workqueue: fix checkpatch issues
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
e22bee78
TH
44
45#include "workqueue_sched.h"
1da177e4 46
c8e55f36 47enum {
bc2ae0f5
TH
48 /*
49 * global_cwq flags
50 *
51 * A bound gcwq is either associated or disassociated with its CPU.
52 * While associated (!DISASSOCIATED), all workers are bound to the
53 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 * is in effect.
55 *
56 * While DISASSOCIATED, the cpu may be offline and all workers have
57 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 * be executing on any CPU. The gcwq behaves as an unbound one.
59 *
60 * Note that DISASSOCIATED can be flipped only while holding
61 * managership of all pools on the gcwq to avoid changing binding
62 * state while create_worker() is in progress.
63 */
11ebea50
TH
64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */
66
67 /* pool flags */
68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
e22bee78 75 WORKER_REBIND = 1 << 5, /* mom is home, come back */
fb0e7beb 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 78
403c821d
TH
79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
80 WORKER_CPU_INTENSIVE,
db7bccf4 81
3270476a 82 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
4ce62e9e 83
c8e55f36
TH
84 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
85 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
86 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
db7bccf4 87
e22bee78
TH
88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
90
3233cdbd
TH
91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
92 /* call for help after 10ms
93 (min two ticks) */
e22bee78
TH
94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
95 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
96
97 /*
98 * Rescue workers are used only on emergencies and shared by
99 * all cpus. Give -20.
100 */
101 RESCUER_NICE_LEVEL = -20,
3270476a 102 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 103};
1da177e4
LT
104
105/*
4690c4ab
TH
106 * Structure fields follow one of the following exclusion rules.
107 *
e41e704b
TH
108 * I: Modifiable by initialization/destruction paths and read-only for
109 * everyone else.
4690c4ab 110 *
e22bee78
TH
111 * P: Preemption protected. Disabling preemption is enough and should
112 * only be modified and accessed from the local cpu.
113 *
8b03ae3c 114 * L: gcwq->lock protected. Access with gcwq->lock held.
4690c4ab 115 *
e22bee78
TH
116 * X: During normal operation, modification requires gcwq->lock and
117 * should be done only from local cpu. Either disabling preemption
118 * on local cpu or grabbing gcwq->lock is enough for read access.
f3421797 119 * If GCWQ_DISASSOCIATED is set, it's identical to L.
e22bee78 120 *
73f53c4a
TH
121 * F: wq->flush_mutex protected.
122 *
4690c4ab 123 * W: workqueue_lock protected.
1da177e4 124 */
1da177e4 125
8b03ae3c 126struct global_cwq;
bd7bdd43 127struct worker_pool;
25511a47 128struct idle_rebind;
1da177e4 129
e22bee78
TH
130/*
131 * The poor guys doing the actual heavy lifting. All on-duty workers
132 * are either serving the manager role, on idle list or on busy hash.
133 */
c34056a3 134struct worker {
c8e55f36
TH
135 /* on idle list while idle, on busy hash table while busy */
136 union {
137 struct list_head entry; /* L: while idle */
138 struct hlist_node hentry; /* L: while busy */
139 };
1da177e4 140
c34056a3 141 struct work_struct *current_work; /* L: work being processed */
8cca0eea 142 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
affee4b2 143 struct list_head scheduled; /* L: scheduled works */
c34056a3 144 struct task_struct *task; /* I: worker task */
bd7bdd43 145 struct worker_pool *pool; /* I: the associated pool */
e22bee78
TH
146 /* 64 bytes boundary on 64bit, 32 on 32bit */
147 unsigned long last_active; /* L: last active timestamp */
148 unsigned int flags; /* X: flags */
c34056a3 149 int id; /* I: worker id */
25511a47
TH
150
151 /* for rebinding worker to CPU */
152 struct idle_rebind *idle_rebind; /* L: for idle worker */
153 struct work_struct rebind_work; /* L: for busy worker */
c34056a3
TH
154};
155
bd7bdd43
TH
156struct worker_pool {
157 struct global_cwq *gcwq; /* I: the owning gcwq */
11ebea50 158 unsigned int flags; /* X: flags */
bd7bdd43
TH
159
160 struct list_head worklist; /* L: list of pending works */
161 int nr_workers; /* L: total number of workers */
162 int nr_idle; /* L: currently idle ones */
163
164 struct list_head idle_list; /* X: list of idle workers */
165 struct timer_list idle_timer; /* L: worker idle timeout */
166 struct timer_list mayday_timer; /* L: SOS timer for workers */
167
60373152 168 struct mutex manager_mutex; /* mutex manager should hold */
bd7bdd43 169 struct ida worker_ida; /* L: for worker IDs */
bd7bdd43
TH
170};
171
8b03ae3c 172/*
e22bee78
TH
173 * Global per-cpu workqueue. There's one and only one for each cpu
174 * and all works are queued and processed here regardless of their
175 * target workqueues.
8b03ae3c
TH
176 */
177struct global_cwq {
178 spinlock_t lock; /* the gcwq lock */
179 unsigned int cpu; /* I: the associated cpu */
db7bccf4 180 unsigned int flags; /* L: GCWQ_* flags */
c8e55f36 181
bd7bdd43 182 /* workers are chained either in busy_hash or pool idle_list */
c8e55f36
TH
183 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
184 /* L: hash of busy workers */
185
330dad5b
JK
186 struct worker_pool pools[NR_WORKER_POOLS];
187 /* normal and highpri pools */
db7bccf4 188
25511a47 189 wait_queue_head_t rebind_hold; /* rebind hold wait */
8b03ae3c
TH
190} ____cacheline_aligned_in_smp;
191
1da177e4 192/*
502ca9d8 193 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
194 * work_struct->data are used for flags and thus cwqs need to be
195 * aligned at two's power of the number of flag bits.
1da177e4
LT
196 */
197struct cpu_workqueue_struct {
bd7bdd43 198 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 199 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
200 int work_color; /* L: current color */
201 int flush_color; /* L: flushing color */
202 int nr_in_flight[WORK_NR_COLORS];
203 /* L: nr of in_flight works */
1e19ffc6 204 int nr_active; /* L: nr of active works */
a0a1a5fd 205 int max_active; /* L: max active works */
1e19ffc6 206 struct list_head delayed_works; /* L: delayed works */
0f900049 207};
1da177e4 208
73f53c4a
TH
209/*
210 * Structure used to wait for workqueue flush.
211 */
212struct wq_flusher {
213 struct list_head list; /* F: list of flushers */
214 int flush_color; /* F: flush color waiting for */
215 struct completion done; /* flush completion */
216};
217
f2e005aa
TH
218/*
219 * All cpumasks are assumed to be always set on UP and thus can't be
220 * used to determine whether there's something to be done.
221 */
222#ifdef CONFIG_SMP
223typedef cpumask_var_t mayday_mask_t;
224#define mayday_test_and_set_cpu(cpu, mask) \
225 cpumask_test_and_set_cpu((cpu), (mask))
226#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
227#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 228#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
229#define free_mayday_mask(mask) free_cpumask_var((mask))
230#else
231typedef unsigned long mayday_mask_t;
232#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
233#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
234#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
235#define alloc_mayday_mask(maskp, gfp) true
236#define free_mayday_mask(mask) do { } while (0)
237#endif
1da177e4
LT
238
239/*
240 * The externally visible workqueue abstraction is an array of
241 * per-CPU workqueues:
242 */
243struct workqueue_struct {
9c5a2ba7 244 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
245 union {
246 struct cpu_workqueue_struct __percpu *pcpu;
247 struct cpu_workqueue_struct *single;
248 unsigned long v;
249 } cpu_wq; /* I: cwq's */
4690c4ab 250 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
251
252 struct mutex flush_mutex; /* protects wq flushing */
253 int work_color; /* F: current work color */
254 int flush_color; /* F: current flush color */
255 atomic_t nr_cwqs_to_flush; /* flush in progress */
256 struct wq_flusher *first_flusher; /* F: first flusher */
257 struct list_head flusher_queue; /* F: flush waiters */
258 struct list_head flusher_overflow; /* F: flush overflow list */
259
f2e005aa 260 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
261 struct worker *rescuer; /* I: rescue worker */
262
9c5a2ba7 263 int nr_drainers; /* W: drain in progress */
dcd989cb 264 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 265#ifdef CONFIG_LOCKDEP
4690c4ab 266 struct lockdep_map lockdep_map;
4e6045f1 267#endif
b196be89 268 char name[]; /* I: workqueue name */
1da177e4
LT
269};
270
d320c038 271struct workqueue_struct *system_wq __read_mostly;
d320c038 272EXPORT_SYMBOL_GPL(system_wq);
044c782c 273struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 274EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 275struct workqueue_struct *system_long_wq __read_mostly;
d320c038 276EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 277struct workqueue_struct *system_nrt_wq __read_mostly;
d320c038 278EXPORT_SYMBOL_GPL(system_nrt_wq);
044c782c 279struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 280EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 281struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 282EXPORT_SYMBOL_GPL(system_freezable_wq);
044c782c 283struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
62d3c543 284EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
d320c038 285
97bd2347
TH
286#define CREATE_TRACE_POINTS
287#include <trace/events/workqueue.h>
288
4ce62e9e 289#define for_each_worker_pool(pool, gcwq) \
3270476a
TH
290 for ((pool) = &(gcwq)->pools[0]; \
291 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
4ce62e9e 292
db7bccf4
TH
293#define for_each_busy_worker(worker, i, pos, gcwq) \
294 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
295 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
296
f3421797
TH
297static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
298 unsigned int sw)
299{
300 if (cpu < nr_cpu_ids) {
301 if (sw & 1) {
302 cpu = cpumask_next(cpu, mask);
303 if (cpu < nr_cpu_ids)
304 return cpu;
305 }
306 if (sw & 2)
307 return WORK_CPU_UNBOUND;
308 }
309 return WORK_CPU_NONE;
310}
311
312static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
313 struct workqueue_struct *wq)
314{
315 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
316}
317
09884951
TH
318/*
319 * CPU iterators
320 *
321 * An extra gcwq is defined for an invalid cpu number
322 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
323 * specific CPU. The following iterators are similar to
324 * for_each_*_cpu() iterators but also considers the unbound gcwq.
325 *
326 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
327 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
328 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
329 * WORK_CPU_UNBOUND for unbound workqueues
330 */
f3421797
TH
331#define for_each_gcwq_cpu(cpu) \
332 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
333 (cpu) < WORK_CPU_NONE; \
334 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
335
336#define for_each_online_gcwq_cpu(cpu) \
337 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
338 (cpu) < WORK_CPU_NONE; \
339 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
340
341#define for_each_cwq_cpu(cpu, wq) \
342 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
343 (cpu) < WORK_CPU_NONE; \
344 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
345
dc186ad7
TG
346#ifdef CONFIG_DEBUG_OBJECTS_WORK
347
348static struct debug_obj_descr work_debug_descr;
349
99777288
SG
350static void *work_debug_hint(void *addr)
351{
352 return ((struct work_struct *) addr)->func;
353}
354
dc186ad7
TG
355/*
356 * fixup_init is called when:
357 * - an active object is initialized
358 */
359static int work_fixup_init(void *addr, enum debug_obj_state state)
360{
361 struct work_struct *work = addr;
362
363 switch (state) {
364 case ODEBUG_STATE_ACTIVE:
365 cancel_work_sync(work);
366 debug_object_init(work, &work_debug_descr);
367 return 1;
368 default:
369 return 0;
370 }
371}
372
373/*
374 * fixup_activate is called when:
375 * - an active object is activated
376 * - an unknown object is activated (might be a statically initialized object)
377 */
378static int work_fixup_activate(void *addr, enum debug_obj_state state)
379{
380 struct work_struct *work = addr;
381
382 switch (state) {
383
384 case ODEBUG_STATE_NOTAVAILABLE:
385 /*
386 * This is not really a fixup. The work struct was
387 * statically initialized. We just make sure that it
388 * is tracked in the object tracker.
389 */
22df02bb 390 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
391 debug_object_init(work, &work_debug_descr);
392 debug_object_activate(work, &work_debug_descr);
393 return 0;
394 }
395 WARN_ON_ONCE(1);
396 return 0;
397
398 case ODEBUG_STATE_ACTIVE:
399 WARN_ON(1);
400
401 default:
402 return 0;
403 }
404}
405
406/*
407 * fixup_free is called when:
408 * - an active object is freed
409 */
410static int work_fixup_free(void *addr, enum debug_obj_state state)
411{
412 struct work_struct *work = addr;
413
414 switch (state) {
415 case ODEBUG_STATE_ACTIVE:
416 cancel_work_sync(work);
417 debug_object_free(work, &work_debug_descr);
418 return 1;
419 default:
420 return 0;
421 }
422}
423
424static struct debug_obj_descr work_debug_descr = {
425 .name = "work_struct",
99777288 426 .debug_hint = work_debug_hint,
dc186ad7
TG
427 .fixup_init = work_fixup_init,
428 .fixup_activate = work_fixup_activate,
429 .fixup_free = work_fixup_free,
430};
431
432static inline void debug_work_activate(struct work_struct *work)
433{
434 debug_object_activate(work, &work_debug_descr);
435}
436
437static inline void debug_work_deactivate(struct work_struct *work)
438{
439 debug_object_deactivate(work, &work_debug_descr);
440}
441
442void __init_work(struct work_struct *work, int onstack)
443{
444 if (onstack)
445 debug_object_init_on_stack(work, &work_debug_descr);
446 else
447 debug_object_init(work, &work_debug_descr);
448}
449EXPORT_SYMBOL_GPL(__init_work);
450
451void destroy_work_on_stack(struct work_struct *work)
452{
453 debug_object_free(work, &work_debug_descr);
454}
455EXPORT_SYMBOL_GPL(destroy_work_on_stack);
456
457#else
458static inline void debug_work_activate(struct work_struct *work) { }
459static inline void debug_work_deactivate(struct work_struct *work) { }
460#endif
461
95402b38
GS
462/* Serializes the accesses to the list of workqueues. */
463static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 464static LIST_HEAD(workqueues);
a0a1a5fd 465static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 466
e22bee78
TH
467/*
468 * The almighty global cpu workqueues. nr_running is the only field
469 * which is expected to be used frequently by other cpus via
470 * try_to_wake_up(). Put it in a separate cacheline.
471 */
8b03ae3c 472static DEFINE_PER_CPU(struct global_cwq, global_cwq);
4ce62e9e 473static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
8b03ae3c 474
f3421797
TH
475/*
476 * Global cpu workqueue and nr_running counter for unbound gcwq. The
477 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
478 * workers have WORKER_UNBOUND set.
479 */
480static struct global_cwq unbound_global_cwq;
4ce62e9e
TH
481static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
482 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
483};
f3421797 484
c34056a3 485static int worker_thread(void *__worker);
1da177e4 486
3270476a
TH
487static int worker_pool_pri(struct worker_pool *pool)
488{
489 return pool - pool->gcwq->pools;
490}
491
8b03ae3c
TH
492static struct global_cwq *get_gcwq(unsigned int cpu)
493{
f3421797
TH
494 if (cpu != WORK_CPU_UNBOUND)
495 return &per_cpu(global_cwq, cpu);
496 else
497 return &unbound_global_cwq;
8b03ae3c
TH
498}
499
63d95a91 500static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 501{
63d95a91 502 int cpu = pool->gcwq->cpu;
3270476a 503 int idx = worker_pool_pri(pool);
63d95a91 504
f3421797 505 if (cpu != WORK_CPU_UNBOUND)
4ce62e9e 506 return &per_cpu(pool_nr_running, cpu)[idx];
f3421797 507 else
4ce62e9e 508 return &unbound_pool_nr_running[idx];
e22bee78
TH
509}
510
1537663f
TH
511static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
512 struct workqueue_struct *wq)
b1f4ec17 513{
f3421797 514 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 515 if (likely(cpu < nr_cpu_ids))
f3421797 516 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
517 } else if (likely(cpu == WORK_CPU_UNBOUND))
518 return wq->cpu_wq.single;
519 return NULL;
b1f4ec17
ON
520}
521
73f53c4a
TH
522static unsigned int work_color_to_flags(int color)
523{
524 return color << WORK_STRUCT_COLOR_SHIFT;
525}
526
527static int get_work_color(struct work_struct *work)
528{
529 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
530 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
531}
532
533static int work_next_color(int color)
534{
535 return (color + 1) % WORK_NR_COLORS;
536}
1da177e4 537
14441960 538/*
b5490077
TH
539 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
540 * contain the pointer to the queued cwq. Once execution starts, the flag
541 * is cleared and the high bits contain OFFQ flags and CPU number.
7a22ad75 542 *
bbb68dfa
TH
543 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling()
544 * and clear_work_data() can be used to set the cwq, cpu or clear
545 * work->data. These functions should only be called while the work is
546 * owned - ie. while the PENDING bit is set.
547 *
548 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to
549 * a work. gcwq is available once the work has been queued anywhere after
550 * initialization until it is sync canceled. cwq is available only while
551 * the work item is queued.
552 *
553 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
554 * canceled. While being canceled, a work item may have its PENDING set
555 * but stay off timer and worklist for arbitrarily long and nobody should
556 * try to steal the PENDING bit.
