ARCv2: Accomodate HS48 MMUv5 by relaxing MMU ver checking
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e 23 *
9a261491 24 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc 67 * Note that DISASSOCIATED should be flipped only while holding
92f9c5c4 68 * attach_mutex to avoid changing binding state while
4736cbf7 69 * worker_attach_to_pool() is in progress.
bc2ae0f5 70 */
692b4825 71 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 72 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 73
c8e55f36 74 /* worker flags */
c8e55f36
TH
75 WORKER_DIE = 1 << 1, /* die die die */
76 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 77 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 78 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 79 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 80 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 81
a9ab775b
TH
82 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
83 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 84
e34cdddb 85 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 86
29c91e99 87 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 88 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 89
e22bee78
TH
90 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
91 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
92
3233cdbd
TH
93 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
94 /* call for help after 10ms
95 (min two ticks) */
e22bee78
TH
96 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
97 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
98
99 /*
100 * Rescue workers are used only on emergencies and shared by
8698a745 101 * all cpus. Give MIN_NICE.
e22bee78 102 */
8698a745
DY
103 RESCUER_NICE_LEVEL = MIN_NICE,
104 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
105
106 WQ_NAME_LEN = 24,
c8e55f36 107};
1da177e4
LT
108
109/*
4690c4ab
TH
110 * Structure fields follow one of the following exclusion rules.
111 *
e41e704b
TH
112 * I: Modifiable by initialization/destruction paths and read-only for
113 * everyone else.
4690c4ab 114 *
e22bee78
TH
115 * P: Preemption protected. Disabling preemption is enough and should
116 * only be modified and accessed from the local cpu.
117 *
d565ed63 118 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 119 *
d565ed63
TH
120 * X: During normal operation, modification requires pool->lock and should
121 * be done only from local cpu. Either disabling preemption on local
122 * cpu or grabbing pool->lock is enough for read access. If
123 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 124 *
92f9c5c4 125 * A: pool->attach_mutex protected.
822d8405 126 *
68e13a67 127 * PL: wq_pool_mutex protected.
5bcab335 128 *
68e13a67 129 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 130 *
5b95e1af
LJ
131 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
132 *
133 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
134 * sched-RCU for reads.
135 *
3c25a55d
LJ
136 * WQ: wq->mutex protected.
137 *
b5927605 138 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
139 *
140 * MD: wq_mayday_lock protected.
1da177e4 141 */
1da177e4 142
2eaebdb3 143/* struct worker is defined in workqueue_internal.h */
c34056a3 144
bd7bdd43 145struct worker_pool {
d565ed63 146 spinlock_t lock; /* the pool lock */
d84ff051 147 int cpu; /* I: the associated cpu */
f3f90ad4 148 int node; /* I: the associated node ID */
9daf9e67 149 int id; /* I: pool ID */
11ebea50 150 unsigned int flags; /* X: flags */
bd7bdd43 151
82607adc
TH
152 unsigned long watchdog_ts; /* L: watchdog timestamp */
153
bd7bdd43
TH
154 struct list_head worklist; /* L: list of pending works */
155 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
156
157 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
158 int nr_idle; /* L: currently idle ones */
159
160 struct list_head idle_list; /* X: list of idle workers */
161 struct timer_list idle_timer; /* L: worker idle timeout */
162 struct timer_list mayday_timer; /* L: SOS timer for workers */
163
c5aa87bb 164 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
165 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
166 /* L: hash of busy workers */
167
bc3a1afc 168 /* see manage_workers() for details on the two manager mutexes */
2607d7a6 169 struct worker *manager; /* L: purely informational */
92f9c5c4
LJ
170 struct mutex attach_mutex; /* attach/detach exclusion */
171 struct list_head workers; /* A: attached workers */
60f5a4bc 172 struct completion *detach_completion; /* all workers detached */
e19e397a 173
7cda9aae 174 struct ida worker_ida; /* worker IDs for task name */
e19e397a 175
7a4e344c 176 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 179
e19e397a
TH
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
186
187 /*
188 * Destruction of pool is sched-RCU protected to allow dereferences
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
8b03ae3c
TH
192} ____cacheline_aligned_in_smp;
193
1da177e4 194/*
112202d9
TH
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
1da177e4 199 */
112202d9 200struct pool_workqueue {
bd7bdd43 201 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 202 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
8864b4e5 205 int refcnt; /* L: reference count */
73f53c4a
TH
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
1e19ffc6 208 int nr_active; /* L: nr of active works */
a0a1a5fd 209 int max_active; /* L: max active works */
1e19ffc6 210 struct list_head delayed_works; /* L: delayed works */
3c25a55d 211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 212 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
213
214 /*
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 218 * determined without grabbing wq->mutex.
8864b4e5
TH
219 */
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
e904e6c2 222} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 223
73f53c4a
TH
224/*
225 * Structure used to wait for workqueue flush.
226 */
227struct wq_flusher {
3c25a55d
LJ
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
230 struct completion done; /* flush completion */
231};
232
226223ab
TH
233struct wq_device;
234
1da177e4 235/*
c5aa87bb
TH
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
238 */
239struct workqueue_struct {
3c25a55d 240 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 241 struct list_head list; /* PR: list of all workqueues */
73f53c4a 242
3c25a55d
LJ
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
112202d9 246 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 250
2e109a28 251 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
252 struct worker *rescuer; /* I: rescue worker */
253
87fc741e 254 int nr_drainers; /* WQ: drain in progress */
a357fc03 255 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 256
5b95e1af
LJ
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 259
226223ab
TH
260#ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262#endif
4e6045f1 263#ifdef CONFIG_LOCKDEP
4690c4ab 264 struct lockdep_map lockdep_map;
4e6045f1 265#endif
ecf6881f 266 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 267
e2dca7ad
TH
268 /*
269 * Destruction of workqueue_struct is sched-RCU protected to allow
270 * walking the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
272 */
273 struct rcu_head rcu;
274
2728fd2f
TH
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
279};
280
e904e6c2
TH
281static struct kmem_cache *pwq_cache;
282
bce90380
TH
283static cpumask_var_t *wq_numa_possible_cpumask;
284 /* possible CPUs of each node */
285
d55262c4
TH
286static bool wq_disable_numa;
287module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288
cee22a15 289/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 290static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
291module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292
863b710b 293static bool wq_online; /* can kworkers be created yet? */
3347fa09 294
bce90380
TH
295static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
296
4c16bd32
TH
297/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
298static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
299
68e13a67 300static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 301static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
692b4825 302static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
5bcab335 303
e2dca7ad 304static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 305static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 306
ef557180
MG
307/* PL: allowable cpus for unbound wqs and work items */
308static cpumask_var_t wq_unbound_cpumask;
309
310/* CPU where unbound work was last round robin scheduled from this CPU */
311static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 312
f303fccb
TH
313/*
314 * Local execution of unbound work items is no longer guaranteed. The
315 * following always forces round-robin CPU selection on unbound work items
316 * to uncover usages which depend on it.
317 */
318#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
319static bool wq_debug_force_rr_cpu = true;
320#else
321static bool wq_debug_force_rr_cpu = false;
322#endif
323module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
324
7d19c5ce 325/* the per-cpu worker pools */
25528213 326static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 327
68e13a67 328static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 329
68e13a67 330/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
331static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
332
c5aa87bb 333/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
334static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
335
8a2b7538
TH
336/* I: attributes used when instantiating ordered pools on demand */
337static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
338
d320c038 339struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 340EXPORT_SYMBOL(system_wq);
044c782c 341struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 342EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 343struct workqueue_struct *system_long_wq __read_mostly;
d320c038 344EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 345struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 346EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 347struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 348EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
349struct workqueue_struct *system_power_efficient_wq __read_mostly;
350EXPORT_SYMBOL_GPL(system_power_efficient_wq);
351struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
352EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 353
7d19c5ce 354static int worker_thread(void *__worker);
6ba94429 355static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 356
97bd2347
TH
357#define CREATE_TRACE_POINTS
358#include <trace/events/workqueue.h>
359
68e13a67 360#define assert_rcu_or_pool_mutex() \
f78f5b90
PM
361 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
362 !lockdep_is_held(&wq_pool_mutex), \
363 "sched RCU or wq_pool_mutex should be held")
5bcab335 364
b09f4fd3 365#define assert_rcu_or_wq_mutex(wq) \
f78f5b90
PM
366 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
367 !lockdep_is_held(&wq->mutex), \
368 "sched RCU or wq->mutex should be held")
76af4d93 369
5b95e1af 370#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
f78f5b90
PM
371 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
372 !lockdep_is_held(&wq->mutex) && \
373 !lockdep_is_held(&wq_pool_mutex), \
374 "sched RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 375
f02ae73a
TH
376#define for_each_cpu_worker_pool(pool, cpu) \
377 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
378 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 379 (pool)++)
4ce62e9e 380
17116969
TH
381/**
382 * for_each_pool - iterate through all worker_pools in the system
383 * @pool: iteration cursor
611c92a0 384 * @pi: integer used for iteration
fa1b54e6 385 *
68e13a67
LJ
386 * This must be called either with wq_pool_mutex held or sched RCU read
387 * locked. If the pool needs to be used beyond the locking in effect, the
388 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
389 *
390 * The if/else clause exists only for the lockdep assertion and can be
391 * ignored.
17116969 392 */
611c92a0
TH
393#define for_each_pool(pool, pi) \
394 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 395 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 396 else
17116969 397
822d8405
TH
398/**
399 * for_each_pool_worker - iterate through all workers of a worker_pool
400 * @worker: iteration cursor
822d8405
TH
401 * @pool: worker_pool to iterate workers of
402 *
92f9c5c4 403 * This must be called with @pool->attach_mutex.
822d8405
TH
404 *
405 * The if/else clause exists only for the lockdep assertion and can be
406 * ignored.
407 */
da028469
LJ
408#define for_each_pool_worker(worker, pool) \
409 list_for_each_entry((worker), &(pool)->workers, node) \
92f9c5c4 410 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
822d8405
TH
411 else
412
49e3cf44
TH
413/**
414 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
415 * @pwq: iteration cursor
416 * @wq: the target workqueue
76af4d93 417 *
b09f4fd3 418 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
419 * If the pwq needs to be used beyond the locking in effect, the caller is
420 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
421 *
422 * The if/else clause exists only for the lockdep assertion and can be
423 * ignored.
49e3cf44
TH
424 */
425#define for_each_pwq(pwq, wq) \
76af4d93 426 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 427 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 428 else
f3421797 429
dc186ad7
TG
430#ifdef CONFIG_DEBUG_OBJECTS_WORK
431
432static struct debug_obj_descr work_debug_descr;
433
99777288
SG
434static void *work_debug_hint(void *addr)
435{
436 return ((struct work_struct *) addr)->func;
437}
438
b9fdac7f
DC
439static bool work_is_static_object(void *addr)
440{
441 struct work_struct *work = addr;
442
443 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
444}
445
dc186ad7
TG
446/*
447 * fixup_init is called when:
448 * - an active object is initialized
449 */
02a982a6 450static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
451{
452 struct work_struct *work = addr;
453
454 switch (state) {
455 case ODEBUG_STATE_ACTIVE:
456 cancel_work_sync(work);
457 debug_object_init(work, &work_debug_descr);
02a982a6 458 return true;
dc186ad7 459 default:
02a982a6 460 return false;
dc186ad7
TG
461 }
462}
463
dc186ad7
TG
464/*
465 * fixup_free is called when:
466 * - an active object is freed
467 */
02a982a6 468static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
469{
470 struct work_struct *work = addr;
471
472 switch (state) {
473 case ODEBUG_STATE_ACTIVE:
474 cancel_work_sync(work);
475 debug_object_free(work, &work_debug_descr);
02a982a6 476 return true;
dc186ad7 477 default:
02a982a6 478 return false;
dc186ad7
TG
479 }
480}
481
482static struct debug_obj_descr work_debug_descr = {
483 .name = "work_struct",
99777288 484 .debug_hint = work_debug_hint,
b9fdac7f 485 .is_static_object = work_is_static_object,
dc186ad7 486 .fixup_init = work_fixup_init,
dc186ad7
TG
487 .fixup_free = work_fixup_free,
488};
489
490static inline void debug_work_activate(struct work_struct *work)
491{
492 debug_object_activate(work, &work_debug_descr);
493}
494
495static inline void debug_work_deactivate(struct work_struct *work)
496{
497 debug_object_deactivate(work, &work_debug_descr);
498}
499
500void __init_work(struct work_struct *work, int onstack)
501{
502 if (onstack)
503 debug_object_init_on_stack(work, &work_debug_descr);
504 else
505 debug_object_init(work, &work_debug_descr);
506}
507EXPORT_SYMBOL_GPL(__init_work);
508
509void destroy_work_on_stack(struct work_struct *work)
510{
511 debug_object_free(work, &work_debug_descr);
512}
513EXPORT_SYMBOL_GPL(destroy_work_on_stack);
514
ea2e64f2
TG
515void destroy_delayed_work_on_stack(struct delayed_work *work)
516{
517 destroy_timer_on_stack(&work->timer);
518 debug_object_free(&work->work, &work_debug_descr);
519}
520EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
521
dc186ad7
TG
522#else
523static inline void debug_work_activate(struct work_struct *work) { }
524static inline void debug_work_deactivate(struct work_struct *work) { }
525#endif
526
4e8b22bd
LB
527/**
528 * worker_pool_assign_id - allocate ID and assing it to @pool
529 * @pool: the pool pointer of interest
530 *
531 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
532 * successfully, -errno on failure.
533 */
9daf9e67
TH
534static int worker_pool_assign_id(struct worker_pool *pool)
535{
536 int ret;
537
68e13a67 538 lockdep_assert_held(&wq_pool_mutex);
5bcab335 539
4e8b22bd
LB
540 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
541 GFP_KERNEL);
229641a6 542 if (ret >= 0) {
e68035fb 543 pool->id = ret;
229641a6
TH
544 return 0;
545 }
fa1b54e6 546 return ret;
7c3eed5c
TH
547}
548
df2d5ae4
TH
549/**
550 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
551 * @wq: the target workqueue
552 * @node: the node ID
553 *
5b95e1af
LJ
554 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
555 * read locked.
df2d5ae4
TH
556 * If the pwq needs to be used beyond the locking in effect, the caller is
557 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
558 *
559 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
560 */
561static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
562 int node)
563{
5b95e1af 564 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
565
566 /*
567 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
568 * delayed item is pending. The plan is to keep CPU -> NODE
569 * mapping valid and stable across CPU on/offlines. Once that
570 * happens, this workaround can be removed.
571 */
572 if (unlikely(node == NUMA_NO_NODE))
573 return wq->dfl_pwq;
574
df2d5ae4
TH
575 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
576}
577
73f53c4a
TH
578static unsigned int work_color_to_flags(int color)
579{
580 return color << WORK_STRUCT_COLOR_SHIFT;
581}
582
583static int get_work_color(struct work_struct *work)
584{
585 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
586 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
587}
588
589static int work_next_color(int color)
590{
591 return (color + 1) % WORK_NR_COLORS;
592}
1da177e4 593
14441960 594/*
112202d9
TH
595 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
596 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 597 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 598 *
112202d9
TH
599 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
600 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
601 * work->data. These functions should only be called while the work is
602 * owned - ie. while the PENDING bit is set.
7a22ad75 603 *
112202d9 604 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 605 * corresponding to a work. Pool is available once the work has been
112202d9 606 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 607 * available only while the work item is queued.
7a22ad75 608 *
bbb68dfa
TH
609 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
610 * canceled. While being canceled, a work item may have its PENDING set
611 * but stay off timer and worklist for arbitrarily long and nobody should
612 * try to steal the PENDING bit.
14441960 613 */
7a22ad75
TH
614static inline void set_work_data(struct work_struct *work, unsigned long data,
615 unsigned long flags)
365970a1 616{
6183c009 617 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
618 atomic_long_set(&work->data, data | flags | work_static(work));
619}
365970a1 620
112202d9 621static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
622 unsigned long extra_flags)
623{
112202d9
TH
624 set_work_data(work, (unsigned long)pwq,
625 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
626}
627
4468a00f
LJ
628static void set_work_pool_and_keep_pending(struct work_struct *work,
629 int pool_id)
630{
631 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
632 WORK_STRUCT_PENDING);
633}
634
7c3eed5c
TH
635static void set_work_pool_and_clear_pending(struct work_struct *work,
636 int pool_id)
7a22ad75 637{
23657bb1
TH
638 /*
639 * The following wmb is paired with the implied mb in
640 * test_and_set_bit(PENDING) and ensures all updates to @work made
641 * here are visible to and precede any updates by the next PENDING
642 * owner.
