workqueue: make work_busy() test WORK_STRUCT_PENDING first
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
42f8570f 44#include <linux/hashtable.h>
e22bee78 45
ea138446 46#include "workqueue_internal.h"
1da177e4 47
c8e55f36 48enum {
24647570
TH
49 /*
50 * worker_pool flags
bc2ae0f5 51 *
24647570 52 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 59 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5
TH
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
24647570
TH
62 * assoc_mutex to avoid changing binding state while
63 * create_worker() is in progress.
bc2ae0f5 64 */
11ebea50 65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
552a37e9 66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
24647570 67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 68 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 77
5f7dabfd 78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 79 WORKER_CPU_INTENSIVE,
db7bccf4 80
e34cdddb 81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 82
c8e55f36 83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 84
e22bee78
TH
85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
87
3233cdbd
TH
88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
89 /* call for help after 10ms
90 (min two ticks) */
e22bee78
TH
91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
92 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
93
94 /*
95 * Rescue workers are used only on emergencies and shared by
96 * all cpus. Give -20.
97 */
98 RESCUER_NICE_LEVEL = -20,
3270476a 99 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 100};
1da177e4
LT
101
102/*
4690c4ab
TH
103 * Structure fields follow one of the following exclusion rules.
104 *
e41e704b
TH
105 * I: Modifiable by initialization/destruction paths and read-only for
106 * everyone else.
4690c4ab 107 *
e22bee78
TH
108 * P: Preemption protected. Disabling preemption is enough and should
109 * only be modified and accessed from the local cpu.
110 *
d565ed63 111 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 112 *
d565ed63
TH
113 * X: During normal operation, modification requires pool->lock and should
114 * be done only from local cpu. Either disabling preemption on local
115 * cpu or grabbing pool->lock is enough for read access. If
116 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 117 *
73f53c4a
TH
118 * F: wq->flush_mutex protected.
119 *
4690c4ab 120 * W: workqueue_lock protected.
1da177e4 121 */
1da177e4 122
2eaebdb3 123/* struct worker is defined in workqueue_internal.h */
c34056a3 124
bd7bdd43 125struct worker_pool {
d565ed63 126 spinlock_t lock; /* the pool lock */
ec22ca5e 127 unsigned int cpu; /* I: the associated cpu */
9daf9e67 128 int id; /* I: pool ID */
11ebea50 129 unsigned int flags; /* X: flags */
bd7bdd43
TH
130
131 struct list_head worklist; /* L: list of pending works */
132 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
133
134 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
135 int nr_idle; /* L: currently idle ones */
136
137 struct list_head idle_list; /* X: list of idle workers */
138 struct timer_list idle_timer; /* L: worker idle timeout */
139 struct timer_list mayday_timer; /* L: SOS timer for workers */
140
c9e7cf27
TH
141 /* workers are chained either in busy_hash or idle_list */
142 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
143 /* L: hash of busy workers */
144
24647570 145 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
bd7bdd43 146 struct ida worker_ida; /* L: for worker IDs */
8b03ae3c
TH
147} ____cacheline_aligned_in_smp;
148
1da177e4 149/*
502ca9d8 150 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
0f900049
TH
151 * work_struct->data are used for flags and thus cwqs need to be
152 * aligned at two's power of the number of flag bits.
1da177e4
LT
153 */
154struct cpu_workqueue_struct {
bd7bdd43 155 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 156 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
157 int work_color; /* L: current color */
158 int flush_color; /* L: flushing color */
159 int nr_in_flight[WORK_NR_COLORS];
160 /* L: nr of in_flight works */
1e19ffc6 161 int nr_active; /* L: nr of active works */
a0a1a5fd 162 int max_active; /* L: max active works */
1e19ffc6 163 struct list_head delayed_works; /* L: delayed works */
0f900049 164};
1da177e4 165
73f53c4a
TH
166/*
167 * Structure used to wait for workqueue flush.
168 */
169struct wq_flusher {
170 struct list_head list; /* F: list of flushers */
171 int flush_color; /* F: flush color waiting for */
172 struct completion done; /* flush completion */
173};
174
f2e005aa
TH
175/*
176 * All cpumasks are assumed to be always set on UP and thus can't be
177 * used to determine whether there's something to be done.
178 */
179#ifdef CONFIG_SMP
180typedef cpumask_var_t mayday_mask_t;
181#define mayday_test_and_set_cpu(cpu, mask) \
182 cpumask_test_and_set_cpu((cpu), (mask))
183#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
184#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 185#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
186#define free_mayday_mask(mask) free_cpumask_var((mask))
187#else
188typedef unsigned long mayday_mask_t;
189#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
190#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
191#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
192#define alloc_mayday_mask(maskp, gfp) true
193#define free_mayday_mask(mask) do { } while (0)
194#endif
1da177e4
LT
195
196/*
197 * The externally visible workqueue abstraction is an array of
198 * per-CPU workqueues:
199 */
200struct workqueue_struct {
9c5a2ba7 201 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7
TH
202 union {
203 struct cpu_workqueue_struct __percpu *pcpu;
204 struct cpu_workqueue_struct *single;
205 unsigned long v;
206 } cpu_wq; /* I: cwq's */
4690c4ab 207 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
208
209 struct mutex flush_mutex; /* protects wq flushing */
210 int work_color; /* F: current work color */
211 int flush_color; /* F: current flush color */
212 atomic_t nr_cwqs_to_flush; /* flush in progress */
213 struct wq_flusher *first_flusher; /* F: first flusher */
214 struct list_head flusher_queue; /* F: flush waiters */
215 struct list_head flusher_overflow; /* F: flush overflow list */
216
f2e005aa 217 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
218 struct worker *rescuer; /* I: rescue worker */
219
9c5a2ba7 220 int nr_drainers; /* W: drain in progress */
dcd989cb 221 int saved_max_active; /* W: saved cwq max_active */
4e6045f1 222#ifdef CONFIG_LOCKDEP
4690c4ab 223 struct lockdep_map lockdep_map;
4e6045f1 224#endif
b196be89 225 char name[]; /* I: workqueue name */
1da177e4
LT
226};
227
d320c038 228struct workqueue_struct *system_wq __read_mostly;
d320c038 229EXPORT_SYMBOL_GPL(system_wq);
044c782c 230struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 231EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 232struct workqueue_struct *system_long_wq __read_mostly;
d320c038 233EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 234struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 235EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 236struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 237EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 238
97bd2347
TH
239#define CREATE_TRACE_POINTS
240#include <trace/events/workqueue.h>
241
38db41d9 242#define for_each_std_worker_pool(pool, cpu) \
a60dc39c
TH
243 for ((pool) = &std_worker_pools(cpu)[0]; \
244 (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
4ce62e9e 245
c9e7cf27
TH
246#define for_each_busy_worker(worker, i, pos, pool) \
247 hash_for_each(pool->busy_hash, i, pos, worker, hentry)
db7bccf4 248
706026c2
TH
249static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
250 unsigned int sw)
f3421797
TH
251{
252 if (cpu < nr_cpu_ids) {
253 if (sw & 1) {
254 cpu = cpumask_next(cpu, mask);
255 if (cpu < nr_cpu_ids)
256 return cpu;
257 }
258 if (sw & 2)
259 return WORK_CPU_UNBOUND;
260 }
6be19588 261 return WORK_CPU_END;
f3421797
TH
262}
263
706026c2
TH
264static inline int __next_cwq_cpu(int cpu, const struct cpumask *mask,
265 struct workqueue_struct *wq)
f3421797 266{
706026c2 267 return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
f3421797
TH
268}
269
09884951
TH
270/*
271 * CPU iterators
272 *
706026c2 273 * An extra cpu number is defined using an invalid cpu number
09884951 274 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
706026c2
TH
275 * specific CPU. The following iterators are similar to for_each_*_cpu()
276 * iterators but also considers the unbound CPU.
09884951 277 *
706026c2
TH
278 * for_each_wq_cpu() : possible CPUs + WORK_CPU_UNBOUND
279 * for_each_online_wq_cpu() : online CPUs + WORK_CPU_UNBOUND
09884951
TH
280 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
281 * WORK_CPU_UNBOUND for unbound workqueues
282 */
706026c2
TH
283#define for_each_wq_cpu(cpu) \
284 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3); \
6be19588 285 (cpu) < WORK_CPU_END; \
706026c2 286 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
f3421797 287
706026c2
TH
288#define for_each_online_wq_cpu(cpu) \
289 for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3); \
6be19588 290 (cpu) < WORK_CPU_END; \
706026c2 291 (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
f3421797
TH
292
293#define for_each_cwq_cpu(cpu, wq) \
706026c2 294 for ((cpu) = __next_cwq_cpu(-1, cpu_possible_mask, (wq)); \
6be19588 295 (cpu) < WORK_CPU_END; \
706026c2 296 (cpu) = __next_cwq_cpu((cpu), cpu_possible_mask, (wq)))
f3421797 297
dc186ad7
TG
298#ifdef CONFIG_DEBUG_OBJECTS_WORK
299
300static struct debug_obj_descr work_debug_descr;
301
99777288
SG
302static void *work_debug_hint(void *addr)
303{
304 return ((struct work_struct *) addr)->func;
305}
306
dc186ad7
TG
307/*
308 * fixup_init is called when:
309 * - an active object is initialized
310 */
311static int work_fixup_init(void *addr, enum debug_obj_state state)
312{
313 struct work_struct *work = addr;
314
315 switch (state) {
316 case ODEBUG_STATE_ACTIVE:
317 cancel_work_sync(work);
318 debug_object_init(work, &work_debug_descr);
319 return 1;
320 default:
321 return 0;
322 }
323}
324
325/*
326 * fixup_activate is called when:
327 * - an active object is activated
328 * - an unknown object is activated (might be a statically initialized object)
329 */
330static int work_fixup_activate(void *addr, enum debug_obj_state state)
331{
332 struct work_struct *work = addr;
333
334 switch (state) {
335
336 case ODEBUG_STATE_NOTAVAILABLE:
337 /*
338 * This is not really a fixup. The work struct was
339 * statically initialized. We just make sure that it
340 * is tracked in the object tracker.
341 */
22df02bb 342 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
343 debug_object_init(work, &work_debug_descr);
344 debug_object_activate(work, &work_debug_descr);
345 return 0;
346 }
347 WARN_ON_ONCE(1);
348 return 0;
349
350 case ODEBUG_STATE_ACTIVE:
351 WARN_ON(1);
352
353 default:
354 return 0;
355 }
356}
357
358/*
359 * fixup_free is called when:
360 * - an active object is freed
361 */
362static int work_fixup_free(void *addr, enum debug_obj_state state)
363{
364 struct work_struct *work = addr;
365
366 switch (state) {
367 case ODEBUG_STATE_ACTIVE:
368 cancel_work_sync(work);
369 debug_object_free(work, &work_debug_descr);
370 return 1;
371 default:
372 return 0;
373 }
374}
375
376static struct debug_obj_descr work_debug_descr = {
377 .name = "work_struct",
99777288 378 .debug_hint = work_debug_hint,
dc186ad7
TG
379 .fixup_init = work_fixup_init,
380 .fixup_activate = work_fixup_activate,
381 .fixup_free = work_fixup_free,
382};
383
384static inline void debug_work_activate(struct work_struct *work)
385{
386 debug_object_activate(work, &work_debug_descr);
387}
388
389static inline void debug_work_deactivate(struct work_struct *work)
390{
391 debug_object_deactivate(work, &work_debug_descr);
392}
393
394void __init_work(struct work_struct *work, int onstack)
395{
396 if (onstack)
397 debug_object_init_on_stack(work, &work_debug_descr);
398 else
399 debug_object_init(work, &work_debug_descr);
400}
401EXPORT_SYMBOL_GPL(__init_work);
402
403void destroy_work_on_stack(struct work_struct *work)
404{
405 debug_object_free(work, &work_debug_descr);
406}
407EXPORT_SYMBOL_GPL(destroy_work_on_stack);
408
409#else
410static inline void debug_work_activate(struct work_struct *work) { }
411static inline void debug_work_deactivate(struct work_struct *work) { }
412#endif
413
95402b38
GS
414/* Serializes the accesses to the list of workqueues. */
415static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 416static LIST_HEAD(workqueues);
a0a1a5fd 417static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 418
e22bee78 419/*
a60dc39c
TH
420 * The CPU standard worker pools. nr_running is the only field which is
421 * expected to be used frequently by other cpus via try_to_wake_up(). Put
422 * it in a separate cacheline.
e22bee78 423 */
a60dc39c
TH
424static DEFINE_PER_CPU(struct worker_pool [NR_STD_WORKER_POOLS],
425 cpu_std_worker_pools);
e6e380ed
TH
426static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t [NR_STD_WORKER_POOLS],
427 cpu_std_pool_nr_running);
8b03ae3c 428
f3421797 429/*
a60dc39c
TH
430 * Standard worker pools and nr_running counter for unbound CPU. The pools
431 * have POOL_DISASSOCIATED set, and all workers have WORKER_UNBOUND set.
f3421797 432 */
a60dc39c 433static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
e6e380ed 434static atomic_t unbound_std_pool_nr_running[NR_STD_WORKER_POOLS] = {
e34cdddb 435 [0 ... NR_STD_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
4ce62e9e 436};
f3421797 437
9daf9e67
TH
438/* idr of all pools */
439static DEFINE_MUTEX(worker_pool_idr_mutex);
440static DEFINE_IDR(worker_pool_idr);
441
c34056a3 442static int worker_thread(void *__worker);
1da177e4 443
a60dc39c 444static struct worker_pool *std_worker_pools(int cpu)
8b03ae3c 445{
f3421797 446 if (cpu != WORK_CPU_UNBOUND)
a60dc39c 447 return per_cpu(cpu_std_worker_pools, cpu);
f3421797 448 else
a60dc39c 449 return unbound_std_worker_pools;
8b03ae3c
TH
450}
451
4e8f0a60
TH
452static int std_worker_pool_pri(struct worker_pool *pool)
453{
a60dc39c 454 return pool - std_worker_pools(pool->cpu);
4e8f0a60
TH
455}
456
9daf9e67
TH
457/* allocate ID and assign it to @pool */
458static int worker_pool_assign_id(struct worker_pool *pool)
459{
460 int ret;
461
462 mutex_lock(&worker_pool_idr_mutex);
463 idr_pre_get(&worker_pool_idr, GFP_KERNEL);
464 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
465 mutex_unlock(&worker_pool_idr_mutex);
466
467 return ret;
468}
469
7c3eed5c
TH
470/*
471 * Lookup worker_pool by id. The idr currently is built during boot and
472 * never modified. Don't worry about locking for now.
473 */
474static struct worker_pool *worker_pool_by_id(int pool_id)
475{
476 return idr_find(&worker_pool_idr, pool_id);
477}
478
d565ed63
TH
479static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
480{
a60dc39c 481 struct worker_pool *pools = std_worker_pools(cpu);
d565ed63 482
a60dc39c 483 return &pools[highpri];
d565ed63
TH
484}
485
63d95a91 486static atomic_t *get_pool_nr_running(struct worker_pool *pool)
e22bee78 487{
ec22ca5e 488 int cpu = pool->cpu;
e34cdddb 489 int idx = std_worker_pool_pri(pool);
63d95a91 490
f3421797 491 if (cpu != WORK_CPU_UNBOUND)
e6e380ed 492 return &per_cpu(cpu_std_pool_nr_running, cpu)[idx];
f3421797 493 else
e6e380ed 494 return &unbound_std_pool_nr_running[idx];
e22bee78
TH
495}
496
1537663f
TH
497static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
498 struct workqueue_struct *wq)
b1f4ec17 499{
f3421797 500 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 501 if (likely(cpu < nr_cpu_ids))
f3421797 502 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
f3421797
TH
503 } else if (likely(cpu == WORK_CPU_UNBOUND))
504 return wq->cpu_wq.single;
505 return NULL;
b1f4ec17
ON
506}
507
73f53c4a
TH
508static unsigned int work_color_to_flags(int color)
509{
510 return color << WORK_STRUCT_COLOR_SHIFT;
511}
512
513static int get_work_color(struct work_struct *work)
514{
515 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
516 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
517}
518
519static int work_next_color(int color)
520{
521 return (color + 1) % WORK_NR_COLORS;
522}
1da177e4 523
14441960 524/*
b5490077
TH
525 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data
526 * contain the pointer to the queued cwq. Once execution starts, the flag
7c3eed5c 527 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 528 *
7c3eed5c
TH
529 * set_work_cwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
530 * and clear_work_data() can be used to set the cwq, pool or clear
bbb68dfa
TH
531 * work->data. These functions should only be called while the work is
532 * owned - ie. while the PENDING bit is set.
7a22ad75 533 *
7c3eed5c
TH
534 * get_work_pool() and get_work_cwq() can be used to obtain the pool or cwq
535 * corresponding to a work. Pool is available once the work has been
536 * queued anywhere after initialization until it is sync canceled. cwq is
537 * available only while the work item is queued.
