workqueue: unfold start_worker() into create_worker()
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc 67 * Note that DISASSOCIATED should be flipped only while holding
92f9c5c4 68 * attach_mutex to avoid changing binding state while
4736cbf7 69 * worker_attach_to_pool() is in progress.
bc2ae0f5 70 */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 72
c8e55f36 73 /* worker flags */
c8e55f36
TH
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 76 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 80
a9ab775b
TH
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 83
e34cdddb 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 85
29c91e99 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 88
e22bee78
TH
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
3233cdbd
TH
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
e22bee78
TH
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
8698a745 100 * all cpus. Give MIN_NICE.
e22bee78 101 */
8698a745
DY
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
104
105 WQ_NAME_LEN = 24,
c8e55f36 106};
1da177e4
LT
107
108/*
4690c4ab
TH
109 * Structure fields follow one of the following exclusion rules.
110 *
e41e704b
TH
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
4690c4ab 113 *
e22bee78
TH
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
d565ed63 117 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 118 *
d565ed63
TH
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 123 *
92f9c5c4 124 * A: pool->attach_mutex protected.
822d8405 125 *
68e13a67 126 * PL: wq_pool_mutex protected.
5bcab335 127 *
68e13a67 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 129 *
3c25a55d
LJ
130 * WQ: wq->mutex protected.
131 *
b5927605 132 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
133 *
134 * MD: wq_mayday_lock protected.
1da177e4 135 */
1da177e4 136
2eaebdb3 137/* struct worker is defined in workqueue_internal.h */
c34056a3 138
bd7bdd43 139struct worker_pool {
d565ed63 140 spinlock_t lock; /* the pool lock */
d84ff051 141 int cpu; /* I: the associated cpu */
f3f90ad4 142 int node; /* I: the associated node ID */
9daf9e67 143 int id; /* I: pool ID */
11ebea50 144 unsigned int flags; /* X: flags */
bd7bdd43
TH
145
146 struct list_head worklist; /* L: list of pending works */
147 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
148
149 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
150 int nr_idle; /* L: currently idle ones */
151
152 struct list_head idle_list; /* X: list of idle workers */
153 struct timer_list idle_timer; /* L: worker idle timeout */
154 struct timer_list mayday_timer; /* L: SOS timer for workers */
155
c5aa87bb 156 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
157 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
158 /* L: hash of busy workers */
159
bc3a1afc 160 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 161 struct mutex manager_arb; /* manager arbitration */
92f9c5c4
LJ
162 struct mutex attach_mutex; /* attach/detach exclusion */
163 struct list_head workers; /* A: attached workers */
60f5a4bc 164 struct completion *detach_completion; /* all workers detached */
e19e397a 165
7cda9aae 166 struct ida worker_ida; /* worker IDs for task name */
e19e397a 167
7a4e344c 168 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 171
e19e397a
TH
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
8b03ae3c
TH
184} ____cacheline_aligned_in_smp;
185
1da177e4 186/*
112202d9
TH
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
1da177e4 191 */
112202d9 192struct pool_workqueue {
bd7bdd43 193 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 194 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
8864b4e5 197 int refcnt; /* L: reference count */
73f53c4a
TH
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
1e19ffc6 200 int nr_active; /* L: nr of active works */
a0a1a5fd 201 int max_active; /* L: max active works */
1e19ffc6 202 struct list_head delayed_works; /* L: delayed works */
3c25a55d 203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 204 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 210 * determined without grabbing wq->mutex.
8864b4e5
TH
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
e904e6c2 214} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 215
73f53c4a
TH
216/*
217 * Structure used to wait for workqueue flush.
218 */
219struct wq_flusher {
3c25a55d
LJ
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
222 struct completion done; /* flush completion */
223};
224
226223ab
TH
225struct wq_device;
226
1da177e4 227/*
c5aa87bb
TH
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
230 */
231struct workqueue_struct {
3c25a55d 232 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 233 struct list_head list; /* PL: list of all workqueues */
73f53c4a 234
3c25a55d
LJ
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
112202d9 238 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 242
2e109a28 243 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
244 struct worker *rescuer; /* I: rescue worker */
245
87fc741e 246 int nr_drainers; /* WQ: drain in progress */
a357fc03 247 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 248
6029a918 249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
4c16bd32 250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
6029a918 251
226223ab
TH
252#ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254#endif
4e6045f1 255#ifdef CONFIG_LOCKDEP
4690c4ab 256 struct lockdep_map lockdep_map;
4e6045f1 257#endif
ecf6881f 258 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f
TH
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
264};
265
e904e6c2
TH
266static struct kmem_cache *pwq_cache;
267
bce90380
TH
268static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
d55262c4
TH
272static bool wq_disable_numa;
273module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
cee22a15
VK
275/* see the comment above the definition of WQ_POWER_EFFICIENT */
276#ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
277static bool wq_power_efficient = true;
278#else
279static bool wq_power_efficient;
280#endif
281
282module_param_named(power_efficient, wq_power_efficient, bool, 0444);
283
bce90380
TH
284static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
285
4c16bd32
TH
286/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
287static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
288
68e13a67 289static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 290static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 291
68e13a67
LJ
292static LIST_HEAD(workqueues); /* PL: list of all workqueues */
293static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
294
295/* the per-cpu worker pools */
296static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
297 cpu_worker_pools);
298
68e13a67 299static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 300
68e13a67 301/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
302static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
303
c5aa87bb 304/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
305static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
306
8a2b7538
TH
307/* I: attributes used when instantiating ordered pools on demand */
308static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
309
d320c038 310struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 311EXPORT_SYMBOL(system_wq);
044c782c 312struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 313EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 314struct workqueue_struct *system_long_wq __read_mostly;
d320c038 315EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 316struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 317EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 318struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 319EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
320struct workqueue_struct *system_power_efficient_wq __read_mostly;
321EXPORT_SYMBOL_GPL(system_power_efficient_wq);
322struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
323EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 324
7d19c5ce
TH
325static int worker_thread(void *__worker);
326static void copy_workqueue_attrs(struct workqueue_attrs *to,
327 const struct workqueue_attrs *from);
328
97bd2347
TH
329#define CREATE_TRACE_POINTS
330#include <trace/events/workqueue.h>
331
68e13a67 332#define assert_rcu_or_pool_mutex() \
5bcab335 333 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
334 lockdep_is_held(&wq_pool_mutex), \
335 "sched RCU or wq_pool_mutex should be held")
5bcab335 336
b09f4fd3 337#define assert_rcu_or_wq_mutex(wq) \
76af4d93 338 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 339 lockdep_is_held(&wq->mutex), \
b09f4fd3 340 "sched RCU or wq->mutex should be held")
76af4d93 341
f02ae73a
TH
342#define for_each_cpu_worker_pool(pool, cpu) \
343 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
344 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 345 (pool)++)
4ce62e9e 346
17116969
TH
347/**
348 * for_each_pool - iterate through all worker_pools in the system
349 * @pool: iteration cursor
611c92a0 350 * @pi: integer used for iteration
fa1b54e6 351 *
68e13a67
LJ
352 * This must be called either with wq_pool_mutex held or sched RCU read
353 * locked. If the pool needs to be used beyond the locking in effect, the
354 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
355 *
356 * The if/else clause exists only for the lockdep assertion and can be
357 * ignored.
17116969 358 */
611c92a0
TH
359#define for_each_pool(pool, pi) \
360 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 361 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 362 else
17116969 363
822d8405
TH
364/**
365 * for_each_pool_worker - iterate through all workers of a worker_pool
366 * @worker: iteration cursor
822d8405
TH
367 * @pool: worker_pool to iterate workers of
368 *
92f9c5c4 369 * This must be called with @pool->attach_mutex.
822d8405
TH
370 *
371 * The if/else clause exists only for the lockdep assertion and can be
372 * ignored.
373 */
da028469
LJ
374#define for_each_pool_worker(worker, pool) \
375 list_for_each_entry((worker), &(pool)->workers, node) \
92f9c5c4 376 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
822d8405
TH
377 else
378
49e3cf44
TH
379/**
380 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
381 * @pwq: iteration cursor
382 * @wq: the target workqueue
76af4d93 383 *
b09f4fd3 384 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
385 * If the pwq needs to be used beyond the locking in effect, the caller is
386 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
387 *
388 * The if/else clause exists only for the lockdep assertion and can be
389 * ignored.
49e3cf44
TH
390 */
391#define for_each_pwq(pwq, wq) \
76af4d93 392 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 393 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 394 else
f3421797 395
dc186ad7
TG
396#ifdef CONFIG_DEBUG_OBJECTS_WORK
397
398static struct debug_obj_descr work_debug_descr;
399
99777288
SG
400static void *work_debug_hint(void *addr)
401{
402 return ((struct work_struct *) addr)->func;
403}
404
dc186ad7
TG
405/*
406 * fixup_init is called when:
407 * - an active object is initialized
408 */
409static int work_fixup_init(void *addr, enum debug_obj_state state)
410{
411 struct work_struct *work = addr;
412
413 switch (state) {
414 case ODEBUG_STATE_ACTIVE:
415 cancel_work_sync(work);
416 debug_object_init(work, &work_debug_descr);
417 return 1;
418 default:
419 return 0;
420 }
421}
422
423/*
424 * fixup_activate is called when:
425 * - an active object is activated
426 * - an unknown object is activated (might be a statically initialized object)
427 */
428static int work_fixup_activate(void *addr, enum debug_obj_state state)
429{
430 struct work_struct *work = addr;
431
432 switch (state) {
433
434 case ODEBUG_STATE_NOTAVAILABLE:
435 /*
436 * This is not really a fixup. The work struct was
437 * statically initialized. We just make sure that it
438 * is tracked in the object tracker.
439 */
22df02bb 440 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
441 debug_object_init(work, &work_debug_descr);
442 debug_object_activate(work, &work_debug_descr);
443 return 0;
444 }
445 WARN_ON_ONCE(1);
446 return 0;
447
448 case ODEBUG_STATE_ACTIVE:
449 WARN_ON(1);
450
451 default:
452 return 0;
453 }
454}
455
456/*
457 * fixup_free is called when:
458 * - an active object is freed
459 */
460static int work_fixup_free(void *addr, enum debug_obj_state state)
461{
462 struct work_struct *work = addr;
463
464 switch (state) {
465 case ODEBUG_STATE_ACTIVE:
466 cancel_work_sync(work);
467 debug_object_free(work, &work_debug_descr);
468 return 1;
469 default:
470 return 0;
471 }
472}
473
474static struct debug_obj_descr work_debug_descr = {
475 .name = "work_struct",
99777288 476 .debug_hint = work_debug_hint,
dc186ad7
TG
477 .fixup_init = work_fixup_init,
478 .fixup_activate = work_fixup_activate,
479 .fixup_free = work_fixup_free,
480};
481
482static inline void debug_work_activate(struct work_struct *work)
483{
484 debug_object_activate(work, &work_debug_descr);
485}
486
487static inline void debug_work_deactivate(struct work_struct *work)
488{
489 debug_object_deactivate(work, &work_debug_descr);
490}
491
492void __init_work(struct work_struct *work, int onstack)
493{
494 if (onstack)
495 debug_object_init_on_stack(work, &work_debug_descr);
496 else
497 debug_object_init(work, &work_debug_descr);
498}
499EXPORT_SYMBOL_GPL(__init_work);
500
501void destroy_work_on_stack(struct work_struct *work)
502{
503 debug_object_free(work, &work_debug_descr);
504}
505EXPORT_SYMBOL_GPL(destroy_work_on_stack);
506
ea2e64f2
TG
507void destroy_delayed_work_on_stack(struct delayed_work *work)
508{
509 destroy_timer_on_stack(&work->timer);
510 debug_object_free(&work->work, &work_debug_descr);
511}
512EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
513
dc186ad7
TG
514#else
515static inline void debug_work_activate(struct work_struct *work) { }
516static inline void debug_work_deactivate(struct work_struct *work) { }
517#endif
518
4e8b22bd
LB
519/**
520 * worker_pool_assign_id - allocate ID and assing it to @pool
521 * @pool: the pool pointer of interest
522 *
523 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
524 * successfully, -errno on failure.
525 */
9daf9e67
TH
526static int worker_pool_assign_id(struct worker_pool *pool)
527{
528 int ret;
529
68e13a67 530 lockdep_assert_held(&wq_pool_mutex);
5bcab335 531
4e8b22bd
LB
532 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
533 GFP_KERNEL);
229641a6 534 if (ret >= 0) {
e68035fb 535 pool->id = ret;
229641a6
TH
536 return 0;
537 }
fa1b54e6 538 return ret;
7c3eed5c
TH
539}
540
df2d5ae4
TH
541/**
542 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
543 * @wq: the target workqueue
544 * @node: the node ID
545 *
546 * This must be called either with pwq_lock held or sched RCU read locked.
547 * If the pwq needs to be used beyond the locking in effect, the caller is
548 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
549 *
550 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
551 */
552static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
553 int node)
554{
555 assert_rcu_or_wq_mutex(wq);
556 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
557}
558
73f53c4a
TH
559static unsigned int work_color_to_flags(int color)
560{
561 return color << WORK_STRUCT_COLOR_SHIFT;
562}
563
564static int get_work_color(struct work_struct *work)
565{
566 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
567 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
568}
569
570static int work_next_color(int color)
571{
572 return (color + 1) % WORK_NR_COLORS;
573}
1da177e4 574
14441960 575/*
112202d9
TH
576 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
577 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 578 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 579 *
112202d9
TH
580 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
581 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
582 * work->data. These functions should only be called while the work is
583 * owned - ie. while the PENDING bit is set.
7a22ad75 584 *
112202d9 585 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 586 * corresponding to a work. Pool is available once the work has been
112202d9 587 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 588 * available only while the work item is queued.
7a22ad75 589 *
bbb68dfa
TH
590 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
591 * canceled. While being canceled, a work item may have its PENDING set
592 * but stay off timer and worklist for arbitrarily long and nobody should
593 * try to steal the PENDING bit.
14441960 594 */
7a22ad75
TH
595static inline void set_work_data(struct work_struct *work, unsigned long data,
596 unsigned long flags)
365970a1 597{
6183c009 598 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
599 atomic_long_set(&work->data, data | flags | work_static(work));
600}
365970a1 601
112202d9 602static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
603 unsigned long extra_flags)
604{
112202d9
TH
605 set_work_data(work, (unsigned long)pwq,
606 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
607}
608
4468a00f
LJ
609static void set_work_pool_and_keep_pending(struct work_struct *work,
610 int pool_id)
611{
612 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
613 WORK_STRUCT_PENDING);
614}
615
7c3eed5c
TH
616static void set_work_pool_and_clear_pending(struct work_struct *work,
617 int pool_id)
7a22ad75 618{
23657bb1
TH
619 /*
620 * The following wmb is paired with the implied mb in
621 * test_and_set_bit(PENDING) and ensures all updates to @work made
622 * here are visible to and precede any updates by the next PENDING
623 * owner.
624 */
625 smp_wmb();
7c3eed5c 626 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 627}
f756d5e2 628
7a22ad75 629static void clear_work_data(struct work_struct *work)
1da177e4 630{
7c3eed5c
TH
631 smp_wmb(); /* see set_work_pool_and_clear_pending() */
632 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
633}
634
112202d9 635static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 636{
e120153d 637 unsigned long data = atomic_long_read(&work->data);
7a22ad75 638
112202d9 639 if (data & WORK_STRUCT_PWQ)
e120153d
TH
640 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
641 else
642 return NULL;
4d707b9f
ON
643}
644
7c3eed5c
TH
645/**
646 * get_work_pool - return the worker_pool a given work was associated with
647 * @work: the work item of interest
648 *
68e13a67
LJ
649 * Pools are created and destroyed under wq_pool_mutex, and allows read
650 * access under sched-RCU read lock. As such, this function should be
651 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
652 *
653 * All fields of the returned pool are accessible as long as the above
654 * mentioned locking is in effect. If the returned pool needs to be used
655 * beyond the critical section, the caller is responsible for ensuring the
656 * returned pool is and stays online.
d185af30
YB
657 *
658 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
659 */
660static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 661{
e120153d 662 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 663 int pool_id;
7a22ad75 664
68e13a67 665 assert_rcu_or_pool_mutex();
fa1b54e6 666
112202d9
TH
667 if (data & WORK_STRUCT_PWQ)
668 return ((struct pool_workqueue *)
7c3eed5c 669 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 670
7c3eed5c
TH
671 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
672 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
673 return NULL;
674
fa1b54e6 675 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
676}
677
678/**
679 * get_work_pool_id - return the worker pool ID a given work is associated with
680 * @work: the work item of interest
681 *
d185af30 682 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
683 * %WORK_OFFQ_POOL_NONE if none.
684 */
685static int get_work_pool_id(struct work_struct *work)
686{
54d5b7d0
LJ
687 unsigned long data = atomic_long_read(&work->data);
688
112202d9
TH
689 if (data & WORK_STRUCT_PWQ)
690 return ((struct pool_workqueue *)
54d5b7d0 691 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 692
54d5b7d0 693 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
694}
695
bbb68dfa
TH
696static void mark_work_canceling(struct work_struct *work)
697{
7c3eed5c 698 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 699
7c3eed5c
TH
700 pool_id <<= WORK_OFFQ_POOL_SHIFT;
701 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
702}
703
704static bool work_is_canceling(struct work_struct *work)
705{
706 unsigned long data = atomic_long_read(&work->data);
707
112202d9 708 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
709}
710
e22bee78 711/*
3270476a
TH
712 * Policy functions. These define the policies on how the global worker
713 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 714 * they're being called with pool->lock held.
e22bee78
TH
715 */
716
63d95a91 717static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 718{
e19e397a 719 return !atomic_read(&pool->nr_running);
a848e3b6
ON
720}
721
4594bf15 722/*
e22bee78
TH
723 * Need to wake up a worker? Called from anything but currently
724 * running workers.
974271c4
TH
725 *
726 * Note that, because unbound workers never contribute to nr_running, this
706026c2 727 * function will always return %true for unbound pools as long as the
974271c4 728 * worklist isn't empty.
4594bf15 729 */
63d95a91 730static bool need_more_worker(struct worker_pool *pool)
365970a1 731{
63d95a91 732 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 733}
4594bf15 734
e22bee78 735/* Can I start working? Called from busy but !running workers. */
63d95a91 736static bool may_start_working(struct worker_pool *pool)
e22bee78 737{
63d95a91 738 return pool->nr_idle;
e22bee78
TH
739}
740
741/* Do I need to keep working? Called from currently running workers. */
63d95a91 742static bool keep_working(struct worker_pool *pool)
e22bee78 743{
e19e397a
TH
744 return !list_empty(&pool->worklist) &&
745 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
746}
747
748/* Do we need a new worker? Called from manager. */
63d95a91 749static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 750{
63d95a91 751 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 752}
365970a1 753
e22bee78 754/* Do we have too many workers and should some go away? */
63d95a91 755static bool too_many_workers(struct worker_pool *pool)
e22bee78 756{
34a06bd6 757 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
758 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
759 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
760
761 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
762}
763
4d707b9f 764/*
e22bee78
TH
765 * Wake up functions.
766 */
767
1037de36
LJ
768/* Return the first idle worker. Safe with preemption disabled */
769static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 770{
63d95a91 771 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
772 return NULL;
773
63d95a91 774 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
775}
776
777/**
778 * wake_up_worker - wake up an idle worker
63d95a91 779 * @pool: worker pool to wake worker from
7e11629d 780 *
63d95a91 781 * Wake up the first idle worker of @pool.
7e11629d
TH
782 *
783 * CONTEXT:
d565ed63 784 * spin_lock_irq(pool->lock).
7e11629d 785 */
63d95a91 786static void wake_up_worker(struct worker_pool *pool)
7e11629d 787{
1037de36 788 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
789
790 if (likely(worker))
791 wake_up_process(worker->task);
792}
793
d302f017 794/**
e22bee78
TH
795 * wq_worker_waking_up - a worker is waking up
796 * @task: task waking up
797 * @cpu: CPU @task is waking up to
798 *
799 * This function is called during try_to_wake_up() when a worker is
800 * being awoken.