643 */
644 smp_wmb();
7c3eed5c 645 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
646 /*
647 * The following mb guarantees that previous clear of a PENDING bit
648 * will not be reordered with any speculative LOADS or STORES from
649 * work->current_func, which is executed afterwards. This possible
650 * reordering can lead to a missed execution on attempt to qeueue
651 * the same @work. E.g. consider this case:
652 *
653 * CPU#0 CPU#1
654 * ---------------------------- --------------------------------
655 *
656 * 1 STORE event_indicated
657 * 2 queue_work_on() {
658 * 3 test_and_set_bit(PENDING)
659 * 4 } set_..._and_clear_pending() {
660 * 5 set_work_data() # clear bit
661 * 6 smp_mb()
662 * 7 work->current_func() {
663 * 8 LOAD event_indicated
664 * }
665 *
666 * Without an explicit full barrier speculative LOAD on line 8 can
667 * be executed before CPU#0 does STORE on line 1. If that happens,
668 * CPU#0 observes the PENDING bit is still set and new execution of
669 * a @work is not queued in a hope, that CPU#1 will eventually
670 * finish the queued @work. Meanwhile CPU#1 does not see
671 * event_indicated is set, because speculative LOAD was executed
672 * before actual STORE.
673 */
674 smp_mb();
7a22ad75 675}
f756d5e2 676
7a22ad75 677static void clear_work_data(struct work_struct *work)
1da177e4 678{
7c3eed5c
TH
679 smp_wmb(); /* see set_work_pool_and_clear_pending() */
680 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
681}
682
112202d9 683static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 684{
e120153d 685 unsigned long data = atomic_long_read(&work->data);
7a22ad75 686
112202d9 687 if (data & WORK_STRUCT_PWQ)
e120153d
TH
688 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
689 else
690 return NULL;
4d707b9f
ON
691}
692
7c3eed5c
TH
693/**
694 * get_work_pool - return the worker_pool a given work was associated with
695 * @work: the work item of interest
696 *
68e13a67
LJ
697 * Pools are created and destroyed under wq_pool_mutex, and allows read
698 * access under sched-RCU read lock. As such, this function should be
699 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
700 *
701 * All fields of the returned pool are accessible as long as the above
702 * mentioned locking is in effect. If the returned pool needs to be used
703 * beyond the critical section, the caller is responsible for ensuring the
704 * returned pool is and stays online.
d185af30
YB
705 *
706 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
707 */
708static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 709{
e120153d 710 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 711 int pool_id;
7a22ad75 712
68e13a67 713 assert_rcu_or_pool_mutex();
fa1b54e6 714
112202d9
TH
715 if (data & WORK_STRUCT_PWQ)
716 return ((struct pool_workqueue *)
7c3eed5c 717 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 718
7c3eed5c
TH
719 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
720 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
721 return NULL;
722
fa1b54e6 723 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
724}
725
726/**
727 * get_work_pool_id - return the worker pool ID a given work is associated with
728 * @work: the work item of interest
729 *
d185af30 730 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
731 * %WORK_OFFQ_POOL_NONE if none.
732 */
733static int get_work_pool_id(struct work_struct *work)
734{
54d5b7d0
LJ
735 unsigned long data = atomic_long_read(&work->data);
736
112202d9
TH
737 if (data & WORK_STRUCT_PWQ)
738 return ((struct pool_workqueue *)
54d5b7d0 739 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 740
54d5b7d0 741 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
742}
743
bbb68dfa
TH
744static void mark_work_canceling(struct work_struct *work)
745{
7c3eed5c 746 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 747
7c3eed5c
TH
748 pool_id <<= WORK_OFFQ_POOL_SHIFT;
749 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
750}
751
752static bool work_is_canceling(struct work_struct *work)
753{
754 unsigned long data = atomic_long_read(&work->data);
755
112202d9 756 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
757}
758
e22bee78 759/*
3270476a
TH
760 * Policy functions. These define the policies on how the global worker
761 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 762 * they're being called with pool->lock held.
e22bee78
TH
763 */
764
63d95a91 765static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 766{
e19e397a 767 return !atomic_read(&pool->nr_running);
a848e3b6
ON
768}
769
4594bf15 770/*
e22bee78
TH
771 * Need to wake up a worker? Called from anything but currently
772 * running workers.
974271c4
TH
773 *
774 * Note that, because unbound workers never contribute to nr_running, this
706026c2 775 * function will always return %true for unbound pools as long as the
974271c4 776 * worklist isn't empty.
4594bf15 777 */
63d95a91 778static bool need_more_worker(struct worker_pool *pool)
365970a1 779{
63d95a91 780 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 781}
4594bf15 782
e22bee78 783/* Can I start working? Called from busy but !running workers. */
63d95a91 784static bool may_start_working(struct worker_pool *pool)
e22bee78 785{
63d95a91 786 return pool->nr_idle;
e22bee78
TH
787}
788
789/* Do I need to keep working? Called from currently running workers. */
63d95a91 790static bool keep_working(struct worker_pool *pool)
e22bee78 791{
e19e397a
TH
792 return !list_empty(&pool->worklist) &&
793 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
794}
795
796/* Do we need a new worker? Called from manager. */
63d95a91 797static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 798{
63d95a91 799 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 800}
365970a1 801
e22bee78 802/* Do we have too many workers and should some go away? */
63d95a91 803static bool too_many_workers(struct worker_pool *pool)
e22bee78 804{
692b4825 805 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
806 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
807 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
808
809 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
810}
811
4d707b9f 812/*
e22bee78
TH
813 * Wake up functions.
814 */
815
1037de36
LJ
816/* Return the first idle worker. Safe with preemption disabled */
817static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 818{
63d95a91 819 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
820 return NULL;
821
63d95a91 822 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
823}
824
825/**
826 * wake_up_worker - wake up an idle worker
63d95a91 827 * @pool: worker pool to wake worker from
7e11629d 828 *
63d95a91 829 * Wake up the first idle worker of @pool.
7e11629d
TH
830 *
831 * CONTEXT:
d565ed63 832 * spin_lock_irq(pool->lock).
7e11629d 833 */
63d95a91 834static void wake_up_worker(struct worker_pool *pool)
7e11629d 835{
1037de36 836 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
837
838 if (likely(worker))
839 wake_up_process(worker->task);
840}
841
d302f017 842/**
e22bee78
TH
843 * wq_worker_waking_up - a worker is waking up
844 * @task: task waking up
845 * @cpu: CPU @task is waking up to
846 *
847 * This function is called during try_to_wake_up() when a worker is
848 * being awoken.
849 *
850 * CONTEXT:
851 * spin_lock_irq(rq->lock)
852 */
d84ff051 853void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
854{
855 struct worker *worker = kthread_data(task);
856
36576000 857 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 858 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 859 atomic_inc(&worker->pool->nr_running);
36576000 860 }
e22bee78
TH
861}
862
863/**
864 * wq_worker_sleeping - a worker is going to sleep
865 * @task: task going to sleep
e22bee78
TH
866 *
867 * This function is called during schedule() when a busy worker is
868 * going to sleep. Worker on the same cpu can be woken up by
869 * returning pointer to its task.
870 *
871 * CONTEXT:
872 * spin_lock_irq(rq->lock)
873 *
d185af30 874 * Return:
e22bee78
TH
875 * Worker task on @cpu to wake up, %NULL if none.
876 */
9b7f6597 877struct task_struct *wq_worker_sleeping(struct task_struct *task)
e22bee78
TH
878{
879 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 880 struct worker_pool *pool;
e22bee78 881
111c225a
TH
882 /*
883 * Rescuers, which may not have all the fields set up like normal
884 * workers, also reach here, let's not access anything before
885 * checking NOT_RUNNING.
886 */
2d64672e 887 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
888 return NULL;
889
111c225a 890 pool = worker->pool;
111c225a 891
e22bee78 892 /* this can only happen on the local cpu */
9b7f6597 893 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
6183c009 894 return NULL;
e22bee78
TH
895
896 /*
897 * The counterpart of the following dec_and_test, implied mb,
898 * worklist not empty test sequence is in insert_work().
899 * Please read comment there.
900 *
628c78e7
TH
901 * NOT_RUNNING is clear. This means that we're bound to and
902 * running on the local cpu w/ rq lock held and preemption
903 * disabled, which in turn means that none else could be
d565ed63 904 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 905 * lock is safe.
e22bee78 906 */
e19e397a
TH
907 if (atomic_dec_and_test(&pool->nr_running) &&
908 !list_empty(&pool->worklist))
1037de36 909 to_wakeup = first_idle_worker(pool);
e22bee78
TH
910 return to_wakeup ? to_wakeup->task : NULL;
911}
912
913/**
914 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 915 * @worker: self
d302f017 916 * @flags: flags to set
d302f017 917 *
228f1d00 918 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 919 *
cb444766 920 * CONTEXT:
d565ed63 921 * spin_lock_irq(pool->lock)
d302f017 922 */
228f1d00 923static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 924{
bd7bdd43 925 struct worker_pool *pool = worker->pool;
e22bee78 926
cb444766
TH
927 WARN_ON_ONCE(worker->task != current);
928
228f1d00 929 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
930 if ((flags & WORKER_NOT_RUNNING) &&
931 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 932 atomic_dec(&pool->nr_running);
e22bee78
TH
933 }
934
d302f017
TH
935 worker->flags |= flags;
936}
937
938/**
e22bee78 939 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 940 * @worker: self
d302f017
TH
941 * @flags: flags to clear
942 *
e22bee78 943 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 944 *
cb444766 945 * CONTEXT:
d565ed63 946 * spin_lock_irq(pool->lock)
d302f017
TH
947 */
948static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
949{
63d95a91 950 struct worker_pool *pool = worker->pool;
e22bee78
TH
951 unsigned int oflags = worker->flags;
952
cb444766
TH
953 WARN_ON_ONCE(worker->task != current);
954
d302f017 955 worker->flags &= ~flags;
e22bee78 956
42c025f3
TH
957 /*
958 * If transitioning out of NOT_RUNNING, increment nr_running. Note
959 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
960 * of multiple flags, not a single flag.
961 */
e22bee78
TH
962 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
963 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 964 atomic_inc(&pool->nr_running);
d302f017
TH
965}
966
8cca0eea
TH
967/**
968 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 969 * @pool: pool of interest
8cca0eea
TH
970 * @work: work to find worker for
971 *
c9e7cf27
TH
972 * Find a worker which is executing @work on @pool by searching
973 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
974 * to match, its current execution should match the address of @work and
975 * its work function. This is to avoid unwanted dependency between
976 * unrelated work executions through a work item being recycled while still
977 * being executed.
978 *
979 * This is a bit tricky. A work item may be freed once its execution
980 * starts and nothing prevents the freed area from being recycled for
981 * another work item. If the same work item address ends up being reused
982 * before the original execution finishes, workqueue will identify the
983 * recycled work item as currently executing and make it wait until the
984 * current execution finishes, introducing an unwanted dependency.
985 *
c5aa87bb
TH
986 * This function checks the work item address and work function to avoid
987 * false positives. Note that this isn't complete as one may construct a
988 * work function which can introduce dependency onto itself through a
989 * recycled work item. Well, if somebody wants to shoot oneself in the
990 * foot that badly, there's only so much we can do, and if such deadlock
991 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
992 *
993 * CONTEXT:
d565ed63 994 * spin_lock_irq(pool->lock).
8cca0eea 995 *
d185af30
YB
996 * Return:
997 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 998 * otherwise.
4d707b9f 999 */
c9e7cf27 1000static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1001 struct work_struct *work)
4d707b9f 1002{
42f8570f 1003 struct worker *worker;
42f8570f 1004
b67bfe0d 1005 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1006 (unsigned long)work)
1007 if (worker->current_work == work &&
1008 worker->current_func == work->func)
42f8570f
SL
1009 return worker;
1010
1011 return NULL;
4d707b9f
ON
1012}
1013
bf4ede01
TH
1014/**
1015 * move_linked_works - move linked works to a list
1016 * @work: start of series of works to be scheduled
1017 * @head: target list to append @work to
402dd89d 1018 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1019 *
1020 * Schedule linked works starting from @work to @head. Work series to
1021 * be scheduled starts at @work and includes any consecutive work with
1022 * WORK_STRUCT_LINKED set in its predecessor.
1023 *
1024 * If @nextp is not NULL, it's updated to point to the next work of
1025 * the last scheduled work. This allows move_linked_works() to be
1026 * nested inside outer list_for_each_entry_safe().
1027 *
1028 * CONTEXT:
d565ed63 1029 * spin_lock_irq(pool->lock).
bf4ede01
TH
1030 */
1031static void move_linked_works(struct work_struct *work, struct list_head *head,
1032 struct work_struct **nextp)
1033{
1034 struct work_struct *n;
1035
1036 /*
1037 * Linked worklist will always end before the end of the list,
1038 * use NULL for list head.
1039 */
1040 list_for_each_entry_safe_from(work, n, NULL, entry) {
1041 list_move_tail(&work->entry, head);
1042 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1043 break;
1044 }
1045
1046 /*
1047 * If we're already inside safe list traversal and have moved
1048 * multiple works to the scheduled queue, the next position
1049 * needs to be updated.
1050 */
1051 if (nextp)
1052 *nextp = n;
1053}
1054
8864b4e5
TH
1055/**
1056 * get_pwq - get an extra reference on the specified pool_workqueue
1057 * @pwq: pool_workqueue to get
1058 *
1059 * Obtain an extra reference on @pwq. The caller should guarantee that
1060 * @pwq has positive refcnt and be holding the matching pool->lock.
1061 */
1062static void get_pwq(struct pool_workqueue *pwq)
1063{
1064 lockdep_assert_held(&pwq->pool->lock);
1065 WARN_ON_ONCE(pwq->refcnt <= 0);
1066 pwq->refcnt++;
1067}
1068
1069/**
1070 * put_pwq - put a pool_workqueue reference
1071 * @pwq: pool_workqueue to put
1072 *
1073 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1074 * destruction. The caller should be holding the matching pool->lock.
1075 */
1076static void put_pwq(struct pool_workqueue *pwq)
1077{
1078 lockdep_assert_held(&pwq->pool->lock);
1079 if (likely(--pwq->refcnt))
1080 return;
1081 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1082 return;
1083 /*
1084 * @pwq can't be released under pool->lock, bounce to
1085 * pwq_unbound_release_workfn(). This never recurses on the same
1086 * pool->lock as this path is taken only for unbound workqueues and
1087 * the release work item is scheduled on a per-cpu workqueue. To
1088 * avoid lockdep warning, unbound pool->locks are given lockdep
1089 * subclass of 1 in get_unbound_pool().
1090 */
1091 schedule_work(&pwq->unbound_release_work);
1092}
1093
dce90d47
TH
1094/**
1095 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1096 * @pwq: pool_workqueue to put (can be %NULL)
1097 *
1098 * put_pwq() with locking. This function also allows %NULL @pwq.
1099 */
1100static void put_pwq_unlocked(struct pool_workqueue *pwq)
1101{
1102 if (pwq) {
1103 /*
1104 * As both pwqs and pools are sched-RCU protected, the
1105 * following lock operations are safe.
