
704 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
705 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 706
ea1abd61
LJ
707 /*
708 * nr_idle and idle_list may disagree if idle rebinding is in
709 * progress. Never return %true if idle_list is empty.
710 */
711 if (list_empty(&pool->idle_list))
712 return false;
713
e22bee78 714 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
715}
716
4d707b9f 717/*
e22bee78
TH
718 * Wake up functions.
719 */
720
7e11629d 721/* Return the first worker. Safe with preemption disabled */
63d95a91 722static struct worker *first_worker(struct worker_pool *pool)
7e11629d 723{
63d95a91 724 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
725 return NULL;
726
63d95a91 727 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
728}
729
730/**
731 * wake_up_worker - wake up an idle worker
63d95a91 732 * @pool: worker pool to wake worker from
7e11629d 733 *
63d95a91 734 * Wake up the first idle worker of @pool.
7e11629d
TH
735 *
736 * CONTEXT:
d565ed63 737 * spin_lock_irq(pool->lock).
7e11629d 738 */
63d95a91 739static void wake_up_worker(struct worker_pool *pool)
7e11629d 740{
63d95a91 741 struct worker *worker = first_worker(pool);
7e11629d
TH
742
743 if (likely(worker))
744 wake_up_process(worker->task);
745}
746
d302f017 747/**
e22bee78
TH
748 * wq_worker_waking_up - a worker is waking up
749 * @task: task waking up
750 * @cpu: CPU @task is waking up to
751 *
752 * This function is called during try_to_wake_up() when a worker is
753 * being awoken.
754 *
755 * CONTEXT:
756 * spin_lock_irq(rq->lock)
757 */
758void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
759{
760 struct worker *worker = kthread_data(task);
761
36576000 762 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 763 WARN_ON_ONCE(worker->pool->cpu != cpu);
63d95a91 764 atomic_inc(get_pool_nr_running(worker->pool));
36576000 765 }
e22bee78
TH
766}
767
768/**
769 * wq_worker_sleeping - a worker is going to sleep
770 * @task: task going to sleep
771 * @cpu: CPU in question, must be the current CPU number
772 *
773 * This function is called during schedule() when a busy worker is
774 * going to sleep. Worker on the same cpu can be woken up by
775 * returning pointer to its task.
776 *
777 * CONTEXT:
778 * spin_lock_irq(rq->lock)
779 *
780 * RETURNS:
781 * Worker task on @cpu to wake up, %NULL if none.
782 */
783struct task_struct *wq_worker_sleeping(struct task_struct *task,
784 unsigned int cpu)
785{
786 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a
TH
787 struct worker_pool *pool;
788 atomic_t *nr_running;
e22bee78 789
111c225a
TH
790 /*
791 * Rescuers, which may not have all the fields set up like normal
792 * workers, also reach here, let's not access anything before
793 * checking NOT_RUNNING.
794 */
2d64672e 795 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
796 return NULL;
797
111c225a
TH
798 pool = worker->pool;
799 nr_running = get_pool_nr_running(pool);
800
e22bee78
TH
801 /* this can only happen on the local cpu */
802 BUG_ON(cpu != raw_smp_processor_id());
803
804 /*
805 * The counterpart of the following dec_and_test, implied mb,
806 * worklist not empty test sequence is in insert_work().
807 * Please read comment there.
808 *
628c78e7
TH
809 * NOT_RUNNING is clear. This means that we're bound to and
810 * running on the local cpu w/ rq lock held and preemption
811 * disabled, which in turn means that none else could be
d565ed63 812 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 813 * lock is safe.
e22bee78 814 */
bd7bdd43 815 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 816 to_wakeup = first_worker(pool);
e22bee78
TH
817 return to_wakeup ? to_wakeup->task : NULL;
818}
819
820/**
821 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 822 * @worker: self
d302f017
TH
823 * @flags: flags to set
824 * @wakeup: wakeup an idle worker if necessary
825 *
e22bee78
TH
826 * Set @flags in @worker->flags and adjust nr_running accordingly. If
827 * nr_running becomes zero and @wakeup is %true, an idle worker is
828 * woken up.
d302f017 829 *
cb444766 830 * CONTEXT:
d565ed63 831 * spin_lock_irq(pool->lock)
d302f017
TH
832 */
833static inline void worker_set_flags(struct worker *worker, unsigned int flags,
834 bool wakeup)
835{
bd7bdd43 836 struct worker_pool *pool = worker->pool;
e22bee78 837
cb444766
TH
838 WARN_ON_ONCE(worker->task != current);
839
e22bee78
TH
840 /*
841 * If transitioning into NOT_RUNNING, adjust nr_running and
842 * wake up an idle worker as necessary if requested by
843 * @wakeup.
844 */
845 if ((flags & WORKER_NOT_RUNNING) &&
846 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 847 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
848
849 if (wakeup) {
850 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 851 !list_empty(&pool->worklist))
63d95a91 852 wake_up_worker(pool);
e22bee78
TH
853 } else
854 atomic_dec(nr_running);
855 }
856
d302f017
TH
857 worker->flags |= flags;
858}
859
860/**
e22bee78 861 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 862 * @worker: self
d302f017
TH
863 * @flags: flags to clear
864 *
e22bee78 865 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 866 *
cb444766 867 * CONTEXT:
d565ed63 868 * spin_lock_irq(pool->lock)
d302f017
TH
869 */
870static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
871{
63d95a91 872 struct worker_pool *pool = worker->pool;
e22bee78
TH
873 unsigned int oflags = worker->flags;
874
cb444766
TH
875 WARN_ON_ONCE(worker->task != current);
876
d302f017 877 worker->flags &= ~flags;
e22bee78 878
42c025f3
TH
879 /*
880 * If transitioning out of NOT_RUNNING, increment nr_running. Note
881 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
882 * of multiple flags, not a single flag.
883 */
e22bee78
TH
884 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
885 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 886 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
887}
888
8cca0eea
TH
889/**
890 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 891 * @pool: pool of interest
8cca0eea
TH
892 * @work: work to find worker for
893 *
c9e7cf27
TH
894 * Find a worker which is executing @work on @pool by searching
895 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
896 * to match, its current execution should match the address of @work and
897 * its work function. This is to avoid unwanted dependency between
898 * unrelated work executions through a work item being recycled while still
899 * being executed.
900 *
901 * This is a bit tricky. A work item may be freed once its execution
902 * starts and nothing prevents the freed area from being recycled for
903 * another work item. If the same work item address ends up being reused
904 * before the original execution finishes, workqueue will identify the
905 * recycled work item as currently executing and make it wait until the
906 * current execution finishes, introducing an unwanted dependency.
907 *
908 * This function checks the work item address, work function and workqueue
909 * to avoid false positives. Note that this isn't complete as one may
910 * construct a work function which can introduce dependency onto itself
911 * through a recycled work item. Well, if somebody wants to shoot oneself
912 * in the foot that badly, there's only so much we can do, and if such
913 * deadlock actually occurs, it should be easy to locate the culprit work
914 * function.
8cca0eea
TH
915 *
916 * CONTEXT:
d565ed63 917 * spin_lock_irq(pool->lock).
8cca0eea
TH
918 *
919 * RETURNS:
920 * Pointer to worker which is executing @work if found, NULL
921 * otherwise.
4d707b9f 922 */
c9e7cf27 923static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 924 struct work_struct *work)
4d707b9f 925{
42f8570f
SL
926 struct worker *worker;
927 struct hlist_node *tmp;
928
c9e7cf27 929 hash_for_each_possible(pool->busy_hash, worker, tmp, hentry,
a2c1c57b
TH
930 (unsigned long)work)
931 if (worker->current_work == work &&
932 worker->current_func == work->func)
42f8570f
SL
933 return worker;
934
935 return NULL;
4d707b9f
ON
936}
937
bf4ede01
TH
938/**
939 * move_linked_works - move linked works to a list
940 * @work: start of series of works to be scheduled
941 * @head: target list to append @work to
942 * @nextp: out paramter for nested worklist walking
943 *
944 * Schedule linked works starting from @work to @head. Work series to
945 * be scheduled starts at @work and includes any consecutive work with
946 * WORK_STRUCT_LINKED set in its predecessor.
947 *
948 * If @nextp is not NULL, it's updated to point to the next work of
949 * the last scheduled work. This allows move_linked_works() to be
950 * nested inside outer list_for_each_entry_safe().
951 *
952 * CONTEXT:
d565ed63 953 * spin_lock_irq(pool->lock).
bf4ede01
TH
954 */
955static void move_linked_works(struct work_struct *work, struct list_head *head,
956 struct work_struct **nextp)
957{
958 struct work_struct *n;
959
960 /*
961 * Linked worklist will always end before the end of the list,
962 * use NULL for list head.
963 */
964 list_for_each_entry_safe_from(work, n, NULL, entry) {
965 list_move_tail(&work->entry, head);
966 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
967 break;
968 }
969
970 /*
971 * If we're already inside safe list traversal and have moved
972 * multiple works to the scheduled queue, the next position
973 * needs to be updated.
974 */
975 if (nextp)
976 *nextp = n;
977}
978
3aa62497 979static void cwq_activate_delayed_work(struct work_struct *work)
bf4ede01 980{
3aa62497 981 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bf4ede01
TH
982
983 trace_workqueue_activate_work(work);
984 move_linked_works(work, &cwq->pool->worklist, NULL);
985 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
986 cwq->nr_active++;
987}
988
3aa62497
LJ
989static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
990{
991 struct work_struct *work = list_first_entry(&cwq->delayed_works,
992 struct work_struct, entry);
993
994 cwq_activate_delayed_work(work);
995}
996
bf4ede01
TH
997/**
998 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
999 * @cwq: cwq of interest
1000 * @color: color of work which left the queue
bf4ede01
TH
1001 *
1002 * A work either has completed or is removed from pending queue,
1003 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1004 *
1005 * CONTEXT:
d565ed63 1006 * spin_lock_irq(pool->lock).
bf4ede01 1007 */
b3f9f405 1008static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
bf4ede01
TH
1009{
1010 /* ignore uncolored works */
1011 if (color == WORK_NO_COLOR)
1012 return;
1013
1014 cwq->nr_in_flight[color]--;
1015
b3f9f405
LJ
1016 cwq->nr_active--;
1017 if (!list_empty(&cwq->delayed_works)) {
1018 /* one down, submit a delayed one */
1019 if (cwq->nr_active < cwq->max_active)
1020 cwq_activate_first_delayed(cwq);
bf4ede01
TH
1021 }
1022
1023 /* is flush in progress and are we at the flushing tip? */
1024 if (likely(cwq->flush_color != color))
1025 return;
1026
1027 /* are there still in-flight works? */
1028 if (cwq->nr_in_flight[color])
1029 return;
1030
1031 /* this cwq is done, clear flush_color */
1032 cwq->flush_color = -1;
1033
1034 /*
1035 * If this was the last cwq, wake up the first flusher. It
1036 * will handle the rest.
1037 */
1038 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1039 complete(&cwq->wq->first_flusher->done);
1040}
1041
36e227d2 1042/**
bbb68dfa 1043 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1044 * @work: work item to steal
1045 * @is_dwork: @work is a delayed_work
bbb68dfa 1046 * @flags: place to store irq state
36e227d2
TH
1047 *
1048 * Try to grab PENDING bit of @work. This function can handle @work in any
1049 * stable state - idle, on timer or on worklist. Return values are
1050 *
1051 * 1 if @work was pending and we successfully stole PENDING
1052 * 0 if @work was idle and we claimed PENDING
1053 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1054 * -ENOENT if someone else is canceling @work, this state may persist
1055 * for arbitrarily long
36e227d2 1056 *
bbb68dfa 1057 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1058 * interrupted while holding PENDING and @work off queue, irq must be
1059 * disabled on entry. This, combined with delayed_work->timer being
1060 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1061 *
1062 * On successful return, >= 0, irq is disabled and the caller is
1063 * responsible for releasing it using local_irq_restore(*@flags).
1064 *
e0aecdd8 1065 * This function is safe to call from any context including IRQ handler.
bf4ede01 1066 */
bbb68dfa
TH
1067static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1068 unsigned long *flags)
bf4ede01 1069{
d565ed63 1070 struct worker_pool *pool;
0b3dae68 1071 struct cpu_workqueue_struct *cwq;
bf4ede01 1072
bbb68dfa
TH
1073 local_irq_save(*flags);
1074
36e227d2
TH
1075 /* try to steal the timer if it exists */
1076 if (is_dwork) {
1077 struct delayed_work *dwork = to_delayed_work(work);
1078
e0aecdd8
TH
1079 /*
1080 * dwork->timer is irqsafe. If del_timer() fails, it's
1081 * guaranteed that the timer is not queued anywhere and not
1082 * running on the local CPU.
1083 */
36e227d2
TH
1084 if (likely(del_timer(&dwork->timer)))
1085 return 1;
1086 }
1087
1088 /* try to claim PENDING the normal way */
bf4ede01
TH
1089 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1090 return 0;
1091
1092 /*
1093 * The queueing is in progress, or it is already queued. Try to
1094 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1095 */
d565ed63
TH
1096 pool = get_work_pool(work);
1097 if (!pool)
bbb68dfa 1098 goto fail;
bf4ede01 1099
d565ed63 1100 spin_lock(&pool->lock);
0b3dae68
LJ
1101 /*
1102 * work->data is guaranteed to point to cwq only while the work
1103 * item is queued on cwq->wq, and both updating work->data to point
1104 * to cwq on queueing and to pool on dequeueing are done under
1105 * cwq->pool->lock. This in turn guarantees that, if work->data
1106 * points to cwq which is associated with a locked pool, the work
1107 * item is currently queued on that pool.