7a22ad75 538 *
bbb68dfa
TH
539 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
540 * canceled. While being canceled, a work item may have its PENDING set
541 * but stay off timer and worklist for arbitrarily long and nobody should
542 * try to steal the PENDING bit.
14441960 543 */
7a22ad75
TH
544static inline void set_work_data(struct work_struct *work, unsigned long data,
545 unsigned long flags)
365970a1 546{
4594bf15 547 BUG_ON(!work_pending(work));
7a22ad75
TH
548 atomic_long_set(&work->data, data | flags | work_static(work));
549}
365970a1 550
7a22ad75
TH
551static void set_work_cwq(struct work_struct *work,
552 struct cpu_workqueue_struct *cwq,
553 unsigned long extra_flags)
554{
555 set_work_data(work, (unsigned long)cwq,
e120153d 556 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
365970a1
DH
557}
558
7c3eed5c
TH
559static void set_work_pool_and_clear_pending(struct work_struct *work,
560 int pool_id)
7a22ad75 561{
23657bb1
TH
562 /*
563 * The following wmb is paired with the implied mb in
564 * test_and_set_bit(PENDING) and ensures all updates to @work made
565 * here are visible to and precede any updates by the next PENDING
566 * owner.
567 */
568 smp_wmb();
7c3eed5c 569 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 570}
f756d5e2 571
7a22ad75 572static void clear_work_data(struct work_struct *work)
1da177e4 573{
7c3eed5c
TH
574 smp_wmb(); /* see set_work_pool_and_clear_pending() */
575 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
576}
577
7a22ad75 578static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
b1f4ec17 579{
e120153d 580 unsigned long data = atomic_long_read(&work->data);
7a22ad75 581
e120153d
TH
582 if (data & WORK_STRUCT_CWQ)
583 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
584 else
585 return NULL;
4d707b9f
ON
586}
587
7c3eed5c
TH
588/**
589 * get_work_pool - return the worker_pool a given work was associated with
590 * @work: the work item of interest
591 *
592 * Return the worker_pool @work was last associated with. %NULL if none.
593 */
594static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 595{
e120153d 596 unsigned long data = atomic_long_read(&work->data);
7c3eed5c
TH
597 struct worker_pool *pool;
598 int pool_id;
7a22ad75 599
e120153d
TH
600 if (data & WORK_STRUCT_CWQ)
601 return ((struct cpu_workqueue_struct *)
7c3eed5c 602 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 603
7c3eed5c
TH
604 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
605 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
606 return NULL;
607
7c3eed5c
TH
608 pool = worker_pool_by_id(pool_id);
609 WARN_ON_ONCE(!pool);
610 return pool;
611}
612
613/**
614 * get_work_pool_id - return the worker pool ID a given work is associated with
615 * @work: the work item of interest
616 *
617 * Return the worker_pool ID @work was last associated with.
618 * %WORK_OFFQ_POOL_NONE if none.
619 */
620static int get_work_pool_id(struct work_struct *work)
621{
622 struct worker_pool *pool = get_work_pool(work);
623
624 return pool ? pool->id : WORK_OFFQ_POOL_NONE;
625}
626
bbb68dfa
TH
627static void mark_work_canceling(struct work_struct *work)
628{
7c3eed5c 629 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 630
7c3eed5c
TH
631 pool_id <<= WORK_OFFQ_POOL_SHIFT;
632 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
633}
634
635static bool work_is_canceling(struct work_struct *work)
636{
637 unsigned long data = atomic_long_read(&work->data);
638
639 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING);
640}
641
e22bee78 642/*
3270476a
TH
643 * Policy functions. These define the policies on how the global worker
644 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 645 * they're being called with pool->lock held.
e22bee78
TH
646 */
647
63d95a91 648static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 649{
3270476a 650 return !atomic_read(get_pool_nr_running(pool));
a848e3b6
ON
651}
652
4594bf15 653/*
e22bee78
TH
654 * Need to wake up a worker? Called from anything but currently
655 * running workers.
974271c4
TH
656 *
657 * Note that, because unbound workers never contribute to nr_running, this
706026c2 658 * function will always return %true for unbound pools as long as the
974271c4 659 * worklist isn't empty.
4594bf15 660 */
63d95a91 661static bool need_more_worker(struct worker_pool *pool)
365970a1 662{
63d95a91 663 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 664}
4594bf15 665
e22bee78 666/* Can I start working? Called from busy but !running workers. */
63d95a91 667static bool may_start_working(struct worker_pool *pool)
e22bee78 668{
63d95a91 669 return pool->nr_idle;
e22bee78
TH
670}
671
672/* Do I need to keep working? Called from currently running workers. */
63d95a91 673static bool keep_working(struct worker_pool *pool)
e22bee78 674{
63d95a91 675 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78 676
3270476a 677 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
e22bee78
TH
678}
679
680/* Do we need a new worker? Called from manager. */
63d95a91 681static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 682{
63d95a91 683 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 684}
365970a1 685
e22bee78 686/* Do I need to be the manager? */
63d95a91 687static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 688{
63d95a91 689 return need_to_create_worker(pool) ||
11ebea50 690 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
691}
692
693/* Do we have too many workers and should some go away? */
63d95a91 694static bool too_many_workers(struct worker_pool *pool)
e22bee78 695{
552a37e9 696 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
697 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
698 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 699
ea1abd61
LJ
700 /*
701 * nr_idle and idle_list may disagree if idle rebinding is in
702 * progress. Never return %true if idle_list is empty.
703 */
704 if (list_empty(&pool->idle_list))
705 return false;
706
e22bee78 707 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
708}
709
4d707b9f 710/*
e22bee78
TH
711 * Wake up functions.
712 */
713
7e11629d 714/* Return the first worker. Safe with preemption disabled */
63d95a91 715static struct worker *first_worker(struct worker_pool *pool)
7e11629d 716{
63d95a91 717 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
718 return NULL;
719
63d95a91 720 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
721}
722
723/**
724 * wake_up_worker - wake up an idle worker
63d95a91 725 * @pool: worker pool to wake worker from
7e11629d 726 *
63d95a91 727 * Wake up the first idle worker of @pool.
7e11629d
TH
728 *
729 * CONTEXT:
d565ed63 730 * spin_lock_irq(pool->lock).
7e11629d 731 */
63d95a91 732static void wake_up_worker(struct worker_pool *pool)
7e11629d 733{
63d95a91 734 struct worker *worker = first_worker(pool);
7e11629d
TH
735
736 if (likely(worker))
737 wake_up_process(worker->task);
738}
739
d302f017 740/**
e22bee78
TH
741 * wq_worker_waking_up - a worker is waking up
742 * @task: task waking up
743 * @cpu: CPU @task is waking up to
744 *
745 * This function is called during try_to_wake_up() when a worker is
746 * being awoken.
747 *
748 * CONTEXT:
749 * spin_lock_irq(rq->lock)
750 */
751void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
752{
753 struct worker *worker = kthread_data(task);
754
36576000 755 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 756 WARN_ON_ONCE(worker->pool->cpu != cpu);
63d95a91 757 atomic_inc(get_pool_nr_running(worker->pool));
36576000 758 }
e22bee78
TH
759}
760
761/**
762 * wq_worker_sleeping - a worker is going to sleep
763 * @task: task going to sleep
764 * @cpu: CPU in question, must be the current CPU number
765 *
766 * This function is called during schedule() when a busy worker is
767 * going to sleep. Worker on the same cpu can be woken up by
768 * returning pointer to its task.
769 *
770 * CONTEXT:
771 * spin_lock_irq(rq->lock)
772 *
773 * RETURNS:
774 * Worker task on @cpu to wake up, %NULL if none.
775 */
776struct task_struct *wq_worker_sleeping(struct task_struct *task,
777 unsigned int cpu)
778{
779 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a
TH
780 struct worker_pool *pool;
781 atomic_t *nr_running;
e22bee78 782
111c225a
TH
783 /*
784 * Rescuers, which may not have all the fields set up like normal
785 * workers, also reach here, let's not access anything before
786 * checking NOT_RUNNING.
787 */
2d64672e 788 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
789 return NULL;
790
111c225a
TH
791 pool = worker->pool;
792 nr_running = get_pool_nr_running(pool);
793
e22bee78
TH
794 /* this can only happen on the local cpu */
795 BUG_ON(cpu != raw_smp_processor_id());
796
797 /*
798 * The counterpart of the following dec_and_test, implied mb,
799 * worklist not empty test sequence is in insert_work().
800 * Please read comment there.
801 *
628c78e7
TH
802 * NOT_RUNNING is clear. This means that we're bound to and
803 * running on the local cpu w/ rq lock held and preemption
804 * disabled, which in turn means that none else could be
d565ed63 805 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 806 * lock is safe.
e22bee78 807 */
bd7bdd43 808 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
63d95a91 809 to_wakeup = first_worker(pool);
e22bee78
TH
810 return to_wakeup ? to_wakeup->task : NULL;
811}
812
813/**
814 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 815 * @worker: self
d302f017
TH
816 * @flags: flags to set
817 * @wakeup: wakeup an idle worker if necessary
818 *
e22bee78
TH
819 * Set @flags in @worker->flags and adjust nr_running accordingly. If
820 * nr_running becomes zero and @wakeup is %true, an idle worker is
821 * woken up.
d302f017 822 *
cb444766 823 * CONTEXT:
d565ed63 824 * spin_lock_irq(pool->lock)
d302f017
TH
825 */
826static inline void worker_set_flags(struct worker *worker, unsigned int flags,
827 bool wakeup)
828{
bd7bdd43 829 struct worker_pool *pool = worker->pool;
e22bee78 830
cb444766
TH
831 WARN_ON_ONCE(worker->task != current);
832
e22bee78
TH
833 /*
834 * If transitioning into NOT_RUNNING, adjust nr_running and
835 * wake up an idle worker as necessary if requested by
836 * @wakeup.
837 */
838 if ((flags & WORKER_NOT_RUNNING) &&
839 !(worker->flags & WORKER_NOT_RUNNING)) {
63d95a91 840 atomic_t *nr_running = get_pool_nr_running(pool);
e22bee78
TH
841
842 if (wakeup) {
843 if (atomic_dec_and_test(nr_running) &&
bd7bdd43 844 !list_empty(&pool->worklist))
63d95a91 845 wake_up_worker(pool);
e22bee78
TH
846 } else
847 atomic_dec(nr_running);
848 }
849
d302f017
TH
850 worker->flags |= flags;
851}
852
853/**
e22bee78 854 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 855 * @worker: self
d302f017
TH
856 * @flags: flags to clear
857 *
e22bee78 858 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 859 *
cb444766 860 * CONTEXT:
d565ed63 861 * spin_lock_irq(pool->lock)
d302f017
TH
862 */
863static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
864{
63d95a91 865 struct worker_pool *pool = worker->pool;
e22bee78
TH
866 unsigned int oflags = worker->flags;
867
cb444766
TH
868 WARN_ON_ONCE(worker->task != current);
869
d302f017 870 worker->flags &= ~flags;
e22bee78 871
42c025f3
TH
872 /*
873 * If transitioning out of NOT_RUNNING, increment nr_running. Note
874 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
875 * of multiple flags, not a single flag.
876 */
e22bee78
TH
877 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
878 if (!(worker->flags & WORKER_NOT_RUNNING))
63d95a91 879 atomic_inc(get_pool_nr_running(pool));
d302f017
TH
880}
881
8cca0eea
TH
882/**
883 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 884 * @pool: pool of interest
8cca0eea
TH
885 * @work: work to find worker for
886 *
c9e7cf27
TH
887 * Find a worker which is executing @work on @pool by searching
888 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
889 * to match, its current execution should match the address of @work and
890 * its work function. This is to avoid unwanted dependency between
891 * unrelated work executions through a work item being recycled while still
892 * being executed.
893 *
894 * This is a bit tricky. A work item may be freed once its execution
895 * starts and nothing prevents the freed area from being recycled for
896 * another work item. If the same work item address ends up being reused
897 * before the original execution finishes, workqueue will identify the
898 * recycled work item as currently executing and make it wait until the
899 * current execution finishes, introducing an unwanted dependency.
900 *
901 * This function checks the work item address, work function and workqueue
902 * to avoid false positives. Note that this isn't complete as one may
903 * construct a work function which can introduce dependency onto itself
904 * through a recycled work item. Well, if somebody wants to shoot oneself
905 * in the foot that badly, there's only so much we can do, and if such
906 * deadlock actually occurs, it should be easy to locate the culprit work
907 * function.
8cca0eea
TH
908 *
909 * CONTEXT:
d565ed63 910 * spin_lock_irq(pool->lock).
8cca0eea
TH
911 *
912 * RETURNS:
913 * Pointer to worker which is executing @work if found, NULL
914 * otherwise.
4d707b9f 915 */
c9e7cf27 916static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 917 struct work_struct *work)
4d707b9f 918{
42f8570f
SL
919 struct worker *worker;
920 struct hlist_node *tmp;
921
c9e7cf27 922 hash_for_each_possible(pool->busy_hash, worker, tmp, hentry,
a2c1c57b
TH
923 (unsigned long)work)
924 if (worker->current_work == work &&
925 worker->current_func == work->func)
42f8570f
SL
926 return worker;
927
928 return NULL;
4d707b9f
ON
929}
930
bf4ede01
TH
931/**
932 * move_linked_works - move linked works to a list
933 * @work: start of series of works to be scheduled
934 * @head: target list to append @work to
935 * @nextp: out paramter for nested worklist walking
936 *
937 * Schedule linked works starting from @work to @head. Work series to
938 * be scheduled starts at @work and includes any consecutive work with
939 * WORK_STRUCT_LINKED set in its predecessor.
940 *
941 * If @nextp is not NULL, it's updated to point to the next work of
942 * the last scheduled work. This allows move_linked_works() to be
943 * nested inside outer list_for_each_entry_safe().
944 *
945 * CONTEXT:
d565ed63 946 * spin_lock_irq(pool->lock).
bf4ede01
TH
947 */
948static void move_linked_works(struct work_struct *work, struct list_head *head,
949 struct work_struct **nextp)
950{
951 struct work_struct *n;
952
953 /*
954 * Linked worklist will always end before the end of the list,
955 * use NULL for list head.
956 */
957 list_for_each_entry_safe_from(work, n, NULL, entry) {
958 list_move_tail(&work->entry, head);
959 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
960 break;
961 }
962
963 /*
964 * If we're already inside safe list traversal and have moved
965 * multiple works to the scheduled queue, the next position
966 * needs to be updated.
967 */
968 if (nextp)
969 *nextp = n;
970}
971
3aa62497 972static void cwq_activate_delayed_work(struct work_struct *work)
bf4ede01 973{
3aa62497 974 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bf4ede01
TH
975
976 trace_workqueue_activate_work(work);
977 move_linked_works(work, &cwq->pool->worklist, NULL);
978 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
979 cwq->nr_active++;
980}
981
3aa62497
LJ
982static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
983{
984 struct work_struct *work = list_first_entry(&cwq->delayed_works,
985 struct work_struct, entry);
986
987 cwq_activate_delayed_work(work);
988}
989
bf4ede01
TH
990/**
991 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
992 * @cwq: cwq of interest
993 * @color: color of work which left the queue
bf4ede01
TH
994 *
995 * A work either has completed or is removed from pending queue,
996 * decrement nr_in_flight of its cwq and handle workqueue flushing.
997 *
998 * CONTEXT:
d565ed63 999 * spin_lock_irq(pool->lock).
bf4ede01 1000 */
b3f9f405 1001static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
bf4ede01
TH
1002{
1003 /* ignore uncolored works */
1004 if (color == WORK_NO_COLOR)
1005 return;
1006
1007 cwq->nr_in_flight[color]--;
1008
b3f9f405
LJ
1009 cwq->nr_active--;
1010 if (!list_empty(&cwq->delayed_works)) {
1011 /* one down, submit a delayed one */
1012 if (cwq->nr_active < cwq->max_active)
1013 cwq_activate_first_delayed(cwq);
bf4ede01
TH
1014 }
1015
1016 /* is flush in progress and are we at the flushing tip? */
1017 if (likely(cwq->flush_color != color))
1018 return;
1019
1020 /* are there still in-flight works? */
1021 if (cwq->nr_in_flight[color])
1022 return;
1023
1024 /* this cwq is done, clear flush_color */
1025 cwq->flush_color = -1;
1026
1027 /*
1028 * If this was the last cwq, wake up the first flusher. It
1029 * will handle the rest.
1030 */
1031 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1032 complete(&cwq->wq->first_flusher->done);
1033}
1034
36e227d2 1035/**
bbb68dfa 1036 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1037 * @work: work item to steal
1038 * @is_dwork: @work is a delayed_work
bbb68dfa 1039 * @flags: place to store irq state
36e227d2
TH
1040 *
1041 * Try to grab PENDING bit of @work. This function can handle @work in any
1042 * stable state - idle, on timer or on worklist. Return values are
1043 *
1044 * 1 if @work was pending and we successfully stole PENDING
1045 * 0 if @work was idle and we claimed PENDING
1046 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1047 * -ENOENT if someone else is canceling @work, this state may persist
1048 * for arbitrarily long
36e227d2 1049 *
bbb68dfa 1050 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1051 * interrupted while holding PENDING and @work off queue, irq must be
1052 * disabled on entry. This, combined with delayed_work->timer being
1053 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1054 *
1055 * On successful return, >= 0, irq is disabled and the caller is
1056 * responsible for releasing it using local_irq_restore(*@flags).