1106 */
1107 spin_lock_irq(&pwq->pool->lock);
1108 put_pwq(pwq);
1109 spin_unlock_irq(&pwq->pool->lock);
1110 }
1111}
1112
112202d9 1113static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1114{
112202d9 1115 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1116
1117 trace_workqueue_activate_work(work);
82607adc
TH
1118 if (list_empty(&pwq->pool->worklist))
1119 pwq->pool->watchdog_ts = jiffies;
112202d9 1120 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1121 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1122 pwq->nr_active++;
bf4ede01
TH
1123}
1124
112202d9 1125static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1126{
112202d9 1127 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1128 struct work_struct, entry);
1129
112202d9 1130 pwq_activate_delayed_work(work);
3aa62497
LJ
1131}
1132
bf4ede01 1133/**
112202d9
TH
1134 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1135 * @pwq: pwq of interest
bf4ede01 1136 * @color: color of work which left the queue
bf4ede01
TH
1137 *
1138 * A work either has completed or is removed from pending queue,
112202d9 1139 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1140 *
1141 * CONTEXT:
d565ed63 1142 * spin_lock_irq(pool->lock).
bf4ede01 1143 */
112202d9 1144static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1145{
8864b4e5 1146 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1147 if (color == WORK_NO_COLOR)
8864b4e5 1148 goto out_put;
bf4ede01 1149
112202d9 1150 pwq->nr_in_flight[color]--;
bf4ede01 1151
112202d9
TH
1152 pwq->nr_active--;
1153 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1154 /* one down, submit a delayed one */
112202d9
TH
1155 if (pwq->nr_active < pwq->max_active)
1156 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1157 }
1158
1159 /* is flush in progress and are we at the flushing tip? */
112202d9 1160 if (likely(pwq->flush_color != color))
8864b4e5 1161 goto out_put;
bf4ede01
TH
1162
1163 /* are there still in-flight works? */
112202d9 1164 if (pwq->nr_in_flight[color])
8864b4e5 1165 goto out_put;
bf4ede01 1166
112202d9
TH
1167 /* this pwq is done, clear flush_color */
1168 pwq->flush_color = -1;
bf4ede01
TH
1169
1170 /*
112202d9 1171 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1172 * will handle the rest.
1173 */
112202d9
TH
1174 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1175 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1176out_put:
1177 put_pwq(pwq);
bf4ede01
TH
1178}
1179
36e227d2 1180/**
bbb68dfa 1181 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1182 * @work: work item to steal
1183 * @is_dwork: @work is a delayed_work
bbb68dfa 1184 * @flags: place to store irq state
36e227d2
TH
1185 *
1186 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1187 * stable state - idle, on timer or on worklist.
36e227d2 1188 *
d185af30 1189 * Return:
36e227d2
TH
1190 * 1 if @work was pending and we successfully stole PENDING
1191 * 0 if @work was idle and we claimed PENDING
1192 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1193 * -ENOENT if someone else is canceling @work, this state may persist
1194 * for arbitrarily long
36e227d2 1195 *
d185af30 1196 * Note:
bbb68dfa 1197 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1198 * interrupted while holding PENDING and @work off queue, irq must be
1199 * disabled on entry. This, combined with delayed_work->timer being
1200 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1201 *
1202 * On successful return, >= 0, irq is disabled and the caller is
1203 * responsible for releasing it using local_irq_restore(*@flags).
1204 *
e0aecdd8 1205 * This function is safe to call from any context including IRQ handler.
bf4ede01 1206 */
bbb68dfa
TH
1207static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1208 unsigned long *flags)
bf4ede01 1209{
d565ed63 1210 struct worker_pool *pool;
112202d9 1211 struct pool_workqueue *pwq;
bf4ede01 1212
bbb68dfa
TH
1213 local_irq_save(*flags);
1214
36e227d2
TH
1215 /* try to steal the timer if it exists */
1216 if (is_dwork) {
1217 struct delayed_work *dwork = to_delayed_work(work);
1218
e0aecdd8
TH
1219 /*
1220 * dwork->timer is irqsafe. If del_timer() fails, it's
1221 * guaranteed that the timer is not queued anywhere and not
1222 * running on the local CPU.
1223 */
36e227d2
TH
1224 if (likely(del_timer(&dwork->timer)))
1225 return 1;
1226 }
1227
1228 /* try to claim PENDING the normal way */
bf4ede01
TH
1229 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1230 return 0;
1231
1232 /*
1233 * The queueing is in progress, or it is already queued. Try to
1234 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1235 */
d565ed63
TH
1236 pool = get_work_pool(work);
1237 if (!pool)
bbb68dfa 1238 goto fail;
bf4ede01 1239
d565ed63 1240 spin_lock(&pool->lock);
0b3dae68 1241 /*
112202d9
TH
1242 * work->data is guaranteed to point to pwq only while the work
1243 * item is queued on pwq->wq, and both updating work->data to point
1244 * to pwq on queueing and to pool on dequeueing are done under
1245 * pwq->pool->lock. This in turn guarantees that, if work->data
1246 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1247 * item is currently queued on that pool.
1248 */
112202d9
TH
1249 pwq = get_work_pwq(work);
1250 if (pwq && pwq->pool == pool) {
16062836
TH
1251 debug_work_deactivate(work);
1252
1253 /*
1254 * A delayed work item cannot be grabbed directly because
1255 * it might have linked NO_COLOR work items which, if left
112202d9 1256 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1257 * management later on and cause stall. Make sure the work
1258 * item is activated before grabbing.
1259 */
1260 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1261 pwq_activate_delayed_work(work);
16062836
TH
1262
1263 list_del_init(&work->entry);
9c34a704 1264 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1265
112202d9 1266 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1267 set_work_pool_and_keep_pending(work, pool->id);
1268
1269 spin_unlock(&pool->lock);
1270 return 1;
bf4ede01 1271 }
d565ed63 1272 spin_unlock(&pool->lock);
bbb68dfa
TH
1273fail:
1274 local_irq_restore(*flags);
1275 if (work_is_canceling(work))
1276 return -ENOENT;
1277 cpu_relax();
36e227d2 1278 return -EAGAIN;
bf4ede01
TH
1279}
1280
4690c4ab 1281/**
706026c2 1282 * insert_work - insert a work into a pool
112202d9 1283 * @pwq: pwq @work belongs to
4690c4ab
TH
1284 * @work: work to insert
1285 * @head: insertion point
1286 * @extra_flags: extra WORK_STRUCT_* flags to set
1287 *
112202d9 1288 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1289 * work_struct flags.
4690c4ab
TH
1290 *
1291 * CONTEXT:
d565ed63 1292 * spin_lock_irq(pool->lock).
4690c4ab 1293 */
112202d9
TH
1294static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1295 struct list_head *head, unsigned int extra_flags)
b89deed3 1296{
112202d9 1297 struct worker_pool *pool = pwq->pool;
e22bee78 1298
4690c4ab 1299 /* we own @work, set data and link */
112202d9 1300 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1301 list_add_tail(&work->entry, head);
8864b4e5 1302 get_pwq(pwq);
e22bee78
TH
1303
1304 /*
c5aa87bb
TH
1305 * Ensure either wq_worker_sleeping() sees the above
1306 * list_add_tail() or we see zero nr_running to avoid workers lying
1307 * around lazily while there are works to be processed.
e22bee78
TH
1308 */
1309 smp_mb();
1310
63d95a91
TH
1311 if (__need_more_worker(pool))
1312 wake_up_worker(pool);
b89deed3
ON
1313}
1314
c8efcc25
TH
1315/*
1316 * Test whether @work is being queued from another work executing on the
8d03ecfe 1317 * same workqueue.
c8efcc25
TH
1318 */
1319static bool is_chained_work(struct workqueue_struct *wq)
1320{
8d03ecfe
TH
1321 struct worker *worker;
1322
1323 worker = current_wq_worker();
1324 /*
1325 * Return %true iff I'm a worker execuing a work item on @wq. If
1326 * I'm @worker, it's safe to dereference it without locking.
1327 */
112202d9 1328 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1329}
1330
ef557180
MG
1331/*
1332 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1333 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1334 * avoid perturbing sensitive tasks.
1335 */
1336static int wq_select_unbound_cpu(int cpu)
1337{
f303fccb 1338 static bool printed_dbg_warning;
ef557180
MG
1339 int new_cpu;
1340
f303fccb
TH
1341 if (likely(!wq_debug_force_rr_cpu)) {
1342 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1343 return cpu;
1344 } else if (!printed_dbg_warning) {
1345 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1346 printed_dbg_warning = true;
1347 }
1348
ef557180
MG
1349 if (cpumask_empty(wq_unbound_cpumask))
1350 return cpu;
1351
1352 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1353 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1354 if (unlikely(new_cpu >= nr_cpu_ids)) {
1355 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1356 if (unlikely(new_cpu >= nr_cpu_ids))
1357 return cpu;
1358 }
1359 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1360
1361 return new_cpu;
1362}
1363
d84ff051 1364static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1365 struct work_struct *work)
1366{
112202d9 1367 struct pool_workqueue *pwq;
c9178087 1368 struct worker_pool *last_pool;
1e19ffc6 1369 struct list_head *worklist;
8a2e8e5d 1370 unsigned int work_flags;
b75cac93 1371 unsigned int req_cpu = cpu;
8930caba
TH
1372
1373 /*
1374 * While a work item is PENDING && off queue, a task trying to
1375 * steal the PENDING will busy-loop waiting for it to either get
1376 * queued or lose PENDING. Grabbing PENDING and queueing should
1377 * happen with IRQ disabled.
1378 */
1379 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1380
dc186ad7 1381 debug_work_activate(work);
1e19ffc6 1382
9ef28a73 1383 /* if draining, only works from the same workqueue are allowed */
618b01eb 1384 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1385 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1386 return;
9e8cd2f5 1387retry:
df2d5ae4 1388 if (req_cpu == WORK_CPU_UNBOUND)
ef557180 1389 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1390
c9178087 1391 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1392 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1393 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1394 else
1395 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1396
c9178087
TH
1397 /*
1398 * If @work was previously on a different pool, it might still be
1399 * running there, in which case the work needs to be queued on that
1400 * pool to guarantee non-reentrancy.
1401 */
1402 last_pool = get_work_pool(work);
1403 if (last_pool && last_pool != pwq->pool) {
1404 struct worker *worker;
18aa9eff 1405
c9178087 1406 spin_lock(&last_pool->lock);
18aa9eff 1407
c9178087 1408 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1409
c9178087
TH
1410 if (worker && worker->current_pwq->wq == wq) {
1411 pwq = worker->current_pwq;
8930caba 1412 } else {
c9178087
TH
1413 /* meh... not running there, queue here */
1414 spin_unlock(&last_pool->lock);
112202d9 1415 spin_lock(&pwq->pool->lock);
8930caba 1416 }
f3421797 1417 } else {
112202d9 1418 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1419 }
1420
9e8cd2f5
TH
1421 /*
1422 * pwq is determined and locked. For unbound pools, we could have
1423 * raced with pwq release and it could already be dead. If its
1424 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1425 * without another pwq replacing it in the numa_pwq_tbl or while
1426 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1427 * make forward-progress.
1428 */
1429 if (unlikely(!pwq->refcnt)) {
1430 if (wq->flags & WQ_UNBOUND) {
1431 spin_unlock(&pwq->pool->lock);
1432 cpu_relax();
1433 goto retry;
1434 }
1435 /* oops */
1436 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1437 wq->name, cpu);
1438 }
1439
112202d9
TH
1440 /* pwq determined, queue */
1441 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1442
f5b2552b 1443 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1444 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1445 return;
1446 }
1e19ffc6 1447
112202d9
TH
1448 pwq->nr_in_flight[pwq->work_color]++;
1449 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1450
112202d9 1451 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1452 trace_workqueue_activate_work(work);
112202d9
TH
1453 pwq->nr_active++;
1454 worklist = &pwq->pool->worklist;
82607adc
TH
1455 if (list_empty(worklist))
1456 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1457 } else {
1458 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1459 worklist = &pwq->delayed_works;
8a2e8e5d 1460 }
1e19ffc6 1461
112202d9 1462 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1463
112202d9 1464 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1465}
1466
0fcb78c2 1467/**
c1a220e7
ZR
1468 * queue_work_on - queue work on specific cpu
1469 * @cpu: CPU number to execute work on
0fcb78c2
REB
1470 * @wq: workqueue to use
1471 * @work: work to queue
1472 *
c1a220e7
ZR
1473 * We queue the work to a specific CPU, the caller must ensure it
1474 * can't go away.
d185af30
YB
1475 *
1476 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1477 */
d4283e93
TH
1478bool queue_work_on(int cpu, struct workqueue_struct *wq,
1479 struct work_struct *work)
1da177e4 1480{
d4283e93 1481 bool ret = false;
8930caba 1482 unsigned long flags;
ef1ca236 1483
8930caba 1484 local_irq_save(flags);
c1a220e7 1485
22df02bb 1486 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1487 __queue_work(cpu, wq, work);
d4283e93 1488 ret = true;
c1a220e7 1489 }
ef1ca236 1490
8930caba 1491 local_irq_restore(flags);
1da177e4
LT
1492 return ret;
1493}
ad7b1f84 1494EXPORT_SYMBOL(queue_work_on);
1da177e4 1495
d8e794df 1496void delayed_work_timer_fn(unsigned long __data)
1da177e4 1497{
52bad64d 1498 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1499
e0aecdd8 1500 /* should have been called from irqsafe timer with irq already off */
60c057bc 1501 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1502}
1438ade5 1503EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1504
7beb2edf
TH
1505static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1506 struct delayed_work *dwork, unsigned long delay)
1da177e4 1507{
7beb2edf
TH
1508 struct timer_list *timer = &dwork->timer;
1509 struct work_struct *work = &dwork->work;
7beb2edf 1510
637fdbae 1511 WARN_ON_ONCE(!wq);
7beb2edf
TH
1512 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1513 timer->data != (unsigned long)dwork);
fc4b514f
TH
1514 WARN_ON_ONCE(timer_pending(timer));
1515 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1516
8852aac2
TH
1517 /*
1518 * If @delay is 0, queue @dwork->work immediately. This is for
1519 * both optimization and correctness. The earliest @timer can
1520 * expire is on the closest next tick and delayed_work users depend
1521 * on that there's no such delay when @delay is 0.
1522 */
1523 if (!delay) {
1524 __queue_work(cpu, wq, &dwork->work);
1525 return;
1526 }
1527
60c057bc 1528 dwork->wq = wq;
1265057f 1529 dwork->cpu = cpu;
7beb2edf
TH
1530 timer->expires = jiffies + delay;
1531
041bd12e
TH
1532 if (unlikely(cpu != WORK_CPU_UNBOUND))
1533 add_timer_on(timer, cpu);
1534 else
1535 add_timer(timer);
1da177e4
LT
1536}
1537
0fcb78c2
REB
1538/**
1539 * queue_delayed_work_on - queue work on specific CPU after delay
1540 * @cpu: CPU number to execute work on
1541 * @wq: workqueue to use
af9997e4 1542 * @dwork: work to queue
0fcb78c2
REB
1543 * @delay: number of jiffies to wait before queueing
1544 *
d185af30 1545 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1546 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1547 * execution.
0fcb78c2 1548 */
d4283e93
TH
1549bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1550 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1551{
52bad64d 1552 struct work_struct *work = &dwork->work;
d4283e93 1553 bool ret = false;
8930caba 1554 unsigned long flags;
7a6bc1cd 1555
8930caba
TH
1556 /* read the comment in __queue_work() */
1557 local_irq_save(flags);
7a6bc1cd 1558
22df02bb 1559 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1560 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1561 ret = true;
7a6bc1cd 1562 }
8a3e77cc 1563
8930caba 1564 local_irq_restore(flags);
7a6bc1cd
VP
1565 return ret;
1566}
ad7b1f84 1567EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1568
8376fe22
TH
1569/**
1570 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1571 * @cpu: CPU number to execute work on
1572 * @wq: workqueue to use
1573 * @dwork: work to queue
1574 * @delay: number of jiffies to wait before queueing
1575 *
1576 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1577 * modify @dwork's timer so that it expires after @delay. If @delay is
1578 * zero, @work is guaranteed to be scheduled immediately regardless of its
1579 * current state.
1580 *
d185af30 1581 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1582 * pending and its timer was modified.
1583 *
e0aecdd8 1584 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1585 * See try_to_grab_pending() for details.
1586 */
1587bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1588 struct delayed_work *dwork, unsigned long delay)
1589{
1590 unsigned long flags;
1591 int ret;
c7fc77f7 1592
8376fe22
TH
1593 do {
1594 ret = try_to_grab_pending(&dwork->work, true, &flags);
1595 } while (unlikely(ret == -EAGAIN));
63bc0362 1596
8376fe22
TH
1597 if (likely(ret >= 0)) {
1598 __queue_delayed_work(cpu, wq, dwork, delay);
1599 local_irq_restore(flags);
7a6bc1cd 1600 }
8376fe22
TH
1601
1602 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1603 return ret;
1604}
8376fe22
TH
1605EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1606
c8e55f36
TH
1607/**
1608 * worker_enter_idle - enter idle state
1609 * @worker: worker which is entering idle state
1610 *
1611 * @worker is entering idle state. Update stats and idle timer if
1612 * necessary.