1108 */
1109 cwq = get_work_cwq(work);
16062836
TH
1110 if (cwq && cwq->pool == pool) {
1111 debug_work_deactivate(work);
1112
1113 /*
1114 * A delayed work item cannot be grabbed directly because
1115 * it might have linked NO_COLOR work items which, if left
1116 * on the delayed_list, will confuse cwq->nr_active
1117 * management later on and cause stall. Make sure the work
1118 * item is activated before grabbing.
1119 */
1120 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1121 cwq_activate_delayed_work(work);
1122
1123 list_del_init(&work->entry);
1124 cwq_dec_nr_in_flight(get_work_cwq(work), get_work_color(work));
1125
1126 /* work->data points to cwq iff queued, point to pool */
1127 set_work_pool_and_keep_pending(work, pool->id);
1128
1129 spin_unlock(&pool->lock);
1130 return 1;
bf4ede01 1131 }
d565ed63 1132 spin_unlock(&pool->lock);
bbb68dfa
TH
1133fail:
1134 local_irq_restore(*flags);
1135 if (work_is_canceling(work))
1136 return -ENOENT;
1137 cpu_relax();
36e227d2 1138 return -EAGAIN;
bf4ede01
TH
1139}
1140
4690c4ab 1141/**
706026c2 1142 * insert_work - insert a work into a pool
4690c4ab
TH
1143 * @cwq: cwq @work belongs to
1144 * @work: work to insert
1145 * @head: insertion point
1146 * @extra_flags: extra WORK_STRUCT_* flags to set
1147 *
706026c2
TH
1148 * Insert @work which belongs to @cwq after @head. @extra_flags is or'd to
1149 * work_struct flags.
4690c4ab
TH
1150 *
1151 * CONTEXT:
d565ed63 1152 * spin_lock_irq(pool->lock).
4690c4ab 1153 */
b89deed3 1154static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
1155 struct work_struct *work, struct list_head *head,
1156 unsigned int extra_flags)
b89deed3 1157{
63d95a91 1158 struct worker_pool *pool = cwq->pool;
e22bee78 1159
4690c4ab 1160 /* we own @work, set data and link */
7a22ad75 1161 set_work_cwq(work, cwq, extra_flags);
1a4d9b0a 1162 list_add_tail(&work->entry, head);
e22bee78
TH
1163
1164 /*
1165 * Ensure either worker_sched_deactivated() sees the above
1166 * list_add_tail() or we see zero nr_running to avoid workers
1167 * lying around lazily while there are works to be processed.
1168 */
1169 smp_mb();
1170
63d95a91
TH
1171 if (__need_more_worker(pool))
1172 wake_up_worker(pool);
b89deed3
ON
1173}
1174
c8efcc25
TH
1175/*
1176 * Test whether @work is being queued from another work executing on the
1177 * same workqueue. This is rather expensive and should only be used from
1178 * cold paths.
1179 */
1180static bool is_chained_work(struct workqueue_struct *wq)
1181{
1182 unsigned long flags;
1183 unsigned int cpu;
1184
706026c2 1185 for_each_wq_cpu(cpu) {
c9e7cf27
TH
1186 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
1187 struct worker_pool *pool = cwq->pool;
c8efcc25
TH
1188 struct worker *worker;
1189 struct hlist_node *pos;
1190 int i;
1191
d565ed63 1192 spin_lock_irqsave(&pool->lock, flags);
c9e7cf27 1193 for_each_busy_worker(worker, i, pos, pool) {
c8efcc25
TH
1194 if (worker->task != current)
1195 continue;
d565ed63 1196 spin_unlock_irqrestore(&pool->lock, flags);
c8efcc25
TH
1197 /*
1198 * I'm @worker, no locking necessary. See if @work
1199 * is headed to the same workqueue.
1200 */
1201 return worker->current_cwq->wq == wq;
1202 }
d565ed63 1203 spin_unlock_irqrestore(&pool->lock, flags);
c8efcc25
TH
1204 }
1205 return false;
1206}
1207
4690c4ab 1208static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1209 struct work_struct *work)
1210{
d565ed63
TH
1211 bool highpri = wq->flags & WQ_HIGHPRI;
1212 struct worker_pool *pool;
502ca9d8 1213 struct cpu_workqueue_struct *cwq;
1e19ffc6 1214 struct list_head *worklist;
8a2e8e5d 1215 unsigned int work_flags;
b75cac93 1216 unsigned int req_cpu = cpu;
8930caba
TH
1217
1218 /*
1219 * While a work item is PENDING && off queue, a task trying to
1220 * steal the PENDING will busy-loop waiting for it to either get
1221 * queued or lose PENDING. Grabbing PENDING and queueing should
1222 * happen with IRQ disabled.
1223 */
1224 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1225
dc186ad7 1226 debug_work_activate(work);
1e19ffc6 1227
c8efcc25 1228 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1229 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1230 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1231 return;
1232
d565ed63 1233 /* determine pool to use */
c7fc77f7 1234 if (!(wq->flags & WQ_UNBOUND)) {
c9e7cf27 1235 struct worker_pool *last_pool;
18aa9eff 1236
57469821 1237 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1238 cpu = raw_smp_processor_id();
1239
18aa9eff 1240 /*
dbf2576e
TH
1241 * It's multi cpu. If @work was previously on a different
1242 * cpu, it might still be running there, in which case the
1243 * work needs to be queued on that cpu to guarantee
1244 * non-reentrancy.
18aa9eff 1245 */
d565ed63 1246 pool = get_std_worker_pool(cpu, highpri);
c9e7cf27 1247 last_pool = get_work_pool(work);
dbf2576e 1248
d565ed63 1249 if (last_pool && last_pool != pool) {
18aa9eff
TH
1250 struct worker *worker;
1251
d565ed63 1252 spin_lock(&last_pool->lock);
18aa9eff 1253
c9e7cf27 1254 worker = find_worker_executing_work(last_pool, work);
18aa9eff
TH
1255
1256 if (worker && worker->current_cwq->wq == wq)
d565ed63 1257 pool = last_pool;
18aa9eff
TH
1258 else {
1259 /* meh... not running there, queue here */
d565ed63
TH
1260 spin_unlock(&last_pool->lock);
1261 spin_lock(&pool->lock);
18aa9eff 1262 }
8930caba 1263 } else {
d565ed63 1264 spin_lock(&pool->lock);
8930caba 1265 }
f3421797 1266 } else {
d565ed63
TH
1267 pool = get_std_worker_pool(WORK_CPU_UNBOUND, highpri);
1268 spin_lock(&pool->lock);
502ca9d8
TH
1269 }
1270
d565ed63
TH
1271 /* pool determined, get cwq and queue */
1272 cwq = get_cwq(pool->cpu, wq);
b75cac93 1273 trace_workqueue_queue_work(req_cpu, cwq, work);
502ca9d8 1274
f5b2552b 1275 if (WARN_ON(!list_empty(&work->entry))) {
d565ed63 1276 spin_unlock(&pool->lock);
f5b2552b
DC
1277 return;
1278 }
1e19ffc6 1279
73f53c4a 1280 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1281 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1282
1283 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1284 trace_workqueue_activate_work(work);
1e19ffc6 1285 cwq->nr_active++;
3270476a 1286 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1287 } else {
1288 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1289 worklist = &cwq->delayed_works;
8a2e8e5d 1290 }
1e19ffc6 1291
8a2e8e5d 1292 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1293
d565ed63 1294 spin_unlock(&pool->lock);
1da177e4
LT
1295}
1296
0fcb78c2 1297/**
c1a220e7
ZR
1298 * queue_work_on - queue work on specific cpu
1299 * @cpu: CPU number to execute work on
0fcb78c2
REB
1300 * @wq: workqueue to use
1301 * @work: work to queue
1302 *
d4283e93 1303 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1304 *
c1a220e7
ZR
1305 * We queue the work to a specific CPU, the caller must ensure it
1306 * can't go away.
1da177e4 1307 */
d4283e93
TH
1308bool queue_work_on(int cpu, struct workqueue_struct *wq,
1309 struct work_struct *work)
1da177e4 1310{
d4283e93 1311 bool ret = false;
8930caba 1312 unsigned long flags;
ef1ca236 1313
8930caba 1314 local_irq_save(flags);
c1a220e7 1315
22df02bb 1316 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1317 __queue_work(cpu, wq, work);
d4283e93 1318 ret = true;
c1a220e7 1319 }
ef1ca236 1320
8930caba 1321 local_irq_restore(flags);
1da177e4
LT
1322 return ret;
1323}
c1a220e7 1324EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1325
c1a220e7 1326/**
0a13c00e 1327 * queue_work - queue work on a workqueue
c1a220e7
ZR
1328 * @wq: workqueue to use
1329 * @work: work to queue
1330 *
d4283e93 1331 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1332 *
0a13c00e
TH
1333 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1334 * it can be processed by another CPU.
c1a220e7 1335 */
d4283e93 1336bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1337{
57469821 1338 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1339}
0a13c00e 1340EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1341
d8e794df 1342void delayed_work_timer_fn(unsigned long __data)
1da177e4 1343{
52bad64d 1344 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1345
e0aecdd8 1346 /* should have been called from irqsafe timer with irq already off */
60c057bc 1347 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1348}
d8e794df 1349EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1350
7beb2edf
TH
1351static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1352 struct delayed_work *dwork, unsigned long delay)
1da177e4 1353{
7beb2edf
TH
1354 struct timer_list *timer = &dwork->timer;
1355 struct work_struct *work = &dwork->work;
7beb2edf
TH
1356
1357 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1358 timer->data != (unsigned long)dwork);
fc4b514f
TH
1359 WARN_ON_ONCE(timer_pending(timer));
1360 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1361
8852aac2
TH
1362 /*
1363 * If @delay is 0, queue @dwork->work immediately. This is for
1364 * both optimization and correctness. The earliest @timer can
1365 * expire is on the closest next tick and delayed_work users depend
1366 * on that there's no such delay when @delay is 0.
1367 */
1368 if (!delay) {
1369 __queue_work(cpu, wq, &dwork->work);
1370 return;
1371 }
1372
7beb2edf 1373 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1374
60c057bc 1375 dwork->wq = wq;
1265057f 1376 dwork->cpu = cpu;
7beb2edf
TH
1377 timer->expires = jiffies + delay;
1378
1379 if (unlikely(cpu != WORK_CPU_UNBOUND))
1380 add_timer_on(timer, cpu);
1381 else
1382 add_timer(timer);
1da177e4
LT
1383}
1384
0fcb78c2
REB
1385/**
1386 * queue_delayed_work_on - queue work on specific CPU after delay
1387 * @cpu: CPU number to execute work on
1388 * @wq: workqueue to use
af9997e4 1389 * @dwork: work to queue
0fcb78c2
REB
1390 * @delay: number of jiffies to wait before queueing
1391 *
715f1300
TH
1392 * Returns %false if @work was already on a queue, %true otherwise. If
1393 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1394 * execution.
0fcb78c2 1395 */
d4283e93
TH
1396bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1397 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1398{
52bad64d 1399 struct work_struct *work = &dwork->work;
d4283e93 1400 bool ret = false;
8930caba 1401 unsigned long flags;
7a6bc1cd 1402
8930caba
TH
1403 /* read the comment in __queue_work() */
1404 local_irq_save(flags);
7a6bc1cd 1405
22df02bb 1406 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1407 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1408 ret = true;
7a6bc1cd 1409 }
8a3e77cc 1410
8930caba 1411 local_irq_restore(flags);
7a6bc1cd
VP
1412 return ret;
1413}
ae90dd5d 1414EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1415
0a13c00e
TH
1416/**
1417 * queue_delayed_work - queue work on a workqueue after delay
1418 * @wq: workqueue to use
1419 * @dwork: delayable work to queue
1420 * @delay: number of jiffies to wait before queueing
1421 *
715f1300 1422 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1423 */
d4283e93 1424bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1425 struct delayed_work *dwork, unsigned long delay)
1426{
57469821 1427 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1428}
1429EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1430
8376fe22
TH
1431/**
1432 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1433 * @cpu: CPU number to execute work on
1434 * @wq: workqueue to use
1435 * @dwork: work to queue
1436 * @delay: number of jiffies to wait before queueing
1437 *
1438 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1439 * modify @dwork's timer so that it expires after @delay. If @delay is
1440 * zero, @work is guaranteed to be scheduled immediately regardless of its
1441 * current state.
1442 *
1443 * Returns %false if @dwork was idle and queued, %true if @dwork was
1444 * pending and its timer was modified.
1445 *
e0aecdd8 1446 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1447 * See try_to_grab_pending() for details.
1448 */
1449bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1450 struct delayed_work *dwork, unsigned long delay)
1451{
1452 unsigned long flags;
1453 int ret;
c7fc77f7 1454
8376fe22
TH
1455 do {
1456 ret = try_to_grab_pending(&dwork->work, true, &flags);
1457 } while (unlikely(ret == -EAGAIN));
63bc0362 1458
8376fe22
TH
1459 if (likely(ret >= 0)) {
1460 __queue_delayed_work(cpu, wq, dwork, delay);
1461 local_irq_restore(flags);
7a6bc1cd 1462 }
8376fe22
TH
1463
1464 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1465 return ret;
1466}
8376fe22
TH
1467EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1468
1469/**
1470 * mod_delayed_work - modify delay of or queue a delayed work
1471 * @wq: workqueue to use
1472 * @dwork: work to queue
1473 * @delay: number of jiffies to wait before queueing
1474 *
1475 * mod_delayed_work_on() on local CPU.
1476 */
1477bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1478 unsigned long delay)
1479{
1480 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1481}
1482EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1483
c8e55f36
TH
1484/**
1485 * worker_enter_idle - enter idle state
1486 * @worker: worker which is entering idle state
1487 *
1488 * @worker is entering idle state. Update stats and idle timer if
1489 * necessary.