14441960 557 */
7a22ad75
TH
558static inline void set_work_data(struct work_struct *work, unsigned long data,
559 unsigned long flags)
365970a1 560{
4594bf15 561 BUG_ON(!work_pending(work));
7a22ad75
TH
562 atomic_long_set(&work->data, data | flags | work_static(work));
563}
365970a1 564
7a22ad75
TH
565static void set_work_cwq(struct work_struct *work,
566 struct cpu_workqueue_struct *cwq,
567 unsigned long extra_flags)
568{
569 set_work_data(work, (unsigned long)cwq,
e120153d 570 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
571}
572
8930caba
TH
573static void set_work_cpu_and_clear_pending(struct work_struct *work,
574 unsigned int cpu)
7a22ad75 575{
23657bb1
TH
576 /*
577 * The following wmb is paired with the implied mb in
578 * test_and_set_bit(PENDING) and ensures all updates to @work made
579 * here are visible to and precede any updates by the next PENDING
580 * owner.
581 */
582 smp_wmb();
b5490077 583 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0);
7a22ad75 584}
f756d5e2 585
7a22ad75 586static void clear_work_data(struct work_struct *work)
1da177e4 587{
23657bb1 588 smp_wmb(); /* see set_work_cpu_and_clear_pending() */
7a22ad75 589 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
1da177e4
LT
590}
591
7a22ad75 592static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 593{
e120153d 594 unsigned long data = atomic_long_read(&work->data);
7a22ad75 595
e120153d
TH
596 if (data & WORK_STRUCT_CWQ)
597 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
598 else
599 return NULL;
4d707b9f
ON
600}
601
7a22ad75 602static struct global_cwq *get_work_gcwq(struct work_struct *work)
365970a1 603{
e120153d 604 unsigned long data = atomic_long_read(&work->data);
7a22ad75
TH
605 unsigned int cpu;
606
e120153d
TH
607 if (data & WORK_STRUCT_CWQ)
608 return ((struct cpu_workqueue_struct *)
bd7bdd43 609 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
7a22ad75 610
b5490077 611 cpu = data >> WORK_OFFQ_CPU_SHIFT;
bdbc5dd7 612 if (cpu == WORK_CPU_NONE)
7a22ad75
TH
613 return NULL;
614
f3421797 615 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
7a22ad75 616 return get_gcwq(cpu);
b1f4ec17
ON
617}
618
bbb68dfa
TH
619static void mark_work_canceling(struct work_struct *work)
620{
621 struct global_cwq *gcwq = get_work_gcwq(work);
622 unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE;
623
624 set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING,
625 WORK_STRUCT_PENDING);
626}
627
628static bool work_is_canceling(struct work_struct *work)
629{
630 unsigned long data = atomic_long_read(&work->data);
631
632 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
633}
634
e22bee78 635/*
3270476a
TH
636 * Policy functions. These define the policies on how the global worker
637 * pools are managed. Unless noted otherwise, these functions assume that
638 * they're being called with gcwq->lock held.
e22bee78
TH
639 */
640
63d95a91 641static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 642{
3270476a 643 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
644}
645
4594bf15 646/*
e22bee78
TH
647 * Need to wake up a worker? Called from anything but currently
648 * running workers.
974271c4
TH
649 *
650 * Note that, because unbound workers never contribute to nr_running, this
651 * function will always return %true for unbound gcwq as long as the
652 * worklist isn't empty.
4594bf15 653 */
63d95a91 654static bool need_more_worker(struct worker_pool *pool)
365970a1 655{
63d95a91 656 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 657}
4594bf15 658
e22bee78 659/* Can I start working? Called from busy but !running workers. */
63d95a91 660static bool may_start_working(struct worker_pool *pool)
e22bee78 661{
63d95a91 662 return pool->nr_idle;
e22bee78
TH
663}
664
665/* Do I need to keep working? Called from currently running workers. */
63d95a91 666static bool keep_working(struct worker_pool *pool)
e22bee78 667{
63d95a91 668 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 669
3270476a 670 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
671}
672
673/* Do we need a new worker? Called from manager. */
63d95a91 674static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 675{
63d95a91 676 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 677}
365970a1 678
e22bee78 679/* Do I need to be the manager? */
63d95a91 680static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 681{
63d95a91 682 return need_to_create_worker(pool) ||
11ebea50 683 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
684}
685
686/* Do we have too many workers and should some go away? */
63d95a91 687static bool too_many_workers(struct worker_pool *pool)
e22bee78 688{
60373152 689 bool managing = mutex_is_locked(&pool->manager_mutex);
63d95a91
TH
690 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
691 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
692
693 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
694}
695
4d707b9f 696/*
e22bee78
TH
697 * Wake up functions.
698 */
699
7e11629d 700/* Return the first worker. Safe with preemption disabled */
63d95a91 701static struct worker *first_worker(struct worker_pool *pool)
7e11629d 702{
63d95a91 703 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
704 return NULL;
705
63d95a91 706 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
707}
708
709/**
710 * wake_up_worker - wake up an idle worker
63d95a91 711 * @pool: worker pool to wake worker from
7e11629d 712 *
63d95a91 713 * Wake up the first idle worker of @pool.
7e11629d
TH
714 *
715 * CONTEXT:
716 * spin_lock_irq(gcwq->lock).
717 */
63d95a91 718static void wake_up_worker(struct worker_pool *pool)
7e11629d 719{
63d95a91 720 struct worker *worker = first_worker(pool);
7e11629d
TH
721
722 if (likely(worker))
723 wake_up_process(worker->task);
724}
725
d302f017 726/**
e22bee78
TH
727 * wq_worker_waking_up - a worker is waking up
728 * @task: task waking up
729 * @cpu: CPU @task is waking up to
730 *
731 * This function is called during try_to_wake_up() when a worker is
732 * being awoken.
733 *
734 * CONTEXT:
735 * spin_lock_irq(rq->lock)
736 */
737void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
738{
739 struct worker *worker = kthread_data(task);
740
2d64672e 741 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 742 atomic_inc(get_pool_nr_running(worker->pool));
e22bee78
TH
743}
744
745/**
746 * wq_worker_sleeping - a worker is going to sleep
747 * @task: task going to sleep
748 * @cpu: CPU in question, must be the current CPU number
749 *
750 * This function is called during schedule() when a busy worker is
751 * going to sleep. Worker on the same cpu can be woken up by
752 * returning pointer to its task.
753 *
754 * CONTEXT:
755 * spin_lock_irq(rq->lock)
756 *
757 * RETURNS:
758 * Worker task on @cpu to wake up, %NULL if none.
759 */
760struct task_struct *wq_worker_sleeping(struct task_struct *task,
761 unsigned int cpu)
762{
763 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
bd7bdd43 764 struct worker_pool *pool = worker->pool;
63d95a91 765 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 766
2d64672e 767 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
768 return NULL;
769
770 /* this can only happen on the local cpu */
771 BUG_ON(cpu != raw_smp_processor_id());
772
773 /*
774 * The counterpart of the following dec_and_test, implied mb,
775 * worklist not empty test sequence is in insert_work().
776 * Please read comment there.
777 *
628c78e7
TH
778 * NOT_RUNNING is clear. This means that we're bound to and
779 * running on the local cpu w/ rq lock held and preemption
780 * disabled, which in turn means that none else could be
781 * manipulating idle_list, so dereferencing idle_list without gcwq
782 * lock is safe.
e22bee78 783 */
bd7bdd43 784 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 785 to_wakeup = first_worker(pool);
e22bee78
TH
786 return to_wakeup ? to_wakeup->task : NULL;
787}
788
789/**
790 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 791 * @worker: self
d302f017
TH
792 * @flags: flags to set
793 * @wakeup: wakeup an idle worker if necessary
794 *
e22bee78
TH
795 * Set @flags in @worker->flags and adjust nr_running accordingly. If
796 * nr_running becomes zero and @wakeup is %true, an idle worker is
797 * woken up.
d302f017 798 *
cb444766
TH
799 * CONTEXT:
800 * spin_lock_irq(gcwq->lock)
d302f017
TH
801 */
802static inline void worker_set_flags(struct worker *worker, unsigned int flags,
803 bool wakeup)
804{
bd7bdd43 805 struct worker_pool *pool = worker->pool;
e22bee78 806
cb444766
TH
807 WARN_ON_ONCE(worker->task != current);
808
e22bee78
TH
809 /*
810 * If transitioning into NOT_RUNNING, adjust nr_running and
811 * wake up an idle worker as necessary if requested by
812 * @wakeup.
813 */
814 if ((flags & WORKER_NOT_RUNNING) &&
815 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 816 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
817
818 if (wakeup) {
819 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 820 !list_empty(&pool->worklist))
63d95a91 821 wake_up_worker(pool);
e22bee78
TH
822 } else
823 atomic_dec(nr_running);
824 }
825
d302f017
TH
826 worker->flags |= flags;
827}
828
829/**
e22bee78 830 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 831 * @worker: self
d302f017
TH
832 * @flags: flags to clear
833 *
e22bee78 834 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 835 *
cb444766
TH
836 * CONTEXT:
837 * spin_lock_irq(gcwq->lock)
d302f017
TH
838 */
839static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
840{
63d95a91 841 struct worker_pool *pool = worker->pool;
e22bee78
TH
842 unsigned int oflags = worker->flags;
843
cb444766
TH
844 WARN_ON_ONCE(worker->task != current);
845
d302f017 846 worker->flags &= ~flags;
e22bee78 847
42c025f3
TH
848 /*
849 * If transitioning out of NOT_RUNNING, increment nr_running. Note
850 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
851 * of multiple flags, not a single flag.
852 */
e22bee78
TH
853 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
854 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 855 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
856}
857
c8e55f36
TH
858/**
859 * busy_worker_head - return the busy hash head for a work
860 * @gcwq: gcwq of interest
861 * @work: work to be hashed
862 *
863 * Return hash head of @gcwq for @work.
864 *
865 * CONTEXT:
866 * spin_lock_irq(gcwq->lock).
867 *
868 * RETURNS:
869 * Pointer to the hash head.
870 */
871static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
872 struct work_struct *work)
873{
874 const int base_shift = ilog2(sizeof(struct work_struct));
875 unsigned long v = (unsigned long)work;
876
877 /* simple shift and fold hash, do we need something better? */
878 v >>= base_shift;
879 v += v >> BUSY_WORKER_HASH_ORDER;
880 v &= BUSY_WORKER_HASH_MASK;
881
882 return &gcwq->busy_hash[v];
883}
884
8cca0eea
TH
885/**
886 * __find_worker_executing_work - find worker which is executing a work
887 * @gcwq: gcwq of interest
888 * @bwh: hash head as returned by busy_worker_head()
889 * @work: work to find worker for
890 *
891 * Find a worker which is executing @work on @gcwq. @bwh should be
892 * the hash head obtained by calling busy_worker_head() with the same
893 * work.
894 *
895 * CONTEXT:
896 * spin_lock_irq(gcwq->lock).
897 *
898 * RETURNS:
899 * Pointer to worker which is executing @work if found, NULL
900 * otherwise.
901 */
902static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
903 struct hlist_head *bwh,
904 struct work_struct *work)
905{
906 struct worker *worker;
907 struct hlist_node *tmp;
908
909 hlist_for_each_entry(worker, tmp, bwh, hentry)
910 if (worker->current_work == work)
911 return worker;
912 return NULL;
913}
914
915/**
916 * find_worker_executing_work - find worker which is executing a work
917 * @gcwq: gcwq of interest
918 * @work: work to find worker for
919 *
920 * Find a worker which is executing @work on @gcwq. This function is
921 * identical to __find_worker_executing_work() except that this
922 * function calculates @bwh itself.
923 *
924 * CONTEXT:
925 * spin_lock_irq(gcwq->lock).
926 *
927 * RETURNS:
928 * Pointer to worker which is executing @work if found, NULL
929 * otherwise.
4d707b9f 930 */
8cca0eea
TH
931static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
932 struct work_struct *work)
4d707b9f 933{
8cca0eea
TH
934 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
935 work);
4d707b9f
ON
936}
937
bf4ede01
TH
938/**
939 * move_linked_works - move linked works to a list
940 * @work: start of series of works to be scheduled
941 * @head: target list to append @work to
942 * @nextp: out paramter for nested worklist walking
943 *
944 * Schedule linked works starting from @work to @head. Work series to
945 * be scheduled starts at @work and includes any consecutive work with
946 * WORK_STRUCT_LINKED set in its predecessor.
947 *
948 * If @nextp is not NULL, it's updated to point to the next work of
949 * the last scheduled work. This allows move_linked_works() to be
950 * nested inside outer list_for_each_entry_safe().
951 *
952 * CONTEXT:
953 * spin_lock_irq(gcwq->lock).
954 */
955static void move_linked_works(struct work_struct *work, struct list_head *head,
956 struct work_struct **nextp)
957{
958 struct work_struct *n;
959
960 /*
961 * Linked worklist will always end before the end of the list,
962 * use NULL for list head.
963 */
964 list_for_each_entry_safe_from(work, n, NULL, entry) {
965 list_move_tail(&work->entry, head);
966 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
967 break;
968 }
969
970 /*
971 * If we're already inside safe list traversal and have moved
972 * multiple works to the scheduled queue, the next position
973 * needs to be updated.
974 */
975 if (nextp)
976 *nextp = n;
977}
978
979static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
980{
981 struct work_struct *work = list_first_entry(&cwq->delayed_works,
982 struct work_struct, entry);
983
984 trace_workqueue_activate_work(work);
985 move_linked_works(work, &cwq->pool->worklist, NULL);
986 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
987 cwq->nr_active++;
988}
989
990/**
991 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
992 * @cwq: cwq of interest
993 * @color: color of work which left the queue
994 * @delayed: for a delayed work
995 *
996 * A work either has completed or is removed from pending queue,
997 * decrement nr_in_flight of its cwq and handle workqueue flushing.
998 *
999 * CONTEXT:
1000 * spin_lock_irq(gcwq->lock).
1001 */
1002static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1003 bool delayed)
1004{
1005 /* ignore uncolored works */
1006 if (color == WORK_NO_COLOR)
1007 return;
1008
1009 cwq->nr_in_flight[color]--;
1010
1011 if (!delayed) {
1012 cwq->nr_active--;
1013 if (!list_empty(&cwq->delayed_works)) {
1014 /* one down, submit a delayed one */
1015 if (cwq->nr_active < cwq->max_active)
1016 cwq_activate_first_delayed(cwq);
1017 }
1018 }
1019
1020 /* is flush in progress and are we at the flushing tip? */
1021 if (likely(cwq->flush_color != color))
1022 return;
1023
1024 /* are there still in-flight works? */
1025 if (cwq->nr_in_flight[color])
1026 return;
1027
1028 /* this cwq is done, clear flush_color */
1029 cwq->flush_color = -1;
1030
1031 /*
1032 * If this was the last cwq, wake up the first flusher. It
1033 * will handle the rest.
1034 */
1035 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1036 complete(&cwq->wq->first_flusher->done);
1037}
1038
36e227d2 1039/**
bbb68dfa 1040 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1041 * @work: work item to steal
1042 * @is_dwork: @work is a delayed_work
bbb68dfa 1043 * @flags: place to store irq state
36e227d2
TH
1044 *
1045 * Try to grab PENDING bit of @work. This function can handle @work in any
1046 * stable state - idle, on timer or on worklist. Return values are
1047 *
1048 * 1 if @work was pending and we successfully stole PENDING
1049 * 0 if @work was idle and we claimed PENDING
1050 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1051 * -ENOENT if someone else is canceling @work, this state may persist
1052 * for arbitrarily long
36e227d2 1053 *
bbb68dfa
TH
1054 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1055 * preempted while holding PENDING and @work off queue, preemption must be
1056 * disabled on entry. This ensures that we don't return -EAGAIN while
1057 * another task is preempted in this function.
1058 *
1059 * On successful return, >= 0, irq is disabled and the caller is
1060 * responsible for releasing it using local_irq_restore(*@flags).
1061 *
1062 * This function is safe to call from any context other than IRQ handler.
1063 * An IRQ handler may run on top of delayed_work_timer_fn() which can make
1064 * this function return -EAGAIN perpetually.
bf4ede01 1065 */
bbb68dfa
TH
1066static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1067 unsigned long *flags)
bf4ede01
TH
1068{
1069 struct global_cwq *gcwq;
bf4ede01 1070
bbb68dfa
TH
1071 WARN_ON_ONCE(in_irq());
1072
1073 local_irq_save(*flags);
1074
36e227d2
TH
1075 /* try to steal the timer if it exists */
1076 if (is_dwork) {
1077 struct delayed_work *dwork = to_delayed_work(work);
1078
1079 if (likely(del_timer(&dwork->timer)))
1080 return 1;
1081 }
1082
1083 /* try to claim PENDING the normal way */
bf4ede01
TH
1084 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1085 return 0;
1086
1087 /*
1088 * The queueing is in progress, or it is already queued. Try to
1089 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1090 */
1091 gcwq = get_work_gcwq(work);
1092 if (!gcwq)
bbb68dfa 1093 goto fail;
bf4ede01 1094
bbb68dfa 1095 spin_lock(&gcwq->lock);
bf4ede01
TH
1096 if (!list_empty(&work->entry)) {
1097 /*
1098 * This work is queued, but perhaps we locked the wrong gcwq.