1613 *
1614 * LOCKING:
d565ed63 1615 * spin_lock_irq(pool->lock).
c8e55f36
TH
1616 */
1617static void worker_enter_idle(struct worker *worker)
1da177e4 1618{
bd7bdd43 1619 struct worker_pool *pool = worker->pool;
c8e55f36 1620
6183c009
TH
1621 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1622 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1623 (worker->hentry.next || worker->hentry.pprev)))
1624 return;
c8e55f36 1625
051e1850 1626 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1627 worker->flags |= WORKER_IDLE;
bd7bdd43 1628 pool->nr_idle++;
e22bee78 1629 worker->last_active = jiffies;
c8e55f36
TH
1630
1631 /* idle_list is LIFO */
bd7bdd43 1632 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1633
628c78e7
TH
1634 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1635 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1636
544ecf31 1637 /*
706026c2 1638 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1639 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1640 * nr_running, the warning may trigger spuriously. Check iff
1641 * unbind is not in progress.
544ecf31 1642 */
24647570 1643 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1644 pool->nr_workers == pool->nr_idle &&
e19e397a 1645 atomic_read(&pool->nr_running));
c8e55f36
TH
1646}
1647
1648/**
1649 * worker_leave_idle - leave idle state
1650 * @worker: worker which is leaving idle state
1651 *
1652 * @worker is leaving idle state. Update stats.
1653 *
1654 * LOCKING:
d565ed63 1655 * spin_lock_irq(pool->lock).
c8e55f36
TH
1656 */
1657static void worker_leave_idle(struct worker *worker)
1658{
bd7bdd43 1659 struct worker_pool *pool = worker->pool;
c8e55f36 1660
6183c009
TH
1661 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1662 return;
d302f017 1663 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1664 pool->nr_idle--;
c8e55f36
TH
1665 list_del_init(&worker->entry);
1666}
1667
f7537df5 1668static struct worker *alloc_worker(int node)
c34056a3
TH
1669{
1670 struct worker *worker;
1671
f7537df5 1672 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1673 if (worker) {
1674 INIT_LIST_HEAD(&worker->entry);
affee4b2 1675 INIT_LIST_HEAD(&worker->scheduled);
da028469 1676 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1677 /* on creation a worker is in !idle && prep state */
1678 worker->flags = WORKER_PREP;
c8e55f36 1679 }
c34056a3
TH
1680 return worker;
1681}
1682
4736cbf7
LJ
1683/**
1684 * worker_attach_to_pool() - attach a worker to a pool
1685 * @worker: worker to be attached
1686 * @pool: the target pool
1687 *
1688 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1689 * cpu-binding of @worker are kept coordinated with the pool across
1690 * cpu-[un]hotplugs.
1691 */
1692static void worker_attach_to_pool(struct worker *worker,
1693 struct worker_pool *pool)
1694{
1695 mutex_lock(&pool->attach_mutex);
1696
1697 /*
1698 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1699 * online CPUs. It'll be re-applied when any of the CPUs come up.
1700 */
1701 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1702
1703 /*
1704 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1705 * stable across this function. See the comments above the
1706 * flag definition for details.
1707 */
1708 if (pool->flags & POOL_DISASSOCIATED)
1709 worker->flags |= WORKER_UNBOUND;
1710
1711 list_add_tail(&worker->node, &pool->workers);
1712
1713 mutex_unlock(&pool->attach_mutex);
1714}
1715
60f5a4bc
LJ
1716/**
1717 * worker_detach_from_pool() - detach a worker from its pool
1718 * @worker: worker which is attached to its pool
1719 * @pool: the pool @worker is attached to
1720 *
4736cbf7
LJ
1721 * Undo the attaching which had been done in worker_attach_to_pool(). The
1722 * caller worker shouldn't access to the pool after detached except it has
1723 * other reference to the pool.
60f5a4bc
LJ
1724 */
1725static void worker_detach_from_pool(struct worker *worker,
1726 struct worker_pool *pool)
1727{
1728 struct completion *detach_completion = NULL;
1729
92f9c5c4 1730 mutex_lock(&pool->attach_mutex);
da028469
LJ
1731 list_del(&worker->node);
1732 if (list_empty(&pool->workers))
60f5a4bc 1733 detach_completion = pool->detach_completion;
92f9c5c4 1734 mutex_unlock(&pool->attach_mutex);
60f5a4bc 1735
b62c0751
LJ
1736 /* clear leftover flags without pool->lock after it is detached */
1737 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1738
60f5a4bc
LJ
1739 if (detach_completion)
1740 complete(detach_completion);
1741}
1742
c34056a3
TH
1743/**
1744 * create_worker - create a new workqueue worker
63d95a91 1745 * @pool: pool the new worker will belong to
c34056a3 1746 *
051e1850 1747 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1748 *
1749 * CONTEXT:
1750 * Might sleep. Does GFP_KERNEL allocations.
1751 *
d185af30 1752 * Return:
c34056a3
TH
1753 * Pointer to the newly created worker.
1754 */
bc2ae0f5 1755static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1756{
c34056a3 1757 struct worker *worker = NULL;
f3421797 1758 int id = -1;
e3c916a4 1759 char id_buf[16];
c34056a3 1760
7cda9aae
LJ
1761 /* ID is needed to determine kthread name */
1762 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1763 if (id < 0)
1764 goto fail;
c34056a3 1765
f7537df5 1766 worker = alloc_worker(pool->node);
c34056a3
TH
1767 if (!worker)
1768 goto fail;
1769
bd7bdd43 1770 worker->pool = pool;
c34056a3
TH
1771 worker->id = id;
1772
29c91e99 1773 if (pool->cpu >= 0)
e3c916a4
TH
1774 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1775 pool->attrs->nice < 0 ? "H" : "");
f3421797 1776 else
e3c916a4
TH
1777 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1778
f3f90ad4 1779 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1780 "kworker/%s", id_buf);
c34056a3
TH
1781 if (IS_ERR(worker->task))
1782 goto fail;
1783
91151228 1784 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1785 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1786
da028469 1787 /* successful, attach the worker to the pool */
4736cbf7 1788 worker_attach_to_pool(worker, pool);
822d8405 1789
051e1850
LJ
1790 /* start the newly created worker */
1791 spin_lock_irq(&pool->lock);
1792 worker->pool->nr_workers++;
1793 worker_enter_idle(worker);
1794 wake_up_process(worker->task);
1795 spin_unlock_irq(&pool->lock);
1796
c34056a3 1797 return worker;
822d8405 1798
c34056a3 1799fail:
9625ab17 1800 if (id >= 0)
7cda9aae 1801 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1802 kfree(worker);
1803 return NULL;
1804}
1805
c34056a3
TH
1806/**
1807 * destroy_worker - destroy a workqueue worker
1808 * @worker: worker to be destroyed
1809 *
73eb7fe7
LJ
1810 * Destroy @worker and adjust @pool stats accordingly. The worker should
1811 * be idle.
c8e55f36
TH
1812 *
1813 * CONTEXT:
60f5a4bc 1814 * spin_lock_irq(pool->lock).
c34056a3
TH
1815 */
1816static void destroy_worker(struct worker *worker)
1817{
bd7bdd43 1818 struct worker_pool *pool = worker->pool;
c34056a3 1819
cd549687
TH
1820 lockdep_assert_held(&pool->lock);
1821
c34056a3 1822 /* sanity check frenzy */
6183c009 1823 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1824 WARN_ON(!list_empty(&worker->scheduled)) ||
1825 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1826 return;
c34056a3 1827
73eb7fe7
LJ
1828 pool->nr_workers--;
1829 pool->nr_idle--;
5bdfff96 1830
c8e55f36 1831 list_del_init(&worker->entry);
cb444766 1832 worker->flags |= WORKER_DIE;
60f5a4bc 1833 wake_up_process(worker->task);
c34056a3
TH
1834}
1835
63d95a91 1836static void idle_worker_timeout(unsigned long __pool)
e22bee78 1837{
63d95a91 1838 struct worker_pool *pool = (void *)__pool;
e22bee78 1839
d565ed63 1840 spin_lock_irq(&pool->lock);
e22bee78 1841
3347fc9f 1842 while (too_many_workers(pool)) {
e22bee78
TH
1843 struct worker *worker;
1844 unsigned long expires;
1845
1846 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1847 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1848 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1849
3347fc9f 1850 if (time_before(jiffies, expires)) {
63d95a91 1851 mod_timer(&pool->idle_timer, expires);
3347fc9f 1852 break;
d5abe669 1853 }
3347fc9f
LJ
1854
1855 destroy_worker(worker);
e22bee78
TH
1856 }
1857
d565ed63 1858 spin_unlock_irq(&pool->lock);
e22bee78 1859}
d5abe669 1860
493a1724 1861static void send_mayday(struct work_struct *work)
e22bee78 1862{
112202d9
TH
1863 struct pool_workqueue *pwq = get_work_pwq(work);
1864 struct workqueue_struct *wq = pwq->wq;
493a1724 1865
2e109a28 1866 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1867
493008a8 1868 if (!wq->rescuer)
493a1724 1869 return;
e22bee78
TH
1870
1871 /* mayday mayday mayday */
493a1724 1872 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1873 /*
1874 * If @pwq is for an unbound wq, its base ref may be put at
1875 * any time due to an attribute change. Pin @pwq until the
1876 * rescuer is done with it.
1877 */
1878 get_pwq(pwq);
493a1724 1879 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1880 wake_up_process(wq->rescuer->task);
493a1724 1881 }
e22bee78
TH
1882}
1883
706026c2 1884static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1885{
63d95a91 1886 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1887 struct work_struct *work;
1888
b2d82909
TH
1889 spin_lock_irq(&pool->lock);
1890 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 1891
63d95a91 1892 if (need_to_create_worker(pool)) {
e22bee78
TH
1893 /*
1894 * We've been trying to create a new worker but
1895 * haven't been successful. We might be hitting an
1896 * allocation deadlock. Send distress signals to
1897 * rescuers.
1898 */
63d95a91 1899 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1900 send_mayday(work);
1da177e4 1901 }
e22bee78 1902
b2d82909
TH
1903 spin_unlock(&wq_mayday_lock);
1904 spin_unlock_irq(&pool->lock);
e22bee78 1905
63d95a91 1906 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1907}
1908
e22bee78
TH
1909/**
1910 * maybe_create_worker - create a new worker if necessary
63d95a91 1911 * @pool: pool to create a new worker for
e22bee78 1912 *
63d95a91 1913 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1914 * have at least one idle worker on return from this function. If
1915 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1916 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1917 * possible allocation deadlock.
1918 *
c5aa87bb
TH
1919 * On return, need_to_create_worker() is guaranteed to be %false and
1920 * may_start_working() %true.
e22bee78
TH
1921 *
1922 * LOCKING:
d565ed63 1923 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1924 * multiple times. Does GFP_KERNEL allocations. Called only from
1925 * manager.
e22bee78 1926 */
29187a9e 1927static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1928__releases(&pool->lock)
1929__acquires(&pool->lock)
1da177e4 1930{
e22bee78 1931restart:
d565ed63 1932 spin_unlock_irq(&pool->lock);
9f9c2364 1933
e22bee78 1934 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1935 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1936
1937 while (true) {
051e1850 1938 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 1939 break;
1da177e4 1940
e212f361 1941 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1942
63d95a91 1943 if (!need_to_create_worker(pool))
e22bee78
TH
1944 break;
1945 }
1946
63d95a91 1947 del_timer_sync(&pool->mayday_timer);
d565ed63 1948 spin_lock_irq(&pool->lock);
051e1850
LJ
1949 /*
1950 * This is necessary even after a new worker was just successfully
1951 * created as @pool->lock was dropped and the new worker might have
1952 * already become busy.
1953 */
63d95a91 1954 if (need_to_create_worker(pool))
e22bee78 1955 goto restart;
e22bee78
TH
1956}
1957
73f53c4a 1958/**
e22bee78
TH
1959 * manage_workers - manage worker pool
1960 * @worker: self
73f53c4a 1961 *
706026c2 1962 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1963 * to. At any given time, there can be only zero or one manager per
706026c2 1964 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1965 *
1966 * The caller can safely start processing works on false return. On
1967 * true return, it's guaranteed that need_to_create_worker() is false
1968 * and may_start_working() is true.
73f53c4a
TH
1969 *
1970 * CONTEXT:
d565ed63 1971 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1972 * multiple times. Does GFP_KERNEL allocations.
1973 *
d185af30 1974 * Return:
29187a9e
TH
1975 * %false if the pool doesn't need management and the caller can safely
1976 * start processing works, %true if management function was performed and
1977 * the conditions that the caller verified before calling the function may
1978 * no longer be true.
73f53c4a 1979 */
e22bee78 1980static bool manage_workers(struct worker *worker)
73f53c4a 1981{
63d95a91 1982 struct worker_pool *pool = worker->pool;
73f53c4a 1983
692b4825 1984 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 1985 return false;
692b4825
TH
1986
1987 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 1988 pool->manager = worker;
1e19ffc6 1989
29187a9e 1990 maybe_create_worker(pool);
e22bee78 1991
2607d7a6 1992 pool->manager = NULL;
692b4825
TH
1993 pool->flags &= ~POOL_MANAGER_ACTIVE;
1994 wake_up(&wq_manager_wait);
29187a9e 1995 return true;
73f53c4a
TH
1996}
1997
a62428c0
TH
1998/**
1999 * process_one_work - process single work
c34056a3 2000 * @worker: self
a62428c0
TH
2001 * @work: work to process
2002 *
2003 * Process @work. This function contains all the logics necessary to
2004 * process a single work including synchronization against and
2005 * interaction with other workers on the same cpu, queueing and
2006 * flushing. As long as context requirement is met, any worker can
2007 * call this function to process a work.
2008 *
2009 * CONTEXT:
d565ed63 2010 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2011 */
c34056a3 2012static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2013__releases(&pool->lock)
2014__acquires(&pool->lock)
a62428c0 2015{
112202d9 2016 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2017 struct worker_pool *pool = worker->pool;
112202d9 2018 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2019 int work_color;
7e11629d 2020 struct worker *collision;
a62428c0
TH
2021#ifdef CONFIG_LOCKDEP
2022 /*
2023 * It is permissible to free the struct work_struct from
2024 * inside the function that is called from it, this we need to
2025 * take into account for lockdep too. To avoid bogus "held
2026 * lock freed" warnings as well as problems when looking into
2027 * work->lockdep_map, make a copy and use that here.
2028 */
4d82a1de
PZ
2029 struct lockdep_map lockdep_map;
2030
2031 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2032#endif
807407c0 2033 /* ensure we're on the correct CPU */
85327af6 2034 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2035 raw_smp_processor_id() != pool->cpu);
25511a47 2036
7e11629d
TH
2037 /*
2038 * A single work shouldn't be executed concurrently by
2039 * multiple workers on a single cpu. Check whether anyone is
2040 * already processing the work. If so, defer the work to the
2041 * currently executing one.
2042 */
c9e7cf27 2043 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2044 if (unlikely(collision)) {
2045 move_linked_works(work, &collision->scheduled, NULL);
2046 return;
2047 }
2048
8930caba 2049 /* claim and dequeue */
a62428c0 2050 debug_work_deactivate(work);
c9e7cf27 2051 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2052 worker->current_work = work;
a2c1c57b 2053 worker->current_func = work->func;
112202d9 2054 worker->current_pwq = pwq;
73f53c4a 2055 work_color = get_work_color(work);
7a22ad75 2056
a62428c0
TH
2057 list_del_init(&work->entry);
2058
fb0e7beb 2059 /*
228f1d00
LJ
2060 * CPU intensive works don't participate in concurrency management.