801 *
802 * CONTEXT:
803 * spin_lock_irq(rq->lock)
804 */
d84ff051 805void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
806{
807 struct worker *worker = kthread_data(task);
808
36576000 809 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 810 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 811 atomic_inc(&worker->pool->nr_running);
36576000 812 }
e22bee78
TH
813}
814
815/**
816 * wq_worker_sleeping - a worker is going to sleep
817 * @task: task going to sleep
818 * @cpu: CPU in question, must be the current CPU number
819 *
820 * This function is called during schedule() when a busy worker is
821 * going to sleep. Worker on the same cpu can be woken up by
822 * returning pointer to its task.
823 *
824 * CONTEXT:
825 * spin_lock_irq(rq->lock)
826 *
d185af30 827 * Return:
e22bee78
TH
828 * Worker task on @cpu to wake up, %NULL if none.
829 */
d84ff051 830struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
831{
832 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 833 struct worker_pool *pool;
e22bee78 834
111c225a
TH
835 /*
836 * Rescuers, which may not have all the fields set up like normal
837 * workers, also reach here, let's not access anything before
838 * checking NOT_RUNNING.
839 */
2d64672e 840 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
841 return NULL;
842
111c225a 843 pool = worker->pool;
111c225a 844
e22bee78 845 /* this can only happen on the local cpu */
92b69f50 846 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
6183c009 847 return NULL;
e22bee78
TH
848
849 /*
850 * The counterpart of the following dec_and_test, implied mb,
851 * worklist not empty test sequence is in insert_work().
852 * Please read comment there.
853 *
628c78e7
TH
854 * NOT_RUNNING is clear. This means that we're bound to and
855 * running on the local cpu w/ rq lock held and preemption
856 * disabled, which in turn means that none else could be
d565ed63 857 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 858 * lock is safe.
e22bee78 859 */
e19e397a
TH
860 if (atomic_dec_and_test(&pool->nr_running) &&
861 !list_empty(&pool->worklist))
1037de36 862 to_wakeup = first_idle_worker(pool);
e22bee78
TH
863 return to_wakeup ? to_wakeup->task : NULL;
864}
865
866/**
867 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 868 * @worker: self
d302f017 869 * @flags: flags to set
d302f017 870 *
228f1d00 871 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 872 *
cb444766 873 * CONTEXT:
d565ed63 874 * spin_lock_irq(pool->lock)
d302f017 875 */
228f1d00 876static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 877{
bd7bdd43 878 struct worker_pool *pool = worker->pool;
e22bee78 879
cb444766
TH
880 WARN_ON_ONCE(worker->task != current);
881
228f1d00 882 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
883 if ((flags & WORKER_NOT_RUNNING) &&
884 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 885 atomic_dec(&pool->nr_running);
e22bee78
TH
886 }
887
d302f017
TH
888 worker->flags |= flags;
889}
890
891/**
e22bee78 892 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 893 * @worker: self
d302f017
TH
894 * @flags: flags to clear
895 *
e22bee78 896 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 897 *
cb444766 898 * CONTEXT:
d565ed63 899 * spin_lock_irq(pool->lock)
d302f017
TH
900 */
901static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
902{
63d95a91 903 struct worker_pool *pool = worker->pool;
e22bee78
TH
904 unsigned int oflags = worker->flags;
905
cb444766
TH
906 WARN_ON_ONCE(worker->task != current);
907
d302f017 908 worker->flags &= ~flags;
e22bee78 909
42c025f3
TH
910 /*
911 * If transitioning out of NOT_RUNNING, increment nr_running. Note
912 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
913 * of multiple flags, not a single flag.
914 */
e22bee78
TH
915 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
916 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 917 atomic_inc(&pool->nr_running);
d302f017
TH
918}
919
8cca0eea
TH
920/**
921 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 922 * @pool: pool of interest
8cca0eea
TH
923 * @work: work to find worker for
924 *
c9e7cf27
TH
925 * Find a worker which is executing @work on @pool by searching
926 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
927 * to match, its current execution should match the address of @work and
928 * its work function. This is to avoid unwanted dependency between
929 * unrelated work executions through a work item being recycled while still
930 * being executed.
931 *
932 * This is a bit tricky. A work item may be freed once its execution
933 * starts and nothing prevents the freed area from being recycled for
934 * another work item. If the same work item address ends up being reused
935 * before the original execution finishes, workqueue will identify the
936 * recycled work item as currently executing and make it wait until the
937 * current execution finishes, introducing an unwanted dependency.
938 *
c5aa87bb
TH
939 * This function checks the work item address and work function to avoid
940 * false positives. Note that this isn't complete as one may construct a
941 * work function which can introduce dependency onto itself through a
942 * recycled work item. Well, if somebody wants to shoot oneself in the
943 * foot that badly, there's only so much we can do, and if such deadlock
944 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
945 *
946 * CONTEXT:
d565ed63 947 * spin_lock_irq(pool->lock).
8cca0eea 948 *
d185af30
YB
949 * Return:
950 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 951 * otherwise.
4d707b9f 952 */
c9e7cf27 953static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 954 struct work_struct *work)
4d707b9f 955{
42f8570f 956 struct worker *worker;
42f8570f 957
b67bfe0d 958 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
959 (unsigned long)work)
960 if (worker->current_work == work &&
961 worker->current_func == work->func)
42f8570f
SL
962 return worker;
963
964 return NULL;
4d707b9f
ON
965}
966
bf4ede01
TH
967/**
968 * move_linked_works - move linked works to a list
969 * @work: start of series of works to be scheduled
970 * @head: target list to append @work to
971 * @nextp: out paramter for nested worklist walking
972 *
973 * Schedule linked works starting from @work to @head. Work series to
974 * be scheduled starts at @work and includes any consecutive work with
975 * WORK_STRUCT_LINKED set in its predecessor.
976 *
977 * If @nextp is not NULL, it's updated to point to the next work of
978 * the last scheduled work. This allows move_linked_works() to be
979 * nested inside outer list_for_each_entry_safe().
980 *
981 * CONTEXT:
d565ed63 982 * spin_lock_irq(pool->lock).
bf4ede01
TH
983 */
984static void move_linked_works(struct work_struct *work, struct list_head *head,
985 struct work_struct **nextp)
986{
987 struct work_struct *n;
988
989 /*
990 * Linked worklist will always end before the end of the list,
991 * use NULL for list head.
992 */
993 list_for_each_entry_safe_from(work, n, NULL, entry) {
994 list_move_tail(&work->entry, head);
995 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
996 break;
997 }
998
999 /*
1000 * If we're already inside safe list traversal and have moved
1001 * multiple works to the scheduled queue, the next position
1002 * needs to be updated.
1003 */
1004 if (nextp)
1005 *nextp = n;
1006}
1007
8864b4e5
TH
1008/**
1009 * get_pwq - get an extra reference on the specified pool_workqueue
1010 * @pwq: pool_workqueue to get
1011 *
1012 * Obtain an extra reference on @pwq. The caller should guarantee that
1013 * @pwq has positive refcnt and be holding the matching pool->lock.
1014 */
1015static void get_pwq(struct pool_workqueue *pwq)
1016{
1017 lockdep_assert_held(&pwq->pool->lock);
1018 WARN_ON_ONCE(pwq->refcnt <= 0);
1019 pwq->refcnt++;
1020}
1021
1022/**
1023 * put_pwq - put a pool_workqueue reference
1024 * @pwq: pool_workqueue to put
1025 *
1026 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1027 * destruction. The caller should be holding the matching pool->lock.
1028 */
1029static void put_pwq(struct pool_workqueue *pwq)
1030{
1031 lockdep_assert_held(&pwq->pool->lock);
1032 if (likely(--pwq->refcnt))
1033 return;
1034 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1035 return;
1036 /*
1037 * @pwq can't be released under pool->lock, bounce to
1038 * pwq_unbound_release_workfn(). This never recurses on the same
1039 * pool->lock as this path is taken only for unbound workqueues and
1040 * the release work item is scheduled on a per-cpu workqueue. To
1041 * avoid lockdep warning, unbound pool->locks are given lockdep
1042 * subclass of 1 in get_unbound_pool().
1043 */
1044 schedule_work(&pwq->unbound_release_work);
1045}
1046
dce90d47
TH
1047/**
1048 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1049 * @pwq: pool_workqueue to put (can be %NULL)
1050 *
1051 * put_pwq() with locking. This function also allows %NULL @pwq.
1052 */
1053static void put_pwq_unlocked(struct pool_workqueue *pwq)
1054{
1055 if (pwq) {
1056 /*
1057 * As both pwqs and pools are sched-RCU protected, the
1058 * following lock operations are safe.
1059 */
1060 spin_lock_irq(&pwq->pool->lock);
1061 put_pwq(pwq);
1062 spin_unlock_irq(&pwq->pool->lock);
1063 }
1064}
1065
112202d9 1066static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1067{
112202d9 1068 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1069
1070 trace_workqueue_activate_work(work);
112202d9 1071 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1072 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1073 pwq->nr_active++;
bf4ede01
TH
1074}
1075
112202d9 1076static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1077{
112202d9 1078 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1079 struct work_struct, entry);
1080
112202d9 1081 pwq_activate_delayed_work(work);
3aa62497
LJ
1082}
1083
bf4ede01 1084/**
112202d9
TH
1085 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1086 * @pwq: pwq of interest
bf4ede01 1087 * @color: color of work which left the queue
bf4ede01
TH
1088 *
1089 * A work either has completed or is removed from pending queue,
112202d9 1090 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1091 *
1092 * CONTEXT:
d565ed63 1093 * spin_lock_irq(pool->lock).
bf4ede01 1094 */
112202d9 1095static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1096{
8864b4e5 1097 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1098 if (color == WORK_NO_COLOR)
8864b4e5 1099 goto out_put;
bf4ede01 1100
112202d9 1101 pwq->nr_in_flight[color]--;
bf4ede01 1102
112202d9
TH
1103 pwq->nr_active--;
1104 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1105 /* one down, submit a delayed one */
112202d9
TH
1106 if (pwq->nr_active < pwq->max_active)
1107 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1108 }
1109
1110 /* is flush in progress and are we at the flushing tip? */
112202d9 1111 if (likely(pwq->flush_color != color))
8864b4e5 1112 goto out_put;
bf4ede01
TH
1113
1114 /* are there still in-flight works? */
112202d9 1115 if (pwq->nr_in_flight[color])
8864b4e5 1116 goto out_put;
bf4ede01 1117
112202d9
TH
1118 /* this pwq is done, clear flush_color */
1119 pwq->flush_color = -1;
bf4ede01
TH
1120
1121 /*
112202d9 1122 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1123 * will handle the rest.
1124 */
112202d9
TH
1125 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1126 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1127out_put:
1128 put_pwq(pwq);
bf4ede01
TH
1129}
1130
36e227d2 1131/**
bbb68dfa 1132 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1133 * @work: work item to steal
1134 * @is_dwork: @work is a delayed_work
bbb68dfa 1135 * @flags: place to store irq state
36e227d2
TH
1136 *
1137 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1138 * stable state - idle, on timer or on worklist.
36e227d2 1139 *
d185af30 1140 * Return:
36e227d2
TH
1141 * 1 if @work was pending and we successfully stole PENDING
1142 * 0 if @work was idle and we claimed PENDING
1143 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1144 * -ENOENT if someone else is canceling @work, this state may persist
1145 * for arbitrarily long
36e227d2 1146 *
d185af30 1147 * Note:
bbb68dfa 1148 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1149 * interrupted while holding PENDING and @work off queue, irq must be
1150 * disabled on entry. This, combined with delayed_work->timer being
1151 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1152 *
1153 * On successful return, >= 0, irq is disabled and the caller is
1154 * responsible for releasing it using local_irq_restore(*@flags).
1155 *
e0aecdd8 1156 * This function is safe to call from any context including IRQ handler.
bf4ede01 1157 */
bbb68dfa
TH
1158static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1159 unsigned long *flags)
bf4ede01 1160{
d565ed63 1161 struct worker_pool *pool;
112202d9 1162 struct pool_workqueue *pwq;
bf4ede01 1163
bbb68dfa
TH
1164 local_irq_save(*flags);
1165
36e227d2
TH
1166 /* try to steal the timer if it exists */
1167 if (is_dwork) {
1168 struct delayed_work *dwork = to_delayed_work(work);
1169
e0aecdd8
TH
1170 /*
1171 * dwork->timer is irqsafe. If del_timer() fails, it's
1172 * guaranteed that the timer is not queued anywhere and not
1173 * running on the local CPU.
1174 */
36e227d2
TH
1175 if (likely(del_timer(&dwork->timer)))
1176 return 1;
1177 }
1178
1179 /* try to claim PENDING the normal way */
bf4ede01
TH
1180 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1181 return 0;
1182
1183 /*
1184 * The queueing is in progress, or it is already queued. Try to
1185 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1186 */
d565ed63
TH
1187 pool = get_work_pool(work);
1188 if (!pool)
bbb68dfa 1189 goto fail;
bf4ede01 1190
d565ed63 1191 spin_lock(&pool->lock);
0b3dae68 1192 /*
112202d9
TH
1193 * work->data is guaranteed to point to pwq only while the work
1194 * item is queued on pwq->wq, and both updating work->data to point
1195 * to pwq on queueing and to pool on dequeueing are done under
1196 * pwq->pool->lock. This in turn guarantees that, if work->data
1197 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1198 * item is currently queued on that pool.
1199 */
112202d9
TH
1200 pwq = get_work_pwq(work);
1201 if (pwq && pwq->pool == pool) {
16062836
TH
1202 debug_work_deactivate(work);
1203
1204 /*
1205 * A delayed work item cannot be grabbed directly because
1206 * it might have linked NO_COLOR work items which, if left
112202d9 1207 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1208 * management later on and cause stall. Make sure the work
1209 * item is activated before grabbing.
1210 */
1211 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1212 pwq_activate_delayed_work(work);
16062836
TH
1213
1214 list_del_init(&work->entry);
9c34a704 1215 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1216
112202d9 1217 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1218 set_work_pool_and_keep_pending(work, pool->id);
1219
1220 spin_unlock(&pool->lock);
1221 return 1;
bf4ede01 1222 }
d565ed63 1223 spin_unlock(&pool->lock);
bbb68dfa
TH
1224fail:
1225 local_irq_restore(*flags);
1226 if (work_is_canceling(work))
1227 return -ENOENT;
1228 cpu_relax();
36e227d2 1229 return -EAGAIN;
bf4ede01
TH
1230}
1231
4690c4ab 1232/**
706026c2 1233 * insert_work - insert a work into a pool
112202d9 1234 * @pwq: pwq @work belongs to
4690c4ab
TH
1235 * @work: work to insert
1236 * @head: insertion point
1237 * @extra_flags: extra WORK_STRUCT_* flags to set
1238 *
112202d9 1239 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1240 * work_struct flags.
4690c4ab
TH
1241 *
1242 * CONTEXT:
d565ed63 1243 * spin_lock_irq(pool->lock).
4690c4ab 1244 */
112202d9
TH
1245static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1246 struct list_head *head, unsigned int extra_flags)
b89deed3 1247{
112202d9 1248 struct worker_pool *pool = pwq->pool;
e22bee78 1249
4690c4ab 1250 /* we own @work, set data and link */
112202d9 1251 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1252 list_add_tail(&work->entry, head);
8864b4e5 1253 get_pwq(pwq);
e22bee78
TH
1254
1255 /*
c5aa87bb
TH
1256 * Ensure either wq_worker_sleeping() sees the above
1257 * list_add_tail() or we see zero nr_running to avoid workers lying
1258 * around lazily while there are works to be processed.
e22bee78
TH
1259 */
1260 smp_mb();
1261
63d95a91
TH
1262 if (__need_more_worker(pool))
1263 wake_up_worker(pool);
b89deed3
ON
1264}
1265
c8efcc25
TH
1266/*
1267 * Test whether @work is being queued from another work executing on the
8d03ecfe 1268 * same workqueue.
c8efcc25
TH
1269 */
1270static bool is_chained_work(struct workqueue_struct *wq)
1271{
8d03ecfe
TH
1272 struct worker *worker;
1273
1274 worker = current_wq_worker();
1275 /*
1276 * Return %true iff I'm a worker execuing a work item on @wq. If
1277 * I'm @worker, it's safe to dereference it without locking.
1278 */
112202d9 1279 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1280}
1281
d84ff051 1282static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1283 struct work_struct *work)
1284{
112202d9 1285 struct pool_workqueue *pwq;
c9178087 1286 struct worker_pool *last_pool;
1e19ffc6 1287 struct list_head *worklist;
8a2e8e5d 1288 unsigned int work_flags;
b75cac93 1289 unsigned int req_cpu = cpu;
8930caba
TH
1290
1291 /*
1292 * While a work item is PENDING && off queue, a task trying to
1293 * steal the PENDING will busy-loop waiting for it to either get
1294 * queued or lose PENDING. Grabbing PENDING and queueing should
1295 * happen with IRQ disabled.
1296 */
1297 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1298
dc186ad7 1299 debug_work_activate(work);
1e19ffc6 1300
9ef28a73 1301 /* if draining, only works from the same workqueue are allowed */
618b01eb 1302 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1303 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1304 return;
9e8cd2f5 1305retry:
df2d5ae4
TH
1306 if (req_cpu == WORK_CPU_UNBOUND)
1307 cpu = raw_smp_processor_id();
1308
c9178087 1309 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1310 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1311 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1312 else
1313 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1314
c9178087
TH
1315 /*
1316 * If @work was previously on a different pool, it might still be
1317 * running there, in which case the work needs to be queued on that
1318 * pool to guarantee non-reentrancy.
1319 */
1320 last_pool = get_work_pool(work);
1321 if (last_pool && last_pool != pwq->pool) {
1322 struct worker *worker;
18aa9eff 1323
c9178087 1324 spin_lock(&last_pool->lock);
18aa9eff 1325
c9178087 1326 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1327
c9178087
TH
1328 if (worker && worker->current_pwq->wq == wq) {
1329 pwq = worker->current_pwq;
8930caba 1330 } else {
c9178087
TH
1331 /* meh... not running there, queue here */
1332 spin_unlock(&last_pool->lock);
112202d9 1333 spin_lock(&pwq->pool->lock);
8930caba 1334 }
f3421797 1335 } else {
112202d9 1336 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1337 }
1338
9e8cd2f5
TH
1339 /*
1340 * pwq is determined and locked. For unbound pools, we could have
1341 * raced with pwq release and it could already be dead. If its
1342 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1343 * without another pwq replacing it in the numa_pwq_tbl or while
1344 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1345 * make forward-progress.
1346 */
1347 if (unlikely(!pwq->refcnt)) {
1348 if (wq->flags & WQ_UNBOUND) {
1349 spin_unlock(&pwq->pool->lock);
1350 cpu_relax();
1351 goto retry;
1352 }
1353 /* oops */
1354 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1355 wq->name, cpu);
1356 }
1357
112202d9
TH
1358 /* pwq determined, queue */
1359 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1360
f5b2552b 1361 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1362 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1363 return;
1364 }
1e19ffc6 1365
112202d9
TH
1366 pwq->nr_in_flight[pwq->work_color]++;
1367 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1368
112202d9 1369 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1370 trace_workqueue_activate_work(work);
112202d9
TH
1371 pwq->nr_active++;
1372 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1373 } else {
1374 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1375 worklist = &pwq->delayed_works;
8a2e8e5d 1376 }
1e19ffc6 1377
112202d9 1378 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1379
112202d9 1380 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1381}
1382
0fcb78c2 1383/**
c1a220e7
ZR
1384 * queue_work_on - queue work on specific cpu
1385 * @cpu: CPU number to execute work on
0fcb78c2
REB
1386 * @wq: workqueue to use
1387 * @work: work to queue
1388 *
c1a220e7
ZR
1389 * We queue the work to a specific CPU, the caller must ensure it
1390 * can't go away.
d185af30
YB
1391 *
1392 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1393 */
d4283e93
TH
1394bool queue_work_on(int cpu, struct workqueue_struct *wq,
1395 struct work_struct *work)
1da177e4 1396{
d4283e93 1397 bool ret = false;
8930caba 1398 unsigned long flags;
ef1ca236 1399
8930caba 1400 local_irq_save(flags);
c1a220e7 1401
22df02bb 1402 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1403 __queue_work(cpu, wq, work);
d4283e93 1404 ret = true;
c1a220e7 1405 }
ef1ca236 1406
8930caba 1407 local_irq_restore(flags);
1da177e4
LT
1408 return ret;
1409}
ad7b1f84 1410EXPORT_SYMBOL(queue_work_on);
1da177e4 1411
d8e794df 1412void delayed_work_timer_fn(unsigned long __data)
1da177e4 1413{
52bad64d 1414 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1415
e0aecdd8 1416 /* should have been called from irqsafe timer with irq already off */
60c057bc 1417 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1418}
1438ade5 1419EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1420
7beb2edf
TH
1421static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1422 struct delayed_work *dwork, unsigned long delay)
1da177e4 1423{
7beb2edf
TH
1424 struct timer_list *timer = &dwork->timer;
1425 struct work_struct *work = &dwork->work;
7beb2edf
TH
1426
1427 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1428 timer->data != (unsigned long)dwork);
fc4b514f
TH
1429 WARN_ON_ONCE(timer_pending(timer));
1430 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1431
8852aac2
TH
1432 /*
1433 * If @delay is 0, queue @dwork->work immediately. This is for
1434 * both optimization and correctness. The earliest @timer can
1435 * expire is on the closest next tick and delayed_work users depend
1436 * on that there's no such delay when @delay is 0.
