sched: replace PF_THREAD_BOUND with PF_NO_SETAFFINITY
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
e22bee78 47
ea138446 48#include "workqueue_internal.h"
1da177e4 49
c8e55f36 50enum {
24647570
TH
51 /*
52 * worker_pool flags
bc2ae0f5 53 *
24647570 54 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
55 * While associated (!DISASSOCIATED), all workers are bound to the
56 * CPU and none has %WORKER_UNBOUND set and concurrency management
57 * is in effect.
58 *
59 * While DISASSOCIATED, the cpu may be offline and all workers have
60 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 61 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 62 *
bc3a1afc
TH
63 * Note that DISASSOCIATED should be flipped only while holding
64 * manager_mutex to avoid changing binding state while
24647570 65 * create_worker() is in progress.
bc2ae0f5 66 */
11ebea50 67 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 68 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 69 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 70
c8e55f36
TH
71 /* worker flags */
72 WORKER_STARTED = 1 << 0, /* started */
73 WORKER_DIE = 1 << 1, /* die die die */
74 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 75 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 78
5f7dabfd 79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 80 WORKER_CPU_INTENSIVE,
db7bccf4 81
e34cdddb 82 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 83
29c91e99 84 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 85 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 86
e22bee78
TH
87 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
88 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
89
3233cdbd
TH
90 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
91 /* call for help after 10ms
92 (min two ticks) */
e22bee78
TH
93 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
94 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
95
96 /*
97 * Rescue workers are used only on emergencies and shared by
98 * all cpus. Give -20.
99 */
100 RESCUER_NICE_LEVEL = -20,
3270476a 101 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 102};
1da177e4
LT
103
104/*
4690c4ab
TH
105 * Structure fields follow one of the following exclusion rules.
106 *
e41e704b
TH
107 * I: Modifiable by initialization/destruction paths and read-only for
108 * everyone else.
4690c4ab 109 *
e22bee78
TH
110 * P: Preemption protected. Disabling preemption is enough and should
111 * only be modified and accessed from the local cpu.
112 *
d565ed63 113 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 114 *
d565ed63
TH
115 * X: During normal operation, modification requires pool->lock and should
116 * be done only from local cpu. Either disabling preemption on local
117 * cpu or grabbing pool->lock is enough for read access. If
118 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 119 *
73f53c4a
TH
120 * F: wq->flush_mutex protected.
121 *
5bcab335
TH
122 * WQ: wq_mutex protected.
123 *
124 * WR: wq_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 125 *
794b18bc
TH
126 * PW: pwq_lock protected.
127 *
794b18bc 128 * FR: wq->flush_mutex and pwq_lock protected for writes. Sched-RCU
75ccf595 129 * protected for reads.
2e109a28
TH
130 *
131 * MD: wq_mayday_lock protected.
1da177e4 132 */
1da177e4 133
2eaebdb3 134/* struct worker is defined in workqueue_internal.h */
c34056a3 135
bd7bdd43 136struct worker_pool {
d565ed63 137 spinlock_t lock; /* the pool lock */
d84ff051 138 int cpu; /* I: the associated cpu */
9daf9e67 139 int id; /* I: pool ID */
11ebea50 140 unsigned int flags; /* X: flags */
bd7bdd43
TH
141
142 struct list_head worklist; /* L: list of pending works */
143 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
144
145 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
146 int nr_idle; /* L: currently idle ones */
147
148 struct list_head idle_list; /* X: list of idle workers */
149 struct timer_list idle_timer; /* L: worker idle timeout */
150 struct timer_list mayday_timer; /* L: SOS timer for workers */
151
c5aa87bb 152 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
153 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
154 /* L: hash of busy workers */
155
bc3a1afc 156 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 157 struct mutex manager_arb; /* manager arbitration */
bc3a1afc 158 struct mutex manager_mutex; /* manager exclusion */
bd7bdd43 159 struct ida worker_ida; /* L: for worker IDs */
e19e397a 160
7a4e344c 161 struct workqueue_attrs *attrs; /* I: worker attributes */
5bcab335
TH
162 struct hlist_node hash_node; /* WQ: unbound_pool_hash node */
163 int refcnt; /* WQ: refcnt for unbound pools */
7a4e344c 164
e19e397a
TH
165 /*
166 * The current concurrency level. As it's likely to be accessed
167 * from other CPUs during try_to_wake_up(), put it in a separate
168 * cacheline.
169 */
170 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
171
172 /*
173 * Destruction of pool is sched-RCU protected to allow dereferences
174 * from get_work_pool().
175 */
176 struct rcu_head rcu;
8b03ae3c
TH
177} ____cacheline_aligned_in_smp;
178
1da177e4 179/*
112202d9
TH
180 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
181 * of work_struct->data are used for flags and the remaining high bits
182 * point to the pwq; thus, pwqs need to be aligned at two's power of the
183 * number of flag bits.
1da177e4 184 */
112202d9 185struct pool_workqueue {
bd7bdd43 186 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 187 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
188 int work_color; /* L: current color */
189 int flush_color; /* L: flushing color */
8864b4e5 190 int refcnt; /* L: reference count */
73f53c4a
TH
191 int nr_in_flight[WORK_NR_COLORS];
192 /* L: nr of in_flight works */
1e19ffc6 193 int nr_active; /* L: nr of active works */
a0a1a5fd 194 int max_active; /* L: max active works */
1e19ffc6 195 struct list_head delayed_works; /* L: delayed works */
75ccf595 196 struct list_head pwqs_node; /* FR: node on wq->pwqs */
2e109a28 197 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
198
199 /*
200 * Release of unbound pwq is punted to system_wq. See put_pwq()
201 * and pwq_unbound_release_workfn() for details. pool_workqueue
202 * itself is also sched-RCU protected so that the first pwq can be
794b18bc 203 * determined without grabbing pwq_lock.
8864b4e5
TH
204 */
205 struct work_struct unbound_release_work;
206 struct rcu_head rcu;
e904e6c2 207} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 208
73f53c4a
TH
209/*
210 * Structure used to wait for workqueue flush.
211 */
212struct wq_flusher {
213 struct list_head list; /* F: list of flushers */
214 int flush_color; /* F: flush color waiting for */
215 struct completion done; /* flush completion */
216};
217
226223ab
TH
218struct wq_device;
219
1da177e4 220/*
c5aa87bb
TH
221 * The externally visible workqueue. It relays the issued work items to
222 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
223 */
224struct workqueue_struct {
5bcab335 225 unsigned int flags; /* WQ: WQ_* flags */
420c0ddb 226 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwq's */
75ccf595 227 struct list_head pwqs; /* FR: all pwqs of this wq */
5bcab335 228 struct list_head list; /* WQ: list of all workqueues */
73f53c4a
TH
229
230 struct mutex flush_mutex; /* protects wq flushing */
231 int work_color; /* F: current work color */
232 int flush_color; /* F: current flush color */
112202d9 233 atomic_t nr_pwqs_to_flush; /* flush in progress */
73f53c4a
TH
234 struct wq_flusher *first_flusher; /* F: first flusher */
235 struct list_head flusher_queue; /* F: flush waiters */
236 struct list_head flusher_overflow; /* F: flush overflow list */
237
2e109a28 238 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
239 struct worker *rescuer; /* I: rescue worker */
240
5bcab335 241 int nr_drainers; /* WQ: drain in progress */
794b18bc 242 int saved_max_active; /* PW: saved pwq max_active */
226223ab
TH
243
244#ifdef CONFIG_SYSFS
245 struct wq_device *wq_dev; /* I: for sysfs interface */
246#endif
4e6045f1 247#ifdef CONFIG_LOCKDEP
4690c4ab 248 struct lockdep_map lockdep_map;
4e6045f1 249#endif
b196be89 250 char name[]; /* I: workqueue name */
1da177e4
LT
251};
252
e904e6c2
TH
253static struct kmem_cache *pwq_cache;
254
5bcab335 255static DEFINE_MUTEX(wq_mutex); /* protects workqueues and pools */
794b18bc 256static DEFINE_SPINLOCK(pwq_lock); /* protects pool_workqueues */
2e109a28 257static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335
TH
258
259static LIST_HEAD(workqueues); /* WQ: list of all workqueues */
260static bool workqueue_freezing; /* WQ: have wqs started freezing? */
7d19c5ce
TH
261
262/* the per-cpu worker pools */
263static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
264 cpu_worker_pools);
265
5bcab335 266static DEFINE_IDR(worker_pool_idr); /* WR: idr of all pools */
7d19c5ce 267
5bcab335 268/* WQ: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
269static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
270
c5aa87bb 271/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
272static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
273
d320c038 274struct workqueue_struct *system_wq __read_mostly;
d320c038 275EXPORT_SYMBOL_GPL(system_wq);
044c782c 276struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 277EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 278struct workqueue_struct *system_long_wq __read_mostly;
d320c038 279EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 280struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 281EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 282struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 283EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 284
7d19c5ce
TH
285static int worker_thread(void *__worker);
286static void copy_workqueue_attrs(struct workqueue_attrs *to,
287 const struct workqueue_attrs *from);
288
97bd2347
TH
289#define CREATE_TRACE_POINTS
290#include <trace/events/workqueue.h>
291
5bcab335
TH
292#define assert_rcu_or_wq_mutex() \
293 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
294 lockdep_is_held(&wq_mutex), \
295 "sched RCU or wq_mutex should be held")
296
794b18bc 297#define assert_rcu_or_pwq_lock() \
76af4d93 298 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
794b18bc
TH
299 lockdep_is_held(&pwq_lock), \
300 "sched RCU or pwq_lock should be held")
76af4d93 301
f02ae73a
TH
302#define for_each_cpu_worker_pool(pool, cpu) \
303 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
304 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 305 (pool)++)
4ce62e9e 306
b67bfe0d
SL
307#define for_each_busy_worker(worker, i, pool) \
308 hash_for_each(pool->busy_hash, i, worker, hentry)
db7bccf4 309
17116969
TH
310/**
311 * for_each_pool - iterate through all worker_pools in the system
312 * @pool: iteration cursor
611c92a0 313 * @pi: integer used for iteration
fa1b54e6 314 *
5bcab335
TH
315 * This must be called either with wq_mutex held or sched RCU read locked.
316 * If the pool needs to be used beyond the locking in effect, the caller is
317 * responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
318 *
319 * The if/else clause exists only for the lockdep assertion and can be
320 * ignored.
17116969 321 */
611c92a0
TH
322#define for_each_pool(pool, pi) \
323 idr_for_each_entry(&worker_pool_idr, pool, pi) \
5bcab335 324 if (({ assert_rcu_or_wq_mutex(); false; })) { } \
fa1b54e6 325 else
17116969 326
49e3cf44
TH
327/**
328 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
329 * @pwq: iteration cursor
330 * @wq: the target workqueue
76af4d93 331 *
794b18bc
TH
332 * This must be called either with pwq_lock held or sched RCU read locked.
333 * If the pwq needs to be used beyond the locking in effect, the caller is
334 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
335 *
336 * The if/else clause exists only for the lockdep assertion and can be
337 * ignored.
49e3cf44
TH
338 */
339#define for_each_pwq(pwq, wq) \
76af4d93 340 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
794b18bc 341 if (({ assert_rcu_or_pwq_lock(); false; })) { } \
76af4d93 342 else
f3421797 343
dc186ad7
TG
344#ifdef CONFIG_DEBUG_OBJECTS_WORK
345
346static struct debug_obj_descr work_debug_descr;
347
99777288
SG
348static void *work_debug_hint(void *addr)
349{
350 return ((struct work_struct *) addr)->func;
351}
352
dc186ad7
TG
353/*
354 * fixup_init is called when:
355 * - an active object is initialized
356 */
357static int work_fixup_init(void *addr, enum debug_obj_state state)
358{
359 struct work_struct *work = addr;
360
361 switch (state) {
362 case ODEBUG_STATE_ACTIVE:
363 cancel_work_sync(work);
364 debug_object_init(work, &work_debug_descr);
365 return 1;
366 default:
367 return 0;
368 }
369}
370
371/*
372 * fixup_activate is called when:
373 * - an active object is activated
374 * - an unknown object is activated (might be a statically initialized object)
375 */
376static int work_fixup_activate(void *addr, enum debug_obj_state state)
377{
378 struct work_struct *work = addr;
379
380 switch (state) {
381
382 case ODEBUG_STATE_NOTAVAILABLE:
383 /*
384 * This is not really a fixup. The work struct was
385 * statically initialized. We just make sure that it
386 * is tracked in the object tracker.
387 */
22df02bb 388 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
389 debug_object_init(work, &work_debug_descr);
390 debug_object_activate(work, &work_debug_descr);
391 return 0;
392 }
393 WARN_ON_ONCE(1);
394 return 0;
395
396 case ODEBUG_STATE_ACTIVE:
397 WARN_ON(1);
398
399 default:
400 return 0;
401 }
402}
403
404/*
405 * fixup_free is called when:
406 * - an active object is freed
407 */
408static int work_fixup_free(void *addr, enum debug_obj_state state)
409{
410 struct work_struct *work = addr;
411
412 switch (state) {
413 case ODEBUG_STATE_ACTIVE:
414 cancel_work_sync(work);
415 debug_object_free(work, &work_debug_descr);
416 return 1;
417 default:
418 return 0;
419 }
420}
421
422static struct debug_obj_descr work_debug_descr = {
423 .name = "work_struct",
99777288 424 .debug_hint = work_debug_hint,
dc186ad7
TG
425 .fixup_init = work_fixup_init,
426 .fixup_activate = work_fixup_activate,
427 .fixup_free = work_fixup_free,
428};
429
430static inline void debug_work_activate(struct work_struct *work)
431{
432 debug_object_activate(work, &work_debug_descr);
433}
434
435static inline void debug_work_deactivate(struct work_struct *work)
436{
437 debug_object_deactivate(work, &work_debug_descr);
438}
439
440void __init_work(struct work_struct *work, int onstack)
441{
442 if (onstack)
443 debug_object_init_on_stack(work, &work_debug_descr);
444 else
445 debug_object_init(work, &work_debug_descr);
446}
447EXPORT_SYMBOL_GPL(__init_work);
448
449void destroy_work_on_stack(struct work_struct *work)
450{
451 debug_object_free(work, &work_debug_descr);
452}
453EXPORT_SYMBOL_GPL(destroy_work_on_stack);
454
455#else
456static inline void debug_work_activate(struct work_struct *work) { }
457static inline void debug_work_deactivate(struct work_struct *work) { }
458#endif
459
9daf9e67
TH
460/* allocate ID and assign it to @pool */
461static int worker_pool_assign_id(struct worker_pool *pool)
462{
463 int ret;
464
5bcab335
TH
465 lockdep_assert_held(&wq_mutex);
466
fa1b54e6
TH
467 do {
468 if (!idr_pre_get(&worker_pool_idr, GFP_KERNEL))
469 return -ENOMEM;
fa1b54e6 470 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
fa1b54e6 471 } while (ret == -EAGAIN);
9daf9e67 472
fa1b54e6 473 return ret;
7c3eed5c
TH
474}
475
76af4d93
TH
476/**
477 * first_pwq - return the first pool_workqueue of the specified workqueue
478 * @wq: the target workqueue
479 *
794b18bc
TH
480 * This must be called either with pwq_lock held or sched RCU read locked.
481 * If the pwq needs to be used beyond the locking in effect, the caller is
482 * responsible for guaranteeing that the pwq stays online.
76af4d93 483 */
7fb98ea7 484static struct pool_workqueue *first_pwq(struct workqueue_struct *wq)
b1f4ec17 485{
794b18bc 486 assert_rcu_or_pwq_lock();
76af4d93
TH
487 return list_first_or_null_rcu(&wq->pwqs, struct pool_workqueue,
488 pwqs_node);
b1f4ec17
ON
489}
490
73f53c4a
TH
491static unsigned int work_color_to_flags(int color)
492{
493 return color << WORK_STRUCT_COLOR_SHIFT;
494}
495
496static int get_work_color(struct work_struct *work)
497{
498 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
499 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
500}
501
502static int work_next_color(int color)
503{
504 return (color + 1) % WORK_NR_COLORS;
505}
1da177e4 506
14441960 507/*
112202d9
TH
508 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
509 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 510 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 511 *
112202d9
TH
512 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
513 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
514 * work->data. These functions should only be called while the work is
515 * owned - ie. while the PENDING bit is set.
7a22ad75 516 *
112202d9 517 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 518 * corresponding to a work. Pool is available once the work has been
112202d9 519 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 520 * available only while the work item is queued.
7a22ad75 521 *
bbb68dfa
TH
522 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
523 * canceled. While being canceled, a work item may have its PENDING set
524 * but stay off timer and worklist for arbitrarily long and nobody should
525 * try to steal the PENDING bit.
14441960 526 */
7a22ad75
TH
527static inline void set_work_data(struct work_struct *work, unsigned long data,
528 unsigned long flags)
365970a1 529{
6183c009 530 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
531 atomic_long_set(&work->data, data | flags | work_static(work));
532}
365970a1 533
112202d9 534static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
535 unsigned long extra_flags)
536{
112202d9
TH
537 set_work_data(work, (unsigned long)pwq,
538 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
539}
540
4468a00f
LJ
541static void set_work_pool_and_keep_pending(struct work_struct *work,
542 int pool_id)
543{
544 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
545 WORK_STRUCT_PENDING);
546}
547
7c3eed5c
TH
548static void set_work_pool_and_clear_pending(struct work_struct *work,
549 int pool_id)
7a22ad75 550{
23657bb1
TH
551 /*
552 * The following wmb is paired with the implied mb in
553 * test_and_set_bit(PENDING) and ensures all updates to @work made
554 * here are visible to and precede any updates by the next PENDING
555 * owner.
556 */
557 smp_wmb();
7c3eed5c 558 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 559}
f756d5e2 560
7a22ad75 561static void clear_work_data(struct work_struct *work)
1da177e4 562{
7c3eed5c
TH
563 smp_wmb(); /* see set_work_pool_and_clear_pending() */
564 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
565}
566
112202d9 567static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 568{
e120153d 569 unsigned long data = atomic_long_read(&work->data);
7a22ad75 570
112202d9 571 if (data & WORK_STRUCT_PWQ)
e120153d
TH
572 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
573 else
574 return NULL;
4d707b9f
ON
575}
576
7c3eed5c
TH
577/**
578 * get_work_pool - return the worker_pool a given work was associated with
579 * @work: the work item of interest
580 *
581 * Return the worker_pool @work was last associated with. %NULL if none.
fa1b54e6 582 *
5bcab335
TH
583 * Pools are created and destroyed under wq_mutex, and allows read access
584 * under sched-RCU read lock. As such, this function should be called
585 * under wq_mutex or with preemption disabled.
fa1b54e6
TH
586 *
587 * All fields of the returned pool are accessible as long as the above
588 * mentioned locking is in effect. If the returned pool needs to be used
589 * beyond the critical section, the caller is responsible for ensuring the
590 * returned pool is and stays online.