2061 * They're the scheduler's responsibility. This takes @worker out
2062 * of concurrency management and the next code block will chain
2063 * execution of the pending work items.
fb0e7beb
TH
2064 */
2065 if (unlikely(cpu_intensive))
228f1d00 2066 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2067
974271c4 2068 /*
a489a03e
LJ
2069 * Wake up another worker if necessary. The condition is always
2070 * false for normal per-cpu workers since nr_running would always
2071 * be >= 1 at this point. This is used to chain execution of the
2072 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2073 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2074 */
a489a03e 2075 if (need_more_worker(pool))
63d95a91 2076 wake_up_worker(pool);
974271c4 2077
8930caba 2078 /*
7c3eed5c 2079 * Record the last pool and clear PENDING which should be the last
d565ed63 2080 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2081 * PENDING and queued state changes happen together while IRQ is
2082 * disabled.
8930caba 2083 */
7c3eed5c 2084 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2085
d565ed63 2086 spin_unlock_irq(&pool->lock);
a62428c0 2087
a1d14934 2088 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2089 lock_map_acquire(&lockdep_map);
e6f3faa7 2090 /*
f52be570
PZ
2091 * Strictly speaking we should mark the invariant state without holding
2092 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2093 *
2094 * However, that would result in:
2095 *
2096 * A(W1)
2097 * WFC(C)
2098 * A(W1)
2099 * C(C)
2100 *
2101 * Which would create W1->C->W1 dependencies, even though there is no
2102 * actual deadlock possible. There are two solutions, using a
2103 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2104 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2105 * these locks.
2106 *
2107 * AFAICT there is no possible deadlock scenario between the
2108 * flush_work() and complete() primitives (except for single-threaded
2109 * workqueues), so hiding them isn't a problem.
2110 */
f52be570 2111 lockdep_invariant_state(true);
e36c886a 2112 trace_workqueue_execute_start(work);
a2c1c57b 2113 worker->current_func(work);
e36c886a
AV
2114 /*
2115 * While we must be careful to not use "work" after this, the trace
2116 * point will only record its address.
2117 */
2118 trace_workqueue_execute_end(work);
a62428c0 2119 lock_map_release(&lockdep_map);
112202d9 2120 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2121
2122 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2123 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2124 " last function: %pf\n",
a2c1c57b
TH
2125 current->comm, preempt_count(), task_pid_nr(current),
2126 worker->current_func);
a62428c0
TH
2127 debug_show_held_locks(current);
2128 dump_stack();
2129 }
2130
b22ce278
TH
2131 /*
2132 * The following prevents a kworker from hogging CPU on !PREEMPT
2133 * kernels, where a requeueing work item waiting for something to
2134 * happen could deadlock with stop_machine as such work item could
2135 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2136 * stop_machine. At the same time, report a quiescent RCU state so
2137 * the same condition doesn't freeze RCU.
b22ce278 2138 */
3e28e377 2139 cond_resched_rcu_qs();
b22ce278 2140
d565ed63 2141 spin_lock_irq(&pool->lock);
a62428c0 2142
fb0e7beb
TH
2143 /* clear cpu intensive status */
2144 if (unlikely(cpu_intensive))
2145 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2146
a62428c0 2147 /* we're done with it, release */
42f8570f 2148 hash_del(&worker->hentry);
c34056a3 2149 worker->current_work = NULL;
a2c1c57b 2150 worker->current_func = NULL;
112202d9 2151 worker->current_pwq = NULL;
3d1cb205 2152 worker->desc_valid = false;
112202d9 2153 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2154}
2155
affee4b2
TH
2156/**
2157 * process_scheduled_works - process scheduled works
2158 * @worker: self
2159 *
2160 * Process all scheduled works. Please note that the scheduled list
2161 * may change while processing a work, so this function repeatedly
2162 * fetches a work from the top and executes it.
2163 *
2164 * CONTEXT:
d565ed63 2165 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2166 * multiple times.
2167 */
2168static void process_scheduled_works(struct worker *worker)
1da177e4 2169{
affee4b2
TH
2170 while (!list_empty(&worker->scheduled)) {
2171 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2172 struct work_struct, entry);
c34056a3 2173 process_one_work(worker, work);
1da177e4 2174 }
1da177e4
LT
2175}
2176
4690c4ab
TH
2177/**
2178 * worker_thread - the worker thread function
c34056a3 2179 * @__worker: self
4690c4ab 2180 *
c5aa87bb
TH
2181 * The worker thread function. All workers belong to a worker_pool -
2182 * either a per-cpu one or dynamic unbound one. These workers process all
2183 * work items regardless of their specific target workqueue. The only
2184 * exception is work items which belong to workqueues with a rescuer which
2185 * will be explained in rescuer_thread().
d185af30
YB
2186 *
2187 * Return: 0
4690c4ab 2188 */
c34056a3 2189static int worker_thread(void *__worker)
1da177e4 2190{
c34056a3 2191 struct worker *worker = __worker;
bd7bdd43 2192 struct worker_pool *pool = worker->pool;
1da177e4 2193
e22bee78
TH
2194 /* tell the scheduler that this is a workqueue worker */
2195 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2196woke_up:
d565ed63 2197 spin_lock_irq(&pool->lock);
1da177e4 2198
a9ab775b
TH
2199 /* am I supposed to die? */
2200 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2201 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2202 WARN_ON_ONCE(!list_empty(&worker->entry));
2203 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2204
2205 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2206 ida_simple_remove(&pool->worker_ida, worker->id);
60f5a4bc
LJ
2207 worker_detach_from_pool(worker, pool);
2208 kfree(worker);
a9ab775b 2209 return 0;
c8e55f36 2210 }
affee4b2 2211
c8e55f36 2212 worker_leave_idle(worker);
db7bccf4 2213recheck:
e22bee78 2214 /* no more worker necessary? */
63d95a91 2215 if (!need_more_worker(pool))
e22bee78
TH
2216 goto sleep;
2217
2218 /* do we need to manage? */
63d95a91 2219 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2220 goto recheck;
2221
c8e55f36
TH
2222 /*
2223 * ->scheduled list can only be filled while a worker is
2224 * preparing to process a work or actually processing it.
2225 * Make sure nobody diddled with it while I was sleeping.
2226 */
6183c009 2227 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2228
e22bee78 2229 /*
a9ab775b
TH
2230 * Finish PREP stage. We're guaranteed to have at least one idle
2231 * worker or that someone else has already assumed the manager
2232 * role. This is where @worker starts participating in concurrency
2233 * management if applicable and concurrency management is restored
2234 * after being rebound. See rebind_workers() for details.
e22bee78 2235 */
a9ab775b 2236 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2237
2238 do {
c8e55f36 2239 struct work_struct *work =
bd7bdd43 2240 list_first_entry(&pool->worklist,
c8e55f36
TH
2241 struct work_struct, entry);
2242
82607adc
TH
2243 pool->watchdog_ts = jiffies;
2244
c8e55f36
TH
2245 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2246 /* optimization path, not strictly necessary */
2247 process_one_work(worker, work);
2248 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2249 process_scheduled_works(worker);
c8e55f36
TH
2250 } else {
2251 move_linked_works(work, &worker->scheduled, NULL);
2252 process_scheduled_works(worker);
affee4b2 2253 }
63d95a91 2254 } while (keep_working(pool));
e22bee78 2255
228f1d00 2256 worker_set_flags(worker, WORKER_PREP);
d313dd85 2257sleep:
c8e55f36 2258 /*
d565ed63
TH
2259 * pool->lock is held and there's no work to process and no need to
2260 * manage, sleep. Workers are woken up only while holding
2261 * pool->lock or from local cpu, so setting the current state
2262 * before releasing pool->lock is enough to prevent losing any
2263 * event.
c8e55f36
TH
2264 */
2265 worker_enter_idle(worker);
c5a94a61 2266 __set_current_state(TASK_IDLE);
d565ed63 2267 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2268 schedule();
2269 goto woke_up;
1da177e4
LT
2270}
2271
e22bee78
TH
2272/**
2273 * rescuer_thread - the rescuer thread function
111c225a 2274 * @__rescuer: self
e22bee78
TH
2275 *
2276 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2277 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2278 *
706026c2 2279 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2280 * worker which uses GFP_KERNEL allocation which has slight chance of
2281 * developing into deadlock if some works currently on the same queue
2282 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2283 * the problem rescuer solves.
2284 *
706026c2
TH
2285 * When such condition is possible, the pool summons rescuers of all
2286 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2287 * those works so that forward progress can be guaranteed.
2288 *
2289 * This should happen rarely.
d185af30
YB
2290 *
2291 * Return: 0
e22bee78 2292 */
111c225a 2293static int rescuer_thread(void *__rescuer)
e22bee78 2294{
111c225a
TH
2295 struct worker *rescuer = __rescuer;
2296 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2297 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2298 bool should_stop;
e22bee78
TH
2299
2300 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2301
2302 /*
2303 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2304 * doesn't participate in concurrency management.
2305 */
2306 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78 2307repeat:
c5a94a61 2308 set_current_state(TASK_IDLE);
e22bee78 2309
4d595b86
LJ
2310 /*
2311 * By the time the rescuer is requested to stop, the workqueue
2312 * shouldn't have any work pending, but @wq->maydays may still have
2313 * pwq(s) queued. This can happen by non-rescuer workers consuming
2314 * all the work items before the rescuer got to them. Go through
2315 * @wq->maydays processing before acting on should_stop so that the
2316 * list is always empty on exit.
2317 */
2318 should_stop = kthread_should_stop();
e22bee78 2319
493a1724 2320 /* see whether any pwq is asking for help */
2e109a28 2321 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2322
2323 while (!list_empty(&wq->maydays)) {
2324 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2325 struct pool_workqueue, mayday_node);
112202d9 2326 struct worker_pool *pool = pwq->pool;
e22bee78 2327 struct work_struct *work, *n;
82607adc 2328 bool first = true;
e22bee78
TH
2329
2330 __set_current_state(TASK_RUNNING);
493a1724
TH
2331 list_del_init(&pwq->mayday_node);
2332
2e109a28 2333 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2334
51697d39
LJ
2335 worker_attach_to_pool(rescuer, pool);
2336
2337 spin_lock_irq(&pool->lock);
b3104104 2338 rescuer->pool = pool;
e22bee78
TH
2339
2340 /*
2341 * Slurp in all works issued via this workqueue and
2342 * process'em.
2343 */
0479c8c5 2344 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2345 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2346 if (get_work_pwq(work) == pwq) {
2347 if (first)
2348 pool->watchdog_ts = jiffies;
e22bee78 2349 move_linked_works(work, scheduled, &n);
82607adc
TH
2350 }
2351 first = false;
2352 }
e22bee78 2353
008847f6
N
2354 if (!list_empty(scheduled)) {
2355 process_scheduled_works(rescuer);
2356
2357 /*
2358 * The above execution of rescued work items could
2359 * have created more to rescue through
2360 * pwq_activate_first_delayed() or chained
2361 * queueing. Let's put @pwq back on mayday list so
2362 * that such back-to-back work items, which may be
2363 * being used to relieve memory pressure, don't
2364 * incur MAYDAY_INTERVAL delay inbetween.
2365 */
2366 if (need_to_create_worker(pool)) {
2367 spin_lock(&wq_mayday_lock);
2368 get_pwq(pwq);
2369 list_move_tail(&pwq->mayday_node, &wq->maydays);
2370 spin_unlock(&wq_mayday_lock);
2371 }
2372 }
7576958a 2373
77668c8b
LJ
2374 /*
2375 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2376 * go away while we're still attached to it.
77668c8b
LJ
2377 */
2378 put_pwq(pwq);
2379
7576958a 2380 /*
d8ca83e6 2381 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2382 * regular worker; otherwise, we end up with 0 concurrency
2383 * and stalling the execution.
2384 */
d8ca83e6 2385 if (need_more_worker(pool))
63d95a91 2386 wake_up_worker(pool);
7576958a 2387
b3104104 2388 rescuer->pool = NULL;
13b1d625
LJ
2389 spin_unlock_irq(&pool->lock);
2390
2391 worker_detach_from_pool(rescuer, pool);
2392
2393 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2394 }
2395
2e109a28 2396 spin_unlock_irq(&wq_mayday_lock);
493a1724 2397
4d595b86
LJ
2398 if (should_stop) {
2399 __set_current_state(TASK_RUNNING);
2400 rescuer->task->flags &= ~PF_WQ_WORKER;
2401 return 0;
2402 }
2403
111c225a
TH
2404 /* rescuers should never participate in concurrency management */
2405 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2406 schedule();
2407 goto repeat;
1da177e4
LT
2408}
2409
fca839c0
TH
2410/**
2411 * check_flush_dependency - check for flush dependency sanity
2412 * @target_wq: workqueue being flushed
2413 * @target_work: work item being flushed (NULL for workqueue flushes)
2414 *
2415 * %current is trying to flush the whole @target_wq or @target_work on it.
2416 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2417 * reclaiming memory or running on a workqueue which doesn't have
2418 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2419 * a deadlock.
2420 */
2421static void check_flush_dependency(struct workqueue_struct *target_wq,
2422 struct work_struct *target_work)
2423{
2424 work_func_t target_func = target_work ? target_work->func : NULL;
2425 struct worker *worker;
2426
2427 if (target_wq->flags & WQ_MEM_RECLAIM)
2428 return;
2429
2430 worker = current_wq_worker();
2431
2432 WARN_ONCE(current->flags & PF_MEMALLOC,
2433 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2434 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2435 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2436 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
fca839c0
TH
2437 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2438 worker->current_pwq->wq->name, worker->current_func,
2439 target_wq->name, target_func);
2440}
2441
fc2e4d70
ON
2442struct wq_barrier {
2443 struct work_struct work;
2444 struct completion done;
2607d7a6 2445 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2446};
2447
2448static void wq_barrier_func(struct work_struct *work)
2449{
2450 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2451 complete(&barr->done);
2452}
2453
4690c4ab
TH
2454/**
2455 * insert_wq_barrier - insert a barrier work
112202d9 2456 * @pwq: pwq to insert barrier into
4690c4ab 2457 * @barr: wq_barrier to insert
affee4b2
TH
2458 * @target: target work to attach @barr to
2459 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2460 *
affee4b2
TH
2461 * @barr is linked to @target such that @barr is completed only after
2462 * @target finishes execution. Please note that the ordering
2463 * guarantee is observed only with respect to @target and on the local
2464 * cpu.
2465 *
2466 * Currently, a queued barrier can't be canceled. This is because
2467 * try_to_grab_pending() can't determine whether the work to be
2468 * grabbed is at the head of the queue and thus can't clear LINKED
2469 * flag of the previous work while there must be a valid next work
2470 * after a work with LINKED flag set.
2471 *
2472 * Note that when @worker is non-NULL, @target may be modified
112202d9 2473 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2474 *
2475 * CONTEXT:
d565ed63 2476 * spin_lock_irq(pool->lock).
4690c4ab 2477 */
112202d9 2478static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2479 struct wq_barrier *barr,
2480 struct work_struct *target, struct worker *worker)
fc2e4d70 2481{
affee4b2
TH
2482 struct list_head *head;
2483 unsigned int linked = 0;
2484
dc186ad7 2485 /*
d565ed63 2486 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2487 * as we know for sure that this will not trigger any of the
2488 * checks and call back into the fixup functions where we
2489 * might deadlock.
2490 */
ca1cab37 2491 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2492 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5
BF
2493
2494 /*
2495 * Explicitly init the crosslock for wq_barrier::done, make its lock
2496 * key a subkey of the corresponding work. As a result we won't
2497 * build a dependency between wq_barrier::done and unrelated work.
2498 */
2499 lockdep_init_map_crosslock((struct lockdep_map *)&barr->done.map,
2500 "(complete)wq_barr::done",
2501 target->lockdep_map.key, 1);
2502 __init_completion(&barr->done);
2607d7a6 2503 barr->task = current;
83c22520 2504
affee4b2
TH
2505 /*
2506 * If @target is currently being executed, schedule the
2507 * barrier to the worker; otherwise, put it after @target.
2508 */
2509 if (worker)
2510 head = worker->scheduled.next;
2511 else {
2512 unsigned long *bits = work_data_bits(target);
2513
2514 head = target->entry.next;
2515 /* there can already be other linked works, inherit and set */
2516 linked = *bits & WORK_STRUCT_LINKED;
2517 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2518 }
2519
dc186ad7 2520 debug_work_activate(&barr->work);
112202d9 2521 insert_work(pwq, &barr->work, head,
affee4b2 2522 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2523}
2524
73f53c4a 2525/**
112202d9 2526 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2527 * @wq: workqueue being flushed
2528 * @flush_color: new flush color, < 0 for no-op
2529 * @work_color: new work color, < 0 for no-op
2530 *
112202d9 2531 * Prepare pwqs for workqueue flushing.