1437 */
1438 if (!delay) {
1439 __queue_work(cpu, wq, &dwork->work);
1440 return;
1441 }
1442
7beb2edf 1443 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1444
60c057bc 1445 dwork->wq = wq;
1265057f 1446 dwork->cpu = cpu;
7beb2edf
TH
1447 timer->expires = jiffies + delay;
1448
1449 if (unlikely(cpu != WORK_CPU_UNBOUND))
1450 add_timer_on(timer, cpu);
1451 else
1452 add_timer(timer);
1da177e4
LT
1453}
1454
0fcb78c2
REB
1455/**
1456 * queue_delayed_work_on - queue work on specific CPU after delay
1457 * @cpu: CPU number to execute work on
1458 * @wq: workqueue to use
af9997e4 1459 * @dwork: work to queue
0fcb78c2
REB
1460 * @delay: number of jiffies to wait before queueing
1461 *
d185af30 1462 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1463 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1464 * execution.
0fcb78c2 1465 */
d4283e93
TH
1466bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1467 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1468{
52bad64d 1469 struct work_struct *work = &dwork->work;
d4283e93 1470 bool ret = false;
8930caba 1471 unsigned long flags;
7a6bc1cd 1472
8930caba
TH
1473 /* read the comment in __queue_work() */
1474 local_irq_save(flags);
7a6bc1cd 1475
22df02bb 1476 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1477 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1478 ret = true;
7a6bc1cd 1479 }
8a3e77cc 1480
8930caba 1481 local_irq_restore(flags);
7a6bc1cd
VP
1482 return ret;
1483}
ad7b1f84 1484EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1485
8376fe22
TH
1486/**
1487 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1488 * @cpu: CPU number to execute work on
1489 * @wq: workqueue to use
1490 * @dwork: work to queue
1491 * @delay: number of jiffies to wait before queueing
1492 *
1493 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1494 * modify @dwork's timer so that it expires after @delay. If @delay is
1495 * zero, @work is guaranteed to be scheduled immediately regardless of its
1496 * current state.
1497 *
d185af30 1498 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1499 * pending and its timer was modified.
1500 *
e0aecdd8 1501 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1502 * See try_to_grab_pending() for details.
1503 */
1504bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1505 struct delayed_work *dwork, unsigned long delay)
1506{
1507 unsigned long flags;
1508 int ret;
c7fc77f7 1509
8376fe22
TH
1510 do {
1511 ret = try_to_grab_pending(&dwork->work, true, &flags);
1512 } while (unlikely(ret == -EAGAIN));
63bc0362 1513
8376fe22
TH
1514 if (likely(ret >= 0)) {
1515 __queue_delayed_work(cpu, wq, dwork, delay);
1516 local_irq_restore(flags);
7a6bc1cd 1517 }
8376fe22
TH
1518
1519 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1520 return ret;
1521}
8376fe22
TH
1522EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1523
c8e55f36
TH
1524/**
1525 * worker_enter_idle - enter idle state
1526 * @worker: worker which is entering idle state
1527 *
1528 * @worker is entering idle state. Update stats and idle timer if
1529 * necessary.
1530 *
1531 * LOCKING:
d565ed63 1532 * spin_lock_irq(pool->lock).
c8e55f36
TH
1533 */
1534static void worker_enter_idle(struct worker *worker)
1da177e4 1535{
bd7bdd43 1536 struct worker_pool *pool = worker->pool;
c8e55f36 1537
6183c009
TH
1538 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1539 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1540 (worker->hentry.next || worker->hentry.pprev)))
1541 return;
c8e55f36 1542
051e1850 1543 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1544 worker->flags |= WORKER_IDLE;
bd7bdd43 1545 pool->nr_idle++;
e22bee78 1546 worker->last_active = jiffies;
c8e55f36
TH
1547
1548 /* idle_list is LIFO */
bd7bdd43 1549 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1550
628c78e7
TH
1551 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1552 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1553
544ecf31 1554 /*
706026c2 1555 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1556 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1557 * nr_running, the warning may trigger spuriously. Check iff
1558 * unbind is not in progress.
544ecf31 1559 */
24647570 1560 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1561 pool->nr_workers == pool->nr_idle &&
e19e397a 1562 atomic_read(&pool->nr_running));
c8e55f36
TH
1563}
1564
1565/**
1566 * worker_leave_idle - leave idle state
1567 * @worker: worker which is leaving idle state
1568 *
1569 * @worker is leaving idle state. Update stats.
1570 *
1571 * LOCKING:
d565ed63 1572 * spin_lock_irq(pool->lock).
c8e55f36
TH
1573 */
1574static void worker_leave_idle(struct worker *worker)
1575{
bd7bdd43 1576 struct worker_pool *pool = worker->pool;
c8e55f36 1577
6183c009
TH
1578 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1579 return;
d302f017 1580 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1581 pool->nr_idle--;
c8e55f36
TH
1582 list_del_init(&worker->entry);
1583}
1584
f7537df5 1585static struct worker *alloc_worker(int node)
c34056a3
TH
1586{
1587 struct worker *worker;
1588
f7537df5 1589 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1590 if (worker) {
1591 INIT_LIST_HEAD(&worker->entry);
affee4b2 1592 INIT_LIST_HEAD(&worker->scheduled);
da028469 1593 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1594 /* on creation a worker is in !idle && prep state */
1595 worker->flags = WORKER_PREP;
c8e55f36 1596 }
c34056a3
TH
1597 return worker;
1598}
1599
4736cbf7
LJ
1600/**
1601 * worker_attach_to_pool() - attach a worker to a pool
1602 * @worker: worker to be attached
1603 * @pool: the target pool
1604 *
1605 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1606 * cpu-binding of @worker are kept coordinated with the pool across
1607 * cpu-[un]hotplugs.
1608 */
1609static void worker_attach_to_pool(struct worker *worker,
1610 struct worker_pool *pool)
1611{
1612 mutex_lock(&pool->attach_mutex);
1613
1614 /*
1615 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1616 * online CPUs. It'll be re-applied when any of the CPUs come up.
1617 */
1618 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1619
1620 /*
1621 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1622 * stable across this function. See the comments above the
1623 * flag definition for details.
1624 */
1625 if (pool->flags & POOL_DISASSOCIATED)
1626 worker->flags |= WORKER_UNBOUND;
1627
1628 list_add_tail(&worker->node, &pool->workers);
1629
1630 mutex_unlock(&pool->attach_mutex);
1631}
1632
60f5a4bc
LJ
1633/**
1634 * worker_detach_from_pool() - detach a worker from its pool
1635 * @worker: worker which is attached to its pool
1636 * @pool: the pool @worker is attached to
1637 *
4736cbf7
LJ
1638 * Undo the attaching which had been done in worker_attach_to_pool(). The
1639 * caller worker shouldn't access to the pool after detached except it has
1640 * other reference to the pool.
60f5a4bc
LJ
1641 */
1642static void worker_detach_from_pool(struct worker *worker,
1643 struct worker_pool *pool)
1644{
1645 struct completion *detach_completion = NULL;
1646
92f9c5c4 1647 mutex_lock(&pool->attach_mutex);
da028469
LJ
1648 list_del(&worker->node);
1649 if (list_empty(&pool->workers))
60f5a4bc 1650 detach_completion = pool->detach_completion;
92f9c5c4 1651 mutex_unlock(&pool->attach_mutex);
60f5a4bc 1652
b62c0751
LJ
1653 /* clear leftover flags without pool->lock after it is detached */
1654 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1655
60f5a4bc
LJ
1656 if (detach_completion)
1657 complete(detach_completion);
1658}
1659
c34056a3
TH
1660/**
1661 * create_worker - create a new workqueue worker
63d95a91 1662 * @pool: pool the new worker will belong to
c34056a3 1663 *
051e1850 1664 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1665 *
1666 * CONTEXT:
1667 * Might sleep. Does GFP_KERNEL allocations.
1668 *
d185af30 1669 * Return:
c34056a3
TH
1670 * Pointer to the newly created worker.
1671 */
bc2ae0f5 1672static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1673{
c34056a3 1674 struct worker *worker = NULL;
f3421797 1675 int id = -1;
e3c916a4 1676 char id_buf[16];
c34056a3 1677
7cda9aae
LJ
1678 /* ID is needed to determine kthread name */
1679 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1680 if (id < 0)
1681 goto fail;
c34056a3 1682
f7537df5 1683 worker = alloc_worker(pool->node);
c34056a3
TH
1684 if (!worker)
1685 goto fail;
1686
bd7bdd43 1687 worker->pool = pool;
c34056a3
TH
1688 worker->id = id;
1689
29c91e99 1690 if (pool->cpu >= 0)
e3c916a4
TH
1691 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1692 pool->attrs->nice < 0 ? "H" : "");
f3421797 1693 else
e3c916a4
TH
1694 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1695
f3f90ad4 1696 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1697 "kworker/%s", id_buf);
c34056a3
TH
1698 if (IS_ERR(worker->task))
1699 goto fail;
1700
91151228
ON
1701 set_user_nice(worker->task, pool->attrs->nice);
1702
1703 /* prevent userland from meddling with cpumask of workqueue workers */
1704 worker->task->flags |= PF_NO_SETAFFINITY;
1705
da028469 1706 /* successful, attach the worker to the pool */
4736cbf7 1707 worker_attach_to_pool(worker, pool);
822d8405 1708
051e1850
LJ
1709 /* start the newly created worker */
1710 spin_lock_irq(&pool->lock);
1711 worker->pool->nr_workers++;
1712 worker_enter_idle(worker);
1713 wake_up_process(worker->task);
1714 spin_unlock_irq(&pool->lock);
1715
c34056a3 1716 return worker;
822d8405 1717
c34056a3 1718fail:
9625ab17 1719 if (id >= 0)
7cda9aae 1720 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1721 kfree(worker);
1722 return NULL;
1723}
1724
c34056a3
TH
1725/**
1726 * destroy_worker - destroy a workqueue worker
1727 * @worker: worker to be destroyed
1728 *
73eb7fe7
LJ
1729 * Destroy @worker and adjust @pool stats accordingly. The worker should
1730 * be idle.
c8e55f36
TH
1731 *
1732 * CONTEXT:
60f5a4bc 1733 * spin_lock_irq(pool->lock).
c34056a3
TH
1734 */
1735static void destroy_worker(struct worker *worker)
1736{
bd7bdd43 1737 struct worker_pool *pool = worker->pool;
c34056a3 1738
cd549687
TH
1739 lockdep_assert_held(&pool->lock);
1740
c34056a3 1741 /* sanity check frenzy */
6183c009 1742 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1743 WARN_ON(!list_empty(&worker->scheduled)) ||
1744 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1745 return;
c34056a3 1746
73eb7fe7
LJ
1747 pool->nr_workers--;
1748 pool->nr_idle--;
5bdfff96 1749
c8e55f36 1750 list_del_init(&worker->entry);
cb444766 1751 worker->flags |= WORKER_DIE;
60f5a4bc 1752 wake_up_process(worker->task);
c34056a3
TH
1753}
1754
63d95a91 1755static void idle_worker_timeout(unsigned long __pool)
e22bee78 1756{
63d95a91 1757 struct worker_pool *pool = (void *)__pool;
e22bee78 1758
d565ed63 1759 spin_lock_irq(&pool->lock);
e22bee78 1760
3347fc9f 1761 while (too_many_workers(pool)) {
e22bee78
TH
1762 struct worker *worker;
1763 unsigned long expires;
1764
1765 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1766 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1767 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1768
3347fc9f 1769 if (time_before(jiffies, expires)) {
63d95a91 1770 mod_timer(&pool->idle_timer, expires);
3347fc9f 1771 break;
d5abe669 1772 }
3347fc9f
LJ
1773
1774 destroy_worker(worker);
e22bee78
TH
1775 }
1776
d565ed63 1777 spin_unlock_irq(&pool->lock);
e22bee78 1778}
d5abe669 1779
493a1724 1780static void send_mayday(struct work_struct *work)
e22bee78 1781{
112202d9
TH
1782 struct pool_workqueue *pwq = get_work_pwq(work);
1783 struct workqueue_struct *wq = pwq->wq;
493a1724 1784
2e109a28 1785 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1786
493008a8 1787 if (!wq->rescuer)
493a1724 1788 return;
e22bee78
TH
1789
1790 /* mayday mayday mayday */
493a1724 1791 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1792 /*
1793 * If @pwq is for an unbound wq, its base ref may be put at
1794 * any time due to an attribute change. Pin @pwq until the
1795 * rescuer is done with it.
1796 */
1797 get_pwq(pwq);
493a1724 1798 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1799 wake_up_process(wq->rescuer->task);
493a1724 1800 }
e22bee78
TH
1801}
1802
706026c2 1803static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1804{
63d95a91 1805 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1806 struct work_struct *work;
1807
2e109a28 1808 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1809 spin_lock(&pool->lock);
e22bee78 1810
63d95a91 1811 if (need_to_create_worker(pool)) {
e22bee78
TH
1812 /*
1813 * We've been trying to create a new worker but
1814 * haven't been successful. We might be hitting an
1815 * allocation deadlock. Send distress signals to
1816 * rescuers.
1817 */
63d95a91 1818 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1819 send_mayday(work);
1da177e4 1820 }
e22bee78 1821
493a1724 1822 spin_unlock(&pool->lock);
2e109a28 1823 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1824
63d95a91 1825 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1826}
1827
e22bee78
TH
1828/**
1829 * maybe_create_worker - create a new worker if necessary
63d95a91 1830 * @pool: pool to create a new worker for
e22bee78 1831 *
63d95a91 1832 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1833 * have at least one idle worker on return from this function. If
1834 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1835 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1836 * possible allocation deadlock.
1837 *
c5aa87bb
TH
1838 * On return, need_to_create_worker() is guaranteed to be %false and
1839 * may_start_working() %true.
e22bee78
TH
1840 *
1841 * LOCKING:
d565ed63 1842 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1843 * multiple times. Does GFP_KERNEL allocations. Called only from
1844 * manager.
1845 *
d185af30 1846 * Return:
c5aa87bb 1847 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1848 * otherwise.
1849 */
63d95a91 1850static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1851__releases(&pool->lock)
1852__acquires(&pool->lock)
1da177e4 1853{
63d95a91 1854 if (!need_to_create_worker(pool))
e22bee78
TH
1855 return false;
1856restart:
d565ed63 1857 spin_unlock_irq(&pool->lock);
9f9c2364 1858
e22bee78 1859 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1860 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1861
1862 while (true) {
051e1850 1863 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 1864 break;
1da177e4 1865
e212f361 1866 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1867
63d95a91 1868 if (!need_to_create_worker(pool))
e22bee78
TH
1869 break;
1870 }
1871
63d95a91 1872 del_timer_sync(&pool->mayday_timer);
d565ed63 1873 spin_lock_irq(&pool->lock);
051e1850
LJ
1874 /*
1875 * This is necessary even after a new worker was just successfully
1876 * created as @pool->lock was dropped and the new worker might have
1877 * already become busy.
1878 */
63d95a91 1879 if (need_to_create_worker(pool))
e22bee78
TH
1880 goto restart;
1881 return true;
1882}
1883
73f53c4a 1884/**
e22bee78
TH
1885 * manage_workers - manage worker pool
1886 * @worker: self
73f53c4a 1887 *
706026c2 1888 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1889 * to. At any given time, there can be only zero or one manager per
706026c2 1890 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1891 *
1892 * The caller can safely start processing works on false return. On
1893 * true return, it's guaranteed that need_to_create_worker() is false
1894 * and may_start_working() is true.
73f53c4a
TH
1895 *
1896 * CONTEXT:
d565ed63 1897 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1898 * multiple times. Does GFP_KERNEL allocations.
1899 *
d185af30 1900 * Return:
2d498db9
L
1901 * %false if the pool don't need management and the caller can safely start
1902 * processing works, %true indicates that the function released pool->lock
1903 * and reacquired it to perform some management function and that the
1904 * conditions that the caller verified while holding the lock before
1905 * calling the function might no longer be true.
73f53c4a 1906 */
e22bee78 1907static bool manage_workers(struct worker *worker)
73f53c4a 1908{
63d95a91 1909 struct worker_pool *pool = worker->pool;
e22bee78 1910 bool ret = false;
73f53c4a 1911
bc3a1afc 1912 /*
bc3a1afc
TH
1913 * Anyone who successfully grabs manager_arb wins the arbitration
1914 * and becomes the manager. mutex_trylock() on pool->manager_arb
1915 * failure while holding pool->lock reliably indicates that someone
1916 * else is managing the pool and the worker which failed trylock
1917 * can proceed to executing work items. This means that anyone
1918 * grabbing manager_arb is responsible for actually performing
1919 * manager duties. If manager_arb is grabbed and released without
1920 * actual management, the pool may stall indefinitely.
bc3a1afc 1921 */
34a06bd6 1922 if (!mutex_trylock(&pool->manager_arb))
e22bee78 1923 return ret;
1e19ffc6 1924
63d95a91 1925 ret |= maybe_create_worker(pool);
e22bee78 1926
34a06bd6 1927 mutex_unlock(&pool->manager_arb);
e22bee78 1928 return ret;
73f53c4a
TH
1929}
1930
a62428c0
TH
1931/**
1932 * process_one_work - process single work
c34056a3 1933 * @worker: self
a62428c0
TH
1934 * @work: work to process
1935 *
1936 * Process @work. This function contains all the logics necessary to
1937 * process a single work including synchronization against and
1938 * interaction with other workers on the same cpu, queueing and
1939 * flushing. As long as context requirement is met, any worker can
1940 * call this function to process a work.
1941 *
1942 * CONTEXT:
d565ed63 1943 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 1944 */
c34056a3 1945static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
1946__releases(&pool->lock)
1947__acquires(&pool->lock)
a62428c0 1948{
112202d9 1949 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 1950 struct worker_pool *pool = worker->pool;
112202d9 1951 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 1952 int work_color;
7e11629d 1953 struct worker *collision;
a62428c0
TH
1954#ifdef CONFIG_LOCKDEP
1955 /*
1956 * It is permissible to free the struct work_struct from
1957 * inside the function that is called from it, this we need to
1958 * take into account for lockdep too. To avoid bogus "held
1959 * lock freed" warnings as well as problems when looking into
1960 * work->lockdep_map, make a copy and use that here.
1961 */
4d82a1de
PZ
1962 struct lockdep_map lockdep_map;
1963
1964 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 1965#endif
85327af6 1966 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 1967 raw_smp_processor_id() != pool->cpu);
25511a47 1968
7e11629d
TH
1969 /*
1970 * A single work shouldn't be executed concurrently by
1971 * multiple workers on a single cpu. Check whether anyone is
1972 * already processing the work. If so, defer the work to the
1973 * currently executing one.