7c3eed5c
TH
591 */
592static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 593{
e120153d 594 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 595 int pool_id;
7a22ad75 596
5bcab335 597 assert_rcu_or_wq_mutex();
fa1b54e6 598
112202d9
TH
599 if (data & WORK_STRUCT_PWQ)
600 return ((struct pool_workqueue *)
7c3eed5c 601 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 602
7c3eed5c
TH
603 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
604 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
605 return NULL;
606
fa1b54e6 607 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
608}
609
610/**
611 * get_work_pool_id - return the worker pool ID a given work is associated with
612 * @work: the work item of interest
613 *
614 * Return the worker_pool ID @work was last associated with.
615 * %WORK_OFFQ_POOL_NONE if none.
616 */
617static int get_work_pool_id(struct work_struct *work)
618{
54d5b7d0
LJ
619 unsigned long data = atomic_long_read(&work->data);
620
112202d9
TH
621 if (data & WORK_STRUCT_PWQ)
622 return ((struct pool_workqueue *)
54d5b7d0 623 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 624
54d5b7d0 625 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
626}
627
bbb68dfa
TH
628static void mark_work_canceling(struct work_struct *work)
629{
7c3eed5c 630 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 631
7c3eed5c
TH
632 pool_id <<= WORK_OFFQ_POOL_SHIFT;
633 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
634}
635
636static bool work_is_canceling(struct work_struct *work)
637{
638 unsigned long data = atomic_long_read(&work->data);
639
112202d9 640 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
641}
642
e22bee78 643/*
3270476a
TH
644 * Policy functions. These define the policies on how the global worker
645 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 646 * they're being called with pool->lock held.
e22bee78
TH
647 */
648
63d95a91 649static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 650{
e19e397a 651 return !atomic_read(&pool->nr_running);
a848e3b6
ON
652}
653
4594bf15 654/*
e22bee78
TH
655 * Need to wake up a worker? Called from anything but currently
656 * running workers.
974271c4
TH
657 *
658 * Note that, because unbound workers never contribute to nr_running, this
706026c2 659 * function will always return %true for unbound pools as long as the
974271c4 660 * worklist isn't empty.
4594bf15 661 */
63d95a91 662static bool need_more_worker(struct worker_pool *pool)
365970a1 663{
63d95a91 664 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 665}
4594bf15 666
e22bee78 667/* Can I start working? Called from busy but !running workers. */
63d95a91 668static bool may_start_working(struct worker_pool *pool)
e22bee78 669{
63d95a91 670 return pool->nr_idle;
e22bee78
TH
671}
672
673/* Do I need to keep working? Called from currently running workers. */
63d95a91 674static bool keep_working(struct worker_pool *pool)
e22bee78 675{
e19e397a
TH
676 return !list_empty(&pool->worklist) &&
677 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
678}
679
680/* Do we need a new worker? Called from manager. */
63d95a91 681static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 682{
63d95a91 683 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 684}
365970a1 685
e22bee78 686/* Do I need to be the manager? */
63d95a91 687static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 688{
63d95a91 689 return need_to_create_worker(pool) ||
11ebea50 690 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
691}
692
693/* Do we have too many workers and should some go away? */
63d95a91 694static bool too_many_workers(struct worker_pool *pool)
e22bee78 695{
34a06bd6 696 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
697 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
698 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 699
ea1abd61
LJ
700 /*
701 * nr_idle and idle_list may disagree if idle rebinding is in
702 * progress. Never return %true if idle_list is empty.
703 */
704 if (list_empty(&pool->idle_list))
705 return false;
706
e22bee78 707 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
708}
709
4d707b9f 710/*
e22bee78
TH
711 * Wake up functions.
712 */
713
7e11629d 714/* Return the first worker. Safe with preemption disabled */
63d95a91 715static struct worker *first_worker(struct worker_pool *pool)
7e11629d 716{
63d95a91 717 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
718 return NULL;
719
63d95a91 720 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
721}
722
723/**
724 * wake_up_worker - wake up an idle worker
63d95a91 725 * @pool: worker pool to wake worker from
7e11629d 726 *
63d95a91 727 * Wake up the first idle worker of @pool.
7e11629d
TH
728 *
729 * CONTEXT:
d565ed63 730 * spin_lock_irq(pool->lock).
7e11629d 731 */
63d95a91 732static void wake_up_worker(struct worker_pool *pool)
7e11629d 733{
63d95a91 734 struct worker *worker = first_worker(pool);
7e11629d
TH
735
736 if (likely(worker))
737 wake_up_process(worker->task);
738}
739
d302f017 740/**
e22bee78
TH
741 * wq_worker_waking_up - a worker is waking up
742 * @task: task waking up
743 * @cpu: CPU @task is waking up to
744 *
745 * This function is called during try_to_wake_up() when a worker is
746 * being awoken.
747 *
748 * CONTEXT:
749 * spin_lock_irq(rq->lock)
750 */
d84ff051 751void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
752{
753 struct worker *worker = kthread_data(task);
754
36576000 755 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 756 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 757 atomic_inc(&worker->pool->nr_running);
36576000 758 }
e22bee78
TH
759}
760
761/**
762 * wq_worker_sleeping - a worker is going to sleep
763 * @task: task going to sleep
764 * @cpu: CPU in question, must be the current CPU number
765 *
766 * This function is called during schedule() when a busy worker is
767 * going to sleep. Worker on the same cpu can be woken up by
768 * returning pointer to its task.
769 *
770 * CONTEXT:
771 * spin_lock_irq(rq->lock)
772 *
773 * RETURNS:
774 * Worker task on @cpu to wake up, %NULL if none.
775 */
d84ff051 776struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
777{
778 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 779 struct worker_pool *pool;
e22bee78 780
111c225a
TH
781 /*
782 * Rescuers, which may not have all the fields set up like normal
783 * workers, also reach here, let's not access anything before
784 * checking NOT_RUNNING.
785 */
2d64672e 786 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
787 return NULL;
788
111c225a 789 pool = worker->pool;
111c225a 790
e22bee78 791 /* this can only happen on the local cpu */
6183c009
TH
792 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
793 return NULL;
e22bee78
TH
794
795 /*
796 * The counterpart of the following dec_and_test, implied mb,
797 * worklist not empty test sequence is in insert_work().
798 * Please read comment there.
799 *
628c78e7
TH
800 * NOT_RUNNING is clear. This means that we're bound to and
801 * running on the local cpu w/ rq lock held and preemption
802 * disabled, which in turn means that none else could be
d565ed63 803 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 804 * lock is safe.
e22bee78 805 */
e19e397a
TH
806 if (atomic_dec_and_test(&pool->nr_running) &&
807 !list_empty(&pool->worklist))
63d95a91 808 to_wakeup = first_worker(pool);
e22bee78
TH
809 return to_wakeup ? to_wakeup->task : NULL;
810}
811
812/**
813 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 814 * @worker: self
d302f017
TH
815 * @flags: flags to set
816 * @wakeup: wakeup an idle worker if necessary
817 *
e22bee78
TH
818 * Set @flags in @worker->flags and adjust nr_running accordingly. If
819 * nr_running becomes zero and @wakeup is %true, an idle worker is
820 * woken up.
d302f017 821 *
cb444766 822 * CONTEXT:
d565ed63 823 * spin_lock_irq(pool->lock)
d302f017
TH
824 */
825static inline void worker_set_flags(struct worker *worker, unsigned int flags,
826 bool wakeup)
827{
bd7bdd43 828 struct worker_pool *pool = worker->pool;
e22bee78 829
cb444766
TH
830 WARN_ON_ONCE(worker->task != current);
831
e22bee78
TH
832 /*
833 * If transitioning into NOT_RUNNING, adjust nr_running and
834 * wake up an idle worker as necessary if requested by
835 * @wakeup.
836 */
837 if ((flags & WORKER_NOT_RUNNING) &&
838 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 839 if (wakeup) {
e19e397a 840 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 841 !list_empty(&pool->worklist))
63d95a91 842 wake_up_worker(pool);
e22bee78 843 } else
e19e397a 844 atomic_dec(&pool->nr_running);
e22bee78
TH
845 }
846
d302f017
TH
847 worker->flags |= flags;
848}
849
850/**
e22bee78 851 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 852 * @worker: self
d302f017
TH
853 * @flags: flags to clear
854 *
e22bee78 855 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 856 *
cb444766 857 * CONTEXT:
d565ed63 858 * spin_lock_irq(pool->lock)
d302f017
TH
859 */
860static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
861{
63d95a91 862 struct worker_pool *pool = worker->pool;
e22bee78
TH
863 unsigned int oflags = worker->flags;
864
cb444766
TH
865 WARN_ON_ONCE(worker->task != current);
866
d302f017 867 worker->flags &= ~flags;
e22bee78 868
42c025f3
TH
869 /*
870 * If transitioning out of NOT_RUNNING, increment nr_running. Note
871 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
872 * of multiple flags, not a single flag.
873 */
e22bee78
TH
874 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
875 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 876 atomic_inc(&pool->nr_running);
d302f017
TH
877}
878
8cca0eea
TH
879/**
880 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 881 * @pool: pool of interest
8cca0eea
TH
882 * @work: work to find worker for
883 *
c9e7cf27
TH
884 * Find a worker which is executing @work on @pool by searching
885 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
886 * to match, its current execution should match the address of @work and
887 * its work function. This is to avoid unwanted dependency between
888 * unrelated work executions through a work item being recycled while still
889 * being executed.
890 *
891 * This is a bit tricky. A work item may be freed once its execution
892 * starts and nothing prevents the freed area from being recycled for
893 * another work item. If the same work item address ends up being reused
894 * before the original execution finishes, workqueue will identify the
895 * recycled work item as currently executing and make it wait until the
896 * current execution finishes, introducing an unwanted dependency.
897 *
c5aa87bb
TH
898 * This function checks the work item address and work function to avoid
899 * false positives. Note that this isn't complete as one may construct a
900 * work function which can introduce dependency onto itself through a
901 * recycled work item. Well, if somebody wants to shoot oneself in the
902 * foot that badly, there's only so much we can do, and if such deadlock
903 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
904 *
905 * CONTEXT:
d565ed63 906 * spin_lock_irq(pool->lock).
8cca0eea
TH
907 *
908 * RETURNS:
909 * Pointer to worker which is executing @work if found, NULL
910 * otherwise.
4d707b9f 911 */
c9e7cf27 912static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 913 struct work_struct *work)
4d707b9f 914{
42f8570f 915 struct worker *worker;
42f8570f 916
b67bfe0d 917 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
918 (unsigned long)work)
919 if (worker->current_work == work &&
920 worker->current_func == work->func)
42f8570f
SL
921 return worker;
922
923 return NULL;
4d707b9f
ON
924}
925
bf4ede01
TH
926/**
927 * move_linked_works - move linked works to a list
928 * @work: start of series of works to be scheduled
929 * @head: target list to append @work to
930 * @nextp: out paramter for nested worklist walking
931 *
932 * Schedule linked works starting from @work to @head. Work series to
933 * be scheduled starts at @work and includes any consecutive work with
934 * WORK_STRUCT_LINKED set in its predecessor.
935 *
936 * If @nextp is not NULL, it's updated to point to the next work of
937 * the last scheduled work. This allows move_linked_works() to be
938 * nested inside outer list_for_each_entry_safe().
939 *
940 * CONTEXT:
d565ed63 941 * spin_lock_irq(pool->lock).
bf4ede01
TH
942 */
943static void move_linked_works(struct work_struct *work, struct list_head *head,
944 struct work_struct **nextp)
945{
946 struct work_struct *n;
947
948 /*
949 * Linked worklist will always end before the end of the list,
950 * use NULL for list head.
951 */
952 list_for_each_entry_safe_from(work, n, NULL, entry) {
953 list_move_tail(&work->entry, head);
954 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
955 break;
956 }
957
958 /*
959 * If we're already inside safe list traversal and have moved
960 * multiple works to the scheduled queue, the next position
961 * needs to be updated.
962 */
963 if (nextp)
964 *nextp = n;
965}
966
8864b4e5
TH
967/**
968 * get_pwq - get an extra reference on the specified pool_workqueue
969 * @pwq: pool_workqueue to get
970 *
971 * Obtain an extra reference on @pwq. The caller should guarantee that
972 * @pwq has positive refcnt and be holding the matching pool->lock.
973 */
974static void get_pwq(struct pool_workqueue *pwq)
975{
976 lockdep_assert_held(&pwq->pool->lock);
977 WARN_ON_ONCE(pwq->refcnt <= 0);
978 pwq->refcnt++;
979}
980
981/**
982 * put_pwq - put a pool_workqueue reference
983 * @pwq: pool_workqueue to put
984 *
985 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
986 * destruction. The caller should be holding the matching pool->lock.
987 */
988static void put_pwq(struct pool_workqueue *pwq)
989{
990 lockdep_assert_held(&pwq->pool->lock);
991 if (likely(--pwq->refcnt))
992 return;
993 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
994 return;
995 /*
996 * @pwq can't be released under pool->lock, bounce to
997 * pwq_unbound_release_workfn(). This never recurses on the same
998 * pool->lock as this path is taken only for unbound workqueues and
999 * the release work item is scheduled on a per-cpu workqueue. To
1000 * avoid lockdep warning, unbound pool->locks are given lockdep
1001 * subclass of 1 in get_unbound_pool().
1002 */
1003 schedule_work(&pwq->unbound_release_work);
1004}
1005
112202d9 1006static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1007{
112202d9 1008 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1009
1010 trace_workqueue_activate_work(work);
112202d9 1011 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1012 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1013 pwq->nr_active++;
bf4ede01
TH
1014}
1015
112202d9 1016static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1017{
112202d9 1018 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1019 struct work_struct, entry);
1020
112202d9 1021 pwq_activate_delayed_work(work);
3aa62497
LJ
1022}
1023
bf4ede01 1024/**
112202d9
TH
1025 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1026 * @pwq: pwq of interest
bf4ede01 1027 * @color: color of work which left the queue
bf4ede01
TH
1028 *
1029 * A work either has completed or is removed from pending queue,
112202d9 1030 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1031 *
1032 * CONTEXT:
d565ed63 1033 * spin_lock_irq(pool->lock).
bf4ede01 1034 */
112202d9 1035static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1036{
8864b4e5 1037 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1038 if (color == WORK_NO_COLOR)
8864b4e5 1039 goto out_put;
bf4ede01 1040
112202d9 1041 pwq->nr_in_flight[color]--;
bf4ede01 1042
112202d9
TH
1043 pwq->nr_active--;
1044 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1045 /* one down, submit a delayed one */
112202d9
TH
1046 if (pwq->nr_active < pwq->max_active)
1047 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1048 }
1049
1050 /* is flush in progress and are we at the flushing tip? */
112202d9 1051 if (likely(pwq->flush_color != color))
8864b4e5 1052 goto out_put;
bf4ede01
TH
1053
1054 /* are there still in-flight works? */
112202d9 1055 if (pwq->nr_in_flight[color])
8864b4e5 1056 goto out_put;
bf4ede01 1057
112202d9
TH
1058 /* this pwq is done, clear flush_color */
1059 pwq->flush_color = -1;
bf4ede01
TH
1060
1061 /*
112202d9 1062 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1063 * will handle the rest.
1064 */
112202d9
TH
1065 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1066 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1067out_put:
1068 put_pwq(pwq);
bf4ede01
TH
1069}
1070
36e227d2 1071/**
bbb68dfa 1072 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1073 * @work: work item to steal
1074 * @is_dwork: @work is a delayed_work
bbb68dfa 1075 * @flags: place to store irq state
36e227d2
TH
1076 *
1077 * Try to grab PENDING bit of @work. This function can handle @work in any
1078 * stable state - idle, on timer or on worklist. Return values are
1079 *
1080 * 1 if @work was pending and we successfully stole PENDING
1081 * 0 if @work was idle and we claimed PENDING
1082 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1083 * -ENOENT if someone else is canceling @work, this state may persist
1084 * for arbitrarily long
36e227d2 1085 *
bbb68dfa 1086 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1087 * interrupted while holding PENDING and @work off queue, irq must be
1088 * disabled on entry. This, combined with delayed_work->timer being
1089 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1090 *
1091 * On successful return, >= 0, irq is disabled and the caller is
1092 * responsible for releasing it using local_irq_restore(*@flags).
1093 *
e0aecdd8 1094 * This function is safe to call from any context including IRQ handler.
bf4ede01 1095 */
bbb68dfa
TH
1096static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1097 unsigned long *flags)
bf4ede01 1098{
d565ed63 1099 struct worker_pool *pool;
112202d9 1100 struct pool_workqueue *pwq;
bf4ede01 1101
bbb68dfa
TH
1102 local_irq_save(*flags);
1103
36e227d2
TH
1104 /* try to steal the timer if it exists */
1105 if (is_dwork) {
1106 struct delayed_work *dwork = to_delayed_work(work);
1107
e0aecdd8
TH
1108 /*
1109 * dwork->timer is irqsafe. If del_timer() fails, it's
1110 * guaranteed that the timer is not queued anywhere and not
1111 * running on the local CPU.
1112 */
36e227d2
TH
1113 if (likely(del_timer(&dwork->timer)))
1114 return 1;
1115 }
1116
1117 /* try to claim PENDING the normal way */
bf4ede01
TH
1118 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1119 return 0;
1120
1121 /*
1122 * The queueing is in progress, or it is already queued. Try to
1123 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1124 */
d565ed63
TH
1125 pool = get_work_pool(work);
1126 if (!pool)
bbb68dfa 1127 goto fail;
bf4ede01 1128
d565ed63 1129 spin_lock(&pool->lock);
0b3dae68 1130 /*
112202d9
TH
1131 * work->data is guaranteed to point to pwq only while the work
1132 * item is queued on pwq->wq, and both updating work->data to point
1133 * to pwq on queueing and to pool on dequeueing are done under
1134 * pwq->pool->lock. This in turn guarantees that, if work->data
1135 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1136 * item is currently queued on that pool.
1137 */
112202d9
TH
1138 pwq = get_work_pwq(work);
1139 if (pwq && pwq->pool == pool) {
16062836
TH
1140 debug_work_deactivate(work);
1141
1142 /*
1143 * A delayed work item cannot be grabbed directly because
1144 * it might have linked NO_COLOR work items which, if left
112202d9 1145 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1146 * management later on and cause stall. Make sure the work
1147 * item is activated before grabbing.
1148 */
1149 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1150 pwq_activate_delayed_work(work);
16062836
TH
1151
1152 list_del_init(&work->entry);
112202d9 1153 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1154
112202d9 1155 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1156 set_work_pool_and_keep_pending(work, pool->id);
1157
1158 spin_unlock(&pool->lock);
1159 return 1;
bf4ede01 1160 }
d565ed63 1161 spin_unlock(&pool->lock);
bbb68dfa
TH
1162fail:
1163 local_irq_restore(*flags);
1164 if (work_is_canceling(work))
1165 return -ENOENT;
1166 cpu_relax();
36e227d2 1167 return -EAGAIN;
bf4ede01
TH
1168}
1169
4690c4ab 1170/**
706026c2 1171 * insert_work - insert a work into a pool
112202d9 1172 * @pwq: pwq @work belongs to
4690c4ab
TH
1173 * @work: work to insert
1174 * @head: insertion point
1175 * @extra_flags: extra WORK_STRUCT_* flags to set
1176 *
112202d9 1177 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1178 * work_struct flags.