73f53c4a 2532 *
112202d9
TH
2533 * If @flush_color is non-negative, flush_color on all pwqs should be
2534 * -1. If no pwq has in-flight commands at the specified color, all
2535 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2536 * has in flight commands, its pwq->flush_color is set to
2537 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2538 * wakeup logic is armed and %true is returned.
2539 *
2540 * The caller should have initialized @wq->first_flusher prior to
2541 * calling this function with non-negative @flush_color. If
2542 * @flush_color is negative, no flush color update is done and %false
2543 * is returned.
2544 *
112202d9 2545 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2546 * work_color which is previous to @work_color and all will be
2547 * advanced to @work_color.
2548 *
2549 * CONTEXT:
3c25a55d 2550 * mutex_lock(wq->mutex).
73f53c4a 2551 *
d185af30 2552 * Return:
73f53c4a
TH
2553 * %true if @flush_color >= 0 and there's something to flush. %false
2554 * otherwise.
2555 */
112202d9 2556static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2557 int flush_color, int work_color)
1da177e4 2558{
73f53c4a 2559 bool wait = false;
49e3cf44 2560 struct pool_workqueue *pwq;
1da177e4 2561
73f53c4a 2562 if (flush_color >= 0) {
6183c009 2563 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2564 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2565 }
2355b70f 2566
49e3cf44 2567 for_each_pwq(pwq, wq) {
112202d9 2568 struct worker_pool *pool = pwq->pool;
fc2e4d70 2569
b09f4fd3 2570 spin_lock_irq(&pool->lock);
83c22520 2571
73f53c4a 2572 if (flush_color >= 0) {
6183c009 2573 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2574
112202d9
TH
2575 if (pwq->nr_in_flight[flush_color]) {
2576 pwq->flush_color = flush_color;
2577 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2578 wait = true;
2579 }
2580 }
1da177e4 2581
73f53c4a 2582 if (work_color >= 0) {
6183c009 2583 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2584 pwq->work_color = work_color;
73f53c4a 2585 }
1da177e4 2586
b09f4fd3 2587 spin_unlock_irq(&pool->lock);
1da177e4 2588 }
2355b70f 2589
112202d9 2590 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2591 complete(&wq->first_flusher->done);
14441960 2592
73f53c4a 2593 return wait;
1da177e4
LT
2594}
2595
0fcb78c2 2596/**
1da177e4 2597 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2598 * @wq: workqueue to flush
1da177e4 2599 *
c5aa87bb
TH
2600 * This function sleeps until all work items which were queued on entry
2601 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2602 */
7ad5b3a5 2603void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2604{
73f53c4a
TH
2605 struct wq_flusher this_flusher = {
2606 .list = LIST_HEAD_INIT(this_flusher.list),
2607 .flush_color = -1,
2608 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2609 };
2610 int next_color;
1da177e4 2611
3347fa09
TH
2612 if (WARN_ON(!wq_online))
2613 return;
2614
3295f0ef
IM
2615 lock_map_acquire(&wq->lockdep_map);
2616 lock_map_release(&wq->lockdep_map);
73f53c4a 2617
3c25a55d 2618 mutex_lock(&wq->mutex);
73f53c4a
TH
2619
2620 /*
2621 * Start-to-wait phase
2622 */
2623 next_color = work_next_color(wq->work_color);
2624
2625 if (next_color != wq->flush_color) {
2626 /*
2627 * Color space is not full. The current work_color
2628 * becomes our flush_color and work_color is advanced
2629 * by one.
2630 */
6183c009 2631 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2632 this_flusher.flush_color = wq->work_color;
2633 wq->work_color = next_color;
2634
2635 if (!wq->first_flusher) {
2636 /* no flush in progress, become the first flusher */
6183c009 2637 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2638
2639 wq->first_flusher = &this_flusher;
2640
112202d9 2641 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2642 wq->work_color)) {
2643 /* nothing to flush, done */
2644 wq->flush_color = next_color;
2645 wq->first_flusher = NULL;
2646 goto out_unlock;
2647 }
2648 } else {
2649 /* wait in queue */
6183c009 2650 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2651 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2652 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2653 }
2654 } else {
2655 /*
2656 * Oops, color space is full, wait on overflow queue.
2657 * The next flush completion will assign us
2658 * flush_color and transfer to flusher_queue.
2659 */
2660 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2661 }
2662
fca839c0
TH
2663 check_flush_dependency(wq, NULL);
2664
3c25a55d 2665 mutex_unlock(&wq->mutex);
73f53c4a
TH
2666
2667 wait_for_completion(&this_flusher.done);
2668
2669 /*
2670 * Wake-up-and-cascade phase
2671 *
2672 * First flushers are responsible for cascading flushes and
2673 * handling overflow. Non-first flushers can simply return.
2674 */
2675 if (wq->first_flusher != &this_flusher)
2676 return;
2677
3c25a55d 2678 mutex_lock(&wq->mutex);
73f53c4a 2679
4ce48b37
TH
2680 /* we might have raced, check again with mutex held */
2681 if (wq->first_flusher != &this_flusher)
2682 goto out_unlock;
2683
73f53c4a
TH
2684 wq->first_flusher = NULL;
2685
6183c009
TH
2686 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2687 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2688
2689 while (true) {
2690 struct wq_flusher *next, *tmp;
2691
2692 /* complete all the flushers sharing the current flush color */
2693 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2694 if (next->flush_color != wq->flush_color)
2695 break;
2696 list_del_init(&next->list);
2697 complete(&next->done);
2698 }
2699
6183c009
TH
2700 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2701 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2702
2703 /* this flush_color is finished, advance by one */
2704 wq->flush_color = work_next_color(wq->flush_color);
2705
2706 /* one color has been freed, handle overflow queue */
2707 if (!list_empty(&wq->flusher_overflow)) {
2708 /*
2709 * Assign the same color to all overflowed
2710 * flushers, advance work_color and append to
2711 * flusher_queue. This is the start-to-wait
2712 * phase for these overflowed flushers.
2713 */
2714 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2715 tmp->flush_color = wq->work_color;
2716
2717 wq->work_color = work_next_color(wq->work_color);
2718
2719 list_splice_tail_init(&wq->flusher_overflow,
2720 &wq->flusher_queue);
112202d9 2721 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2722 }
2723
2724 if (list_empty(&wq->flusher_queue)) {
6183c009 2725 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2726 break;
2727 }
2728
2729 /*
2730 * Need to flush more colors. Make the next flusher
112202d9 2731 * the new first flusher and arm pwqs.
73f53c4a 2732 */
6183c009
TH
2733 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2734 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2735
2736 list_del_init(&next->list);
2737 wq->first_flusher = next;
2738
112202d9 2739 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2740 break;
2741
2742 /*
2743 * Meh... this color is already done, clear first
2744 * flusher and repeat cascading.
2745 */
2746 wq->first_flusher = NULL;
2747 }
2748
2749out_unlock:
3c25a55d 2750 mutex_unlock(&wq->mutex);
1da177e4 2751}
1dadafa8 2752EXPORT_SYMBOL(flush_workqueue);
1da177e4 2753
9c5a2ba7
TH
2754/**
2755 * drain_workqueue - drain a workqueue
2756 * @wq: workqueue to drain
2757 *
2758 * Wait until the workqueue becomes empty. While draining is in progress,
2759 * only chain queueing is allowed. IOW, only currently pending or running
2760 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2761 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2762 * by the depth of chaining and should be relatively short. Whine if it
2763 * takes too long.
2764 */
2765void drain_workqueue(struct workqueue_struct *wq)
2766{
2767 unsigned int flush_cnt = 0;
49e3cf44 2768 struct pool_workqueue *pwq;
9c5a2ba7
TH
2769
2770 /*
2771 * __queue_work() needs to test whether there are drainers, is much
2772 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2773 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2774 */
87fc741e 2775 mutex_lock(&wq->mutex);
9c5a2ba7 2776 if (!wq->nr_drainers++)
618b01eb 2777 wq->flags |= __WQ_DRAINING;
87fc741e 2778 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2779reflush:
2780 flush_workqueue(wq);
2781
b09f4fd3 2782 mutex_lock(&wq->mutex);
76af4d93 2783
49e3cf44 2784 for_each_pwq(pwq, wq) {
fa2563e4 2785 bool drained;
9c5a2ba7 2786
b09f4fd3 2787 spin_lock_irq(&pwq->pool->lock);
112202d9 2788 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2789 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2790
2791 if (drained)
9c5a2ba7
TH
2792 continue;
2793
2794 if (++flush_cnt == 10 ||
2795 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2796 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2797 wq->name, flush_cnt);
76af4d93 2798
b09f4fd3 2799 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2800 goto reflush;
2801 }
2802
9c5a2ba7 2803 if (!--wq->nr_drainers)
618b01eb 2804 wq->flags &= ~__WQ_DRAINING;
87fc741e 2805 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2806}
2807EXPORT_SYMBOL_GPL(drain_workqueue);
2808
606a5020 2809static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2810{
affee4b2 2811 struct worker *worker = NULL;
c9e7cf27 2812 struct worker_pool *pool;
112202d9 2813 struct pool_workqueue *pwq;
db700897
ON
2814
2815 might_sleep();
fa1b54e6
TH
2816
2817 local_irq_disable();
c9e7cf27 2818 pool = get_work_pool(work);
fa1b54e6
TH
2819 if (!pool) {
2820 local_irq_enable();
baf59022 2821 return false;
fa1b54e6 2822 }
db700897 2823
fa1b54e6 2824 spin_lock(&pool->lock);
0b3dae68 2825 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2826 pwq = get_work_pwq(work);
2827 if (pwq) {
2828 if (unlikely(pwq->pool != pool))
4690c4ab 2829 goto already_gone;
606a5020 2830 } else {
c9e7cf27 2831 worker = find_worker_executing_work(pool, work);
affee4b2 2832 if (!worker)
4690c4ab 2833 goto already_gone;
112202d9 2834 pwq = worker->current_pwq;
606a5020 2835 }
db700897 2836
fca839c0
TH
2837 check_flush_dependency(pwq->wq, work);
2838
112202d9 2839 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2840 spin_unlock_irq(&pool->lock);
7a22ad75 2841
e159489b 2842 /*
a1d14934
PZ
2843 * Force a lock recursion deadlock when using flush_work() inside a
2844 * single-threaded or rescuer equipped workqueue.
2845 *
2846 * For single threaded workqueues the deadlock happens when the work
2847 * is after the work issuing the flush_work(). For rescuer equipped
2848 * workqueues the deadlock happens when the rescuer stalls, blocking
2849 * forward progress.
e159489b 2850 */
a1d14934 2851 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) {
112202d9 2852 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
2853 lock_map_release(&pwq->wq->lockdep_map);
2854 }
e159489b 2855
401a8d04 2856 return true;
4690c4ab 2857already_gone:
d565ed63 2858 spin_unlock_irq(&pool->lock);
401a8d04 2859 return false;
db700897 2860}
baf59022
TH
2861
2862/**
2863 * flush_work - wait for a work to finish executing the last queueing instance
2864 * @work: the work to flush
2865 *
606a5020
TH
2866 * Wait until @work has finished execution. @work is guaranteed to be idle
2867 * on return if it hasn't been requeued since flush started.
baf59022 2868 *
d185af30 2869 * Return:
baf59022
TH
2870 * %true if flush_work() waited for the work to finish execution,
2871 * %false if it was already idle.
2872 */
2873bool flush_work(struct work_struct *work)
2874{
12997d1a
BH
2875 struct wq_barrier barr;
2876
3347fa09
TH
2877 if (WARN_ON(!wq_online))
2878 return false;
2879
0976dfc1
SB
2880 lock_map_acquire(&work->lockdep_map);
2881 lock_map_release(&work->lockdep_map);
2882
12997d1a
BH
2883 if (start_flush_work(work, &barr)) {
2884 wait_for_completion(&barr.done);
2885 destroy_work_on_stack(&barr.work);
2886 return true;
2887 } else {
2888 return false;
2889 }
6e84d644 2890}
606a5020 2891EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2892
8603e1b3 2893struct cwt_wait {
ac6424b9 2894 wait_queue_entry_t wait;
8603e1b3
TH
2895 struct work_struct *work;
2896};
2897
ac6424b9 2898static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
2899{
2900 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2901
2902 if (cwait->work != key)
2903 return 0;
2904 return autoremove_wake_function(wait, mode, sync, key);
2905}
2906
36e227d2 2907static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2908{
8603e1b3 2909 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 2910 unsigned long flags;
1f1f642e
ON
2911 int ret;
2912
2913 do {
bbb68dfa
TH
2914 ret = try_to_grab_pending(work, is_dwork, &flags);
2915 /*
8603e1b3
TH
2916 * If someone else is already canceling, wait for it to
2917 * finish. flush_work() doesn't work for PREEMPT_NONE
2918 * because we may get scheduled between @work's completion
2919 * and the other canceling task resuming and clearing
2920 * CANCELING - flush_work() will return false immediately
2921 * as @work is no longer busy, try_to_grab_pending() will
2922 * return -ENOENT as @work is still being canceled and the
2923 * other canceling task won't be able to clear CANCELING as
2924 * we're hogging the CPU.
2925 *
2926 * Let's wait for completion using a waitqueue. As this
2927 * may lead to the thundering herd problem, use a custom
2928 * wake function which matches @work along with exclusive
2929 * wait and wakeup.
bbb68dfa 2930 */
8603e1b3
TH
2931 if (unlikely(ret == -ENOENT)) {
2932 struct cwt_wait cwait;
2933
2934 init_wait(&cwait.wait);
2935 cwait.wait.func = cwt_wakefn;
2936 cwait.work = work;
2937
2938 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2939 TASK_UNINTERRUPTIBLE);
2940 if (work_is_canceling(work))
2941 schedule();
2942 finish_wait(&cancel_waitq, &cwait.wait);
2943 }
1f1f642e
ON
2944 } while (unlikely(ret < 0));
2945
bbb68dfa
TH
2946 /* tell other tasks trying to grab @work to back off */
2947 mark_work_canceling(work);
2948 local_irq_restore(flags);
2949
3347fa09
TH
2950 /*
2951 * This allows canceling during early boot. We know that @work
2952 * isn't executing.
2953 */
2954 if (wq_online)
2955 flush_work(work);
2956
7a22ad75 2957 clear_work_data(work);
8603e1b3
TH
2958
2959 /*
2960 * Paired with prepare_to_wait() above so that either
2961 * waitqueue_active() is visible here or !work_is_canceling() is
2962 * visible there.
2963 */
2964 smp_mb();
2965 if (waitqueue_active(&cancel_waitq))
2966 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2967
1f1f642e
ON
2968 return ret;
2969}
2970
6e84d644 2971/**
401a8d04
TH
2972 * cancel_work_sync - cancel a work and wait for it to finish
2973 * @work: the work to cancel
6e84d644 2974 *
401a8d04
TH
2975 * Cancel @work and wait for its execution to finish. This function
2976 * can be used even if the work re-queues itself or migrates to
2977 * another workqueue. On return from this function, @work is
2978 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2979 *
401a8d04
TH
2980 * cancel_work_sync(&delayed_work->work) must not be used for
2981 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2982 *
401a8d04 2983 * The caller must ensure that the workqueue on which @work was last
6e84d644 2984 * queued can't be destroyed before this function returns.
401a8d04 2985 *
d185af30 2986 * Return:
401a8d04 2987 * %true if @work was pending, %false otherwise.
6e84d644 2988 */
401a8d04 2989bool cancel_work_sync(struct work_struct *work)
6e84d644 2990{
36e227d2 2991 return __cancel_work_timer(work, false);
b89deed3 2992}
28e53bdd 2993EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2994
6e84d644 2995/**
401a8d04
TH
2996 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2997 * @dwork: the delayed work to flush
6e84d644 2998 *
401a8d04
TH
2999 * Delayed timer is cancelled and the pending work is queued for
3000 * immediate execution. Like flush_work(), this function only
3001 * considers the last queueing instance of @dwork.