1974 */
c9e7cf27 1975 collision = find_worker_executing_work(pool, work);
7e11629d
TH
1976 if (unlikely(collision)) {
1977 move_linked_works(work, &collision->scheduled, NULL);
1978 return;
1979 }
1980
8930caba 1981 /* claim and dequeue */
a62428c0 1982 debug_work_deactivate(work);
c9e7cf27 1983 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 1984 worker->current_work = work;
a2c1c57b 1985 worker->current_func = work->func;
112202d9 1986 worker->current_pwq = pwq;
73f53c4a 1987 work_color = get_work_color(work);
7a22ad75 1988
a62428c0
TH
1989 list_del_init(&work->entry);
1990
fb0e7beb 1991 /*
228f1d00
LJ
1992 * CPU intensive works don't participate in concurrency management.
1993 * They're the scheduler's responsibility. This takes @worker out
1994 * of concurrency management and the next code block will chain
1995 * execution of the pending work items.
fb0e7beb
TH
1996 */
1997 if (unlikely(cpu_intensive))
228f1d00 1998 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 1999
974271c4 2000 /*
a489a03e
LJ
2001 * Wake up another worker if necessary. The condition is always
2002 * false for normal per-cpu workers since nr_running would always
2003 * be >= 1 at this point. This is used to chain execution of the
2004 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2005 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2006 */
a489a03e 2007 if (need_more_worker(pool))
63d95a91 2008 wake_up_worker(pool);
974271c4 2009
8930caba 2010 /*
7c3eed5c 2011 * Record the last pool and clear PENDING which should be the last
d565ed63 2012 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2013 * PENDING and queued state changes happen together while IRQ is
2014 * disabled.
8930caba 2015 */
7c3eed5c 2016 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2017
d565ed63 2018 spin_unlock_irq(&pool->lock);
a62428c0 2019
112202d9 2020 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2021 lock_map_acquire(&lockdep_map);
e36c886a 2022 trace_workqueue_execute_start(work);
a2c1c57b 2023 worker->current_func(work);
e36c886a
AV
2024 /*
2025 * While we must be careful to not use "work" after this, the trace
2026 * point will only record its address.
2027 */
2028 trace_workqueue_execute_end(work);
a62428c0 2029 lock_map_release(&lockdep_map);
112202d9 2030 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2031
2032 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2033 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2034 " last function: %pf\n",
a2c1c57b
TH
2035 current->comm, preempt_count(), task_pid_nr(current),
2036 worker->current_func);
a62428c0
TH
2037 debug_show_held_locks(current);
2038 dump_stack();
2039 }
2040
b22ce278
TH
2041 /*
2042 * The following prevents a kworker from hogging CPU on !PREEMPT
2043 * kernels, where a requeueing work item waiting for something to
2044 * happen could deadlock with stop_machine as such work item could
2045 * indefinitely requeue itself while all other CPUs are trapped in
2046 * stop_machine.
2047 */
2048 cond_resched();
2049
d565ed63 2050 spin_lock_irq(&pool->lock);
a62428c0 2051
fb0e7beb
TH
2052 /* clear cpu intensive status */
2053 if (unlikely(cpu_intensive))
2054 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2055
a62428c0 2056 /* we're done with it, release */
42f8570f 2057 hash_del(&worker->hentry);
c34056a3 2058 worker->current_work = NULL;
a2c1c57b 2059 worker->current_func = NULL;
112202d9 2060 worker->current_pwq = NULL;
3d1cb205 2061 worker->desc_valid = false;
112202d9 2062 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2063}
2064
affee4b2
TH
2065/**
2066 * process_scheduled_works - process scheduled works
2067 * @worker: self
2068 *
2069 * Process all scheduled works. Please note that the scheduled list
2070 * may change while processing a work, so this function repeatedly
2071 * fetches a work from the top and executes it.
2072 *
2073 * CONTEXT:
d565ed63 2074 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2075 * multiple times.
2076 */
2077static void process_scheduled_works(struct worker *worker)
1da177e4 2078{
affee4b2
TH
2079 while (!list_empty(&worker->scheduled)) {
2080 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2081 struct work_struct, entry);
c34056a3 2082 process_one_work(worker, work);
1da177e4 2083 }
1da177e4
LT
2084}
2085
4690c4ab
TH
2086/**
2087 * worker_thread - the worker thread function
c34056a3 2088 * @__worker: self
4690c4ab 2089 *
c5aa87bb
TH
2090 * The worker thread function. All workers belong to a worker_pool -
2091 * either a per-cpu one or dynamic unbound one. These workers process all
2092 * work items regardless of their specific target workqueue. The only
2093 * exception is work items which belong to workqueues with a rescuer which
2094 * will be explained in rescuer_thread().
d185af30
YB
2095 *
2096 * Return: 0
4690c4ab 2097 */
c34056a3 2098static int worker_thread(void *__worker)
1da177e4 2099{
c34056a3 2100 struct worker *worker = __worker;
bd7bdd43 2101 struct worker_pool *pool = worker->pool;
1da177e4 2102
e22bee78
TH
2103 /* tell the scheduler that this is a workqueue worker */
2104 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2105woke_up:
d565ed63 2106 spin_lock_irq(&pool->lock);
1da177e4 2107
a9ab775b
TH
2108 /* am I supposed to die? */
2109 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2110 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2111 WARN_ON_ONCE(!list_empty(&worker->entry));
2112 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2113
2114 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2115 ida_simple_remove(&pool->worker_ida, worker->id);
60f5a4bc
LJ
2116 worker_detach_from_pool(worker, pool);
2117 kfree(worker);
a9ab775b 2118 return 0;
c8e55f36 2119 }
affee4b2 2120
c8e55f36 2121 worker_leave_idle(worker);
db7bccf4 2122recheck:
e22bee78 2123 /* no more worker necessary? */
63d95a91 2124 if (!need_more_worker(pool))
e22bee78
TH
2125 goto sleep;
2126
2127 /* do we need to manage? */
63d95a91 2128 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2129 goto recheck;
2130
c8e55f36
TH
2131 /*
2132 * ->scheduled list can only be filled while a worker is
2133 * preparing to process a work or actually processing it.
2134 * Make sure nobody diddled with it while I was sleeping.
2135 */
6183c009 2136 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2137
e22bee78 2138 /*
a9ab775b
TH
2139 * Finish PREP stage. We're guaranteed to have at least one idle
2140 * worker or that someone else has already assumed the manager
2141 * role. This is where @worker starts participating in concurrency
2142 * management if applicable and concurrency management is restored
2143 * after being rebound. See rebind_workers() for details.
e22bee78 2144 */
a9ab775b 2145 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2146
2147 do {
c8e55f36 2148 struct work_struct *work =
bd7bdd43 2149 list_first_entry(&pool->worklist,
c8e55f36
TH
2150 struct work_struct, entry);
2151
2152 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2153 /* optimization path, not strictly necessary */
2154 process_one_work(worker, work);
2155 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2156 process_scheduled_works(worker);
c8e55f36
TH
2157 } else {
2158 move_linked_works(work, &worker->scheduled, NULL);
2159 process_scheduled_works(worker);
affee4b2 2160 }
63d95a91 2161 } while (keep_working(pool));
e22bee78 2162
228f1d00 2163 worker_set_flags(worker, WORKER_PREP);
d313dd85 2164sleep:
c8e55f36 2165 /*
d565ed63
TH
2166 * pool->lock is held and there's no work to process and no need to
2167 * manage, sleep. Workers are woken up only while holding
2168 * pool->lock or from local cpu, so setting the current state
2169 * before releasing pool->lock is enough to prevent losing any
2170 * event.
c8e55f36
TH
2171 */
2172 worker_enter_idle(worker);
2173 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2174 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2175 schedule();
2176 goto woke_up;
1da177e4
LT
2177}
2178
e22bee78
TH
2179/**
2180 * rescuer_thread - the rescuer thread function
111c225a 2181 * @__rescuer: self
e22bee78
TH
2182 *
2183 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2184 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2185 *
706026c2 2186 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2187 * worker which uses GFP_KERNEL allocation which has slight chance of
2188 * developing into deadlock if some works currently on the same queue
2189 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2190 * the problem rescuer solves.
2191 *
706026c2
TH
2192 * When such condition is possible, the pool summons rescuers of all
2193 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2194 * those works so that forward progress can be guaranteed.
2195 *
2196 * This should happen rarely.
d185af30
YB
2197 *
2198 * Return: 0
e22bee78 2199 */
111c225a 2200static int rescuer_thread(void *__rescuer)
e22bee78 2201{
111c225a
TH
2202 struct worker *rescuer = __rescuer;
2203 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2204 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2205 bool should_stop;
e22bee78
TH
2206
2207 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2208
2209 /*
2210 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2211 * doesn't participate in concurrency management.
2212 */
2213 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2214repeat:
2215 set_current_state(TASK_INTERRUPTIBLE);
2216
4d595b86
LJ
2217 /*
2218 * By the time the rescuer is requested to stop, the workqueue
2219 * shouldn't have any work pending, but @wq->maydays may still have
2220 * pwq(s) queued. This can happen by non-rescuer workers consuming
2221 * all the work items before the rescuer got to them. Go through
2222 * @wq->maydays processing before acting on should_stop so that the
2223 * list is always empty on exit.
2224 */
2225 should_stop = kthread_should_stop();
e22bee78 2226
493a1724 2227 /* see whether any pwq is asking for help */
2e109a28 2228 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2229
2230 while (!list_empty(&wq->maydays)) {
2231 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2232 struct pool_workqueue, mayday_node);
112202d9 2233 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2234 struct work_struct *work, *n;
2235
2236 __set_current_state(TASK_RUNNING);
493a1724
TH
2237 list_del_init(&pwq->mayday_node);
2238
2e109a28 2239 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2240
51697d39
LJ
2241 worker_attach_to_pool(rescuer, pool);
2242
2243 spin_lock_irq(&pool->lock);
b3104104 2244 rescuer->pool = pool;
e22bee78
TH
2245
2246 /*
2247 * Slurp in all works issued via this workqueue and
2248 * process'em.
2249 */
6183c009 2250 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2251 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2252 if (get_work_pwq(work) == pwq)
e22bee78
TH
2253 move_linked_works(work, scheduled, &n);
2254
2255 process_scheduled_works(rescuer);
51697d39
LJ
2256 spin_unlock_irq(&pool->lock);
2257
2258 worker_detach_from_pool(rescuer, pool);
2259
2260 spin_lock_irq(&pool->lock);
7576958a 2261
77668c8b
LJ
2262 /*
2263 * Put the reference grabbed by send_mayday(). @pool won't
2264 * go away while we're holding its lock.
2265 */
2266 put_pwq(pwq);
2267
7576958a 2268 /*
d8ca83e6 2269 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2270 * regular worker; otherwise, we end up with 0 concurrency
2271 * and stalling the execution.
2272 */
d8ca83e6 2273 if (need_more_worker(pool))
63d95a91 2274 wake_up_worker(pool);
7576958a 2275
b3104104 2276 rescuer->pool = NULL;
493a1724 2277 spin_unlock(&pool->lock);
2e109a28 2278 spin_lock(&wq_mayday_lock);
e22bee78
TH
2279 }
2280
2e109a28 2281 spin_unlock_irq(&wq_mayday_lock);
493a1724 2282
4d595b86
LJ
2283 if (should_stop) {
2284 __set_current_state(TASK_RUNNING);
2285 rescuer->task->flags &= ~PF_WQ_WORKER;
2286 return 0;
2287 }
2288
111c225a
TH
2289 /* rescuers should never participate in concurrency management */
2290 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2291 schedule();
2292 goto repeat;
1da177e4
LT
2293}
2294
fc2e4d70
ON
2295struct wq_barrier {
2296 struct work_struct work;
2297 struct completion done;
2298};
2299
2300static void wq_barrier_func(struct work_struct *work)
2301{
2302 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2303 complete(&barr->done);
2304}
2305
4690c4ab
TH
2306/**
2307 * insert_wq_barrier - insert a barrier work
112202d9 2308 * @pwq: pwq to insert barrier into
4690c4ab 2309 * @barr: wq_barrier to insert
affee4b2
TH
2310 * @target: target work to attach @barr to
2311 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2312 *
affee4b2
TH
2313 * @barr is linked to @target such that @barr is completed only after
2314 * @target finishes execution. Please note that the ordering
2315 * guarantee is observed only with respect to @target and on the local
2316 * cpu.
2317 *
2318 * Currently, a queued barrier can't be canceled. This is because
2319 * try_to_grab_pending() can't determine whether the work to be
2320 * grabbed is at the head of the queue and thus can't clear LINKED
2321 * flag of the previous work while there must be a valid next work
2322 * after a work with LINKED flag set.
2323 *
2324 * Note that when @worker is non-NULL, @target may be modified
112202d9 2325 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2326 *
2327 * CONTEXT:
d565ed63 2328 * spin_lock_irq(pool->lock).
4690c4ab 2329 */
112202d9 2330static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2331 struct wq_barrier *barr,
2332 struct work_struct *target, struct worker *worker)
fc2e4d70 2333{
affee4b2
TH
2334 struct list_head *head;
2335 unsigned int linked = 0;
2336
dc186ad7 2337 /*
d565ed63 2338 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2339 * as we know for sure that this will not trigger any of the
2340 * checks and call back into the fixup functions where we
2341 * might deadlock.
2342 */
ca1cab37 2343 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2344 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2345 init_completion(&barr->done);
83c22520 2346
affee4b2
TH
2347 /*
2348 * If @target is currently being executed, schedule the
2349 * barrier to the worker; otherwise, put it after @target.
2350 */
2351 if (worker)
2352 head = worker->scheduled.next;
2353 else {
2354 unsigned long *bits = work_data_bits(target);
2355
2356 head = target->entry.next;
2357 /* there can already be other linked works, inherit and set */
2358 linked = *bits & WORK_STRUCT_LINKED;
2359 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2360 }
2361
dc186ad7 2362 debug_work_activate(&barr->work);
112202d9 2363 insert_work(pwq, &barr->work, head,
affee4b2 2364 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2365}
2366
73f53c4a 2367/**
112202d9 2368 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2369 * @wq: workqueue being flushed
2370 * @flush_color: new flush color, < 0 for no-op
2371 * @work_color: new work color, < 0 for no-op
2372 *
112202d9 2373 * Prepare pwqs for workqueue flushing.
73f53c4a 2374 *
112202d9
TH
2375 * If @flush_color is non-negative, flush_color on all pwqs should be
2376 * -1. If no pwq has in-flight commands at the specified color, all
2377 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2378 * has in flight commands, its pwq->flush_color is set to
2379 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2380 * wakeup logic is armed and %true is returned.
2381 *
2382 * The caller should have initialized @wq->first_flusher prior to
2383 * calling this function with non-negative @flush_color. If
2384 * @flush_color is negative, no flush color update is done and %false
2385 * is returned.
2386 *
112202d9 2387 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2388 * work_color which is previous to @work_color and all will be
2389 * advanced to @work_color.
2390 *
2391 * CONTEXT:
3c25a55d 2392 * mutex_lock(wq->mutex).
73f53c4a 2393 *
d185af30 2394 * Return:
73f53c4a
TH
2395 * %true if @flush_color >= 0 and there's something to flush. %false
2396 * otherwise.
2397 */
112202d9 2398static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2399 int flush_color, int work_color)
1da177e4 2400{
73f53c4a 2401 bool wait = false;
49e3cf44 2402 struct pool_workqueue *pwq;
1da177e4 2403
73f53c4a 2404 if (flush_color >= 0) {
6183c009 2405 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2406 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2407 }
2355b70f 2408
49e3cf44 2409 for_each_pwq(pwq, wq) {
112202d9 2410 struct worker_pool *pool = pwq->pool;
fc2e4d70 2411
b09f4fd3 2412 spin_lock_irq(&pool->lock);
83c22520 2413
73f53c4a 2414 if (flush_color >= 0) {
6183c009 2415 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2416
112202d9
TH
2417 if (pwq->nr_in_flight[flush_color]) {
2418 pwq->flush_color = flush_color;
2419 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2420 wait = true;
2421 }
2422 }
1da177e4 2423
73f53c4a 2424 if (work_color >= 0) {
6183c009 2425 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2426 pwq->work_color = work_color;
73f53c4a 2427 }
1da177e4 2428
b09f4fd3 2429 spin_unlock_irq(&pool->lock);
1da177e4 2430 }
2355b70f 2431
112202d9 2432 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2433 complete(&wq->first_flusher->done);
14441960 2434
73f53c4a 2435 return wait;
1da177e4
LT
2436}
2437
0fcb78c2 2438/**
1da177e4 2439 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2440 * @wq: workqueue to flush
1da177e4 2441 *
c5aa87bb
TH
2442 * This function sleeps until all work items which were queued on entry
2443 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2444 */
7ad5b3a5 2445void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2446{
73f53c4a
TH
2447 struct wq_flusher this_flusher = {
2448 .list = LIST_HEAD_INIT(this_flusher.list),
2449 .flush_color = -1,
2450 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2451 };
2452 int next_color;
1da177e4 2453
3295f0ef
IM
2454 lock_map_acquire(&wq->lockdep_map);
2455 lock_map_release(&wq->lockdep_map);
73f53c4a 2456
3c25a55d 2457 mutex_lock(&wq->mutex);
73f53c4a
TH
2458
2459 /*
2460 * Start-to-wait phase
2461 */
2462 next_color = work_next_color(wq->work_color);
2463
2464 if (next_color != wq->flush_color) {
2465 /*
2466 * Color space is not full. The current work_color
2467 * becomes our flush_color and work_color is advanced
2468 * by one.
2469 */
6183c009 2470 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2471 this_flusher.flush_color = wq->work_color;
2472 wq->work_color = next_color;
2473
2474 if (!wq->first_flusher) {
2475 /* no flush in progress, become the first flusher */
6183c009 2476 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2477
2478 wq->first_flusher = &this_flusher;
2479
112202d9 2480 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2481 wq->work_color)) {
2482 /* nothing to flush, done */
2483 wq->flush_color = next_color;
2484 wq->first_flusher = NULL;
2485 goto out_unlock;
2486 }
2487 } else {
2488 /* wait in queue */
6183c009 2489 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2490 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2491 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2492 }
2493 } else {
2494 /*
2495 * Oops, color space is full, wait on overflow queue.
2496 * The next flush completion will assign us
2497 * flush_color and transfer to flusher_queue.
2498 */
2499 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2500 }
2501
3c25a55d 2502 mutex_unlock(&wq->mutex);
73f53c4a
TH
2503
2504 wait_for_completion(&this_flusher.done);
2505
2506 /*
2507 * Wake-up-and-cascade phase
2508 *
2509 * First flushers are responsible for cascading flushes and
2510 * handling overflow. Non-first flushers can simply return.
2511 */
2512 if (wq->first_flusher != &this_flusher)
2513 return;
2514
3c25a55d 2515 mutex_lock(&wq->mutex);
73f53c4a 2516
4ce48b37
TH
2517 /* we might have raced, check again with mutex held */
2518 if (wq->first_flusher != &this_flusher)
2519 goto out_unlock;
2520
73f53c4a
TH
2521 wq->first_flusher = NULL;
2522
6183c009
TH
2523 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2524 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2525
2526 while (true) {
2527 struct wq_flusher *next, *tmp;
2528
2529 /* complete all the flushers sharing the current flush color */
2530 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2531 if (next->flush_color != wq->flush_color)
2532 break;
2533 list_del_init(&next->list);
2534 complete(&next->done);
2535 }
2536
6183c009
TH
2537 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2538 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2539
2540 /* this flush_color is finished, advance by one */
2541 wq->flush_color = work_next_color(wq->flush_color);
2542
2543 /* one color has been freed, handle overflow queue */
2544 if (!list_empty(&wq->flusher_overflow)) {
2545 /*
2546 * Assign the same color to all overflowed
2547 * flushers, advance work_color and append to
2548 * flusher_queue. This is the start-to-wait
2549 * phase for these overflowed flushers.