1057 *
e0aecdd8 1058 * This function is safe to call from any context including IRQ handler.
bf4ede01 1059 */
bbb68dfa
TH
1060static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1061 unsigned long *flags)
bf4ede01 1062{
d565ed63 1063 struct worker_pool *pool;
bf4ede01 1064
bbb68dfa
TH
1065 local_irq_save(*flags);
1066
36e227d2
TH
1067 /* try to steal the timer if it exists */
1068 if (is_dwork) {
1069 struct delayed_work *dwork = to_delayed_work(work);
1070
e0aecdd8
TH
1071 /*
1072 * dwork->timer is irqsafe. If del_timer() fails, it's
1073 * guaranteed that the timer is not queued anywhere and not
1074 * running on the local CPU.
1075 */
36e227d2
TH
1076 if (likely(del_timer(&dwork->timer)))
1077 return 1;
1078 }
1079
1080 /* try to claim PENDING the normal way */
bf4ede01
TH
1081 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1082 return 0;
1083
1084 /*
1085 * The queueing is in progress, or it is already queued. Try to
1086 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1087 */
d565ed63
TH
1088 pool = get_work_pool(work);
1089 if (!pool)
bbb68dfa 1090 goto fail;
bf4ede01 1091
d565ed63 1092 spin_lock(&pool->lock);
bf4ede01
TH
1093 if (!list_empty(&work->entry)) {
1094 /*
d565ed63
TH
1095 * This work is queued, but perhaps we locked the wrong
1096 * pool. In that case we must see the new value after
1097 * rmb(), see insert_work()->wmb().
bf4ede01
TH
1098 */
1099 smp_rmb();
d565ed63 1100 if (pool == get_work_pool(work)) {
bf4ede01 1101 debug_work_deactivate(work);
3aa62497
LJ
1102
1103 /*
1104 * A delayed work item cannot be grabbed directly
1105 * because it might have linked NO_COLOR work items
1106 * which, if left on the delayed_list, will confuse
1107 * cwq->nr_active management later on and cause
1108 * stall. Make sure the work item is activated
1109 * before grabbing.
1110 */
1111 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1112 cwq_activate_delayed_work(work);
1113
bf4ede01
TH
1114 list_del_init(&work->entry);
1115 cwq_dec_nr_in_flight(get_work_cwq(work),
b3f9f405 1116 get_work_color(work));
36e227d2 1117
d565ed63 1118 spin_unlock(&pool->lock);
36e227d2 1119 return 1;
bf4ede01
TH
1120 }
1121 }
d565ed63 1122 spin_unlock(&pool->lock);
bbb68dfa
TH
1123fail:
1124 local_irq_restore(*flags);
1125 if (work_is_canceling(work))
1126 return -ENOENT;
1127 cpu_relax();
36e227d2 1128 return -EAGAIN;
bf4ede01
TH
1129}
1130
4690c4ab 1131/**
706026c2 1132 * insert_work - insert a work into a pool
4690c4ab
TH
1133 * @cwq: cwq @work belongs to
1134 * @work: work to insert
1135 * @head: insertion point
1136 * @extra_flags: extra WORK_STRUCT_* flags to set
1137 *
706026c2
TH
1138 * Insert @work which belongs to @cwq after @head. @extra_flags is or'd to
1139 * work_struct flags.
4690c4ab
TH
1140 *
1141 * CONTEXT:
d565ed63 1142 * spin_lock_irq(pool->lock).
4690c4ab 1143 */
b89deed3 1144static void insert_work(struct cpu_workqueue_struct *cwq,
4690c4ab
TH
1145 struct work_struct *work, struct list_head *head,
1146 unsigned int extra_flags)
b89deed3 1147{
63d95a91 1148 struct worker_pool *pool = cwq->pool;
e22bee78 1149
4690c4ab 1150 /* we own @work, set data and link */
7a22ad75 1151 set_work_cwq(work, cwq, extra_flags);
e1d8aa9f 1152
6e84d644
ON
1153 /*
1154 * Ensure that we get the right work->data if we see the
1155 * result of list_add() below, see try_to_grab_pending().
1156 */
1157 smp_wmb();
4690c4ab 1158
1a4d9b0a 1159 list_add_tail(&work->entry, head);
e22bee78
TH
1160
1161 /*
1162 * Ensure either worker_sched_deactivated() sees the above
1163 * list_add_tail() or we see zero nr_running to avoid workers
1164 * lying around lazily while there are works to be processed.
1165 */
1166 smp_mb();
1167
63d95a91
TH
1168 if (__need_more_worker(pool))
1169 wake_up_worker(pool);
b89deed3
ON
1170}
1171
c8efcc25
TH
1172/*
1173 * Test whether @work is being queued from another work executing on the
1174 * same workqueue. This is rather expensive and should only be used from
1175 * cold paths.
1176 */
1177static bool is_chained_work(struct workqueue_struct *wq)
1178{
1179 unsigned long flags;
1180 unsigned int cpu;
1181
706026c2 1182 for_each_wq_cpu(cpu) {
c9e7cf27
TH
1183 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
1184 struct worker_pool *pool = cwq->pool;
c8efcc25
TH
1185 struct worker *worker;
1186 struct hlist_node *pos;
1187 int i;
1188
d565ed63 1189 spin_lock_irqsave(&pool->lock, flags);
c9e7cf27 1190 for_each_busy_worker(worker, i, pos, pool) {
c8efcc25
TH
1191 if (worker->task != current)
1192 continue;
d565ed63 1193 spin_unlock_irqrestore(&pool->lock, flags);
c8efcc25
TH
1194 /*
1195 * I'm @worker, no locking necessary. See if @work
1196 * is headed to the same workqueue.
1197 */
1198 return worker->current_cwq->wq == wq;
1199 }
d565ed63 1200 spin_unlock_irqrestore(&pool->lock, flags);
c8efcc25
TH
1201 }
1202 return false;
1203}
1204
4690c4ab 1205static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1206 struct work_struct *work)
1207{
d565ed63
TH
1208 bool highpri = wq->flags & WQ_HIGHPRI;
1209 struct worker_pool *pool;
502ca9d8 1210 struct cpu_workqueue_struct *cwq;
1e19ffc6 1211 struct list_head *worklist;
8a2e8e5d 1212 unsigned int work_flags;
b75cac93 1213 unsigned int req_cpu = cpu;
8930caba
TH
1214
1215 /*
1216 * While a work item is PENDING && off queue, a task trying to
1217 * steal the PENDING will busy-loop waiting for it to either get
1218 * queued or lose PENDING. Grabbing PENDING and queueing should
1219 * happen with IRQ disabled.
1220 */
1221 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1222
dc186ad7 1223 debug_work_activate(work);
1e19ffc6 1224
c8efcc25 1225 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1226 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1227 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1228 return;
1229
d565ed63 1230 /* determine pool to use */
c7fc77f7 1231 if (!(wq->flags & WQ_UNBOUND)) {
c9e7cf27 1232 struct worker_pool *last_pool;
18aa9eff 1233
57469821 1234 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1235 cpu = raw_smp_processor_id();
1236
18aa9eff 1237 /*
dbf2576e
TH
1238 * It's multi cpu. If @work was previously on a different
1239 * cpu, it might still be running there, in which case the
1240 * work needs to be queued on that cpu to guarantee
1241 * non-reentrancy.
18aa9eff 1242 */
d565ed63 1243 pool = get_std_worker_pool(cpu, highpri);
c9e7cf27 1244 last_pool = get_work_pool(work);
dbf2576e 1245
d565ed63 1246 if (last_pool && last_pool != pool) {
18aa9eff
TH
1247 struct worker *worker;
1248
d565ed63 1249 spin_lock(&last_pool->lock);
18aa9eff 1250
c9e7cf27 1251 worker = find_worker_executing_work(last_pool, work);
18aa9eff
TH
1252
1253 if (worker && worker->current_cwq->wq == wq)
d565ed63 1254 pool = last_pool;
18aa9eff
TH
1255 else {
1256 /* meh... not running there, queue here */
d565ed63
TH
1257 spin_unlock(&last_pool->lock);
1258 spin_lock(&pool->lock);
18aa9eff 1259 }
8930caba 1260 } else {
d565ed63 1261 spin_lock(&pool->lock);
8930caba 1262 }
f3421797 1263 } else {
d565ed63
TH
1264 pool = get_std_worker_pool(WORK_CPU_UNBOUND, highpri);
1265 spin_lock(&pool->lock);
502ca9d8
TH
1266 }
1267
d565ed63
TH
1268 /* pool determined, get cwq and queue */
1269 cwq = get_cwq(pool->cpu, wq);
b75cac93 1270 trace_workqueue_queue_work(req_cpu, cwq, work);
502ca9d8 1271
f5b2552b 1272 if (WARN_ON(!list_empty(&work->entry))) {
d565ed63 1273 spin_unlock(&pool->lock);
f5b2552b
DC
1274 return;
1275 }
1e19ffc6 1276
73f53c4a 1277 cwq->nr_in_flight[cwq->work_color]++;
8a2e8e5d 1278 work_flags = work_color_to_flags(cwq->work_color);
1e19ffc6
TH
1279
1280 if (likely(cwq->nr_active < cwq->max_active)) {
cdadf009 1281 trace_workqueue_activate_work(work);
1e19ffc6 1282 cwq->nr_active++;
3270476a 1283 worklist = &cwq->pool->worklist;
8a2e8e5d
TH
1284 } else {
1285 work_flags |= WORK_STRUCT_DELAYED;
1e19ffc6 1286 worklist = &cwq->delayed_works;
8a2e8e5d 1287 }
1e19ffc6 1288
8a2e8e5d 1289 insert_work(cwq, work, worklist, work_flags);
1e19ffc6 1290
d565ed63 1291 spin_unlock(&pool->lock);
1da177e4
LT
1292}
1293
0fcb78c2 1294/**
c1a220e7
ZR
1295 * queue_work_on - queue work on specific cpu
1296 * @cpu: CPU number to execute work on
0fcb78c2
REB
1297 * @wq: workqueue to use
1298 * @work: work to queue
1299 *
d4283e93 1300 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1301 *
c1a220e7
ZR
1302 * We queue the work to a specific CPU, the caller must ensure it
1303 * can't go away.
1da177e4 1304 */
d4283e93
TH
1305bool queue_work_on(int cpu, struct workqueue_struct *wq,
1306 struct work_struct *work)
1da177e4 1307{
d4283e93 1308 bool ret = false;
8930caba 1309 unsigned long flags;
ef1ca236 1310
8930caba 1311 local_irq_save(flags);
c1a220e7 1312
22df02bb 1313 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1314 __queue_work(cpu, wq, work);
d4283e93 1315 ret = true;
c1a220e7 1316 }
ef1ca236 1317
8930caba 1318 local_irq_restore(flags);
1da177e4
LT
1319 return ret;
1320}
c1a220e7 1321EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1322
c1a220e7 1323/**
0a13c00e 1324 * queue_work - queue work on a workqueue
c1a220e7
ZR
1325 * @wq: workqueue to use
1326 * @work: work to queue
1327 *
d4283e93 1328 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1329 *
0a13c00e
TH
1330 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1331 * it can be processed by another CPU.
c1a220e7 1332 */
d4283e93 1333bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1334{
57469821 1335 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1336}
0a13c00e 1337EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1338
d8e794df 1339void delayed_work_timer_fn(unsigned long __data)
1da177e4 1340{
52bad64d 1341 struct delayed_work *dwork = (struct delayed_work *)__data;
7a22ad75 1342 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1da177e4 1343
e0aecdd8 1344 /* should have been called from irqsafe timer with irq already off */
1265057f 1345 __queue_work(dwork->cpu, cwq->wq, &dwork->work);
1da177e4 1346}
d8e794df 1347EXPORT_SYMBOL_GPL(delayed_work_timer_fn);
1da177e4 1348
7beb2edf
TH
1349static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1350 struct delayed_work *dwork, unsigned long delay)
1da177e4 1351{
7beb2edf
TH
1352 struct timer_list *timer = &dwork->timer;
1353 struct work_struct *work = &dwork->work;
1354 unsigned int lcpu;
1355
1356 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1357 timer->data != (unsigned long)dwork);
fc4b514f
TH
1358 WARN_ON_ONCE(timer_pending(timer));
1359 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1360
8852aac2
TH
1361 /*
1362 * If @delay is 0, queue @dwork->work immediately. This is for
1363 * both optimization and correctness. The earliest @timer can
1364 * expire is on the closest next tick and delayed_work users depend
1365 * on that there's no such delay when @delay is 0.
1366 */
1367 if (!delay) {
1368 __queue_work(cpu, wq, &dwork->work);
1369 return;
1370 }
1371
7beb2edf 1372 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1373
7beb2edf
TH
1374 /*
1375 * This stores cwq for the moment, for the timer_fn. Note that the
ec22ca5e 1376 * work's pool is preserved to allow reentrance detection for
7beb2edf
TH
1377 * delayed works.
1378 */
1379 if (!(wq->flags & WQ_UNBOUND)) {
ec22ca5e 1380 struct worker_pool *pool = get_work_pool(work);
7beb2edf 1381
e42986de 1382 /*
ec22ca5e 1383 * If we cannot get the last pool from @work directly,
e42986de
JK
1384 * select the last CPU such that it avoids unnecessarily
1385 * triggering non-reentrancy check in __queue_work().
1386 */
1387 lcpu = cpu;
ec22ca5e
TH
1388 if (pool)
1389 lcpu = pool->cpu;
e42986de 1390 if (lcpu == WORK_CPU_UNBOUND)
7beb2edf
TH
1391 lcpu = raw_smp_processor_id();
1392 } else {
1393 lcpu = WORK_CPU_UNBOUND;
1394 }
1395
1396 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1397
1265057f 1398 dwork->cpu = cpu;
7beb2edf
TH
1399 timer->expires = jiffies + delay;
1400
1401 if (unlikely(cpu != WORK_CPU_UNBOUND))
1402 add_timer_on(timer, cpu);
1403 else
1404 add_timer(timer);
1da177e4
LT
1405}
1406
0fcb78c2
REB
1407/**
1408 * queue_delayed_work_on - queue work on specific CPU after delay
1409 * @cpu: CPU number to execute work on
1410 * @wq: workqueue to use
af9997e4 1411 * @dwork: work to queue
0fcb78c2
REB
1412 * @delay: number of jiffies to wait before queueing
1413 *
715f1300
TH
1414 * Returns %false if @work was already on a queue, %true otherwise. If
1415 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1416 * execution.
0fcb78c2 1417 */
d4283e93
TH
1418bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1419 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1420{
52bad64d 1421 struct work_struct *work = &dwork->work;
d4283e93 1422 bool ret = false;
8930caba 1423 unsigned long flags;
7a6bc1cd 1424
8930caba
TH
1425 /* read the comment in __queue_work() */
1426 local_irq_save(flags);
7a6bc1cd 1427
22df02bb 1428 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1429 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1430 ret = true;
7a6bc1cd 1431 }
8a3e77cc 1432
8930caba 1433 local_irq_restore(flags);
7a6bc1cd
VP
1434 return ret;
1435}
ae90dd5d 1436EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1437
0a13c00e
TH
1438/**
1439 * queue_delayed_work - queue work on a workqueue after delay
1440 * @wq: workqueue to use
1441 * @dwork: delayable work to queue
1442 * @delay: number of jiffies to wait before queueing
1443 *
715f1300 1444 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1445 */
d4283e93 1446bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1447 struct delayed_work *dwork, unsigned long delay)
1448{
57469821 1449 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1450}
1451EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1452
8376fe22
TH
1453/**
1454 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1455 * @cpu: CPU number to execute work on
1456 * @wq: workqueue to use
1457 * @dwork: work to queue
1458 * @delay: number of jiffies to wait before queueing
1459 *
1460 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1461 * modify @dwork's timer so that it expires after @delay. If @delay is
1462 * zero, @work is guaranteed to be scheduled immediately regardless of its
1463 * current state.
1464 *
1465 * Returns %false if @dwork was idle and queued, %true if @dwork was
1466 * pending and its timer was modified.
1467 *
e0aecdd8 1468 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1469 * See try_to_grab_pending() for details.
1470 */
1471bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1472 struct delayed_work *dwork, unsigned long delay)
1473{
1474 unsigned long flags;
1475 int ret;
c7fc77f7 1476
8376fe22
TH
1477 do {
1478 ret = try_to_grab_pending(&dwork->work, true, &flags);
1479 } while (unlikely(ret == -EAGAIN));
63bc0362 1480
8376fe22
TH
1481 if (likely(ret >= 0)) {
1482 __queue_delayed_work(cpu, wq, dwork, delay);
1483 local_irq_restore(flags);
7a6bc1cd 1484 }
8376fe22
TH
1485
1486 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1487 return ret;
1488}
8376fe22
TH
1489EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1490
1491/**
1492 * mod_delayed_work - modify delay of or queue a delayed work
1493 * @wq: workqueue to use
1494 * @dwork: work to queue
1495 * @delay: number of jiffies to wait before queueing
1496 *
1497 * mod_delayed_work_on() on local CPU.