1490 *
1491 * LOCKING:
d565ed63 1492 * spin_lock_irq(pool->lock).
c8e55f36
TH
1493 */
1494static void worker_enter_idle(struct worker *worker)
1da177e4 1495{
bd7bdd43 1496 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1497
1498 BUG_ON(worker->flags & WORKER_IDLE);
1499 BUG_ON(!list_empty(&worker->entry) &&
1500 (worker->hentry.next || worker->hentry.pprev));
1501
cb444766
TH
1502 /* can't use worker_set_flags(), also called from start_worker() */
1503 worker->flags |= WORKER_IDLE;
bd7bdd43 1504 pool->nr_idle++;
e22bee78 1505 worker->last_active = jiffies;
c8e55f36
TH
1506
1507 /* idle_list is LIFO */
bd7bdd43 1508 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1509
628c78e7
TH
1510 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1511 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1512
544ecf31 1513 /*
706026c2 1514 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1515 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1516 * nr_running, the warning may trigger spuriously. Check iff
1517 * unbind is not in progress.
544ecf31 1518 */
24647570 1519 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1520 pool->nr_workers == pool->nr_idle &&
63d95a91 1521 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1522}
1523
1524/**
1525 * worker_leave_idle - leave idle state
1526 * @worker: worker which is leaving idle state
1527 *
1528 * @worker is leaving idle state. Update stats.
1529 *
1530 * LOCKING:
d565ed63 1531 * spin_lock_irq(pool->lock).
c8e55f36
TH
1532 */
1533static void worker_leave_idle(struct worker *worker)
1534{
bd7bdd43 1535 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1536
1537 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1538 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1539 pool->nr_idle--;
c8e55f36
TH
1540 list_del_init(&worker->entry);
1541}
1542
e22bee78 1543/**
706026c2 1544 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock pool
e22bee78
TH
1545 * @worker: self
1546 *
1547 * Works which are scheduled while the cpu is online must at least be
1548 * scheduled to a worker which is bound to the cpu so that if they are
1549 * flushed from cpu callbacks while cpu is going down, they are
1550 * guaranteed to execute on the cpu.
1551 *
1552 * This function is to be used by rogue workers and rescuers to bind
1553 * themselves to the target cpu and may race with cpu going down or
1554 * coming online. kthread_bind() can't be used because it may put the
1555 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1556 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1557 * [dis]associated in the meantime.
1558 *
706026c2 1559 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1560 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1561 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1562 * enters idle state or fetches works without dropping lock, it can
1563 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1564 *
1565 * CONTEXT:
d565ed63 1566 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1567 * held.
1568 *
1569 * RETURNS:
706026c2 1570 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1571 * bound), %false if offline.
1572 */
1573static bool worker_maybe_bind_and_lock(struct worker *worker)
d565ed63 1574__acquires(&pool->lock)
e22bee78 1575{
24647570 1576 struct worker_pool *pool = worker->pool;
e22bee78
TH
1577 struct task_struct *task = worker->task;
1578
1579 while (true) {
4e6045f1 1580 /*
e22bee78
TH
1581 * The following call may fail, succeed or succeed
1582 * without actually migrating the task to the cpu if
1583 * it races with cpu hotunplug operation. Verify
24647570 1584 * against POOL_DISASSOCIATED.
4e6045f1 1585 */
24647570 1586 if (!(pool->flags & POOL_DISASSOCIATED))
ec22ca5e 1587 set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu));
e22bee78 1588
d565ed63 1589 spin_lock_irq(&pool->lock);
24647570 1590 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1591 return false;
ec22ca5e 1592 if (task_cpu(task) == pool->cpu &&
e22bee78 1593 cpumask_equal(&current->cpus_allowed,
ec22ca5e 1594 get_cpu_mask(pool->cpu)))
e22bee78 1595 return true;
d565ed63 1596 spin_unlock_irq(&pool->lock);
e22bee78 1597
5035b20f
TH
1598 /*
1599 * We've raced with CPU hot[un]plug. Give it a breather
1600 * and retry migration. cond_resched() is required here;
1601 * otherwise, we might deadlock against cpu_stop trying to
1602 * bring down the CPU on non-preemptive kernel.
1603 */
e22bee78 1604 cpu_relax();
5035b20f 1605 cond_resched();
e22bee78
TH
1606 }
1607}
1608
25511a47 1609/*
ea1abd61 1610 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1611 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1612 */
1613static void idle_worker_rebind(struct worker *worker)
1614{
5f7dabfd
LJ
1615 /* CPU may go down again inbetween, clear UNBOUND only on success */
1616 if (worker_maybe_bind_and_lock(worker))
1617 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1618
ea1abd61
LJ
1619 /* rebind complete, become available again */
1620 list_add(&worker->entry, &worker->pool->idle_list);
d565ed63 1621 spin_unlock_irq(&worker->pool->lock);
25511a47
TH
1622}
1623
e22bee78 1624/*
25511a47 1625 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1626 * the associated cpu which is coming back online. This is scheduled by
1627 * cpu up but can race with other cpu hotplug operations and may be
1628 * executed twice without intervening cpu down.
e22bee78 1629 */
25511a47 1630static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1631{
1632 struct worker *worker = container_of(work, struct worker, rebind_work);
e22bee78 1633
eab6d828
LJ
1634 if (worker_maybe_bind_and_lock(worker))
1635 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78 1636
d565ed63 1637 spin_unlock_irq(&worker->pool->lock);
e22bee78
TH
1638}
1639
25511a47 1640/**
94cf58bb
TH
1641 * rebind_workers - rebind all workers of a pool to the associated CPU
1642 * @pool: pool of interest
25511a47 1643 *
94cf58bb 1644 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
25511a47
TH
1645 * is different for idle and busy ones.
1646 *
ea1abd61
LJ
1647 * Idle ones will be removed from the idle_list and woken up. They will
1648 * add themselves back after completing rebind. This ensures that the
1649 * idle_list doesn't contain any unbound workers when re-bound busy workers
1650 * try to perform local wake-ups for concurrency management.
25511a47 1651 *
ea1abd61
LJ
1652 * Busy workers can rebind after they finish their current work items.
1653 * Queueing the rebind work item at the head of the scheduled list is
1654 * enough. Note that nr_running will be properly bumped as busy workers
1655 * rebind.
25511a47 1656 *
ea1abd61
LJ
1657 * On return, all non-manager workers are scheduled for rebind - see
1658 * manage_workers() for the manager special case. Any idle worker
1659 * including the manager will not appear on @idle_list until rebind is
1660 * complete, making local wake-ups safe.
25511a47 1661 */
94cf58bb 1662static void rebind_workers(struct worker_pool *pool)
25511a47 1663{
ea1abd61 1664 struct worker *worker, *n;
25511a47
TH
1665 struct hlist_node *pos;
1666 int i;
1667
94cf58bb
TH
1668 lockdep_assert_held(&pool->assoc_mutex);
1669 lockdep_assert_held(&pool->lock);
25511a47 1670
5f7dabfd 1671 /* dequeue and kick idle ones */
94cf58bb
TH
1672 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1673 /*
1674 * idle workers should be off @pool->idle_list until rebind
1675 * is complete to avoid receiving premature local wake-ups.
1676 */
1677 list_del_init(&worker->entry);
25511a47 1678
94cf58bb
TH
1679 /*
1680 * worker_thread() will see the above dequeuing and call
1681 * idle_worker_rebind().
1682 */
1683 wake_up_process(worker->task);
1684 }
25511a47 1685
94cf58bb
TH
1686 /* rebind busy workers */
1687 for_each_busy_worker(worker, i, pos, pool) {
1688 struct work_struct *rebind_work = &worker->rebind_work;
1689 struct workqueue_struct *wq;
25511a47 1690
94cf58bb
TH
1691 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1692 work_data_bits(rebind_work)))
1693 continue;
25511a47 1694
94cf58bb 1695 debug_work_activate(rebind_work);
90beca5d 1696
94cf58bb
TH
1697 /*
1698 * wq doesn't really matter but let's keep @worker->pool
1699 * and @cwq->pool consistent for sanity.
1700 */
1701 if (std_worker_pool_pri(worker->pool))
1702 wq = system_highpri_wq;
1703 else
1704 wq = system_wq;
1705
1706 insert_work(get_cwq(pool->cpu, wq), rebind_work,
1707 worker->scheduled.next,
1708 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1709 }
25511a47
TH
1710}
1711
c34056a3
TH
1712static struct worker *alloc_worker(void)
1713{
1714 struct worker *worker;
1715
1716 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1717 if (worker) {
1718 INIT_LIST_HEAD(&worker->entry);
affee4b2 1719 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1720 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1721 /* on creation a worker is in !idle && prep state */
1722 worker->flags = WORKER_PREP;
c8e55f36 1723 }
c34056a3
TH
1724 return worker;
1725}
1726
1727/**
1728 * create_worker - create a new workqueue worker
63d95a91 1729 * @pool: pool the new worker will belong to
c34056a3 1730 *
63d95a91 1731 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1732 * can be started by calling start_worker() or destroyed using
1733 * destroy_worker().
1734 *
1735 * CONTEXT:
1736 * Might sleep. Does GFP_KERNEL allocations.
1737 *
1738 * RETURNS:
1739 * Pointer to the newly created worker.
1740 */
bc2ae0f5 1741static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1742{
e34cdddb 1743 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
c34056a3 1744 struct worker *worker = NULL;
f3421797 1745 int id = -1;
c34056a3 1746
d565ed63 1747 spin_lock_irq(&pool->lock);
bd7bdd43 1748 while (ida_get_new(&pool->worker_ida, &id)) {
d565ed63 1749 spin_unlock_irq(&pool->lock);
bd7bdd43 1750 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1751 goto fail;
d565ed63 1752 spin_lock_irq(&pool->lock);
c34056a3 1753 }
d565ed63 1754 spin_unlock_irq(&pool->lock);
c34056a3
TH
1755
1756 worker = alloc_worker();
1757 if (!worker)
1758 goto fail;
1759
bd7bdd43 1760 worker->pool = pool;
c34056a3
TH
1761 worker->id = id;
1762
ec22ca5e 1763 if (pool->cpu != WORK_CPU_UNBOUND)
94dcf29a 1764 worker->task = kthread_create_on_node(worker_thread,
ec22ca5e
TH
1765 worker, cpu_to_node(pool->cpu),
1766 "kworker/%u:%d%s", pool->cpu, id, pri);
f3421797
TH
1767 else
1768 worker->task = kthread_create(worker_thread, worker,
3270476a 1769 "kworker/u:%d%s", id, pri);
c34056a3
TH
1770 if (IS_ERR(worker->task))
1771 goto fail;
1772
e34cdddb 1773 if (std_worker_pool_pri(pool))
3270476a
TH
1774 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1775
db7bccf4 1776 /*
bc2ae0f5 1777 * Determine CPU binding of the new worker depending on
24647570 1778 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
bc2ae0f5
TH
1779 * flag remains stable across this function. See the comments
1780 * above the flag definition for details.
1781 *
1782 * As an unbound worker may later become a regular one if CPU comes
1783 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1784 */
24647570 1785 if (!(pool->flags & POOL_DISASSOCIATED)) {
ec22ca5e 1786 kthread_bind(worker->task, pool->cpu);
bc2ae0f5 1787 } else {
db7bccf4 1788 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1789 worker->flags |= WORKER_UNBOUND;
f3421797 1790 }
c34056a3
TH
1791
1792 return worker;
1793fail:
1794 if (id >= 0) {
d565ed63 1795 spin_lock_irq(&pool->lock);
bd7bdd43 1796 ida_remove(&pool->worker_ida, id);
d565ed63 1797 spin_unlock_irq(&pool->lock);
c34056a3
TH
1798 }
1799 kfree(worker);
1800 return NULL;
1801}
1802
1803/**
1804 * start_worker - start a newly created worker
1805 * @worker: worker to start
1806 *
706026c2 1807 * Make the pool aware of @worker and start it.
c34056a3
TH
1808 *
1809 * CONTEXT:
d565ed63 1810 * spin_lock_irq(pool->lock).
c34056a3
TH
1811 */
1812static void start_worker(struct worker *worker)
1813{
cb444766 1814 worker->flags |= WORKER_STARTED;
bd7bdd43 1815 worker->pool->nr_workers++;
c8e55f36 1816 worker_enter_idle(worker);
c34056a3
TH
1817 wake_up_process(worker->task);
1818}
1819
1820/**
1821 * destroy_worker - destroy a workqueue worker
1822 * @worker: worker to be destroyed
1823 *
706026c2 1824 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1825 *
1826 * CONTEXT:
d565ed63 1827 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1828 */
1829static void destroy_worker(struct worker *worker)
1830{
bd7bdd43 1831 struct worker_pool *pool = worker->pool;
c34056a3
TH
1832 int id = worker->id;
1833
1834 /* sanity check frenzy */
1835 BUG_ON(worker->current_work);
affee4b2 1836 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1837
c8e55f36 1838 if (worker->flags & WORKER_STARTED)
bd7bdd43 1839 pool->nr_workers--;
c8e55f36 1840 if (worker->flags & WORKER_IDLE)
bd7bdd43 1841 pool->nr_idle--;
c8e55f36
TH
1842
1843 list_del_init(&worker->entry);
cb444766 1844 worker->flags |= WORKER_DIE;
c8e55f36 1845
d565ed63 1846 spin_unlock_irq(&pool->lock);
c8e55f36 1847
c34056a3
TH
1848 kthread_stop(worker->task);
1849 kfree(worker);
1850
d565ed63 1851 spin_lock_irq(&pool->lock);
bd7bdd43 1852 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1853}
1854
63d95a91 1855static void idle_worker_timeout(unsigned long __pool)
e22bee78 1856{
63d95a91 1857 struct worker_pool *pool = (void *)__pool;
e22bee78 1858
d565ed63 1859 spin_lock_irq(&pool->lock);
e22bee78 1860
63d95a91 1861 if (too_many_workers(pool)) {
e22bee78
TH
1862 struct worker *worker;
1863 unsigned long expires;
1864
1865 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1866 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1867 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1868
1869 if (time_before(jiffies, expires))
63d95a91 1870 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1871 else {
1872 /* it's been idle for too long, wake up manager */
11ebea50 1873 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1874 wake_up_worker(pool);
d5abe669 1875 }
e22bee78
TH
1876 }
1877
d565ed63 1878 spin_unlock_irq(&pool->lock);
e22bee78 1879}
d5abe669 1880
e22bee78
TH
1881static bool send_mayday(struct work_struct *work)
1882{
1883 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1884 struct workqueue_struct *wq = cwq->wq;
f3421797 1885 unsigned int cpu;
e22bee78
TH
1886
1887 if (!(wq->flags & WQ_RESCUER))
1888 return false;
1889
1890 /* mayday mayday mayday */
ec22ca5e 1891 cpu = cwq->pool->cpu;
f3421797
TH
1892 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1893 if (cpu == WORK_CPU_UNBOUND)
1894 cpu = 0;
f2e005aa 1895 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1896 wake_up_process(wq->rescuer->task);
1897 return true;
1898}
1899
706026c2 1900static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1901{
63d95a91 1902 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1903 struct work_struct *work;
1904
d565ed63 1905 spin_lock_irq(&pool->lock);
e22bee78 1906
63d95a91 1907 if (need_to_create_worker(pool)) {
e22bee78
TH
1908 /*
1909 * We've been trying to create a new worker but
1910 * haven't been successful. We might be hitting an
1911 * allocation deadlock. Send distress signals to
1912 * rescuers.