2550 */
2551 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2552 tmp->flush_color = wq->work_color;
2553
2554 wq->work_color = work_next_color(wq->work_color);
2555
2556 list_splice_tail_init(&wq->flusher_overflow,
2557 &wq->flusher_queue);
112202d9 2558 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2559 }
2560
2561 if (list_empty(&wq->flusher_queue)) {
6183c009 2562 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2563 break;
2564 }
2565
2566 /*
2567 * Need to flush more colors. Make the next flusher
112202d9 2568 * the new first flusher and arm pwqs.
73f53c4a 2569 */
6183c009
TH
2570 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2571 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2572
2573 list_del_init(&next->list);
2574 wq->first_flusher = next;
2575
112202d9 2576 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2577 break;
2578
2579 /*
2580 * Meh... this color is already done, clear first
2581 * flusher and repeat cascading.
2582 */
2583 wq->first_flusher = NULL;
2584 }
2585
2586out_unlock:
3c25a55d 2587 mutex_unlock(&wq->mutex);
1da177e4 2588}
ae90dd5d 2589EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2590
9c5a2ba7
TH
2591/**
2592 * drain_workqueue - drain a workqueue
2593 * @wq: workqueue to drain
2594 *
2595 * Wait until the workqueue becomes empty. While draining is in progress,
2596 * only chain queueing is allowed. IOW, only currently pending or running
2597 * work items on @wq can queue further work items on it. @wq is flushed
2598 * repeatedly until it becomes empty. The number of flushing is detemined
2599 * by the depth of chaining and should be relatively short. Whine if it
2600 * takes too long.
2601 */
2602void drain_workqueue(struct workqueue_struct *wq)
2603{
2604 unsigned int flush_cnt = 0;
49e3cf44 2605 struct pool_workqueue *pwq;
9c5a2ba7
TH
2606
2607 /*
2608 * __queue_work() needs to test whether there are drainers, is much
2609 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2610 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2611 */
87fc741e 2612 mutex_lock(&wq->mutex);
9c5a2ba7 2613 if (!wq->nr_drainers++)
618b01eb 2614 wq->flags |= __WQ_DRAINING;
87fc741e 2615 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2616reflush:
2617 flush_workqueue(wq);
2618
b09f4fd3 2619 mutex_lock(&wq->mutex);
76af4d93 2620
49e3cf44 2621 for_each_pwq(pwq, wq) {
fa2563e4 2622 bool drained;
9c5a2ba7 2623
b09f4fd3 2624 spin_lock_irq(&pwq->pool->lock);
112202d9 2625 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2626 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2627
2628 if (drained)
9c5a2ba7
TH
2629 continue;
2630
2631 if (++flush_cnt == 10 ||
2632 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2633 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2634 wq->name, flush_cnt);
76af4d93 2635
b09f4fd3 2636 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2637 goto reflush;
2638 }
2639
9c5a2ba7 2640 if (!--wq->nr_drainers)
618b01eb 2641 wq->flags &= ~__WQ_DRAINING;
87fc741e 2642 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2643}
2644EXPORT_SYMBOL_GPL(drain_workqueue);
2645
606a5020 2646static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2647{
affee4b2 2648 struct worker *worker = NULL;
c9e7cf27 2649 struct worker_pool *pool;
112202d9 2650 struct pool_workqueue *pwq;
db700897
ON
2651
2652 might_sleep();
fa1b54e6
TH
2653
2654 local_irq_disable();
c9e7cf27 2655 pool = get_work_pool(work);
fa1b54e6
TH
2656 if (!pool) {
2657 local_irq_enable();
baf59022 2658 return false;
fa1b54e6 2659 }
db700897 2660
fa1b54e6 2661 spin_lock(&pool->lock);
0b3dae68 2662 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2663 pwq = get_work_pwq(work);
2664 if (pwq) {
2665 if (unlikely(pwq->pool != pool))
4690c4ab 2666 goto already_gone;
606a5020 2667 } else {
c9e7cf27 2668 worker = find_worker_executing_work(pool, work);
affee4b2 2669 if (!worker)
4690c4ab 2670 goto already_gone;
112202d9 2671 pwq = worker->current_pwq;
606a5020 2672 }
db700897 2673
112202d9 2674 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2675 spin_unlock_irq(&pool->lock);
7a22ad75 2676
e159489b
TH
2677 /*
2678 * If @max_active is 1 or rescuer is in use, flushing another work
2679 * item on the same workqueue may lead to deadlock. Make sure the
2680 * flusher is not running on the same workqueue by verifying write
2681 * access.
2682 */
493008a8 2683 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2684 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2685 else
112202d9
TH
2686 lock_map_acquire_read(&pwq->wq->lockdep_map);
2687 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2688
401a8d04 2689 return true;
4690c4ab 2690already_gone:
d565ed63 2691 spin_unlock_irq(&pool->lock);
401a8d04 2692 return false;
db700897 2693}
baf59022
TH
2694
2695/**
2696 * flush_work - wait for a work to finish executing the last queueing instance
2697 * @work: the work to flush
2698 *
606a5020
TH
2699 * Wait until @work has finished execution. @work is guaranteed to be idle
2700 * on return if it hasn't been requeued since flush started.
baf59022 2701 *
d185af30 2702 * Return:
baf59022
TH
2703 * %true if flush_work() waited for the work to finish execution,
2704 * %false if it was already idle.
2705 */
2706bool flush_work(struct work_struct *work)
2707{
12997d1a
BH
2708 struct wq_barrier barr;
2709
0976dfc1
SB
2710 lock_map_acquire(&work->lockdep_map);
2711 lock_map_release(&work->lockdep_map);
2712
12997d1a
BH
2713 if (start_flush_work(work, &barr)) {
2714 wait_for_completion(&barr.done);
2715 destroy_work_on_stack(&barr.work);
2716 return true;
2717 } else {
2718 return false;
2719 }
6e84d644 2720}
606a5020 2721EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2722
36e227d2 2723static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2724{
bbb68dfa 2725 unsigned long flags;
1f1f642e
ON
2726 int ret;
2727
2728 do {
bbb68dfa
TH
2729 ret = try_to_grab_pending(work, is_dwork, &flags);
2730 /*
2731 * If someone else is canceling, wait for the same event it
2732 * would be waiting for before retrying.
2733 */
2734 if (unlikely(ret == -ENOENT))
606a5020 2735 flush_work(work);
1f1f642e
ON
2736 } while (unlikely(ret < 0));
2737
bbb68dfa
TH
2738 /* tell other tasks trying to grab @work to back off */
2739 mark_work_canceling(work);
2740 local_irq_restore(flags);
2741
606a5020 2742 flush_work(work);
7a22ad75 2743 clear_work_data(work);
1f1f642e
ON
2744 return ret;
2745}
2746
6e84d644 2747/**
401a8d04
TH
2748 * cancel_work_sync - cancel a work and wait for it to finish
2749 * @work: the work to cancel
6e84d644 2750 *
401a8d04
TH
2751 * Cancel @work and wait for its execution to finish. This function
2752 * can be used even if the work re-queues itself or migrates to
2753 * another workqueue. On return from this function, @work is
2754 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2755 *
401a8d04
TH
2756 * cancel_work_sync(&delayed_work->work) must not be used for
2757 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2758 *
401a8d04 2759 * The caller must ensure that the workqueue on which @work was last
6e84d644 2760 * queued can't be destroyed before this function returns.
401a8d04 2761 *
d185af30 2762 * Return:
401a8d04 2763 * %true if @work was pending, %false otherwise.
6e84d644 2764 */
401a8d04 2765bool cancel_work_sync(struct work_struct *work)
6e84d644 2766{
36e227d2 2767 return __cancel_work_timer(work, false);
b89deed3 2768}
28e53bdd 2769EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2770
6e84d644 2771/**
401a8d04
TH
2772 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2773 * @dwork: the delayed work to flush
6e84d644 2774 *
401a8d04
TH
2775 * Delayed timer is cancelled and the pending work is queued for
2776 * immediate execution. Like flush_work(), this function only
2777 * considers the last queueing instance of @dwork.
1f1f642e 2778 *
d185af30 2779 * Return:
401a8d04
TH
2780 * %true if flush_work() waited for the work to finish execution,
2781 * %false if it was already idle.
6e84d644 2782 */
401a8d04
TH
2783bool flush_delayed_work(struct delayed_work *dwork)
2784{
8930caba 2785 local_irq_disable();
401a8d04 2786 if (del_timer_sync(&dwork->timer))
60c057bc 2787 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2788 local_irq_enable();
401a8d04
TH
2789 return flush_work(&dwork->work);
2790}
2791EXPORT_SYMBOL(flush_delayed_work);
2792
09383498 2793/**
57b30ae7
TH
2794 * cancel_delayed_work - cancel a delayed work
2795 * @dwork: delayed_work to cancel
09383498 2796 *
d185af30
YB
2797 * Kill off a pending delayed_work.
2798 *
2799 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2800 * pending.
2801 *
2802 * Note:
2803 * The work callback function may still be running on return, unless
2804 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2805 * use cancel_delayed_work_sync() to wait on it.
09383498 2806 *
57b30ae7 2807 * This function is safe to call from any context including IRQ handler.
09383498 2808 */
57b30ae7 2809bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2810{
57b30ae7
TH
2811 unsigned long flags;
2812 int ret;
2813
2814 do {
2815 ret = try_to_grab_pending(&dwork->work, true, &flags);
2816 } while (unlikely(ret == -EAGAIN));
2817
2818 if (unlikely(ret < 0))
2819 return false;
2820
7c3eed5c
TH
2821 set_work_pool_and_clear_pending(&dwork->work,
2822 get_work_pool_id(&dwork->work));
57b30ae7 2823 local_irq_restore(flags);
c0158ca6 2824 return ret;
09383498 2825}
57b30ae7 2826EXPORT_SYMBOL(cancel_delayed_work);
09383498 2827
401a8d04
TH
2828/**
2829 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2830 * @dwork: the delayed work cancel
2831 *
2832 * This is cancel_work_sync() for delayed works.
2833 *
d185af30 2834 * Return:
401a8d04
TH
2835 * %true if @dwork was pending, %false otherwise.
2836 */
2837bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2838{
36e227d2 2839 return __cancel_work_timer(&dwork->work, true);
6e84d644 2840}
f5a421a4 2841EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2842
b6136773 2843/**
31ddd871 2844 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2845 * @func: the function to call
b6136773 2846 *
31ddd871
TH
2847 * schedule_on_each_cpu() executes @func on each online CPU using the
2848 * system workqueue and blocks until all CPUs have completed.
b6136773 2849 * schedule_on_each_cpu() is very slow.
31ddd871 2850 *
d185af30 2851 * Return:
31ddd871 2852 * 0 on success, -errno on failure.
b6136773 2853 */
65f27f38 2854int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
2855{
2856 int cpu;
38f51568 2857 struct work_struct __percpu *works;
15316ba8 2858
b6136773
AM
2859 works = alloc_percpu(struct work_struct);
2860 if (!works)
15316ba8 2861 return -ENOMEM;
b6136773 2862
93981800
TH
2863 get_online_cpus();
2864
15316ba8 2865 for_each_online_cpu(cpu) {
9bfb1839
IM
2866 struct work_struct *work = per_cpu_ptr(works, cpu);
2867
2868 INIT_WORK(work, func);
b71ab8c2 2869 schedule_work_on(cpu, work);
65a64464 2870 }
93981800
TH
2871
2872 for_each_online_cpu(cpu)
2873 flush_work(per_cpu_ptr(works, cpu));
2874
95402b38 2875 put_online_cpus();
b6136773 2876 free_percpu(works);
15316ba8
CL
2877 return 0;
2878}
2879
eef6a7d5
AS
2880/**
2881 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2882 *
2883 * Forces execution of the kernel-global workqueue and blocks until its
2884 * completion.
2885 *
2886 * Think twice before calling this function! It's very easy to get into
2887 * trouble if you don't take great care. Either of the following situations
2888 * will lead to deadlock:
2889 *
2890 * One of the work items currently on the workqueue needs to acquire
2891 * a lock held by your code or its caller.
2892 *
2893 * Your code is running in the context of a work routine.
2894 *
2895 * They will be detected by lockdep when they occur, but the first might not
2896 * occur very often. It depends on what work items are on the workqueue and
2897 * what locks they need, which you have no control over.
2898 *
2899 * In most situations flushing the entire workqueue is overkill; you merely
2900 * need to know that a particular work item isn't queued and isn't running.
2901 * In such cases you should use cancel_delayed_work_sync() or
2902 * cancel_work_sync() instead.
2903 */
1da177e4
LT
2904void flush_scheduled_work(void)
2905{
d320c038 2906 flush_workqueue(system_wq);
1da177e4 2907}
ae90dd5d 2908EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 2909
1fa44eca
JB
2910/**
2911 * execute_in_process_context - reliably execute the routine with user context
2912 * @fn: the function to execute
1fa44eca
JB
2913 * @ew: guaranteed storage for the execute work structure (must
2914 * be available when the work executes)
2915 *
2916 * Executes the function immediately if process context is available,
2917 * otherwise schedules the function for delayed execution.
2918 *
d185af30 2919 * Return: 0 - function was executed
1fa44eca
JB
2920 * 1 - function was scheduled for execution
2921 */
65f27f38 2922int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
2923{
2924 if (!in_interrupt()) {
65f27f38 2925 fn(&ew->work);
1fa44eca
JB
2926 return 0;
2927 }
2928
65f27f38 2929 INIT_WORK(&ew->work, fn);
1fa44eca
JB
2930 schedule_work(&ew->work);
2931
2932 return 1;
2933}
2934EXPORT_SYMBOL_GPL(execute_in_process_context);
2935
226223ab
TH
2936#ifdef CONFIG_SYSFS
2937/*
2938 * Workqueues with WQ_SYSFS flag set is visible to userland via
2939 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
2940 * following attributes.
2941 *
2942 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
2943 * max_active RW int : maximum number of in-flight work items
2944 *
2945 * Unbound workqueues have the following extra attributes.
2946 *
2947 * id RO int : the associated pool ID
2948 * nice RW int : nice value of the workers
2949 * cpumask RW mask : bitmask of allowed CPUs for the workers
2950 */
2951struct wq_device {
2952 struct workqueue_struct *wq;
2953 struct device dev;
2954};
2955
2956static struct workqueue_struct *dev_to_wq(struct device *dev)
2957{
2958 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
2959
2960 return wq_dev->wq;
2961}
2962
1a6661da
GKH
2963static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
2964 char *buf)
226223ab
TH
2965{
2966 struct workqueue_struct *wq = dev_to_wq(dev);
2967
2968 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
2969}
1a6661da 2970static DEVICE_ATTR_RO(per_cpu);
226223ab 2971
1a6661da
GKH
2972static ssize_t max_active_show(struct device *dev,
2973 struct device_attribute *attr, char *buf)
226223ab
TH
2974{
2975 struct workqueue_struct *wq = dev_to_wq(dev);
2976
2977 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
2978}
2979
1a6661da
GKH
2980static ssize_t max_active_store(struct device *dev,
2981 struct device_attribute *attr, const char *buf,
2982 size_t count)
226223ab
TH
2983{
2984 struct workqueue_struct *wq = dev_to_wq(dev);
2985 int val;
2986
2987 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
2988 return -EINVAL;
2989
2990 workqueue_set_max_active(wq, val);
2991 return count;
2992}
1a6661da 2993static DEVICE_ATTR_RW(max_active);
226223ab 2994
1a6661da
GKH
2995static struct attribute *wq_sysfs_attrs[] = {
2996 &dev_attr_per_cpu.attr,
2997 &dev_attr_max_active.attr,
2998 NULL,
226223ab 2999};
1a6661da 3000ATTRIBUTE_GROUPS(wq_sysfs);
226223ab 3001
d55262c4
TH
3002static ssize_t wq_pool_ids_show(struct device *dev,
3003 struct device_attribute *attr, char *buf)
226223ab
TH
3004{
3005 struct workqueue_struct *wq = dev_to_wq(dev);
d55262c4
TH
3006 const char *delim = "";
3007 int node, written = 0;
226223ab
TH
3008
3009 rcu_read_lock_sched();
d55262c4
TH
3010 for_each_node(node) {
3011 written += scnprintf(buf + written, PAGE_SIZE - written,
3012 "%s%d:%d", delim, node,
3013 unbound_pwq_by_node(wq, node)->pool->id);
3014 delim = " ";
3015 }
3016 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
226223ab
TH
3017 rcu_read_unlock_sched();
3018
3019 return written;
3020}
3021
3022static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3023 char *buf)
3024{
3025 struct workqueue_struct *wq = dev_to_wq(dev);
3026 int written;
3027
6029a918
TH
3028 mutex_lock(&wq->mutex);
3029 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3030 mutex_unlock(&wq->mutex);
226223ab
TH
3031
3032 return written;
3033}
3034
3035/* prepare workqueue_attrs for sysfs store operations */
3036static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3037{
3038 struct workqueue_attrs *attrs;
3039
3040 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3041 if (!attrs)
3042 return NULL;
3043
6029a918
TH
3044 mutex_lock(&wq->mutex);
3045 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3046 mutex_unlock(&wq->mutex);
226223ab
TH
3047 return attrs;
3048}
3049
3050static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3051 const char *buf, size_t count)
3052{
3053 struct workqueue_struct *wq = dev_to_wq(dev);
3054 struct workqueue_attrs *attrs;
3055 int ret;
3056
3057 attrs = wq_sysfs_prep_attrs(wq);
3058 if (!attrs)
3059 return -ENOMEM;
3060
3061 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
14481842 3062 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
226223ab
TH
3063 ret = apply_workqueue_attrs(wq, attrs);
3064 else
3065 ret = -EINVAL;
3066
3067 free_workqueue_attrs(attrs);
3068 return ret ?: count;
3069}
3070
3071static ssize_t wq_cpumask_show(struct device *dev,
3072 struct device_attribute *attr, char *buf)
3073{
3074 struct workqueue_struct *wq = dev_to_wq(dev);
3075 int written;
3076
6029a918
TH
3077 mutex_lock(&wq->mutex);
3078 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3079 mutex_unlock(&wq->mutex);
226223ab
TH
3080
3081 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3082 return written;
3083}
3084
3085static ssize_t wq_cpumask_store(struct device *dev,
3086 struct device_attribute *attr,
3087 const char *buf, size_t count)
3088{
3089 struct workqueue_struct *wq = dev_to_wq(dev);
3090 struct workqueue_attrs *attrs;
3091 int ret;
3092
3093 attrs = wq_sysfs_prep_attrs(wq);
3094 if (!attrs)
3095 return -ENOMEM;
3096
3097 ret = cpumask_parse(buf, attrs->cpumask);
3098 if (!ret)
3099 ret = apply_workqueue_attrs(wq, attrs);
3100
3101 free_workqueue_attrs(attrs);
3102 return ret ?: count;
3103}
3104
d55262c4
TH
3105static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3106 char *buf)
3107{
3108 struct workqueue_struct *wq = dev_to_wq(dev);
3109 int written;
3110
3111 mutex_lock(&wq->mutex);
3112 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3113 !wq->unbound_attrs->no_numa);
3114 mutex_unlock(&wq->mutex);
3115
3116 return written;
3117}
3118
3119static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3120 const char *buf, size_t count)
3121{
3122 struct workqueue_struct *wq = dev_to_wq(dev);
3123 struct workqueue_attrs *attrs;
3124 int v, ret;
3125
3126 attrs = wq_sysfs_prep_attrs(wq);
3127 if (!attrs)
3128 return -ENOMEM;
3129
3130 ret = -EINVAL;
3131 if (sscanf(buf, "%d", &v) == 1) {
3132 attrs->no_numa = !v;
3133 ret = apply_workqueue_attrs(wq, attrs);
3134 }
3135
3136 free_workqueue_attrs(attrs);
3137 return ret ?: count;
3138}
3139
226223ab 3140static struct device_attribute wq_sysfs_unbound_attrs[] = {
d55262c4 3141 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
226223ab
TH
3142 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3143 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
d55262c4 3144 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
226223ab
TH
3145 __ATTR_NULL,
3146};
3147
3148static struct bus_type wq_subsys = {
3149 .name = "workqueue",
1a6661da 3150 .dev_groups = wq_sysfs_groups,
226223ab
TH
3151};
3152
3153static int __init wq_sysfs_init(void)
3154{
3155 return subsys_virtual_register(&wq_subsys, NULL);
3156}
3157core_initcall(wq_sysfs_init);
3158
3159static void wq_device_release(struct device *dev)
3160{
3161 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3162
3163 kfree(wq_dev);
3164}
3165
3166/**
3167 * workqueue_sysfs_register - make a workqueue visible in sysfs
3168 * @wq: the workqueue to register
3169 *
3170 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3171 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3172 * which is the preferred method.