1099 * In that case we must see the new value after rmb(), see
1100 * insert_work()->wmb().
1101 */
1102 smp_rmb();
1103 if (gcwq == get_work_gcwq(work)) {
1104 debug_work_deactivate(work);
1105 list_del_init(&work->entry);
1106 cwq_dec_nr_in_flight(get_work_cwq(work),
1107 get_work_color(work),
1108 *work_data_bits(work) & WORK_STRUCT_DELAYED);
36e227d2 1109
bbb68dfa 1110 spin_unlock(&gcwq->lock);
36e227d2 1111 return 1;
bf4ede01
TH
1112 }
1113 }
bbb68dfa
TH
1114 spin_unlock(&gcwq->lock);
1115fail:
1116 local_irq_restore(*flags);
1117 if (work_is_canceling(work))
1118 return -ENOENT;
1119 cpu_relax();
36e227d2 1120 return -EAGAIN;
bf4ede01
TH
1121}
1122
4690c4ab 1123/**
7e11629d 1124 * insert_work - insert a work into gcwq
4690c4ab
TH
1125 * @cwq: cwq @work belongs to
1126 * @work: work to insert
1127 * @head: insertion point
1128 * @extra_flags: extra WORK_STRUCT_* flags to set
1129 *
7e11629d
TH
1130 * Insert @work which belongs to @cwq into @gcwq after @head.
1131 * @extra_flags is or'd to work_struct flags.
4690c4ab
TH
1132 *
1133 * CONTEXT:
8b03ae3c 1134 * spin_lock_irq(gcwq->lock).
4690c4ab 1135 */
b89deed3 1136static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
1137 struct work_struct *work, struct list_head *head,
1138 unsigned int extra_flags)
b89deed3 1139{
63d95a91 1140 struct worker_pool *pool = cwq->pool;
e22bee78 1141
4690c4ab 1142 /* we own @work, set data and link */
7a22ad75 1143 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 1144
6e84d644
ON
1145 /*
1146 * Ensure that we get the right work->data if we see the
1147 * result of list_add() below, see try_to_grab_pending().
1148 */
1149 smp_wmb();
4690c4ab 1150
1a4d9b0a 1151 list_add_tail(&work->entry, head);
e22bee78
TH
1152
1153 /*
1154 * Ensure either worker_sched_deactivated() sees the above
1155 * list_add_tail() or we see zero nr_running to avoid workers
1156 * lying around lazily while there are works to be processed.
1157 */
1158 smp_mb();
1159
63d95a91
TH
1160 if (__need_more_worker(pool))
1161 wake_up_worker(pool);
b89deed3
ON
1162}
1163
c8efcc25
TH
1164/*
1165 * Test whether @work is being queued from another work executing on the
1166 * same workqueue. This is rather expensive and should only be used from
1167 * cold paths.
1168 */
1169static bool is_chained_work(struct workqueue_struct *wq)
1170{
1171 unsigned long flags;
1172 unsigned int cpu;
1173
1174 for_each_gcwq_cpu(cpu) {
1175 struct global_cwq *gcwq = get_gcwq(cpu);
1176 struct worker *worker;
1177 struct hlist_node *pos;
1178 int i;
1179
1180 spin_lock_irqsave(&gcwq->lock, flags);
1181 for_each_busy_worker(worker, i, pos, gcwq) {
1182 if (worker->task != current)
1183 continue;
1184 spin_unlock_irqrestore(&gcwq->lock, flags);
1185 /*
1186 * I'm @worker, no locking necessary. See if @work
1187 * is headed to the same workqueue.
1188 */
1189 return worker->current_cwq->wq == wq;
1190 }
1191 spin_unlock_irqrestore(&gcwq->lock, flags);
1192 }
1193 return false;
1194}
1195
4690c4ab 1196static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1197 struct work_struct *work)
1198{
502ca9d8
TH
1199 struct global_cwq *gcwq;
1200 struct cpu_workqueue_struct *cwq;
1e19ffc6 1201 struct list_head *worklist;
8a2e8e5d 1202 unsigned int work_flags;
b75cac93 1203 unsigned int req_cpu = cpu;
8930caba
TH
1204
1205 /*
1206 * While a work item is PENDING && off queue, a task trying to
1207 * steal the PENDING will busy-loop waiting for it to either get
1208 * queued or lose PENDING. Grabbing PENDING and queueing should
1209 * happen with IRQ disabled.
1210 */
1211 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1212
dc186ad7 1213 debug_work_activate(work);
1e19ffc6 1214
c8efcc25 1215 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1216 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1217 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1218 return;
1219
c7fc77f7
TH
1220 /* determine gcwq to use */
1221 if (!(wq->flags & WQ_UNBOUND)) {
18aa9eff
TH
1222 struct global_cwq *last_gcwq;
1223
57469821 1224 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1225 cpu = raw_smp_processor_id();
1226
18aa9eff
TH
1227 /*
1228 * It's multi cpu. If @wq is non-reentrant and @work
1229 * was previously on a different cpu, it might still
1230 * be running there, in which case the work needs to
1231 * be queued on that cpu to guarantee non-reentrance.
1232 */
502ca9d8 1233 gcwq = get_gcwq(cpu);
18aa9eff
TH
1234 if (wq->flags & WQ_NON_REENTRANT &&
1235 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1236 struct worker *worker;
1237
8930caba 1238 spin_lock(&last_gcwq->lock);
18aa9eff
TH
1239
1240 worker = find_worker_executing_work(last_gcwq, work);
1241
1242 if (worker && worker->current_cwq->wq == wq)
1243 gcwq = last_gcwq;
1244 else {
1245 /* meh... not running there, queue here */
8930caba
TH
1246 spin_unlock(&last_gcwq->lock);
1247 spin_lock(&gcwq->lock);
18aa9eff 1248 }
8930caba
TH
1249 } else {
1250 spin_lock(&gcwq->lock);
1251 }
f3421797
TH
1252 } else {
1253 gcwq = get_gcwq(WORK_CPU_UNBOUND);
8930caba 1254 spin_lock(&gcwq->lock);
502ca9d8
TH
1255 }
1256
1257 /* gcwq determined, get cwq and queue */
1258 cwq = get_cwq(gcwq->cpu, wq);
b75cac93 1259 trace_workqueue_queue_work(req_cpu, cwq, work);
502ca9d8 1260
f5b2552b 1261 if (WARN_ON(!list_empty(&work->entry))) {
8930caba 1262 spin_unlock(&gcwq->lock);
f5b2552b
DC
1263 return;
1264 }
1e19ffc6 1265
73f53c4a 1266 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1267 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1268
1269 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1270 trace_workqueue_activate_work(work);
1e19ffc6 1271 cwq->nr_active++;
3270476a 1272 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1273 } else {
1274 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1275 worklist = &cwq->delayed_works;
8a2e8e5d 1276 }
1e19ffc6 1277
8a2e8e5d 1278 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1279
8930caba 1280 spin_unlock(&gcwq->lock);
1da177e4
LT
1281}
1282
c1a220e7
ZR
1283/**
1284 * queue_work_on - queue work on specific cpu
1285 * @cpu: CPU number to execute work on
1286 * @wq: workqueue to use
1287 * @work: work to queue
1288 *
d4283e93 1289 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7
ZR
1290 *
1291 * We queue the work to a specific CPU, the caller must ensure it
1292 * can't go away.
1293 */
d4283e93
TH
1294bool queue_work_on(int cpu, struct workqueue_struct *wq,
1295 struct work_struct *work)
c1a220e7 1296{
d4283e93 1297 bool ret = false;
8930caba
TH
1298 unsigned long flags;
1299
1300 local_irq_save(flags);
c1a220e7 1301
22df02bb 1302 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1303 __queue_work(cpu, wq, work);
d4283e93 1304 ret = true;
c1a220e7 1305 }
8930caba
TH
1306
1307 local_irq_restore(flags);
c1a220e7
ZR
1308 return ret;
1309}
1310EXPORT_SYMBOL_GPL(queue_work_on);
1311
0fcb78c2 1312/**
0a13c00e 1313 * queue_work - queue work on a workqueue
0fcb78c2 1314 * @wq: workqueue to use
0a13c00e 1315 * @work: work to queue
0fcb78c2 1316 *
d4283e93 1317 * Returns %false if @work was already on a queue, %true otherwise.
0a13c00e
TH
1318 *
1319 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1320 * it can be processed by another CPU.
0fcb78c2 1321 */
d4283e93 1322bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 1323{
57469821 1324 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
0a13c00e
TH
1325}
1326EXPORT_SYMBOL_GPL(queue_work);
1327
d8e794df 1328void delayed_work_timer_fn(unsigned long __data)
0a13c00e
TH
1329{
1330 struct delayed_work *dwork = (struct delayed_work *)__data;
1331 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1332
8930caba 1333 local_irq_disable();
1265057f 1334 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
8930caba 1335 local_irq_enable();
1da177e4 1336}
d8e794df 1337EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1338
7beb2edf
TH
1339static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1340 struct delayed_work *dwork, unsigned long delay)
1341{
1342 struct timer_list *timer = &dwork->timer;
1343 struct work_struct *work = &dwork->work;
1344 unsigned int lcpu;
1345
1346 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1347 timer->data != (unsigned long)dwork);
1348 BUG_ON(timer_pending(timer));
1349 BUG_ON(!list_empty(&work->entry));
1350
1351 timer_stats_timer_set_start_info(&dwork->timer);
1352
1353 /*
1354 * This stores cwq for the moment, for the timer_fn. Note that the
1355 * work's gcwq is preserved to allow reentrance detection for
1356 * delayed works.
1357 */
1358 if (!(wq->flags & WQ_UNBOUND)) {
1359 struct global_cwq *gcwq = get_work_gcwq(work);
1360
e42986de
JK
1361 /*
1362 * If we cannot get the last gcwq from @work directly,
1363 * select the last CPU such that it avoids unnecessarily
1364 * triggering non-reentrancy check in __queue_work().
1365 */
1366 lcpu = cpu;
1367 if (gcwq)
7beb2edf 1368 lcpu = gcwq->cpu;
e42986de 1369 if (lcpu == WORK_CPU_UNBOUND)
7beb2edf
TH
1370 lcpu = raw_smp_processor_id();
1371 } else {
1372 lcpu = WORK_CPU_UNBOUND;
1373 }
1374
1375 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1376
1265057f 1377 dwork->cpu = cpu;
7beb2edf
TH
1378 timer->expires = jiffies + delay;
1379
1380 if (unlikely(cpu != WORK_CPU_UNBOUND))
1381 add_timer_on(timer, cpu);
1382 else
1383 add_timer(timer);
1384}
1385
0fcb78c2
REB
1386/**
1387 * queue_delayed_work_on - queue work on specific CPU after delay
1388 * @cpu: CPU number to execute work on
1389 * @wq: workqueue to use
af9997e4 1390 * @dwork: work to queue
0fcb78c2
REB
1391 * @delay: number of jiffies to wait before queueing
1392 *
715f1300
TH
1393 * Returns %false if @work was already on a queue, %true otherwise. If
1394 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1395 * execution.
0fcb78c2 1396 */
d4283e93
TH
1397bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1398 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1399{
52bad64d 1400 struct work_struct *work = &dwork->work;
d4283e93 1401 bool ret = false;
8930caba
TH
1402 unsigned long flags;
1403
715f1300
TH
1404 if (!delay)
1405 return queue_work_on(cpu, wq, &dwork->work);
1406
8930caba
TH
1407 /* read the comment in __queue_work() */
1408 local_irq_save(flags);
7a6bc1cd 1409
22df02bb 1410 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1411 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1412 ret = true;
7a6bc1cd 1413 }
8930caba
TH
1414
1415 local_irq_restore(flags);
7a6bc1cd
VP
1416 return ret;
1417}
ae90dd5d 1418EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 1419
0a13c00e
TH
1420/**
1421 * queue_delayed_work - queue work on a workqueue after delay
1422 * @wq: workqueue to use
1423 * @dwork: delayable work to queue
1424 * @delay: number of jiffies to wait before queueing
1425 *
715f1300 1426 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1427 */
d4283e93 1428bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1429 struct delayed_work *dwork, unsigned long delay)
1430{
57469821 1431 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1432}
1433EXPORT_SYMBOL_GPL(queue_delayed_work);
1434
8376fe22
TH
1435/**
1436 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1437 * @cpu: CPU number to execute work on
1438 * @wq: workqueue to use
1439 * @dwork: work to queue
1440 * @delay: number of jiffies to wait before queueing
1441 *
1442 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1443 * modify @dwork's timer so that it expires after @delay. If @delay is
1444 * zero, @work is guaranteed to be scheduled immediately regardless of its
1445 * current state.
1446 *
1447 * Returns %false if @dwork was idle and queued, %true if @dwork was
1448 * pending and its timer was modified.
1449 *
1450 * This function is safe to call from any context other than IRQ handler.
1451 * See try_to_grab_pending() for details.
1452 */
1453bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1454 struct delayed_work *dwork, unsigned long delay)
1455{
1456 unsigned long flags;
1457 int ret;
1458
1459 do {
1460 ret = try_to_grab_pending(&dwork->work, true, &flags);
1461 } while (unlikely(ret == -EAGAIN));
1462
1463 if (likely(ret >= 0)) {
1464 __queue_delayed_work(cpu, wq, dwork, delay);
1465 local_irq_restore(flags);
1466 }
1467
1468 /* -ENOENT from try_to_grab_pending() becomes %true */
1469 return ret;
1470}
1471EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1472
1473/**
1474 * mod_delayed_work - modify delay of or queue a delayed work
1475 * @wq: workqueue to use
1476 * @dwork: work to queue
1477 * @delay: number of jiffies to wait before queueing
1478 *
1479 * mod_delayed_work_on() on local CPU.
1480 */
1481bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1482 unsigned long delay)
1483{
1484 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1485}
1486EXPORT_SYMBOL_GPL(mod_delayed_work);
1487
c8e55f36
TH
1488/**
1489 * worker_enter_idle - enter idle state
1490 * @worker: worker which is entering idle state
1491 *
1492 * @worker is entering idle state. Update stats and idle timer if
1493 * necessary.
1494 *
1495 * LOCKING:
1496 * spin_lock_irq(gcwq->lock).
1497 */
1498static void worker_enter_idle(struct worker *worker)
1da177e4 1499{
bd7bdd43
TH
1500 struct worker_pool *pool = worker->pool;
1501 struct global_cwq *gcwq = pool->gcwq;
c8e55f36
TH
1502
1503 BUG_ON(worker->flags & WORKER_IDLE);
1504 BUG_ON(!list_empty(&worker->entry) &&
1505 (worker->hentry.next || worker->hentry.pprev));
1506
cb444766
TH
1507 /* can't use worker_set_flags(), also called from start_worker() */
1508 worker->flags |= WORKER_IDLE;
bd7bdd43 1509 pool->nr_idle++;
e22bee78 1510 worker->last_active = jiffies;
c8e55f36
TH
1511
1512 /* idle_list is LIFO */
bd7bdd43 1513 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1514
628c78e7
TH
1515 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1516 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1517
544ecf31 1518 /*
628c78e7
TH
1519 * Sanity check nr_running. Because gcwq_unbind_fn() releases
1520 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1521 * nr_running, the warning may trigger spuriously. Check iff
1522 * unbind is not in progress.
544ecf31 1523 */
628c78e7 1524 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
bd7bdd43 1525 pool->nr_workers == pool->nr_idle &&
63d95a91 1526 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1527}
1528
1529/**
1530 * worker_leave_idle - leave idle state
1531 * @worker: worker which is leaving idle state
1532 *
1533 * @worker is leaving idle state. Update stats.
1534 *
1535 * LOCKING:
1536 * spin_lock_irq(gcwq->lock).
1537 */
1538static void worker_leave_idle(struct worker *worker)
1539{
bd7bdd43 1540 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1541
1542 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1543 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1544 pool->nr_idle--;
c8e55f36
TH
1545 list_del_init(&worker->entry);
1546}
1547
e22bee78
TH
1548/**
1549 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1550 * @worker: self
1551 *
1552 * Works which are scheduled while the cpu is online must at least be
1553 * scheduled to a worker which is bound to the cpu so that if they are
1554 * flushed from cpu callbacks while cpu is going down, they are
1555 * guaranteed to execute on the cpu.
1556 *
1557 * This function is to be used by rogue workers and rescuers to bind
1558 * themselves to the target cpu and may race with cpu going down or
1559 * coming online. kthread_bind() can't be used because it may put the
1560 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1561 * verbatim as it's best effort and blocking and gcwq may be
1562 * [dis]associated in the meantime.
1563 *
f2d5a0ee
TH
1564 * This function tries set_cpus_allowed() and locks gcwq and verifies the
1565 * binding against %GCWQ_DISASSOCIATED which is set during
1566 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1567 * enters idle state or fetches works without dropping lock, it can
1568 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1569 *
1570 * CONTEXT:
1571 * Might sleep. Called without any lock but returns with gcwq->lock
1572 * held.