1498 */
1499bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1500 unsigned long delay)
1501{
1502 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1503}
1504EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1505
c8e55f36
TH
1506/**
1507 * worker_enter_idle - enter idle state
1508 * @worker: worker which is entering idle state
1509 *
1510 * @worker is entering idle state. Update stats and idle timer if
1511 * necessary.
1512 *
1513 * LOCKING:
d565ed63 1514 * spin_lock_irq(pool->lock).
c8e55f36
TH
1515 */
1516static void worker_enter_idle(struct worker *worker)
1da177e4 1517{
bd7bdd43 1518 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1519
1520 BUG_ON(worker->flags & WORKER_IDLE);
1521 BUG_ON(!list_empty(&worker->entry) &&
1522 (worker->hentry.next || worker->hentry.pprev));
1523
cb444766
TH
1524 /* can't use worker_set_flags(), also called from start_worker() */
1525 worker->flags |= WORKER_IDLE;
bd7bdd43 1526 pool->nr_idle++;
e22bee78 1527 worker->last_active = jiffies;
c8e55f36
TH
1528
1529 /* idle_list is LIFO */
bd7bdd43 1530 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1531
628c78e7
TH
1532 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1533 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1534
544ecf31 1535 /*
706026c2 1536 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1537 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1538 * nr_running, the warning may trigger spuriously. Check iff
1539 * unbind is not in progress.
544ecf31 1540 */
24647570 1541 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1542 pool->nr_workers == pool->nr_idle &&
63d95a91 1543 atomic_read(get_pool_nr_running(pool)));
c8e55f36
TH
1544}
1545
1546/**
1547 * worker_leave_idle - leave idle state
1548 * @worker: worker which is leaving idle state
1549 *
1550 * @worker is leaving idle state. Update stats.
1551 *
1552 * LOCKING:
d565ed63 1553 * spin_lock_irq(pool->lock).
c8e55f36
TH
1554 */
1555static void worker_leave_idle(struct worker *worker)
1556{
bd7bdd43 1557 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1558
1559 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1560 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1561 pool->nr_idle--;
c8e55f36
TH
1562 list_del_init(&worker->entry);
1563}
1564
e22bee78 1565/**
706026c2 1566 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock pool
e22bee78
TH
1567 * @worker: self
1568 *
1569 * Works which are scheduled while the cpu is online must at least be
1570 * scheduled to a worker which is bound to the cpu so that if they are
1571 * flushed from cpu callbacks while cpu is going down, they are
1572 * guaranteed to execute on the cpu.
1573 *
1574 * This function is to be used by rogue workers and rescuers to bind
1575 * themselves to the target cpu and may race with cpu going down or
1576 * coming online. kthread_bind() can't be used because it may put the
1577 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1578 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1579 * [dis]associated in the meantime.
1580 *
706026c2 1581 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1582 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1583 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1584 * enters idle state or fetches works without dropping lock, it can
1585 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1586 *
1587 * CONTEXT:
d565ed63 1588 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1589 * held.
1590 *
1591 * RETURNS:
706026c2 1592 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1593 * bound), %false if offline.
1594 */
1595static bool worker_maybe_bind_and_lock(struct worker *worker)
d565ed63 1596__acquires(&pool->lock)
e22bee78 1597{
24647570 1598 struct worker_pool *pool = worker->pool;
e22bee78
TH
1599 struct task_struct *task = worker->task;
1600
1601 while (true) {
4e6045f1 1602 /*
e22bee78
TH
1603 * The following call may fail, succeed or succeed
1604 * without actually migrating the task to the cpu if
1605 * it races with cpu hotunplug operation. Verify
24647570 1606 * against POOL_DISASSOCIATED.
4e6045f1 1607 */
24647570 1608 if (!(pool->flags & POOL_DISASSOCIATED))
ec22ca5e 1609 set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu));
e22bee78 1610
d565ed63 1611 spin_lock_irq(&pool->lock);
24647570 1612 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1613 return false;
ec22ca5e 1614 if (task_cpu(task) == pool->cpu &&
e22bee78 1615 cpumask_equal(&current->cpus_allowed,
ec22ca5e 1616 get_cpu_mask(pool->cpu)))
e22bee78 1617 return true;
d565ed63 1618 spin_unlock_irq(&pool->lock);
e22bee78 1619
5035b20f
TH
1620 /*
1621 * We've raced with CPU hot[un]plug. Give it a breather
1622 * and retry migration. cond_resched() is required here;
1623 * otherwise, we might deadlock against cpu_stop trying to
1624 * bring down the CPU on non-preemptive kernel.
1625 */
e22bee78 1626 cpu_relax();
5035b20f 1627 cond_resched();
e22bee78
TH
1628 }
1629}
1630
25511a47 1631/*
ea1abd61 1632 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1633 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1634 */
1635static void idle_worker_rebind(struct worker *worker)
1636{
5f7dabfd
LJ
1637 /* CPU may go down again inbetween, clear UNBOUND only on success */
1638 if (worker_maybe_bind_and_lock(worker))
1639 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1640
ea1abd61
LJ
1641 /* rebind complete, become available again */
1642 list_add(&worker->entry, &worker->pool->idle_list);
d565ed63 1643 spin_unlock_irq(&worker->pool->lock);
25511a47
TH
1644}
1645
e22bee78 1646/*
25511a47 1647 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1648 * the associated cpu which is coming back online. This is scheduled by
1649 * cpu up but can race with other cpu hotplug operations and may be
1650 * executed twice without intervening cpu down.
e22bee78 1651 */
25511a47 1652static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1653{
1654 struct worker *worker = container_of(work, struct worker, rebind_work);
e22bee78 1655
eab6d828
LJ
1656 if (worker_maybe_bind_and_lock(worker))
1657 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78 1658
d565ed63 1659 spin_unlock_irq(&worker->pool->lock);
e22bee78
TH
1660}
1661
25511a47 1662/**
94cf58bb
TH
1663 * rebind_workers - rebind all workers of a pool to the associated CPU
1664 * @pool: pool of interest
25511a47 1665 *
94cf58bb 1666 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
25511a47
TH
1667 * is different for idle and busy ones.
1668 *
ea1abd61
LJ
1669 * Idle ones will be removed from the idle_list and woken up. They will
1670 * add themselves back after completing rebind. This ensures that the
1671 * idle_list doesn't contain any unbound workers when re-bound busy workers
1672 * try to perform local wake-ups for concurrency management.
25511a47 1673 *
ea1abd61
LJ
1674 * Busy workers can rebind after they finish their current work items.
1675 * Queueing the rebind work item at the head of the scheduled list is
1676 * enough. Note that nr_running will be properly bumped as busy workers
1677 * rebind.
25511a47 1678 *
ea1abd61
LJ
1679 * On return, all non-manager workers are scheduled for rebind - see
1680 * manage_workers() for the manager special case. Any idle worker
1681 * including the manager will not appear on @idle_list until rebind is
1682 * complete, making local wake-ups safe.
25511a47 1683 */
94cf58bb 1684static void rebind_workers(struct worker_pool *pool)
25511a47 1685{
ea1abd61 1686 struct worker *worker, *n;
25511a47
TH
1687 struct hlist_node *pos;
1688 int i;
1689
94cf58bb
TH
1690 lockdep_assert_held(&pool->assoc_mutex);
1691 lockdep_assert_held(&pool->lock);
25511a47 1692
5f7dabfd 1693 /* dequeue and kick idle ones */
94cf58bb
TH
1694 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1695 /*
1696 * idle workers should be off @pool->idle_list until rebind
1697 * is complete to avoid receiving premature local wake-ups.
1698 */
1699 list_del_init(&worker->entry);
25511a47 1700
94cf58bb
TH
1701 /*
1702 * worker_thread() will see the above dequeuing and call
1703 * idle_worker_rebind().
1704 */
1705 wake_up_process(worker->task);
1706 }
25511a47 1707
94cf58bb
TH
1708 /* rebind busy workers */
1709 for_each_busy_worker(worker, i, pos, pool) {
1710 struct work_struct *rebind_work = &worker->rebind_work;
1711 struct workqueue_struct *wq;
25511a47 1712
94cf58bb
TH
1713 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1714 work_data_bits(rebind_work)))
1715 continue;
25511a47 1716
94cf58bb 1717 debug_work_activate(rebind_work);
90beca5d 1718
94cf58bb
TH
1719 /*
1720 * wq doesn't really matter but let's keep @worker->pool
1721 * and @cwq->pool consistent for sanity.
1722 */
1723 if (std_worker_pool_pri(worker->pool))
1724 wq = system_highpri_wq;
1725 else
1726 wq = system_wq;
1727
1728 insert_work(get_cwq(pool->cpu, wq), rebind_work,
1729 worker->scheduled.next,
1730 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1731 }
25511a47
TH
1732}
1733
c34056a3
TH
1734static struct worker *alloc_worker(void)
1735{
1736 struct worker *worker;
1737
1738 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1739 if (worker) {
1740 INIT_LIST_HEAD(&worker->entry);
affee4b2 1741 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1742 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1743 /* on creation a worker is in !idle && prep state */
1744 worker->flags = WORKER_PREP;
c8e55f36 1745 }
c34056a3
TH
1746 return worker;
1747}
1748
1749/**
1750 * create_worker - create a new workqueue worker
63d95a91 1751 * @pool: pool the new worker will belong to
c34056a3 1752 *
63d95a91 1753 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1754 * can be started by calling start_worker() or destroyed using
1755 * destroy_worker().
1756 *
1757 * CONTEXT:
1758 * Might sleep. Does GFP_KERNEL allocations.
1759 *
1760 * RETURNS:
1761 * Pointer to the newly created worker.
1762 */
bc2ae0f5 1763static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1764{
e34cdddb 1765 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
c34056a3 1766 struct worker *worker = NULL;
f3421797 1767 int id = -1;
c34056a3 1768
d565ed63 1769 spin_lock_irq(&pool->lock);
bd7bdd43 1770 while (ida_get_new(&pool->worker_ida, &id)) {
d565ed63 1771 spin_unlock_irq(&pool->lock);
bd7bdd43 1772 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1773 goto fail;
d565ed63 1774 spin_lock_irq(&pool->lock);
c34056a3 1775 }
d565ed63 1776 spin_unlock_irq(&pool->lock);
c34056a3
TH
1777
1778 worker = alloc_worker();
1779 if (!worker)
1780 goto fail;
1781
bd7bdd43 1782 worker->pool = pool;
c34056a3
TH
1783 worker->id = id;
1784
ec22ca5e 1785 if (pool->cpu != WORK_CPU_UNBOUND)
94dcf29a 1786 worker->task = kthread_create_on_node(worker_thread,
ec22ca5e
TH
1787 worker, cpu_to_node(pool->cpu),
1788 "kworker/%u:%d%s", pool->cpu, id, pri);
f3421797
TH
1789 else
1790 worker->task = kthread_create(worker_thread, worker,
3270476a 1791 "kworker/u:%d%s", id, pri);
c34056a3
TH
1792 if (IS_ERR(worker->task))
1793 goto fail;
1794
e34cdddb 1795 if (std_worker_pool_pri(pool))
3270476a
TH
1796 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1797
db7bccf4 1798 /*
bc2ae0f5 1799 * Determine CPU binding of the new worker depending on
24647570 1800 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
bc2ae0f5
TH
1801 * flag remains stable across this function. See the comments
1802 * above the flag definition for details.
1803 *
1804 * As an unbound worker may later become a regular one if CPU comes
1805 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1806 */
24647570 1807 if (!(pool->flags & POOL_DISASSOCIATED)) {
ec22ca5e 1808 kthread_bind(worker->task, pool->cpu);
bc2ae0f5 1809 } else {
db7bccf4 1810 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1811 worker->flags |= WORKER_UNBOUND;
f3421797 1812 }
c34056a3
TH
1813
1814 return worker;
1815fail:
1816 if (id >= 0) {
d565ed63 1817 spin_lock_irq(&pool->lock);
bd7bdd43 1818 ida_remove(&pool->worker_ida, id);
d565ed63 1819 spin_unlock_irq(&pool->lock);
c34056a3
TH
1820 }
1821 kfree(worker);
1822 return NULL;
1823}
1824
1825/**
1826 * start_worker - start a newly created worker
1827 * @worker: worker to start
1828 *
706026c2 1829 * Make the pool aware of @worker and start it.
c34056a3
TH
1830 *
1831 * CONTEXT:
d565ed63 1832 * spin_lock_irq(pool->lock).
c34056a3
TH
1833 */
1834static void start_worker(struct worker *worker)
1835{
cb444766 1836 worker->flags |= WORKER_STARTED;
bd7bdd43 1837 worker->pool->nr_workers++;
c8e55f36 1838 worker_enter_idle(worker);
c34056a3
TH
1839 wake_up_process(worker->task);
1840}
1841
1842/**
1843 * destroy_worker - destroy a workqueue worker
1844 * @worker: worker to be destroyed
1845 *
706026c2 1846 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1847 *
1848 * CONTEXT:
d565ed63 1849 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1850 */
1851static void destroy_worker(struct worker *worker)
1852{
bd7bdd43 1853 struct worker_pool *pool = worker->pool;
c34056a3
TH
1854 int id = worker->id;
1855
1856 /* sanity check frenzy */
1857 BUG_ON(worker->current_work);
affee4b2 1858 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1859
c8e55f36 1860 if (worker->flags & WORKER_STARTED)
bd7bdd43 1861 pool->nr_workers--;
c8e55f36 1862 if (worker->flags & WORKER_IDLE)
bd7bdd43 1863 pool->nr_idle--;
c8e55f36
TH
1864
1865 list_del_init(&worker->entry);
cb444766 1866 worker->flags |= WORKER_DIE;
c8e55f36 1867
d565ed63 1868 spin_unlock_irq(&pool->lock);
c8e55f36 1869
c34056a3
TH
1870 kthread_stop(worker->task);
1871 kfree(worker);
1872
d565ed63 1873 spin_lock_irq(&pool->lock);
bd7bdd43 1874 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1875}
1876
63d95a91 1877static void idle_worker_timeout(unsigned long __pool)
e22bee78 1878{
63d95a91 1879 struct worker_pool *pool = (void *)__pool;
e22bee78 1880
d565ed63 1881 spin_lock_irq(&pool->lock);
e22bee78 1882
63d95a91 1883 if (too_many_workers(pool)) {
e22bee78
TH
1884 struct worker *worker;
1885 unsigned long expires;
1886
1887 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1888 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1889 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1890
1891 if (time_before(jiffies, expires))
63d95a91 1892 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1893 else {
1894 /* it's been idle for too long, wake up manager */
11ebea50 1895 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1896 wake_up_worker(pool);
d5abe669 1897 }
e22bee78
TH
1898 }
1899
d565ed63 1900 spin_unlock_irq(&pool->lock);
e22bee78 1901}
d5abe669 1902
e22bee78
TH
1903static bool send_mayday(struct work_struct *work)
1904{
1905 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1906 struct workqueue_struct *wq = cwq->wq;
f3421797 1907 unsigned int cpu;
e22bee78
TH
1908
1909 if (!(wq->flags & WQ_RESCUER))
1910 return false;
1911
1912 /* mayday mayday mayday */
ec22ca5e 1913 cpu = cwq->pool->cpu;
f3421797
TH
1914 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1915 if (cpu == WORK_CPU_UNBOUND)
1916 cpu = 0;
f2e005aa 1917 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1918 wake_up_process(wq->rescuer->task);
1919 return true;
1920}
1921
706026c2 1922static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1923{
63d95a91 1924 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1925 struct work_struct *work;
1926
d565ed63 1927 spin_lock_irq(&pool->lock);
e22bee78 1928
63d95a91 1929 if (need_to_create_worker(pool)) {
e22bee78
TH
1930 /*
1931 * We've been trying to create a new worker but
1932 * haven't been successful. We might be hitting an
1933 * allocation deadlock. Send distress signals to
1934 * rescuers.
1935 */
63d95a91 1936 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1937 send_mayday(work);
1da177e4 1938 }
e22bee78 1939
d565ed63 1940 spin_unlock_irq(&pool->lock);
e22bee78 1941
63d95a91 1942 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1943}
1944
e22bee78
TH
1945/**
1946 * maybe_create_worker - create a new worker if necessary
63d95a91 1947 * @pool: pool to create a new worker for
e22bee78 1948 *
63d95a91 1949 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1950 * have at least one idle worker on return from this function. If
1951 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1952 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1953 * possible allocation deadlock.
1954 *
1955 * On return, need_to_create_worker() is guaranteed to be false and
1956 * may_start_working() true.
1957 *
1958 * LOCKING:
d565ed63 1959 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1960 * multiple times. Does GFP_KERNEL allocations. Called only from
1961 * manager.