3173 *
3174 * Workqueue user should use this function directly iff it wants to apply
3175 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3176 * apply_workqueue_attrs() may race against userland updating the
3177 * attributes.
3178 *
d185af30 3179 * Return: 0 on success, -errno on failure.
226223ab
TH
3180 */
3181int workqueue_sysfs_register(struct workqueue_struct *wq)
3182{
3183 struct wq_device *wq_dev;
3184 int ret;
3185
3186 /*
3187 * Adjusting max_active or creating new pwqs by applyting
3188 * attributes breaks ordering guarantee. Disallow exposing ordered
3189 * workqueues.
3190 */
3191 if (WARN_ON(wq->flags & __WQ_ORDERED))
3192 return -EINVAL;
3193
3194 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3195 if (!wq_dev)
3196 return -ENOMEM;
3197
3198 wq_dev->wq = wq;
3199 wq_dev->dev.bus = &wq_subsys;
3200 wq_dev->dev.init_name = wq->name;
3201 wq_dev->dev.release = wq_device_release;
3202
3203 /*
3204 * unbound_attrs are created separately. Suppress uevent until
3205 * everything is ready.
3206 */
3207 dev_set_uevent_suppress(&wq_dev->dev, true);
3208
3209 ret = device_register(&wq_dev->dev);
3210 if (ret) {
3211 kfree(wq_dev);
3212 wq->wq_dev = NULL;
3213 return ret;
3214 }
3215
3216 if (wq->flags & WQ_UNBOUND) {
3217 struct device_attribute *attr;
3218
3219 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3220 ret = device_create_file(&wq_dev->dev, attr);
3221 if (ret) {
3222 device_unregister(&wq_dev->dev);
3223 wq->wq_dev = NULL;
3224 return ret;
3225 }
3226 }
3227 }
3228
3229 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3230 return 0;
3231}
3232
3233/**
3234 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3235 * @wq: the workqueue to unregister
3236 *
3237 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3238 */
3239static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3240{
3241 struct wq_device *wq_dev = wq->wq_dev;
3242
3243 if (!wq->wq_dev)
3244 return;
3245
3246 wq->wq_dev = NULL;
3247 device_unregister(&wq_dev->dev);
3248}
3249#else /* CONFIG_SYSFS */
3250static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3251#endif /* CONFIG_SYSFS */
3252
7a4e344c
TH
3253/**
3254 * free_workqueue_attrs - free a workqueue_attrs
3255 * @attrs: workqueue_attrs to free
3256 *
3257 * Undo alloc_workqueue_attrs().
3258 */
3259void free_workqueue_attrs(struct workqueue_attrs *attrs)
3260{
3261 if (attrs) {
3262 free_cpumask_var(attrs->cpumask);
3263 kfree(attrs);
3264 }
3265}
3266
3267/**
3268 * alloc_workqueue_attrs - allocate a workqueue_attrs
3269 * @gfp_mask: allocation mask to use
3270 *
3271 * Allocate a new workqueue_attrs, initialize with default settings and
d185af30
YB
3272 * return it.
3273 *
3274 * Return: The allocated new workqueue_attr on success. %NULL on failure.
7a4e344c
TH
3275 */
3276struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3277{
3278 struct workqueue_attrs *attrs;
3279
3280 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3281 if (!attrs)
3282 goto fail;
3283 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3284 goto fail;
3285
13e2e556 3286 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3287 return attrs;
3288fail:
3289 free_workqueue_attrs(attrs);
3290 return NULL;
3291}
3292
29c91e99
TH
3293static void copy_workqueue_attrs(struct workqueue_attrs *to,
3294 const struct workqueue_attrs *from)
3295{
3296 to->nice = from->nice;
3297 cpumask_copy(to->cpumask, from->cpumask);
2865a8fb
SL
3298 /*
3299 * Unlike hash and equality test, this function doesn't ignore
3300 * ->no_numa as it is used for both pool and wq attrs. Instead,
3301 * get_unbound_pool() explicitly clears ->no_numa after copying.
3302 */
3303 to->no_numa = from->no_numa;
29c91e99
TH
3304}
3305
29c91e99
TH
3306/* hash value of the content of @attr */
3307static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3308{
3309 u32 hash = 0;
3310
3311 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3312 hash = jhash(cpumask_bits(attrs->cpumask),
3313 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3314 return hash;
3315}
3316
3317/* content equality test */
3318static bool wqattrs_equal(const struct workqueue_attrs *a,
3319 const struct workqueue_attrs *b)
3320{
3321 if (a->nice != b->nice)
3322 return false;
3323 if (!cpumask_equal(a->cpumask, b->cpumask))
3324 return false;
3325 return true;
3326}
3327
7a4e344c
TH
3328/**
3329 * init_worker_pool - initialize a newly zalloc'd worker_pool
3330 * @pool: worker_pool to initialize
3331 *
3332 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
d185af30
YB
3333 *
3334 * Return: 0 on success, -errno on failure. Even on failure, all fields
29c91e99
TH
3335 * inside @pool proper are initialized and put_unbound_pool() can be called
3336 * on @pool safely to release it.
7a4e344c
TH
3337 */
3338static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3339{
3340 spin_lock_init(&pool->lock);
29c91e99
TH
3341 pool->id = -1;
3342 pool->cpu = -1;
f3f90ad4 3343 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3344 pool->flags |= POOL_DISASSOCIATED;
3345 INIT_LIST_HEAD(&pool->worklist);
3346 INIT_LIST_HEAD(&pool->idle_list);
3347 hash_init(pool->busy_hash);
3348
3349 init_timer_deferrable(&pool->idle_timer);
3350 pool->idle_timer.function = idle_worker_timeout;
3351 pool->idle_timer.data = (unsigned long)pool;
3352
3353 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3354 (unsigned long)pool);
3355
3356 mutex_init(&pool->manager_arb);
92f9c5c4 3357 mutex_init(&pool->attach_mutex);
da028469 3358 INIT_LIST_HEAD(&pool->workers);
7a4e344c 3359
7cda9aae 3360 ida_init(&pool->worker_ida);
29c91e99
TH
3361 INIT_HLIST_NODE(&pool->hash_node);
3362 pool->refcnt = 1;
3363
3364 /* shouldn't fail above this point */
7a4e344c
TH
3365 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3366 if (!pool->attrs)
3367 return -ENOMEM;
3368 return 0;
4e1a1f9a
TH
3369}
3370
29c91e99
TH
3371static void rcu_free_pool(struct rcu_head *rcu)
3372{
3373 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3374
7cda9aae 3375 ida_destroy(&pool->worker_ida);
29c91e99
TH
3376 free_workqueue_attrs(pool->attrs);
3377 kfree(pool);
3378}
3379
3380/**
3381 * put_unbound_pool - put a worker_pool
3382 * @pool: worker_pool to put
3383 *
3384 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3385 * safe manner. get_unbound_pool() calls this function on its failure path
3386 * and this function should be able to release pools which went through,
3387 * successfully or not, init_worker_pool().
a892cacc
TH
3388 *
3389 * Should be called with wq_pool_mutex held.
29c91e99
TH
3390 */
3391static void put_unbound_pool(struct worker_pool *pool)
3392{
60f5a4bc 3393 DECLARE_COMPLETION_ONSTACK(detach_completion);
29c91e99
TH
3394 struct worker *worker;
3395
a892cacc
TH
3396 lockdep_assert_held(&wq_pool_mutex);
3397
3398 if (--pool->refcnt)
29c91e99 3399 return;
29c91e99
TH
3400
3401 /* sanity checks */
61d0fbb4 3402 if (WARN_ON(!(pool->cpu < 0)) ||
a892cacc 3403 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3404 return;
29c91e99
TH
3405
3406 /* release id and unhash */
3407 if (pool->id >= 0)
3408 idr_remove(&worker_pool_idr, pool->id);
3409 hash_del(&pool->hash_node);
3410
c5aa87bb
TH
3411 /*
3412 * Become the manager and destroy all workers. Grabbing
3413 * manager_arb prevents @pool's workers from blocking on
92f9c5c4 3414 * attach_mutex.
c5aa87bb 3415 */
29c91e99 3416 mutex_lock(&pool->manager_arb);
29c91e99 3417
60f5a4bc 3418 spin_lock_irq(&pool->lock);
1037de36 3419 while ((worker = first_idle_worker(pool)))
29c91e99
TH
3420 destroy_worker(worker);
3421 WARN_ON(pool->nr_workers || pool->nr_idle);
29c91e99 3422 spin_unlock_irq(&pool->lock);
60f5a4bc 3423
92f9c5c4 3424 mutex_lock(&pool->attach_mutex);
da028469 3425 if (!list_empty(&pool->workers))
60f5a4bc 3426 pool->detach_completion = &detach_completion;
92f9c5c4 3427 mutex_unlock(&pool->attach_mutex);
60f5a4bc
LJ
3428
3429 if (pool->detach_completion)
3430 wait_for_completion(pool->detach_completion);
3431
29c91e99
TH
3432 mutex_unlock(&pool->manager_arb);
3433
3434 /* shut down the timers */
3435 del_timer_sync(&pool->idle_timer);
3436 del_timer_sync(&pool->mayday_timer);
3437
3438 /* sched-RCU protected to allow dereferences from get_work_pool() */
3439 call_rcu_sched(&pool->rcu, rcu_free_pool);
3440}
3441
3442/**
3443 * get_unbound_pool - get a worker_pool with the specified attributes
3444 * @attrs: the attributes of the worker_pool to get
3445 *
3446 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3447 * reference count and return it. If there already is a matching
3448 * worker_pool, it will be used; otherwise, this function attempts to
d185af30 3449 * create a new one.
a892cacc
TH
3450 *
3451 * Should be called with wq_pool_mutex held.
d185af30
YB
3452 *
3453 * Return: On success, a worker_pool with the same attributes as @attrs.
3454 * On failure, %NULL.
29c91e99
TH
3455 */
3456static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3457{
29c91e99
TH
3458 u32 hash = wqattrs_hash(attrs);
3459 struct worker_pool *pool;
f3f90ad4 3460 int node;
29c91e99 3461
a892cacc 3462 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3463
3464 /* do we already have a matching pool? */
29c91e99
TH
3465 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3466 if (wqattrs_equal(pool->attrs, attrs)) {
3467 pool->refcnt++;
3468 goto out_unlock;
3469 }
3470 }
29c91e99
TH
3471
3472 /* nope, create a new one */
3473 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3474 if (!pool || init_worker_pool(pool) < 0)
3475 goto fail;
3476
8864b4e5 3477 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3478 copy_workqueue_attrs(pool->attrs, attrs);
3479
2865a8fb
SL
3480 /*
3481 * no_numa isn't a worker_pool attribute, always clear it. See
3482 * 'struct workqueue_attrs' comments for detail.
3483 */
3484 pool->attrs->no_numa = false;
3485
f3f90ad4
TH
3486 /* if cpumask is contained inside a NUMA node, we belong to that node */
3487 if (wq_numa_enabled) {
3488 for_each_node(node) {
3489 if (cpumask_subset(pool->attrs->cpumask,
3490 wq_numa_possible_cpumask[node])) {
3491 pool->node = node;
3492 break;
3493 }
3494 }
3495 }
3496
29c91e99
TH
3497 if (worker_pool_assign_id(pool) < 0)
3498 goto fail;
3499
3500 /* create and start the initial worker */
051e1850 3501 if (!create_worker(pool))
29c91e99
TH
3502 goto fail;
3503
29c91e99 3504 /* install */
29c91e99
TH
3505 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3506out_unlock:
29c91e99
TH
3507 return pool;
3508fail:
29c91e99
TH
3509 if (pool)
3510 put_unbound_pool(pool);
3511 return NULL;
3512}
3513
8864b4e5
TH
3514static void rcu_free_pwq(struct rcu_head *rcu)
3515{
3516 kmem_cache_free(pwq_cache,
3517 container_of(rcu, struct pool_workqueue, rcu));
3518}
3519
3520/*
3521 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3522 * and needs to be destroyed.
3523 */
3524static void pwq_unbound_release_workfn(struct work_struct *work)
3525{
3526 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3527 unbound_release_work);
3528 struct workqueue_struct *wq = pwq->wq;
3529 struct worker_pool *pool = pwq->pool;
bc0caf09 3530 bool is_last;
8864b4e5
TH
3531
3532 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3533 return;
3534
75ccf595 3535 /*
3c25a55d 3536 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3537 * necessary on release but do it anyway. It's easier to verify
3538 * and consistent with the linking path.
3539 */
3c25a55d 3540 mutex_lock(&wq->mutex);
8864b4e5 3541 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3542 is_last = list_empty(&wq->pwqs);
3c25a55d 3543 mutex_unlock(&wq->mutex);
8864b4e5 3544
a892cacc 3545 mutex_lock(&wq_pool_mutex);
8864b4e5 3546 put_unbound_pool(pool);
a892cacc
TH
3547 mutex_unlock(&wq_pool_mutex);
3548
8864b4e5
TH
3549 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3550
3551 /*
3552 * If we're the last pwq going away, @wq is already dead and no one
3553 * is gonna access it anymore. Free it.
3554 */
6029a918
TH
3555 if (is_last) {
3556 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3557 kfree(wq);
6029a918 3558 }
8864b4e5
TH
3559}
3560
0fbd95aa 3561/**
699ce097 3562 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3563 * @pwq: target pool_workqueue
0fbd95aa 3564 *
699ce097
TH
3565 * If @pwq isn't freezing, set @pwq->max_active to the associated
3566 * workqueue's saved_max_active and activate delayed work items
3567 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3568 */
699ce097 3569static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3570{
699ce097
TH
3571 struct workqueue_struct *wq = pwq->wq;
3572 bool freezable = wq->flags & WQ_FREEZABLE;
3573
3574 /* for @wq->saved_max_active */
a357fc03 3575 lockdep_assert_held(&wq->mutex);
699ce097
TH
3576
3577 /* fast exit for non-freezable wqs */
3578 if (!freezable && pwq->max_active == wq->saved_max_active)
3579 return;
3580
a357fc03 3581 spin_lock_irq(&pwq->pool->lock);
699ce097 3582
74b414ea
LJ
3583 /*
3584 * During [un]freezing, the caller is responsible for ensuring that
3585 * this function is called at least once after @workqueue_freezing
3586 * is updated and visible.
3587 */
3588 if (!freezable || !workqueue_freezing) {
699ce097 3589 pwq->max_active = wq->saved_max_active;
0fbd95aa 3590
699ce097
TH
3591 while (!list_empty(&pwq->delayed_works) &&
3592 pwq->nr_active < pwq->max_active)
3593 pwq_activate_first_delayed(pwq);
951a078a
LJ
3594
3595 /*
3596 * Need to kick a worker after thawed or an unbound wq's
3597 * max_active is bumped. It's a slow path. Do it always.
3598 */
3599 wake_up_worker(pwq->pool);
699ce097
TH
3600 } else {
3601 pwq->max_active = 0;
3602 }
3603
a357fc03 3604 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3605}
3606
e50aba9a 3607/* initialize newly alloced @pwq which is associated with @wq and @pool */
f147f29e
TH
3608static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3609 struct worker_pool *pool)
d2c1d404
TH
3610{
3611 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3612
e50aba9a
TH
3613 memset(pwq, 0, sizeof(*pwq));
3614
d2c1d404
TH
3615 pwq->pool = pool;
3616 pwq->wq = wq;
3617 pwq->flush_color = -1;
8864b4e5 3618 pwq->refcnt = 1;
d2c1d404 3619 INIT_LIST_HEAD(&pwq->delayed_works);
1befcf30 3620 INIT_LIST_HEAD(&pwq->pwqs_node);
d2c1d404 3621 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3622 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
f147f29e 3623}
d2c1d404 3624
f147f29e 3625/* sync @pwq with the current state of its associated wq and link it */
1befcf30 3626static void link_pwq(struct pool_workqueue *pwq)
f147f29e
TH
3627{
3628 struct workqueue_struct *wq = pwq->wq;
3629
3630 lockdep_assert_held(&wq->mutex);
75ccf595 3631
1befcf30
TH
3632 /* may be called multiple times, ignore if already linked */
3633 if (!list_empty(&pwq->pwqs_node))
3634 return;
3635
983ca25e
TH
3636 /*
3637 * Set the matching work_color. This is synchronized with
3c25a55d 3638 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3639 */
75ccf595 3640 pwq->work_color = wq->work_color;
983ca25e
TH
3641
3642 /* sync max_active to the current setting */
3643 pwq_adjust_max_active(pwq);
3644
3645 /* link in @pwq */
9e8cd2f5 3646 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
f147f29e 3647}
a357fc03 3648
f147f29e
TH
3649/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3650static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3651 const struct workqueue_attrs *attrs)
3652{
3653 struct worker_pool *pool;
3654 struct pool_workqueue *pwq;
3655
3656 lockdep_assert_held(&wq_pool_mutex);
3657
3658 pool = get_unbound_pool(attrs);
3659 if (!pool)
3660 return NULL;
3661
e50aba9a 3662 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
f147f29e
TH
3663 if (!pwq) {
3664 put_unbound_pool(pool);
3665 return NULL;
df2d5ae4 3666 }
6029a918 3667
f147f29e
TH
3668 init_pwq(pwq, wq, pool);
3669 return pwq;
d2c1d404
TH
3670}
3671
4c16bd32
TH
3672/* undo alloc_unbound_pwq(), used only in the error path */
3673static void free_unbound_pwq(struct pool_workqueue *pwq)
3674{
3675 lockdep_assert_held(&wq_pool_mutex);
3676
3677 if (pwq) {
3678 put_unbound_pool(pwq->pool);
cece95df 3679 kmem_cache_free(pwq_cache, pwq);
4c16bd32
TH
3680 }
3681}
3682
3683/**
3684 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3685 * @attrs: the wq_attrs of interest
3686 * @node: the target NUMA node
3687 * @cpu_going_down: if >= 0, the CPU to consider as offline
3688 * @cpumask: outarg, the resulting cpumask
3689 *
3690 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3691 * @cpu_going_down is >= 0, that cpu is considered offline during
d185af30 3692 * calculation. The result is stored in @cpumask.
4c16bd32
TH
3693 *
3694 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3695 * enabled and @node has online CPUs requested by @attrs, the returned
3696 * cpumask is the intersection of the possible CPUs of @node and
3697 * @attrs->cpumask.
3698 *
3699 * The caller is responsible for ensuring that the cpumask of @node stays
3700 * stable.
d185af30
YB
3701 *
3702 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3703 * %false if equal.
4c16bd32
TH
3704 */
3705static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3706 int cpu_going_down, cpumask_t *cpumask)
3707{
d55262c4 3708 if (!wq_numa_enabled || attrs->no_numa)
4c16bd32
TH
3709 goto use_dfl;
3710
3711 /* does @node have any online CPUs @attrs wants? */
3712 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3713 if (cpu_going_down >= 0)
3714 cpumask_clear_cpu(cpu_going_down, cpumask);
3715
3716 if (cpumask_empty(cpumask))
3717 goto use_dfl;
3718
3719 /* yeap, return possible CPUs in @node that @attrs wants */
3720 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3721 return !cpumask_equal(cpumask, attrs->cpumask);
3722
3723use_dfl:
3724 cpumask_copy(cpumask, attrs->cpumask);
3725 return false;
3726}
3727
1befcf30
TH
3728/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3729static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3730 int node,
3731 struct pool_workqueue *pwq)
3732{
3733 struct pool_workqueue *old_pwq;
3734
3735 lockdep_assert_held(&wq->mutex);
3736
3737 /* link_pwq() can handle duplicate calls */
3738 link_pwq(pwq);
3739
3740 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3741 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3742 return old_pwq;
3743}
3744
9e8cd2f5
TH
3745/**
3746 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3747 * @wq: the target workqueue
3748 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3749 *
4c16bd32
TH
3750 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3751 * machines, this function maps a separate pwq to each NUMA node with
3752 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3753 * NUMA node it was issued on. Older pwqs are released as in-flight work
3754 * items finish. Note that a work item which repeatedly requeues itself
3755 * back-to-back will stay on its current pwq.