1573 *
1574 * RETURNS:
1575 * %true if the associated gcwq is online (@worker is successfully
1576 * bound), %false if offline.
1577 */
1578static bool worker_maybe_bind_and_lock(struct worker *worker)
972fa1c5 1579__acquires(&gcwq->lock)
e22bee78 1580{
bd7bdd43 1581 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1582 struct task_struct *task = worker->task;
1583
1584 while (true) {
4e6045f1 1585 /*
e22bee78
TH
1586 * The following call may fail, succeed or succeed
1587 * without actually migrating the task to the cpu if
1588 * it races with cpu hotunplug operation. Verify
1589 * against GCWQ_DISASSOCIATED.
4e6045f1 1590 */
f3421797
TH
1591 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1592 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
e22bee78
TH
1593
1594 spin_lock_irq(&gcwq->lock);
1595 if (gcwq->flags & GCWQ_DISASSOCIATED)
1596 return false;
1597 if (task_cpu(task) == gcwq->cpu &&
1598 cpumask_equal(&current->cpus_allowed,
1599 get_cpu_mask(gcwq->cpu)))
1600 return true;
1601 spin_unlock_irq(&gcwq->lock);
1602
5035b20f
TH
1603 /*
1604 * We've raced with CPU hot[un]plug. Give it a breather
1605 * and retry migration. cond_resched() is required here;
1606 * otherwise, we might deadlock against cpu_stop trying to
1607 * bring down the CPU on non-preemptive kernel.
1608 */
e22bee78 1609 cpu_relax();
5035b20f 1610 cond_resched();
e22bee78
TH
1611 }
1612}
1613
25511a47
TH
1614struct idle_rebind {
1615 int cnt; /* # workers to be rebound */
1616 struct completion done; /* all workers rebound */
1617};
1618
1619/*
1620 * Rebind an idle @worker to its CPU. During CPU onlining, this has to
1621 * happen synchronously for idle workers. worker_thread() will test
1622 * %WORKER_REBIND before leaving idle and call this function.
1623 */
1624static void idle_worker_rebind(struct worker *worker)
1625{
1626 struct global_cwq *gcwq = worker->pool->gcwq;
1627
1628 /* CPU must be online at this point */
1629 WARN_ON(!worker_maybe_bind_and_lock(worker));
1630 if (!--worker->idle_rebind->cnt)
1631 complete(&worker->idle_rebind->done);
1632 spin_unlock_irq(&worker->pool->gcwq->lock);
1633
1634 /* we did our part, wait for rebind_workers() to finish up */
1635 wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
1636}
1637
e22bee78 1638/*
25511a47 1639 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1640 * the associated cpu which is coming back online. This is scheduled by
1641 * cpu up but can race with other cpu hotplug operations and may be
1642 * executed twice without intervening cpu down.
e22bee78 1643 */
25511a47 1644static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1645{
1646 struct worker *worker = container_of(work, struct worker, rebind_work);
bd7bdd43 1647 struct global_cwq *gcwq = worker->pool->gcwq;
e22bee78
TH
1648
1649 if (worker_maybe_bind_and_lock(worker))
1650 worker_clr_flags(worker, WORKER_REBIND);
1651
1652 spin_unlock_irq(&gcwq->lock);
1653}
1654
25511a47
TH
1655/**
1656 * rebind_workers - rebind all workers of a gcwq to the associated CPU
1657 * @gcwq: gcwq of interest
1658 *
1659 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
1660 * is different for idle and busy ones.
1661 *
1662 * The idle ones should be rebound synchronously and idle rebinding should
1663 * be complete before any worker starts executing work items with
1664 * concurrency management enabled; otherwise, scheduler may oops trying to
1665 * wake up non-local idle worker from wq_worker_sleeping().
1666 *
1667 * This is achieved by repeatedly requesting rebinding until all idle
1668 * workers are known to have been rebound under @gcwq->lock and holding all
1669 * idle workers from becoming busy until idle rebinding is complete.
1670 *
1671 * Once idle workers are rebound, busy workers can be rebound as they
1672 * finish executing their current work items. Queueing the rebind work at
1673 * the head of their scheduled lists is enough. Note that nr_running will
1674 * be properbly bumped as busy workers rebind.
1675 *
1676 * On return, all workers are guaranteed to either be bound or have rebind
1677 * work item scheduled.
1678 */
1679static void rebind_workers(struct global_cwq *gcwq)
1680 __releases(&gcwq->lock) __acquires(&gcwq->lock)
1681{
1682 struct idle_rebind idle_rebind;
1683 struct worker_pool *pool;
1684 struct worker *worker;
1685 struct hlist_node *pos;
1686 int i;
1687
1688 lockdep_assert_held(&gcwq->lock);
1689
1690 for_each_worker_pool(pool, gcwq)
1691 lockdep_assert_held(&pool->manager_mutex);
1692
1693 /*
1694 * Rebind idle workers. Interlocked both ways. We wait for
1695 * workers to rebind via @idle_rebind.done. Workers will wait for
1696 * us to finish up by watching %WORKER_REBIND.
1697 */
1698 init_completion(&idle_rebind.done);
1699retry:
1700 idle_rebind.cnt = 1;
1701 INIT_COMPLETION(idle_rebind.done);
1702
1703 /* set REBIND and kick idle ones, we'll wait for these later */
1704 for_each_worker_pool(pool, gcwq) {
1705 list_for_each_entry(worker, &pool->idle_list, entry) {
1706 if (worker->flags & WORKER_REBIND)
1707 continue;
1708
1709 /* morph UNBOUND to REBIND */
1710 worker->flags &= ~WORKER_UNBOUND;
1711 worker->flags |= WORKER_REBIND;
1712
1713 idle_rebind.cnt++;
1714 worker->idle_rebind = &idle_rebind;
1715
1716 /* worker_thread() will call idle_worker_rebind() */
1717 wake_up_process(worker->task);
1718 }
1719 }
1720
1721 if (--idle_rebind.cnt) {
1722 spin_unlock_irq(&gcwq->lock);
1723 wait_for_completion(&idle_rebind.done);
1724 spin_lock_irq(&gcwq->lock);
1725 /* busy ones might have become idle while waiting, retry */
1726 goto retry;
1727 }
1728
1729 /*
1730 * All idle workers are rebound and waiting for %WORKER_REBIND to
1731 * be cleared inside idle_worker_rebind(). Clear and release.
1732 * Clearing %WORKER_REBIND from this foreign context is safe
1733 * because these workers are still guaranteed to be idle.
1734 */
1735 for_each_worker_pool(pool, gcwq)
1736 list_for_each_entry(worker, &pool->idle_list, entry)
1737 worker->flags &= ~WORKER_REBIND;
1738
1739 wake_up_all(&gcwq->rebind_hold);
1740
1741 /* rebind busy workers */
1742 for_each_busy_worker(worker, i, pos, gcwq) {
1743 struct work_struct *rebind_work = &worker->rebind_work;
e2b6a6d5 1744 struct workqueue_struct *wq;
25511a47
TH
1745
1746 /* morph UNBOUND to REBIND */
1747 worker->flags &= ~WORKER_UNBOUND;
1748 worker->flags |= WORKER_REBIND;
1749
1750 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1751 work_data_bits(rebind_work)))
1752 continue;
1753
25511a47 1754 debug_work_activate(rebind_work);
e2b6a6d5
JK
1755
1756 /*
1757 * wq doesn't really matter but let's keep @worker->pool
1758 * and @cwq->pool consistent for sanity.
1759 */
1760 if (worker_pool_pri(worker->pool))
1761 wq = system_highpri_wq;
1762 else
1763 wq = system_wq;
1764
1765 insert_work(get_cwq(gcwq->cpu, wq), rebind_work,
1766 worker->scheduled.next,
1767 work_color_to_flags(WORK_NO_COLOR));
25511a47
TH
1768 }
1769}
1770
c34056a3
TH
1771static struct worker *alloc_worker(void)
1772{
1773 struct worker *worker;
1774
1775 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1776 if (worker) {
1777 INIT_LIST_HEAD(&worker->entry);
affee4b2 1778 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1779 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1780 /* on creation a worker is in !idle && prep state */
1781 worker->flags = WORKER_PREP;
c8e55f36 1782 }
c34056a3
TH
1783 return worker;
1784}
1785
1786/**
1787 * create_worker - create a new workqueue worker
63d95a91 1788 * @pool: pool the new worker will belong to
c34056a3 1789 *
63d95a91 1790 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1791 * can be started by calling start_worker() or destroyed using
1792 * destroy_worker().
1793 *
1794 * CONTEXT:
1795 * Might sleep. Does GFP_KERNEL allocations.
1796 *
1797 * RETURNS:
1798 * Pointer to the newly created worker.
1799 */
bc2ae0f5 1800static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1801{
63d95a91 1802 struct global_cwq *gcwq = pool->gcwq;
3270476a 1803 const char *pri = worker_pool_pri(pool) ? "H" : "";
c34056a3 1804 struct worker *worker = NULL;
f3421797 1805 int id = -1;
c34056a3 1806
8b03ae3c 1807 spin_lock_irq(&gcwq->lock);
bd7bdd43 1808 while (ida_get_new(&pool->worker_ida, &id)) {
8b03ae3c 1809 spin_unlock_irq(&gcwq->lock);
bd7bdd43 1810 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1811 goto fail;
8b03ae3c 1812 spin_lock_irq(&gcwq->lock);
c34056a3 1813 }
8b03ae3c 1814 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1815
1816 worker = alloc_worker();
1817 if (!worker)
1818 goto fail;
1819
bd7bdd43 1820 worker->pool = pool;
c34056a3
TH
1821 worker->id = id;
1822
bc2ae0f5 1823 if (gcwq->cpu != WORK_CPU_UNBOUND)
94dcf29a 1824 worker->task = kthread_create_on_node(worker_thread,
3270476a
TH
1825 worker, cpu_to_node(gcwq->cpu),
1826 "kworker/%u:%d%s", gcwq->cpu, id, pri);
f3421797
TH
1827 else
1828 worker->task = kthread_create(worker_thread, worker,
3270476a 1829 "kworker/u:%d%s", id, pri);
c34056a3
TH
1830 if (IS_ERR(worker->task))
1831 goto fail;
1832
3270476a
TH
1833 if (worker_pool_pri(pool))
1834 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1835
db7bccf4 1836 /*
bc2ae0f5
TH
1837 * Determine CPU binding of the new worker depending on
1838 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
1839 * flag remains stable across this function. See the comments
1840 * above the flag definition for details.
1841 *
1842 * As an unbound worker may later become a regular one if CPU comes
1843 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1844 */
bc2ae0f5 1845 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
8b03ae3c 1846 kthread_bind(worker->task, gcwq->cpu);
bc2ae0f5 1847 } else {
db7bccf4 1848 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1849 worker->flags |= WORKER_UNBOUND;
f3421797 1850 }
c34056a3
TH
1851
1852 return worker;
1853fail:
1854 if (id >= 0) {
8b03ae3c 1855 spin_lock_irq(&gcwq->lock);
bd7bdd43 1856 ida_remove(&pool->worker_ida, id);
8b03ae3c 1857 spin_unlock_irq(&gcwq->lock);
c34056a3
TH
1858 }
1859 kfree(worker);
1860 return NULL;
1861}
1862
1863/**
1864 * start_worker - start a newly created worker
1865 * @worker: worker to start
1866 *
c8e55f36 1867 * Make the gcwq aware of @worker and start it.
c34056a3
TH
1868 *
1869 * CONTEXT:
8b03ae3c 1870 * spin_lock_irq(gcwq->lock).
c34056a3
TH
1871 */
1872static void start_worker(struct worker *worker)
1873{
cb444766 1874 worker->flags |= WORKER_STARTED;
bd7bdd43 1875 worker->pool->nr_workers++;
c8e55f36 1876 worker_enter_idle(worker);
c34056a3
TH
1877 wake_up_process(worker->task);
1878}
1879
1880/**
1881 * destroy_worker - destroy a workqueue worker
1882 * @worker: worker to be destroyed
1883 *
c8e55f36
TH
1884 * Destroy @worker and adjust @gcwq stats accordingly.
1885 *
1886 * CONTEXT:
1887 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
c34056a3
TH
1888 */
1889static void destroy_worker(struct worker *worker)
1890{
bd7bdd43
TH
1891 struct worker_pool *pool = worker->pool;
1892 struct global_cwq *gcwq = pool->gcwq;
c34056a3
TH
1893 int id = worker->id;
1894
1895 /* sanity check frenzy */
1896 BUG_ON(worker->current_work);
affee4b2 1897 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1898
c8e55f36 1899 if (worker->flags & WORKER_STARTED)
bd7bdd43 1900 pool->nr_workers--;
c8e55f36 1901 if (worker->flags & WORKER_IDLE)
bd7bdd43 1902 pool->nr_idle--;
c8e55f36
TH
1903
1904 list_del_init(&worker->entry);
cb444766 1905 worker->flags |= WORKER_DIE;
c8e55f36
TH
1906
1907 spin_unlock_irq(&gcwq->lock);
1908
c34056a3
TH
1909 kthread_stop(worker->task);
1910 kfree(worker);
1911
8b03ae3c 1912 spin_lock_irq(&gcwq->lock);
bd7bdd43 1913 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1914}
1915
63d95a91 1916static void idle_worker_timeout(unsigned long __pool)
e22bee78 1917{
63d95a91
TH
1918 struct worker_pool *pool = (void *)__pool;
1919 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1920
1921 spin_lock_irq(&gcwq->lock);
1922
63d95a91 1923 if (too_many_workers(pool)) {
e22bee78
TH
1924 struct worker *worker;
1925 unsigned long expires;
1926
1927 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1928 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1929 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1930
1931 if (time_before(jiffies, expires))
63d95a91 1932 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1933 else {
1934 /* it's been idle for too long, wake up manager */
11ebea50 1935 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1936 wake_up_worker(pool);
d5abe669 1937 }
e22bee78
TH
1938 }
1939
1940 spin_unlock_irq(&gcwq->lock);
1941}
d5abe669 1942
e22bee78
TH
1943static bool send_mayday(struct work_struct *work)
1944{
1945 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1946 struct workqueue_struct *wq = cwq->wq;
f3421797 1947 unsigned int cpu;
e22bee78
TH
1948
1949 if (!(wq->flags & WQ_RESCUER))
1950 return false;
1951
1952 /* mayday mayday mayday */
bd7bdd43 1953 cpu = cwq->pool->gcwq->cpu;
f3421797
TH
1954 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1955 if (cpu == WORK_CPU_UNBOUND)
1956 cpu = 0;
f2e005aa 1957 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1958 wake_up_process(wq->rescuer->task);
1959 return true;
1960}
1961
63d95a91 1962static void gcwq_mayday_timeout(unsigned long __pool)
e22bee78 1963{
63d95a91
TH
1964 struct worker_pool *pool = (void *)__pool;
1965 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
1966 struct work_struct *work;
1967
1968 spin_lock_irq(&gcwq->lock);
1969
63d95a91 1970 if (need_to_create_worker(pool)) {
e22bee78
TH
1971 /*
1972 * We've been trying to create a new worker but
1973 * haven't been successful. We might be hitting an
1974 * allocation deadlock. Send distress signals to
1975 * rescuers.
1976 */
63d95a91 1977 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1978 send_mayday(work);
1da177e4 1979 }
e22bee78
TH
1980
1981 spin_unlock_irq(&gcwq->lock);
1982
63d95a91 1983 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1984}
1985
e22bee78
TH
1986/**
1987 * maybe_create_worker - create a new worker if necessary
63d95a91 1988 * @pool: pool to create a new worker for
e22bee78 1989 *
63d95a91 1990 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1991 * have at least one idle worker on return from this function. If
1992 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1993 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1994 * possible allocation deadlock.
1995 *
1996 * On return, need_to_create_worker() is guaranteed to be false and
1997 * may_start_working() true.
1998 *
1999 * LOCKING:
2000 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2001 * multiple times. Does GFP_KERNEL allocations. Called only from
2002 * manager.
2003 *
2004 * RETURNS:
2005 * false if no action was taken and gcwq->lock stayed locked, true
2006 * otherwise.
2007 */
63d95a91 2008static bool maybe_create_worker(struct worker_pool *pool)
06bd6ebf
NK
2009__releases(&gcwq->lock)
2010__acquires(&gcwq->lock)
1da177e4 2011{
63d95a91
TH
2012 struct global_cwq *gcwq = pool->gcwq;
2013
2014 if (!need_to_create_worker(pool))
e22bee78
TH
2015 return false;
2016restart:
9f9c2364
TH
2017 spin_unlock_irq(&gcwq->lock);
2018
e22bee78 2019 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2020 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2021
2022 while (true) {
2023 struct worker *worker;
2024
bc2ae0f5 2025 worker = create_worker(pool);
e22bee78 2026 if (worker) {
63d95a91 2027 del_timer_sync(&pool->mayday_timer);
e22bee78
TH
2028 spin_lock_irq(&gcwq->lock);
2029 start_worker(worker);
63d95a91 2030 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
2031 return true;
2032 }
2033
63d95a91 2034 if (!need_to_create_worker(pool))
e22bee78 2035 break;
1da177e4 2036
e22bee78
TH
2037 __set_current_state(TASK_INTERRUPTIBLE);
2038 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 2039
63d95a91 2040 if (!need_to_create_worker(pool))
e22bee78
TH
2041 break;
2042 }
2043
63d95a91 2044 del_timer_sync(&pool->mayday_timer);
e22bee78 2045 spin_lock_irq(&gcwq->lock);
63d95a91 2046 if (need_to_create_worker(pool))
e22bee78
TH
2047 goto restart;
2048 return true;
2049}
2050
2051/**
2052 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 2053 * @pool: pool to destroy workers for
e22bee78 2054 *
63d95a91 2055 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
2056 * IDLE_WORKER_TIMEOUT.