1962 *
1963 * RETURNS:
d565ed63 1964 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1965 * otherwise.
1966 */
63d95a91 1967static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1968__releases(&pool->lock)
1969__acquires(&pool->lock)
1da177e4 1970{
63d95a91 1971 if (!need_to_create_worker(pool))
e22bee78
TH
1972 return false;
1973restart:
d565ed63 1974 spin_unlock_irq(&pool->lock);
9f9c2364 1975
e22bee78 1976 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1977 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1978
1979 while (true) {
1980 struct worker *worker;
1981
bc2ae0f5 1982 worker = create_worker(pool);
e22bee78 1983 if (worker) {
63d95a91 1984 del_timer_sync(&pool->mayday_timer);
d565ed63 1985 spin_lock_irq(&pool->lock);
e22bee78 1986 start_worker(worker);
63d95a91 1987 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
1988 return true;
1989 }
1990
63d95a91 1991 if (!need_to_create_worker(pool))
e22bee78 1992 break;
1da177e4 1993
e22bee78
TH
1994 __set_current_state(TASK_INTERRUPTIBLE);
1995 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1996
63d95a91 1997 if (!need_to_create_worker(pool))
e22bee78
TH
1998 break;
1999 }
2000
63d95a91 2001 del_timer_sync(&pool->mayday_timer);
d565ed63 2002 spin_lock_irq(&pool->lock);
63d95a91 2003 if (need_to_create_worker(pool))
e22bee78
TH
2004 goto restart;
2005 return true;
2006}
2007
2008/**
2009 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 2010 * @pool: pool to destroy workers for
e22bee78 2011 *
63d95a91 2012 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
2013 * IDLE_WORKER_TIMEOUT.
2014 *
2015 * LOCKING:
d565ed63 2016 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2017 * multiple times. Called only from manager.
2018 *
2019 * RETURNS:
d565ed63 2020 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
2021 * otherwise.
2022 */
63d95a91 2023static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2024{
2025 bool ret = false;
1da177e4 2026
63d95a91 2027 while (too_many_workers(pool)) {
e22bee78
TH
2028 struct worker *worker;
2029 unsigned long expires;
3af24433 2030
63d95a91 2031 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2032 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2033
e22bee78 2034 if (time_before(jiffies, expires)) {
63d95a91 2035 mod_timer(&pool->idle_timer, expires);
3af24433 2036 break;
e22bee78 2037 }
1da177e4 2038
e22bee78
TH
2039 destroy_worker(worker);
2040 ret = true;
1da177e4 2041 }
1e19ffc6 2042
e22bee78 2043 return ret;
1e19ffc6
TH
2044}
2045
73f53c4a 2046/**
e22bee78
TH
2047 * manage_workers - manage worker pool
2048 * @worker: self
73f53c4a 2049 *
706026c2 2050 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2051 * to. At any given time, there can be only zero or one manager per
706026c2 2052 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2053 *
2054 * The caller can safely start processing works on false return. On
2055 * true return, it's guaranteed that need_to_create_worker() is false
2056 * and may_start_working() is true.
73f53c4a
TH
2057 *
2058 * CONTEXT:
d565ed63 2059 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2060 * multiple times. Does GFP_KERNEL allocations.
2061 *
2062 * RETURNS:
d565ed63
TH
2063 * spin_lock_irq(pool->lock) which may be released and regrabbed
2064 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2065 */
e22bee78 2066static bool manage_workers(struct worker *worker)
73f53c4a 2067{
63d95a91 2068 struct worker_pool *pool = worker->pool;
e22bee78 2069 bool ret = false;
73f53c4a 2070
ee378aa4 2071 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78 2072 return ret;
1e19ffc6 2073
552a37e9 2074 pool->flags |= POOL_MANAGING_WORKERS;
73f53c4a 2075
ee378aa4
LJ
2076 /*
2077 * To simplify both worker management and CPU hotplug, hold off
2078 * management while hotplug is in progress. CPU hotplug path can't
2079 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2080 * lead to idle worker depletion (all become busy thinking someone
2081 * else is managing) which in turn can result in deadlock under
b2eb83d1 2082 * extreme circumstances. Use @pool->assoc_mutex to synchronize
ee378aa4
LJ
2083 * manager against CPU hotplug.
2084 *
b2eb83d1 2085 * assoc_mutex would always be free unless CPU hotplug is in
d565ed63 2086 * progress. trylock first without dropping @pool->lock.
ee378aa4 2087 */
b2eb83d1 2088 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
d565ed63 2089 spin_unlock_irq(&pool->lock);
b2eb83d1 2090 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2091 /*
2092 * CPU hotplug could have happened while we were waiting
b2eb83d1 2093 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4 2094 * because manager isn't either on idle or busy list, and
706026c2 2095 * @pool's state and ours could have deviated.
ee378aa4 2096 *
b2eb83d1 2097 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4 2098 * simply try to bind. It will succeed or fail depending
706026c2 2099 * on @pool's current state. Try it and adjust
ee378aa4
LJ
2100 * %WORKER_UNBOUND accordingly.
2101 */
2102 if (worker_maybe_bind_and_lock(worker))
2103 worker->flags &= ~WORKER_UNBOUND;
2104 else
2105 worker->flags |= WORKER_UNBOUND;
73f53c4a 2106
ee378aa4
LJ
2107 ret = true;
2108 }
73f53c4a 2109
11ebea50 2110 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2111
2112 /*
e22bee78
TH
2113 * Destroy and then create so that may_start_working() is true
2114 * on return.
73f53c4a 2115 */
63d95a91
TH
2116 ret |= maybe_destroy_workers(pool);
2117 ret |= maybe_create_worker(pool);
e22bee78 2118
552a37e9 2119 pool->flags &= ~POOL_MANAGING_WORKERS;
b2eb83d1 2120 mutex_unlock(&pool->assoc_mutex);
e22bee78 2121 return ret;
73f53c4a
TH
2122}
2123
a62428c0
TH
2124/**
2125 * process_one_work - process single work
c34056a3 2126 * @worker: self
a62428c0
TH
2127 * @work: work to process
2128 *
2129 * Process @work. This function contains all the logics necessary to
2130 * process a single work including synchronization against and
2131 * interaction with other workers on the same cpu, queueing and
2132 * flushing. As long as context requirement is met, any worker can
2133 * call this function to process a work.
2134 *
2135 * CONTEXT:
d565ed63 2136 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2137 */
c34056a3 2138static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2139__releases(&pool->lock)
2140__acquires(&pool->lock)
a62428c0 2141{
7e11629d 2142 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
bd7bdd43 2143 struct worker_pool *pool = worker->pool;
fb0e7beb 2144 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2145 int work_color;
7e11629d 2146 struct worker *collision;
a62428c0
TH
2147#ifdef CONFIG_LOCKDEP
2148 /*
2149 * It is permissible to free the struct work_struct from
2150 * inside the function that is called from it, this we need to
2151 * take into account for lockdep too. To avoid bogus "held
2152 * lock freed" warnings as well as problems when looking into
2153 * work->lockdep_map, make a copy and use that here.
2154 */
4d82a1de
PZ
2155 struct lockdep_map lockdep_map;
2156
2157 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2158#endif
6fec10a1
TH
2159 /*
2160 * Ensure we're on the correct CPU. DISASSOCIATED test is
2161 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2162 * unbound or a disassociated pool.
6fec10a1 2163 */
5f7dabfd 2164 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2165 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2166 raw_smp_processor_id() != pool->cpu);
25511a47 2167
7e11629d
TH
2168 /*
2169 * A single work shouldn't be executed concurrently by
2170 * multiple workers on a single cpu. Check whether anyone is
2171 * already processing the work. If so, defer the work to the
2172 * currently executing one.
2173 */
c9e7cf27 2174 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2175 if (unlikely(collision)) {
2176 move_linked_works(work, &collision->scheduled, NULL);
2177 return;
2178 }
2179
8930caba 2180 /* claim and dequeue */
a62428c0 2181 debug_work_deactivate(work);
c9e7cf27 2182 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2183 worker->current_work = work;
a2c1c57b 2184 worker->current_func = work->func;
8cca0eea 2185 worker->current_cwq = cwq;
73f53c4a 2186 work_color = get_work_color(work);
7a22ad75 2187
a62428c0
TH
2188 list_del_init(&work->entry);
2189
fb0e7beb
TH
2190 /*
2191 * CPU intensive works don't participate in concurrency
2192 * management. They're the scheduler's responsibility.
2193 */
2194 if (unlikely(cpu_intensive))
2195 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2196
974271c4 2197 /*
d565ed63 2198 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2199 * executed ASAP. Wake up another worker if necessary.
2200 */
63d95a91
TH
2201 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2202 wake_up_worker(pool);
974271c4 2203
8930caba 2204 /*
7c3eed5c 2205 * Record the last pool and clear PENDING which should be the last
d565ed63 2206 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2207 * PENDING and queued state changes happen together while IRQ is
2208 * disabled.
8930caba 2209 */
7c3eed5c 2210 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2211
d565ed63 2212 spin_unlock_irq(&pool->lock);
a62428c0 2213
e159489b 2214 lock_map_acquire_read(&cwq->wq->lockdep_map);
a62428c0 2215 lock_map_acquire(&lockdep_map);
e36c886a 2216 trace_workqueue_execute_start(work);
a2c1c57b 2217 worker->current_func(work);
e36c886a
AV
2218 /*
2219 * While we must be careful to not use "work" after this, the trace
2220 * point will only record its address.
2221 */
2222 trace_workqueue_execute_end(work);
a62428c0
TH
2223 lock_map_release(&lockdep_map);
2224 lock_map_release(&cwq->wq->lockdep_map);
2225
2226 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2227 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2228 " last function: %pf\n",
a2c1c57b
TH
2229 current->comm, preempt_count(), task_pid_nr(current),
2230 worker->current_func);
a62428c0
TH
2231 debug_show_held_locks(current);
2232 dump_stack();
2233 }
2234
d565ed63 2235 spin_lock_irq(&pool->lock);
a62428c0 2236
fb0e7beb
TH
2237 /* clear cpu intensive status */
2238 if (unlikely(cpu_intensive))
2239 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2240
a62428c0 2241 /* we're done with it, release */
42f8570f 2242 hash_del(&worker->hentry);
c34056a3 2243 worker->current_work = NULL;
a2c1c57b 2244 worker->current_func = NULL;
8cca0eea 2245 worker->current_cwq = NULL;
b3f9f405 2246 cwq_dec_nr_in_flight(cwq, work_color);
a62428c0
TH
2247}
2248
affee4b2
TH
2249/**
2250 * process_scheduled_works - process scheduled works
2251 * @worker: self
2252 *
2253 * Process all scheduled works. Please note that the scheduled list
2254 * may change while processing a work, so this function repeatedly
2255 * fetches a work from the top and executes it.
2256 *
2257 * CONTEXT:
d565ed63 2258 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2259 * multiple times.
2260 */
2261static void process_scheduled_works(struct worker *worker)
1da177e4 2262{
affee4b2
TH
2263 while (!list_empty(&worker->scheduled)) {
2264 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2265 struct work_struct, entry);
c34056a3 2266 process_one_work(worker, work);
1da177e4 2267 }
1da177e4
LT
2268}
2269
4690c4ab
TH
2270/**
2271 * worker_thread - the worker thread function
c34056a3 2272 * @__worker: self
4690c4ab 2273 *
706026c2
TH
2274 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools
2275 * of these per each cpu. These workers process all works regardless of
e22bee78
TH
2276 * their specific target workqueue. The only exception is works which
2277 * belong to workqueues with a rescuer which will be explained in
2278 * rescuer_thread().
4690c4ab 2279 */
c34056a3 2280static int worker_thread(void *__worker)
1da177e4 2281{
c34056a3 2282 struct worker *worker = __worker;
bd7bdd43 2283 struct worker_pool *pool = worker->pool;
1da177e4 2284
e22bee78
TH
2285 /* tell the scheduler that this is a workqueue worker */
2286 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2287woke_up:
d565ed63 2288 spin_lock_irq(&pool->lock);
1da177e4 2289
5f7dabfd
LJ
2290 /* we are off idle list if destruction or rebind is requested */
2291 if (unlikely(list_empty(&worker->entry))) {
d565ed63 2292 spin_unlock_irq(&pool->lock);
25511a47 2293
5f7dabfd 2294 /* if DIE is set, destruction is requested */
25511a47
TH
2295 if (worker->flags & WORKER_DIE) {
2296 worker->task->flags &= ~PF_WQ_WORKER;
2297 return 0;
2298 }
2299
5f7dabfd 2300 /* otherwise, rebind */
25511a47
TH
2301 idle_worker_rebind(worker);
2302 goto woke_up;
c8e55f36 2303 }
affee4b2 2304
c8e55f36 2305 worker_leave_idle(worker);
db7bccf4 2306recheck:
e22bee78 2307 /* no more worker necessary? */
63d95a91 2308 if (!need_more_worker(pool))
e22bee78
TH
2309 goto sleep;
2310
2311 /* do we need to manage? */
63d95a91 2312 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2313 goto recheck;
2314
c8e55f36
TH
2315 /*
2316 * ->scheduled list can only be filled while a worker is
2317 * preparing to process a work or actually processing it.
2318 * Make sure nobody diddled with it while I was sleeping.
2319 */
2320 BUG_ON(!list_empty(&worker->scheduled));
2321
e22bee78
TH
2322 /*
2323 * When control reaches this point, we're guaranteed to have
2324 * at least one idle worker or that someone else has already
2325 * assumed the manager role.
2326 */
2327 worker_clr_flags(worker, WORKER_PREP);
2328
2329 do {
c8e55f36 2330 struct work_struct *work =
bd7bdd43 2331 list_first_entry(&pool->worklist,
c8e55f36
TH
2332 struct work_struct, entry);
2333
2334 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2335 /* optimization path, not strictly necessary */
2336 process_one_work(worker, work);
2337 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2338 process_scheduled_works(worker);
c8e55f36
TH
2339 } else {
2340 move_linked_works(work, &worker->scheduled, NULL);
2341 process_scheduled_works(worker);
affee4b2 2342 }
63d95a91 2343 } while (keep_working(pool));
e22bee78
TH
2344
2345 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2346sleep:
63d95a91 2347 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2348 goto recheck;
d313dd85 2349
c8e55f36 2350 /*
d565ed63
TH
2351 * pool->lock is held and there's no work to process and no need to
2352 * manage, sleep. Workers are woken up only while holding
2353 * pool->lock or from local cpu, so setting the current state
2354 * before releasing pool->lock is enough to prevent losing any
2355 * event.
c8e55f36
TH
2356 */
2357 worker_enter_idle(worker);
2358 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2359 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2360 schedule();
2361 goto woke_up;
1da177e4
LT
2362}
2363
e22bee78
TH
2364/**
2365 * rescuer_thread - the rescuer thread function
111c225a 2366 * @__rescuer: self
e22bee78
TH
2367 *
2368 * Workqueue rescuer thread function. There's one rescuer for each
2369 * workqueue which has WQ_RESCUER set.
2370 *
706026c2 2371 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2372 * worker which uses GFP_KERNEL allocation which has slight chance of
2373 * developing into deadlock if some works currently on the same queue
2374 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2375 * the problem rescuer solves.
2376 *
706026c2
TH
2377 * When such condition is possible, the pool summons rescuers of all
2378 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2379 * those works so that forward progress can be guaranteed.
2380 *
2381 * This should happen rarely.
2382 */
111c225a 2383static int rescuer_thread(void *__rescuer)
e22bee78 2384{
111c225a
TH
2385 struct worker *rescuer = __rescuer;
2386 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2387 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2388 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2389 unsigned int cpu;
2390
2391 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2392
2393 /*
2394 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2395 * doesn't participate in concurrency management.
2396 */
2397 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2398repeat:
2399 set_current_state(TASK_INTERRUPTIBLE);
2400
412d32e6
MG
2401 if (kthread_should_stop()) {
2402 __set_current_state(TASK_RUNNING);
111c225a 2403 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2404 return 0;
412d32e6 2405 }
e22bee78 2406
f3421797
TH
2407 /*
2408 * See whether any cpu is asking for help. Unbounded
2409 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2410 */
f2e005aa 2411 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797
TH
2412 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2413 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
bd7bdd43 2414 struct worker_pool *pool = cwq->pool;
e22bee78
TH
2415 struct work_struct *work, *n;
2416
2417 __set_current_state(TASK_RUNNING);
f2e005aa 2418 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2419
2420 /* migrate to the target cpu if possible */
bd7bdd43 2421 rescuer->pool = pool;
e22bee78
TH
2422 worker_maybe_bind_and_lock(rescuer);
2423
2424 /*
2425 * Slurp in all works issued via this workqueue and
2426 * process'em.
2427 */
2428 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2429 list_for_each_entry_safe(work, n, &pool->worklist, entry)
e22bee78
TH
2430 if (get_work_cwq(work) == cwq)
2431 move_linked_works(work, scheduled, &n);
2432
2433 process_scheduled_works(rescuer);
7576958a
TH
2434
2435 /*
d565ed63 2436 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2437 * regular worker; otherwise, we end up with 0 concurrency
2438 * and stalling the execution.