1913 */
63d95a91 1914 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1915 send_mayday(work);
1da177e4 1916 }
e22bee78 1917
d565ed63 1918 spin_unlock_irq(&pool->lock);
e22bee78 1919
63d95a91 1920 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1921}
1922
e22bee78
TH
1923/**
1924 * maybe_create_worker - create a new worker if necessary
63d95a91 1925 * @pool: pool to create a new worker for
e22bee78 1926 *
63d95a91 1927 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1928 * have at least one idle worker on return from this function. If
1929 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1930 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1931 * possible allocation deadlock.
1932 *
1933 * On return, need_to_create_worker() is guaranteed to be false and
1934 * may_start_working() true.
1935 *
1936 * LOCKING:
d565ed63 1937 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1938 * multiple times. Does GFP_KERNEL allocations. Called only from
1939 * manager.
1940 *
1941 * RETURNS:
d565ed63 1942 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1943 * otherwise.
1944 */
63d95a91 1945static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1946__releases(&pool->lock)
1947__acquires(&pool->lock)
1da177e4 1948{
63d95a91 1949 if (!need_to_create_worker(pool))
e22bee78
TH
1950 return false;
1951restart:
d565ed63 1952 spin_unlock_irq(&pool->lock);
9f9c2364 1953
e22bee78 1954 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1955 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1956
1957 while (true) {
1958 struct worker *worker;
1959
bc2ae0f5 1960 worker = create_worker(pool);
e22bee78 1961 if (worker) {
63d95a91 1962 del_timer_sync(&pool->mayday_timer);
d565ed63 1963 spin_lock_irq(&pool->lock);
e22bee78 1964 start_worker(worker);
63d95a91 1965 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
1966 return true;
1967 }
1968
63d95a91 1969 if (!need_to_create_worker(pool))
e22bee78 1970 break;
1da177e4 1971
e22bee78
TH
1972 __set_current_state(TASK_INTERRUPTIBLE);
1973 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1974
63d95a91 1975 if (!need_to_create_worker(pool))
e22bee78
TH
1976 break;
1977 }
1978
63d95a91 1979 del_timer_sync(&pool->mayday_timer);
d565ed63 1980 spin_lock_irq(&pool->lock);
63d95a91 1981 if (need_to_create_worker(pool))
e22bee78
TH
1982 goto restart;
1983 return true;
1984}
1985
1986/**
1987 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1988 * @pool: pool to destroy workers for
e22bee78 1989 *
63d95a91 1990 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1991 * IDLE_WORKER_TIMEOUT.
1992 *
1993 * LOCKING:
d565ed63 1994 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1995 * multiple times. Called only from manager.
1996 *
1997 * RETURNS:
d565ed63 1998 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1999 * otherwise.
2000 */
63d95a91 2001static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2002{
2003 bool ret = false;
1da177e4 2004
63d95a91 2005 while (too_many_workers(pool)) {
e22bee78
TH
2006 struct worker *worker;
2007 unsigned long expires;
3af24433 2008
63d95a91 2009 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2010 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2011
e22bee78 2012 if (time_before(jiffies, expires)) {
63d95a91 2013 mod_timer(&pool->idle_timer, expires);
3af24433 2014 break;
e22bee78 2015 }
1da177e4 2016
e22bee78
TH
2017 destroy_worker(worker);
2018 ret = true;
1da177e4 2019 }
1e19ffc6 2020
e22bee78 2021 return ret;
1e19ffc6
TH
2022}
2023
73f53c4a 2024/**
e22bee78
TH
2025 * manage_workers - manage worker pool
2026 * @worker: self
73f53c4a 2027 *
706026c2 2028 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2029 * to. At any given time, there can be only zero or one manager per
706026c2 2030 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2031 *
2032 * The caller can safely start processing works on false return. On
2033 * true return, it's guaranteed that need_to_create_worker() is false
2034 * and may_start_working() is true.
73f53c4a
TH
2035 *
2036 * CONTEXT:
d565ed63 2037 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2038 * multiple times. Does GFP_KERNEL allocations.
2039 *
2040 * RETURNS:
d565ed63
TH
2041 * spin_lock_irq(pool->lock) which may be released and regrabbed
2042 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2043 */
e22bee78 2044static bool manage_workers(struct worker *worker)
73f53c4a 2045{
63d95a91 2046 struct worker_pool *pool = worker->pool;
e22bee78 2047 bool ret = false;
73f53c4a 2048
ee378aa4 2049 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78 2050 return ret;
1e19ffc6 2051
552a37e9 2052 pool->flags |= POOL_MANAGING_WORKERS;
73f53c4a 2053
ee378aa4
LJ
2054 /*
2055 * To simplify both worker management and CPU hotplug, hold off
2056 * management while hotplug is in progress. CPU hotplug path can't
2057 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2058 * lead to idle worker depletion (all become busy thinking someone
2059 * else is managing) which in turn can result in deadlock under
b2eb83d1 2060 * extreme circumstances. Use @pool->assoc_mutex to synchronize
ee378aa4
LJ
2061 * manager against CPU hotplug.
2062 *
b2eb83d1 2063 * assoc_mutex would always be free unless CPU hotplug is in
d565ed63 2064 * progress. trylock first without dropping @pool->lock.
ee378aa4 2065 */
b2eb83d1 2066 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
d565ed63 2067 spin_unlock_irq(&pool->lock);
b2eb83d1 2068 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2069 /*
2070 * CPU hotplug could have happened while we were waiting
b2eb83d1 2071 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4 2072 * because manager isn't either on idle or busy list, and
706026c2 2073 * @pool's state and ours could have deviated.
ee378aa4 2074 *
b2eb83d1 2075 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4 2076 * simply try to bind. It will succeed or fail depending
706026c2 2077 * on @pool's current state. Try it and adjust
ee378aa4
LJ
2078 * %WORKER_UNBOUND accordingly.
2079 */
2080 if (worker_maybe_bind_and_lock(worker))
2081 worker->flags &= ~WORKER_UNBOUND;
2082 else
2083 worker->flags |= WORKER_UNBOUND;
73f53c4a 2084
ee378aa4
LJ
2085 ret = true;
2086 }
73f53c4a 2087
11ebea50 2088 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2089
2090 /*
e22bee78
TH
2091 * Destroy and then create so that may_start_working() is true
2092 * on return.
73f53c4a 2093 */
63d95a91
TH
2094 ret |= maybe_destroy_workers(pool);
2095 ret |= maybe_create_worker(pool);
e22bee78 2096
552a37e9 2097 pool->flags &= ~POOL_MANAGING_WORKERS;
b2eb83d1 2098 mutex_unlock(&pool->assoc_mutex);
e22bee78 2099 return ret;
73f53c4a
TH
2100}
2101
a62428c0
TH
2102/**
2103 * process_one_work - process single work
c34056a3 2104 * @worker: self
a62428c0
TH
2105 * @work: work to process
2106 *
2107 * Process @work. This function contains all the logics necessary to
2108 * process a single work including synchronization against and
2109 * interaction with other workers on the same cpu, queueing and
2110 * flushing. As long as context requirement is met, any worker can
2111 * call this function to process a work.
2112 *
2113 * CONTEXT:
d565ed63 2114 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2115 */
c34056a3 2116static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2117__releases(&pool->lock)
2118__acquires(&pool->lock)
a62428c0 2119{
7e11629d 2120 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43 2121 struct worker_pool *pool = worker->pool;
fb0e7beb 2122 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2123 int work_color;
7e11629d 2124 struct worker *collision;
a62428c0
TH
2125#ifdef CONFIG_LOCKDEP
2126 /*
2127 * It is permissible to free the struct work_struct from
2128 * inside the function that is called from it, this we need to
2129 * take into account for lockdep too. To avoid bogus "held
2130 * lock freed" warnings as well as problems when looking into
2131 * work->lockdep_map, make a copy and use that here.
2132 */
4d82a1de
PZ
2133 struct lockdep_map lockdep_map;
2134
2135 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2136#endif
6fec10a1
TH
2137 /*
2138 * Ensure we're on the correct CPU. DISASSOCIATED test is
2139 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2140 * unbound or a disassociated pool.
6fec10a1 2141 */
5f7dabfd 2142 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2143 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2144 raw_smp_processor_id() != pool->cpu);
25511a47 2145
7e11629d
TH
2146 /*
2147 * A single work shouldn't be executed concurrently by
2148 * multiple workers on a single cpu. Check whether anyone is
2149 * already processing the work. If so, defer the work to the
2150 * currently executing one.
2151 */
c9e7cf27 2152 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2153 if (unlikely(collision)) {
2154 move_linked_works(work, &collision->scheduled, NULL);
2155 return;
2156 }
2157
8930caba 2158 /* claim and dequeue */
a62428c0 2159 debug_work_deactivate(work);
c9e7cf27 2160 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2161 worker->current_work = work;
a2c1c57b 2162 worker->current_func = work->func;
8cca0eea 2163 worker->current_cwq = cwq;
73f53c4a 2164 work_color = get_work_color(work);
7a22ad75 2165
a62428c0
TH
2166 list_del_init(&work->entry);
2167
fb0e7beb
TH
2168 /*
2169 * CPU intensive works don't participate in concurrency
2170 * management. They're the scheduler's responsibility.
2171 */
2172 if (unlikely(cpu_intensive))
2173 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2174
974271c4 2175 /*
d565ed63 2176 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2177 * executed ASAP. Wake up another worker if necessary.
2178 */
63d95a91
TH
2179 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2180 wake_up_worker(pool);
974271c4 2181
8930caba 2182 /*
7c3eed5c 2183 * Record the last pool and clear PENDING which should be the last
d565ed63 2184 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2185 * PENDING and queued state changes happen together while IRQ is
2186 * disabled.
8930caba 2187 */
7c3eed5c 2188 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2189
d565ed63 2190 spin_unlock_irq(&pool->lock);
a62428c0 2191
e159489b 2192 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2193 lock_map_acquire(&lockdep_map);
e36c886a 2194 trace_workqueue_execute_start(work);
a2c1c57b 2195 worker->current_func(work);
e36c886a
AV
2196 /*
2197 * While we must be careful to not use "work" after this, the trace
2198 * point will only record its address.
2199 */
2200 trace_workqueue_execute_end(work);
a62428c0
TH
2201 lock_map_release(&lockdep_map);
2202 lock_map_release(&cwq->wq->lockdep_map);
2203
2204 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2205 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2206 " last function: %pf\n",
a2c1c57b
TH
2207 current->comm, preempt_count(), task_pid_nr(current),
2208 worker->current_func);
a62428c0
TH
2209 debug_show_held_locks(current);
2210 dump_stack();
2211 }
2212
d565ed63 2213 spin_lock_irq(&pool->lock);
a62428c0 2214
fb0e7beb
TH
2215 /* clear cpu intensive status */
2216 if (unlikely(cpu_intensive))
2217 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2218
a62428c0 2219 /* we're done with it, release */
42f8570f 2220 hash_del(&worker->hentry);
c34056a3 2221 worker->current_work = NULL;
a2c1c57b 2222 worker->current_func = NULL;
8cca0eea 2223 worker->current_cwq = NULL;
b3f9f405 2224 cwq_dec_nr_in_flight(cwq, work_color);
a62428c0
TH
2225}
2226
affee4b2
TH
2227/**
2228 * process_scheduled_works - process scheduled works
2229 * @worker: self
2230 *
2231 * Process all scheduled works. Please note that the scheduled list
2232 * may change while processing a work, so this function repeatedly
2233 * fetches a work from the top and executes it.
2234 *
2235 * CONTEXT:
d565ed63 2236 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2237 * multiple times.
2238 */
2239static void process_scheduled_works(struct worker *worker)
1da177e4 2240{
affee4b2
TH
2241 while (!list_empty(&worker->scheduled)) {
2242 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2243 struct work_struct, entry);
c34056a3 2244 process_one_work(worker, work);
1da177e4 2245 }
1da177e4
LT
2246}
2247
4690c4ab
TH
2248/**
2249 * worker_thread - the worker thread function
c34056a3 2250 * @__worker: self
4690c4ab 2251 *
706026c2
TH
2252 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools
2253 * of these per each cpu. These workers process all works regardless of
e22bee78
TH
2254 * their specific target workqueue. The only exception is works which
2255 * belong to workqueues with a rescuer which will be explained in
2256 * rescuer_thread().