4690c4ab
TH
1179 *
1180 * CONTEXT:
d565ed63 1181 * spin_lock_irq(pool->lock).
4690c4ab 1182 */
112202d9
TH
1183static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1184 struct list_head *head, unsigned int extra_flags)
b89deed3 1185{
112202d9 1186 struct worker_pool *pool = pwq->pool;
e22bee78 1187
4690c4ab 1188 /* we own @work, set data and link */
112202d9 1189 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1190 list_add_tail(&work->entry, head);
8864b4e5 1191 get_pwq(pwq);
e22bee78
TH
1192
1193 /*
c5aa87bb
TH
1194 * Ensure either wq_worker_sleeping() sees the above
1195 * list_add_tail() or we see zero nr_running to avoid workers lying
1196 * around lazily while there are works to be processed.
e22bee78
TH
1197 */
1198 smp_mb();
1199
63d95a91
TH
1200 if (__need_more_worker(pool))
1201 wake_up_worker(pool);
b89deed3
ON
1202}
1203
c8efcc25
TH
1204/*
1205 * Test whether @work is being queued from another work executing on the
8d03ecfe 1206 * same workqueue.
c8efcc25
TH
1207 */
1208static bool is_chained_work(struct workqueue_struct *wq)
1209{
8d03ecfe
TH
1210 struct worker *worker;
1211
1212 worker = current_wq_worker();
1213 /*
1214 * Return %true iff I'm a worker execuing a work item on @wq. If
1215 * I'm @worker, it's safe to dereference it without locking.
1216 */
112202d9 1217 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1218}
1219
d84ff051 1220static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1221 struct work_struct *work)
1222{
112202d9 1223 struct pool_workqueue *pwq;
c9178087 1224 struct worker_pool *last_pool;
1e19ffc6 1225 struct list_head *worklist;
8a2e8e5d 1226 unsigned int work_flags;
b75cac93 1227 unsigned int req_cpu = cpu;
8930caba
TH
1228
1229 /*
1230 * While a work item is PENDING && off queue, a task trying to
1231 * steal the PENDING will busy-loop waiting for it to either get
1232 * queued or lose PENDING. Grabbing PENDING and queueing should
1233 * happen with IRQ disabled.
1234 */
1235 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1236
dc186ad7 1237 debug_work_activate(work);
1e19ffc6 1238
c8efcc25 1239 /* if dying, only works from the same workqueue are allowed */
618b01eb 1240 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1241 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1242 return;
9e8cd2f5 1243retry:
c9178087 1244 /* pwq which will be used unless @work is executing elsewhere */
c7fc77f7 1245 if (!(wq->flags & WQ_UNBOUND)) {
57469821 1246 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7 1247 cpu = raw_smp_processor_id();
7fb98ea7 1248 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
c9178087
TH
1249 } else {
1250 pwq = first_pwq(wq);
1251 }
dbf2576e 1252
c9178087
TH
1253 /*
1254 * If @work was previously on a different pool, it might still be
1255 * running there, in which case the work needs to be queued on that
1256 * pool to guarantee non-reentrancy.
1257 */
1258 last_pool = get_work_pool(work);
1259 if (last_pool && last_pool != pwq->pool) {
1260 struct worker *worker;
18aa9eff 1261
c9178087 1262 spin_lock(&last_pool->lock);
18aa9eff 1263
c9178087 1264 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1265
c9178087
TH
1266 if (worker && worker->current_pwq->wq == wq) {
1267 pwq = worker->current_pwq;
8930caba 1268 } else {
c9178087
TH
1269 /* meh... not running there, queue here */
1270 spin_unlock(&last_pool->lock);
112202d9 1271 spin_lock(&pwq->pool->lock);
8930caba 1272 }
f3421797 1273 } else {
112202d9 1274 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1275 }
1276
9e8cd2f5
TH
1277 /*
1278 * pwq is determined and locked. For unbound pools, we could have
1279 * raced with pwq release and it could already be dead. If its
1280 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1281 * without another pwq replacing it as the first pwq or while a
1282 * work item is executing on it, so the retying is guaranteed to
1283 * make forward-progress.
1284 */
1285 if (unlikely(!pwq->refcnt)) {
1286 if (wq->flags & WQ_UNBOUND) {
1287 spin_unlock(&pwq->pool->lock);
1288 cpu_relax();
1289 goto retry;
1290 }
1291 /* oops */
1292 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1293 wq->name, cpu);
1294 }
1295
112202d9
TH
1296 /* pwq determined, queue */
1297 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1298
f5b2552b 1299 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1300 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1301 return;
1302 }
1e19ffc6 1303
112202d9
TH
1304 pwq->nr_in_flight[pwq->work_color]++;
1305 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1306
112202d9 1307 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1308 trace_workqueue_activate_work(work);
112202d9
TH
1309 pwq->nr_active++;
1310 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1311 } else {
1312 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1313 worklist = &pwq->delayed_works;
8a2e8e5d 1314 }
1e19ffc6 1315
112202d9 1316 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1317
112202d9 1318 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1319}
1320
0fcb78c2 1321/**
c1a220e7
ZR
1322 * queue_work_on - queue work on specific cpu
1323 * @cpu: CPU number to execute work on
0fcb78c2
REB
1324 * @wq: workqueue to use
1325 * @work: work to queue
1326 *
d4283e93 1327 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1328 *
c1a220e7
ZR
1329 * We queue the work to a specific CPU, the caller must ensure it
1330 * can't go away.
1da177e4 1331 */
d4283e93
TH
1332bool queue_work_on(int cpu, struct workqueue_struct *wq,
1333 struct work_struct *work)
1da177e4 1334{
d4283e93 1335 bool ret = false;
8930caba 1336 unsigned long flags;
ef1ca236 1337
8930caba 1338 local_irq_save(flags);
c1a220e7 1339
22df02bb 1340 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1341 __queue_work(cpu, wq, work);
d4283e93 1342 ret = true;
c1a220e7 1343 }
ef1ca236 1344
8930caba 1345 local_irq_restore(flags);
1da177e4
LT
1346 return ret;
1347}
c1a220e7 1348EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1349
d8e794df 1350void delayed_work_timer_fn(unsigned long __data)
1da177e4 1351{
52bad64d 1352 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1353
e0aecdd8 1354 /* should have been called from irqsafe timer with irq already off */
60c057bc 1355 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1356}
1438ade5 1357EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1358
7beb2edf
TH
1359static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1360 struct delayed_work *dwork, unsigned long delay)
1da177e4 1361{
7beb2edf
TH
1362 struct timer_list *timer = &dwork->timer;
1363 struct work_struct *work = &dwork->work;
7beb2edf
TH
1364
1365 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1366 timer->data != (unsigned long)dwork);
fc4b514f
TH
1367 WARN_ON_ONCE(timer_pending(timer));
1368 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1369
8852aac2
TH
1370 /*
1371 * If @delay is 0, queue @dwork->work immediately. This is for
1372 * both optimization and correctness. The earliest @timer can
1373 * expire is on the closest next tick and delayed_work users depend
1374 * on that there's no such delay when @delay is 0.
1375 */
1376 if (!delay) {
1377 __queue_work(cpu, wq, &dwork->work);
1378 return;
1379 }
1380
7beb2edf 1381 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1382
60c057bc 1383 dwork->wq = wq;
1265057f 1384 dwork->cpu = cpu;
7beb2edf
TH
1385 timer->expires = jiffies + delay;
1386
1387 if (unlikely(cpu != WORK_CPU_UNBOUND))
1388 add_timer_on(timer, cpu);
1389 else
1390 add_timer(timer);
1da177e4
LT
1391}
1392
0fcb78c2
REB
1393/**
1394 * queue_delayed_work_on - queue work on specific CPU after delay
1395 * @cpu: CPU number to execute work on
1396 * @wq: workqueue to use
af9997e4 1397 * @dwork: work to queue
0fcb78c2
REB
1398 * @delay: number of jiffies to wait before queueing
1399 *
715f1300
TH
1400 * Returns %false if @work was already on a queue, %true otherwise. If
1401 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1402 * execution.
0fcb78c2 1403 */
d4283e93
TH
1404bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1405 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1406{
52bad64d 1407 struct work_struct *work = &dwork->work;
d4283e93 1408 bool ret = false;
8930caba 1409 unsigned long flags;
7a6bc1cd 1410
8930caba
TH
1411 /* read the comment in __queue_work() */
1412 local_irq_save(flags);
7a6bc1cd 1413
22df02bb 1414 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1415 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1416 ret = true;
7a6bc1cd 1417 }
8a3e77cc 1418
8930caba 1419 local_irq_restore(flags);
7a6bc1cd
VP
1420 return ret;
1421}
ae90dd5d 1422EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1423
8376fe22
TH
1424/**
1425 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1426 * @cpu: CPU number to execute work on
1427 * @wq: workqueue to use
1428 * @dwork: work to queue
1429 * @delay: number of jiffies to wait before queueing
1430 *
1431 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1432 * modify @dwork's timer so that it expires after @delay. If @delay is
1433 * zero, @work is guaranteed to be scheduled immediately regardless of its
1434 * current state.
1435 *
1436 * Returns %false if @dwork was idle and queued, %true if @dwork was
1437 * pending and its timer was modified.
1438 *
e0aecdd8 1439 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1440 * See try_to_grab_pending() for details.
1441 */
1442bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1443 struct delayed_work *dwork, unsigned long delay)
1444{
1445 unsigned long flags;
1446 int ret;
c7fc77f7 1447
8376fe22
TH
1448 do {
1449 ret = try_to_grab_pending(&dwork->work, true, &flags);
1450 } while (unlikely(ret == -EAGAIN));
63bc0362 1451
8376fe22
TH
1452 if (likely(ret >= 0)) {
1453 __queue_delayed_work(cpu, wq, dwork, delay);
1454 local_irq_restore(flags);
7a6bc1cd 1455 }
8376fe22
TH
1456
1457 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1458 return ret;
1459}
8376fe22
TH
1460EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1461
c8e55f36
TH
1462/**
1463 * worker_enter_idle - enter idle state
1464 * @worker: worker which is entering idle state
1465 *
1466 * @worker is entering idle state. Update stats and idle timer if
1467 * necessary.
1468 *
1469 * LOCKING:
d565ed63 1470 * spin_lock_irq(pool->lock).
c8e55f36
TH
1471 */
1472static void worker_enter_idle(struct worker *worker)
1da177e4 1473{
bd7bdd43 1474 struct worker_pool *pool = worker->pool;
c8e55f36 1475
6183c009
TH
1476 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1477 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1478 (worker->hentry.next || worker->hentry.pprev)))
1479 return;
c8e55f36 1480
cb444766
TH
1481 /* can't use worker_set_flags(), also called from start_worker() */
1482 worker->flags |= WORKER_IDLE;
bd7bdd43 1483 pool->nr_idle++;
e22bee78 1484 worker->last_active = jiffies;
c8e55f36
TH
1485
1486 /* idle_list is LIFO */
bd7bdd43 1487 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1488
628c78e7
TH
1489 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1490 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1491
544ecf31 1492 /*
706026c2 1493 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1494 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1495 * nr_running, the warning may trigger spuriously. Check iff
1496 * unbind is not in progress.
544ecf31 1497 */
24647570 1498 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1499 pool->nr_workers == pool->nr_idle &&
e19e397a 1500 atomic_read(&pool->nr_running));
c8e55f36
TH
1501}
1502
1503/**
1504 * worker_leave_idle - leave idle state
1505 * @worker: worker which is leaving idle state
1506 *
1507 * @worker is leaving idle state. Update stats.
1508 *
1509 * LOCKING:
d565ed63 1510 * spin_lock_irq(pool->lock).
c8e55f36
TH
1511 */
1512static void worker_leave_idle(struct worker *worker)
1513{
bd7bdd43 1514 struct worker_pool *pool = worker->pool;
c8e55f36 1515
6183c009
TH
1516 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1517 return;
d302f017 1518 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1519 pool->nr_idle--;
c8e55f36
TH
1520 list_del_init(&worker->entry);
1521}
1522
e22bee78 1523/**
f36dc67b
LJ
1524 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1525 * @pool: target worker_pool
1526 *
1527 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1528 *
1529 * Works which are scheduled while the cpu is online must at least be
1530 * scheduled to a worker which is bound to the cpu so that if they are
1531 * flushed from cpu callbacks while cpu is going down, they are
1532 * guaranteed to execute on the cpu.
1533 *
f5faa077 1534 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1535 * themselves to the target cpu and may race with cpu going down or
1536 * coming online. kthread_bind() can't be used because it may put the
1537 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1538 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1539 * [dis]associated in the meantime.
1540 *
706026c2 1541 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1542 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1543 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1544 * enters idle state or fetches works without dropping lock, it can
1545 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1546 *
1547 * CONTEXT:
d565ed63 1548 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1549 * held.
1550 *
1551 * RETURNS:
706026c2 1552 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1553 * bound), %false if offline.
1554 */
f36dc67b 1555static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1556__acquires(&pool->lock)
e22bee78 1557{
e22bee78 1558 while (true) {
4e6045f1 1559 /*
e22bee78
TH
1560 * The following call may fail, succeed or succeed
1561 * without actually migrating the task to the cpu if
1562 * it races with cpu hotunplug operation. Verify
24647570 1563 * against POOL_DISASSOCIATED.
4e6045f1 1564 */
24647570 1565 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1566 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1567
d565ed63 1568 spin_lock_irq(&pool->lock);
24647570 1569 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1570 return false;
f5faa077 1571 if (task_cpu(current) == pool->cpu &&
7a4e344c 1572 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1573 return true;
d565ed63 1574 spin_unlock_irq(&pool->lock);
e22bee78 1575
5035b20f
TH
1576 /*
1577 * We've raced with CPU hot[un]plug. Give it a breather
1578 * and retry migration. cond_resched() is required here;
1579 * otherwise, we might deadlock against cpu_stop trying to
1580 * bring down the CPU on non-preemptive kernel.
1581 */
e22bee78 1582 cpu_relax();
5035b20f 1583 cond_resched();
e22bee78
TH
1584 }
1585}
1586
25511a47 1587/*
ea1abd61 1588 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1589 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1590 */
1591static void idle_worker_rebind(struct worker *worker)
1592{
5f7dabfd 1593 /* CPU may go down again inbetween, clear UNBOUND only on success */
f36dc67b 1594 if (worker_maybe_bind_and_lock(worker->pool))
5f7dabfd 1595 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1596
ea1abd61
LJ
1597 /* rebind complete, become available again */
1598 list_add(&worker->entry, &worker->pool->idle_list);
d565ed63 1599 spin_unlock_irq(&worker->pool->lock);
25511a47
TH
1600}
1601
e22bee78 1602/*
25511a47 1603 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1604 * the associated cpu which is coming back online. This is scheduled by
1605 * cpu up but can race with other cpu hotplug operations and may be
1606 * executed twice without intervening cpu down.
e22bee78 1607 */
25511a47 1608static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1609{
1610 struct worker *worker = container_of(work, struct worker, rebind_work);
e22bee78 1611
f36dc67b 1612 if (worker_maybe_bind_and_lock(worker->pool))
eab6d828 1613 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78 1614
d565ed63 1615 spin_unlock_irq(&worker->pool->lock);
e22bee78
TH
1616}
1617
25511a47 1618/**
94cf58bb
TH
1619 * rebind_workers - rebind all workers of a pool to the associated CPU
1620 * @pool: pool of interest
25511a47 1621 *
94cf58bb 1622 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
25511a47
TH
1623 * is different for idle and busy ones.
1624 *
ea1abd61
LJ
1625 * Idle ones will be removed from the idle_list and woken up. They will
1626 * add themselves back after completing rebind. This ensures that the
1627 * idle_list doesn't contain any unbound workers when re-bound busy workers
1628 * try to perform local wake-ups for concurrency management.
25511a47 1629 *
ea1abd61
LJ
1630 * Busy workers can rebind after they finish their current work items.
1631 * Queueing the rebind work item at the head of the scheduled list is
1632 * enough. Note that nr_running will be properly bumped as busy workers
1633 * rebind.
25511a47 1634 *
ea1abd61
LJ
1635 * On return, all non-manager workers are scheduled for rebind - see
1636 * manage_workers() for the manager special case. Any idle worker
1637 * including the manager will not appear on @idle_list until rebind is
1638 * complete, making local wake-ups safe.
25511a47 1639 */
94cf58bb 1640static void rebind_workers(struct worker_pool *pool)
25511a47 1641{
ea1abd61 1642 struct worker *worker, *n;
25511a47
TH
1643 int i;
1644
bc3a1afc 1645 lockdep_assert_held(&pool->manager_mutex);
94cf58bb 1646 lockdep_assert_held(&pool->lock);
25511a47 1647
5f7dabfd 1648 /* dequeue and kick idle ones */
94cf58bb
TH
1649 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1650 /*
1651 * idle workers should be off @pool->idle_list until rebind
1652 * is complete to avoid receiving premature local wake-ups.
1653 */
1654 list_del_init(&worker->entry);
25511a47 1655
94cf58bb
TH
1656 /*
1657 * worker_thread() will see the above dequeuing and call
1658 * idle_worker_rebind().
1659 */
1660 wake_up_process(worker->task);
1661 }
25511a47 1662
94cf58bb 1663 /* rebind busy workers */
b67bfe0d 1664 for_each_busy_worker(worker, i, pool) {
94cf58bb
TH
1665 struct work_struct *rebind_work = &worker->rebind_work;
1666 struct workqueue_struct *wq;
25511a47 1667
94cf58bb
TH
1668 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1669 work_data_bits(rebind_work)))
1670 continue;
25511a47 1671
94cf58bb 1672 debug_work_activate(rebind_work);
90beca5d 1673
94cf58bb
TH
1674 /*
1675 * wq doesn't really matter but let's keep @worker->pool
112202d9 1676 * and @pwq->pool consistent for sanity.
94cf58bb 1677 */
7a4e344c 1678 if (worker->pool->attrs->nice < 0)
94cf58bb
TH
1679 wq = system_highpri_wq;
1680 else
1681 wq = system_wq;
1682
7fb98ea7 1683 insert_work(per_cpu_ptr(wq->cpu_pwqs, pool->cpu), rebind_work,
94cf58bb
TH
1684 worker->scheduled.next,
1685 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1686 }
25511a47
TH
1687}
1688
c34056a3
TH
1689static struct worker *alloc_worker(void)
1690{
1691 struct worker *worker;
1692
1693 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1694 if (worker) {
1695 INIT_LIST_HEAD(&worker->entry);
affee4b2 1696 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1697 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1698 /* on creation a worker is in !idle && prep state */
1699 worker->flags = WORKER_PREP;
c8e55f36 1700 }
c34056a3
TH
1701 return worker;
1702}
1703
1704/**
1705 * create_worker - create a new workqueue worker
63d95a91 1706 * @pool: pool the new worker will belong to
c34056a3 1707 *
63d95a91 1708 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1709 * can be started by calling start_worker() or destroyed using
1710 * destroy_worker().
1711 *
1712 * CONTEXT:
1713 * Might sleep. Does GFP_KERNEL allocations.
1714 *
1715 * RETURNS:
1716 * Pointer to the newly created worker.