2439 */
63d95a91
TH
2440 if (keep_working(pool))
2441 wake_up_worker(pool);
7576958a 2442
d565ed63 2443 spin_unlock_irq(&pool->lock);
e22bee78
TH
2444 }
2445
111c225a
TH
2446 /* rescuers should never participate in concurrency management */
2447 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2448 schedule();
2449 goto repeat;
1da177e4
LT
2450}
2451
fc2e4d70
ON
2452struct wq_barrier {
2453 struct work_struct work;
2454 struct completion done;
2455};
2456
2457static void wq_barrier_func(struct work_struct *work)
2458{
2459 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2460 complete(&barr->done);
2461}
2462
4690c4ab
TH
2463/**
2464 * insert_wq_barrier - insert a barrier work
2465 * @cwq: cwq to insert barrier into
2466 * @barr: wq_barrier to insert
affee4b2
TH
2467 * @target: target work to attach @barr to
2468 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2469 *
affee4b2
TH
2470 * @barr is linked to @target such that @barr is completed only after
2471 * @target finishes execution. Please note that the ordering
2472 * guarantee is observed only with respect to @target and on the local
2473 * cpu.
2474 *
2475 * Currently, a queued barrier can't be canceled. This is because
2476 * try_to_grab_pending() can't determine whether the work to be
2477 * grabbed is at the head of the queue and thus can't clear LINKED
2478 * flag of the previous work while there must be a valid next work
2479 * after a work with LINKED flag set.
2480 *
2481 * Note that when @worker is non-NULL, @target may be modified
2482 * underneath us, so we can't reliably determine cwq from @target.
4690c4ab
TH
2483 *
2484 * CONTEXT:
d565ed63 2485 * spin_lock_irq(pool->lock).
4690c4ab 2486 */
83c22520 2487static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
affee4b2
TH
2488 struct wq_barrier *barr,
2489 struct work_struct *target, struct worker *worker)
fc2e4d70 2490{
affee4b2
TH
2491 struct list_head *head;
2492 unsigned int linked = 0;
2493
dc186ad7 2494 /*
d565ed63 2495 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2496 * as we know for sure that this will not trigger any of the
2497 * checks and call back into the fixup functions where we
2498 * might deadlock.
2499 */
ca1cab37 2500 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2501 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2502 init_completion(&barr->done);
83c22520 2503
affee4b2
TH
2504 /*
2505 * If @target is currently being executed, schedule the
2506 * barrier to the worker; otherwise, put it after @target.
2507 */
2508 if (worker)
2509 head = worker->scheduled.next;
2510 else {
2511 unsigned long *bits = work_data_bits(target);
2512
2513 head = target->entry.next;
2514 /* there can already be other linked works, inherit and set */
2515 linked = *bits & WORK_STRUCT_LINKED;
2516 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2517 }
2518
dc186ad7 2519 debug_work_activate(&barr->work);
affee4b2
TH
2520 insert_work(cwq, &barr->work, head,
2521 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2522}
2523
73f53c4a
TH
2524/**
2525 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2526 * @wq: workqueue being flushed
2527 * @flush_color: new flush color, < 0 for no-op
2528 * @work_color: new work color, < 0 for no-op
2529 *
2530 * Prepare cwqs for workqueue flushing.
2531 *
2532 * If @flush_color is non-negative, flush_color on all cwqs should be
2533 * -1. If no cwq has in-flight commands at the specified color, all
2534 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2535 * has in flight commands, its cwq->flush_color is set to
2536 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2537 * wakeup logic is armed and %true is returned.
2538 *
2539 * The caller should have initialized @wq->first_flusher prior to
2540 * calling this function with non-negative @flush_color. If
2541 * @flush_color is negative, no flush color update is done and %false
2542 * is returned.
2543 *
2544 * If @work_color is non-negative, all cwqs should have the same
2545 * work_color which is previous to @work_color and all will be
2546 * advanced to @work_color.
2547 *
2548 * CONTEXT:
2549 * mutex_lock(wq->flush_mutex).
2550 *
2551 * RETURNS:
2552 * %true if @flush_color >= 0 and there's something to flush. %false
2553 * otherwise.
2554 */
2555static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2556 int flush_color, int work_color)
1da177e4 2557{
73f53c4a
TH
2558 bool wait = false;
2559 unsigned int cpu;
1da177e4 2560
73f53c4a
TH
2561 if (flush_color >= 0) {
2562 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2563 atomic_set(&wq->nr_cwqs_to_flush, 1);
1da177e4 2564 }
2355b70f 2565
f3421797 2566 for_each_cwq_cpu(cpu, wq) {
73f53c4a 2567 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
d565ed63 2568 struct worker_pool *pool = cwq->pool;
fc2e4d70 2569
d565ed63 2570 spin_lock_irq(&pool->lock);
83c22520 2571
73f53c4a
TH
2572 if (flush_color >= 0) {
2573 BUG_ON(cwq->flush_color != -1);
fc2e4d70 2574
73f53c4a
TH
2575 if (cwq->nr_in_flight[flush_color]) {
2576 cwq->flush_color = flush_color;
2577 atomic_inc(&wq->nr_cwqs_to_flush);
2578 wait = true;
2579 }
2580 }
1da177e4 2581
73f53c4a
TH
2582 if (work_color >= 0) {
2583 BUG_ON(work_color != work_next_color(cwq->work_color));
2584 cwq->work_color = work_color;
2585 }
1da177e4 2586
d565ed63 2587 spin_unlock_irq(&pool->lock);
1da177e4 2588 }
2355b70f 2589
73f53c4a
TH
2590 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2591 complete(&wq->first_flusher->done);
14441960 2592
73f53c4a 2593 return wait;
1da177e4
LT
2594}
2595
0fcb78c2 2596/**
1da177e4 2597 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2598 * @wq: workqueue to flush
1da177e4
LT
2599 *
2600 * Forces execution of the workqueue and blocks until its completion.
2601 * This is typically used in driver shutdown handlers.
2602 *
fc2e4d70
ON
2603 * We sleep until all works which were queued on entry have been handled,
2604 * but we are not livelocked by new incoming ones.
1da177e4 2605 */
7ad5b3a5 2606void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2607{
73f53c4a
TH
2608 struct wq_flusher this_flusher = {
2609 .list = LIST_HEAD_INIT(this_flusher.list),
2610 .flush_color = -1,
2611 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2612 };
2613 int next_color;
1da177e4 2614
3295f0ef
IM
2615 lock_map_acquire(&wq->lockdep_map);
2616 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2617
2618 mutex_lock(&wq->flush_mutex);
2619
2620 /*
2621 * Start-to-wait phase
2622 */
2623 next_color = work_next_color(wq->work_color);
2624
2625 if (next_color != wq->flush_color) {
2626 /*
2627 * Color space is not full. The current work_color
2628 * becomes our flush_color and work_color is advanced
2629 * by one.
2630 */
2631 BUG_ON(!list_empty(&wq->flusher_overflow));
2632 this_flusher.flush_color = wq->work_color;
2633 wq->work_color = next_color;
2634
2635 if (!wq->first_flusher) {
2636 /* no flush in progress, become the first flusher */
2637 BUG_ON(wq->flush_color != this_flusher.flush_color);
2638
2639 wq->first_flusher = &this_flusher;
2640
2641 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2642 wq->work_color)) {
2643 /* nothing to flush, done */
2644 wq->flush_color = next_color;
2645 wq->first_flusher = NULL;
2646 goto out_unlock;
2647 }
2648 } else {
2649 /* wait in queue */
2650 BUG_ON(wq->flush_color == this_flusher.flush_color);
2651 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2652 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2653 }
2654 } else {
2655 /*
2656 * Oops, color space is full, wait on overflow queue.
2657 * The next flush completion will assign us
2658 * flush_color and transfer to flusher_queue.
2659 */
2660 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2661 }
2662
2663 mutex_unlock(&wq->flush_mutex);
2664
2665 wait_for_completion(&this_flusher.done);
2666
2667 /*
2668 * Wake-up-and-cascade phase
2669 *
2670 * First flushers are responsible for cascading flushes and
2671 * handling overflow. Non-first flushers can simply return.
2672 */
2673 if (wq->first_flusher != &this_flusher)
2674 return;
2675
2676 mutex_lock(&wq->flush_mutex);
2677
4ce48b37
TH
2678 /* we might have raced, check again with mutex held */
2679 if (wq->first_flusher != &this_flusher)
2680 goto out_unlock;
2681
73f53c4a
TH
2682 wq->first_flusher = NULL;
2683
2684 BUG_ON(!list_empty(&this_flusher.list));
2685 BUG_ON(wq->flush_color != this_flusher.flush_color);
2686
2687 while (true) {
2688 struct wq_flusher *next, *tmp;
2689
2690 /* complete all the flushers sharing the current flush color */
2691 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2692 if (next->flush_color != wq->flush_color)
2693 break;
2694 list_del_init(&next->list);
2695 complete(&next->done);
2696 }
2697
2698 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2699 wq->flush_color != work_next_color(wq->work_color));
2700
2701 /* this flush_color is finished, advance by one */
2702 wq->flush_color = work_next_color(wq->flush_color);
2703
2704 /* one color has been freed, handle overflow queue */
2705 if (!list_empty(&wq->flusher_overflow)) {
2706 /*
2707 * Assign the same color to all overflowed
2708 * flushers, advance work_color and append to
2709 * flusher_queue. This is the start-to-wait
2710 * phase for these overflowed flushers.
2711 */
2712 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2713 tmp->flush_color = wq->work_color;
2714
2715 wq->work_color = work_next_color(wq->work_color);
2716
2717 list_splice_tail_init(&wq->flusher_overflow,
2718 &wq->flusher_queue);
2719 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2720 }
2721
2722 if (list_empty(&wq->flusher_queue)) {
2723 BUG_ON(wq->flush_color != wq->work_color);
2724 break;
2725 }
2726
2727 /*
2728 * Need to flush more colors. Make the next flusher
2729 * the new first flusher and arm cwqs.
2730 */
2731 BUG_ON(wq->flush_color == wq->work_color);
2732 BUG_ON(wq->flush_color != next->flush_color);
2733
2734 list_del_init(&next->list);
2735 wq->first_flusher = next;
2736
2737 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2738 break;
2739
2740 /*
2741 * Meh... this color is already done, clear first
2742 * flusher and repeat cascading.
2743 */
2744 wq->first_flusher = NULL;
2745 }
2746
2747out_unlock:
2748 mutex_unlock(&wq->flush_mutex);
1da177e4 2749}
ae90dd5d 2750EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2751
9c5a2ba7
TH
2752/**
2753 * drain_workqueue - drain a workqueue
2754 * @wq: workqueue to drain
2755 *
2756 * Wait until the workqueue becomes empty. While draining is in progress,
2757 * only chain queueing is allowed. IOW, only currently pending or running
2758 * work items on @wq can queue further work items on it. @wq is flushed
2759 * repeatedly until it becomes empty. The number of flushing is detemined
2760 * by the depth of chaining and should be relatively short. Whine if it
2761 * takes too long.
2762 */
2763void drain_workqueue(struct workqueue_struct *wq)
2764{
2765 unsigned int flush_cnt = 0;
2766 unsigned int cpu;
2767
2768 /*
2769 * __queue_work() needs to test whether there are drainers, is much
2770 * hotter than drain_workqueue() and already looks at @wq->flags.
2771 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2772 */
2773 spin_lock(&workqueue_lock);
2774 if (!wq->nr_drainers++)
2775 wq->flags |= WQ_DRAINING;
2776 spin_unlock(&workqueue_lock);
2777reflush:
2778 flush_workqueue(wq);
2779
2780 for_each_cwq_cpu(cpu, wq) {
2781 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
fa2563e4 2782 bool drained;
9c5a2ba7 2783
d565ed63 2784 spin_lock_irq(&cwq->pool->lock);
fa2563e4 2785 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
d565ed63 2786 spin_unlock_irq(&cwq->pool->lock);
fa2563e4
TT
2787
2788 if (drained)
9c5a2ba7
TH
2789 continue;
2790
2791 if (++flush_cnt == 10 ||
2792 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2793 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2794 wq->name, flush_cnt);
9c5a2ba7
TH
2795 goto reflush;
2796 }
2797
2798 spin_lock(&workqueue_lock);
2799 if (!--wq->nr_drainers)
2800 wq->flags &= ~WQ_DRAINING;
2801 spin_unlock(&workqueue_lock);
2802}
2803EXPORT_SYMBOL_GPL(drain_workqueue);
2804
606a5020 2805static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2806{
affee4b2 2807 struct worker *worker = NULL;
c9e7cf27 2808 struct worker_pool *pool;
db700897 2809 struct cpu_workqueue_struct *cwq;
db700897
ON
2810
2811 might_sleep();
c9e7cf27
TH
2812 pool = get_work_pool(work);
2813 if (!pool)
baf59022 2814 return false;
db700897 2815
d565ed63 2816 spin_lock_irq(&pool->lock);
db700897
ON
2817 if (!list_empty(&work->entry)) {
2818 /*
2819 * See the comment near try_to_grab_pending()->smp_rmb().
d565ed63 2820 * If it was re-queued to a different pool under us, we
7a22ad75 2821 * are not going to wait.
db700897
ON
2822 */
2823 smp_rmb();
7a22ad75 2824 cwq = get_work_cwq(work);
d565ed63 2825 if (unlikely(!cwq || pool != cwq->pool))
4690c4ab 2826 goto already_gone;
606a5020 2827 } else {
c9e7cf27 2828 worker = find_worker_executing_work(pool, work);
affee4b2 2829 if (!worker)
4690c4ab 2830 goto already_gone;
7a22ad75 2831 cwq = worker->current_cwq;
606a5020 2832 }
db700897 2833
baf59022 2834 insert_wq_barrier(cwq, barr, work, worker);
d565ed63 2835 spin_unlock_irq(&pool->lock);
7a22ad75 2836
e159489b
TH
2837 /*
2838 * If @max_active is 1 or rescuer is in use, flushing another work
2839 * item on the same workqueue may lead to deadlock. Make sure the
2840 * flusher is not running on the same workqueue by verifying write
2841 * access.
2842 */
2843 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2844 lock_map_acquire(&cwq->wq->lockdep_map);
2845 else
2846 lock_map_acquire_read(&cwq->wq->lockdep_map);
7a22ad75 2847 lock_map_release(&cwq->wq->lockdep_map);
e159489b 2848
401a8d04 2849 return true;
4690c4ab 2850already_gone:
d565ed63 2851 spin_unlock_irq(&pool->lock);
401a8d04 2852 return false;
db700897 2853}
baf59022
TH
2854
2855/**
2856 * flush_work - wait for a work to finish executing the last queueing instance
2857 * @work: the work to flush
2858 *
606a5020
TH
2859 * Wait until @work has finished execution. @work is guaranteed to be idle
2860 * on return if it hasn't been requeued since flush started.
baf59022
TH
2861 *
2862 * RETURNS:
2863 * %true if flush_work() waited for the work to finish execution,
2864 * %false if it was already idle.
2865 */
2866bool flush_work(struct work_struct *work)
2867{
2868 struct wq_barrier barr;
2869
0976dfc1
SB
2870 lock_map_acquire(&work->lockdep_map);
2871 lock_map_release(&work->lockdep_map);
2872
606a5020 2873 if (start_flush_work(work, &barr)) {
401a8d04
TH
2874 wait_for_completion(&barr.done);
2875 destroy_work_on_stack(&barr.work);
2876 return true;
606a5020 2877 } else {
401a8d04 2878 return false;
6e84d644 2879 }
6e84d644 2880}
606a5020 2881EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2882
36e227d2 2883static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2884{
bbb68dfa 2885 unsigned long flags;
1f1f642e
ON
2886 int ret;
2887
2888 do {
bbb68dfa
TH
2889 ret = try_to_grab_pending(work, is_dwork, &flags);
2890 /*
2891 * If someone else is canceling, wait for the same event it
2892 * would be waiting for before retrying.
2893 */
2894 if (unlikely(ret == -ENOENT))
606a5020 2895 flush_work(work);
1f1f642e
ON
2896 } while (unlikely(ret < 0));
2897
bbb68dfa
TH
2898 /* tell other tasks trying to grab @work to back off */
2899 mark_work_canceling(work);
2900 local_irq_restore(flags);
2901
606a5020 2902 flush_work(work);
7a22ad75 2903 clear_work_data(work);
1f1f642e
ON
2904 return ret;
2905}
2906
6e84d644 2907/**
401a8d04
TH
2908 * cancel_work_sync - cancel a work and wait for it to finish
2909 * @work: the work to cancel
6e84d644 2910 *
401a8d04
TH
2911 * Cancel @work and wait for its execution to finish. This function
2912 * can be used even if the work re-queues itself or migrates to
2913 * another workqueue. On return from this function, @work is
2914 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2915 *
401a8d04
TH
2916 * cancel_work_sync(&delayed_work->work) must not be used for
2917 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2918 *
401a8d04 2919 * The caller must ensure that the workqueue on which @work was last
6e84d644 2920 * queued can't be destroyed before this function returns.