4690c4ab 2257 */
c34056a3 2258static int worker_thread(void *__worker)
1da177e4 2259{
c34056a3 2260 struct worker *worker = __worker;
bd7bdd43 2261 struct worker_pool *pool = worker->pool;
1da177e4 2262
e22bee78
TH
2263 /* tell the scheduler that this is a workqueue worker */
2264 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2265woke_up:
d565ed63 2266 spin_lock_irq(&pool->lock);
1da177e4 2267
5f7dabfd
LJ
2268 /* we are off idle list if destruction or rebind is requested */
2269 if (unlikely(list_empty(&worker->entry))) {
d565ed63 2270 spin_unlock_irq(&pool->lock);
25511a47 2271
5f7dabfd 2272 /* if DIE is set, destruction is requested */
25511a47
TH
2273 if (worker->flags & WORKER_DIE) {
2274 worker->task->flags &= ~PF_WQ_WORKER;
2275 return 0;
2276 }
2277
5f7dabfd 2278 /* otherwise, rebind */
25511a47
TH
2279 idle_worker_rebind(worker);
2280 goto woke_up;
c8e55f36 2281 }
affee4b2 2282
c8e55f36 2283 worker_leave_idle(worker);
db7bccf4 2284recheck:
e22bee78 2285 /* no more worker necessary? */
63d95a91 2286 if (!need_more_worker(pool))
e22bee78
TH
2287 goto sleep;
2288
2289 /* do we need to manage? */
63d95a91 2290 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2291 goto recheck;
2292
c8e55f36
TH
2293 /*
2294 * ->scheduled list can only be filled while a worker is
2295 * preparing to process a work or actually processing it.
2296 * Make sure nobody diddled with it while I was sleeping.
2297 */
2298 BUG_ON(!list_empty(&worker->scheduled));
2299
e22bee78
TH
2300 /*
2301 * When control reaches this point, we're guaranteed to have
2302 * at least one idle worker or that someone else has already
2303 * assumed the manager role.
2304 */
2305 worker_clr_flags(worker, WORKER_PREP);
2306
2307 do {
c8e55f36 2308 struct work_struct *work =
bd7bdd43 2309 list_first_entry(&pool->worklist,
c8e55f36
TH
2310 struct work_struct, entry);
2311
2312 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2313 /* optimization path, not strictly necessary */
2314 process_one_work(worker, work);
2315 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2316 process_scheduled_works(worker);
c8e55f36
TH
2317 } else {
2318 move_linked_works(work, &worker->scheduled, NULL);
2319 process_scheduled_works(worker);
affee4b2 2320 }
63d95a91 2321 } while (keep_working(pool));
e22bee78
TH
2322
2323 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2324sleep:
63d95a91 2325 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2326 goto recheck;
d313dd85 2327
c8e55f36 2328 /*
d565ed63
TH
2329 * pool->lock is held and there's no work to process and no need to
2330 * manage, sleep. Workers are woken up only while holding
2331 * pool->lock or from local cpu, so setting the current state
2332 * before releasing pool->lock is enough to prevent losing any
2333 * event.
c8e55f36
TH
2334 */
2335 worker_enter_idle(worker);
2336 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2337 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2338 schedule();
2339 goto woke_up;
1da177e4
LT
2340}
2341
e22bee78
TH
2342/**
2343 * rescuer_thread - the rescuer thread function
111c225a 2344 * @__rescuer: self
e22bee78
TH
2345 *
2346 * Workqueue rescuer thread function. There's one rescuer for each
2347 * workqueue which has WQ_RESCUER set.
2348 *
706026c2 2349 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2350 * worker which uses GFP_KERNEL allocation which has slight chance of
2351 * developing into deadlock if some works currently on the same queue
2352 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2353 * the problem rescuer solves.
2354 *
706026c2
TH
2355 * When such condition is possible, the pool summons rescuers of all
2356 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2357 * those works so that forward progress can be guaranteed.
2358 *
2359 * This should happen rarely.
2360 */
111c225a 2361static int rescuer_thread(void *__rescuer)
e22bee78 2362{
111c225a
TH
2363 struct worker *rescuer = __rescuer;
2364 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2365 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2366 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2367 unsigned int cpu;
2368
2369 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2370
2371 /*
2372 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2373 * doesn't participate in concurrency management.
2374 */
2375 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2376repeat:
2377 set_current_state(TASK_INTERRUPTIBLE);
2378
412d32e6
MG
2379 if (kthread_should_stop()) {
2380 __set_current_state(TASK_RUNNING);
111c225a 2381 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2382 return 0;
412d32e6 2383 }
e22bee78 2384
f3421797
TH
2385 /*
2386 * See whether any cpu is asking for help. Unbounded
2387 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2388 */
f2e005aa 2389 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2390 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2391 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43 2392 struct worker_pool *pool = cwq->pool;
e22bee78
TH
2393 struct work_struct *work, *n;
2394
2395 __set_current_state(TASK_RUNNING);
f2e005aa 2396 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2397
2398 /* migrate to the target cpu if possible */
bd7bdd43 2399 rescuer->pool = pool;
e22bee78
TH
2400 worker_maybe_bind_and_lock(rescuer);
2401
2402 /*
2403 * Slurp in all works issued via this workqueue and
2404 * process'em.
2405 */
2406 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2407 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2408 if (get_work_cwq(work) == cwq)
2409 move_linked_works(work, scheduled, &n);
2410
2411 process_scheduled_works(rescuer);
7576958a
TH
2412
2413 /*
d565ed63 2414 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2415 * regular worker; otherwise, we end up with 0 concurrency
2416 * and stalling the execution.
2417 */
63d95a91
TH
2418 if (keep_working(pool))
2419 wake_up_worker(pool);
7576958a 2420
d565ed63 2421 spin_unlock_irq(&pool->lock);
e22bee78
TH
2422 }
2423
111c225a
TH
2424 /* rescuers should never participate in concurrency management */
2425 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2426 schedule();
2427 goto repeat;
1da177e4
LT
2428}
2429
fc2e4d70
ON
2430struct wq_barrier {
2431 struct work_struct work;
2432 struct completion done;
2433};
2434
2435static void wq_barrier_func(struct work_struct *work)
2436{
2437 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2438 complete(&barr->done);
2439}
2440
4690c4ab
TH
2441/**
2442 * insert_wq_barrier - insert a barrier work
2443 * @cwq: cwq to insert barrier into
2444 * @barr: wq_barrier to insert
affee4b2
TH
2445 * @target: target work to attach @barr to
2446 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2447 *
affee4b2
TH
2448 * @barr is linked to @target such that @barr is completed only after
2449 * @target finishes execution. Please note that the ordering
2450 * guarantee is observed only with respect to @target and on the local
2451 * cpu.
2452 *
2453 * Currently, a queued barrier can't be canceled. This is because
2454 * try_to_grab_pending() can't determine whether the work to be
2455 * grabbed is at the head of the queue and thus can't clear LINKED
2456 * flag of the previous work while there must be a valid next work
2457 * after a work with LINKED flag set.
2458 *
2459 * Note that when @worker is non-NULL, @target may be modified
2460 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2461 *
2462 * CONTEXT:
d565ed63 2463 * spin_lock_irq(pool->lock).
4690c4ab 2464 */
83c22520 2465static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2466 struct wq_barrier *barr,
2467 struct work_struct *target, struct worker *worker)
fc2e4d70 2468{
affee4b2
TH
2469 struct list_head *head;
2470 unsigned int linked = 0;
2471
dc186ad7 2472 /*
d565ed63 2473 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2474 * as we know for sure that this will not trigger any of the
2475 * checks and call back into the fixup functions where we
2476 * might deadlock.
2477 */
ca1cab37 2478 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2479 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2480 init_completion(&barr->done);
83c22520 2481
affee4b2
TH
2482 /*
2483 * If @target is currently being executed, schedule the
2484 * barrier to the worker; otherwise, put it after @target.
2485 */
2486 if (worker)
2487 head = worker->scheduled.next;
2488 else {
2489 unsigned long *bits = work_data_bits(target);
2490
2491 head = target->entry.next;
2492 /* there can already be other linked works, inherit and set */
2493 linked = *bits & WORK_STRUCT_LINKED;
2494 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2495 }
2496
dc186ad7 2497 debug_work_activate(&barr->work);
affee4b2
TH
2498 insert_work(cwq, &barr->work, head,
2499 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2500}
2501
73f53c4a
TH
2502/**
2503 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2504 * @wq: workqueue being flushed
2505 * @flush_color: new flush color, < 0 for no-op
2506 * @work_color: new work color, < 0 for no-op
2507 *
2508 * Prepare cwqs for workqueue flushing.
2509 *
2510 * If @flush_color is non-negative, flush_color on all cwqs should be
2511 * -1. If no cwq has in-flight commands at the specified color, all
2512 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2513 * has in flight commands, its cwq->flush_color is set to
2514 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2515 * wakeup logic is armed and %true is returned.
2516 *
2517 * The caller should have initialized @wq->first_flusher prior to
2518 * calling this function with non-negative @flush_color. If
2519 * @flush_color is negative, no flush color update is done and %false
2520 * is returned.
2521 *
2522 * If @work_color is non-negative, all cwqs should have the same
2523 * work_color which is previous to @work_color and all will be
2524 * advanced to @work_color.
2525 *
2526 * CONTEXT:
2527 * mutex_lock(wq->flush_mutex).
2528 *
2529 * RETURNS:
2530 * %true if @flush_color >= 0 and there's something to flush. %false
2531 * otherwise.
2532 */
2533static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2534 int flush_color, int work_color)
1da177e4 2535{
73f53c4a
TH
2536 bool wait = false;
2537 unsigned int cpu;
1da177e4 2538
73f53c4a
TH
2539 if (flush_color >= 0) {
2540 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2541 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2542 }
2355b70f 2543
f3421797 2544 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2545 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
d565ed63 2546 struct worker_pool *pool = cwq->pool;
fc2e4d70 2547
d565ed63 2548 spin_lock_irq(&pool->lock);
83c22520 2549
73f53c4a
TH
2550 if (flush_color >= 0) {
2551 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2552
73f53c4a
TH
2553 if (cwq->nr_in_flight[flush_color]) {
2554 cwq->flush_color = flush_color;
2555 atomic_inc(&wq->nr_cwqs_to_flush);
2556 wait = true;
2557 }
2558 }
1da177e4 2559
73f53c4a
TH
2560 if (work_color >= 0) {
2561 BUG_ON(work_color != work_next_color(cwq->work_color));
2562 cwq->work_color = work_color;
2563 }
1da177e4 2564
d565ed63 2565 spin_unlock_irq(&pool->lock);
1da177e4 2566 }
2355b70f 2567
73f53c4a
TH
2568 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2569 complete(&wq->first_flusher->done);
14441960 2570
73f53c4a 2571 return wait;
1da177e4
LT
2572}
2573
0fcb78c2 2574/**
1da177e4 2575 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2576 * @wq: workqueue to flush
1da177e4
LT
2577 *
2578 * Forces execution of the workqueue and blocks until its completion.
2579 * This is typically used in driver shutdown handlers.
2580 *
fc2e4d70
ON
2581 * We sleep until all works which were queued on entry have been handled,
2582 * but we are not livelocked by new incoming ones.
1da177e4 2583 */
7ad5b3a5 2584void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2585{
73f53c4a
TH
2586 struct wq_flusher this_flusher = {
2587 .list = LIST_HEAD_INIT(this_flusher.list),
2588 .flush_color = -1,
2589 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2590 };
2591 int next_color;
1da177e4 2592
3295f0ef
IM
2593 lock_map_acquire(&wq->lockdep_map);
2594 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2595
2596 mutex_lock(&wq->flush_mutex);
2597
2598 /*
2599 * Start-to-wait phase
2600 */
2601 next_color = work_next_color(wq->work_color);
2602
2603 if (next_color != wq->flush_color) {
2604 /*
2605 * Color space is not full. The current work_color
2606 * becomes our flush_color and work_color is advanced
2607 * by one.
2608 */
2609 BUG_ON(!list_empty(&wq->flusher_overflow));
2610 this_flusher.flush_color = wq->work_color;
2611 wq->work_color = next_color;
2612
2613 if (!wq->first_flusher) {
2614 /* no flush in progress, become the first flusher */
2615 BUG_ON(wq->flush_color != this_flusher.flush_color);
2616
2617 wq->first_flusher = &this_flusher;
2618
2619 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2620 wq->work_color)) {
2621 /* nothing to flush, done */
2622 wq->flush_color = next_color;
2623 wq->first_flusher = NULL;
2624 goto out_unlock;
2625 }
2626 } else {
2627 /* wait in queue */
2628 BUG_ON(wq->flush_color == this_flusher.flush_color);
2629 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2630 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2631 }
2632 } else {
2633 /*
2634 * Oops, color space is full, wait on overflow queue.
2635 * The next flush completion will assign us
2636 * flush_color and transfer to flusher_queue.
2637 */
2638 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2639 }
2640
2641 mutex_unlock(&wq->flush_mutex);
2642
2643 wait_for_completion(&this_flusher.done);
2644
2645 /*
2646 * Wake-up-and-cascade phase
2647 *
2648 * First flushers are responsible for cascading flushes and
2649 * handling overflow. Non-first flushers can simply return.