1717 */
bc2ae0f5 1718static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1719{
7a4e344c 1720 const char *pri = pool->attrs->nice < 0 ? "H" : "";
c34056a3 1721 struct worker *worker = NULL;
f3421797 1722 int id = -1;
c34056a3 1723
cd549687
TH
1724 lockdep_assert_held(&pool->manager_mutex);
1725
d565ed63 1726 spin_lock_irq(&pool->lock);
bd7bdd43 1727 while (ida_get_new(&pool->worker_ida, &id)) {
d565ed63 1728 spin_unlock_irq(&pool->lock);
bd7bdd43 1729 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1730 goto fail;
d565ed63 1731 spin_lock_irq(&pool->lock);
c34056a3 1732 }
d565ed63 1733 spin_unlock_irq(&pool->lock);
c34056a3
TH
1734
1735 worker = alloc_worker();
1736 if (!worker)
1737 goto fail;
1738
bd7bdd43 1739 worker->pool = pool;
c34056a3
TH
1740 worker->id = id;
1741
29c91e99 1742 if (pool->cpu >= 0)
94dcf29a 1743 worker->task = kthread_create_on_node(worker_thread,
ec22ca5e 1744 worker, cpu_to_node(pool->cpu),
d84ff051 1745 "kworker/%d:%d%s", pool->cpu, id, pri);
f3421797
TH
1746 else
1747 worker->task = kthread_create(worker_thread, worker,
ac6104cd
TH
1748 "kworker/u%d:%d%s",
1749 pool->id, id, pri);
c34056a3
TH
1750 if (IS_ERR(worker->task))
1751 goto fail;
1752
c5aa87bb
TH
1753 /*
1754 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1755 * online CPUs. It'll be re-applied when any of the CPUs come up.
1756 */
7a4e344c
TH
1757 set_user_nice(worker->task, pool->attrs->nice);
1758 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1759
14a40ffc
TH
1760 /* prevent userland from meddling with cpumask of workqueue workers */
1761 worker->task->flags |= PF_NO_SETAFFINITY;
7a4e344c
TH
1762
1763 /*
1764 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1765 * remains stable across this function. See the comments above the
1766 * flag definition for details.
1767 */
1768 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1769 worker->flags |= WORKER_UNBOUND;
c34056a3
TH
1770
1771 return worker;
1772fail:
1773 if (id >= 0) {
d565ed63 1774 spin_lock_irq(&pool->lock);
bd7bdd43 1775 ida_remove(&pool->worker_ida, id);
d565ed63 1776 spin_unlock_irq(&pool->lock);
c34056a3
TH
1777 }
1778 kfree(worker);
1779 return NULL;
1780}
1781
1782/**
1783 * start_worker - start a newly created worker
1784 * @worker: worker to start
1785 *
706026c2 1786 * Make the pool aware of @worker and start it.
c34056a3
TH
1787 *
1788 * CONTEXT:
d565ed63 1789 * spin_lock_irq(pool->lock).
c34056a3
TH
1790 */
1791static void start_worker(struct worker *worker)
1792{
cb444766 1793 worker->flags |= WORKER_STARTED;
bd7bdd43 1794 worker->pool->nr_workers++;
c8e55f36 1795 worker_enter_idle(worker);
c34056a3
TH
1796 wake_up_process(worker->task);
1797}
1798
ebf44d16
TH
1799/**
1800 * create_and_start_worker - create and start a worker for a pool
1801 * @pool: the target pool
1802 *
cd549687 1803 * Grab the managership of @pool and create and start a new worker for it.
ebf44d16
TH
1804 */
1805static int create_and_start_worker(struct worker_pool *pool)
1806{
1807 struct worker *worker;
1808
cd549687
TH
1809 mutex_lock(&pool->manager_mutex);
1810
ebf44d16
TH
1811 worker = create_worker(pool);
1812 if (worker) {
1813 spin_lock_irq(&pool->lock);
1814 start_worker(worker);
1815 spin_unlock_irq(&pool->lock);
1816 }
1817
cd549687
TH
1818 mutex_unlock(&pool->manager_mutex);
1819
ebf44d16
TH
1820 return worker ? 0 : -ENOMEM;
1821}
1822
c34056a3
TH
1823/**
1824 * destroy_worker - destroy a workqueue worker
1825 * @worker: worker to be destroyed
1826 *
706026c2 1827 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1828 *
1829 * CONTEXT:
d565ed63 1830 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1831 */
1832static void destroy_worker(struct worker *worker)
1833{
bd7bdd43 1834 struct worker_pool *pool = worker->pool;
c34056a3
TH
1835 int id = worker->id;
1836
cd549687
TH
1837 lockdep_assert_held(&pool->manager_mutex);
1838 lockdep_assert_held(&pool->lock);
1839
c34056a3 1840 /* sanity check frenzy */
6183c009
TH
1841 if (WARN_ON(worker->current_work) ||
1842 WARN_ON(!list_empty(&worker->scheduled)))
1843 return;
c34056a3 1844
c8e55f36 1845 if (worker->flags & WORKER_STARTED)
bd7bdd43 1846 pool->nr_workers--;
c8e55f36 1847 if (worker->flags & WORKER_IDLE)
bd7bdd43 1848 pool->nr_idle--;
c8e55f36
TH
1849
1850 list_del_init(&worker->entry);
cb444766 1851 worker->flags |= WORKER_DIE;
c8e55f36 1852
d565ed63 1853 spin_unlock_irq(&pool->lock);
c8e55f36 1854
c34056a3
TH
1855 kthread_stop(worker->task);
1856 kfree(worker);
1857
d565ed63 1858 spin_lock_irq(&pool->lock);
bd7bdd43 1859 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1860}
1861
63d95a91 1862static void idle_worker_timeout(unsigned long __pool)
e22bee78 1863{
63d95a91 1864 struct worker_pool *pool = (void *)__pool;
e22bee78 1865
d565ed63 1866 spin_lock_irq(&pool->lock);
e22bee78 1867
63d95a91 1868 if (too_many_workers(pool)) {
e22bee78
TH
1869 struct worker *worker;
1870 unsigned long expires;
1871
1872 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1873 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1874 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1875
1876 if (time_before(jiffies, expires))
63d95a91 1877 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1878 else {
1879 /* it's been idle for too long, wake up manager */
11ebea50 1880 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1881 wake_up_worker(pool);
d5abe669 1882 }
e22bee78
TH
1883 }
1884
d565ed63 1885 spin_unlock_irq(&pool->lock);
e22bee78 1886}
d5abe669 1887
493a1724 1888static void send_mayday(struct work_struct *work)
e22bee78 1889{
112202d9
TH
1890 struct pool_workqueue *pwq = get_work_pwq(work);
1891 struct workqueue_struct *wq = pwq->wq;
493a1724 1892
2e109a28 1893 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1894
493008a8 1895 if (!wq->rescuer)
493a1724 1896 return;
e22bee78
TH
1897
1898 /* mayday mayday mayday */
493a1724
TH
1899 if (list_empty(&pwq->mayday_node)) {
1900 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1901 wake_up_process(wq->rescuer->task);
493a1724 1902 }
e22bee78
TH
1903}
1904
706026c2 1905static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1906{
63d95a91 1907 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1908 struct work_struct *work;
1909
2e109a28 1910 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1911 spin_lock(&pool->lock);
e22bee78 1912
63d95a91 1913 if (need_to_create_worker(pool)) {
e22bee78
TH
1914 /*
1915 * We've been trying to create a new worker but
1916 * haven't been successful. We might be hitting an
1917 * allocation deadlock. Send distress signals to
1918 * rescuers.
1919 */
63d95a91 1920 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1921 send_mayday(work);
1da177e4 1922 }
e22bee78 1923
493a1724 1924 spin_unlock(&pool->lock);
2e109a28 1925 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1926
63d95a91 1927 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1928}
1929
e22bee78
TH
1930/**
1931 * maybe_create_worker - create a new worker if necessary
63d95a91 1932 * @pool: pool to create a new worker for
e22bee78 1933 *
63d95a91 1934 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1935 * have at least one idle worker on return from this function. If
1936 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1937 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1938 * possible allocation deadlock.
1939 *
c5aa87bb
TH
1940 * On return, need_to_create_worker() is guaranteed to be %false and
1941 * may_start_working() %true.
e22bee78
TH
1942 *
1943 * LOCKING:
d565ed63 1944 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1945 * multiple times. Does GFP_KERNEL allocations. Called only from
1946 * manager.
1947 *
1948 * RETURNS:
c5aa87bb 1949 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1950 * otherwise.
1951 */
63d95a91 1952static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1953__releases(&pool->lock)
1954__acquires(&pool->lock)
1da177e4 1955{
63d95a91 1956 if (!need_to_create_worker(pool))
e22bee78
TH
1957 return false;
1958restart:
d565ed63 1959 spin_unlock_irq(&pool->lock);
9f9c2364 1960
e22bee78 1961 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1962 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1963
1964 while (true) {
1965 struct worker *worker;
1966
bc2ae0f5 1967 worker = create_worker(pool);
e22bee78 1968 if (worker) {
63d95a91 1969 del_timer_sync(&pool->mayday_timer);
d565ed63 1970 spin_lock_irq(&pool->lock);
e22bee78 1971 start_worker(worker);
6183c009
TH
1972 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1973 goto restart;
e22bee78
TH
1974 return true;
1975 }
1976
63d95a91 1977 if (!need_to_create_worker(pool))
e22bee78 1978 break;
1da177e4 1979
e22bee78
TH
1980 __set_current_state(TASK_INTERRUPTIBLE);
1981 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1982
63d95a91 1983 if (!need_to_create_worker(pool))
e22bee78
TH
1984 break;
1985 }
1986
63d95a91 1987 del_timer_sync(&pool->mayday_timer);
d565ed63 1988 spin_lock_irq(&pool->lock);
63d95a91 1989 if (need_to_create_worker(pool))
e22bee78
TH
1990 goto restart;
1991 return true;
1992}
1993
1994/**
1995 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1996 * @pool: pool to destroy workers for
e22bee78 1997 *
63d95a91 1998 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1999 * IDLE_WORKER_TIMEOUT.
2000 *
2001 * LOCKING:
d565ed63 2002 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2003 * multiple times. Called only from manager.
2004 *
2005 * RETURNS:
c5aa87bb 2006 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
2007 * otherwise.
2008 */
63d95a91 2009static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2010{
2011 bool ret = false;
1da177e4 2012
63d95a91 2013 while (too_many_workers(pool)) {
e22bee78
TH
2014 struct worker *worker;
2015 unsigned long expires;
3af24433 2016
63d95a91 2017 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2018 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2019
e22bee78 2020 if (time_before(jiffies, expires)) {
63d95a91 2021 mod_timer(&pool->idle_timer, expires);
3af24433 2022 break;
e22bee78 2023 }
1da177e4 2024
e22bee78
TH
2025 destroy_worker(worker);
2026 ret = true;
1da177e4 2027 }
1e19ffc6 2028
e22bee78 2029 return ret;
1e19ffc6
TH
2030}
2031
73f53c4a 2032/**
e22bee78
TH
2033 * manage_workers - manage worker pool
2034 * @worker: self
73f53c4a 2035 *
706026c2 2036 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2037 * to. At any given time, there can be only zero or one manager per
706026c2 2038 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2039 *
2040 * The caller can safely start processing works on false return. On
2041 * true return, it's guaranteed that need_to_create_worker() is false
2042 * and may_start_working() is true.
73f53c4a
TH
2043 *
2044 * CONTEXT:
d565ed63 2045 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2046 * multiple times. Does GFP_KERNEL allocations.
2047 *
2048 * RETURNS:
d565ed63
TH
2049 * spin_lock_irq(pool->lock) which may be released and regrabbed
2050 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2051 */
e22bee78 2052static bool manage_workers(struct worker *worker)
73f53c4a 2053{
63d95a91 2054 struct worker_pool *pool = worker->pool;
e22bee78 2055 bool ret = false;
73f53c4a 2056
bc3a1afc
TH
2057 /*
2058 * Managership is governed by two mutexes - manager_arb and
2059 * manager_mutex. manager_arb handles arbitration of manager role.
2060 * Anyone who successfully grabs manager_arb wins the arbitration
2061 * and becomes the manager. mutex_trylock() on pool->manager_arb
2062 * failure while holding pool->lock reliably indicates that someone
2063 * else is managing the pool and the worker which failed trylock
2064 * can proceed to executing work items. This means that anyone
2065 * grabbing manager_arb is responsible for actually performing
2066 * manager duties. If manager_arb is grabbed and released without
2067 * actual management, the pool may stall indefinitely.
2068 *
2069 * manager_mutex is used for exclusion of actual management
2070 * operations. The holder of manager_mutex can be sure that none
2071 * of management operations, including creation and destruction of
2072 * workers, won't take place until the mutex is released. Because
2073 * manager_mutex doesn't interfere with manager role arbitration,
2074 * it is guaranteed that the pool's management, while may be
2075 * delayed, won't be disturbed by someone else grabbing
2076 * manager_mutex.
2077 */
34a06bd6 2078 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2079 return ret;
1e19ffc6 2080
ee378aa4 2081 /*
bc3a1afc
TH
2082 * With manager arbitration won, manager_mutex would be free in
2083 * most cases. trylock first without dropping @pool->lock.
ee378aa4 2084 */
bc3a1afc 2085 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
d565ed63 2086 spin_unlock_irq(&pool->lock);
bc3a1afc 2087 mutex_lock(&pool->manager_mutex);
ee378aa4
LJ
2088 /*
2089 * CPU hotplug could have happened while we were waiting
b2eb83d1 2090 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4 2091 * because manager isn't either on idle or busy list, and
706026c2 2092 * @pool's state and ours could have deviated.
ee378aa4 2093 *
bc3a1afc 2094 * As hotplug is now excluded via manager_mutex, we can
ee378aa4 2095 * simply try to bind. It will succeed or fail depending
706026c2 2096 * on @pool's current state. Try it and adjust
ee378aa4
LJ
2097 * %WORKER_UNBOUND accordingly.
2098 */
f36dc67b 2099 if (worker_maybe_bind_and_lock(pool))
ee378aa4
LJ
2100 worker->flags &= ~WORKER_UNBOUND;
2101 else
2102 worker->flags |= WORKER_UNBOUND;
73f53c4a 2103
ee378aa4
LJ
2104 ret = true;
2105 }
73f53c4a 2106
11ebea50 2107 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2108
2109 /*
e22bee78
TH
2110 * Destroy and then create so that may_start_working() is true
2111 * on return.
73f53c4a 2112 */
63d95a91
TH
2113 ret |= maybe_destroy_workers(pool);
2114 ret |= maybe_create_worker(pool);
e22bee78 2115
bc3a1afc 2116 mutex_unlock(&pool->manager_mutex);
34a06bd6 2117 mutex_unlock(&pool->manager_arb);
e22bee78 2118 return ret;
73f53c4a
TH
2119}
2120
a62428c0
TH
2121/**
2122 * process_one_work - process single work
c34056a3 2123 * @worker: self
a62428c0
TH
2124 * @work: work to process
2125 *
2126 * Process @work. This function contains all the logics necessary to
2127 * process a single work including synchronization against and
2128 * interaction with other workers on the same cpu, queueing and
2129 * flushing. As long as context requirement is met, any worker can
2130 * call this function to process a work.
2131 *
2132 * CONTEXT:
d565ed63 2133 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2134 */
c34056a3 2135static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2136__releases(&pool->lock)
2137__acquires(&pool->lock)
a62428c0 2138{
112202d9 2139 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2140 struct worker_pool *pool = worker->pool;
112202d9 2141 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2142 int work_color;
7e11629d 2143 struct worker *collision;
a62428c0
TH
2144#ifdef CONFIG_LOCKDEP
2145 /*
2146 * It is permissible to free the struct work_struct from
2147 * inside the function that is called from it, this we need to
2148 * take into account for lockdep too. To avoid bogus "held
2149 * lock freed" warnings as well as problems when looking into
2150 * work->lockdep_map, make a copy and use that here.
2151 */
4d82a1de
PZ
2152 struct lockdep_map lockdep_map;
2153
2154 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2155#endif
6fec10a1
TH
2156 /*
2157 * Ensure we're on the correct CPU. DISASSOCIATED test is
2158 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2159 * unbound or a disassociated pool.
6fec10a1 2160 */
5f7dabfd 2161 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2162 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2163 raw_smp_processor_id() != pool->cpu);
25511a47 2164
7e11629d
TH
2165 /*
2166 * A single work shouldn't be executed concurrently by
2167 * multiple workers on a single cpu. Check whether anyone is
2168 * already processing the work. If so, defer the work to the
2169 * currently executing one.
2170 */
c9e7cf27 2171 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2172 if (unlikely(collision)) {
2173 move_linked_works(work, &collision->scheduled, NULL);
2174 return;
2175 }
2176
8930caba 2177 /* claim and dequeue */
a62428c0 2178 debug_work_deactivate(work);
c9e7cf27 2179 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2180 worker->current_work = work;
a2c1c57b 2181 worker->current_func = work->func;
112202d9 2182 worker->current_pwq = pwq;
73f53c4a 2183 work_color = get_work_color(work);
7a22ad75 2184
a62428c0
TH
2185 list_del_init(&work->entry);
2186
fb0e7beb
TH
2187 /*
2188 * CPU intensive works don't participate in concurrency
2189 * management. They're the scheduler's responsibility.
2190 */
2191 if (unlikely(cpu_intensive))
2192 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2193
974271c4 2194 /*
d565ed63 2195 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2196 * executed ASAP. Wake up another worker if necessary.
2197 */
63d95a91
TH
2198 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2199 wake_up_worker(pool);
974271c4 2200
8930caba 2201 /*
7c3eed5c 2202 * Record the last pool and clear PENDING which should be the last
d565ed63 2203 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2204 * PENDING and queued state changes happen together while IRQ is
2205 * disabled.
8930caba 2206 */
7c3eed5c 2207 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2208
d565ed63 2209 spin_unlock_irq(&pool->lock);
a62428c0 2210
112202d9 2211 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2212 lock_map_acquire(&lockdep_map);
e36c886a 2213 trace_workqueue_execute_start(work);
a2c1c57b 2214 worker->current_func(work);
e36c886a
AV
2215 /*
2216 * While we must be careful to not use "work" after this, the trace
2217 * point will only record its address.
2218 */
2219 trace_workqueue_execute_end(work);
a62428c0 2220 lock_map_release(&lockdep_map);
112202d9 2221 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2222
2223 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2224 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2225 " last function: %pf\n",
a2c1c57b
TH
2226 current->comm, preempt_count(), task_pid_nr(current),
2227 worker->current_func);
a62428c0
TH
2228 debug_show_held_locks(current);
2229 dump_stack();
2230 }
2231
d565ed63 2232 spin_lock_irq(&pool->lock);
a62428c0 2233
fb0e7beb
TH
2234 /* clear cpu intensive status */
2235 if (unlikely(cpu_intensive))
2236 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2237
a62428c0 2238 /* we're done with it, release */
42f8570f 2239 hash_del(&worker->hentry);
c34056a3 2240 worker->current_work = NULL;
a2c1c57b 2241 worker->current_func = NULL;
112202d9
TH
2242 worker->current_pwq = NULL;
2243 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2244}
2245
affee4b2
TH
2246/**
2247 * process_scheduled_works - process scheduled works
2248 * @worker: self
2249 *
2250 * Process all scheduled works. Please note that the scheduled list
2251 * may change while processing a work, so this function repeatedly
2252 * fetches a work from the top and executes it.