2057 *
2058 * LOCKING:
2059 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2060 * multiple times. Called only from manager.
2061 *
2062 * RETURNS:
2063 * false if no action was taken and gcwq->lock stayed locked, true
2064 * otherwise.
2065 */
63d95a91 2066static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2067{
2068 bool ret = false;
1da177e4 2069
63d95a91 2070 while (too_many_workers(pool)) {
e22bee78
TH
2071 struct worker *worker;
2072 unsigned long expires;
3af24433 2073
63d95a91 2074 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2075 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2076
e22bee78 2077 if (time_before(jiffies, expires)) {
63d95a91 2078 mod_timer(&pool->idle_timer, expires);
3af24433 2079 break;
e22bee78 2080 }
1da177e4 2081
e22bee78
TH
2082 destroy_worker(worker);
2083 ret = true;
1da177e4 2084 }
3af24433 2085
e22bee78
TH
2086 return ret;
2087}
2088
2089/**
2090 * manage_workers - manage worker pool
2091 * @worker: self
2092 *
2093 * Assume the manager role and manage gcwq worker pool @worker belongs
2094 * to. At any given time, there can be only zero or one manager per
2095 * gcwq. The exclusion is handled automatically by this function.
2096 *
2097 * The caller can safely start processing works on false return. On
2098 * true return, it's guaranteed that need_to_create_worker() is false
2099 * and may_start_working() is true.
2100 *
2101 * CONTEXT:
2102 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2103 * multiple times. Does GFP_KERNEL allocations.
2104 *
2105 * RETURNS:
2106 * false if no action was taken and gcwq->lock stayed locked, true if
2107 * some action was taken.
2108 */
2109static bool manage_workers(struct worker *worker)
2110{
63d95a91 2111 struct worker_pool *pool = worker->pool;
e22bee78
TH
2112 bool ret = false;
2113
60373152 2114 if (!mutex_trylock(&pool->manager_mutex))
e22bee78
TH
2115 return ret;
2116
11ebea50 2117 pool->flags &= ~POOL_MANAGE_WORKERS;
e22bee78
TH
2118
2119 /*
2120 * Destroy and then create so that may_start_working() is true
2121 * on return.
2122 */
63d95a91
TH
2123 ret |= maybe_destroy_workers(pool);
2124 ret |= maybe_create_worker(pool);
e22bee78 2125
60373152 2126 mutex_unlock(&pool->manager_mutex);
e22bee78
TH
2127 return ret;
2128}
2129
a62428c0
TH
2130/**
2131 * process_one_work - process single work
c34056a3 2132 * @worker: self
a62428c0
TH
2133 * @work: work to process
2134 *
2135 * Process @work. This function contains all the logics necessary to
2136 * process a single work including synchronization against and
2137 * interaction with other workers on the same cpu, queueing and
2138 * flushing. As long as context requirement is met, any worker can
2139 * call this function to process a work.
2140 *
2141 * CONTEXT:
8b03ae3c 2142 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
a62428c0 2143 */
c34056a3 2144static void process_one_work(struct worker *worker, struct work_struct *work)
06bd6ebf
NK
2145__releases(&gcwq->lock)
2146__acquires(&gcwq->lock)
a62428c0 2147{
7e11629d 2148 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43
TH
2149 struct worker_pool *pool = worker->pool;
2150 struct global_cwq *gcwq = pool->gcwq;
c8e55f36 2151 struct hlist_head *bwh = busy_worker_head(gcwq, work);
fb0e7beb 2152 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
a62428c0 2153 work_func_t f = work->func;
73f53c4a 2154 int work_color;
7e11629d 2155 struct worker *collision;
a62428c0
TH
2156#ifdef CONFIG_LOCKDEP
2157 /*
2158 * It is permissible to free the struct work_struct from
2159 * inside the function that is called from it, this we need to
2160 * take into account for lockdep too. To avoid bogus "held
2161 * lock freed" warnings as well as problems when looking into
2162 * work->lockdep_map, make a copy and use that here.
2163 */
4d82a1de
PZ
2164 struct lockdep_map lockdep_map;
2165
2166 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2167#endif
6fec10a1
TH
2168 /*
2169 * Ensure we're on the correct CPU. DISASSOCIATED test is
2170 * necessary to avoid spurious warnings from rescuers servicing the
2171 * unbound or a disassociated gcwq.
2172 */
25511a47 2173 WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
6fec10a1 2174 !(gcwq->flags & GCWQ_DISASSOCIATED) &&
25511a47
TH
2175 raw_smp_processor_id() != gcwq->cpu);
2176
7e11629d
TH
2177 /*
2178 * A single work shouldn't be executed concurrently by
2179 * multiple workers on a single cpu. Check whether anyone is
2180 * already processing the work. If so, defer the work to the
2181 * currently executing one.
2182 */
2183 collision = __find_worker_executing_work(gcwq, bwh, work);
2184 if (unlikely(collision)) {
2185 move_linked_works(work, &collision->scheduled, NULL);
2186 return;
2187 }
2188
8930caba 2189 /* claim and dequeue */
a62428c0 2190 debug_work_deactivate(work);
c8e55f36 2191 hlist_add_head(&worker->hentry, bwh);
c34056a3 2192 worker->current_work = work;
8cca0eea 2193 worker->current_cwq = cwq;
73f53c4a 2194 work_color = get_work_color(work);
7a22ad75 2195
a62428c0
TH
2196 list_del_init(&work->entry);
2197
fb0e7beb
TH
2198 /*
2199 * CPU intensive works don't participate in concurrency
2200 * management. They're the scheduler's responsibility.
2201 */
2202 if (unlikely(cpu_intensive))
2203 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2204
974271c4
TH
2205 /*
2206 * Unbound gcwq isn't concurrency managed and work items should be
2207 * executed ASAP. Wake up another worker if necessary.
2208 */
63d95a91
TH
2209 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2210 wake_up_worker(pool);
974271c4 2211
8930caba 2212 /*
23657bb1
TH
2213 * Record the last CPU and clear PENDING which should be the last
2214 * update to @work. Also, do this inside @gcwq->lock so that
2215 * PENDING and queued state changes happen together while IRQ is
2216 * disabled.
8930caba 2217 */
8930caba 2218 set_work_cpu_and_clear_pending(work, gcwq->cpu);
a62428c0 2219
8930caba 2220 spin_unlock_irq(&gcwq->lock);
959d1af8 2221
e159489b 2222 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2223 lock_map_acquire(&lockdep_map);
e36c886a 2224 trace_workqueue_execute_start(work);
a62428c0 2225 f(work);
e36c886a
AV
2226 /*
2227 * While we must be careful to not use "work" after this, the trace
2228 * point will only record its address.
2229 */
2230 trace_workqueue_execute_end(work);
a62428c0
TH
2231 lock_map_release(&lockdep_map);
2232 lock_map_release(&cwq->wq->lockdep_map);
2233
2234 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2235 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2236 " last function: %pf\n",
2237 current->comm, preempt_count(), task_pid_nr(current), f);
a62428c0
TH
2238 debug_show_held_locks(current);
2239 dump_stack();
2240 }
2241
8b03ae3c 2242 spin_lock_irq(&gcwq->lock);
a62428c0 2243
fb0e7beb
TH
2244 /* clear cpu intensive status */
2245 if (unlikely(cpu_intensive))
2246 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2247
a62428c0 2248 /* we're done with it, release */
c8e55f36 2249 hlist_del_init(&worker->hentry);
c34056a3 2250 worker->current_work = NULL;
8cca0eea 2251 worker->current_cwq = NULL;
8a2e8e5d 2252 cwq_dec_nr_in_flight(cwq, work_color, false);
a62428c0
TH
2253}
2254
affee4b2
TH
2255/**
2256 * process_scheduled_works - process scheduled works
2257 * @worker: self
2258 *
2259 * Process all scheduled works. Please note that the scheduled list
2260 * may change while processing a work, so this function repeatedly
2261 * fetches a work from the top and executes it.
2262 *
2263 * CONTEXT:
8b03ae3c 2264 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
affee4b2
TH
2265 * multiple times.
2266 */
2267static void process_scheduled_works(struct worker *worker)
1da177e4 2268{
affee4b2
TH
2269 while (!list_empty(&worker->scheduled)) {
2270 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2271 struct work_struct, entry);
c34056a3 2272 process_one_work(worker, work);
1da177e4 2273 }
1da177e4
LT
2274}
2275
4690c4ab
TH
2276/**
2277 * worker_thread - the worker thread function
c34056a3 2278 * @__worker: self
4690c4ab 2279 *
e22bee78
TH
2280 * The gcwq worker thread function. There's a single dynamic pool of
2281 * these per each cpu. These workers process all works regardless of
2282 * their specific target workqueue. The only exception is works which
2283 * belong to workqueues with a rescuer which will be explained in
2284 * rescuer_thread().
4690c4ab 2285 */
c34056a3 2286static int worker_thread(void *__worker)
1da177e4 2287{
c34056a3 2288 struct worker *worker = __worker;
bd7bdd43
TH
2289 struct worker_pool *pool = worker->pool;
2290 struct global_cwq *gcwq = pool->gcwq;
1da177e4 2291
e22bee78
TH
2292 /* tell the scheduler that this is a workqueue worker */
2293 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2294woke_up:
c8e55f36 2295 spin_lock_irq(&gcwq->lock);
1da177e4 2296
25511a47
TH
2297 /*
2298 * DIE can be set only while idle and REBIND set while busy has
2299 * @worker->rebind_work scheduled. Checking here is enough.
2300 */
2301 if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
c8e55f36 2302 spin_unlock_irq(&gcwq->lock);
25511a47
TH
2303
2304 if (worker->flags & WORKER_DIE) {
2305 worker->task->flags &= ~PF_WQ_WORKER;
2306 return 0;
2307 }
2308
2309 idle_worker_rebind(worker);
2310 goto woke_up;
c8e55f36 2311 }
affee4b2 2312
c8e55f36 2313 worker_leave_idle(worker);
db7bccf4 2314recheck:
e22bee78 2315 /* no more worker necessary? */
63d95a91 2316 if (!need_more_worker(pool))
e22bee78
TH
2317 goto sleep;
2318
2319 /* do we need to manage? */
63d95a91 2320 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2321 goto recheck;
2322
c8e55f36
TH
2323 /*
2324 * ->scheduled list can only be filled while a worker is
2325 * preparing to process a work or actually processing it.
2326 * Make sure nobody diddled with it while I was sleeping.
2327 */
2328 BUG_ON(!list_empty(&worker->scheduled));
2329
e22bee78
TH
2330 /*
2331 * When control reaches this point, we're guaranteed to have
2332 * at least one idle worker or that someone else has already
2333 * assumed the manager role.
2334 */
2335 worker_clr_flags(worker, WORKER_PREP);
2336
2337 do {
c8e55f36 2338 struct work_struct *work =
bd7bdd43 2339 list_first_entry(&pool->worklist,
c8e55f36
TH
2340 struct work_struct, entry);
2341
2342 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2343 /* optimization path, not strictly necessary */
2344 process_one_work(worker, work);
2345 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2346 process_scheduled_works(worker);
c8e55f36
TH
2347 } else {
2348 move_linked_works(work, &worker->scheduled, NULL);
2349 process_scheduled_works(worker);
affee4b2 2350 }
63d95a91 2351 } while (keep_working(pool));
e22bee78
TH
2352
2353 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2354sleep:
63d95a91 2355 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2356 goto recheck;
d313dd85 2357
c8e55f36 2358 /*
e22bee78
TH
2359 * gcwq->lock is held and there's no work to process and no
2360 * need to manage, sleep. Workers are woken up only while
2361 * holding gcwq->lock or from local cpu, so setting the
2362 * current state before releasing gcwq->lock is enough to
2363 * prevent losing any event.
c8e55f36
TH
2364 */
2365 worker_enter_idle(worker);
2366 __set_current_state(TASK_INTERRUPTIBLE);
2367 spin_unlock_irq(&gcwq->lock);
2368 schedule();
2369 goto woke_up;
1da177e4
LT
2370}
2371
e22bee78
TH
2372/**
2373 * rescuer_thread - the rescuer thread function
2374 * @__wq: the associated workqueue
2375 *
2376 * Workqueue rescuer thread function. There's one rescuer for each
2377 * workqueue which has WQ_RESCUER set.
2378 *
2379 * Regular work processing on a gcwq may block trying to create a new
2380 * worker which uses GFP_KERNEL allocation which has slight chance of
2381 * developing into deadlock if some works currently on the same queue
2382 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2383 * the problem rescuer solves.
2384 *
2385 * When such condition is possible, the gcwq summons rescuers of all
2386 * workqueues which have works queued on the gcwq and let them process
2387 * those works so that forward progress can be guaranteed.
2388 *
2389 * This should happen rarely.
2390 */
2391static int rescuer_thread(void *__wq)
2392{
2393 struct workqueue_struct *wq = __wq;
2394 struct worker *rescuer = wq->rescuer;
2395 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2396 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2397 unsigned int cpu;
2398
2399 set_user_nice(current, RESCUER_NICE_LEVEL);
2400repeat:
2401 set_current_state(TASK_INTERRUPTIBLE);
2402
2403 if (kthread_should_stop())
2404 return 0;
2405
f3421797
TH
2406 /*
2407 * See whether any cpu is asking for help. Unbounded
2408 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2409 */
f2e005aa 2410 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2411 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2412 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43
TH
2413 struct worker_pool *pool = cwq->pool;
2414 struct global_cwq *gcwq = pool->gcwq;
e22bee78
TH
2415 struct work_struct *work, *n;
2416
2417 __set_current_state(TASK_RUNNING);
f2e005aa 2418 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2419
2420 /* migrate to the target cpu if possible */
bd7bdd43 2421 rescuer->pool = pool;
e22bee78
TH
2422 worker_maybe_bind_and_lock(rescuer);
2423
2424 /*
2425 * Slurp in all works issued via this workqueue and
2426 * process'em.
2427 */
2428 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2429 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2430 if (get_work_cwq(work) == cwq)
2431 move_linked_works(work, scheduled, &n);
2432
2433 process_scheduled_works(rescuer);
7576958a
TH
2434
2435 /*
2436 * Leave this gcwq. If keep_working() is %true, notify a
2437 * regular worker; otherwise, we end up with 0 concurrency
2438 * and stalling the execution.
2439 */
63d95a91
TH
2440 if (keep_working(pool))
2441 wake_up_worker(pool);
7576958a 2442
e22bee78
TH
2443 spin_unlock_irq(&gcwq->lock);
2444 }
2445
2446 schedule();
2447 goto repeat;
1da177e4
LT
2448}
2449
fc2e4d70
ON
2450struct wq_barrier {
2451 struct work_struct work;
2452 struct completion done;
2453};
2454
2455static void wq_barrier_func(struct work_struct *work)
2456{
2457 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2458 complete(&barr->done);
2459}
2460
4690c4ab
TH
2461/**
2462 * insert_wq_barrier - insert a barrier work
2463 * @cwq: cwq to insert barrier into
2464 * @barr: wq_barrier to insert
affee4b2
TH
2465 * @target: target work to attach @barr to
2466 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2467 *
affee4b2
TH
2468 * @barr is linked to @target such that @barr is completed only after
2469 * @target finishes execution. Please note that the ordering
2470 * guarantee is observed only with respect to @target and on the local
2471 * cpu.
2472 *
2473 * Currently, a queued barrier can't be canceled. This is because
2474 * try_to_grab_pending() can't determine whether the work to be
2475 * grabbed is at the head of the queue and thus can't clear LINKED
2476 * flag of the previous work while there must be a valid next work
2477 * after a work with LINKED flag set.
2478 *
2479 * Note that when @worker is non-NULL, @target may be modified
2480 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2481 *
2482 * CONTEXT:
8b03ae3c 2483 * spin_lock_irq(gcwq->lock).
4690c4ab 2484 */
83c22520 2485static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2486 struct wq_barrier *barr,
2487 struct work_struct *target, struct worker *worker)
fc2e4d70 2488{
affee4b2
TH
2489 struct list_head *head;
2490 unsigned int linked = 0;
2491
dc186ad7 2492 /*
8b03ae3c 2493 * debugobject calls are safe here even with gcwq->lock locked
dc186ad7
TG
2494 * as we know for sure that this will not trigger any of the
2495 * checks and call back into the fixup functions where we
2496 * might deadlock.
2497 */
ca1cab37 2498 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2499 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2500 init_completion(&barr->done);
83c22520 2501
affee4b2
TH
2502 /*
2503 * If @target is currently being executed, schedule the
2504 * barrier to the worker; otherwise, put it after @target.