9e8cd2f5 3756 *
d185af30
YB
3757 * Performs GFP_KERNEL allocations.
3758 *
3759 * Return: 0 on success and -errno on failure.
9e8cd2f5
TH
3760 */
3761int apply_workqueue_attrs(struct workqueue_struct *wq,
3762 const struct workqueue_attrs *attrs)
3763{
4c16bd32
TH
3764 struct workqueue_attrs *new_attrs, *tmp_attrs;
3765 struct pool_workqueue **pwq_tbl, *dfl_pwq;
f147f29e 3766 int node, ret;
9e8cd2f5 3767
8719dcea 3768 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3769 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3770 return -EINVAL;
3771
8719dcea
TH
3772 /* creating multiple pwqs breaks ordering guarantee */
3773 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3774 return -EINVAL;
3775
4c16bd32 3776 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
13e2e556 3777 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32
TH
3778 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3779 if (!pwq_tbl || !new_attrs || !tmp_attrs)
13e2e556
TH
3780 goto enomem;
3781
4c16bd32 3782 /* make a copy of @attrs and sanitize it */
13e2e556
TH
3783 copy_workqueue_attrs(new_attrs, attrs);
3784 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3785
4c16bd32
TH
3786 /*
3787 * We may create multiple pwqs with differing cpumasks. Make a
3788 * copy of @new_attrs which will be modified and used to obtain
3789 * pools.
3790 */
3791 copy_workqueue_attrs(tmp_attrs, new_attrs);
3792
3793 /*
3794 * CPUs should stay stable across pwq creations and installations.
3795 * Pin CPUs, determine the target cpumask for each node and create
3796 * pwqs accordingly.
3797 */
3798 get_online_cpus();
3799
a892cacc 3800 mutex_lock(&wq_pool_mutex);
4c16bd32
TH
3801
3802 /*
3803 * If something goes wrong during CPU up/down, we'll fall back to
3804 * the default pwq covering whole @attrs->cpumask. Always create
3805 * it even if we don't use it immediately.
3806 */
3807 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3808 if (!dfl_pwq)
3809 goto enomem_pwq;
3810
3811 for_each_node(node) {
3812 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3813 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3814 if (!pwq_tbl[node])
3815 goto enomem_pwq;
3816 } else {
3817 dfl_pwq->refcnt++;
3818 pwq_tbl[node] = dfl_pwq;
3819 }
3820 }
3821
f147f29e 3822 mutex_unlock(&wq_pool_mutex);
9e8cd2f5 3823
4c16bd32 3824 /* all pwqs have been created successfully, let's install'em */
f147f29e 3825 mutex_lock(&wq->mutex);
a892cacc 3826
f147f29e 3827 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4c16bd32
TH
3828
3829 /* save the previous pwq and install the new one */
f147f29e 3830 for_each_node(node)
4c16bd32
TH
3831 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3832
3833 /* @dfl_pwq might not have been used, ensure it's linked */
3834 link_pwq(dfl_pwq);
3835 swap(wq->dfl_pwq, dfl_pwq);
f147f29e
TH
3836
3837 mutex_unlock(&wq->mutex);
9e8cd2f5 3838
4c16bd32
TH
3839 /* put the old pwqs */
3840 for_each_node(node)
3841 put_pwq_unlocked(pwq_tbl[node]);
3842 put_pwq_unlocked(dfl_pwq);
3843
3844 put_online_cpus();
4862125b
TH
3845 ret = 0;
3846 /* fall through */
3847out_free:
4c16bd32 3848 free_workqueue_attrs(tmp_attrs);
4862125b 3849 free_workqueue_attrs(new_attrs);
4c16bd32 3850 kfree(pwq_tbl);
4862125b 3851 return ret;
13e2e556 3852
4c16bd32
TH
3853enomem_pwq:
3854 free_unbound_pwq(dfl_pwq);
3855 for_each_node(node)
3856 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3857 free_unbound_pwq(pwq_tbl[node]);
3858 mutex_unlock(&wq_pool_mutex);
3859 put_online_cpus();
13e2e556 3860enomem:
4862125b
TH
3861 ret = -ENOMEM;
3862 goto out_free;
9e8cd2f5
TH
3863}
3864
4c16bd32
TH
3865/**
3866 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3867 * @wq: the target workqueue
3868 * @cpu: the CPU coming up or going down
3869 * @online: whether @cpu is coming up or going down
3870 *
3871 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3872 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3873 * @wq accordingly.
3874 *
3875 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3876 * falls back to @wq->dfl_pwq which may not be optimal but is always
3877 * correct.
3878 *
3879 * Note that when the last allowed CPU of a NUMA node goes offline for a
3880 * workqueue with a cpumask spanning multiple nodes, the workers which were
3881 * already executing the work items for the workqueue will lose their CPU
3882 * affinity and may execute on any CPU. This is similar to how per-cpu
3883 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3884 * affinity, it's the user's responsibility to flush the work item from
3885 * CPU_DOWN_PREPARE.
3886 */
3887static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3888 bool online)
3889{
3890 int node = cpu_to_node(cpu);
3891 int cpu_off = online ? -1 : cpu;
3892 struct pool_workqueue *old_pwq = NULL, *pwq;
3893 struct workqueue_attrs *target_attrs;
3894 cpumask_t *cpumask;
3895
3896 lockdep_assert_held(&wq_pool_mutex);
3897
3898 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3899 return;
3900
3901 /*
3902 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3903 * Let's use a preallocated one. The following buf is protected by
3904 * CPU hotplug exclusion.
3905 */
3906 target_attrs = wq_update_unbound_numa_attrs_buf;
3907 cpumask = target_attrs->cpumask;
3908
3909 mutex_lock(&wq->mutex);
d55262c4
TH
3910 if (wq->unbound_attrs->no_numa)
3911 goto out_unlock;
4c16bd32
TH
3912
3913 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3914 pwq = unbound_pwq_by_node(wq, node);
3915
3916 /*
3917 * Let's determine what needs to be done. If the target cpumask is
3918 * different from wq's, we need to compare it to @pwq's and create
3919 * a new one if they don't match. If the target cpumask equals
534a3fbb 3920 * wq's, the default pwq should be used.
4c16bd32
TH
3921 */
3922 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
3923 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3924 goto out_unlock;
3925 } else {
534a3fbb 3926 goto use_dfl_pwq;
4c16bd32
TH
3927 }
3928
3929 mutex_unlock(&wq->mutex);
3930
3931 /* create a new pwq */
3932 pwq = alloc_unbound_pwq(wq, target_attrs);
3933 if (!pwq) {
2d916033
FF
3934 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3935 wq->name);
77f300b1
DY
3936 mutex_lock(&wq->mutex);
3937 goto use_dfl_pwq;
4c16bd32
TH
3938 }
3939
3940 /*
3941 * Install the new pwq. As this function is called only from CPU
3942 * hotplug callbacks and applying a new attrs is wrapped with
3943 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
3944 * inbetween.
3945 */
3946 mutex_lock(&wq->mutex);
3947 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3948 goto out_unlock;
3949
3950use_dfl_pwq:
3951 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3952 get_pwq(wq->dfl_pwq);
3953 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3954 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3955out_unlock:
3956 mutex_unlock(&wq->mutex);
3957 put_pwq_unlocked(old_pwq);
3958}
3959
30cdf249 3960static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3961{
49e3cf44 3962 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 3963 int cpu, ret;
30cdf249
TH
3964
3965 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3966 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3967 if (!wq->cpu_pwqs)
30cdf249
TH
3968 return -ENOMEM;
3969
3970 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3971 struct pool_workqueue *pwq =
3972 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3973 struct worker_pool *cpu_pools =
f02ae73a 3974 per_cpu(cpu_worker_pools, cpu);
f3421797 3975
f147f29e
TH
3976 init_pwq(pwq, wq, &cpu_pools[highpri]);
3977
3978 mutex_lock(&wq->mutex);
1befcf30 3979 link_pwq(pwq);
f147f29e 3980 mutex_unlock(&wq->mutex);
30cdf249 3981 }
9e8cd2f5 3982 return 0;
8a2b7538
TH
3983 } else if (wq->flags & __WQ_ORDERED) {
3984 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3985 /* there should only be single pwq for ordering guarantee */
3986 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3987 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3988 "ordering guarantee broken for workqueue %s\n", wq->name);
3989 return ret;
30cdf249 3990 } else {
9e8cd2f5 3991 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3992 }
0f900049
TH
3993}
3994
f3421797
TH
3995static int wq_clamp_max_active(int max_active, unsigned int flags,
3996 const char *name)
b71ab8c2 3997{
f3421797
TH
3998 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3999
4000 if (max_active < 1 || max_active > lim)
044c782c
VI
4001 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4002 max_active, name, 1, lim);
b71ab8c2 4003
f3421797 4004 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4005}
4006
b196be89 4007struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
4008 unsigned int flags,
4009 int max_active,
4010 struct lock_class_key *key,
b196be89 4011 const char *lock_name, ...)
1da177e4 4012{
df2d5ae4 4013 size_t tbl_size = 0;
ecf6881f 4014 va_list args;
1da177e4 4015 struct workqueue_struct *wq;
49e3cf44 4016 struct pool_workqueue *pwq;
b196be89 4017
cee22a15
VK
4018 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4019 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4020 flags |= WQ_UNBOUND;
4021
ecf6881f 4022 /* allocate wq and format name */
df2d5ae4
TH
4023 if (flags & WQ_UNBOUND)
4024 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4025
4026 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4027 if (!wq)
d2c1d404 4028 return NULL;
b196be89 4029
6029a918
TH
4030 if (flags & WQ_UNBOUND) {
4031 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4032 if (!wq->unbound_attrs)
4033 goto err_free_wq;
4034 }
4035
ecf6881f
TH
4036 va_start(args, lock_name);
4037 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4038 va_end(args);
1da177e4 4039
d320c038 4040 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4041 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4042
b196be89 4043 /* init wq */
97e37d7b 4044 wq->flags = flags;
a0a1a5fd 4045 wq->saved_max_active = max_active;
3c25a55d 4046 mutex_init(&wq->mutex);
112202d9 4047 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4048 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4049 INIT_LIST_HEAD(&wq->flusher_queue);
4050 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4051 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4052
eb13ba87 4053 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4054 INIT_LIST_HEAD(&wq->list);
3af24433 4055
30cdf249 4056 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4057 goto err_free_wq;
1537663f 4058
493008a8
TH
4059 /*
4060 * Workqueues which may be used during memory reclaim should
4061 * have a rescuer to guarantee forward progress.
4062 */
4063 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4064 struct worker *rescuer;
4065
f7537df5 4066 rescuer = alloc_worker(NUMA_NO_NODE);
e22bee78 4067 if (!rescuer)
d2c1d404 4068 goto err_destroy;
e22bee78 4069
111c225a
TH
4070 rescuer->rescue_wq = wq;
4071 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4072 wq->name);
d2c1d404
TH
4073 if (IS_ERR(rescuer->task)) {
4074 kfree(rescuer);
4075 goto err_destroy;
4076 }
e22bee78 4077
d2c1d404 4078 wq->rescuer = rescuer;
14a40ffc 4079 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 4080 wake_up_process(rescuer->task);
3af24433
ON
4081 }
4082
226223ab
TH
4083 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4084 goto err_destroy;
4085
a0a1a5fd 4086 /*
68e13a67
LJ
4087 * wq_pool_mutex protects global freeze state and workqueues list.
4088 * Grab it, adjust max_active and add the new @wq to workqueues
4089 * list.
a0a1a5fd 4090 */
68e13a67 4091 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4092
a357fc03 4093 mutex_lock(&wq->mutex);
699ce097
TH
4094 for_each_pwq(pwq, wq)
4095 pwq_adjust_max_active(pwq);
a357fc03 4096 mutex_unlock(&wq->mutex);
a0a1a5fd 4097
1537663f 4098 list_add(&wq->list, &workqueues);
a0a1a5fd 4099
68e13a67 4100 mutex_unlock(&wq_pool_mutex);
1537663f 4101
3af24433 4102 return wq;
d2c1d404
TH
4103
4104err_free_wq:
6029a918 4105 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4106 kfree(wq);
4107 return NULL;
4108err_destroy:
4109 destroy_workqueue(wq);
4690c4ab 4110 return NULL;
3af24433 4111}
d320c038 4112EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4113
3af24433
ON
4114/**
4115 * destroy_workqueue - safely terminate a workqueue
4116 * @wq: target workqueue
4117 *
4118 * Safely destroy a workqueue. All work currently pending will be done first.
4119 */
4120void destroy_workqueue(struct workqueue_struct *wq)
4121{
49e3cf44 4122 struct pool_workqueue *pwq;
4c16bd32 4123 int node;
3af24433 4124
9c5a2ba7
TH
4125 /* drain it before proceeding with destruction */
4126 drain_workqueue(wq);
c8efcc25 4127
6183c009 4128 /* sanity checks */
b09f4fd3 4129 mutex_lock(&wq->mutex);
49e3cf44 4130 for_each_pwq(pwq, wq) {
6183c009
TH
4131 int i;
4132
76af4d93
TH
4133 for (i = 0; i < WORK_NR_COLORS; i++) {
4134 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4135 mutex_unlock(&wq->mutex);
6183c009 4136 return;
76af4d93
TH
4137 }
4138 }
4139
5c529597 4140 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4141 WARN_ON(pwq->nr_active) ||
76af4d93 4142 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4143 mutex_unlock(&wq->mutex);
6183c009 4144 return;
76af4d93 4145 }
6183c009 4146 }
b09f4fd3 4147 mutex_unlock(&wq->mutex);
6183c009 4148
a0a1a5fd
TH
4149 /*
4150 * wq list is used to freeze wq, remove from list after
4151 * flushing is complete in case freeze races us.
4152 */
68e13a67 4153 mutex_lock(&wq_pool_mutex);
d2c1d404 4154 list_del_init(&wq->list);
68e13a67 4155 mutex_unlock(&wq_pool_mutex);
3af24433 4156
226223ab
TH
4157 workqueue_sysfs_unregister(wq);
4158
493008a8 4159 if (wq->rescuer) {
e22bee78 4160 kthread_stop(wq->rescuer->task);
8d9df9f0 4161 kfree(wq->rescuer);
493008a8 4162 wq->rescuer = NULL;
e22bee78
TH
4163 }
4164
8864b4e5
TH
4165 if (!(wq->flags & WQ_UNBOUND)) {
4166 /*
4167 * The base ref is never dropped on per-cpu pwqs. Directly
4168 * free the pwqs and wq.
4169 */
4170 free_percpu(wq->cpu_pwqs);
4171 kfree(wq);
4172 } else {
4173 /*
4174 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4175 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4176 * @wq will be freed when the last pwq is released.
8864b4e5 4177 */
4c16bd32
TH
4178 for_each_node(node) {
4179 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4180 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4181 put_pwq_unlocked(pwq);
4182 }
4183
4184 /*
4185 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4186 * put. Don't access it afterwards.
4187 */
4188 pwq = wq->dfl_pwq;
4189 wq->dfl_pwq = NULL;
dce90d47 4190 put_pwq_unlocked(pwq);
29c91e99 4191 }
3af24433
ON
4192}
4193EXPORT_SYMBOL_GPL(destroy_workqueue);
4194
dcd989cb
TH
4195/**
4196 * workqueue_set_max_active - adjust max_active of a workqueue
4197 * @wq: target workqueue
4198 * @max_active: new max_active value.
4199 *
4200 * Set max_active of @wq to @max_active.
4201 *
4202 * CONTEXT:
4203 * Don't call from IRQ context.
4204 */
4205void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4206{
49e3cf44 4207 struct pool_workqueue *pwq;
dcd989cb 4208
8719dcea
TH
4209 /* disallow meddling with max_active for ordered workqueues */
4210 if (WARN_ON(wq->flags & __WQ_ORDERED))
4211 return;
4212
f3421797 4213 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4214
a357fc03 4215 mutex_lock(&wq->mutex);
dcd989cb
TH
4216
4217 wq->saved_max_active = max_active;
4218
699ce097
TH
4219 for_each_pwq(pwq, wq)
4220 pwq_adjust_max_active(pwq);
93981800 4221
a357fc03 4222 mutex_unlock(&wq->mutex);
15316ba8 4223}
dcd989cb 4224EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4225
e6267616
TH
4226/**
4227 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4228 *
4229 * Determine whether %current is a workqueue rescuer. Can be used from
4230 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4231 *
4232 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4233 */
4234bool current_is_workqueue_rescuer(void)
4235{
4236 struct worker *worker = current_wq_worker();
4237
6a092dfd 4238 return worker && worker->rescue_wq;
e6267616
TH
4239}
4240
eef6a7d5 4241/**
dcd989cb
TH
4242 * workqueue_congested - test whether a workqueue is congested
4243 * @cpu: CPU in question
4244 * @wq: target workqueue
eef6a7d5 4245 *
dcd989cb
TH
4246 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4247 * no synchronization around this function and the test result is
4248 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4249 *
d3251859
TH
4250 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4251 * Note that both per-cpu and unbound workqueues may be associated with
4252 * multiple pool_workqueues which have separate congested states. A
4253 * workqueue being congested on one CPU doesn't mean the workqueue is also
4254 * contested on other CPUs / NUMA nodes.
4255 *
d185af30 4256 * Return:
dcd989cb 4257 * %true if congested, %false otherwise.
eef6a7d5 4258 */
d84ff051 4259bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4260{
7fb98ea7 4261 struct pool_workqueue *pwq;
76af4d93
TH
4262 bool ret;
4263
88109453 4264 rcu_read_lock_sched();
7fb98ea7 4265
d3251859
TH
4266 if (cpu == WORK_CPU_UNBOUND)
4267 cpu = smp_processor_id();
4268
7fb98ea7
TH
4269 if (!(wq->flags & WQ_UNBOUND))
4270 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4271 else
df2d5ae4 4272 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4273
76af4d93 4274 ret = !list_empty(&pwq->delayed_works);
88109453 4275 rcu_read_unlock_sched();
76af4d93
TH
4276
4277 return ret;
1da177e4 4278}
dcd989cb 4279EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4280
dcd989cb
TH
4281/**
4282 * work_busy - test whether a work is currently pending or running
4283 * @work: the work to be tested
4284 *
4285 * Test whether @work is currently pending or running. There is no
4286 * synchronization around this function and the test result is
4287 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4288 *
d185af30 4289 * Return:
dcd989cb
TH
4290 * OR'd bitmask of WORK_BUSY_* bits.
4291 */
4292unsigned int work_busy(struct work_struct *work)
1da177e4 4293{
fa1b54e6 4294 struct worker_pool *pool;
dcd989cb
TH
4295 unsigned long flags;
4296 unsigned int ret = 0;
1da177e4 4297
dcd989cb
TH
4298 if (work_pending(work))
4299 ret |= WORK_BUSY_PENDING;
1da177e4 4300
fa1b54e6
TH
4301 local_irq_save(flags);
4302 pool = get_work_pool(work);
038366c5 4303 if (pool) {
fa1b54e6 4304 spin_lock(&pool->lock);
038366c5
LJ
4305 if (find_worker_executing_work(pool, work))
4306 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4307 spin_unlock(&pool->lock);
038366c5 4308 }
fa1b54e6 4309 local_irq_restore(flags);
1da177e4 4310
dcd989cb 4311 return ret;
1da177e4 4312}
dcd989cb 4313EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4314
3d1cb205
TH
4315/**
4316 * set_worker_desc - set description for the current work item
4317 * @fmt: printf-style format string
4318 * @...: arguments for the format string
4319 *
4320 * This function can be called by a running work function to describe what
4321 * the work item is about. If the worker task gets dumped, this
4322 * information will be printed out together to help debugging. The
4323 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4324 */
4325void set_worker_desc(const char *fmt, ...)