2253 *
2254 * CONTEXT:
d565ed63 2255 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2256 * multiple times.
2257 */
2258static void process_scheduled_works(struct worker *worker)
1da177e4 2259{
affee4b2
TH
2260 while (!list_empty(&worker->scheduled)) {
2261 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2262 struct work_struct, entry);
c34056a3 2263 process_one_work(worker, work);
1da177e4 2264 }
1da177e4
LT
2265}
2266
4690c4ab
TH
2267/**
2268 * worker_thread - the worker thread function
c34056a3 2269 * @__worker: self
4690c4ab 2270 *
c5aa87bb
TH
2271 * The worker thread function. All workers belong to a worker_pool -
2272 * either a per-cpu one or dynamic unbound one. These workers process all
2273 * work items regardless of their specific target workqueue. The only
2274 * exception is work items which belong to workqueues with a rescuer which
2275 * will be explained in rescuer_thread().
4690c4ab 2276 */
c34056a3 2277static int worker_thread(void *__worker)
1da177e4 2278{
c34056a3 2279 struct worker *worker = __worker;
bd7bdd43 2280 struct worker_pool *pool = worker->pool;
1da177e4 2281
e22bee78
TH
2282 /* tell the scheduler that this is a workqueue worker */
2283 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2284woke_up:
d565ed63 2285 spin_lock_irq(&pool->lock);
1da177e4 2286
5f7dabfd
LJ
2287 /* we are off idle list if destruction or rebind is requested */
2288 if (unlikely(list_empty(&worker->entry))) {
d565ed63 2289 spin_unlock_irq(&pool->lock);
25511a47 2290
5f7dabfd 2291 /* if DIE is set, destruction is requested */
25511a47
TH
2292 if (worker->flags & WORKER_DIE) {
2293 worker->task->flags &= ~PF_WQ_WORKER;
2294 return 0;
2295 }
2296
5f7dabfd 2297 /* otherwise, rebind */
25511a47
TH
2298 idle_worker_rebind(worker);
2299 goto woke_up;
c8e55f36 2300 }
affee4b2 2301
c8e55f36 2302 worker_leave_idle(worker);
db7bccf4 2303recheck:
e22bee78 2304 /* no more worker necessary? */
63d95a91 2305 if (!need_more_worker(pool))
e22bee78
TH
2306 goto sleep;
2307
2308 /* do we need to manage? */
63d95a91 2309 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2310 goto recheck;
2311
c8e55f36
TH
2312 /*
2313 * ->scheduled list can only be filled while a worker is
2314 * preparing to process a work or actually processing it.
2315 * Make sure nobody diddled with it while I was sleeping.
2316 */
6183c009 2317 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2318
e22bee78
TH
2319 /*
2320 * When control reaches this point, we're guaranteed to have
2321 * at least one idle worker or that someone else has already
2322 * assumed the manager role.
2323 */
2324 worker_clr_flags(worker, WORKER_PREP);
2325
2326 do {
c8e55f36 2327 struct work_struct *work =
bd7bdd43 2328 list_first_entry(&pool->worklist,
c8e55f36
TH
2329 struct work_struct, entry);
2330
2331 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2332 /* optimization path, not strictly necessary */
2333 process_one_work(worker, work);
2334 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2335 process_scheduled_works(worker);
c8e55f36
TH
2336 } else {
2337 move_linked_works(work, &worker->scheduled, NULL);
2338 process_scheduled_works(worker);
affee4b2 2339 }
63d95a91 2340 } while (keep_working(pool));
e22bee78
TH
2341
2342 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2343sleep:
63d95a91 2344 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2345 goto recheck;
d313dd85 2346
c8e55f36 2347 /*
d565ed63
TH
2348 * pool->lock is held and there's no work to process and no need to
2349 * manage, sleep. Workers are woken up only while holding
2350 * pool->lock or from local cpu, so setting the current state
2351 * before releasing pool->lock is enough to prevent losing any
2352 * event.
c8e55f36
TH
2353 */
2354 worker_enter_idle(worker);
2355 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2356 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2357 schedule();
2358 goto woke_up;
1da177e4
LT
2359}
2360
e22bee78
TH
2361/**
2362 * rescuer_thread - the rescuer thread function
111c225a 2363 * @__rescuer: self
e22bee78
TH
2364 *
2365 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2366 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2367 *
706026c2 2368 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2369 * worker which uses GFP_KERNEL allocation which has slight chance of
2370 * developing into deadlock if some works currently on the same queue
2371 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2372 * the problem rescuer solves.
2373 *
706026c2
TH
2374 * When such condition is possible, the pool summons rescuers of all
2375 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2376 * those works so that forward progress can be guaranteed.
2377 *
2378 * This should happen rarely.
2379 */
111c225a 2380static int rescuer_thread(void *__rescuer)
e22bee78 2381{
111c225a
TH
2382 struct worker *rescuer = __rescuer;
2383 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2384 struct list_head *scheduled = &rescuer->scheduled;
e22bee78
TH
2385
2386 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2387
2388 /*
2389 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2390 * doesn't participate in concurrency management.
2391 */
2392 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2393repeat:
2394 set_current_state(TASK_INTERRUPTIBLE);
2395
412d32e6
MG
2396 if (kthread_should_stop()) {
2397 __set_current_state(TASK_RUNNING);
111c225a 2398 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2399 return 0;
412d32e6 2400 }
e22bee78 2401
493a1724 2402 /* see whether any pwq is asking for help */
2e109a28 2403 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2404
2405 while (!list_empty(&wq->maydays)) {
2406 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2407 struct pool_workqueue, mayday_node);
112202d9 2408 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2409 struct work_struct *work, *n;
2410
2411 __set_current_state(TASK_RUNNING);
493a1724
TH
2412 list_del_init(&pwq->mayday_node);
2413
2e109a28 2414 spin_unlock_irq(&wq_mayday_lock);
e22bee78
TH
2415
2416 /* migrate to the target cpu if possible */
f36dc67b 2417 worker_maybe_bind_and_lock(pool);
b3104104 2418 rescuer->pool = pool;
e22bee78
TH
2419
2420 /*
2421 * Slurp in all works issued via this workqueue and
2422 * process'em.
2423 */
6183c009 2424 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2425 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2426 if (get_work_pwq(work) == pwq)
e22bee78
TH
2427 move_linked_works(work, scheduled, &n);
2428
2429 process_scheduled_works(rescuer);
7576958a
TH
2430
2431 /*
d565ed63 2432 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2433 * regular worker; otherwise, we end up with 0 concurrency
2434 * and stalling the execution.
2435 */
63d95a91
TH
2436 if (keep_working(pool))
2437 wake_up_worker(pool);
7576958a 2438
b3104104 2439 rescuer->pool = NULL;
493a1724 2440 spin_unlock(&pool->lock);
2e109a28 2441 spin_lock(&wq_mayday_lock);
e22bee78
TH
2442 }
2443
2e109a28 2444 spin_unlock_irq(&wq_mayday_lock);
493a1724 2445
111c225a
TH
2446 /* rescuers should never participate in concurrency management */
2447 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2448 schedule();
2449 goto repeat;
1da177e4
LT
2450}
2451
fc2e4d70
ON
2452struct wq_barrier {
2453 struct work_struct work;
2454 struct completion done;
2455};
2456
2457static void wq_barrier_func(struct work_struct *work)
2458{
2459 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2460 complete(&barr->done);
2461}
2462
4690c4ab
TH
2463/**
2464 * insert_wq_barrier - insert a barrier work
112202d9 2465 * @pwq: pwq to insert barrier into
4690c4ab 2466 * @barr: wq_barrier to insert
affee4b2
TH
2467 * @target: target work to attach @barr to
2468 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2469 *
affee4b2
TH
2470 * @barr is linked to @target such that @barr is completed only after
2471 * @target finishes execution. Please note that the ordering
2472 * guarantee is observed only with respect to @target and on the local
2473 * cpu.
2474 *
2475 * Currently, a queued barrier can't be canceled. This is because
2476 * try_to_grab_pending() can't determine whether the work to be
2477 * grabbed is at the head of the queue and thus can't clear LINKED
2478 * flag of the previous work while there must be a valid next work
2479 * after a work with LINKED flag set.
2480 *
2481 * Note that when @worker is non-NULL, @target may be modified
112202d9 2482 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2483 *
2484 * CONTEXT:
d565ed63 2485 * spin_lock_irq(pool->lock).
4690c4ab 2486 */
112202d9 2487static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2488 struct wq_barrier *barr,
2489 struct work_struct *target, struct worker *worker)
fc2e4d70 2490{
affee4b2
TH
2491 struct list_head *head;
2492 unsigned int linked = 0;
2493
dc186ad7 2494 /*
d565ed63 2495 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2496 * as we know for sure that this will not trigger any of the
2497 * checks and call back into the fixup functions where we
2498 * might deadlock.
2499 */
ca1cab37 2500 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2501 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2502 init_completion(&barr->done);
83c22520 2503
affee4b2
TH
2504 /*
2505 * If @target is currently being executed, schedule the
2506 * barrier to the worker; otherwise, put it after @target.
2507 */
2508 if (worker)
2509 head = worker->scheduled.next;
2510 else {
2511 unsigned long *bits = work_data_bits(target);
2512
2513 head = target->entry.next;
2514 /* there can already be other linked works, inherit and set */
2515 linked = *bits & WORK_STRUCT_LINKED;
2516 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2517 }
2518
dc186ad7 2519 debug_work_activate(&barr->work);
112202d9 2520 insert_work(pwq, &barr->work, head,
affee4b2 2521 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2522}
2523
73f53c4a 2524/**
112202d9 2525 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2526 * @wq: workqueue being flushed
2527 * @flush_color: new flush color, < 0 for no-op
2528 * @work_color: new work color, < 0 for no-op
2529 *
112202d9 2530 * Prepare pwqs for workqueue flushing.
73f53c4a 2531 *
112202d9
TH
2532 * If @flush_color is non-negative, flush_color on all pwqs should be
2533 * -1. If no pwq has in-flight commands at the specified color, all
2534 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2535 * has in flight commands, its pwq->flush_color is set to
2536 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2537 * wakeup logic is armed and %true is returned.
2538 *
2539 * The caller should have initialized @wq->first_flusher prior to
2540 * calling this function with non-negative @flush_color. If
2541 * @flush_color is negative, no flush color update is done and %false
2542 * is returned.
2543 *
112202d9 2544 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2545 * work_color which is previous to @work_color and all will be
2546 * advanced to @work_color.
2547 *
2548 * CONTEXT:
2549 * mutex_lock(wq->flush_mutex).
2550 *
2551 * RETURNS:
2552 * %true if @flush_color >= 0 and there's something to flush. %false
2553 * otherwise.
2554 */
112202d9 2555static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2556 int flush_color, int work_color)
1da177e4 2557{
73f53c4a 2558 bool wait = false;
49e3cf44 2559 struct pool_workqueue *pwq;
1da177e4 2560
73f53c4a 2561 if (flush_color >= 0) {
6183c009 2562 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2563 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2564 }
2355b70f 2565
76af4d93
TH
2566 local_irq_disable();
2567
49e3cf44 2568 for_each_pwq(pwq, wq) {
112202d9 2569 struct worker_pool *pool = pwq->pool;
fc2e4d70 2570
76af4d93 2571 spin_lock(&pool->lock);
83c22520 2572
73f53c4a 2573 if (flush_color >= 0) {
6183c009 2574 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2575
112202d9
TH
2576 if (pwq->nr_in_flight[flush_color]) {
2577 pwq->flush_color = flush_color;
2578 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2579 wait = true;
2580 }
2581 }
1da177e4 2582
73f53c4a 2583 if (work_color >= 0) {
6183c009 2584 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2585 pwq->work_color = work_color;
73f53c4a 2586 }
1da177e4 2587
76af4d93 2588 spin_unlock(&pool->lock);
1da177e4 2589 }
2355b70f 2590
76af4d93
TH
2591 local_irq_enable();
2592
112202d9 2593 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2594 complete(&wq->first_flusher->done);
14441960 2595
73f53c4a 2596 return wait;
1da177e4
LT
2597}
2598
0fcb78c2 2599/**
1da177e4 2600 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2601 * @wq: workqueue to flush
1da177e4 2602 *
c5aa87bb
TH
2603 * This function sleeps until all work items which were queued on entry
2604 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2605 */
7ad5b3a5 2606void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2607{
73f53c4a
TH
2608 struct wq_flusher this_flusher = {
2609 .list = LIST_HEAD_INIT(this_flusher.list),
2610 .flush_color = -1,
2611 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2612 };
2613 int next_color;
1da177e4 2614
3295f0ef
IM
2615 lock_map_acquire(&wq->lockdep_map);
2616 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2617
2618 mutex_lock(&wq->flush_mutex);
2619
2620 /*
2621 * Start-to-wait phase
2622 */
2623 next_color = work_next_color(wq->work_color);
2624
2625 if (next_color != wq->flush_color) {
2626 /*
2627 * Color space is not full. The current work_color
2628 * becomes our flush_color and work_color is advanced
2629 * by one.
2630 */
6183c009 2631 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2632 this_flusher.flush_color = wq->work_color;
2633 wq->work_color = next_color;
2634
2635 if (!wq->first_flusher) {
2636 /* no flush in progress, become the first flusher */
6183c009 2637 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2638
2639 wq->first_flusher = &this_flusher;
2640
112202d9 2641 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2642 wq->work_color)) {
2643 /* nothing to flush, done */
2644 wq->flush_color = next_color;
2645 wq->first_flusher = NULL;
2646 goto out_unlock;
2647 }
2648 } else {
2649 /* wait in queue */
6183c009 2650 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2651 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2652 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2653 }
2654 } else {
2655 /*
2656 * Oops, color space is full, wait on overflow queue.
2657 * The next flush completion will assign us
2658 * flush_color and transfer to flusher_queue.
2659 */
2660 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2661 }
2662
2663 mutex_unlock(&wq->flush_mutex);
2664
2665 wait_for_completion(&this_flusher.done);
2666
2667 /*
2668 * Wake-up-and-cascade phase
2669 *
2670 * First flushers are responsible for cascading flushes and
2671 * handling overflow. Non-first flushers can simply return.
2672 */
2673 if (wq->first_flusher != &this_flusher)
2674 return;
2675
2676 mutex_lock(&wq->flush_mutex);
2677
4ce48b37
TH
2678 /* we might have raced, check again with mutex held */
2679 if (wq->first_flusher != &this_flusher)
2680 goto out_unlock;
2681
73f53c4a
TH
2682 wq->first_flusher = NULL;
2683
6183c009
TH
2684 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2685 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2686
2687 while (true) {
2688 struct wq_flusher *next, *tmp;
2689
2690 /* complete all the flushers sharing the current flush color */
2691 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2692 if (next->flush_color != wq->flush_color)
2693 break;
2694 list_del_init(&next->list);
2695 complete(&next->done);
2696 }
2697
6183c009
TH
2698 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2699 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2700
2701 /* this flush_color is finished, advance by one */
2702 wq->flush_color = work_next_color(wq->flush_color);
2703
2704 /* one color has been freed, handle overflow queue */
2705 if (!list_empty(&wq->flusher_overflow)) {
2706 /*
2707 * Assign the same color to all overflowed
2708 * flushers, advance work_color and append to
2709 * flusher_queue. This is the start-to-wait
2710 * phase for these overflowed flushers.
2711 */
2712 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2713 tmp->flush_color = wq->work_color;
2714
2715 wq->work_color = work_next_color(wq->work_color);
2716
2717 list_splice_tail_init(&wq->flusher_overflow,
2718 &wq->flusher_queue);
112202d9 2719 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2720 }
2721
2722 if (list_empty(&wq->flusher_queue)) {
6183c009 2723 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2724 break;
2725 }
2726
2727 /*
2728 * Need to flush more colors. Make the next flusher
112202d9 2729 * the new first flusher and arm pwqs.
73f53c4a 2730 */
6183c009
TH
2731 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2732 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2733
2734 list_del_init(&next->list);
2735 wq->first_flusher = next;
2736
112202d9 2737 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2738 break;
2739
2740 /*
2741 * Meh... this color is already done, clear first
2742 * flusher and repeat cascading.
2743 */
2744 wq->first_flusher = NULL;
2745 }
2746
2747out_unlock:
2748 mutex_unlock(&wq->flush_mutex);
1da177e4 2749}
ae90dd5d 2750EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2751
9c5a2ba7
TH
2752/**
2753 * drain_workqueue - drain a workqueue
2754 * @wq: workqueue to drain
2755 *
2756 * Wait until the workqueue becomes empty. While draining is in progress,
2757 * only chain queueing is allowed. IOW, only currently pending or running
2758 * work items on @wq can queue further work items on it. @wq is flushed
2759 * repeatedly until it becomes empty. The number of flushing is detemined
2760 * by the depth of chaining and should be relatively short. Whine if it
2761 * takes too long.
2762 */
2763void drain_workqueue(struct workqueue_struct *wq)
2764{
2765 unsigned int flush_cnt = 0;
49e3cf44 2766 struct pool_workqueue *pwq;
9c5a2ba7
TH
2767
2768 /*
2769 * __queue_work() needs to test whether there are drainers, is much
2770 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2771 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2772 */
5bcab335 2773 mutex_lock(&wq_mutex);
9c5a2ba7 2774 if (!wq->nr_drainers++)
618b01eb 2775 wq->flags |= __WQ_DRAINING;
5bcab335 2776 mutex_unlock(&wq_mutex);
9c5a2ba7
TH
2777reflush:
2778 flush_workqueue(wq);
2779
76af4d93
TH
2780 local_irq_disable();
2781
49e3cf44 2782 for_each_pwq(pwq, wq) {
fa2563e4 2783 bool drained;
9c5a2ba7 2784
76af4d93 2785 spin_lock(&pwq->pool->lock);
112202d9 2786 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
76af4d93 2787 spin_unlock(&pwq->pool->lock);
fa2563e4
TT
2788
2789 if (drained)
9c5a2ba7
TH
2790 continue;
2791
2792 if (++flush_cnt == 10 ||
2793 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2794 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2795 wq->name, flush_cnt);
76af4d93
TH
2796
2797 local_irq_enable();
9c5a2ba7
TH
2798 goto reflush;
2799 }
2800
5bcab335
TH
2801 local_irq_enable();
2802
2803 mutex_lock(&wq_mutex);
9c5a2ba7 2804 if (!--wq->nr_drainers)
618b01eb 2805 wq->flags &= ~__WQ_DRAINING;
5bcab335 2806 mutex_unlock(&wq_mutex);
9c5a2ba7
TH
2807}
2808EXPORT_SYMBOL_GPL(drain_workqueue);
2809
606a5020 2810static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2811{
affee4b2 2812 struct worker *worker = NULL;
c9e7cf27 2813 struct worker_pool *pool;
112202d9 2814 struct pool_workqueue *pwq;
db700897
ON
2815
2816 might_sleep();
fa1b54e6
TH
2817
2818 local_irq_disable();
c9e7cf27 2819 pool = get_work_pool(work);
fa1b54e6
TH
2820 if (!pool) {
2821 local_irq_enable();
baf59022 2822 return false;
fa1b54e6 2823 }
db700897 2824
fa1b54e6 2825 spin_lock(&pool->lock);
0b3dae68 2826 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2827 pwq = get_work_pwq(work);
2828 if (pwq) {
2829 if (unlikely(pwq->pool != pool))
4690c4ab 2830 goto already_gone;
606a5020 2831 } else {
c9e7cf27 2832 worker = find_worker_executing_work(pool, work);
affee4b2 2833 if (!worker)
4690c4ab 2834 goto already_gone;
112202d9 2835 pwq = worker->current_pwq;
606a5020 2836 }
db700897 2837
112202d9 2838 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2839 spin_unlock_irq(&pool->lock);
7a22ad75 2840
e159489b
TH
2841 /*
2842 * If @max_active is 1 or rescuer is in use, flushing another work
2843 * item on the same workqueue may lead to deadlock. Make sure the
2844 * flusher is not running on the same workqueue by verifying write
2845 * access.