401a8d04
TH
2921 *
2922 * RETURNS:
2923 * %true if @work was pending, %false otherwise.
6e84d644 2924 */
401a8d04 2925bool cancel_work_sync(struct work_struct *work)
6e84d644 2926{
36e227d2 2927 return __cancel_work_timer(work, false);
b89deed3 2928}
28e53bdd 2929EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2930
6e84d644 2931/**
401a8d04
TH
2932 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2933 * @dwork: the delayed work to flush
6e84d644 2934 *
401a8d04
TH
2935 * Delayed timer is cancelled and the pending work is queued for
2936 * immediate execution. Like flush_work(), this function only
2937 * considers the last queueing instance of @dwork.
1f1f642e 2938 *
401a8d04
TH
2939 * RETURNS:
2940 * %true if flush_work() waited for the work to finish execution,
2941 * %false if it was already idle.
6e84d644 2942 */
401a8d04
TH
2943bool flush_delayed_work(struct delayed_work *dwork)
2944{
8930caba 2945 local_irq_disable();
401a8d04 2946 if (del_timer_sync(&dwork->timer))
1265057f 2947 __queue_work(dwork->cpu,
401a8d04 2948 get_work_cwq(&dwork->work)->wq, &dwork->work);
8930caba 2949 local_irq_enable();
401a8d04
TH
2950 return flush_work(&dwork->work);
2951}
2952EXPORT_SYMBOL(flush_delayed_work);
2953
09383498 2954/**
57b30ae7
TH
2955 * cancel_delayed_work - cancel a delayed work
2956 * @dwork: delayed_work to cancel
09383498 2957 *
57b30ae7
TH
2958 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2959 * and canceled; %false if wasn't pending. Note that the work callback
2960 * function may still be running on return, unless it returns %true and the
2961 * work doesn't re-arm itself. Explicitly flush or use
2962 * cancel_delayed_work_sync() to wait on it.
09383498 2963 *
57b30ae7 2964 * This function is safe to call from any context including IRQ handler.
09383498 2965 */
57b30ae7 2966bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2967{
57b30ae7
TH
2968 unsigned long flags;
2969 int ret;
2970
2971 do {
2972 ret = try_to_grab_pending(&dwork->work, true, &flags);
2973 } while (unlikely(ret == -EAGAIN));
2974
2975 if (unlikely(ret < 0))
2976 return false;
2977
7c3eed5c
TH
2978 set_work_pool_and_clear_pending(&dwork->work,
2979 get_work_pool_id(&dwork->work));
57b30ae7 2980 local_irq_restore(flags);
c0158ca6 2981 return ret;
09383498 2982}
57b30ae7 2983EXPORT_SYMBOL(cancel_delayed_work);
09383498 2984
401a8d04
TH
2985/**
2986 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2987 * @dwork: the delayed work cancel
2988 *
2989 * This is cancel_work_sync() for delayed works.
2990 *
2991 * RETURNS:
2992 * %true if @dwork was pending, %false otherwise.
2993 */
2994bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2995{
36e227d2 2996 return __cancel_work_timer(&dwork->work, true);
6e84d644 2997}
f5a421a4 2998EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2999
0fcb78c2 3000/**
c1a220e7
ZR
3001 * schedule_work_on - put work task on a specific cpu
3002 * @cpu: cpu to put the work task on
3003 * @work: job to be done
3004 *
3005 * This puts a job on a specific cpu
3006 */
d4283e93 3007bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 3008{
d320c038 3009 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
3010}
3011EXPORT_SYMBOL(schedule_work_on);
3012
0fcb78c2 3013/**
0fcb78c2
REB
3014 * schedule_work - put work task in global workqueue
3015 * @work: job to be done
0fcb78c2 3016 *
d4283e93
TH
3017 * Returns %false if @work was already on the kernel-global workqueue and
3018 * %true otherwise.
5b0f437d
BVA
3019 *
3020 * This puts a job in the kernel-global workqueue if it was not already
3021 * queued and leaves it in the same position on the kernel-global
3022 * workqueue otherwise.
0fcb78c2 3023 */
d4283e93 3024bool schedule_work(struct work_struct *work)
1da177e4 3025{
d320c038 3026 return queue_work(system_wq, work);
1da177e4 3027}
ae90dd5d 3028EXPORT_SYMBOL(schedule_work);
1da177e4 3029
0fcb78c2
REB
3030/**
3031 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3032 * @cpu: cpu to use
52bad64d 3033 * @dwork: job to be done
0fcb78c2
REB
3034 * @delay: number of jiffies to wait
3035 *
3036 * After waiting for a given time this puts a job in the kernel-global
3037 * workqueue on the specified CPU.
3038 */
d4283e93
TH
3039bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3040 unsigned long delay)
1da177e4 3041{
d320c038 3042 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 3043}
ae90dd5d 3044EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 3045
0fcb78c2
REB
3046/**
3047 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
3048 * @dwork: job to be done
3049 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
3050 *
3051 * After waiting for a given time this puts a job in the kernel-global
3052 * workqueue.
3053 */
d4283e93 3054bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 3055{
d320c038 3056 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 3057}
ae90dd5d 3058EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 3059
b6136773 3060/**
31ddd871 3061 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3062 * @func: the function to call
b6136773 3063 *
31ddd871
TH
3064 * schedule_on_each_cpu() executes @func on each online CPU using the
3065 * system workqueue and blocks until all CPUs have completed.
b6136773 3066 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3067 *
3068 * RETURNS:
3069 * 0 on success, -errno on failure.
b6136773 3070 */
65f27f38 3071int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3072{
3073 int cpu;
38f51568 3074 struct work_struct __percpu *works;
15316ba8 3075
b6136773
AM
3076 works = alloc_percpu(struct work_struct);
3077 if (!works)
15316ba8 3078 return -ENOMEM;
b6136773 3079
93981800
TH
3080 get_online_cpus();
3081
15316ba8 3082 for_each_online_cpu(cpu) {
9bfb1839
IM
3083 struct work_struct *work = per_cpu_ptr(works, cpu);
3084
3085 INIT_WORK(work, func);
b71ab8c2 3086 schedule_work_on(cpu, work);
65a64464 3087 }
93981800
TH
3088
3089 for_each_online_cpu(cpu)
3090 flush_work(per_cpu_ptr(works, cpu));
3091
95402b38 3092 put_online_cpus();
b6136773 3093 free_percpu(works);
15316ba8
CL
3094 return 0;
3095}
3096
eef6a7d5
AS
3097/**
3098 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3099 *
3100 * Forces execution of the kernel-global workqueue and blocks until its
3101 * completion.
3102 *
3103 * Think twice before calling this function! It's very easy to get into
3104 * trouble if you don't take great care. Either of the following situations
3105 * will lead to deadlock:
3106 *
3107 * One of the work items currently on the workqueue needs to acquire
3108 * a lock held by your code or its caller.
3109 *
3110 * Your code is running in the context of a work routine.
3111 *
3112 * They will be detected by lockdep when they occur, but the first might not
3113 * occur very often. It depends on what work items are on the workqueue and
3114 * what locks they need, which you have no control over.
3115 *
3116 * In most situations flushing the entire workqueue is overkill; you merely
3117 * need to know that a particular work item isn't queued and isn't running.
3118 * In such cases you should use cancel_delayed_work_sync() or
3119 * cancel_work_sync() instead.
3120 */
1da177e4
LT
3121void flush_scheduled_work(void)
3122{
d320c038 3123 flush_workqueue(system_wq);
1da177e4 3124}
ae90dd5d 3125EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3126
1fa44eca
JB
3127/**
3128 * execute_in_process_context - reliably execute the routine with user context
3129 * @fn: the function to execute
1fa44eca
JB
3130 * @ew: guaranteed storage for the execute work structure (must
3131 * be available when the work executes)
3132 *
3133 * Executes the function immediately if process context is available,
3134 * otherwise schedules the function for delayed execution.
3135 *
3136 * Returns: 0 - function was executed
3137 * 1 - function was scheduled for execution
3138 */
65f27f38 3139int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3140{
3141 if (!in_interrupt()) {
65f27f38 3142 fn(&ew->work);
1fa44eca
JB
3143 return 0;
3144 }
3145
65f27f38 3146 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3147 schedule_work(&ew->work);
3148
3149 return 1;
3150}
3151EXPORT_SYMBOL_GPL(execute_in_process_context);
3152
1da177e4
LT
3153int keventd_up(void)
3154{
d320c038 3155 return system_wq != NULL;
1da177e4
LT
3156}
3157
bdbc5dd7 3158static int alloc_cwqs(struct workqueue_struct *wq)
0f900049 3159{
65a64464 3160 /*
0f900049
TH
3161 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3162 * Make sure that the alignment isn't lower than that of
3163 * unsigned long long.
65a64464 3164 */
0f900049
TH
3165 const size_t size = sizeof(struct cpu_workqueue_struct);
3166 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3167 __alignof__(unsigned long long));
65a64464 3168
e06ffa1e 3169 if (!(wq->flags & WQ_UNBOUND))
f3421797 3170 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3171 else {
f3421797
TH
3172 void *ptr;
3173
3174 /*
3175 * Allocate enough room to align cwq and put an extra
3176 * pointer at the end pointing back to the originally
3177 * allocated pointer which will be used for free.
3178 */
3179 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3180 if (ptr) {
3181 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3182 *(void **)(wq->cpu_wq.single + 1) = ptr;
3183 }
bdbc5dd7 3184 }
f3421797 3185
0415b00d 3186 /* just in case, make sure it's actually aligned */
bdbc5dd7
TH
3187 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3188 return wq->cpu_wq.v ? 0 : -ENOMEM;
0f900049
TH
3189}
3190
bdbc5dd7 3191static void free_cwqs(struct workqueue_struct *wq)
0f900049 3192{
e06ffa1e 3193 if (!(wq->flags & WQ_UNBOUND))
f3421797
TH
3194 free_percpu(wq->cpu_wq.pcpu);
3195 else if (wq->cpu_wq.single) {
3196 /* the pointer to free is stored right after the cwq */
bdbc5dd7 3197 kfree(*(void **)(wq->cpu_wq.single + 1));
f3421797 3198 }
0f900049
TH
3199}
3200
f3421797
TH
3201static int wq_clamp_max_active(int max_active, unsigned int flags,
3202 const char *name)
b71ab8c2 3203{
f3421797
TH
3204 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3205
3206 if (max_active < 1 || max_active > lim)
044c782c
VI
3207 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3208 max_active, name, 1, lim);
b71ab8c2 3209
f3421797 3210 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3211}
3212
b196be89 3213struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3214 unsigned int flags,
3215 int max_active,
3216 struct lock_class_key *key,
b196be89 3217 const char *lock_name, ...)
1da177e4 3218{
b196be89 3219 va_list args, args1;
1da177e4 3220 struct workqueue_struct *wq;
c34056a3 3221 unsigned int cpu;
b196be89
TH
3222 size_t namelen;
3223
3224 /* determine namelen, allocate wq and format name */
3225 va_start(args, lock_name);
3226 va_copy(args1, args);
3227 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3228
3229 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3230 if (!wq)
3231 goto err;
3232
3233 vsnprintf(wq->name, namelen, fmt, args1);
3234 va_end(args);
3235 va_end(args1);
1da177e4 3236
6370a6ad
TH
3237 /*
3238 * Workqueues which may be used during memory reclaim should
3239 * have a rescuer to guarantee forward progress.
3240 */
3241 if (flags & WQ_MEM_RECLAIM)
3242 flags |= WQ_RESCUER;
3243
d320c038 3244 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3245 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3246
b196be89 3247 /* init wq */
97e37d7b 3248 wq->flags = flags;
a0a1a5fd 3249 wq->saved_max_active = max_active;
73f53c4a
TH
3250 mutex_init(&wq->flush_mutex);
3251 atomic_set(&wq->nr_cwqs_to_flush, 0);
3252 INIT_LIST_HEAD(&wq->flusher_queue);
3253 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3254
eb13ba87 3255 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3256 INIT_LIST_HEAD(&wq->list);
3af24433 3257
bdbc5dd7
TH
3258 if (alloc_cwqs(wq) < 0)
3259 goto err;
3260
f3421797 3261 for_each_cwq_cpu(cpu, wq) {
1537663f
TH
3262 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3263
0f900049 3264 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
a60dc39c 3265 cwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI);
c34056a3 3266 cwq->wq = wq;
73f53c4a 3267 cwq->flush_color = -1;
1e19ffc6 3268 cwq->max_active = max_active;
1e19ffc6 3269 INIT_LIST_HEAD(&cwq->delayed_works);
e22bee78 3270 }
1537663f 3271
e22bee78
TH
3272 if (flags & WQ_RESCUER) {
3273 struct worker *rescuer;
3274
f2e005aa 3275 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3276 goto err;
3277
3278 wq->rescuer = rescuer = alloc_worker();
3279 if (!rescuer)
3280 goto err;
3281
111c225a
TH
3282 rescuer->rescue_wq = wq;
3283 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3284 wq->name);
e22bee78
TH
3285 if (IS_ERR(rescuer->task))
3286 goto err;
3287
e22bee78
TH
3288 rescuer->task->flags |= PF_THREAD_BOUND;
3289 wake_up_process(rescuer->task);
3af24433
ON
3290 }
3291
a0a1a5fd
TH
3292 /*
3293 * workqueue_lock protects global freeze state and workqueues
3294 * list. Grab it, set max_active accordingly and add the new
3295 * workqueue to workqueues list.
3296 */
1537663f 3297 spin_lock(&workqueue_lock);
a0a1a5fd 3298
58a69cb4 3299 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
f3421797 3300 for_each_cwq_cpu(cpu, wq)
a0a1a5fd
TH
3301 get_cwq(cpu, wq)->max_active = 0;
3302
1537663f 3303 list_add(&wq->list, &workqueues);
a0a1a5fd 3304
1537663f
TH
3305 spin_unlock(&workqueue_lock);
3306
3af24433 3307 return wq;
4690c4ab
TH
3308err:
3309 if (wq) {
bdbc5dd7 3310 free_cwqs(wq);
f2e005aa 3311 free_mayday_mask(wq->mayday_mask);
e22bee78 3312 kfree(wq->rescuer);
4690c4ab
TH
3313 kfree(wq);
3314 }
3315 return NULL;
3af24433 3316}
d320c038 3317EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3318
3af24433
ON
3319/**
3320 * destroy_workqueue - safely terminate a workqueue
3321 * @wq: target workqueue
3322 *
3323 * Safely destroy a workqueue. All work currently pending will be done first.
3324 */
3325void destroy_workqueue(struct workqueue_struct *wq)
3326{
c8e55f36 3327 unsigned int cpu;
3af24433 3328
9c5a2ba7
TH
3329 /* drain it before proceeding with destruction */
3330 drain_workqueue(wq);
c8efcc25 3331
a0a1a5fd
TH
3332 /*
3333 * wq list is used to freeze wq, remove from list after
3334 * flushing is complete in case freeze races us.
3335 */
95402b38 3336 spin_lock(&workqueue_lock);
b1f4ec17 3337 list_del(&wq->list);
95402b38 3338 spin_unlock(&workqueue_lock);
3af24433 3339
e22bee78 3340 /* sanity check */
f3421797 3341 for_each_cwq_cpu(cpu, wq) {
73f53c4a
TH
3342 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3343 int i;
3344
73f53c4a
TH
3345 for (i = 0; i < WORK_NR_COLORS; i++)
3346 BUG_ON(cwq->nr_in_flight[i]);
1e19ffc6
TH
3347 BUG_ON(cwq->nr_active);
3348 BUG_ON(!list_empty(&cwq->delayed_works));
73f53c4a 3349 }
9b41ea72 3350
e22bee78
TH
3351 if (wq->flags & WQ_RESCUER) {
3352 kthread_stop(wq->rescuer->task);
f2e005aa 3353 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3354 kfree(wq->rescuer);
e22bee78
TH
3355 }
3356
bdbc5dd7 3357 free_cwqs(wq);
3af24433
ON
3358 kfree(wq);
3359}
3360EXPORT_SYMBOL_GPL(destroy_workqueue);
3361
9f4bd4cd
LJ
3362/**
3363 * cwq_set_max_active - adjust max_active of a cwq
3364 * @cwq: target cpu_workqueue_struct
3365 * @max_active: new max_active value.
3366 *
3367 * Set @cwq->max_active to @max_active and activate delayed works if
3368 * increased.
3369 *
3370 * CONTEXT:
d565ed63 3371 * spin_lock_irq(pool->lock).
9f4bd4cd
LJ
3372 */
3373static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active)
3374{
3375 cwq->max_active = max_active;
3376
3377 while (!list_empty(&cwq->delayed_works) &&
3378 cwq->nr_active < cwq->max_active)
3379 cwq_activate_first_delayed(cwq);
3380}
3381
dcd989cb
TH
3382/**
3383 * workqueue_set_max_active - adjust max_active of a workqueue
3384 * @wq: target workqueue
3385 * @max_active: new max_active value.