2650 */
2651 if (wq->first_flusher != &this_flusher)
2652 return;
2653
2654 mutex_lock(&wq->flush_mutex);
2655
4ce48b37
TH
2656 /* we might have raced, check again with mutex held */
2657 if (wq->first_flusher != &this_flusher)
2658 goto out_unlock;
2659
73f53c4a
TH
2660 wq->first_flusher = NULL;
2661
2662 BUG_ON(!list_empty(&this_flusher.list));
2663 BUG_ON(wq->flush_color != this_flusher.flush_color);
2664
2665 while (true) {
2666 struct wq_flusher *next, *tmp;
2667
2668 /* complete all the flushers sharing the current flush color */
2669 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2670 if (next->flush_color != wq->flush_color)
2671 break;
2672 list_del_init(&next->list);
2673 complete(&next->done);
2674 }
2675
2676 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2677 wq->flush_color != work_next_color(wq->work_color));
2678
2679 /* this flush_color is finished, advance by one */
2680 wq->flush_color = work_next_color(wq->flush_color);
2681
2682 /* one color has been freed, handle overflow queue */
2683 if (!list_empty(&wq->flusher_overflow)) {
2684 /*
2685 * Assign the same color to all overflowed
2686 * flushers, advance work_color and append to
2687 * flusher_queue. This is the start-to-wait
2688 * phase for these overflowed flushers.
2689 */
2690 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2691 tmp->flush_color = wq->work_color;
2692
2693 wq->work_color = work_next_color(wq->work_color);
2694
2695 list_splice_tail_init(&wq->flusher_overflow,
2696 &wq->flusher_queue);
2697 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2698 }
2699
2700 if (list_empty(&wq->flusher_queue)) {
2701 BUG_ON(wq->flush_color != wq->work_color);
2702 break;
2703 }
2704
2705 /*
2706 * Need to flush more colors. Make the next flusher
2707 * the new first flusher and arm cwqs.
2708 */
2709 BUG_ON(wq->flush_color == wq->work_color);
2710 BUG_ON(wq->flush_color != next->flush_color);
2711
2712 list_del_init(&next->list);
2713 wq->first_flusher = next;
2714
2715 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2716 break;
2717
2718 /*
2719 * Meh... this color is already done, clear first
2720 * flusher and repeat cascading.
2721 */
2722 wq->first_flusher = NULL;
2723 }
2724
2725out_unlock:
2726 mutex_unlock(&wq->flush_mutex);
1da177e4 2727}
ae90dd5d 2728EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2729
9c5a2ba7
TH
2730/**
2731 * drain_workqueue - drain a workqueue
2732 * @wq: workqueue to drain
2733 *
2734 * Wait until the workqueue becomes empty. While draining is in progress,
2735 * only chain queueing is allowed. IOW, only currently pending or running
2736 * work items on @wq can queue further work items on it. @wq is flushed
2737 * repeatedly until it becomes empty. The number of flushing is detemined
2738 * by the depth of chaining and should be relatively short. Whine if it
2739 * takes too long.
2740 */
2741void drain_workqueue(struct workqueue_struct *wq)
2742{
2743 unsigned int flush_cnt = 0;
2744 unsigned int cpu;
2745
2746 /*
2747 * __queue_work() needs to test whether there are drainers, is much
2748 * hotter than drain_workqueue() and already looks at @wq->flags.
2749 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2750 */
2751 spin_lock(&workqueue_lock);
2752 if (!wq->nr_drainers++)
2753 wq->flags |= WQ_DRAINING;
2754 spin_unlock(&workqueue_lock);
2755reflush:
2756 flush_workqueue(wq);
2757
2758 for_each_cwq_cpu(cpu, wq) {
2759 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2760 bool drained;
9c5a2ba7 2761
d565ed63 2762 spin_lock_irq(&cwq->pool->lock);
fa2563e4 2763 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
d565ed63 2764 spin_unlock_irq(&cwq->pool->lock);
fa2563e4
TT
2765
2766 if (drained)
9c5a2ba7
TH
2767 continue;
2768
2769 if (++flush_cnt == 10 ||
2770 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2771 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2772 wq->name, flush_cnt);
9c5a2ba7
TH
2773 goto reflush;
2774 }
2775
2776 spin_lock(&workqueue_lock);
2777 if (!--wq->nr_drainers)
2778 wq->flags &= ~WQ_DRAINING;
2779 spin_unlock(&workqueue_lock);
2780}
2781EXPORT_SYMBOL_GPL(drain_workqueue);
2782
606a5020 2783static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2784{
affee4b2 2785 struct worker *worker = NULL;
c9e7cf27 2786 struct worker_pool *pool;
db700897 2787 struct cpu_workqueue_struct *cwq;
db700897
ON
2788
2789 might_sleep();
c9e7cf27
TH
2790 pool = get_work_pool(work);
2791 if (!pool)
baf59022 2792 return false;
db700897 2793
d565ed63 2794 spin_lock_irq(&pool->lock);
0b3dae68
LJ
2795 /* see the comment in try_to_grab_pending() with the same code */
2796 cwq = get_work_cwq(work);
2797 if (cwq) {
2798 if (unlikely(cwq->pool != pool))
4690c4ab 2799 goto already_gone;
606a5020 2800 } else {
c9e7cf27 2801 worker = find_worker_executing_work(pool, work);
affee4b2 2802 if (!worker)
4690c4ab 2803 goto already_gone;
7a22ad75 2804 cwq = worker->current_cwq;
606a5020 2805 }
db700897 2806
baf59022 2807 insert_wq_barrier(cwq, barr, work, worker);
d565ed63 2808 spin_unlock_irq(&pool->lock);
7a22ad75 2809
e159489b
TH
2810 /*
2811 * If @max_active is 1 or rescuer is in use, flushing another work
2812 * item on the same workqueue may lead to deadlock. Make sure the
2813 * flusher is not running on the same workqueue by verifying write
2814 * access.
2815 */
2816 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2817 lock_map_acquire(&cwq->wq->lockdep_map);
2818 else
2819 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2820 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2821
401a8d04 2822 return true;
4690c4ab 2823already_gone:
d565ed63 2824 spin_unlock_irq(&pool->lock);
401a8d04 2825 return false;
db700897 2826}
baf59022
TH
2827
2828/**
2829 * flush_work - wait for a work to finish executing the last queueing instance
2830 * @work: the work to flush
2831 *
606a5020
TH
2832 * Wait until @work has finished execution. @work is guaranteed to be idle
2833 * on return if it hasn't been requeued since flush started.
baf59022
TH
2834 *
2835 * RETURNS:
2836 * %true if flush_work() waited for the work to finish execution,
2837 * %false if it was already idle.
2838 */
2839bool flush_work(struct work_struct *work)
2840{
2841 struct wq_barrier barr;
2842
0976dfc1
SB
2843 lock_map_acquire(&work->lockdep_map);
2844 lock_map_release(&work->lockdep_map);
2845
606a5020 2846 if (start_flush_work(work, &barr)) {
401a8d04
TH
2847 wait_for_completion(&barr.done);
2848 destroy_work_on_stack(&barr.work);
2849 return true;
606a5020 2850 } else {
401a8d04 2851 return false;
6e84d644 2852 }
6e84d644 2853}
606a5020 2854EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2855
36e227d2 2856static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2857{
bbb68dfa 2858 unsigned long flags;
1f1f642e
ON
2859 int ret;
2860
2861 do {
bbb68dfa
TH
2862 ret = try_to_grab_pending(work, is_dwork, &flags);
2863 /*
2864 * If someone else is canceling, wait for the same event it
2865 * would be waiting for before retrying.
2866 */
2867 if (unlikely(ret == -ENOENT))
606a5020 2868 flush_work(work);
1f1f642e
ON
2869 } while (unlikely(ret < 0));
2870
bbb68dfa
TH
2871 /* tell other tasks trying to grab @work to back off */
2872 mark_work_canceling(work);
2873 local_irq_restore(flags);
2874
606a5020 2875 flush_work(work);
7a22ad75 2876 clear_work_data(work);
1f1f642e
ON
2877 return ret;
2878}
2879
6e84d644 2880/**
401a8d04
TH
2881 * cancel_work_sync - cancel a work and wait for it to finish
2882 * @work: the work to cancel
6e84d644 2883 *
401a8d04
TH
2884 * Cancel @work and wait for its execution to finish. This function
2885 * can be used even if the work re-queues itself or migrates to
2886 * another workqueue. On return from this function, @work is
2887 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2888 *
401a8d04
TH
2889 * cancel_work_sync(&delayed_work->work) must not be used for
2890 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2891 *
401a8d04 2892 * The caller must ensure that the workqueue on which @work was last
6e84d644 2893 * queued can't be destroyed before this function returns.
401a8d04
TH
2894 *
2895 * RETURNS:
2896 * %true if @work was pending, %false otherwise.
6e84d644 2897 */
401a8d04 2898bool cancel_work_sync(struct work_struct *work)
6e84d644 2899{
36e227d2 2900 return __cancel_work_timer(work, false);
b89deed3 2901}
28e53bdd 2902EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2903
6e84d644 2904/**
401a8d04
TH
2905 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2906 * @dwork: the delayed work to flush
6e84d644 2907 *
401a8d04
TH
2908 * Delayed timer is cancelled and the pending work is queued for
2909 * immediate execution. Like flush_work(), this function only
2910 * considers the last queueing instance of @dwork.
1f1f642e 2911 *
401a8d04
TH
2912 * RETURNS:
2913 * %true if flush_work() waited for the work to finish execution,
2914 * %false if it was already idle.
6e84d644 2915 */
401a8d04
TH
2916bool flush_delayed_work(struct delayed_work *dwork)
2917{
8930caba 2918 local_irq_disable();
401a8d04 2919 if (del_timer_sync(&dwork->timer))
60c057bc 2920 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2921 local_irq_enable();
401a8d04
TH
2922 return flush_work(&dwork->work);
2923}
2924EXPORT_SYMBOL(flush_delayed_work);
2925
09383498 2926/**
57b30ae7
TH
2927 * cancel_delayed_work - cancel a delayed work
2928 * @dwork: delayed_work to cancel
09383498 2929 *
57b30ae7
TH
2930 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2931 * and canceled; %false if wasn't pending. Note that the work callback
2932 * function may still be running on return, unless it returns %true and the
2933 * work doesn't re-arm itself. Explicitly flush or use
2934 * cancel_delayed_work_sync() to wait on it.
09383498 2935 *
57b30ae7 2936 * This function is safe to call from any context including IRQ handler.
09383498 2937 */
57b30ae7 2938bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2939{
57b30ae7
TH
2940 unsigned long flags;
2941 int ret;
2942
2943 do {
2944 ret = try_to_grab_pending(&dwork->work, true, &flags);
2945 } while (unlikely(ret == -EAGAIN));
2946
2947 if (unlikely(ret < 0))
2948 return false;
2949
7c3eed5c
TH
2950 set_work_pool_and_clear_pending(&dwork->work,
2951 get_work_pool_id(&dwork->work));
57b30ae7 2952 local_irq_restore(flags);
c0158ca6 2953 return ret;
09383498 2954}
57b30ae7 2955EXPORT_SYMBOL(cancel_delayed_work);
09383498 2956
401a8d04
TH
2957/**
2958 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2959 * @dwork: the delayed work cancel
2960 *
2961 * This is cancel_work_sync() for delayed works.
2962 *
2963 * RETURNS:
2964 * %true if @dwork was pending, %false otherwise.
2965 */
2966bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2967{
36e227d2 2968 return __cancel_work_timer(&dwork->work, true);
6e84d644 2969}
f5a421a4 2970EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2971
0fcb78c2 2972/**
c1a220e7
ZR
2973 * schedule_work_on - put work task on a specific cpu
2974 * @cpu: cpu to put the work task on
2975 * @work: job to be done
2976 *
2977 * This puts a job on a specific cpu
2978 */
d4283e93 2979bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 2980{
d320c038 2981 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2982}
2983EXPORT_SYMBOL(schedule_work_on);
2984
0fcb78c2 2985/**
0fcb78c2
REB
2986 * schedule_work - put work task in global workqueue
2987 * @work: job to be done
0fcb78c2 2988 *
d4283e93
TH
2989 * Returns %false if @work was already on the kernel-global workqueue and
2990 * %true otherwise.
5b0f437d
BVA
2991 *
2992 * This puts a job in the kernel-global workqueue if it was not already
2993 * queued and leaves it in the same position on the kernel-global
2994 * workqueue otherwise.
0fcb78c2 2995 */
d4283e93 2996bool schedule_work(struct work_struct *work)
1da177e4 2997{
d320c038 2998 return queue_work(system_wq, work);
1da177e4 2999}
ae90dd5d 3000EXPORT_SYMBOL(schedule_work);
1da177e4 3001
0fcb78c2
REB
3002/**
3003 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3004 * @cpu: cpu to use
52bad64d 3005 * @dwork: job to be done
0fcb78c2
REB
3006 * @delay: number of jiffies to wait
3007 *
3008 * After waiting for a given time this puts a job in the kernel-global
3009 * workqueue on the specified CPU.
3010 */
d4283e93
TH
3011bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3012 unsigned long delay)
1da177e4 3013{
d320c038 3014 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 3015}
ae90dd5d 3016EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 3017
0fcb78c2
REB
3018/**
3019 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3020 * @dwork: job to be done
3021 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3022 *
3023 * After waiting for a given time this puts a job in the kernel-global
3024 * workqueue.