4326{
4327 struct worker *worker = current_wq_worker();
4328 va_list args;
4329
4330 if (worker) {
4331 va_start(args, fmt);
4332 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4333 va_end(args);
4334 worker->desc_valid = true;
4335 }
4336}
4337
4338/**
4339 * print_worker_info - print out worker information and description
4340 * @log_lvl: the log level to use when printing
4341 * @task: target task
4342 *
4343 * If @task is a worker and currently executing a work item, print out the
4344 * name of the workqueue being serviced and worker description set with
4345 * set_worker_desc() by the currently executing work item.
4346 *
4347 * This function can be safely called on any task as long as the
4348 * task_struct itself is accessible. While safe, this function isn't
4349 * synchronized and may print out mixups or garbages of limited length.
4350 */
4351void print_worker_info(const char *log_lvl, struct task_struct *task)
4352{
4353 work_func_t *fn = NULL;
4354 char name[WQ_NAME_LEN] = { };
4355 char desc[WORKER_DESC_LEN] = { };
4356 struct pool_workqueue *pwq = NULL;
4357 struct workqueue_struct *wq = NULL;
4358 bool desc_valid = false;
4359 struct worker *worker;
4360
4361 if (!(task->flags & PF_WQ_WORKER))
4362 return;
4363
4364 /*
4365 * This function is called without any synchronization and @task
4366 * could be in any state. Be careful with dereferences.
4367 */
4368 worker = probe_kthread_data(task);
4369
4370 /*
4371 * Carefully copy the associated workqueue's workfn and name. Keep
4372 * the original last '\0' in case the original contains garbage.
4373 */
4374 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4375 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4376 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4377 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4378
4379 /* copy worker description */
4380 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4381 if (desc_valid)
4382 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4383
4384 if (fn || name[0] || desc[0]) {
4385 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4386 if (desc[0])
4387 pr_cont(" (%s)", desc);
4388 pr_cont("\n");
4389 }
4390}
4391
db7bccf4
TH
4392/*
4393 * CPU hotplug.
4394 *
e22bee78 4395 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4396 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4397 * pool which make migrating pending and scheduled works very
e22bee78 4398 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4399 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4400 * blocked draining impractical.
4401 *
24647570 4402 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4403 * running as an unbound one and allowing it to be reattached later if the
4404 * cpu comes back online.
db7bccf4 4405 */
1da177e4 4406
706026c2 4407static void wq_unbind_fn(struct work_struct *work)
3af24433 4408{
38db41d9 4409 int cpu = smp_processor_id();
4ce62e9e 4410 struct worker_pool *pool;
db7bccf4 4411 struct worker *worker;
3af24433 4412
f02ae73a 4413 for_each_cpu_worker_pool(pool, cpu) {
92f9c5c4 4414 mutex_lock(&pool->attach_mutex);
94cf58bb 4415 spin_lock_irq(&pool->lock);
3af24433 4416
94cf58bb 4417 /*
92f9c5c4 4418 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4419 * unbound and set DISASSOCIATED. Before this, all workers
4420 * except for the ones which are still executing works from
4421 * before the last CPU down must be on the cpu. After
4422 * this, they may become diasporas.
4423 */
da028469 4424 for_each_pool_worker(worker, pool)
c9e7cf27 4425 worker->flags |= WORKER_UNBOUND;
06ba38a9 4426
24647570 4427 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4428
94cf58bb 4429 spin_unlock_irq(&pool->lock);
92f9c5c4 4430 mutex_unlock(&pool->attach_mutex);
628c78e7 4431
eb283428
LJ
4432 /*
4433 * Call schedule() so that we cross rq->lock and thus can
4434 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4435 * This is necessary as scheduler callbacks may be invoked
4436 * from other cpus.
4437 */
4438 schedule();
06ba38a9 4439
eb283428
LJ
4440 /*
4441 * Sched callbacks are disabled now. Zap nr_running.
4442 * After this, nr_running stays zero and need_more_worker()
4443 * and keep_working() are always true as long as the
4444 * worklist is not empty. This pool now behaves as an
4445 * unbound (in terms of concurrency management) pool which
4446 * are served by workers tied to the pool.
4447 */
e19e397a 4448 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4449
4450 /*
4451 * With concurrency management just turned off, a busy
4452 * worker blocking could lead to lengthy stalls. Kick off
4453 * unbound chain execution of currently pending work items.
4454 */
4455 spin_lock_irq(&pool->lock);
4456 wake_up_worker(pool);
4457 spin_unlock_irq(&pool->lock);
4458 }
3af24433 4459}
3af24433 4460
bd7c089e
TH
4461/**
4462 * rebind_workers - rebind all workers of a pool to the associated CPU
4463 * @pool: pool of interest
4464 *
a9ab775b 4465 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4466 */
4467static void rebind_workers(struct worker_pool *pool)
4468{
a9ab775b 4469 struct worker *worker;
bd7c089e 4470
92f9c5c4 4471 lockdep_assert_held(&pool->attach_mutex);
bd7c089e 4472
a9ab775b
TH
4473 /*
4474 * Restore CPU affinity of all workers. As all idle workers should
4475 * be on the run-queue of the associated CPU before any local
4476 * wake-ups for concurrency management happen, restore CPU affinty
4477 * of all workers first and then clear UNBOUND. As we're called
4478 * from CPU_ONLINE, the following shouldn't fail.
4479 */
da028469 4480 for_each_pool_worker(worker, pool)
a9ab775b
TH
4481 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4482 pool->attrs->cpumask) < 0);
bd7c089e 4483
a9ab775b 4484 spin_lock_irq(&pool->lock);
3de5e884 4485 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4486
da028469 4487 for_each_pool_worker(worker, pool) {
a9ab775b 4488 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4489
4490 /*
a9ab775b
TH
4491 * A bound idle worker should actually be on the runqueue
4492 * of the associated CPU for local wake-ups targeting it to
4493 * work. Kick all idle workers so that they migrate to the
4494 * associated CPU. Doing this in the same loop as
4495 * replacing UNBOUND with REBOUND is safe as no worker will
4496 * be bound before @pool->lock is released.
bd7c089e 4497 */
a9ab775b
TH
4498 if (worker_flags & WORKER_IDLE)
4499 wake_up_process(worker->task);
bd7c089e 4500
a9ab775b
TH
4501 /*
4502 * We want to clear UNBOUND but can't directly call
4503 * worker_clr_flags() or adjust nr_running. Atomically
4504 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4505 * @worker will clear REBOUND using worker_clr_flags() when
4506 * it initiates the next execution cycle thus restoring
4507 * concurrency management. Note that when or whether
4508 * @worker clears REBOUND doesn't affect correctness.
4509 *
4510 * ACCESS_ONCE() is necessary because @worker->flags may be
4511 * tested without holding any lock in
4512 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4513 * fail incorrectly leading to premature concurrency
4514 * management operations.
4515 */
4516 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4517 worker_flags |= WORKER_REBOUND;
4518 worker_flags &= ~WORKER_UNBOUND;
4519 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4520 }
a9ab775b
TH
4521
4522 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4523}
4524
7dbc725e
TH
4525/**
4526 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4527 * @pool: unbound pool of interest
4528 * @cpu: the CPU which is coming up
4529 *
4530 * An unbound pool may end up with a cpumask which doesn't have any online
4531 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4532 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4533 * online CPU before, cpus_allowed of all its workers should be restored.
4534 */
4535static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4536{
4537 static cpumask_t cpumask;
4538 struct worker *worker;
7dbc725e 4539
92f9c5c4 4540 lockdep_assert_held(&pool->attach_mutex);
7dbc725e
TH
4541
4542 /* is @cpu allowed for @pool? */
4543 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4544 return;
4545
4546 /* is @cpu the only online CPU? */
4547 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4548 if (cpumask_weight(&cpumask) != 1)
4549 return;
4550
4551 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4552 for_each_pool_worker(worker, pool)
7dbc725e
TH
4553 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4554 pool->attrs->cpumask) < 0);
4555}
4556
8db25e78
TH
4557/*
4558 * Workqueues should be brought up before normal priority CPU notifiers.
4559 * This will be registered high priority CPU notifier.
4560 */
0db0628d 4561static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4562 unsigned long action,
4563 void *hcpu)
3af24433 4564{
d84ff051 4565 int cpu = (unsigned long)hcpu;
4ce62e9e 4566 struct worker_pool *pool;
4c16bd32 4567 struct workqueue_struct *wq;
7dbc725e 4568 int pi;
3ce63377 4569
8db25e78 4570 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4571 case CPU_UP_PREPARE:
f02ae73a 4572 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4573 if (pool->nr_workers)
4574 continue;
051e1850 4575 if (!create_worker(pool))
3ce63377 4576 return NOTIFY_BAD;
3af24433 4577 }
8db25e78 4578 break;
3af24433 4579
db7bccf4
TH
4580 case CPU_DOWN_FAILED:
4581 case CPU_ONLINE:
68e13a67 4582 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4583
4584 for_each_pool(pool, pi) {
92f9c5c4 4585 mutex_lock(&pool->attach_mutex);
94cf58bb 4586
7dbc725e 4587 if (pool->cpu == cpu) {
7dbc725e
TH
4588 rebind_workers(pool);
4589 } else if (pool->cpu < 0) {
4590 restore_unbound_workers_cpumask(pool, cpu);
4591 }
94cf58bb 4592
92f9c5c4 4593 mutex_unlock(&pool->attach_mutex);
94cf58bb 4594 }
7dbc725e 4595
4c16bd32
TH
4596 /* update NUMA affinity of unbound workqueues */
4597 list_for_each_entry(wq, &workqueues, list)
4598 wq_update_unbound_numa(wq, cpu, true);
4599
68e13a67 4600 mutex_unlock(&wq_pool_mutex);
db7bccf4 4601 break;
00dfcaf7 4602 }
65758202
TH
4603 return NOTIFY_OK;
4604}
4605
4606/*
4607 * Workqueues should be brought down after normal priority CPU notifiers.
4608 * This will be registered as low priority CPU notifier.
4609 */
0db0628d 4610static int workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4611 unsigned long action,
4612 void *hcpu)
4613{
d84ff051 4614 int cpu = (unsigned long)hcpu;
8db25e78 4615 struct work_struct unbind_work;
4c16bd32 4616 struct workqueue_struct *wq;
8db25e78 4617
65758202
TH
4618 switch (action & ~CPU_TASKS_FROZEN) {
4619 case CPU_DOWN_PREPARE:
4c16bd32 4620 /* unbinding per-cpu workers should happen on the local CPU */
706026c2 4621 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4622 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4c16bd32
TH
4623
4624 /* update NUMA affinity of unbound workqueues */
4625 mutex_lock(&wq_pool_mutex);
4626 list_for_each_entry(wq, &workqueues, list)
4627 wq_update_unbound_numa(wq, cpu, false);
4628 mutex_unlock(&wq_pool_mutex);
4629
4630 /* wait for per-cpu unbinding to finish */
8db25e78 4631 flush_work(&unbind_work);
440a1136 4632 destroy_work_on_stack(&unbind_work);
8db25e78 4633 break;
65758202
TH
4634 }
4635 return NOTIFY_OK;
4636}
4637
2d3854a3 4638#ifdef CONFIG_SMP
8ccad40d 4639
2d3854a3 4640struct work_for_cpu {
ed48ece2 4641 struct work_struct work;
2d3854a3
RR
4642 long (*fn)(void *);
4643 void *arg;
4644 long ret;
4645};
4646
ed48ece2 4647static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4648{
ed48ece2
TH
4649 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4650
2d3854a3
RR
4651 wfc->ret = wfc->fn(wfc->arg);
4652}
4653
4654/**
4655 * work_on_cpu - run a function in user context on a particular cpu
4656 * @cpu: the cpu to run on
4657 * @fn: the function to run
4658 * @arg: the function arg
4659 *
31ad9081 4660 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4661 * The caller must not hold any locks which would prevent @fn from completing.
d185af30
YB
4662 *
4663 * Return: The value @fn returns.
2d3854a3 4664 */
d84ff051 4665long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4666{
ed48ece2 4667 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4668
ed48ece2
TH
4669 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4670 schedule_work_on(cpu, &wfc.work);
12997d1a 4671 flush_work(&wfc.work);
440a1136 4672 destroy_work_on_stack(&wfc.work);
2d3854a3
RR
4673 return wfc.ret;
4674}
4675EXPORT_SYMBOL_GPL(work_on_cpu);
4676#endif /* CONFIG_SMP */
4677
a0a1a5fd
TH
4678#ifdef CONFIG_FREEZER
4679
4680/**
4681 * freeze_workqueues_begin - begin freezing workqueues
4682 *
58a69cb4 4683 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4684 * workqueues will queue new works to their delayed_works list instead of
706026c2 4685 * pool->worklist.
a0a1a5fd
TH
4686 *
4687 * CONTEXT:
a357fc03 4688 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4689 */
4690void freeze_workqueues_begin(void)
4691{
24b8a847
TH
4692 struct workqueue_struct *wq;
4693 struct pool_workqueue *pwq;
a0a1a5fd 4694
68e13a67 4695 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4696
6183c009 4697 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4698 workqueue_freezing = true;
4699
24b8a847 4700 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4701 mutex_lock(&wq->mutex);
699ce097
TH
4702 for_each_pwq(pwq, wq)
4703 pwq_adjust_max_active(pwq);
a357fc03 4704 mutex_unlock(&wq->mutex);
a0a1a5fd 4705 }
5bcab335 4706
68e13a67 4707 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4708}
4709
4710/**
58a69cb4 4711 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4712 *
4713 * Check whether freezing is complete. This function must be called
4714 * between freeze_workqueues_begin() and thaw_workqueues().
4715 *
4716 * CONTEXT:
68e13a67 4717 * Grabs and releases wq_pool_mutex.
a0a1a5fd 4718 *
d185af30 4719 * Return:
58a69cb4
TH
4720 * %true if some freezable workqueues are still busy. %false if freezing
4721 * is complete.
a0a1a5fd
TH
4722 */
4723bool freeze_workqueues_busy(void)
4724{
a0a1a5fd 4725 bool busy = false;
24b8a847
TH
4726 struct workqueue_struct *wq;
4727 struct pool_workqueue *pwq;
a0a1a5fd 4728
68e13a67 4729 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4730
6183c009 4731 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4732
24b8a847
TH
4733 list_for_each_entry(wq, &workqueues, list) {
4734 if (!(wq->flags & WQ_FREEZABLE))
4735 continue;
a0a1a5fd
TH
4736 /*
4737 * nr_active is monotonically decreasing. It's safe
4738 * to peek without lock.
4739 */
88109453 4740 rcu_read_lock_sched();
24b8a847 4741 for_each_pwq(pwq, wq) {
6183c009 4742 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4743 if (pwq->nr_active) {
a0a1a5fd 4744 busy = true;
88109453 4745 rcu_read_unlock_sched();
a0a1a5fd
TH
4746 goto out_unlock;
4747 }
4748 }
88109453 4749 rcu_read_unlock_sched();
a0a1a5fd
TH
4750 }
4751out_unlock:
68e13a67 4752 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4753 return busy;
4754}
4755
4756/**
4757 * thaw_workqueues - thaw workqueues
4758 *
4759 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4760 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4761 *
4762 * CONTEXT:
a357fc03 4763 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4764 */
4765void thaw_workqueues(void)
4766{
24b8a847
TH
4767 struct workqueue_struct *wq;
4768 struct pool_workqueue *pwq;
a0a1a5fd 4769
68e13a67 4770 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4771
4772 if (!workqueue_freezing)
4773 goto out_unlock;
4774
74b414ea 4775 workqueue_freezing = false;
8b03ae3c 4776
24b8a847
TH
4777 /* restore max_active and repopulate worklist */
4778 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4779 mutex_lock(&wq->mutex);
699ce097
TH
4780 for_each_pwq(pwq, wq)
4781 pwq_adjust_max_active(pwq);
a357fc03 4782 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
4783 }
4784
a0a1a5fd 4785out_unlock:
68e13a67 4786 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4787}
4788#endif /* CONFIG_FREEZER */
4789
bce90380
TH
4790static void __init wq_numa_init(void)
4791{
4792 cpumask_var_t *tbl;
4793 int node, cpu;
4794
4795 /* determine NUMA pwq table len - highest node id + 1 */
4796 for_each_node(node)
4797 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4798
4799 if (num_possible_nodes() <= 1)
4800 return;
4801
d55262c4
TH
4802 if (wq_disable_numa) {
4803 pr_info("workqueue: NUMA affinity support disabled\n");
4804 return;
4805 }
4806
4c16bd32
TH
4807 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4808 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4809
bce90380
TH
4810 /*
4811 * We want masks of possible CPUs of each node which isn't readily
4812 * available. Build one from cpu_to_node() which should have been
4813 * fully initialized by now.
4814 */
4815 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4816 BUG_ON(!tbl);
4817
4818 for_each_node(node)
1be0c25d
TH
4819 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4820 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
4821
4822 for_each_possible_cpu(cpu) {
4823 node = cpu_to_node(cpu);
4824 if (WARN_ON(node == NUMA_NO_NODE)) {
4825 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4826 /* happens iff arch is bonkers, let's just proceed */
4827 return;
4828 }
4829 cpumask_set_cpu(cpu, tbl[node]);
4830 }
4831
4832 wq_numa_possible_cpumask = tbl;
4833 wq_numa_enabled = true;
4834}
4835
6ee0578b 4836static int __init init_workqueues(void)
1da177e4 4837{
7a4e344c
TH
4838 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4839 int i, cpu;
c34056a3 4840
e904e6c2
TH
4841 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4842
4843 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4844
65758202 4845 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 4846 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 4847
bce90380
TH
4848 wq_numa_init();
4849
706026c2 4850 /* initialize CPU pools */
29c91e99 4851 for_each_possible_cpu(cpu) {
4ce62e9e 4852 struct worker_pool *pool;
8b03ae3c 4853
7a4e344c 4854 i = 0;
f02ae73a 4855 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 4856 BUG_ON(init_worker_pool(pool));
ec22ca5e 4857 pool->cpu = cpu;
29c91e99 4858 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 4859 pool->attrs->nice = std_nice[i++];
f3f90ad4 4860 pool->node = cpu_to_node(cpu);
7a4e344c 4861
9daf9e67 4862 /* alloc pool ID */
68e13a67 4863 mutex_lock(&wq_pool_mutex);
9daf9e67 4864 BUG_ON(worker_pool_assign_id(pool));
68e13a67 4865 mutex_unlock(&wq_pool_mutex);
4ce62e9e 4866 }
8b03ae3c
TH
4867 }
4868
e22bee78 4869 /* create the initial worker */
29c91e99 4870 for_each_online_cpu(cpu) {
4ce62e9e 4871 struct worker_pool *pool;
e22bee78 4872
f02ae73a 4873 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 4874 pool->flags &= ~POOL_DISASSOCIATED;
051e1850 4875 BUG_ON(!create_worker(pool));
4ce62e9e 4876 }
e22bee78
TH
4877 }
4878
8a2b7538 4879 /* create default unbound and ordered wq attrs */
29c91e99
TH
4880 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
4881 struct workqueue_attrs *attrs;
4882
4883 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 4884 attrs->nice = std_nice[i];
29c91e99 4885 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
4886
4887 /*
4888 * An ordered wq should have only one pwq as ordering is
4889 * guaranteed by max_active which is enforced by pwqs.
4890 * Turn off NUMA so that dfl_pwq is used for all nodes.
4891 */
4892 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
4893 attrs->nice = std_nice[i];
4894 attrs->no_numa = true;
4895 ordered_wq_attrs[i] = attrs;
29c91e99
TH
4896 }
4897
d320c038 4898 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 4899 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 4900 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
4901 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
4902 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
4903 system_freezable_wq = alloc_workqueue("events_freezable",
4904 WQ_FREEZABLE, 0);
0668106c
VK
4905 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
4906 WQ_POWER_EFFICIENT, 0);
4907 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
4908 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
4909 0);
1aabe902 4910 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
4911 !system_unbound_wq || !system_freezable_wq ||
4912 !system_power_efficient_wq ||
4913 !system_freezable_power_efficient_wq);
6ee0578b 4914 return 0;
1da177e4 4915}
6ee0578b 4916early_initcall(init_workqueues);