1f1f642e 3002 *
d185af30 3003 * Return:
401a8d04
TH
3004 * %true if flush_work() waited for the work to finish execution,
3005 * %false if it was already idle.
6e84d644 3006 */
401a8d04
TH
3007bool flush_delayed_work(struct delayed_work *dwork)
3008{
8930caba 3009 local_irq_disable();
401a8d04 3010 if (del_timer_sync(&dwork->timer))
60c057bc 3011 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3012 local_irq_enable();
401a8d04
TH
3013 return flush_work(&dwork->work);
3014}
3015EXPORT_SYMBOL(flush_delayed_work);
3016
f72b8792
JA
3017static bool __cancel_work(struct work_struct *work, bool is_dwork)
3018{
3019 unsigned long flags;
3020 int ret;
3021
3022 do {
3023 ret = try_to_grab_pending(work, is_dwork, &flags);
3024 } while (unlikely(ret == -EAGAIN));
3025
3026 if (unlikely(ret < 0))
3027 return false;
3028
3029 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3030 local_irq_restore(flags);
3031 return ret;
3032}
3033
3034/*
3035 * See cancel_delayed_work()
3036 */
3037bool cancel_work(struct work_struct *work)
3038{
3039 return __cancel_work(work, false);
3040}
3041
09383498 3042/**
57b30ae7
TH
3043 * cancel_delayed_work - cancel a delayed work
3044 * @dwork: delayed_work to cancel
09383498 3045 *
d185af30
YB
3046 * Kill off a pending delayed_work.
3047 *
3048 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3049 * pending.
3050 *
3051 * Note:
3052 * The work callback function may still be running on return, unless
3053 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3054 * use cancel_delayed_work_sync() to wait on it.
09383498 3055 *
57b30ae7 3056 * This function is safe to call from any context including IRQ handler.
09383498 3057 */
57b30ae7 3058bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3059{
f72b8792 3060 return __cancel_work(&dwork->work, true);
09383498 3061}
57b30ae7 3062EXPORT_SYMBOL(cancel_delayed_work);
09383498 3063
401a8d04
TH
3064/**
3065 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3066 * @dwork: the delayed work cancel
3067 *
3068 * This is cancel_work_sync() for delayed works.
3069 *
d185af30 3070 * Return:
401a8d04
TH
3071 * %true if @dwork was pending, %false otherwise.
3072 */
3073bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3074{
36e227d2 3075 return __cancel_work_timer(&dwork->work, true);
6e84d644 3076}
f5a421a4 3077EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3078
b6136773 3079/**
31ddd871 3080 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3081 * @func: the function to call
b6136773 3082 *
31ddd871
TH
3083 * schedule_on_each_cpu() executes @func on each online CPU using the
3084 * system workqueue and blocks until all CPUs have completed.
b6136773 3085 * schedule_on_each_cpu() is very slow.
31ddd871 3086 *
d185af30 3087 * Return:
31ddd871 3088 * 0 on success, -errno on failure.
b6136773 3089 */
65f27f38 3090int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3091{
3092 int cpu;
38f51568 3093 struct work_struct __percpu *works;
15316ba8 3094
b6136773
AM
3095 works = alloc_percpu(struct work_struct);
3096 if (!works)
15316ba8 3097 return -ENOMEM;
b6136773 3098
93981800
TH
3099 get_online_cpus();
3100
15316ba8 3101 for_each_online_cpu(cpu) {
9bfb1839
IM
3102 struct work_struct *work = per_cpu_ptr(works, cpu);
3103
3104 INIT_WORK(work, func);
b71ab8c2 3105 schedule_work_on(cpu, work);
65a64464 3106 }
93981800
TH
3107
3108 for_each_online_cpu(cpu)
3109 flush_work(per_cpu_ptr(works, cpu));
3110
95402b38 3111 put_online_cpus();
b6136773 3112 free_percpu(works);
15316ba8
CL
3113 return 0;
3114}
3115
1fa44eca
JB
3116/**
3117 * execute_in_process_context - reliably execute the routine with user context
3118 * @fn: the function to execute
1fa44eca
JB
3119 * @ew: guaranteed storage for the execute work structure (must
3120 * be available when the work executes)
3121 *
3122 * Executes the function immediately if process context is available,
3123 * otherwise schedules the function for delayed execution.
3124 *
d185af30 3125 * Return: 0 - function was executed
1fa44eca
JB
3126 * 1 - function was scheduled for execution
3127 */
65f27f38 3128int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3129{
3130 if (!in_interrupt()) {
65f27f38 3131 fn(&ew->work);
1fa44eca
JB
3132 return 0;
3133 }
3134
65f27f38 3135 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3136 schedule_work(&ew->work);
3137
3138 return 1;
3139}
3140EXPORT_SYMBOL_GPL(execute_in_process_context);
3141
6ba94429
FW
3142/**
3143 * free_workqueue_attrs - free a workqueue_attrs
3144 * @attrs: workqueue_attrs to free
226223ab 3145 *
6ba94429 3146 * Undo alloc_workqueue_attrs().
226223ab 3147 */
6ba94429 3148void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3149{
6ba94429
FW
3150 if (attrs) {
3151 free_cpumask_var(attrs->cpumask);
3152 kfree(attrs);
3153 }
226223ab
TH
3154}
3155
6ba94429
FW
3156/**
3157 * alloc_workqueue_attrs - allocate a workqueue_attrs
3158 * @gfp_mask: allocation mask to use
3159 *
3160 * Allocate a new workqueue_attrs, initialize with default settings and
3161 * return it.
3162 *
3163 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3164 */
3165struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
226223ab 3166{
6ba94429 3167 struct workqueue_attrs *attrs;
226223ab 3168
6ba94429
FW
3169 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3170 if (!attrs)
3171 goto fail;
3172 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3173 goto fail;
3174
3175 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3176 return attrs;
3177fail:
3178 free_workqueue_attrs(attrs);
3179 return NULL;
226223ab
TH
3180}
3181
6ba94429
FW
3182static void copy_workqueue_attrs(struct workqueue_attrs *to,
3183 const struct workqueue_attrs *from)
226223ab 3184{
6ba94429
FW
3185 to->nice = from->nice;
3186 cpumask_copy(to->cpumask, from->cpumask);
3187 /*
3188 * Unlike hash and equality test, this function doesn't ignore
3189 * ->no_numa as it is used for both pool and wq attrs. Instead,
3190 * get_unbound_pool() explicitly clears ->no_numa after copying.
3191 */
3192 to->no_numa = from->no_numa;
226223ab
TH
3193}
3194
6ba94429
FW
3195/* hash value of the content of @attr */
3196static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3197{
6ba94429 3198 u32 hash = 0;
226223ab 3199
6ba94429
FW
3200 hash = jhash_1word(attrs->nice, hash);
3201 hash = jhash(cpumask_bits(attrs->cpumask),
3202 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3203 return hash;
226223ab 3204}
226223ab 3205
6ba94429
FW
3206/* content equality test */
3207static bool wqattrs_equal(const struct workqueue_attrs *a,
3208 const struct workqueue_attrs *b)
226223ab 3209{
6ba94429
FW
3210 if (a->nice != b->nice)
3211 return false;
3212 if (!cpumask_equal(a->cpumask, b->cpumask))
3213 return false;
3214 return true;
226223ab
TH
3215}
3216
6ba94429
FW
3217/**
3218 * init_worker_pool - initialize a newly zalloc'd worker_pool
3219 * @pool: worker_pool to initialize
3220 *
402dd89d 3221 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3222 *
3223 * Return: 0 on success, -errno on failure. Even on failure, all fields
3224 * inside @pool proper are initialized and put_unbound_pool() can be called
3225 * on @pool safely to release it.
3226 */
3227static int init_worker_pool(struct worker_pool *pool)
226223ab 3228{
6ba94429
FW
3229 spin_lock_init(&pool->lock);
3230 pool->id = -1;
3231 pool->cpu = -1;
3232 pool->node = NUMA_NO_NODE;
3233 pool->flags |= POOL_DISASSOCIATED;
82607adc 3234 pool->watchdog_ts = jiffies;
6ba94429
FW
3235 INIT_LIST_HEAD(&pool->worklist);
3236 INIT_LIST_HEAD(&pool->idle_list);
3237 hash_init(pool->busy_hash);
226223ab 3238
c30fb26b
GT
3239 setup_deferrable_timer(&pool->idle_timer, idle_worker_timeout,
3240 (unsigned long)pool);
226223ab 3241
6ba94429
FW
3242 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3243 (unsigned long)pool);
226223ab 3244
6ba94429
FW
3245 mutex_init(&pool->attach_mutex);
3246 INIT_LIST_HEAD(&pool->workers);
226223ab 3247
6ba94429
FW
3248 ida_init(&pool->worker_ida);
3249 INIT_HLIST_NODE(&pool->hash_node);
3250 pool->refcnt = 1;
226223ab 3251
6ba94429
FW
3252 /* shouldn't fail above this point */
3253 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3254 if (!pool->attrs)
3255 return -ENOMEM;
3256 return 0;
226223ab
TH
3257}
3258
6ba94429 3259static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3260{
6ba94429
FW
3261 struct workqueue_struct *wq =
3262 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3263
6ba94429
FW
3264 if (!(wq->flags & WQ_UNBOUND))
3265 free_percpu(wq->cpu_pwqs);
226223ab 3266 else
6ba94429 3267 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3268
6ba94429
FW
3269 kfree(wq->rescuer);
3270 kfree(wq);
226223ab
TH
3271}
3272
6ba94429 3273static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3274{
6ba94429 3275 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3276
6ba94429
FW
3277 ida_destroy(&pool->worker_ida);
3278 free_workqueue_attrs(pool->attrs);
3279 kfree(pool);
226223ab
TH
3280}
3281
6ba94429
FW
3282/**
3283 * put_unbound_pool - put a worker_pool
3284 * @pool: worker_pool to put
3285 *
3286 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3287 * safe manner. get_unbound_pool() calls this function on its failure path
3288 * and this function should be able to release pools which went through,
3289 * successfully or not, init_worker_pool().
3290 *
3291 * Should be called with wq_pool_mutex held.
3292 */
3293static void put_unbound_pool(struct worker_pool *pool)
226223ab 3294{
6ba94429
FW
3295 DECLARE_COMPLETION_ONSTACK(detach_completion);
3296 struct worker *worker;
226223ab 3297
6ba94429 3298 lockdep_assert_held(&wq_pool_mutex);
226223ab 3299
6ba94429
FW
3300 if (--pool->refcnt)
3301 return;
226223ab 3302
6ba94429
FW
3303 /* sanity checks */
3304 if (WARN_ON(!(pool->cpu < 0)) ||
3305 WARN_ON(!list_empty(&pool->worklist)))
3306 return;
226223ab 3307
6ba94429
FW
3308 /* release id and unhash */
3309 if (pool->id >= 0)
3310 idr_remove(&worker_pool_idr, pool->id);
3311 hash_del(&pool->hash_node);
d55262c4 3312
6ba94429 3313 /*
692b4825
TH
3314 * Become the manager and destroy all workers. This prevents
3315 * @pool's workers from blocking on attach_mutex. We're the last
3316 * manager and @pool gets freed with the flag set.
6ba94429 3317 */
6ba94429 3318 spin_lock_irq(&pool->lock);
692b4825
TH
3319 wait_event_lock_irq(wq_manager_wait,
3320 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3321 pool->flags |= POOL_MANAGER_ACTIVE;
3322
6ba94429
FW
3323 while ((worker = first_idle_worker(pool)))
3324 destroy_worker(worker);
3325 WARN_ON(pool->nr_workers || pool->nr_idle);
3326 spin_unlock_irq(&pool->lock);
d55262c4 3327
6ba94429
FW
3328 mutex_lock(&pool->attach_mutex);
3329 if (!list_empty(&pool->workers))
3330 pool->detach_completion = &detach_completion;
3331 mutex_unlock(&pool->attach_mutex);
226223ab 3332
6ba94429
FW
3333 if (pool->detach_completion)
3334 wait_for_completion(pool->detach_completion);
226223ab 3335
6ba94429
FW
3336 /* shut down the timers */
3337 del_timer_sync(&pool->idle_timer);
3338 del_timer_sync(&pool->mayday_timer);
226223ab 3339
6ba94429
FW
3340 /* sched-RCU protected to allow dereferences from get_work_pool() */
3341 call_rcu_sched(&pool->rcu, rcu_free_pool);
226223ab
TH
3342}
3343
3344/**
6ba94429
FW
3345 * get_unbound_pool - get a worker_pool with the specified attributes
3346 * @attrs: the attributes of the worker_pool to get
226223ab 3347 *
6ba94429
FW
3348 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3349 * reference count and return it. If there already is a matching
3350 * worker_pool, it will be used; otherwise, this function attempts to
3351 * create a new one.
226223ab 3352 *
6ba94429 3353 * Should be called with wq_pool_mutex held.
226223ab 3354 *
6ba94429
FW
3355 * Return: On success, a worker_pool with the same attributes as @attrs.
3356 * On failure, %NULL.
226223ab 3357 */
6ba94429 3358static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3359{
6ba94429
FW
3360 u32 hash = wqattrs_hash(attrs);
3361 struct worker_pool *pool;
3362 int node;
e2273584 3363 int target_node = NUMA_NO_NODE;
226223ab 3364
6ba94429 3365 lockdep_assert_held(&wq_pool_mutex);
226223ab 3366
6ba94429
FW
3367 /* do we already have a matching pool? */
3368 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3369 if (wqattrs_equal(pool->attrs, attrs)) {
3370 pool->refcnt++;
3371 return pool;
3372 }
3373 }
226223ab 3374
e2273584
XP
3375 /* if cpumask is contained inside a NUMA node, we belong to that node */
3376 if (wq_numa_enabled) {
3377 for_each_node(node) {
3378 if (cpumask_subset(attrs->cpumask,
3379 wq_numa_possible_cpumask[node])) {
3380 target_node = node;
3381 break;
3382 }
3383 }
3384 }
3385
6ba94429 3386 /* nope, create a new one */
e2273584 3387 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3388 if (!pool || init_worker_pool(pool) < 0)
3389 goto fail;
3390
3391 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3392 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3393 pool->node = target_node;
226223ab
TH
3394
3395 /*
6ba94429
FW
3396 * no_numa isn't a worker_pool attribute, always clear it. See
3397 * 'struct workqueue_attrs' comments for detail.
226223ab 3398 */
6ba94429 3399 pool->attrs->no_numa = false;
226223ab 3400
6ba94429
FW
3401 if (worker_pool_assign_id(pool) < 0)
3402 goto fail;
226223ab 3403
6ba94429 3404 /* create and start the initial worker */
3347fa09 3405 if (wq_online && !create_worker(pool))
6ba94429 3406 goto fail;
226223ab 3407
6ba94429
FW
3408 /* install */
3409 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3410
6ba94429
FW
3411 return pool;
3412fail:
3413 if (pool)
3414 put_unbound_pool(pool);
3415 return NULL;
226223ab 3416}
226223ab 3417
6ba94429 3418static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3419{
6ba94429
FW
3420 kmem_cache_free(pwq_cache,
3421 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3422}
3423
6ba94429
FW
3424/*
3425 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3426 * and needs to be destroyed.
7a4e344c 3427 */
6ba94429 3428static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3429{
6ba94429
FW
3430 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3431 unbound_release_work);
3432 struct workqueue_struct *wq = pwq->wq;
3433 struct worker_pool *pool = pwq->pool;
3434 bool is_last;
7a4e344c 3435
6ba94429
FW
3436 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3437 return;
7a4e344c 3438
6ba94429
FW
3439 mutex_lock(&wq->mutex);
3440 list_del_rcu(&pwq->pwqs_node);
3441 is_last = list_empty(&wq->pwqs);
3442 mutex_unlock(&wq->mutex);
3443
3444 mutex_lock(&wq_pool_mutex);
3445 put_unbound_pool(pool);
3446 mutex_unlock(&wq_pool_mutex);
3447
3448 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
7a4e344c 3449
2865a8fb 3450 /*
6ba94429
FW
3451 * If we're the last pwq going away, @wq is already dead and no one
3452 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3453 */
6ba94429
FW
3454 if (is_last)
3455 call_rcu_sched(&wq->rcu, rcu_free_wq);
29c91e99
TH
3456}
3457
7a4e344c 3458/**
6ba94429
FW
3459 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3460 * @pwq: target pool_workqueue
d185af30 3461 *
6ba94429
FW
3462 * If @pwq isn't freezing, set @pwq->max_active to the associated
3463 * workqueue's saved_max_active and activate delayed work items
3464 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3465 */
6ba94429 3466static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3467{
6ba94429
FW
3468 struct workqueue_struct *wq = pwq->wq;
3469 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3470 unsigned long flags;
4e1a1f9a 3471
6ba94429
FW
3472 /* for @wq->saved_max_active */
3473 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3474
6ba94429
FW
3475 /* fast exit for non-freezable wqs */
3476 if (!freezable && pwq->max_active == wq->saved_max_active)
3477 return;
7a4e344c 3478
3347fa09
TH
3479 /* this function can be called during early boot w/ irq disabled */
3480 spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3481
6ba94429
FW
3482 /*
3483 * During [un]freezing, the caller is responsible for ensuring that
3484 * this function is called at least once after @workqueue_freezing
3485 * is updated and visible.