3025 */
d4283e93 3026bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3027{
d320c038 3028 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3029}
ae90dd5d 3030EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3031
b6136773 3032/**
31ddd871 3033 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3034 * @func: the function to call
b6136773 3035 *
31ddd871
TH
3036 * schedule_on_each_cpu() executes @func on each online CPU using the
3037 * system workqueue and blocks until all CPUs have completed.
b6136773 3038 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3039 *
3040 * RETURNS:
3041 * 0 on success, -errno on failure.
b6136773 3042 */
65f27f38 3043int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3044{
3045 int cpu;
38f51568 3046 struct work_struct __percpu *works;
15316ba8 3047
b6136773
AM
3048 works = alloc_percpu(struct work_struct);
3049 if (!works)
15316ba8 3050 return -ENOMEM;
b6136773 3051
93981800
TH
3052 get_online_cpus();
3053
15316ba8 3054 for_each_online_cpu(cpu) {
9bfb1839
IM
3055 struct work_struct *work = per_cpu_ptr(works, cpu);
3056
3057 INIT_WORK(work, func);
b71ab8c2 3058 schedule_work_on(cpu, work);
65a64464 3059 }
93981800
TH
3060
3061 for_each_online_cpu(cpu)
3062 flush_work(per_cpu_ptr(works, cpu));
3063
95402b38 3064 put_online_cpus();
b6136773 3065 free_percpu(works);
15316ba8
CL
3066 return 0;
3067}
3068
eef6a7d5
AS
3069/**
3070 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3071 *
3072 * Forces execution of the kernel-global workqueue and blocks until its
3073 * completion.
3074 *
3075 * Think twice before calling this function! It's very easy to get into
3076 * trouble if you don't take great care. Either of the following situations
3077 * will lead to deadlock:
3078 *
3079 * One of the work items currently on the workqueue needs to acquire
3080 * a lock held by your code or its caller.
3081 *
3082 * Your code is running in the context of a work routine.
3083 *
3084 * They will be detected by lockdep when they occur, but the first might not
3085 * occur very often. It depends on what work items are on the workqueue and
3086 * what locks they need, which you have no control over.
3087 *
3088 * In most situations flushing the entire workqueue is overkill; you merely
3089 * need to know that a particular work item isn't queued and isn't running.
3090 * In such cases you should use cancel_delayed_work_sync() or
3091 * cancel_work_sync() instead.
3092 */
1da177e4
LT
3093void flush_scheduled_work(void)
3094{
d320c038 3095 flush_workqueue(system_wq);
1da177e4 3096}
ae90dd5d 3097EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3098
1fa44eca
JB
3099/**
3100 * execute_in_process_context - reliably execute the routine with user context
3101 * @fn: the function to execute
1fa44eca
JB
3102 * @ew: guaranteed storage for the execute work structure (must
3103 * be available when the work executes)
3104 *
3105 * Executes the function immediately if process context is available,
3106 * otherwise schedules the function for delayed execution.
3107 *
3108 * Returns: 0 - function was executed
3109 * 1 - function was scheduled for execution
3110 */
65f27f38 3111int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3112{
3113 if (!in_interrupt()) {
65f27f38 3114 fn(&ew->work);
1fa44eca
JB
3115 return 0;
3116 }
3117
65f27f38 3118 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3119 schedule_work(&ew->work);
3120
3121 return 1;
3122}
3123EXPORT_SYMBOL_GPL(execute_in_process_context);
3124
1da177e4
LT
3125int keventd_up(void)
3126{
d320c038 3127 return system_wq != NULL;
1da177e4
LT
3128}
3129
bdbc5dd7 3130static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3131{
65a64464 3132 /*
0f900049
TH
3133 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3134 * Make sure that the alignment isn't lower than that of
3135 * unsigned long long.
65a64464 3136 */
0f900049
TH
3137 const size_t size = sizeof(struct cpu_workqueue_struct);
3138 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3139 __alignof__(unsigned long long));
65a64464 3140
e06ffa1e 3141 if (!(wq->flags & WQ_UNBOUND))
f3421797 3142 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3143 else {
f3421797
TH
3144 void *ptr;
3145
3146 /*
3147 * Allocate enough room to align cwq and put an extra
3148 * pointer at the end pointing back to the originally
3149 * allocated pointer which will be used for free.
3150 */
3151 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3152 if (ptr) {
3153 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3154 *(void **)(wq->cpu_wq.single + 1) = ptr;
3155 }
bdbc5dd7 3156 }
f3421797 3157
0415b00d 3158 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3159 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3160 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3161}
3162
bdbc5dd7 3163static void free_cwqs(struct workqueue_struct *wq)
0f900049 3164{
e06ffa1e 3165 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3166 free_percpu(wq->cpu_wq.pcpu);
3167 else if (wq->cpu_wq.single) {
3168 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3169 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3170 }
0f900049
TH
3171}
3172
f3421797
TH
3173static int wq_clamp_max_active(int max_active, unsigned int flags,
3174 const char *name)
b71ab8c2 3175{
f3421797
TH
3176 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3177
3178 if (max_active < 1 || max_active > lim)
044c782c
VI
3179 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3180 max_active, name, 1, lim);
b71ab8c2 3181
f3421797 3182 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3183}
3184
b196be89 3185struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3186 unsigned int flags,
3187 int max_active,
3188 struct lock_class_key *key,
b196be89 3189 const char *lock_name, ...)
1da177e4 3190{
b196be89 3191 va_list args, args1;
1da177e4 3192 struct workqueue_struct *wq;
c34056a3 3193 unsigned int cpu;
b196be89
TH
3194 size_t namelen;
3195
3196 /* determine namelen, allocate wq and format name */
3197 va_start(args, lock_name);
3198 va_copy(args1, args);
3199 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3200
3201 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3202 if (!wq)
3203 goto err;
3204
3205 vsnprintf(wq->name, namelen, fmt, args1);
3206 va_end(args);
3207 va_end(args1);
1da177e4 3208
6370a6ad
TH
3209 /*
3210 * Workqueues which may be used during memory reclaim should
3211 * have a rescuer to guarantee forward progress.
3212 */
3213 if (flags & WQ_MEM_RECLAIM)
3214 flags |= WQ_RESCUER;
3215
d320c038 3216 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3217 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3218
b196be89 3219 /* init wq */
97e37d7b 3220 wq->flags = flags;
a0a1a5fd 3221 wq->saved_max_active = max_active;
73f53c4a
TH
3222 mutex_init(&wq->flush_mutex);
3223 atomic_set(&wq->nr_cwqs_to_flush, 0);
3224 INIT_LIST_HEAD(&wq->flusher_queue);
3225 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3226
eb13ba87 3227 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3228 INIT_LIST_HEAD(&wq->list);
3af24433 3229
bdbc5dd7
TH
3230 if (alloc_cwqs(wq) < 0)
3231 goto err;
3232
f3421797 3233 for_each_cwq_cpu(cpu, wq) {
1537663f
TH
3234 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3235
0f900049 3236 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
a60dc39c 3237 cwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI);
c34056a3 3238 cwq->wq = wq;
73f53c4a 3239 cwq->flush_color = -1;
1e19ffc6 3240 cwq->max_active = max_active;
1e19ffc6 3241 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3242 }
1537663f 3243
e22bee78
TH
3244 if (flags & WQ_RESCUER) {
3245 struct worker *rescuer;
3246
f2e005aa 3247 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3248 goto err;
3249
3250 wq->rescuer = rescuer = alloc_worker();
3251 if (!rescuer)
3252 goto err;
3253
111c225a
TH
3254 rescuer->rescue_wq = wq;
3255 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3256 wq->name);
e22bee78
TH
3257 if (IS_ERR(rescuer->task))
3258 goto err;
3259
e22bee78
TH
3260 rescuer->task->flags |= PF_THREAD_BOUND;
3261 wake_up_process(rescuer->task);
3af24433
ON
3262 }
3263
a0a1a5fd
TH
3264 /*
3265 * workqueue_lock protects global freeze state and workqueues
3266 * list. Grab it, set max_active accordingly and add the new
3267 * workqueue to workqueues list.
3268 */
1537663f 3269 spin_lock(&workqueue_lock);
a0a1a5fd 3270
58a69cb4 3271 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3272 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3273 get_cwq(cpu, wq)->max_active = 0;
3274
1537663f 3275 list_add(&wq->list, &workqueues);
a0a1a5fd 3276
1537663f
TH
3277 spin_unlock(&workqueue_lock);
3278
3af24433 3279 return wq;
4690c4ab
TH
3280err:
3281 if (wq) {
bdbc5dd7 3282 free_cwqs(wq);
f2e005aa 3283 free_mayday_mask(wq->mayday_mask);
e22bee78 3284 kfree(wq->rescuer);
4690c4ab
TH
3285 kfree(wq);
3286 }
3287 return NULL;
3af24433 3288}
d320c038 3289EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3290
3af24433
ON
3291/**
3292 * destroy_workqueue - safely terminate a workqueue
3293 * @wq: target workqueue
3294 *
3295 * Safely destroy a workqueue. All work currently pending will be done first.
3296 */
3297void destroy_workqueue(struct workqueue_struct *wq)
3298{
c8e55f36 3299 unsigned int cpu;
3af24433 3300
9c5a2ba7
TH
3301 /* drain it before proceeding with destruction */
3302 drain_workqueue(wq);
c8efcc25 3303
a0a1a5fd
TH
3304 /*
3305 * wq list is used to freeze wq, remove from list after
3306 * flushing is complete in case freeze races us.
3307 */
95402b38 3308 spin_lock(&workqueue_lock);
b1f4ec17 3309 list_del(&wq->list);
95402b38 3310 spin_unlock(&workqueue_lock);
3af24433 3311
e22bee78 3312 /* sanity check */
f3421797 3313 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3314 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3315 int i;
3316
73f53c4a
TH
3317 for (i = 0; i < WORK_NR_COLORS; i++)
3318 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3319 BUG_ON(cwq->nr_active);
3320 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3321 }
9b41ea72 3322
e22bee78
TH
3323 if (wq->flags & WQ_RESCUER) {
3324 kthread_stop(wq->rescuer->task);
f2e005aa 3325 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3326 kfree(wq->rescuer);
e22bee78
TH
3327 }
3328
bdbc5dd7 3329 free_cwqs(wq);
3af24433
ON
3330 kfree(wq);
3331}
3332EXPORT_SYMBOL_GPL(destroy_workqueue);
3333
9f4bd4cd
LJ
3334/**
3335 * cwq_set_max_active - adjust max_active of a cwq
3336 * @cwq: target cpu_workqueue_struct
3337 * @max_active: new max_active value.
3338 *
3339 * Set @cwq->max_active to @max_active and activate delayed works if
3340 * increased.
3341 *
3342 * CONTEXT:
d565ed63 3343 * spin_lock_irq(pool->lock).
9f4bd4cd
LJ
3344 */
3345static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
3346{
3347 cwq->max_active = max_active;
3348
3349 while (!list_empty(&cwq->delayed_works) &&
3350 cwq->nr_active < cwq->max_active)
3351 cwq_activate_first_delayed(cwq);
3352}
3353
dcd989cb
TH
3354/**
3355 * workqueue_set_max_active - adjust max_active of a workqueue
3356 * @wq: target workqueue
3357 * @max_active: new max_active value.
3358 *
3359 * Set max_active of @wq to @max_active.
3360 *
3361 * CONTEXT:
3362 * Don't call from IRQ context.
3363 */
3364void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3365{
3366 unsigned int cpu;
3367
f3421797 3368 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3369
3370 spin_lock(&workqueue_lock);
3371
3372 wq->saved_max_active = max_active;
3373
f3421797 3374 for_each_cwq_cpu(cpu, wq) {
35b6bb63
TH
3375 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3376 struct worker_pool *pool = cwq->pool;
dcd989cb 3377
d565ed63 3378 spin_lock_irq(&pool->lock);
dcd989cb 3379
58a69cb4 3380 if (!(wq->flags & WQ_FREEZABLE) ||
35b6bb63
TH
3381 !(pool->flags & POOL_FREEZING))
3382 cwq_set_max_active(cwq, max_active);
9bfb1839 3383
d565ed63 3384 spin_unlock_irq(&pool->lock);
65a64464 3385 }
93981800 3386
dcd989cb 3387 spin_unlock(&workqueue_lock);
15316ba8 3388}
dcd989cb 3389EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3390
eef6a7d5 3391/**
dcd989cb
TH
3392 * workqueue_congested - test whether a workqueue is congested
3393 * @cpu: CPU in question
3394 * @wq: target workqueue
eef6a7d5 3395 *
dcd989cb
TH
3396 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3397 * no synchronization around this function and the test result is
3398 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3399 *
dcd989cb
TH
3400 * RETURNS:
3401 * %true if congested, %false otherwise.
eef6a7d5 3402 */
dcd989cb 3403bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3404{
dcd989cb
TH
3405 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3406
3407 return !list_empty(&cwq->delayed_works);
1da177e4 3408}
dcd989cb 3409EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3410
dcd989cb
TH
3411/**
3412 * work_busy - test whether a work is currently pending or running
3413 * @work: the work to be tested
3414 *
3415 * Test whether @work is currently pending or running. There is no
3416 * synchronization around this function and the test result is
3417 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
3418 *
3419 * RETURNS:
3420 * OR'd bitmask of WORK_BUSY_* bits.
3421 */
3422unsigned int work_busy(struct work_struct *work)
1da177e4 3423{
c9e7cf27 3424 struct worker_pool *pool = get_work_pool(work);
dcd989cb
TH
3425 unsigned long flags;
3426 unsigned int ret = 0;
1da177e4 3427
dcd989cb
TH
3428 if (work_pending(work))
3429 ret |= WORK_BUSY_PENDING;
1da177e4 3430
038366c5
LJ
3431 if (pool) {
3432 spin_lock_irqsave(&pool->lock, flags);
3433 if (find_worker_executing_work(pool, work))
3434 ret |= WORK_BUSY_RUNNING;
3435 spin_unlock_irqrestore(&pool->lock, flags);
3436 }
1da177e4 3437
dcd989cb 3438 return ret;
1da177e4 3439}
dcd989cb 3440EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3441
db7bccf4
TH
3442/*
3443 * CPU hotplug.
3444 *
e22bee78
TH
3445 * There are two challenges in supporting CPU hotplug. Firstly, there
3446 * are a lot of assumptions on strong associations among work, cwq and
706026c2 3447 * pool which make migrating pending and scheduled works very
e22bee78 3448 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 3449 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
3450 * blocked draining impractical.