2846 */
493008a8 2847 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2848 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2849 else
112202d9
TH
2850 lock_map_acquire_read(&pwq->wq->lockdep_map);
2851 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2852
401a8d04 2853 return true;
4690c4ab 2854already_gone:
d565ed63 2855 spin_unlock_irq(&pool->lock);
401a8d04 2856 return false;
db700897 2857}
baf59022
TH
2858
2859/**
2860 * flush_work - wait for a work to finish executing the last queueing instance
2861 * @work: the work to flush
2862 *
606a5020
TH
2863 * Wait until @work has finished execution. @work is guaranteed to be idle
2864 * on return if it hasn't been requeued since flush started.
baf59022
TH
2865 *
2866 * RETURNS:
2867 * %true if flush_work() waited for the work to finish execution,
2868 * %false if it was already idle.
2869 */
2870bool flush_work(struct work_struct *work)
2871{
2872 struct wq_barrier barr;
2873
0976dfc1
SB
2874 lock_map_acquire(&work->lockdep_map);
2875 lock_map_release(&work->lockdep_map);
2876
606a5020 2877 if (start_flush_work(work, &barr)) {
401a8d04
TH
2878 wait_for_completion(&barr.done);
2879 destroy_work_on_stack(&barr.work);
2880 return true;
606a5020 2881 } else {
401a8d04 2882 return false;
6e84d644 2883 }
6e84d644 2884}
606a5020 2885EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2886
36e227d2 2887static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2888{
bbb68dfa 2889 unsigned long flags;
1f1f642e
ON
2890 int ret;
2891
2892 do {
bbb68dfa
TH
2893 ret = try_to_grab_pending(work, is_dwork, &flags);
2894 /*
2895 * If someone else is canceling, wait for the same event it
2896 * would be waiting for before retrying.
2897 */
2898 if (unlikely(ret == -ENOENT))
606a5020 2899 flush_work(work);
1f1f642e
ON
2900 } while (unlikely(ret < 0));
2901
bbb68dfa
TH
2902 /* tell other tasks trying to grab @work to back off */
2903 mark_work_canceling(work);
2904 local_irq_restore(flags);
2905
606a5020 2906 flush_work(work);
7a22ad75 2907 clear_work_data(work);
1f1f642e
ON
2908 return ret;
2909}
2910
6e84d644 2911/**
401a8d04
TH
2912 * cancel_work_sync - cancel a work and wait for it to finish
2913 * @work: the work to cancel
6e84d644 2914 *
401a8d04
TH
2915 * Cancel @work and wait for its execution to finish. This function
2916 * can be used even if the work re-queues itself or migrates to
2917 * another workqueue. On return from this function, @work is
2918 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2919 *
401a8d04
TH
2920 * cancel_work_sync(&delayed_work->work) must not be used for
2921 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2922 *
401a8d04 2923 * The caller must ensure that the workqueue on which @work was last
6e84d644 2924 * queued can't be destroyed before this function returns.
401a8d04
TH
2925 *
2926 * RETURNS:
2927 * %true if @work was pending, %false otherwise.
6e84d644 2928 */
401a8d04 2929bool cancel_work_sync(struct work_struct *work)
6e84d644 2930{
36e227d2 2931 return __cancel_work_timer(work, false);
b89deed3 2932}
28e53bdd 2933EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2934
6e84d644 2935/**
401a8d04
TH
2936 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2937 * @dwork: the delayed work to flush
6e84d644 2938 *
401a8d04
TH
2939 * Delayed timer is cancelled and the pending work is queued for
2940 * immediate execution. Like flush_work(), this function only
2941 * considers the last queueing instance of @dwork.
1f1f642e 2942 *
401a8d04
TH
2943 * RETURNS:
2944 * %true if flush_work() waited for the work to finish execution,
2945 * %false if it was already idle.
6e84d644 2946 */
401a8d04
TH
2947bool flush_delayed_work(struct delayed_work *dwork)
2948{
8930caba 2949 local_irq_disable();
401a8d04 2950 if (del_timer_sync(&dwork->timer))
60c057bc 2951 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2952 local_irq_enable();
401a8d04
TH
2953 return flush_work(&dwork->work);
2954}
2955EXPORT_SYMBOL(flush_delayed_work);
2956
09383498 2957/**
57b30ae7
TH
2958 * cancel_delayed_work - cancel a delayed work
2959 * @dwork: delayed_work to cancel
09383498 2960 *
57b30ae7
TH
2961 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2962 * and canceled; %false if wasn't pending. Note that the work callback
2963 * function may still be running on return, unless it returns %true and the
2964 * work doesn't re-arm itself. Explicitly flush or use
2965 * cancel_delayed_work_sync() to wait on it.
09383498 2966 *
57b30ae7 2967 * This function is safe to call from any context including IRQ handler.
09383498 2968 */
57b30ae7 2969bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2970{
57b30ae7
TH
2971 unsigned long flags;
2972 int ret;
2973
2974 do {
2975 ret = try_to_grab_pending(&dwork->work, true, &flags);
2976 } while (unlikely(ret == -EAGAIN));
2977
2978 if (unlikely(ret < 0))
2979 return false;
2980
7c3eed5c
TH
2981 set_work_pool_and_clear_pending(&dwork->work,
2982 get_work_pool_id(&dwork->work));
57b30ae7 2983 local_irq_restore(flags);
c0158ca6 2984 return ret;
09383498 2985}
57b30ae7 2986EXPORT_SYMBOL(cancel_delayed_work);
09383498 2987
401a8d04
TH
2988/**
2989 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2990 * @dwork: the delayed work cancel
2991 *
2992 * This is cancel_work_sync() for delayed works.
2993 *
2994 * RETURNS:
2995 * %true if @dwork was pending, %false otherwise.
2996 */
2997bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2998{
36e227d2 2999 return __cancel_work_timer(&dwork->work, true);
6e84d644 3000}
f5a421a4 3001EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3002
b6136773 3003/**
31ddd871 3004 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3005 * @func: the function to call
b6136773 3006 *
31ddd871
TH
3007 * schedule_on_each_cpu() executes @func on each online CPU using the
3008 * system workqueue and blocks until all CPUs have completed.
b6136773 3009 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3010 *
3011 * RETURNS:
3012 * 0 on success, -errno on failure.
b6136773 3013 */
65f27f38 3014int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3015{
3016 int cpu;
38f51568 3017 struct work_struct __percpu *works;
15316ba8 3018
b6136773
AM
3019 works = alloc_percpu(struct work_struct);
3020 if (!works)
15316ba8 3021 return -ENOMEM;
b6136773 3022
93981800
TH
3023 get_online_cpus();
3024
15316ba8 3025 for_each_online_cpu(cpu) {
9bfb1839
IM
3026 struct work_struct *work = per_cpu_ptr(works, cpu);
3027
3028 INIT_WORK(work, func);
b71ab8c2 3029 schedule_work_on(cpu, work);
65a64464 3030 }
93981800
TH
3031
3032 for_each_online_cpu(cpu)
3033 flush_work(per_cpu_ptr(works, cpu));
3034
95402b38 3035 put_online_cpus();
b6136773 3036 free_percpu(works);
15316ba8
CL
3037 return 0;
3038}
3039
eef6a7d5
AS
3040/**
3041 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3042 *
3043 * Forces execution of the kernel-global workqueue and blocks until its
3044 * completion.
3045 *
3046 * Think twice before calling this function! It's very easy to get into
3047 * trouble if you don't take great care. Either of the following situations
3048 * will lead to deadlock:
3049 *
3050 * One of the work items currently on the workqueue needs to acquire
3051 * a lock held by your code or its caller.
3052 *
3053 * Your code is running in the context of a work routine.
3054 *
3055 * They will be detected by lockdep when they occur, but the first might not
3056 * occur very often. It depends on what work items are on the workqueue and
3057 * what locks they need, which you have no control over.
3058 *
3059 * In most situations flushing the entire workqueue is overkill; you merely
3060 * need to know that a particular work item isn't queued and isn't running.
3061 * In such cases you should use cancel_delayed_work_sync() or
3062 * cancel_work_sync() instead.
3063 */
1da177e4
LT
3064void flush_scheduled_work(void)
3065{
d320c038 3066 flush_workqueue(system_wq);
1da177e4 3067}
ae90dd5d 3068EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3069
1fa44eca
JB
3070/**
3071 * execute_in_process_context - reliably execute the routine with user context
3072 * @fn: the function to execute
1fa44eca
JB
3073 * @ew: guaranteed storage for the execute work structure (must
3074 * be available when the work executes)
3075 *
3076 * Executes the function immediately if process context is available,
3077 * otherwise schedules the function for delayed execution.
3078 *
3079 * Returns: 0 - function was executed
3080 * 1 - function was scheduled for execution
3081 */
65f27f38 3082int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3083{
3084 if (!in_interrupt()) {
65f27f38 3085 fn(&ew->work);
1fa44eca
JB
3086 return 0;
3087 }
3088
65f27f38 3089 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3090 schedule_work(&ew->work);
3091
3092 return 1;
3093}
3094EXPORT_SYMBOL_GPL(execute_in_process_context);
3095
226223ab
TH
3096#ifdef CONFIG_SYSFS
3097/*
3098 * Workqueues with WQ_SYSFS flag set is visible to userland via
3099 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3100 * following attributes.
3101 *
3102 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3103 * max_active RW int : maximum number of in-flight work items
3104 *
3105 * Unbound workqueues have the following extra attributes.
3106 *
3107 * id RO int : the associated pool ID
3108 * nice RW int : nice value of the workers
3109 * cpumask RW mask : bitmask of allowed CPUs for the workers
3110 */
3111struct wq_device {
3112 struct workqueue_struct *wq;
3113 struct device dev;
3114};
3115
3116static struct workqueue_struct *dev_to_wq(struct device *dev)
3117{
3118 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3119
3120 return wq_dev->wq;
3121}
3122
3123static ssize_t wq_per_cpu_show(struct device *dev,
3124 struct device_attribute *attr, char *buf)
3125{
3126 struct workqueue_struct *wq = dev_to_wq(dev);
3127
3128 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3129}
3130
3131static ssize_t wq_max_active_show(struct device *dev,
3132 struct device_attribute *attr, char *buf)
3133{
3134 struct workqueue_struct *wq = dev_to_wq(dev);
3135
3136 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3137}
3138
3139static ssize_t wq_max_active_store(struct device *dev,
3140 struct device_attribute *attr,
3141 const char *buf, size_t count)
3142{
3143 struct workqueue_struct *wq = dev_to_wq(dev);
3144 int val;
3145
3146 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3147 return -EINVAL;
3148
3149 workqueue_set_max_active(wq, val);
3150 return count;
3151}
3152
3153static struct device_attribute wq_sysfs_attrs[] = {
3154 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3155 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3156 __ATTR_NULL,
3157};
3158
3159static ssize_t wq_pool_id_show(struct device *dev,
3160 struct device_attribute *attr, char *buf)
3161{
3162 struct workqueue_struct *wq = dev_to_wq(dev);
3163 struct worker_pool *pool;
3164 int written;
3165
3166 rcu_read_lock_sched();
3167 pool = first_pwq(wq)->pool;
3168 written = scnprintf(buf, PAGE_SIZE, "%d\n", pool->id);
3169 rcu_read_unlock_sched();
3170
3171 return written;
3172}
3173
3174static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3175 char *buf)
3176{
3177 struct workqueue_struct *wq = dev_to_wq(dev);
3178 int written;
3179
3180 rcu_read_lock_sched();
3181 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3182 first_pwq(wq)->pool->attrs->nice);
3183 rcu_read_unlock_sched();
3184
3185 return written;
3186}
3187
3188/* prepare workqueue_attrs for sysfs store operations */
3189static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3190{
3191 struct workqueue_attrs *attrs;
3192
3193 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3194 if (!attrs)
3195 return NULL;
3196
3197 rcu_read_lock_sched();
3198 copy_workqueue_attrs(attrs, first_pwq(wq)->pool->attrs);
3199 rcu_read_unlock_sched();
3200 return attrs;
3201}
3202
3203static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3204 const char *buf, size_t count)
3205{
3206 struct workqueue_struct *wq = dev_to_wq(dev);
3207 struct workqueue_attrs *attrs;
3208 int ret;
3209
3210 attrs = wq_sysfs_prep_attrs(wq);
3211 if (!attrs)
3212 return -ENOMEM;
3213
3214 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3215 attrs->nice >= -20 && attrs->nice <= 19)
3216 ret = apply_workqueue_attrs(wq, attrs);
3217 else
3218 ret = -EINVAL;
3219
3220 free_workqueue_attrs(attrs);
3221 return ret ?: count;
3222}
3223
3224static ssize_t wq_cpumask_show(struct device *dev,
3225 struct device_attribute *attr, char *buf)
3226{
3227 struct workqueue_struct *wq = dev_to_wq(dev);
3228 int written;
3229
3230 rcu_read_lock_sched();
3231 written = cpumask_scnprintf(buf, PAGE_SIZE,
3232 first_pwq(wq)->pool->attrs->cpumask);
3233 rcu_read_unlock_sched();
3234
3235 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3236 return written;
3237}
3238
3239static ssize_t wq_cpumask_store(struct device *dev,
3240 struct device_attribute *attr,
3241 const char *buf, size_t count)
3242{
3243 struct workqueue_struct *wq = dev_to_wq(dev);
3244 struct workqueue_attrs *attrs;
3245 int ret;
3246
3247 attrs = wq_sysfs_prep_attrs(wq);
3248 if (!attrs)
3249 return -ENOMEM;
3250
3251 ret = cpumask_parse(buf, attrs->cpumask);
3252 if (!ret)
3253 ret = apply_workqueue_attrs(wq, attrs);
3254
3255 free_workqueue_attrs(attrs);
3256 return ret ?: count;
3257}
3258
3259static struct device_attribute wq_sysfs_unbound_attrs[] = {
3260 __ATTR(pool_id, 0444, wq_pool_id_show, NULL),
3261 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3262 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3263 __ATTR_NULL,
3264};
3265
3266static struct bus_type wq_subsys = {
3267 .name = "workqueue",
3268 .dev_attrs = wq_sysfs_attrs,
3269};
3270
3271static int __init wq_sysfs_init(void)
3272{
3273 return subsys_virtual_register(&wq_subsys, NULL);
3274}
3275core_initcall(wq_sysfs_init);
3276
3277static void wq_device_release(struct device *dev)
3278{
3279 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3280
3281 kfree(wq_dev);
3282}
3283
3284/**
3285 * workqueue_sysfs_register - make a workqueue visible in sysfs
3286 * @wq: the workqueue to register
3287 *
3288 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3289 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3290 * which is the preferred method.
3291 *
3292 * Workqueue user should use this function directly iff it wants to apply
3293 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3294 * apply_workqueue_attrs() may race against userland updating the
3295 * attributes.
3296 *
3297 * Returns 0 on success, -errno on failure.
3298 */
3299int workqueue_sysfs_register(struct workqueue_struct *wq)
3300{
3301 struct wq_device *wq_dev;
3302 int ret;
3303
3304 /*
3305 * Adjusting max_active or creating new pwqs by applyting
3306 * attributes breaks ordering guarantee. Disallow exposing ordered
3307 * workqueues.
3308 */
3309 if (WARN_ON(wq->flags & __WQ_ORDERED))
3310 return -EINVAL;
3311
3312 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3313 if (!wq_dev)
3314 return -ENOMEM;
3315
3316 wq_dev->wq = wq;
3317 wq_dev->dev.bus = &wq_subsys;
3318 wq_dev->dev.init_name = wq->name;
3319 wq_dev->dev.release = wq_device_release;
3320
3321 /*
3322 * unbound_attrs are created separately. Suppress uevent until
3323 * everything is ready.
3324 */
3325 dev_set_uevent_suppress(&wq_dev->dev, true);
3326
3327 ret = device_register(&wq_dev->dev);
3328 if (ret) {
3329 kfree(wq_dev);
3330 wq->wq_dev = NULL;
3331 return ret;
3332 }
3333
3334 if (wq->flags & WQ_UNBOUND) {
3335 struct device_attribute *attr;
3336
3337 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3338 ret = device_create_file(&wq_dev->dev, attr);
3339 if (ret) {
3340 device_unregister(&wq_dev->dev);
3341 wq->wq_dev = NULL;
3342 return ret;
3343 }
3344 }
3345 }
3346
3347 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3348 return 0;
3349}
3350
3351/**
3352 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3353 * @wq: the workqueue to unregister
3354 *
3355 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3356 */
3357static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3358{
3359 struct wq_device *wq_dev = wq->wq_dev;
3360
3361 if (!wq->wq_dev)
3362 return;
3363
3364 wq->wq_dev = NULL;
3365 device_unregister(&wq_dev->dev);
3366}
3367#else /* CONFIG_SYSFS */
3368static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3369#endif /* CONFIG_SYSFS */
3370
7a4e344c
TH
3371/**
3372 * free_workqueue_attrs - free a workqueue_attrs
3373 * @attrs: workqueue_attrs to free
3374 *
3375 * Undo alloc_workqueue_attrs().
3376 */
3377void free_workqueue_attrs(struct workqueue_attrs *attrs)
3378{
3379 if (attrs) {
3380 free_cpumask_var(attrs->cpumask);
3381 kfree(attrs);
3382 }
3383}
3384
3385/**
3386 * alloc_workqueue_attrs - allocate a workqueue_attrs
3387 * @gfp_mask: allocation mask to use
3388 *
3389 * Allocate a new workqueue_attrs, initialize with default settings and
3390 * return it. Returns NULL on failure.
3391 */
3392struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3393{
3394 struct workqueue_attrs *attrs;
3395
3396 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3397 if (!attrs)
3398 goto fail;
3399 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3400 goto fail;
3401
3402 cpumask_setall(attrs->cpumask);
3403 return attrs;
3404fail:
3405 free_workqueue_attrs(attrs);
3406 return NULL;
3407}
3408
29c91e99
TH
3409static void copy_workqueue_attrs(struct workqueue_attrs *to,
3410 const struct workqueue_attrs *from)
3411{
3412 to->nice = from->nice;
3413 cpumask_copy(to->cpumask, from->cpumask);
3414}
3415
3416/*
3417 * Hacky implementation of jhash of bitmaps which only considers the
3418 * specified number of bits. We probably want a proper implementation in
3419 * include/linux/jhash.h.