2505 */
2506 if (worker)
2507 head = worker->scheduled.next;
2508 else {
2509 unsigned long *bits = work_data_bits(target);
2510
2511 head = target->entry.next;
2512 /* there can already be other linked works, inherit and set */
2513 linked = *bits & WORK_STRUCT_LINKED;
2514 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2515 }
2516
dc186ad7 2517 debug_work_activate(&barr->work);
affee4b2
TH
2518 insert_work(cwq, &barr->work, head,
2519 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2520}
2521
73f53c4a
TH
2522/**
2523 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2524 * @wq: workqueue being flushed
2525 * @flush_color: new flush color, < 0 for no-op
2526 * @work_color: new work color, < 0 for no-op
2527 *
2528 * Prepare cwqs for workqueue flushing.
2529 *
2530 * If @flush_color is non-negative, flush_color on all cwqs should be
2531 * -1. If no cwq has in-flight commands at the specified color, all
2532 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2533 * has in flight commands, its cwq->flush_color is set to
2534 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2535 * wakeup logic is armed and %true is returned.
2536 *
2537 * The caller should have initialized @wq->first_flusher prior to
2538 * calling this function with non-negative @flush_color. If
2539 * @flush_color is negative, no flush color update is done and %false
2540 * is returned.
2541 *
2542 * If @work_color is non-negative, all cwqs should have the same
2543 * work_color which is previous to @work_color and all will be
2544 * advanced to @work_color.
2545 *
2546 * CONTEXT:
2547 * mutex_lock(wq->flush_mutex).
2548 *
2549 * RETURNS:
2550 * %true if @flush_color >= 0 and there's something to flush. %false
2551 * otherwise.
2552 */
2553static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2554 int flush_color, int work_color)
1da177e4 2555{
73f53c4a
TH
2556 bool wait = false;
2557 unsigned int cpu;
1da177e4 2558
73f53c4a
TH
2559 if (flush_color >= 0) {
2560 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2561 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2562 }
2355b70f 2563
f3421797 2564 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2565 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
bd7bdd43 2566 struct global_cwq *gcwq = cwq->pool->gcwq;
fc2e4d70 2567
8b03ae3c 2568 spin_lock_irq(&gcwq->lock);
83c22520 2569
73f53c4a
TH
2570 if (flush_color >= 0) {
2571 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2572
73f53c4a
TH
2573 if (cwq->nr_in_flight[flush_color]) {
2574 cwq->flush_color = flush_color;
2575 atomic_inc(&wq->nr_cwqs_to_flush);
2576 wait = true;
2577 }
2578 }
1da177e4 2579
73f53c4a
TH
2580 if (work_color >= 0) {
2581 BUG_ON(work_color != work_next_color(cwq->work_color));
2582 cwq->work_color = work_color;
2583 }
1da177e4 2584
8b03ae3c 2585 spin_unlock_irq(&gcwq->lock);
1da177e4 2586 }
2355b70f 2587
73f53c4a
TH
2588 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2589 complete(&wq->first_flusher->done);
14441960 2590
73f53c4a 2591 return wait;
1da177e4
LT
2592}
2593
0fcb78c2 2594/**
1da177e4 2595 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2596 * @wq: workqueue to flush
1da177e4
LT
2597 *
2598 * Forces execution of the workqueue and blocks until its completion.
2599 * This is typically used in driver shutdown handlers.
2600 *
fc2e4d70
ON
2601 * We sleep until all works which were queued on entry have been handled,
2602 * but we are not livelocked by new incoming ones.
1da177e4 2603 */
7ad5b3a5 2604void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2605{
73f53c4a
TH
2606 struct wq_flusher this_flusher = {
2607 .list = LIST_HEAD_INIT(this_flusher.list),
2608 .flush_color = -1,
2609 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2610 };
2611 int next_color;
1da177e4 2612
3295f0ef
IM
2613 lock_map_acquire(&wq->lockdep_map);
2614 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2615
2616 mutex_lock(&wq->flush_mutex);
2617
2618 /*
2619 * Start-to-wait phase
2620 */
2621 next_color = work_next_color(wq->work_color);
2622
2623 if (next_color != wq->flush_color) {
2624 /*
2625 * Color space is not full. The current work_color
2626 * becomes our flush_color and work_color is advanced
2627 * by one.
2628 */
2629 BUG_ON(!list_empty(&wq->flusher_overflow));
2630 this_flusher.flush_color = wq->work_color;
2631 wq->work_color = next_color;
2632
2633 if (!wq->first_flusher) {
2634 /* no flush in progress, become the first flusher */
2635 BUG_ON(wq->flush_color != this_flusher.flush_color);
2636
2637 wq->first_flusher = &this_flusher;
2638
2639 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2640 wq->work_color)) {
2641 /* nothing to flush, done */
2642 wq->flush_color = next_color;
2643 wq->first_flusher = NULL;
2644 goto out_unlock;
2645 }
2646 } else {
2647 /* wait in queue */
2648 BUG_ON(wq->flush_color == this_flusher.flush_color);
2649 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2650 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2651 }
2652 } else {
2653 /*
2654 * Oops, color space is full, wait on overflow queue.
2655 * The next flush completion will assign us
2656 * flush_color and transfer to flusher_queue.
2657 */
2658 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2659 }
2660
2661 mutex_unlock(&wq->flush_mutex);
2662
2663 wait_for_completion(&this_flusher.done);
2664
2665 /*
2666 * Wake-up-and-cascade phase
2667 *
2668 * First flushers are responsible for cascading flushes and
2669 * handling overflow. Non-first flushers can simply return.
2670 */
2671 if (wq->first_flusher != &this_flusher)
2672 return;
2673
2674 mutex_lock(&wq->flush_mutex);
2675
4ce48b37
TH
2676 /* we might have raced, check again with mutex held */
2677 if (wq->first_flusher != &this_flusher)
2678 goto out_unlock;
2679
73f53c4a
TH
2680 wq->first_flusher = NULL;
2681
2682 BUG_ON(!list_empty(&this_flusher.list));
2683 BUG_ON(wq->flush_color != this_flusher.flush_color);
2684
2685 while (true) {
2686 struct wq_flusher *next, *tmp;
2687
2688 /* complete all the flushers sharing the current flush color */
2689 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2690 if (next->flush_color != wq->flush_color)
2691 break;
2692 list_del_init(&next->list);
2693 complete(&next->done);
2694 }
2695
2696 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2697 wq->flush_color != work_next_color(wq->work_color));
2698
2699 /* this flush_color is finished, advance by one */
2700 wq->flush_color = work_next_color(wq->flush_color);
2701
2702 /* one color has been freed, handle overflow queue */
2703 if (!list_empty(&wq->flusher_overflow)) {
2704 /*
2705 * Assign the same color to all overflowed
2706 * flushers, advance work_color and append to
2707 * flusher_queue. This is the start-to-wait
2708 * phase for these overflowed flushers.
2709 */
2710 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2711 tmp->flush_color = wq->work_color;
2712
2713 wq->work_color = work_next_color(wq->work_color);
2714
2715 list_splice_tail_init(&wq->flusher_overflow,
2716 &wq->flusher_queue);
2717 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2718 }
2719
2720 if (list_empty(&wq->flusher_queue)) {
2721 BUG_ON(wq->flush_color != wq->work_color);
2722 break;
2723 }
2724
2725 /*
2726 * Need to flush more colors. Make the next flusher
2727 * the new first flusher and arm cwqs.
2728 */
2729 BUG_ON(wq->flush_color == wq->work_color);
2730 BUG_ON(wq->flush_color != next->flush_color);
2731
2732 list_del_init(&next->list);
2733 wq->first_flusher = next;
2734
2735 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2736 break;
2737
2738 /*
2739 * Meh... this color is already done, clear first
2740 * flusher and repeat cascading.
2741 */
2742 wq->first_flusher = NULL;
2743 }
2744
2745out_unlock:
2746 mutex_unlock(&wq->flush_mutex);
1da177e4 2747}
ae90dd5d 2748EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2749
9c5a2ba7
TH
2750/**
2751 * drain_workqueue - drain a workqueue
2752 * @wq: workqueue to drain
2753 *
2754 * Wait until the workqueue becomes empty. While draining is in progress,
2755 * only chain queueing is allowed. IOW, only currently pending or running
2756 * work items on @wq can queue further work items on it. @wq is flushed
2757 * repeatedly until it becomes empty. The number of flushing is detemined
2758 * by the depth of chaining and should be relatively short. Whine if it
2759 * takes too long.
2760 */
2761void drain_workqueue(struct workqueue_struct *wq)
2762{
2763 unsigned int flush_cnt = 0;
2764 unsigned int cpu;
2765
2766 /*
2767 * __queue_work() needs to test whether there are drainers, is much
2768 * hotter than drain_workqueue() and already looks at @wq->flags.
2769 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2770 */
2771 spin_lock(&workqueue_lock);
2772 if (!wq->nr_drainers++)
2773 wq->flags |= WQ_DRAINING;
2774 spin_unlock(&workqueue_lock);
2775reflush:
2776 flush_workqueue(wq);
2777
2778 for_each_cwq_cpu(cpu, wq) {
2779 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2780 bool drained;
9c5a2ba7 2781
bd7bdd43 2782 spin_lock_irq(&cwq->pool->gcwq->lock);
fa2563e4 2783 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
bd7bdd43 2784 spin_unlock_irq(&cwq->pool->gcwq->lock);
fa2563e4
TT
2785
2786 if (drained)
9c5a2ba7
TH
2787 continue;
2788
2789 if (++flush_cnt == 10 ||
2790 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2791 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2792 wq->name, flush_cnt);
9c5a2ba7
TH
2793 goto reflush;
2794 }
2795
2796 spin_lock(&workqueue_lock);
2797 if (!--wq->nr_drainers)
2798 wq->flags &= ~WQ_DRAINING;
2799 spin_unlock(&workqueue_lock);
2800}
2801EXPORT_SYMBOL_GPL(drain_workqueue);
2802
baf59022
TH
2803static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2804 bool wait_executing)
db700897 2805{
affee4b2 2806 struct worker *worker = NULL;
8b03ae3c 2807 struct global_cwq *gcwq;
db700897 2808 struct cpu_workqueue_struct *cwq;
db700897
ON
2809
2810 might_sleep();
7a22ad75
TH
2811 gcwq = get_work_gcwq(work);
2812 if (!gcwq)
baf59022 2813 return false;
db700897 2814
8b03ae3c 2815 spin_lock_irq(&gcwq->lock);
db700897
ON
2816 if (!list_empty(&work->entry)) {
2817 /*
2818 * See the comment near try_to_grab_pending()->smp_rmb().
7a22ad75
TH
2819 * If it was re-queued to a different gcwq under us, we
2820 * are not going to wait.
db700897
ON
2821 */
2822 smp_rmb();
7a22ad75 2823 cwq = get_work_cwq(work);
bd7bdd43 2824 if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
4690c4ab 2825 goto already_gone;
baf59022 2826 } else if (wait_executing) {
7a22ad75 2827 worker = find_worker_executing_work(gcwq, work);
affee4b2 2828 if (!worker)
4690c4ab 2829 goto already_gone;
7a22ad75 2830 cwq = worker->current_cwq;
baf59022
TH
2831 } else
2832 goto already_gone;
db700897 2833
baf59022 2834 insert_wq_barrier(cwq, barr, work, worker);
8b03ae3c 2835 spin_unlock_irq(&gcwq->lock);
7a22ad75 2836
e159489b
TH
2837 /*
2838 * If @max_active is 1 or rescuer is in use, flushing another work
2839 * item on the same workqueue may lead to deadlock. Make sure the
2840 * flusher is not running on the same workqueue by verifying write
2841 * access.
2842 */
2843 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2844 lock_map_acquire(&cwq->wq->lockdep_map);
2845 else
2846 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2847 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2848
401a8d04 2849 return true;
4690c4ab 2850already_gone:
8b03ae3c 2851 spin_unlock_irq(&gcwq->lock);
401a8d04 2852 return false;
db700897 2853}
baf59022
TH
2854
2855/**
2856 * flush_work - wait for a work to finish executing the last queueing instance
2857 * @work: the work to flush
2858 *
2859 * Wait until @work has finished execution. This function considers
2860 * only the last queueing instance of @work. If @work has been
2861 * enqueued across different CPUs on a non-reentrant workqueue or on
2862 * multiple workqueues, @work might still be executing on return on
2863 * some of the CPUs from earlier queueing.
2864 *
2865 * If @work was queued only on a non-reentrant, ordered or unbound
2866 * workqueue, @work is guaranteed to be idle on return if it hasn't
2867 * been requeued since flush started.
2868 *
2869 * RETURNS:
2870 * %true if flush_work() waited for the work to finish execution,
2871 * %false if it was already idle.
2872 */
2873bool flush_work(struct work_struct *work)
2874{
2875 struct wq_barrier barr;
2876
0976dfc1
SB
2877 lock_map_acquire(&work->lockdep_map);
2878 lock_map_release(&work->lockdep_map);
2879
baf59022
TH
2880 if (start_flush_work(work, &barr, true)) {
2881 wait_for_completion(&barr.done);
2882 destroy_work_on_stack(&barr.work);
2883 return true;
2884 } else
2885 return false;
2886}
db700897
ON
2887EXPORT_SYMBOL_GPL(flush_work);
2888
401a8d04
TH
2889static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2890{
2891 struct wq_barrier barr;
2892 struct worker *worker;
2893
2894 spin_lock_irq(&gcwq->lock);
2895
2896 worker = find_worker_executing_work(gcwq, work);
2897 if (unlikely(worker))
2898 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2899
2900 spin_unlock_irq(&gcwq->lock);
2901
2902 if (unlikely(worker)) {
2903 wait_for_completion(&barr.done);
2904 destroy_work_on_stack(&barr.work);
2905 return true;
2906 } else
2907 return false;
2908}
2909
2910static bool wait_on_work(struct work_struct *work)
2911{
2912 bool ret = false;
2913 int cpu;
2914
2915 might_sleep();
2916
2917 lock_map_acquire(&work->lockdep_map);
2918 lock_map_release(&work->lockdep_map);
2919
2920 for_each_gcwq_cpu(cpu)
2921 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2922 return ret;
2923}
2924
09383498
TH
2925/**
2926 * flush_work_sync - wait until a work has finished execution
2927 * @work: the work to flush
2928 *
2929 * Wait until @work has finished execution. On return, it's
2930 * guaranteed that all queueing instances of @work which happened
2931 * before this function is called are finished. In other words, if
2932 * @work hasn't been requeued since this function was called, @work is
2933 * guaranteed to be idle on return.
2934 *
2935 * RETURNS:
2936 * %true if flush_work_sync() waited for the work to finish execution,
2937 * %false if it was already idle.
2938 */
2939bool flush_work_sync(struct work_struct *work)
2940{
2941 struct wq_barrier barr;
2942 bool pending, waited;
2943
2944 /* we'll wait for executions separately, queue barr only if pending */
2945 pending = start_flush_work(work, &barr, false);
2946
2947 /* wait for executions to finish */
2948 waited = wait_on_work(work);
2949
2950 /* wait for the pending one */
2951 if (pending) {
2952 wait_for_completion(&barr.done);
2953 destroy_work_on_stack(&barr.work);
2954 }
2955
2956 return pending || waited;
2957}
2958EXPORT_SYMBOL_GPL(flush_work_sync);
2959
36e227d2 2960static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2961{
bbb68dfa 2962 unsigned long flags;
1f1f642e
ON
2963 int ret;
2964
2965 do {
bbb68dfa
TH
2966 ret = try_to_grab_pending(work, is_dwork, &flags);
2967 /*
2968 * If someone else is canceling, wait for the same event it
2969 * would be waiting for before retrying.
2970 */
2971 if (unlikely(ret == -ENOENT))
2972 wait_on_work(work);
1f1f642e
ON
2973 } while (unlikely(ret < 0));
2974
bbb68dfa
TH
2975 /* tell other tasks trying to grab @work to back off */
2976 mark_work_canceling(work);
2977 local_irq_restore(flags);
2978
2979 wait_on_work(work);
7a22ad75 2980 clear_work_data(work);
1f1f642e
ON
2981 return ret;
2982}
2983
6e84d644 2984/**
401a8d04
TH
2985 * cancel_work_sync - cancel a work and wait for it to finish
2986 * @work: the work to cancel
6e84d644 2987 *
401a8d04
TH
2988 * Cancel @work and wait for its execution to finish. This function
2989 * can be used even if the work re-queues itself or migrates to
2990 * another workqueue. On return from this function, @work is
2991 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2992 *
401a8d04
TH
2993 * cancel_work_sync(&delayed_work->work) must not be used for
2994 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2995 *
401a8d04 2996 * The caller must ensure that the workqueue on which @work was last
6e84d644 2997 * queued can't be destroyed before this function returns.
401a8d04
TH
2998 *
2999 * RETURNS:
3000 * %true if @work was pending, %false otherwise.