3451 *
24647570 3452 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
3453 * running as an unbound one and allowing it to be reattached later if the
3454 * cpu comes back online.
db7bccf4 3455 */
1da177e4 3456
706026c2 3457static void wq_unbind_fn(struct work_struct *work)
3af24433 3458{
38db41d9 3459 int cpu = smp_processor_id();
4ce62e9e 3460 struct worker_pool *pool;
db7bccf4
TH
3461 struct worker *worker;
3462 struct hlist_node *pos;
3463 int i;
3af24433 3464
38db41d9
TH
3465 for_each_std_worker_pool(pool, cpu) {
3466 BUG_ON(cpu != smp_processor_id());
db7bccf4 3467
94cf58bb
TH
3468 mutex_lock(&pool->assoc_mutex);
3469 spin_lock_irq(&pool->lock);
3af24433 3470
94cf58bb
TH
3471 /*
3472 * We've claimed all manager positions. Make all workers
3473 * unbound and set DISASSOCIATED. Before this, all workers
3474 * except for the ones which are still executing works from
3475 * before the last CPU down must be on the cpu. After
3476 * this, they may become diasporas.
3477 */
4ce62e9e 3478 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3479 worker->flags |= WORKER_UNBOUND;
3af24433 3480
c9e7cf27
TH
3481 for_each_busy_worker(worker, i, pos, pool)
3482 worker->flags |= WORKER_UNBOUND;
06ba38a9 3483
24647570 3484 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 3485
94cf58bb
TH
3486 spin_unlock_irq(&pool->lock);
3487 mutex_unlock(&pool->assoc_mutex);
3488 }
628c78e7 3489
e22bee78 3490 /*
403c821d 3491 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3492 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3493 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3494 */
e22bee78 3495 schedule();
06ba38a9 3496
e22bee78 3497 /*
628c78e7
TH
3498 * Sched callbacks are disabled now. Zap nr_running. After this,
3499 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
3500 * are always true as long as the worklist is not empty. Pools on
3501 * @cpu now behave as unbound (in terms of concurrency management)
3502 * pools which are served by workers tied to the CPU.
628c78e7
TH
3503 *
3504 * On return from this function, the current worker would trigger
3505 * unbound chain execution of pending work items if other workers
3506 * didn't already.
e22bee78 3507 */
38db41d9 3508 for_each_std_worker_pool(pool, cpu)
4ce62e9e 3509 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3510}
3af24433 3511
8db25e78
TH
3512/*
3513 * Workqueues should be brought up before normal priority CPU notifiers.
3514 * This will be registered high priority CPU notifier.
3515 */
9fdf9b73 3516static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3517 unsigned long action,
3518 void *hcpu)
3af24433
ON
3519{
3520 unsigned int cpu = (unsigned long)hcpu;
4ce62e9e 3521 struct worker_pool *pool;
3ce63377 3522
8db25e78 3523 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3524 case CPU_UP_PREPARE:
38db41d9 3525 for_each_std_worker_pool(pool, cpu) {
3ce63377
TH
3526 struct worker *worker;
3527
3528 if (pool->nr_workers)
3529 continue;
3530
3531 worker = create_worker(pool);
3532 if (!worker)
3533 return NOTIFY_BAD;
3534
d565ed63 3535 spin_lock_irq(&pool->lock);
3ce63377 3536 start_worker(worker);
d565ed63 3537 spin_unlock_irq(&pool->lock);
3af24433 3538 }
8db25e78 3539 break;
3af24433 3540
db7bccf4
TH
3541 case CPU_DOWN_FAILED:
3542 case CPU_ONLINE:
38db41d9 3543 for_each_std_worker_pool(pool, cpu) {
94cf58bb
TH
3544 mutex_lock(&pool->assoc_mutex);
3545 spin_lock_irq(&pool->lock);
3546
24647570 3547 pool->flags &= ~POOL_DISASSOCIATED;
94cf58bb
TH
3548 rebind_workers(pool);
3549
3550 spin_unlock_irq(&pool->lock);
3551 mutex_unlock(&pool->assoc_mutex);
3552 }
db7bccf4 3553 break;
00dfcaf7 3554 }
65758202
TH
3555 return NOTIFY_OK;
3556}
3557
3558/*
3559 * Workqueues should be brought down after normal priority CPU notifiers.
3560 * This will be registered as low priority CPU notifier.
3561 */
9fdf9b73 3562static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3563 unsigned long action,
3564 void *hcpu)
3565{
8db25e78
TH
3566 unsigned int cpu = (unsigned long)hcpu;
3567 struct work_struct unbind_work;
3568
65758202
TH
3569 switch (action & ~CPU_TASKS_FROZEN) {
3570 case CPU_DOWN_PREPARE:
8db25e78 3571 /* unbinding should happen on the local CPU */
706026c2 3572 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 3573 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3574 flush_work(&unbind_work);
3575 break;
65758202
TH
3576 }
3577 return NOTIFY_OK;
3578}
3579
2d3854a3 3580#ifdef CONFIG_SMP
8ccad40d 3581
2d3854a3 3582struct work_for_cpu {
ed48ece2 3583 struct work_struct work;
2d3854a3
RR
3584 long (*fn)(void *);
3585 void *arg;
3586 long ret;
3587};
3588
ed48ece2 3589static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3590{
ed48ece2
TH
3591 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3592
2d3854a3
RR
3593 wfc->ret = wfc->fn(wfc->arg);
3594}
3595
3596/**
3597 * work_on_cpu - run a function in user context on a particular cpu
3598 * @cpu: the cpu to run on
3599 * @fn: the function to run
3600 * @arg: the function arg
3601 *
31ad9081
RR
3602 * This will return the value @fn returns.
3603 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3604 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3605 */
3606long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3607{
ed48ece2 3608 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 3609
ed48ece2
TH
3610 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3611 schedule_work_on(cpu, &wfc.work);
3612 flush_work(&wfc.work);
2d3854a3
RR
3613 return wfc.ret;
3614}
3615EXPORT_SYMBOL_GPL(work_on_cpu);
3616#endif /* CONFIG_SMP */
3617
a0a1a5fd
TH
3618#ifdef CONFIG_FREEZER
3619
3620/**
3621 * freeze_workqueues_begin - begin freezing workqueues
3622 *
58a69cb4
TH
3623 * Start freezing workqueues. After this function returns, all freezable
3624 * workqueues will queue new works to their frozen_works list instead of
706026c2 3625 * pool->worklist.
a0a1a5fd
TH
3626 *
3627 * CONTEXT:
d565ed63 3628 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3629 */
3630void freeze_workqueues_begin(void)
3631{
a0a1a5fd
TH
3632 unsigned int cpu;
3633
3634 spin_lock(&workqueue_lock);
3635
3636 BUG_ON(workqueue_freezing);
3637 workqueue_freezing = true;
3638
706026c2 3639 for_each_wq_cpu(cpu) {
35b6bb63 3640 struct worker_pool *pool;
bdbc5dd7 3641 struct workqueue_struct *wq;
8b03ae3c 3642
38db41d9 3643 for_each_std_worker_pool(pool, cpu) {
a1056305 3644 spin_lock_irq(&pool->lock);
d565ed63 3645
35b6bb63
TH
3646 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3647 pool->flags |= POOL_FREEZING;
db7bccf4 3648
a1056305
TH
3649 list_for_each_entry(wq, &workqueues, list) {
3650 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
a0a1a5fd 3651
a1056305
TH
3652 if (cwq && cwq->pool == pool &&
3653 (wq->flags & WQ_FREEZABLE))
3654 cwq->max_active = 0;
3655 }
8b03ae3c 3656
a1056305
TH
3657 spin_unlock_irq(&pool->lock);
3658 }
a0a1a5fd
TH
3659 }
3660
3661 spin_unlock(&workqueue_lock);
3662}
3663
3664/**
58a69cb4 3665 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3666 *
3667 * Check whether freezing is complete. This function must be called
3668 * between freeze_workqueues_begin() and thaw_workqueues().
3669 *
3670 * CONTEXT:
3671 * Grabs and releases workqueue_lock.
3672 *
3673 * RETURNS:
58a69cb4
TH
3674 * %true if some freezable workqueues are still busy. %false if freezing
3675 * is complete.
a0a1a5fd
TH
3676 */
3677bool freeze_workqueues_busy(void)
3678{
a0a1a5fd
TH
3679 unsigned int cpu;
3680 bool busy = false;
3681
3682 spin_lock(&workqueue_lock);
3683
3684 BUG_ON(!workqueue_freezing);
3685
706026c2 3686 for_each_wq_cpu(cpu) {
bdbc5dd7 3687 struct workqueue_struct *wq;
a0a1a5fd
TH
3688 /*
3689 * nr_active is monotonically decreasing. It's safe
3690 * to peek without lock.
3691 */
3692 list_for_each_entry(wq, &workqueues, list) {
3693 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3694
58a69cb4 3695 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3696 continue;
3697
3698 BUG_ON(cwq->nr_active < 0);
3699 if (cwq->nr_active) {
3700 busy = true;
3701 goto out_unlock;
3702 }
3703 }
3704 }
3705out_unlock:
3706 spin_unlock(&workqueue_lock);
3707 return busy;
3708}
3709
3710/**
3711 * thaw_workqueues - thaw workqueues
3712 *
3713 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 3714 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
3715 *
3716 * CONTEXT:
d565ed63 3717 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3718 */
3719void thaw_workqueues(void)
3720{
a0a1a5fd
TH
3721 unsigned int cpu;
3722
3723 spin_lock(&workqueue_lock);
3724
3725 if (!workqueue_freezing)
3726 goto out_unlock;
3727
706026c2 3728 for_each_wq_cpu(cpu) {
4ce62e9e 3729 struct worker_pool *pool;
bdbc5dd7 3730 struct workqueue_struct *wq;
8b03ae3c 3731
38db41d9 3732 for_each_std_worker_pool(pool, cpu) {
a1056305 3733 spin_lock_irq(&pool->lock);
d565ed63 3734
35b6bb63
TH
3735 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3736 pool->flags &= ~POOL_FREEZING;
db7bccf4 3737
a1056305
TH
3738 list_for_each_entry(wq, &workqueues, list) {
3739 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
a0a1a5fd 3740
a1056305
TH
3741 if (!cwq || cwq->pool != pool ||
3742 !(wq->flags & WQ_FREEZABLE))
3743 continue;
a0a1a5fd 3744
a1056305
TH
3745 /* restore max_active and repopulate worklist */
3746 cwq_set_max_active(cwq, wq->saved_max_active);
3747 }
8b03ae3c 3748
4ce62e9e 3749 wake_up_worker(pool);
a1056305
TH
3750
3751 spin_unlock_irq(&pool->lock);
d565ed63 3752 }
a0a1a5fd
TH
3753 }
3754
3755 workqueue_freezing = false;
3756out_unlock:
3757 spin_unlock(&workqueue_lock);
3758}
3759#endif /* CONFIG_FREEZER */
3760
6ee0578b 3761static int __init init_workqueues(void)
1da177e4 3762{
c34056a3
TH
3763 unsigned int cpu;
3764
7c3eed5c
TH
3765 /* make sure we have enough bits for OFFQ pool ID */
3766 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 3767 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 3768
65758202 3769 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 3770 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 3771
706026c2
TH
3772 /* initialize CPU pools */
3773 for_each_wq_cpu(cpu) {
4ce62e9e 3774 struct worker_pool *pool;
8b03ae3c 3775
38db41d9 3776 for_each_std_worker_pool(pool, cpu) {
d565ed63 3777 spin_lock_init(&pool->lock);
ec22ca5e 3778 pool->cpu = cpu;
24647570 3779 pool->flags |= POOL_DISASSOCIATED;
4ce62e9e
TH
3780 INIT_LIST_HEAD(&pool->worklist);
3781 INIT_LIST_HEAD(&pool->idle_list);
c9e7cf27 3782 hash_init(pool->busy_hash);
e7577c50 3783
4ce62e9e
TH
3784 init_timer_deferrable(&pool->idle_timer);
3785 pool->idle_timer.function = idle_worker_timeout;
3786 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3787
706026c2 3788 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
4ce62e9e
TH
3789 (unsigned long)pool);
3790
b2eb83d1 3791 mutex_init(&pool->assoc_mutex);
4ce62e9e 3792 ida_init(&pool->worker_ida);
9daf9e67
TH
3793
3794 /* alloc pool ID */
3795 BUG_ON(worker_pool_assign_id(pool));
4ce62e9e 3796 }
8b03ae3c
TH
3797 }
3798
e22bee78 3799 /* create the initial worker */
706026c2 3800 for_each_online_wq_cpu(cpu) {
4ce62e9e 3801 struct worker_pool *pool;
e22bee78 3802
38db41d9 3803 for_each_std_worker_pool(pool, cpu) {
4ce62e9e
TH
3804 struct worker *worker;
3805
24647570
TH
3806 if (cpu != WORK_CPU_UNBOUND)
3807 pool->flags &= ~POOL_DISASSOCIATED;
3808
bc2ae0f5 3809 worker = create_worker(pool);
4ce62e9e 3810 BUG_ON(!worker);
d565ed63 3811 spin_lock_irq(&pool->lock);
4ce62e9e 3812 start_worker(worker);
d565ed63 3813 spin_unlock_irq(&pool->lock);
4ce62e9e 3814 }
e22bee78
TH
3815 }
3816
d320c038 3817 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3818 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 3819 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
3820 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3821 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3822 system_freezable_wq = alloc_workqueue("events_freezable",
3823 WQ_FREEZABLE, 0);
1aabe902 3824 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 3825 !system_unbound_wq || !system_freezable_wq);
6ee0578b 3826 return 0;
1da177e4 3827}
6ee0578b 3828early_initcall(init_workqueues);