3420 */
3421static u32 jhash_bitmap(const unsigned long *bitmap, int bits, u32 hash)
3422{
3423 int nr_longs = bits / BITS_PER_LONG;
3424 int nr_leftover = bits % BITS_PER_LONG;
3425 unsigned long leftover = 0;
3426
3427 if (nr_longs)
3428 hash = jhash(bitmap, nr_longs * sizeof(long), hash);
3429 if (nr_leftover) {
3430 bitmap_copy(&leftover, bitmap + nr_longs, nr_leftover);
3431 hash = jhash(&leftover, sizeof(long), hash);
3432 }
3433 return hash;
3434}
3435
3436/* hash value of the content of @attr */
3437static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3438{
3439 u32 hash = 0;
3440
3441 hash = jhash_1word(attrs->nice, hash);
3442 hash = jhash_bitmap(cpumask_bits(attrs->cpumask), nr_cpu_ids, hash);
3443 return hash;
3444}
3445
3446/* content equality test */
3447static bool wqattrs_equal(const struct workqueue_attrs *a,
3448 const struct workqueue_attrs *b)
3449{
3450 if (a->nice != b->nice)
3451 return false;
3452 if (!cpumask_equal(a->cpumask, b->cpumask))
3453 return false;
3454 return true;
3455}
3456
7a4e344c
TH
3457/**
3458 * init_worker_pool - initialize a newly zalloc'd worker_pool
3459 * @pool: worker_pool to initialize
3460 *
3461 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
29c91e99
TH
3462 * Returns 0 on success, -errno on failure. Even on failure, all fields
3463 * inside @pool proper are initialized and put_unbound_pool() can be called
3464 * on @pool safely to release it.
7a4e344c
TH
3465 */
3466static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3467{
3468 spin_lock_init(&pool->lock);
29c91e99
TH
3469 pool->id = -1;
3470 pool->cpu = -1;
4e1a1f9a
TH
3471 pool->flags |= POOL_DISASSOCIATED;
3472 INIT_LIST_HEAD(&pool->worklist);
3473 INIT_LIST_HEAD(&pool->idle_list);
3474 hash_init(pool->busy_hash);
3475
3476 init_timer_deferrable(&pool->idle_timer);
3477 pool->idle_timer.function = idle_worker_timeout;
3478 pool->idle_timer.data = (unsigned long)pool;
3479
3480 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3481 (unsigned long)pool);
3482
3483 mutex_init(&pool->manager_arb);
bc3a1afc 3484 mutex_init(&pool->manager_mutex);
4e1a1f9a 3485 ida_init(&pool->worker_ida);
7a4e344c 3486
29c91e99
TH
3487 INIT_HLIST_NODE(&pool->hash_node);
3488 pool->refcnt = 1;
3489
3490 /* shouldn't fail above this point */
7a4e344c
TH
3491 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3492 if (!pool->attrs)
3493 return -ENOMEM;
3494 return 0;
4e1a1f9a
TH
3495}
3496
29c91e99
TH
3497static void rcu_free_pool(struct rcu_head *rcu)
3498{
3499 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3500
3501 ida_destroy(&pool->worker_ida);
3502 free_workqueue_attrs(pool->attrs);
3503 kfree(pool);
3504}
3505
3506/**
3507 * put_unbound_pool - put a worker_pool
3508 * @pool: worker_pool to put
3509 *
3510 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3511 * safe manner. get_unbound_pool() calls this function on its failure path
3512 * and this function should be able to release pools which went through,
3513 * successfully or not, init_worker_pool().
29c91e99
TH
3514 */
3515static void put_unbound_pool(struct worker_pool *pool)
3516{
3517 struct worker *worker;
3518
5bcab335 3519 mutex_lock(&wq_mutex);
29c91e99 3520 if (--pool->refcnt) {
5bcab335 3521 mutex_unlock(&wq_mutex);
29c91e99
TH
3522 return;
3523 }
3524
3525 /* sanity checks */
3526 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3527 WARN_ON(!list_empty(&pool->worklist))) {
5bcab335 3528 mutex_unlock(&wq_mutex);
29c91e99
TH
3529 return;
3530 }
3531
3532 /* release id and unhash */
3533 if (pool->id >= 0)
3534 idr_remove(&worker_pool_idr, pool->id);
3535 hash_del(&pool->hash_node);
3536
5bcab335 3537 mutex_unlock(&wq_mutex);
29c91e99 3538
c5aa87bb
TH
3539 /*
3540 * Become the manager and destroy all workers. Grabbing
3541 * manager_arb prevents @pool's workers from blocking on
3542 * manager_mutex.
3543 */
29c91e99 3544 mutex_lock(&pool->manager_arb);
cd549687 3545 mutex_lock(&pool->manager_mutex);
29c91e99
TH
3546 spin_lock_irq(&pool->lock);
3547
3548 while ((worker = first_worker(pool)))
3549 destroy_worker(worker);
3550 WARN_ON(pool->nr_workers || pool->nr_idle);
3551
3552 spin_unlock_irq(&pool->lock);
cd549687 3553 mutex_unlock(&pool->manager_mutex);
29c91e99
TH
3554 mutex_unlock(&pool->manager_arb);
3555
3556 /* shut down the timers */
3557 del_timer_sync(&pool->idle_timer);
3558 del_timer_sync(&pool->mayday_timer);
3559
3560 /* sched-RCU protected to allow dereferences from get_work_pool() */
3561 call_rcu_sched(&pool->rcu, rcu_free_pool);
3562}
3563
3564/**
3565 * get_unbound_pool - get a worker_pool with the specified attributes
3566 * @attrs: the attributes of the worker_pool to get
3567 *
3568 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3569 * reference count and return it. If there already is a matching
3570 * worker_pool, it will be used; otherwise, this function attempts to
3571 * create a new one. On failure, returns NULL.
3572 */
3573static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3574{
29c91e99
TH
3575 u32 hash = wqattrs_hash(attrs);
3576 struct worker_pool *pool;
29c91e99 3577
5bcab335 3578 mutex_lock(&wq_mutex);
29c91e99
TH
3579
3580 /* do we already have a matching pool? */
29c91e99
TH
3581 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3582 if (wqattrs_equal(pool->attrs, attrs)) {
3583 pool->refcnt++;
3584 goto out_unlock;
3585 }
3586 }
29c91e99
TH
3587
3588 /* nope, create a new one */
3589 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3590 if (!pool || init_worker_pool(pool) < 0)
3591 goto fail;
3592
8864b4e5 3593 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3594 copy_workqueue_attrs(pool->attrs, attrs);
3595
3596 if (worker_pool_assign_id(pool) < 0)
3597 goto fail;
3598
3599 /* create and start the initial worker */
ebf44d16 3600 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3601 goto fail;
3602
29c91e99 3603 /* install */
29c91e99
TH
3604 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3605out_unlock:
5bcab335 3606 mutex_unlock(&wq_mutex);
29c91e99
TH
3607 return pool;
3608fail:
5bcab335 3609 mutex_unlock(&wq_mutex);
29c91e99
TH
3610 if (pool)
3611 put_unbound_pool(pool);
3612 return NULL;
3613}
3614
8864b4e5
TH
3615static void rcu_free_pwq(struct rcu_head *rcu)
3616{
3617 kmem_cache_free(pwq_cache,
3618 container_of(rcu, struct pool_workqueue, rcu));
3619}
3620
3621/*
3622 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3623 * and needs to be destroyed.
3624 */
3625static void pwq_unbound_release_workfn(struct work_struct *work)
3626{
3627 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3628 unbound_release_work);
3629 struct workqueue_struct *wq = pwq->wq;
3630 struct worker_pool *pool = pwq->pool;
3631
3632 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3633 return;
3634
75ccf595
TH
3635 /*
3636 * Unlink @pwq. Synchronization against flush_mutex isn't strictly
3637 * necessary on release but do it anyway. It's easier to verify
3638 * and consistent with the linking path.
3639 */
3640 mutex_lock(&wq->flush_mutex);
794b18bc 3641 spin_lock_irq(&pwq_lock);
8864b4e5 3642 list_del_rcu(&pwq->pwqs_node);
794b18bc 3643 spin_unlock_irq(&pwq_lock);
75ccf595 3644 mutex_unlock(&wq->flush_mutex);
8864b4e5
TH
3645
3646 put_unbound_pool(pool);
3647 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3648
3649 /*
3650 * If we're the last pwq going away, @wq is already dead and no one
3651 * is gonna access it anymore. Free it.
3652 */
3653 if (list_empty(&wq->pwqs))
3654 kfree(wq);
3655}
3656
0fbd95aa 3657/**
699ce097 3658 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3659 * @pwq: target pool_workqueue
0fbd95aa 3660 *
699ce097
TH
3661 * If @pwq isn't freezing, set @pwq->max_active to the associated
3662 * workqueue's saved_max_active and activate delayed work items
3663 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3664 */
699ce097 3665static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3666{
699ce097
TH
3667 struct workqueue_struct *wq = pwq->wq;
3668 bool freezable = wq->flags & WQ_FREEZABLE;
3669
3670 /* for @wq->saved_max_active */
794b18bc 3671 lockdep_assert_held(&pwq_lock);
699ce097
TH
3672
3673 /* fast exit for non-freezable wqs */
3674 if (!freezable && pwq->max_active == wq->saved_max_active)
3675 return;
3676
3677 spin_lock(&pwq->pool->lock);
3678
3679 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3680 pwq->max_active = wq->saved_max_active;
0fbd95aa 3681
699ce097
TH
3682 while (!list_empty(&pwq->delayed_works) &&
3683 pwq->nr_active < pwq->max_active)
3684 pwq_activate_first_delayed(pwq);
3685 } else {
3686 pwq->max_active = 0;
3687 }
3688
3689 spin_unlock(&pwq->pool->lock);
0fbd95aa
TH
3690}
3691
d2c1d404
TH
3692static void init_and_link_pwq(struct pool_workqueue *pwq,
3693 struct workqueue_struct *wq,
9e8cd2f5
TH
3694 struct worker_pool *pool,
3695 struct pool_workqueue **p_last_pwq)
d2c1d404
TH
3696{
3697 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3698
3699 pwq->pool = pool;
3700 pwq->wq = wq;
3701 pwq->flush_color = -1;
8864b4e5 3702 pwq->refcnt = 1;
d2c1d404
TH
3703 INIT_LIST_HEAD(&pwq->delayed_works);
3704 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3705 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
d2c1d404 3706
75ccf595 3707 mutex_lock(&wq->flush_mutex);
794b18bc 3708 spin_lock_irq(&pwq_lock);
75ccf595 3709
983ca25e
TH
3710 /*
3711 * Set the matching work_color. This is synchronized with
3712 * flush_mutex to avoid confusing flush_workqueue().
3713 */
9e8cd2f5
TH
3714 if (p_last_pwq)
3715 *p_last_pwq = first_pwq(wq);
75ccf595 3716 pwq->work_color = wq->work_color;
983ca25e
TH
3717
3718 /* sync max_active to the current setting */
3719 pwq_adjust_max_active(pwq);
3720
3721 /* link in @pwq */
9e8cd2f5 3722 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
75ccf595 3723
794b18bc 3724 spin_unlock_irq(&pwq_lock);
75ccf595 3725 mutex_unlock(&wq->flush_mutex);
d2c1d404
TH
3726}
3727
9e8cd2f5
TH
3728/**
3729 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3730 * @wq: the target workqueue
3731 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3732 *
3733 * Apply @attrs to an unbound workqueue @wq. If @attrs doesn't match the
3734 * current attributes, a new pwq is created and made the first pwq which
3735 * will serve all new work items. Older pwqs are released as in-flight
3736 * work items finish. Note that a work item which repeatedly requeues
3737 * itself back-to-back will stay on its current pwq.
3738 *
3739 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3740 * failure.
3741 */
3742int apply_workqueue_attrs(struct workqueue_struct *wq,
3743 const struct workqueue_attrs *attrs)
3744{
3745 struct pool_workqueue *pwq, *last_pwq;
3746 struct worker_pool *pool;
3747
8719dcea 3748 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3749 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3750 return -EINVAL;
3751
8719dcea
TH
3752 /* creating multiple pwqs breaks ordering guarantee */
3753 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3754 return -EINVAL;
3755
9e8cd2f5
TH
3756 pwq = kmem_cache_zalloc(pwq_cache, GFP_KERNEL);
3757 if (!pwq)
3758 return -ENOMEM;
3759
3760 pool = get_unbound_pool(attrs);
3761 if (!pool) {
3762 kmem_cache_free(pwq_cache, pwq);
3763 return -ENOMEM;
3764 }
3765
3766 init_and_link_pwq(pwq, wq, pool, &last_pwq);
3767 if (last_pwq) {
3768 spin_lock_irq(&last_pwq->pool->lock);
3769 put_pwq(last_pwq);
3770 spin_unlock_irq(&last_pwq->pool->lock);
3771 }
3772
3773 return 0;
3774}
3775
30cdf249 3776static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3777{
49e3cf44 3778 bool highpri = wq->flags & WQ_HIGHPRI;
30cdf249
TH
3779 int cpu;
3780
3781 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3782 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3783 if (!wq->cpu_pwqs)
30cdf249
TH
3784 return -ENOMEM;
3785
3786 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3787 struct pool_workqueue *pwq =
3788 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3789 struct worker_pool *cpu_pools =
f02ae73a 3790 per_cpu(cpu_worker_pools, cpu);
f3421797 3791
9e8cd2f5 3792 init_and_link_pwq(pwq, wq, &cpu_pools[highpri], NULL);
30cdf249 3793 }
9e8cd2f5 3794 return 0;
30cdf249 3795 } else {
9e8cd2f5 3796 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3797 }
0f900049
TH
3798}
3799
f3421797
TH
3800static int wq_clamp_max_active(int max_active, unsigned int flags,
3801 const char *name)
b71ab8c2 3802{
f3421797
TH
3803 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3804
3805 if (max_active < 1 || max_active > lim)
044c782c
VI
3806 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3807 max_active, name, 1, lim);
b71ab8c2 3808
f3421797 3809 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3810}
3811
b196be89 3812struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3813 unsigned int flags,
3814 int max_active,
3815 struct lock_class_key *key,
b196be89 3816 const char *lock_name, ...)
1da177e4 3817{
b196be89 3818 va_list args, args1;
1da177e4 3819 struct workqueue_struct *wq;
49e3cf44 3820 struct pool_workqueue *pwq;
b196be89
TH
3821 size_t namelen;
3822
3823 /* determine namelen, allocate wq and format name */
3824 va_start(args, lock_name);
3825 va_copy(args1, args);
3826 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3827
3828 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3829 if (!wq)
d2c1d404 3830 return NULL;
b196be89
TH
3831
3832 vsnprintf(wq->name, namelen, fmt, args1);
3833 va_end(args);
3834 va_end(args1);
1da177e4 3835
d320c038 3836 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3837 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3838
b196be89 3839 /* init wq */
97e37d7b 3840 wq->flags = flags;
a0a1a5fd 3841 wq->saved_max_active = max_active;
73f53c4a 3842 mutex_init(&wq->flush_mutex);
112202d9 3843 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3844 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3845 INIT_LIST_HEAD(&wq->flusher_queue);
3846 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3847 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3848
eb13ba87 3849 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3850 INIT_LIST_HEAD(&wq->list);
3af24433 3851
30cdf249 3852 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 3853 goto err_free_wq;
1537663f 3854
493008a8
TH
3855 /*
3856 * Workqueues which may be used during memory reclaim should
3857 * have a rescuer to guarantee forward progress.
3858 */
3859 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
3860 struct worker *rescuer;
3861
d2c1d404 3862 rescuer = alloc_worker();
e22bee78 3863 if (!rescuer)
d2c1d404 3864 goto err_destroy;
e22bee78 3865
111c225a
TH
3866 rescuer->rescue_wq = wq;
3867 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3868 wq->name);
d2c1d404
TH
3869 if (IS_ERR(rescuer->task)) {
3870 kfree(rescuer);
3871 goto err_destroy;
3872 }
e22bee78 3873
d2c1d404 3874 wq->rescuer = rescuer;
14a40ffc 3875 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 3876 wake_up_process(rescuer->task);
3af24433
ON
3877 }
3878
226223ab
TH
3879 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3880 goto err_destroy;
3881
a0a1a5fd 3882 /*
5bcab335
TH
3883 * wq_mutex protects global freeze state and workqueues list. Grab
3884 * it, adjust max_active and add the new @wq to workqueues list.
a0a1a5fd 3885 */
5bcab335 3886 mutex_lock(&wq_mutex);
a0a1a5fd 3887
794b18bc 3888 spin_lock_irq(&pwq_lock);
699ce097
TH
3889 for_each_pwq(pwq, wq)
3890 pwq_adjust_max_active(pwq);
794b18bc 3891 spin_unlock_irq(&pwq_lock);
a0a1a5fd 3892
1537663f 3893 list_add(&wq->list, &workqueues);
a0a1a5fd 3894
5bcab335 3895 mutex_unlock(&wq_mutex);
1537663f 3896
3af24433 3897 return wq;
d2c1d404
TH
3898
3899err_free_wq:
3900 kfree(wq);
3901 return NULL;
3902err_destroy:
3903 destroy_workqueue(wq);
4690c4ab 3904 return NULL;
3af24433 3905}
d320c038 3906EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3907
3af24433
ON
3908/**
3909 * destroy_workqueue - safely terminate a workqueue
3910 * @wq: target workqueue
3911 *
3912 * Safely destroy a workqueue. All work currently pending will be done first.
3913 */
3914void destroy_workqueue(struct workqueue_struct *wq)
3915{
49e3cf44 3916 struct pool_workqueue *pwq;
3af24433 3917
9c5a2ba7
TH
3918 /* drain it before proceeding with destruction */
3919 drain_workqueue(wq);
c8efcc25 3920
6183c009 3921 /* sanity checks */
794b18bc 3922 spin_lock_irq(&pwq_lock);
49e3cf44 3923 for_each_pwq(pwq, wq) {
6183c009
TH
3924 int i;
3925
76af4d93
TH
3926 for (i = 0; i < WORK_NR_COLORS; i++) {
3927 if (WARN_ON(pwq->nr_in_flight[i])) {
794b18bc 3928 spin_unlock_irq(&pwq_lock);
6183c009 3929 return;
76af4d93
TH
3930 }
3931 }
3932
8864b4e5
TH
3933 if (WARN_ON(pwq->refcnt > 1) ||
3934 WARN_ON(pwq->nr_active) ||
76af4d93 3935 WARN_ON(!list_empty(&pwq->delayed_works))) {
794b18bc 3936 spin_unlock_irq(&pwq_lock);
6183c009 3937 return;
76af4d93 3938 }
6183c009 3939 }
794b18bc 3940 spin_unlock_irq(&pwq_lock);
6183c009 3941
a0a1a5fd
TH
3942 /*
3943 * wq list is used to freeze wq, remove from list after
3944 * flushing is complete in case freeze races us.