6e84d644 3001 */
401a8d04 3002bool cancel_work_sync(struct work_struct *work)
6e84d644 3003{
36e227d2 3004 return __cancel_work_timer(work, false);
b89deed3 3005}
28e53bdd 3006EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3007
6e84d644 3008/**
401a8d04
TH
3009 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3010 * @dwork: the delayed work to flush
6e84d644 3011 *
401a8d04
TH
3012 * Delayed timer is cancelled and the pending work is queued for
3013 * immediate execution. Like flush_work(), this function only
3014 * considers the last queueing instance of @dwork.
1f1f642e 3015 *
401a8d04
TH
3016 * RETURNS:
3017 * %true if flush_work() waited for the work to finish execution,
3018 * %false if it was already idle.
6e84d644 3019 */
401a8d04
TH
3020bool flush_delayed_work(struct delayed_work *dwork)
3021{
8930caba 3022 local_irq_disable();
401a8d04 3023 if (del_timer_sync(&dwork->timer))
1265057f 3024 __queue_work(dwork->cpu,
401a8d04 3025 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 3026 local_irq_enable();
401a8d04
TH
3027 return flush_work(&dwork->work);
3028}
3029EXPORT_SYMBOL(flush_delayed_work);
3030
09383498
TH
3031/**
3032 * flush_delayed_work_sync - wait for a dwork to finish
3033 * @dwork: the delayed work to flush
3034 *
3035 * Delayed timer is cancelled and the pending work is queued for
3036 * execution immediately. Other than timer handling, its behavior
3037 * is identical to flush_work_sync().
3038 *
3039 * RETURNS:
3040 * %true if flush_work_sync() waited for the work to finish execution,
3041 * %false if it was already idle.
3042 */
3043bool flush_delayed_work_sync(struct delayed_work *dwork)
3044{
8930caba 3045 local_irq_disable();
09383498 3046 if (del_timer_sync(&dwork->timer))
1265057f 3047 __queue_work(dwork->cpu,
09383498 3048 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 3049 local_irq_enable();
09383498
TH
3050 return flush_work_sync(&dwork->work);
3051}
3052EXPORT_SYMBOL(flush_delayed_work_sync);
3053
401a8d04
TH
3054/**
3055 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3056 * @dwork: the delayed work cancel
3057 *
3058 * This is cancel_work_sync() for delayed works.
3059 *
3060 * RETURNS:
3061 * %true if @dwork was pending, %false otherwise.
3062 */
3063bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3064{
36e227d2 3065 return __cancel_work_timer(&dwork->work, true);
6e84d644 3066}
f5a421a4 3067EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3068
d4283e93 3069/**
0a13c00e
TH
3070 * schedule_work_on - put work task on a specific cpu
3071 * @cpu: cpu to put the work task on
3072 * @work: job to be done
3073 *
3074 * This puts a job on a specific cpu
3075 */
d4283e93 3076bool schedule_work_on(int cpu, struct work_struct *work)
0a13c00e
TH
3077{
3078 return queue_work_on(cpu, system_wq, work);
3079}
3080EXPORT_SYMBOL(schedule_work_on);
3081
0fcb78c2
REB
3082/**
3083 * schedule_work - put work task in global workqueue
3084 * @work: job to be done
3085 *
d4283e93
TH
3086 * Returns %false if @work was already on the kernel-global workqueue and
3087 * %true otherwise.
5b0f437d
BVA
3088 *
3089 * This puts a job in the kernel-global workqueue if it was not already
3090 * queued and leaves it in the same position on the kernel-global
3091 * workqueue otherwise.
0fcb78c2 3092 */
d4283e93 3093bool schedule_work(struct work_struct *work)
1da177e4 3094{
d320c038 3095 return queue_work(system_wq, work);
1da177e4 3096}
ae90dd5d 3097EXPORT_SYMBOL(schedule_work);
1da177e4 3098
0a13c00e
TH
3099/**
3100 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3101 * @cpu: cpu to use
3102 * @dwork: job to be done
3103 * @delay: number of jiffies to wait
c1a220e7 3104 *
0a13c00e
TH
3105 * After waiting for a given time this puts a job in the kernel-global
3106 * workqueue on the specified CPU.
c1a220e7 3107 */
d4283e93
TH
3108bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3109 unsigned long delay)
c1a220e7 3110{
0a13c00e 3111 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
c1a220e7 3112}
0a13c00e 3113EXPORT_SYMBOL(schedule_delayed_work_on);
c1a220e7 3114
0fcb78c2
REB
3115/**
3116 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3117 * @dwork: job to be done
3118 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3119 *
3120 * After waiting for a given time this puts a job in the kernel-global
3121 * workqueue.
3122 */
d4283e93 3123bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3124{
d320c038 3125 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3126}
ae90dd5d 3127EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3128
b6136773 3129/**
31ddd871 3130 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3131 * @func: the function to call
b6136773 3132 *
31ddd871
TH
3133 * schedule_on_each_cpu() executes @func on each online CPU using the
3134 * system workqueue and blocks until all CPUs have completed.
b6136773 3135 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3136 *
3137 * RETURNS:
3138 * 0 on success, -errno on failure.
b6136773 3139 */
65f27f38 3140int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3141{
3142 int cpu;
38f51568 3143 struct work_struct __percpu *works;
15316ba8 3144
b6136773
AM
3145 works = alloc_percpu(struct work_struct);
3146 if (!works)
15316ba8 3147 return -ENOMEM;
b6136773 3148
93981800
TH
3149 get_online_cpus();
3150
15316ba8 3151 for_each_online_cpu(cpu) {
9bfb1839
IM
3152 struct work_struct *work = per_cpu_ptr(works, cpu);
3153
3154 INIT_WORK(work, func);
b71ab8c2 3155 schedule_work_on(cpu, work);
65a64464 3156 }
93981800
TH
3157
3158 for_each_online_cpu(cpu)
3159 flush_work(per_cpu_ptr(works, cpu));
3160
95402b38 3161 put_online_cpus();
b6136773 3162 free_percpu(works);
15316ba8
CL
3163 return 0;
3164}
3165
eef6a7d5
AS
3166/**
3167 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3168 *
3169 * Forces execution of the kernel-global workqueue and blocks until its
3170 * completion.
3171 *
3172 * Think twice before calling this function! It's very easy to get into
3173 * trouble if you don't take great care. Either of the following situations
3174 * will lead to deadlock:
3175 *
3176 * One of the work items currently on the workqueue needs to acquire
3177 * a lock held by your code or its caller.
3178 *
3179 * Your code is running in the context of a work routine.
3180 *
3181 * They will be detected by lockdep when they occur, but the first might not
3182 * occur very often. It depends on what work items are on the workqueue and
3183 * what locks they need, which you have no control over.
3184 *
3185 * In most situations flushing the entire workqueue is overkill; you merely
3186 * need to know that a particular work item isn't queued and isn't running.
3187 * In such cases you should use cancel_delayed_work_sync() or
3188 * cancel_work_sync() instead.
3189 */
1da177e4
LT
3190void flush_scheduled_work(void)
3191{
d320c038 3192 flush_workqueue(system_wq);
1da177e4 3193}
ae90dd5d 3194EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3195
1fa44eca
JB
3196/**
3197 * execute_in_process_context - reliably execute the routine with user context
3198 * @fn: the function to execute
1fa44eca
JB
3199 * @ew: guaranteed storage for the execute work structure (must
3200 * be available when the work executes)
3201 *
3202 * Executes the function immediately if process context is available,
3203 * otherwise schedules the function for delayed execution.
3204 *
3205 * Returns: 0 - function was executed
3206 * 1 - function was scheduled for execution
3207 */
65f27f38 3208int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3209{
3210 if (!in_interrupt()) {
65f27f38 3211 fn(&ew->work);
1fa44eca
JB
3212 return 0;
3213 }
3214
65f27f38 3215 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3216 schedule_work(&ew->work);
3217
3218 return 1;
3219}
3220EXPORT_SYMBOL_GPL(execute_in_process_context);
3221
1da177e4
LT
3222int keventd_up(void)
3223{
d320c038 3224 return system_wq != NULL;
1da177e4
LT
3225}
3226
bdbc5dd7 3227static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3228{
65a64464 3229 /*
0f900049
TH
3230 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3231 * Make sure that the alignment isn't lower than that of
3232 * unsigned long long.
65a64464 3233 */
0f900049
TH
3234 const size_t size = sizeof(struct cpu_workqueue_struct);
3235 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3236 __alignof__(unsigned long long));
65a64464 3237
e06ffa1e 3238 if (!(wq->flags & WQ_UNBOUND))
f3421797 3239 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3240 else {
f3421797
TH
3241 void *ptr;
3242
3243 /*
3244 * Allocate enough room to align cwq and put an extra
3245 * pointer at the end pointing back to the originally
3246 * allocated pointer which will be used for free.
3247 */
3248 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3249 if (ptr) {
3250 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3251 *(void **)(wq->cpu_wq.single + 1) = ptr;
3252 }
bdbc5dd7 3253 }
f3421797 3254
0415b00d 3255 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3256 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3257 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3258}
3259
bdbc5dd7 3260static void free_cwqs(struct workqueue_struct *wq)
0f900049 3261{
e06ffa1e 3262 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3263 free_percpu(wq->cpu_wq.pcpu);
3264 else if (wq->cpu_wq.single) {
3265 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3266 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3267 }
0f900049
TH
3268}
3269
f3421797
TH
3270static int wq_clamp_max_active(int max_active, unsigned int flags,
3271 const char *name)
b71ab8c2 3272{
f3421797
TH
3273 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3274
3275 if (max_active < 1 || max_active > lim)
044c782c
VI
3276 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3277 max_active, name, 1, lim);
b71ab8c2 3278
f3421797 3279 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3280}
3281
b196be89 3282struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3283 unsigned int flags,
3284 int max_active,
3285 struct lock_class_key *key,
b196be89 3286 const char *lock_name, ...)
1da177e4 3287{
b196be89 3288 va_list args, args1;
1da177e4 3289 struct workqueue_struct *wq;
c34056a3 3290 unsigned int cpu;
b196be89
TH
3291 size_t namelen;
3292
3293 /* determine namelen, allocate wq and format name */
3294 va_start(args, lock_name);
3295 va_copy(args1, args);
3296 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3297
3298 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3299 if (!wq)
3300 goto err;
3301
3302 vsnprintf(wq->name, namelen, fmt, args1);
3303 va_end(args);
3304 va_end(args1);
1da177e4 3305
6370a6ad
TH
3306 /*
3307 * Workqueues which may be used during memory reclaim should
3308 * have a rescuer to guarantee forward progress.
3309 */
3310 if (flags & WQ_MEM_RECLAIM)
3311 flags |= WQ_RESCUER;
3312
d320c038 3313 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3314 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3315
b196be89 3316 /* init wq */
97e37d7b 3317 wq->flags = flags;
a0a1a5fd 3318 wq->saved_max_active = max_active;
73f53c4a
TH
3319 mutex_init(&wq->flush_mutex);
3320 atomic_set(&wq->nr_cwqs_to_flush, 0);
3321 INIT_LIST_HEAD(&wq->flusher_queue);
3322 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3323
eb13ba87 3324 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3325 INIT_LIST_HEAD(&wq->list);
3af24433 3326
bdbc5dd7
TH
3327 if (alloc_cwqs(wq) < 0)
3328 goto err;
3329
f3421797 3330 for_each_cwq_cpu(cpu, wq) {
1537663f 3331 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
8b03ae3c 3332 struct global_cwq *gcwq = get_gcwq(cpu);
3270476a 3333 int pool_idx = (bool)(flags & WQ_HIGHPRI);
1537663f 3334
0f900049 3335 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3270476a 3336 cwq->pool = &gcwq->pools[pool_idx];
c34056a3 3337 cwq->wq = wq;
73f53c4a 3338 cwq->flush_color = -1;
1e19ffc6 3339 cwq->max_active = max_active;
1e19ffc6 3340 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3341 }
1537663f 3342
e22bee78
TH
3343 if (flags & WQ_RESCUER) {
3344 struct worker *rescuer;
3345
f2e005aa 3346 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3347 goto err;
3348
3349 wq->rescuer = rescuer = alloc_worker();
3350 if (!rescuer)
3351 goto err;
3352
b196be89
TH
3353 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3354 wq->name);
e22bee78
TH
3355 if (IS_ERR(rescuer->task))
3356 goto err;
3357
e22bee78
TH
3358 rescuer->task->flags |= PF_THREAD_BOUND;
3359 wake_up_process(rescuer->task);
3af24433
ON
3360 }
3361
a0a1a5fd
TH
3362 /*
3363 * workqueue_lock protects global freeze state and workqueues
3364 * list. Grab it, set max_active accordingly and add the new
3365 * workqueue to workqueues list.
3366 */
1537663f 3367 spin_lock(&workqueue_lock);
a0a1a5fd 3368
58a69cb4 3369 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3370 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3371 get_cwq(cpu, wq)->max_active = 0;
3372
1537663f 3373 list_add(&wq->list, &workqueues);
a0a1a5fd 3374
1537663f
TH
3375 spin_unlock(&workqueue_lock);
3376
3af24433 3377 return wq;
4690c4ab
TH
3378err:
3379 if (wq) {
bdbc5dd7 3380 free_cwqs(wq);
f2e005aa 3381 free_mayday_mask(wq->mayday_mask);
e22bee78 3382 kfree(wq->rescuer);
4690c4ab
TH
3383 kfree(wq);
3384 }
3385 return NULL;
3af24433 3386}
d320c038 3387EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3388
3af24433
ON
3389/**
3390 * destroy_workqueue - safely terminate a workqueue
3391 * @wq: target workqueue
3392 *
3393 * Safely destroy a workqueue. All work currently pending will be done first.
3394 */
3395void destroy_workqueue(struct workqueue_struct *wq)
3396{
c8e55f36 3397 unsigned int cpu;
3af24433 3398
9c5a2ba7
TH
3399 /* drain it before proceeding with destruction */
3400 drain_workqueue(wq);
c8efcc25 3401
a0a1a5fd
TH
3402 /*
3403 * wq list is used to freeze wq, remove from list after
3404 * flushing is complete in case freeze races us.
3405 */
95402b38 3406 spin_lock(&workqueue_lock);
b1f4ec17 3407 list_del(&wq->list);
95402b38 3408 spin_unlock(&workqueue_lock);
3af24433 3409
e22bee78 3410 /* sanity check */
f3421797 3411 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3412 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3413 int i;
3414
73f53c4a
TH
3415 for (i = 0; i < WORK_NR_COLORS; i++)
3416 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3417 BUG_ON(cwq->nr_active);
3418 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3419 }
9b41ea72 3420
e22bee78
TH
3421 if (wq->flags & WQ_RESCUER) {
3422 kthread_stop(wq->rescuer->task);
f2e005aa 3423 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3424 kfree(wq->rescuer);
e22bee78
TH
3425 }
3426
bdbc5dd7 3427 free_cwqs(wq);
3af24433
ON
3428 kfree(wq);
3429}
3430EXPORT_SYMBOL_GPL(destroy_workqueue);
3431
dcd989cb
TH
3432/**
3433 * workqueue_set_max_active - adjust max_active of a workqueue
3434 * @wq: target workqueue
3435 * @max_active: new max_active value.
3436 *
3437 * Set max_active of @wq to @max_active.
3438 *
3439 * CONTEXT:
3440 * Don't call from IRQ context.
3441 */
3442void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3443{
3444 unsigned int cpu;
3445
f3421797 3446 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3447
3448 spin_lock(&workqueue_lock);
3449
3450 wq->saved_max_active = max_active;
3451
f3421797 3452 for_each_cwq_cpu(cpu, wq) {
dcd989cb
TH
3453 struct global_cwq *gcwq = get_gcwq(cpu);
3454
3455 spin_lock_irq(&gcwq->lock);
3456
58a69cb4 3457 if (!(wq->flags & WQ_FREEZABLE) ||
dcd989cb
TH
3458 !(gcwq->flags & GCWQ_FREEZING))
3459 get_cwq(gcwq->cpu, wq)->max_active = max_active;
9bfb1839 3460
dcd989cb 3461 spin_unlock_irq(&gcwq->lock);
65a64464 3462 }
93981800 3463
dcd989cb 3464 spin_unlock(&workqueue_lock);
15316ba8 3465}
dcd989cb 3466EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3467
eef6a7d5 3468/**
dcd989cb
TH
3469 * workqueue_congested - test whether a workqueue is congested
3470 * @cpu: CPU in question
3471 * @wq: target workqueue
eef6a7d5 3472 *
dcd989cb
TH
3473 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3474 * no synchronization around this function and the test result is
3475 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3476 *
dcd989cb
TH
3477 * RETURNS:
3478 * %true if congested, %false otherwise.
eef6a7d5 3479 */
dcd989cb 3480bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3481{
dcd989cb
TH
3482 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3483
3484 return !list_empty(&cwq->delayed_works);
1da177e4 3485}
dcd989cb 3486EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3487
1fa44eca 3488/**
dcd989cb
TH
3489 * work_cpu - return the last known associated cpu for @work
3490 * @work: the work of interest
1fa44eca 3491 *
dcd989cb 3492 * RETURNS:
bdbc5dd7 3493 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
1fa44eca 3494 */
dcd989cb 3495unsigned int work_cpu(struct work_struct *work)
1fa44eca 3496{
dcd989cb 3497 struct global_cwq *gcwq = get_work_gcwq(work);
1fa44eca 3498
bdbc5dd7 3499 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
1fa44eca 3500}
dcd989cb 3501EXPORT_SYMBOL_GPL(work_cpu);
1fa44eca 3502
dcd989cb
TH
3503/**
3504 * work_busy - test whether a work is currently pending or running
3505 * @work: the work to be tested
3506 *
3507 * Test whether @work is currently pending or running. There is no
3508 * synchronization around this function and the test result is
3509 * unreliable and only useful as advisory hints or for debugging.