3386 *
3387 * Set max_active of @wq to @max_active.
3388 *
3389 * CONTEXT:
3390 * Don't call from IRQ context.
3391 */
3392void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3393{
3394 unsigned int cpu;
3395
f3421797 3396 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3397
3398 spin_lock(&workqueue_lock);
3399
3400 wq->saved_max_active = max_active;
3401
f3421797 3402 for_each_cwq_cpu(cpu, wq) {
35b6bb63
TH
3403 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3404 struct worker_pool *pool = cwq->pool;
dcd989cb 3405
d565ed63 3406 spin_lock_irq(&pool->lock);
dcd989cb 3407
58a69cb4 3408 if (!(wq->flags & WQ_FREEZABLE) ||
35b6bb63
TH
3409 !(pool->flags & POOL_FREEZING))
3410 cwq_set_max_active(cwq, max_active);
9bfb1839 3411
d565ed63 3412 spin_unlock_irq(&pool->lock);
65a64464 3413 }
93981800 3414
dcd989cb 3415 spin_unlock(&workqueue_lock);
15316ba8 3416}
dcd989cb 3417EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3418
eef6a7d5 3419/**
dcd989cb
TH
3420 * workqueue_congested - test whether a workqueue is congested
3421 * @cpu: CPU in question
3422 * @wq: target workqueue
eef6a7d5 3423 *
dcd989cb
TH
3424 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3425 * no synchronization around this function and the test result is
3426 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3427 *
dcd989cb
TH
3428 * RETURNS:
3429 * %true if congested, %false otherwise.
eef6a7d5 3430 */
dcd989cb 3431bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3432{
dcd989cb
TH
3433 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3434
3435 return !list_empty(&cwq->delayed_works);
1da177e4 3436}
dcd989cb 3437EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3438
dcd989cb
TH
3439/**
3440 * work_busy - test whether a work is currently pending or running
3441 * @work: the work to be tested
3442 *
3443 * Test whether @work is currently pending or running. There is no
3444 * synchronization around this function and the test result is
3445 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
3446 *
3447 * RETURNS:
3448 * OR'd bitmask of WORK_BUSY_* bits.
3449 */
3450unsigned int work_busy(struct work_struct *work)
1da177e4 3451{
c9e7cf27 3452 struct worker_pool *pool = get_work_pool(work);
dcd989cb
TH
3453 unsigned long flags;
3454 unsigned int ret = 0;
1da177e4 3455
dcd989cb
TH
3456 if (work_pending(work))
3457 ret |= WORK_BUSY_PENDING;
1da177e4 3458
038366c5
LJ
3459 if (pool) {
3460 spin_lock_irqsave(&pool->lock, flags);
3461 if (find_worker_executing_work(pool, work))
3462 ret |= WORK_BUSY_RUNNING;
3463 spin_unlock_irqrestore(&pool->lock, flags);
3464 }
1da177e4 3465
dcd989cb 3466 return ret;
1da177e4 3467}
dcd989cb 3468EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3469
db7bccf4
TH
3470/*
3471 * CPU hotplug.
3472 *
e22bee78
TH
3473 * There are two challenges in supporting CPU hotplug. Firstly, there
3474 * are a lot of assumptions on strong associations among work, cwq and
706026c2 3475 * pool which make migrating pending and scheduled works very
e22bee78 3476 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 3477 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
3478 * blocked draining impractical.
3479 *
24647570 3480 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
3481 * running as an unbound one and allowing it to be reattached later if the
3482 * cpu comes back online.
db7bccf4 3483 */
1da177e4 3484
706026c2 3485static void wq_unbind_fn(struct work_struct *work)
3af24433 3486{
38db41d9 3487 int cpu = smp_processor_id();
4ce62e9e 3488 struct worker_pool *pool;
db7bccf4
TH
3489 struct worker *worker;
3490 struct hlist_node *pos;
3491 int i;
3af24433 3492
38db41d9
TH
3493 for_each_std_worker_pool(pool, cpu) {
3494 BUG_ON(cpu != smp_processor_id());
db7bccf4 3495
94cf58bb
TH
3496 mutex_lock(&pool->assoc_mutex);
3497 spin_lock_irq(&pool->lock);
3af24433 3498
94cf58bb
TH
3499 /*
3500 * We've claimed all manager positions. Make all workers
3501 * unbound and set DISASSOCIATED. Before this, all workers
3502 * except for the ones which are still executing works from
3503 * before the last CPU down must be on the cpu. After
3504 * this, they may become diasporas.
3505 */
4ce62e9e 3506 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3507 worker->flags |= WORKER_UNBOUND;
3af24433 3508
c9e7cf27
TH
3509 for_each_busy_worker(worker, i, pos, pool)
3510 worker->flags |= WORKER_UNBOUND;
06ba38a9 3511
24647570 3512 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 3513
94cf58bb
TH
3514 spin_unlock_irq(&pool->lock);
3515 mutex_unlock(&pool->assoc_mutex);
3516 }
628c78e7 3517
e22bee78 3518 /*
403c821d 3519 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3520 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3521 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3522 */
e22bee78 3523 schedule();
06ba38a9 3524
e22bee78 3525 /*
628c78e7
TH
3526 * Sched callbacks are disabled now. Zap nr_running. After this,
3527 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
3528 * are always true as long as the worklist is not empty. Pools on
3529 * @cpu now behave as unbound (in terms of concurrency management)
3530 * pools which are served by workers tied to the CPU.
628c78e7
TH
3531 *
3532 * On return from this function, the current worker would trigger
3533 * unbound chain execution of pending work items if other workers
3534 * didn't already.
e22bee78 3535 */
38db41d9 3536 for_each_std_worker_pool(pool, cpu)
4ce62e9e 3537 atomic_set(get_pool_nr_running(pool), 0);
3af24433 3538}
3af24433 3539
8db25e78
TH
3540/*
3541 * Workqueues should be brought up before normal priority CPU notifiers.
3542 * This will be registered high priority CPU notifier.
3543 */
9fdf9b73 3544static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3545 unsigned long action,
3546 void *hcpu)
3af24433
ON
3547{
3548 unsigned int cpu = (unsigned long)hcpu;
4ce62e9e 3549 struct worker_pool *pool;
3ce63377 3550
8db25e78 3551 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3552 case CPU_UP_PREPARE:
38db41d9 3553 for_each_std_worker_pool(pool, cpu) {
3ce63377
TH
3554 struct worker *worker;
3555
3556 if (pool->nr_workers)
3557 continue;
3558
3559 worker = create_worker(pool);
3560 if (!worker)
3561 return NOTIFY_BAD;
3562
d565ed63 3563 spin_lock_irq(&pool->lock);
3ce63377 3564 start_worker(worker);
d565ed63 3565 spin_unlock_irq(&pool->lock);
3af24433 3566 }
8db25e78 3567 break;
3af24433 3568
db7bccf4
TH
3569 case CPU_DOWN_FAILED:
3570 case CPU_ONLINE:
38db41d9 3571 for_each_std_worker_pool(pool, cpu) {
94cf58bb
TH
3572 mutex_lock(&pool->assoc_mutex);
3573 spin_lock_irq(&pool->lock);
3574
24647570 3575 pool->flags &= ~POOL_DISASSOCIATED;
94cf58bb
TH
3576 rebind_workers(pool);
3577
3578 spin_unlock_irq(&pool->lock);
3579 mutex_unlock(&pool->assoc_mutex);
3580 }
db7bccf4 3581 break;
00dfcaf7 3582 }
65758202
TH
3583 return NOTIFY_OK;
3584}
3585
3586/*
3587 * Workqueues should be brought down after normal priority CPU notifiers.
3588 * This will be registered as low priority CPU notifier.
3589 */
9fdf9b73 3590static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3591 unsigned long action,
3592 void *hcpu)
3593{
8db25e78
TH
3594 unsigned int cpu = (unsigned long)hcpu;
3595 struct work_struct unbind_work;
3596
65758202
TH
3597 switch (action & ~CPU_TASKS_FROZEN) {
3598 case CPU_DOWN_PREPARE:
8db25e78 3599 /* unbinding should happen on the local CPU */
706026c2 3600 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 3601 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3602 flush_work(&unbind_work);
3603 break;
65758202
TH
3604 }
3605 return NOTIFY_OK;
3606}
3607
2d3854a3 3608#ifdef CONFIG_SMP
8ccad40d 3609
2d3854a3 3610struct work_for_cpu {
ed48ece2 3611 struct work_struct work;
2d3854a3
RR
3612 long (*fn)(void *);
3613 void *arg;
3614 long ret;
3615};
3616
ed48ece2 3617static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3618{
ed48ece2
TH
3619 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3620
2d3854a3
RR
3621 wfc->ret = wfc->fn(wfc->arg);
3622}
3623
3624/**
3625 * work_on_cpu - run a function in user context on a particular cpu
3626 * @cpu: the cpu to run on
3627 * @fn: the function to run
3628 * @arg: the function arg
3629 *
31ad9081
RR
3630 * This will return the value @fn returns.
3631 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3632 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3633 */
3634long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3635{
ed48ece2 3636 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 3637
ed48ece2
TH
3638 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3639 schedule_work_on(cpu, &wfc.work);
3640 flush_work(&wfc.work);
2d3854a3
RR
3641 return wfc.ret;
3642}
3643EXPORT_SYMBOL_GPL(work_on_cpu);
3644#endif /* CONFIG_SMP */
3645
a0a1a5fd
TH
3646#ifdef CONFIG_FREEZER
3647
3648/**
3649 * freeze_workqueues_begin - begin freezing workqueues
3650 *
58a69cb4
TH
3651 * Start freezing workqueues. After this function returns, all freezable
3652 * workqueues will queue new works to their frozen_works list instead of
706026c2 3653 * pool->worklist.
a0a1a5fd
TH
3654 *
3655 * CONTEXT:
d565ed63 3656 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3657 */
3658void freeze_workqueues_begin(void)
3659{
a0a1a5fd
TH
3660 unsigned int cpu;
3661
3662 spin_lock(&workqueue_lock);
3663
3664 BUG_ON(workqueue_freezing);
3665 workqueue_freezing = true;
3666
706026c2 3667 for_each_wq_cpu(cpu) {
35b6bb63 3668 struct worker_pool *pool;
bdbc5dd7 3669 struct workqueue_struct *wq;
8b03ae3c 3670
38db41d9 3671 for_each_std_worker_pool(pool, cpu) {
a1056305 3672 spin_lock_irq(&pool->lock);
d565ed63 3673
35b6bb63
TH
3674 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3675 pool->flags |= POOL_FREEZING;
db7bccf4 3676
a1056305
TH
3677 list_for_each_entry(wq, &workqueues, list) {
3678 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
a0a1a5fd 3679
a1056305
TH
3680 if (cwq && cwq->pool == pool &&
3681 (wq->flags & WQ_FREEZABLE))
3682 cwq->max_active = 0;
3683 }
8b03ae3c 3684
a1056305
TH
3685 spin_unlock_irq(&pool->lock);
3686 }
a0a1a5fd
TH
3687 }
3688
3689 spin_unlock(&workqueue_lock);
3690}
3691
3692/**
58a69cb4 3693 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3694 *
3695 * Check whether freezing is complete. This function must be called
3696 * between freeze_workqueues_begin() and thaw_workqueues().
3697 *
3698 * CONTEXT:
3699 * Grabs and releases workqueue_lock.
3700 *
3701 * RETURNS:
58a69cb4
TH
3702 * %true if some freezable workqueues are still busy. %false if freezing
3703 * is complete.
a0a1a5fd
TH
3704 */
3705bool freeze_workqueues_busy(void)
3706{
a0a1a5fd
TH
3707 unsigned int cpu;
3708 bool busy = false;
3709
3710 spin_lock(&workqueue_lock);
3711
3712 BUG_ON(!workqueue_freezing);
3713
706026c2 3714 for_each_wq_cpu(cpu) {
bdbc5dd7 3715 struct workqueue_struct *wq;
a0a1a5fd
TH
3716 /*
3717 * nr_active is monotonically decreasing. It's safe
3718 * to peek without lock.
3719 */
3720 list_for_each_entry(wq, &workqueues, list) {
3721 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3722
58a69cb4 3723 if (!cwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3724 continue;
3725
3726 BUG_ON(cwq->nr_active < 0);
3727 if (cwq->nr_active) {
3728 busy = true;
3729 goto out_unlock;
3730 }
3731 }
3732 }
3733out_unlock:
3734 spin_unlock(&workqueue_lock);
3735 return busy;
3736}
3737
3738/**
3739 * thaw_workqueues - thaw workqueues
3740 *
3741 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 3742 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
3743 *
3744 * CONTEXT:
d565ed63 3745 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3746 */
3747void thaw_workqueues(void)
3748{
a0a1a5fd
TH
3749 unsigned int cpu;
3750
3751 spin_lock(&workqueue_lock);
3752
3753 if (!workqueue_freezing)
3754 goto out_unlock;
3755
706026c2 3756 for_each_wq_cpu(cpu) {
4ce62e9e 3757 struct worker_pool *pool;
bdbc5dd7 3758 struct workqueue_struct *wq;
8b03ae3c 3759
38db41d9 3760 for_each_std_worker_pool(pool, cpu) {
a1056305 3761 spin_lock_irq(&pool->lock);
d565ed63 3762
35b6bb63
TH
3763 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3764 pool->flags &= ~POOL_FREEZING;
db7bccf4 3765
a1056305
TH
3766 list_for_each_entry(wq, &workqueues, list) {
3767 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
a0a1a5fd 3768
a1056305
TH
3769 if (!cwq || cwq->pool != pool ||
3770 !(wq->flags & WQ_FREEZABLE))
3771 continue;
a0a1a5fd 3772
a1056305
TH
3773 /* restore max_active and repopulate worklist */
3774 cwq_set_max_active(cwq, wq->saved_max_active);
3775 }
8b03ae3c 3776
4ce62e9e 3777 wake_up_worker(pool);
a1056305
TH
3778
3779 spin_unlock_irq(&pool->lock);
d565ed63 3780 }
a0a1a5fd
TH
3781 }
3782
3783 workqueue_freezing = false;
3784out_unlock:
3785 spin_unlock(&workqueue_lock);
3786}
3787#endif /* CONFIG_FREEZER */
3788
6ee0578b 3789static int __init init_workqueues(void)
1da177e4 3790{
c34056a3
TH
3791 unsigned int cpu;
3792
7c3eed5c
TH
3793 /* make sure we have enough bits for OFFQ pool ID */
3794 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 3795 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 3796
65758202 3797 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 3798 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 3799
706026c2
TH
3800 /* initialize CPU pools */
3801 for_each_wq_cpu(cpu) {
4ce62e9e 3802 struct worker_pool *pool;
8b03ae3c 3803
38db41d9 3804 for_each_std_worker_pool(pool, cpu) {
d565ed63 3805 spin_lock_init(&pool->lock);
ec22ca5e 3806 pool->cpu = cpu;
24647570 3807 pool->flags |= POOL_DISASSOCIATED;
4ce62e9e
TH
3808 INIT_LIST_HEAD(&pool->worklist);
3809 INIT_LIST_HEAD(&pool->idle_list);
c9e7cf27 3810 hash_init(pool->busy_hash);
e7577c50 3811
4ce62e9e
TH
3812 init_timer_deferrable(&pool->idle_timer);
3813 pool->idle_timer.function = idle_worker_timeout;
3814 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3815
706026c2 3816 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
4ce62e9e
TH
3817 (unsigned long)pool);
3818
b2eb83d1 3819 mutex_init(&pool->assoc_mutex);
4ce62e9e 3820 ida_init(&pool->worker_ida);
9daf9e67
TH
3821
3822 /* alloc pool ID */
3823 BUG_ON(worker_pool_assign_id(pool));
4ce62e9e 3824 }
8b03ae3c
TH
3825 }
3826
e22bee78 3827 /* create the initial worker */
706026c2 3828 for_each_online_wq_cpu(cpu) {
4ce62e9e 3829 struct worker_pool *pool;
e22bee78 3830
38db41d9 3831 for_each_std_worker_pool(pool, cpu) {
4ce62e9e
TH
3832 struct worker *worker;
3833
24647570
TH
3834 if (cpu != WORK_CPU_UNBOUND)
3835 pool->flags &= ~POOL_DISASSOCIATED;
3836
bc2ae0f5 3837 worker = create_worker(pool);
4ce62e9e 3838 BUG_ON(!worker);
d565ed63 3839 spin_lock_irq(&pool->lock);
4ce62e9e 3840 start_worker(worker);
d565ed63 3841 spin_unlock_irq(&pool->lock);
4ce62e9e 3842 }
e22bee78
TH
3843 }
3844
d320c038 3845 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3846 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 3847 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
3848 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3849 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3850 system_freezable_wq = alloc_workqueue("events_freezable",
3851 WQ_FREEZABLE, 0);
1aabe902 3852 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 3853 !system_unbound_wq || !system_freezable_wq);
6ee0578b 3854 return 0;
1da177e4 3855}
6ee0578b 3856early_initcall(init_workqueues);