3945 */
5bcab335 3946 mutex_lock(&wq_mutex);
d2c1d404 3947 list_del_init(&wq->list);
5bcab335 3948 mutex_unlock(&wq_mutex);
3af24433 3949
226223ab
TH
3950 workqueue_sysfs_unregister(wq);
3951
493008a8 3952 if (wq->rescuer) {
e22bee78 3953 kthread_stop(wq->rescuer->task);
8d9df9f0 3954 kfree(wq->rescuer);
493008a8 3955 wq->rescuer = NULL;
e22bee78
TH
3956 }
3957
8864b4e5
TH
3958 if (!(wq->flags & WQ_UNBOUND)) {
3959 /*
3960 * The base ref is never dropped on per-cpu pwqs. Directly
3961 * free the pwqs and wq.
3962 */
3963 free_percpu(wq->cpu_pwqs);
3964 kfree(wq);
3965 } else {
3966 /*
3967 * We're the sole accessor of @wq at this point. Directly
3968 * access the first pwq and put the base ref. As both pwqs
3969 * and pools are sched-RCU protected, the lock operations
3970 * are safe. @wq will be freed when the last pwq is
3971 * released.
3972 */
29c91e99
TH
3973 pwq = list_first_entry(&wq->pwqs, struct pool_workqueue,
3974 pwqs_node);
8864b4e5
TH
3975 spin_lock_irq(&pwq->pool->lock);
3976 put_pwq(pwq);
3977 spin_unlock_irq(&pwq->pool->lock);
29c91e99 3978 }
3af24433
ON
3979}
3980EXPORT_SYMBOL_GPL(destroy_workqueue);
3981
dcd989cb
TH
3982/**
3983 * workqueue_set_max_active - adjust max_active of a workqueue
3984 * @wq: target workqueue
3985 * @max_active: new max_active value.
3986 *
3987 * Set max_active of @wq to @max_active.
3988 *
3989 * CONTEXT:
3990 * Don't call from IRQ context.
3991 */
3992void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3993{
49e3cf44 3994 struct pool_workqueue *pwq;
dcd989cb 3995
8719dcea
TH
3996 /* disallow meddling with max_active for ordered workqueues */
3997 if (WARN_ON(wq->flags & __WQ_ORDERED))
3998 return;
3999
f3421797 4000 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4001
794b18bc 4002 spin_lock_irq(&pwq_lock);
dcd989cb
TH
4003
4004 wq->saved_max_active = max_active;
4005
699ce097
TH
4006 for_each_pwq(pwq, wq)
4007 pwq_adjust_max_active(pwq);
93981800 4008
794b18bc 4009 spin_unlock_irq(&pwq_lock);
15316ba8 4010}
dcd989cb 4011EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4012
e6267616
TH
4013/**
4014 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4015 *
4016 * Determine whether %current is a workqueue rescuer. Can be used from
4017 * work functions to determine whether it's being run off the rescuer task.
4018 */
4019bool current_is_workqueue_rescuer(void)
4020{
4021 struct worker *worker = current_wq_worker();
4022
4023 return worker && worker == worker->current_pwq->wq->rescuer;
4024}
4025
eef6a7d5 4026/**
dcd989cb
TH
4027 * workqueue_congested - test whether a workqueue is congested
4028 * @cpu: CPU in question
4029 * @wq: target workqueue
eef6a7d5 4030 *
dcd989cb
TH
4031 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4032 * no synchronization around this function and the test result is
4033 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4034 *
dcd989cb
TH
4035 * RETURNS:
4036 * %true if congested, %false otherwise.
eef6a7d5 4037 */
d84ff051 4038bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4039{
7fb98ea7 4040 struct pool_workqueue *pwq;
76af4d93
TH
4041 bool ret;
4042
4043 preempt_disable();
7fb98ea7
TH
4044
4045 if (!(wq->flags & WQ_UNBOUND))
4046 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4047 else
4048 pwq = first_pwq(wq);
dcd989cb 4049
76af4d93
TH
4050 ret = !list_empty(&pwq->delayed_works);
4051 preempt_enable();
4052
4053 return ret;
1da177e4 4054}
dcd989cb 4055EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4056
dcd989cb
TH
4057/**
4058 * work_busy - test whether a work is currently pending or running
4059 * @work: the work to be tested
4060 *
4061 * Test whether @work is currently pending or running. There is no
4062 * synchronization around this function and the test result is
4063 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
4064 *
4065 * RETURNS:
4066 * OR'd bitmask of WORK_BUSY_* bits.
4067 */
4068unsigned int work_busy(struct work_struct *work)
1da177e4 4069{
fa1b54e6 4070 struct worker_pool *pool;
dcd989cb
TH
4071 unsigned long flags;
4072 unsigned int ret = 0;
1da177e4 4073
dcd989cb
TH
4074 if (work_pending(work))
4075 ret |= WORK_BUSY_PENDING;
1da177e4 4076
fa1b54e6
TH
4077 local_irq_save(flags);
4078 pool = get_work_pool(work);
038366c5 4079 if (pool) {
fa1b54e6 4080 spin_lock(&pool->lock);
038366c5
LJ
4081 if (find_worker_executing_work(pool, work))
4082 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4083 spin_unlock(&pool->lock);
038366c5 4084 }
fa1b54e6 4085 local_irq_restore(flags);
1da177e4 4086
dcd989cb 4087 return ret;
1da177e4 4088}
dcd989cb 4089EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4090
db7bccf4
TH
4091/*
4092 * CPU hotplug.
4093 *
e22bee78 4094 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4095 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4096 * pool which make migrating pending and scheduled works very
e22bee78 4097 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4098 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4099 * blocked draining impractical.
4100 *
24647570 4101 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4102 * running as an unbound one and allowing it to be reattached later if the
4103 * cpu comes back online.
db7bccf4 4104 */
1da177e4 4105
706026c2 4106static void wq_unbind_fn(struct work_struct *work)
3af24433 4107{
38db41d9 4108 int cpu = smp_processor_id();
4ce62e9e 4109 struct worker_pool *pool;
db7bccf4 4110 struct worker *worker;
db7bccf4 4111 int i;
3af24433 4112
f02ae73a 4113 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4114 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4115
bc3a1afc 4116 mutex_lock(&pool->manager_mutex);
94cf58bb 4117 spin_lock_irq(&pool->lock);
3af24433 4118
94cf58bb 4119 /*
bc3a1afc 4120 * We've blocked all manager operations. Make all workers
94cf58bb
TH
4121 * unbound and set DISASSOCIATED. Before this, all workers
4122 * except for the ones which are still executing works from
4123 * before the last CPU down must be on the cpu. After
4124 * this, they may become diasporas.
4125 */
4ce62e9e 4126 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 4127 worker->flags |= WORKER_UNBOUND;
3af24433 4128
b67bfe0d 4129 for_each_busy_worker(worker, i, pool)
c9e7cf27 4130 worker->flags |= WORKER_UNBOUND;
06ba38a9 4131
24647570 4132 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4133
94cf58bb 4134 spin_unlock_irq(&pool->lock);
bc3a1afc 4135 mutex_unlock(&pool->manager_mutex);
94cf58bb 4136 }
628c78e7 4137
e22bee78 4138 /*
403c821d 4139 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
4140 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
4141 * as scheduler callbacks may be invoked from other cpus.
e22bee78 4142 */
e22bee78 4143 schedule();
06ba38a9 4144
e22bee78 4145 /*
628c78e7
TH
4146 * Sched callbacks are disabled now. Zap nr_running. After this,
4147 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
4148 * are always true as long as the worklist is not empty. Pools on
4149 * @cpu now behave as unbound (in terms of concurrency management)
4150 * pools which are served by workers tied to the CPU.
628c78e7
TH
4151 *
4152 * On return from this function, the current worker would trigger
4153 * unbound chain execution of pending work items if other workers
4154 * didn't already.
e22bee78 4155 */
f02ae73a 4156 for_each_cpu_worker_pool(pool, cpu)
e19e397a 4157 atomic_set(&pool->nr_running, 0);
3af24433 4158}
3af24433 4159
8db25e78
TH
4160/*
4161 * Workqueues should be brought up before normal priority CPU notifiers.
4162 * This will be registered high priority CPU notifier.
4163 */
9fdf9b73 4164static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4165 unsigned long action,
4166 void *hcpu)
3af24433 4167{
d84ff051 4168 int cpu = (unsigned long)hcpu;
4ce62e9e 4169 struct worker_pool *pool;
3ce63377 4170
8db25e78 4171 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4172 case CPU_UP_PREPARE:
f02ae73a 4173 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4174 if (pool->nr_workers)
4175 continue;
ebf44d16 4176 if (create_and_start_worker(pool) < 0)
3ce63377 4177 return NOTIFY_BAD;
3af24433 4178 }
8db25e78 4179 break;
3af24433 4180
db7bccf4
TH
4181 case CPU_DOWN_FAILED:
4182 case CPU_ONLINE:
f02ae73a 4183 for_each_cpu_worker_pool(pool, cpu) {
bc3a1afc 4184 mutex_lock(&pool->manager_mutex);
94cf58bb
TH
4185 spin_lock_irq(&pool->lock);
4186
24647570 4187 pool->flags &= ~POOL_DISASSOCIATED;
94cf58bb
TH
4188 rebind_workers(pool);
4189
4190 spin_unlock_irq(&pool->lock);
bc3a1afc 4191 mutex_unlock(&pool->manager_mutex);
94cf58bb 4192 }
db7bccf4 4193 break;
00dfcaf7 4194 }
65758202
TH
4195 return NOTIFY_OK;
4196}
4197
4198/*
4199 * Workqueues should be brought down after normal priority CPU notifiers.
4200 * This will be registered as low priority CPU notifier.
4201 */
9fdf9b73 4202static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4203 unsigned long action,
4204 void *hcpu)
4205{
d84ff051 4206 int cpu = (unsigned long)hcpu;
8db25e78
TH
4207 struct work_struct unbind_work;
4208
65758202
TH
4209 switch (action & ~CPU_TASKS_FROZEN) {
4210 case CPU_DOWN_PREPARE:
8db25e78 4211 /* unbinding should happen on the local CPU */
706026c2 4212 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4213 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
4214 flush_work(&unbind_work);
4215 break;
65758202
TH
4216 }
4217 return NOTIFY_OK;
4218}
4219
2d3854a3 4220#ifdef CONFIG_SMP
8ccad40d 4221
2d3854a3 4222struct work_for_cpu {
ed48ece2 4223 struct work_struct work;
2d3854a3
RR
4224 long (*fn)(void *);
4225 void *arg;
4226 long ret;
4227};
4228
ed48ece2 4229static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4230{
ed48ece2
TH
4231 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4232
2d3854a3
RR
4233 wfc->ret = wfc->fn(wfc->arg);
4234}
4235
4236/**
4237 * work_on_cpu - run a function in user context on a particular cpu
4238 * @cpu: the cpu to run on
4239 * @fn: the function to run
4240 * @arg: the function arg
4241 *
31ad9081
RR
4242 * This will return the value @fn returns.
4243 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4244 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3 4245 */
d84ff051 4246long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4247{
ed48ece2 4248 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4249
ed48ece2
TH
4250 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4251 schedule_work_on(cpu, &wfc.work);
4252 flush_work(&wfc.work);
2d3854a3
RR
4253 return wfc.ret;
4254}
4255EXPORT_SYMBOL_GPL(work_on_cpu);
4256#endif /* CONFIG_SMP */
4257
a0a1a5fd
TH
4258#ifdef CONFIG_FREEZER
4259
4260/**
4261 * freeze_workqueues_begin - begin freezing workqueues
4262 *
58a69cb4 4263 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4264 * workqueues will queue new works to their delayed_works list instead of
706026c2 4265 * pool->worklist.
a0a1a5fd
TH
4266 *
4267 * CONTEXT:
794b18bc 4268 * Grabs and releases wq_mutex, pwq_lock and pool->lock's.
a0a1a5fd
TH
4269 */
4270void freeze_workqueues_begin(void)
4271{
17116969 4272 struct worker_pool *pool;
24b8a847
TH
4273 struct workqueue_struct *wq;
4274 struct pool_workqueue *pwq;
611c92a0 4275 int pi;
a0a1a5fd 4276
5bcab335 4277 mutex_lock(&wq_mutex);
a0a1a5fd 4278
6183c009 4279 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4280 workqueue_freezing = true;
4281
24b8a847 4282 /* set FREEZING */
611c92a0 4283 for_each_pool(pool, pi) {
5bcab335 4284 spin_lock_irq(&pool->lock);
17116969
TH
4285 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4286 pool->flags |= POOL_FREEZING;
5bcab335 4287 spin_unlock_irq(&pool->lock);
24b8a847 4288 }
a0a1a5fd 4289
24b8a847 4290 /* suppress further executions by setting max_active to zero */
794b18bc 4291 spin_lock_irq(&pwq_lock);
24b8a847 4292 list_for_each_entry(wq, &workqueues, list) {
699ce097
TH
4293 for_each_pwq(pwq, wq)
4294 pwq_adjust_max_active(pwq);
a0a1a5fd 4295 }
794b18bc 4296 spin_unlock_irq(&pwq_lock);
5bcab335
TH
4297
4298 mutex_unlock(&wq_mutex);
a0a1a5fd
TH
4299}
4300
4301/**
58a69cb4 4302 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4303 *
4304 * Check whether freezing is complete. This function must be called
4305 * between freeze_workqueues_begin() and thaw_workqueues().
4306 *
4307 * CONTEXT:
5bcab335 4308 * Grabs and releases wq_mutex.
a0a1a5fd
TH
4309 *
4310 * RETURNS:
58a69cb4
TH
4311 * %true if some freezable workqueues are still busy. %false if freezing
4312 * is complete.
a0a1a5fd
TH
4313 */
4314bool freeze_workqueues_busy(void)
4315{
a0a1a5fd 4316 bool busy = false;
24b8a847
TH
4317 struct workqueue_struct *wq;
4318 struct pool_workqueue *pwq;
a0a1a5fd 4319
5bcab335 4320 mutex_lock(&wq_mutex);
a0a1a5fd 4321
6183c009 4322 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4323
24b8a847
TH
4324 list_for_each_entry(wq, &workqueues, list) {
4325 if (!(wq->flags & WQ_FREEZABLE))
4326 continue;
a0a1a5fd
TH
4327 /*
4328 * nr_active is monotonically decreasing. It's safe
4329 * to peek without lock.
4330 */
5bcab335 4331 preempt_disable();
24b8a847 4332 for_each_pwq(pwq, wq) {
6183c009 4333 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4334 if (pwq->nr_active) {
a0a1a5fd 4335 busy = true;
5bcab335 4336 preempt_enable();
a0a1a5fd
TH
4337 goto out_unlock;
4338 }
4339 }
5bcab335 4340 preempt_enable();
a0a1a5fd
TH
4341 }
4342out_unlock:
5bcab335 4343 mutex_unlock(&wq_mutex);
a0a1a5fd
TH
4344 return busy;
4345}
4346
4347/**
4348 * thaw_workqueues - thaw workqueues
4349 *
4350 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4351 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4352 *
4353 * CONTEXT:
794b18bc 4354 * Grabs and releases wq_mutex, pwq_lock and pool->lock's.
a0a1a5fd
TH
4355 */
4356void thaw_workqueues(void)
4357{
24b8a847
TH
4358 struct workqueue_struct *wq;
4359 struct pool_workqueue *pwq;
4360 struct worker_pool *pool;
611c92a0 4361 int pi;
a0a1a5fd 4362
5bcab335 4363 mutex_lock(&wq_mutex);
a0a1a5fd
TH
4364
4365 if (!workqueue_freezing)
4366 goto out_unlock;
4367
24b8a847 4368 /* clear FREEZING */
611c92a0 4369 for_each_pool(pool, pi) {
5bcab335 4370 spin_lock_irq(&pool->lock);
24b8a847
TH
4371 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4372 pool->flags &= ~POOL_FREEZING;
5bcab335 4373 spin_unlock_irq(&pool->lock);
24b8a847 4374 }
8b03ae3c 4375
24b8a847 4376 /* restore max_active and repopulate worklist */
794b18bc 4377 spin_lock_irq(&pwq_lock);
24b8a847 4378 list_for_each_entry(wq, &workqueues, list) {
699ce097
TH
4379 for_each_pwq(pwq, wq)
4380 pwq_adjust_max_active(pwq);
a0a1a5fd 4381 }
794b18bc 4382 spin_unlock_irq(&pwq_lock);
a0a1a5fd 4383
24b8a847 4384 /* kick workers */
611c92a0 4385 for_each_pool(pool, pi) {
5bcab335 4386 spin_lock_irq(&pool->lock);
24b8a847 4387 wake_up_worker(pool);
5bcab335 4388 spin_unlock_irq(&pool->lock);
24b8a847
TH
4389 }
4390
a0a1a5fd
TH
4391 workqueue_freezing = false;
4392out_unlock:
5bcab335 4393 mutex_unlock(&wq_mutex);
a0a1a5fd
TH
4394}
4395#endif /* CONFIG_FREEZER */
4396
6ee0578b 4397static int __init init_workqueues(void)
1da177e4 4398{
7a4e344c
TH
4399 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4400 int i, cpu;
c34056a3 4401
7c3eed5c
TH
4402 /* make sure we have enough bits for OFFQ pool ID */
4403 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 4404 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 4405
e904e6c2
TH
4406 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4407
4408 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4409
65758202 4410 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 4411 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 4412
706026c2 4413 /* initialize CPU pools */
29c91e99 4414 for_each_possible_cpu(cpu) {
4ce62e9e 4415 struct worker_pool *pool;
8b03ae3c 4416
7a4e344c 4417 i = 0;
f02ae73a 4418 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 4419 BUG_ON(init_worker_pool(pool));
ec22ca5e 4420 pool->cpu = cpu;
29c91e99 4421 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c
TH
4422 pool->attrs->nice = std_nice[i++];
4423
9daf9e67 4424 /* alloc pool ID */
5bcab335 4425 mutex_lock(&wq_mutex);
9daf9e67 4426 BUG_ON(worker_pool_assign_id(pool));
5bcab335 4427 mutex_unlock(&wq_mutex);
4ce62e9e 4428 }
8b03ae3c
TH
4429 }
4430
e22bee78 4431 /* create the initial worker */
29c91e99 4432 for_each_online_cpu(cpu) {
4ce62e9e 4433 struct worker_pool *pool;
e22bee78 4434
f02ae73a 4435 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 4436 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 4437 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 4438 }
e22bee78
TH
4439 }
4440
29c91e99
TH
4441 /* create default unbound wq attrs */
4442 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4443 struct workqueue_attrs *attrs;
4444
4445 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4446
4447 attrs->nice = std_nice[i];
4448 cpumask_setall(attrs->cpumask);
4449
4450 unbound_std_wq_attrs[i] = attrs;
4451 }
4452
d320c038 4453 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 4454 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 4455 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
4456 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4457 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
4458 system_freezable_wq = alloc_workqueue("events_freezable",
4459 WQ_FREEZABLE, 0);
1aabe902 4460 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 4461 !system_unbound_wq || !system_freezable_wq);
6ee0578b 4462 return 0;
1da177e4 4463}
6ee0578b 4464early_initcall(init_workqueues);