3510 * Especially for reentrant wqs, the pending state might hide the
3511 * running state.
3512 *
3513 * RETURNS:
3514 * OR'd bitmask of WORK_BUSY_* bits.
3515 */
3516unsigned int work_busy(struct work_struct *work)
1da177e4 3517{
dcd989cb
TH
3518 struct global_cwq *gcwq = get_work_gcwq(work);
3519 unsigned long flags;
3520 unsigned int ret = 0;
1da177e4 3521
dcd989cb
TH
3522 if (!gcwq)
3523 return false;
1da177e4 3524
dcd989cb 3525 spin_lock_irqsave(&gcwq->lock, flags);
1da177e4 3526
dcd989cb
TH
3527 if (work_pending(work))
3528 ret |= WORK_BUSY_PENDING;
3529 if (find_worker_executing_work(gcwq, work))
3530 ret |= WORK_BUSY_RUNNING;
1da177e4 3531
dcd989cb 3532 spin_unlock_irqrestore(&gcwq->lock, flags);
1da177e4 3533
dcd989cb 3534 return ret;
1da177e4 3535}
dcd989cb 3536EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3537
db7bccf4
TH
3538/*
3539 * CPU hotplug.
3540 *
e22bee78
TH
3541 * There are two challenges in supporting CPU hotplug. Firstly, there
3542 * are a lot of assumptions on strong associations among work, cwq and
3543 * gcwq which make migrating pending and scheduled works very
3544 * difficult to implement without impacting hot paths. Secondly,
3545 * gcwqs serve mix of short, long and very long running works making
3546 * blocked draining impractical.
3547 *
628c78e7
TH
3548 * This is solved by allowing a gcwq to be disassociated from the CPU
3549 * running as an unbound one and allowing it to be reattached later if the
3550 * cpu comes back online.
db7bccf4 3551 */
1da177e4 3552
60373152 3553/* claim manager positions of all pools */
8db25e78 3554static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
60373152
TH
3555{
3556 struct worker_pool *pool;
3557
3558 for_each_worker_pool(pool, gcwq)
3559 mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
8db25e78 3560 spin_lock_irq(&gcwq->lock);
60373152
TH
3561}
3562
3563/* release manager positions */
8db25e78 3564static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
60373152
TH
3565{
3566 struct worker_pool *pool;
3567
8db25e78 3568 spin_unlock_irq(&gcwq->lock);
60373152
TH
3569 for_each_worker_pool(pool, gcwq)
3570 mutex_unlock(&pool->manager_mutex);
3571}
3572
628c78e7 3573static void gcwq_unbind_fn(struct work_struct *work)
3af24433 3574{
628c78e7 3575 struct global_cwq *gcwq = get_gcwq(smp_processor_id());
4ce62e9e 3576 struct worker_pool *pool;
db7bccf4
TH
3577 struct worker *worker;
3578 struct hlist_node *pos;
3579 int i;
3af24433 3580
db7bccf4
TH
3581 BUG_ON(gcwq->cpu != smp_processor_id());
3582
8db25e78 3583 gcwq_claim_management_and_lock(gcwq);
3af24433 3584
f2d5a0ee
TH
3585 /*
3586 * We've claimed all manager positions. Make all workers unbound
3587 * and set DISASSOCIATED. Before this, all workers except for the
3588 * ones which are still executing works from before the last CPU
3589 * down must be on the cpu. After this, they may become diasporas.
3590 */
60373152 3591 for_each_worker_pool(pool, gcwq)
4ce62e9e 3592 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3593 worker->flags |= WORKER_UNBOUND;
3af24433 3594
db7bccf4 3595 for_each_busy_worker(worker, i, pos, gcwq)
403c821d 3596 worker->flags |= WORKER_UNBOUND;
06ba38a9 3597
f2d5a0ee
TH
3598 gcwq->flags |= GCWQ_DISASSOCIATED;
3599
8db25e78 3600 gcwq_release_management_and_unlock(gcwq);
628c78e7 3601
e22bee78 3602 /*
403c821d 3603 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3604 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3605 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3606 */
e22bee78 3607 schedule();
06ba38a9 3608
e22bee78 3609 /*
628c78e7
TH
3610 * Sched callbacks are disabled now. Zap nr_running. After this,
3611 * nr_running stays zero and need_more_worker() and keep_working()
3612 * are always true as long as the worklist is not empty. @gcwq now
3613 * behaves as unbound (in terms of concurrency management) gcwq
3614 * which is served by workers tied to the CPU.
3615 *
3616 * On return from this function, the current worker would trigger
3617 * unbound chain execution of pending work items if other workers
3618 * didn't already.
e22bee78 3619 */
4ce62e9e
TH
3620 for_each_worker_pool(pool, gcwq)
3621 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3622}
3af24433 3623
8db25e78
TH
3624/*
3625 * Workqueues should be brought up before normal priority CPU notifiers.
3626 * This will be registered high priority CPU notifier.
3627 */
3628static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3629 unsigned long action,
3630 void *hcpu)
3af24433
ON
3631{
3632 unsigned int cpu = (unsigned long)hcpu;
db7bccf4 3633 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3634 struct worker_pool *pool;
3ce63377 3635
8db25e78 3636 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3637 case CPU_UP_PREPARE:
4ce62e9e 3638 for_each_worker_pool(pool, gcwq) {
3ce63377
TH
3639 struct worker *worker;
3640
3641 if (pool->nr_workers)
3642 continue;
3643
3644 worker = create_worker(pool);
3645 if (!worker)
3646 return NOTIFY_BAD;
3647
3648 spin_lock_irq(&gcwq->lock);
3649 start_worker(worker);
3650 spin_unlock_irq(&gcwq->lock);
3af24433 3651 }
8db25e78 3652 break;
3af24433 3653
db7bccf4
TH
3654 case CPU_DOWN_FAILED:
3655 case CPU_ONLINE:
8db25e78 3656 gcwq_claim_management_and_lock(gcwq);
bc2ae0f5 3657 gcwq->flags &= ~GCWQ_DISASSOCIATED;
25511a47 3658 rebind_workers(gcwq);
8db25e78 3659 gcwq_release_management_and_unlock(gcwq);
db7bccf4 3660 break;
00dfcaf7 3661 }
65758202
TH
3662 return NOTIFY_OK;
3663}
3664
3665/*
3666 * Workqueues should be brought down after normal priority CPU notifiers.
3667 * This will be registered as low priority CPU notifier.
3668 */
3669static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3670 unsigned long action,
3671 void *hcpu)
3672{
8db25e78
TH
3673 unsigned int cpu = (unsigned long)hcpu;
3674 struct work_struct unbind_work;
3675
65758202
TH
3676 switch (action & ~CPU_TASKS_FROZEN) {
3677 case CPU_DOWN_PREPARE:
8db25e78
TH
3678 /* unbinding should happen on the local CPU */
3679 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
7635d2fd 3680 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3681 flush_work(&unbind_work);
3682 break;
65758202
TH
3683 }
3684 return NOTIFY_OK;
3685}
3686
2d3854a3 3687#ifdef CONFIG_SMP
8ccad40d 3688
2d3854a3 3689struct work_for_cpu {
6b44003e 3690 struct completion completion;
2d3854a3
RR
3691 long (*fn)(void *);
3692 void *arg;
3693 long ret;
3694};
3695
6b44003e 3696static int do_work_for_cpu(void *_wfc)
2d3854a3 3697{
6b44003e 3698 struct work_for_cpu *wfc = _wfc;
2d3854a3 3699 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
3700 complete(&wfc->completion);
3701 return 0;
2d3854a3
RR
3702}
3703
3704/**
3705 * work_on_cpu - run a function in user context on a particular cpu
3706 * @cpu: the cpu to run on
3707 * @fn: the function to run
3708 * @arg: the function arg
3709 *
31ad9081
RR
3710 * This will return the value @fn returns.
3711 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3712 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3713 */
3714long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3715{
6b44003e
AM
3716 struct task_struct *sub_thread;
3717 struct work_for_cpu wfc = {
3718 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3719 .fn = fn,
3720 .arg = arg,
3721 };
3722
3723 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3724 if (IS_ERR(sub_thread))
3725 return PTR_ERR(sub_thread);
3726 kthread_bind(sub_thread, cpu);
3727 wake_up_process(sub_thread);
3728 wait_for_completion(&wfc.completion);
2d3854a3
RR
3729 return wfc.ret;
3730}
3731EXPORT_SYMBOL_GPL(work_on_cpu);
3732#endif /* CONFIG_SMP */
3733
a0a1a5fd
TH
3734#ifdef CONFIG_FREEZER
3735
3736/**
3737 * freeze_workqueues_begin - begin freezing workqueues
3738 *
58a69cb4
TH
3739 * Start freezing workqueues. After this function returns, all freezable
3740 * workqueues will queue new works to their frozen_works list instead of
3741 * gcwq->worklist.
a0a1a5fd
TH
3742 *
3743 * CONTEXT:
8b03ae3c 3744 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3745 */
3746void freeze_workqueues_begin(void)
3747{
a0a1a5fd
TH
3748 unsigned int cpu;
3749
3750 spin_lock(&workqueue_lock);
3751
3752 BUG_ON(workqueue_freezing);
3753 workqueue_freezing = true;
3754
f3421797 3755 for_each_gcwq_cpu(cpu) {
8b03ae3c 3756 struct global_cwq *gcwq = get_gcwq(cpu);
bdbc5dd7 3757 struct workqueue_struct *wq;
8b03ae3c
TH
3758
3759 spin_lock_irq(&gcwq->lock);
3760
db7bccf4
TH
3761 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3762 gcwq->flags |= GCWQ_FREEZING;
3763
a0a1a5fd
TH
3764 list_for_each_entry(wq, &workqueues, list) {
3765 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3766
58a69cb4 3767 if (cwq && wq->flags & WQ_FREEZABLE)
a0a1a5fd 3768 cwq->max_active = 0;
a0a1a5fd 3769 }
8b03ae3c
TH
3770
3771 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3772 }
3773
3774 spin_unlock(&workqueue_lock);
3775}
3776
3777/**
58a69cb4 3778 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3779 *
3780 * Check whether freezing is complete. This function must be called
3781 * between freeze_workqueues_begin() and thaw_workqueues().
3782 *
3783 * CONTEXT:
3784 * Grabs and releases workqueue_lock.
3785 *
3786 * RETURNS:
58a69cb4
TH
3787 * %true if some freezable workqueues are still busy. %false if freezing
3788 * is complete.
a0a1a5fd
TH
3789 */
3790bool freeze_workqueues_busy(void)
3791{
a0a1a5fd
TH
3792 unsigned int cpu;
3793 bool busy = false;
3794
3795 spin_lock(&workqueue_lock);
3796
3797 BUG_ON(!workqueue_freezing);
3798
f3421797 3799 for_each_gcwq_cpu(cpu) {
bdbc5dd7 3800 struct workqueue_struct *wq;
a0a1a5fd
TH
3801 /*
3802 * nr_active is monotonically decreasing. It's safe
3803 * to peek without lock.
3804 */
3805 list_for_each_entry(wq, &workqueues, list) {
3806 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3807
58a69cb4 3808 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3809 continue;
3810
3811 BUG_ON(cwq->nr_active < 0);
3812 if (cwq->nr_active) {
3813 busy = true;
3814 goto out_unlock;
3815 }
3816 }
3817 }
3818out_unlock:
3819 spin_unlock(&workqueue_lock);
3820 return busy;
3821}
3822
3823/**
3824 * thaw_workqueues - thaw workqueues
3825 *
3826 * Thaw workqueues. Normal queueing is restored and all collected
7e11629d 3827 * frozen works are transferred to their respective gcwq worklists.
a0a1a5fd
TH
3828 *
3829 * CONTEXT:
8b03ae3c 3830 * Grabs and releases workqueue_lock and gcwq->lock's.
a0a1a5fd
TH
3831 */
3832void thaw_workqueues(void)
3833{
a0a1a5fd
TH
3834 unsigned int cpu;
3835
3836 spin_lock(&workqueue_lock);
3837
3838 if (!workqueue_freezing)
3839 goto out_unlock;
3840
f3421797 3841 for_each_gcwq_cpu(cpu) {
8b03ae3c 3842 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3843 struct worker_pool *pool;
bdbc5dd7 3844 struct workqueue_struct *wq;
8b03ae3c
TH
3845
3846 spin_lock_irq(&gcwq->lock);
3847
db7bccf4
TH
3848 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3849 gcwq->flags &= ~GCWQ_FREEZING;
3850
a0a1a5fd
TH
3851 list_for_each_entry(wq, &workqueues, list) {
3852 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3853
58a69cb4 3854 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3855 continue;
3856
a0a1a5fd
TH
3857 /* restore max_active and repopulate worklist */
3858 cwq->max_active = wq->saved_max_active;
3859
3860 while (!list_empty(&cwq->delayed_works) &&
3861 cwq->nr_active < cwq->max_active)
3862 cwq_activate_first_delayed(cwq);
a0a1a5fd 3863 }
8b03ae3c 3864
4ce62e9e
TH
3865 for_each_worker_pool(pool, gcwq)
3866 wake_up_worker(pool);
e22bee78 3867
8b03ae3c 3868 spin_unlock_irq(&gcwq->lock);
a0a1a5fd
TH
3869 }
3870
3871 workqueue_freezing = false;
3872out_unlock:
3873 spin_unlock(&workqueue_lock);
3874}
3875#endif /* CONFIG_FREEZER */
3876
6ee0578b 3877static int __init init_workqueues(void)
1da177e4 3878{
c34056a3 3879 unsigned int cpu;
c8e55f36 3880 int i;
c34056a3 3881
b5490077
TH
3882 /* make sure we have enough bits for OFFQ CPU number */
3883 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) <
3884 WORK_CPU_LAST);
3885
65758202
TH
3886 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3887 cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c
TH
3888
3889 /* initialize gcwqs */
f3421797 3890 for_each_gcwq_cpu(cpu) {
8b03ae3c 3891 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3892 struct worker_pool *pool;
8b03ae3c
TH
3893
3894 spin_lock_init(&gcwq->lock);
3895 gcwq->cpu = cpu;
477a3c33 3896 gcwq->flags |= GCWQ_DISASSOCIATED;
8b03ae3c 3897
c8e55f36
TH
3898 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3899 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3900
4ce62e9e
TH
3901 for_each_worker_pool(pool, gcwq) {
3902 pool->gcwq = gcwq;
3903 INIT_LIST_HEAD(&pool->worklist);
3904 INIT_LIST_HEAD(&pool->idle_list);
e7577c50 3905
4ce62e9e
TH
3906 init_timer_deferrable(&pool->idle_timer);
3907 pool->idle_timer.function = idle_worker_timeout;
3908 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3909
4ce62e9e
TH
3910 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3911 (unsigned long)pool);
3912
60373152 3913 mutex_init(&pool->manager_mutex);
4ce62e9e
TH
3914 ida_init(&pool->worker_ida);
3915 }
db7bccf4 3916
25511a47 3917 init_waitqueue_head(&gcwq->rebind_hold);
8b03ae3c
TH
3918 }
3919
e22bee78 3920 /* create the initial worker */
f3421797 3921 for_each_online_gcwq_cpu(cpu) {
e22bee78 3922 struct global_cwq *gcwq = get_gcwq(cpu);
4ce62e9e 3923 struct worker_pool *pool;
e22bee78 3924
477a3c33
TH
3925 if (cpu != WORK_CPU_UNBOUND)
3926 gcwq->flags &= ~GCWQ_DISASSOCIATED;
4ce62e9e
TH
3927
3928 for_each_worker_pool(pool, gcwq) {
3929 struct worker *worker;
3930
bc2ae0f5 3931 worker = create_worker(pool);
4ce62e9e
TH
3932 BUG_ON(!worker);
3933 spin_lock_irq(&gcwq->lock);
3934 start_worker(worker);
3935 spin_unlock_irq(&gcwq->lock);
3936 }
e22bee78
TH
3937 }
3938
d320c038 3939 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3940 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038
TH
3941 system_long_wq = alloc_workqueue("events_long", 0, 0);
3942 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
f3421797
TH
3943 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3944 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3945 system_freezable_wq = alloc_workqueue("events_freezable",
3946 WQ_FREEZABLE, 0);
62d3c543
AS
3947 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3948 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
1aabe902
JK
3949 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3950 !system_nrt_wq || !system_unbound_wq || !system_freezable_wq ||
3951 !system_nrt_freezable_wq);
6ee0578b 3952 return 0;
1da177e4 3953}
6ee0578b 3954early_initcall(init_workqueues);