3486 */
3487 if (!freezable || !workqueue_freezing) {
3488 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3489
6ba94429
FW
3490 while (!list_empty(&pwq->delayed_works) &&
3491 pwq->nr_active < pwq->max_active)
3492 pwq_activate_first_delayed(pwq);
e2dca7ad 3493
6ba94429
FW
3494 /*
3495 * Need to kick a worker after thawed or an unbound wq's
3496 * max_active is bumped. It's a slow path. Do it always.
3497 */
3498 wake_up_worker(pwq->pool);
3499 } else {
3500 pwq->max_active = 0;
3501 }
e2dca7ad 3502
3347fa09 3503 spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3504}
3505
6ba94429
FW
3506/* initialize newly alloced @pwq which is associated with @wq and @pool */
3507static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3508 struct worker_pool *pool)
29c91e99 3509{
6ba94429 3510 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3511
6ba94429
FW
3512 memset(pwq, 0, sizeof(*pwq));
3513
3514 pwq->pool = pool;
3515 pwq->wq = wq;
3516 pwq->flush_color = -1;
3517 pwq->refcnt = 1;
3518 INIT_LIST_HEAD(&pwq->delayed_works);
3519 INIT_LIST_HEAD(&pwq->pwqs_node);
3520 INIT_LIST_HEAD(&pwq->mayday_node);
3521 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3522}
3523
6ba94429
FW
3524/* sync @pwq with the current state of its associated wq and link it */
3525static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3526{
6ba94429 3527 struct workqueue_struct *wq = pwq->wq;
29c91e99 3528
6ba94429 3529 lockdep_assert_held(&wq->mutex);
a892cacc 3530
6ba94429
FW
3531 /* may be called multiple times, ignore if already linked */
3532 if (!list_empty(&pwq->pwqs_node))
29c91e99 3533 return;
29c91e99 3534
6ba94429
FW
3535 /* set the matching work_color */
3536 pwq->work_color = wq->work_color;
29c91e99 3537
6ba94429
FW
3538 /* sync max_active to the current setting */
3539 pwq_adjust_max_active(pwq);
29c91e99 3540
6ba94429
FW
3541 /* link in @pwq */
3542 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3543}
29c91e99 3544
6ba94429
FW
3545/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3546static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3547 const struct workqueue_attrs *attrs)
3548{
3549 struct worker_pool *pool;
3550 struct pool_workqueue *pwq;
60f5a4bc 3551
6ba94429 3552 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3553
6ba94429
FW
3554 pool = get_unbound_pool(attrs);
3555 if (!pool)
3556 return NULL;
60f5a4bc 3557
6ba94429
FW
3558 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3559 if (!pwq) {
3560 put_unbound_pool(pool);
3561 return NULL;
3562 }
29c91e99 3563
6ba94429
FW
3564 init_pwq(pwq, wq, pool);
3565 return pwq;
3566}
29c91e99 3567
29c91e99 3568/**
30186c6f 3569 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3570 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3571 * @node: the target NUMA node
3572 * @cpu_going_down: if >= 0, the CPU to consider as offline
3573 * @cpumask: outarg, the resulting cpumask
29c91e99 3574 *
6ba94429
FW
3575 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3576 * @cpu_going_down is >= 0, that cpu is considered offline during
3577 * calculation. The result is stored in @cpumask.
a892cacc 3578 *
6ba94429
FW
3579 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3580 * enabled and @node has online CPUs requested by @attrs, the returned
3581 * cpumask is the intersection of the possible CPUs of @node and
3582 * @attrs->cpumask.
d185af30 3583 *
6ba94429
FW
3584 * The caller is responsible for ensuring that the cpumask of @node stays
3585 * stable.
3586 *
3587 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3588 * %false if equal.
29c91e99 3589 */
6ba94429
FW
3590static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3591 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3592{
6ba94429
FW
3593 if (!wq_numa_enabled || attrs->no_numa)
3594 goto use_dfl;
29c91e99 3595
6ba94429
FW
3596 /* does @node have any online CPUs @attrs wants? */
3597 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3598 if (cpu_going_down >= 0)
3599 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3600
6ba94429
FW
3601 if (cpumask_empty(cpumask))
3602 goto use_dfl;
4c16bd32
TH
3603
3604 /* yeap, return possible CPUs in @node that @attrs wants */
3605 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
3606
3607 if (cpumask_empty(cpumask)) {
3608 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3609 "possible intersect\n");
3610 return false;
3611 }
3612
4c16bd32
TH
3613 return !cpumask_equal(cpumask, attrs->cpumask);
3614
3615use_dfl:
3616 cpumask_copy(cpumask, attrs->cpumask);
3617 return false;
3618}
3619
1befcf30
TH
3620/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3621static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3622 int node,
3623 struct pool_workqueue *pwq)
3624{
3625 struct pool_workqueue *old_pwq;
3626
5b95e1af 3627 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3628 lockdep_assert_held(&wq->mutex);
3629
3630 /* link_pwq() can handle duplicate calls */
3631 link_pwq(pwq);
3632
3633 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3634 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3635 return old_pwq;
3636}
3637
2d5f0764
LJ
3638/* context to store the prepared attrs & pwqs before applying */
3639struct apply_wqattrs_ctx {
3640 struct workqueue_struct *wq; /* target workqueue */
3641 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3642 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3643 struct pool_workqueue *dfl_pwq;
3644 struct pool_workqueue *pwq_tbl[];
3645};
3646
3647/* free the resources after success or abort */
3648static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3649{
3650 if (ctx) {
3651 int node;
3652
3653 for_each_node(node)
3654 put_pwq_unlocked(ctx->pwq_tbl[node]);
3655 put_pwq_unlocked(ctx->dfl_pwq);
3656
3657 free_workqueue_attrs(ctx->attrs);
3658
3659 kfree(ctx);
3660 }
3661}
3662
3663/* allocate the attrs and pwqs for later installation */
3664static struct apply_wqattrs_ctx *
3665apply_wqattrs_prepare(struct workqueue_struct *wq,
3666 const struct workqueue_attrs *attrs)
9e8cd2f5 3667{
2d5f0764 3668 struct apply_wqattrs_ctx *ctx;
4c16bd32 3669 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3670 int node;
9e8cd2f5 3671
2d5f0764 3672 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3673
2d5f0764
LJ
3674 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3675 GFP_KERNEL);
8719dcea 3676
13e2e556 3677 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32 3678 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
2d5f0764
LJ
3679 if (!ctx || !new_attrs || !tmp_attrs)
3680 goto out_free;
13e2e556 3681
042f7df1
LJ
3682 /*
3683 * Calculate the attrs of the default pwq.
3684 * If the user configured cpumask doesn't overlap with the
3685 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3686 */
13e2e556 3687 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3688 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3689 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3690 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3691
4c16bd32
TH
3692 /*
3693 * We may create multiple pwqs with differing cpumasks. Make a
3694 * copy of @new_attrs which will be modified and used to obtain
3695 * pools.
3696 */
3697 copy_workqueue_attrs(tmp_attrs, new_attrs);
3698
4c16bd32
TH
3699 /*
3700 * If something goes wrong during CPU up/down, we'll fall back to
3701 * the default pwq covering whole @attrs->cpumask. Always create
3702 * it even if we don't use it immediately.
3703 */
2d5f0764
LJ
3704 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3705 if (!ctx->dfl_pwq)
3706 goto out_free;
4c16bd32
TH
3707
3708 for_each_node(node) {
042f7df1 3709 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3710 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3711 if (!ctx->pwq_tbl[node])
3712 goto out_free;
4c16bd32 3713 } else {
2d5f0764
LJ
3714 ctx->dfl_pwq->refcnt++;
3715 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3716 }
3717 }
3718
042f7df1
LJ
3719 /* save the user configured attrs and sanitize it. */
3720 copy_workqueue_attrs(new_attrs, attrs);
3721 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3722 ctx->attrs = new_attrs;
042f7df1 3723
2d5f0764
LJ
3724 ctx->wq = wq;
3725 free_workqueue_attrs(tmp_attrs);
3726 return ctx;
3727
3728out_free:
3729 free_workqueue_attrs(tmp_attrs);
3730 free_workqueue_attrs(new_attrs);
3731 apply_wqattrs_cleanup(ctx);
3732 return NULL;
3733}
3734
3735/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3736static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3737{
3738 int node;
9e8cd2f5 3739
4c16bd32 3740 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3741 mutex_lock(&ctx->wq->mutex);
a892cacc 3742
2d5f0764 3743 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3744
3745 /* save the previous pwq and install the new one */
f147f29e 3746 for_each_node(node)
2d5f0764
LJ
3747 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3748 ctx->pwq_tbl[node]);
4c16bd32
TH
3749
3750 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3751 link_pwq(ctx->dfl_pwq);
3752 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3753
2d5f0764
LJ
3754 mutex_unlock(&ctx->wq->mutex);
3755}
9e8cd2f5 3756
a0111cf6
LJ
3757static void apply_wqattrs_lock(void)
3758{
3759 /* CPUs should stay stable across pwq creations and installations */
3760 get_online_cpus();
3761 mutex_lock(&wq_pool_mutex);
3762}
3763
3764static void apply_wqattrs_unlock(void)
3765{
3766 mutex_unlock(&wq_pool_mutex);
3767 put_online_cpus();
3768}
3769
3770static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3771 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3772{
3773 struct apply_wqattrs_ctx *ctx;
4c16bd32 3774
2d5f0764
LJ
3775 /* only unbound workqueues can change attributes */
3776 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3777 return -EINVAL;
13e2e556 3778
2d5f0764 3779 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
3780 if (!list_empty(&wq->pwqs)) {
3781 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3782 return -EINVAL;
3783
3784 wq->flags &= ~__WQ_ORDERED;
3785 }
2d5f0764 3786
2d5f0764 3787 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 3788 if (!ctx)
3789 return -ENOMEM;
2d5f0764
LJ
3790
3791 /* the ctx has been prepared successfully, let's commit it */
6201171e 3792 apply_wqattrs_commit(ctx);
2d5f0764
LJ
3793 apply_wqattrs_cleanup(ctx);
3794
6201171e 3795 return 0;
9e8cd2f5
TH
3796}
3797
a0111cf6
LJ
3798/**
3799 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3800 * @wq: the target workqueue
3801 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3802 *
3803 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3804 * machines, this function maps a separate pwq to each NUMA node with
3805 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3806 * NUMA node it was issued on. Older pwqs are released as in-flight work
3807 * items finish. Note that a work item which repeatedly requeues itself
3808 * back-to-back will stay on its current pwq.
3809 *
3810 * Performs GFP_KERNEL allocations.
3811 *
3812 * Return: 0 on success and -errno on failure.
3813 */
3814int apply_workqueue_attrs(struct workqueue_struct *wq,
3815 const struct workqueue_attrs *attrs)
3816{
3817 int ret;
3818
3819 apply_wqattrs_lock();
3820 ret = apply_workqueue_attrs_locked(wq, attrs);
3821 apply_wqattrs_unlock();
3822
3823 return ret;
3824}
3825
4c16bd32
TH
3826/**
3827 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3828 * @wq: the target workqueue
3829 * @cpu: the CPU coming up or going down
3830 * @online: whether @cpu is coming up or going down
3831 *
3832 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3833 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3834 * @wq accordingly.
3835 *
3836 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3837 * falls back to @wq->dfl_pwq which may not be optimal but is always
3838 * correct.
3839 *
3840 * Note that when the last allowed CPU of a NUMA node goes offline for a
3841 * workqueue with a cpumask spanning multiple nodes, the workers which were
3842 * already executing the work items for the workqueue will lose their CPU
3843 * affinity and may execute on any CPU. This is similar to how per-cpu
3844 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3845 * affinity, it's the user's responsibility to flush the work item from
3846 * CPU_DOWN_PREPARE.
3847 */
3848static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3849 bool online)
3850{
3851 int node = cpu_to_node(cpu);
3852 int cpu_off = online ? -1 : cpu;
3853 struct pool_workqueue *old_pwq = NULL, *pwq;
3854 struct workqueue_attrs *target_attrs;
3855 cpumask_t *cpumask;
3856
3857 lockdep_assert_held(&wq_pool_mutex);
3858
f7142ed4
LJ
3859 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3860 wq->unbound_attrs->no_numa)
4c16bd32
TH
3861 return;
3862
3863 /*
3864 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3865 * Let's use a preallocated one. The following buf is protected by
3866 * CPU hotplug exclusion.
3867 */
3868 target_attrs = wq_update_unbound_numa_attrs_buf;
3869 cpumask = target_attrs->cpumask;
3870
4c16bd32
TH
3871 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3872 pwq = unbound_pwq_by_node(wq, node);
3873
3874 /*
3875 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
3876 * different from the default pwq's, we need to compare it to @pwq's
3877 * and create a new one if they don't match. If the target cpumask
3878 * equals the default pwq's, the default pwq should be used.
4c16bd32 3879 */
042f7df1 3880 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 3881 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 3882 return;
4c16bd32 3883 } else {
534a3fbb 3884 goto use_dfl_pwq;
4c16bd32
TH
3885 }
3886
4c16bd32
TH
3887 /* create a new pwq */
3888 pwq = alloc_unbound_pwq(wq, target_attrs);
3889 if (!pwq) {
2d916033
FF
3890 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3891 wq->name);
77f300b1 3892 goto use_dfl_pwq;
4c16bd32
TH
3893 }
3894
f7142ed4 3895 /* Install the new pwq. */
4c16bd32
TH
3896 mutex_lock(&wq->mutex);
3897 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3898 goto out_unlock;
3899
3900use_dfl_pwq:
f7142ed4 3901 mutex_lock(&wq->mutex);
4c16bd32
TH
3902 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3903 get_pwq(wq->dfl_pwq);
3904 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3905 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3906out_unlock:
3907 mutex_unlock(&wq->mutex);
3908 put_pwq_unlocked(old_pwq);
3909}
3910
30cdf249 3911static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3912{
49e3cf44 3913 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 3914 int cpu, ret;
30cdf249
TH
3915
3916 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3917 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3918 if (!wq->cpu_pwqs)
30cdf249
TH
3919 return -ENOMEM;
3920
3921 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3922 struct pool_workqueue *pwq =
3923 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3924 struct worker_pool *cpu_pools =
f02ae73a 3925 per_cpu(cpu_worker_pools, cpu);
f3421797 3926
f147f29e
TH
3927 init_pwq(pwq, wq, &cpu_pools[highpri]);
3928
3929 mutex_lock(&wq->mutex);
1befcf30 3930 link_pwq(pwq);
f147f29e 3931 mutex_unlock(&wq->mutex);
30cdf249 3932 }
9e8cd2f5 3933 return 0;
8a2b7538
TH
3934 } else if (wq->flags & __WQ_ORDERED) {
3935 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3936 /* there should only be single pwq for ordering guarantee */
3937 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3938 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3939 "ordering guarantee broken for workqueue %s\n", wq->name);
3940 return ret;
30cdf249 3941 } else {
9e8cd2f5 3942 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3943 }
0f900049
TH
3944}
3945
f3421797
TH
3946static int wq_clamp_max_active(int max_active, unsigned int flags,
3947 const char *name)
b71ab8c2 3948{
f3421797
TH
3949 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3950
3951 if (max_active < 1 || max_active > lim)
044c782c
VI
3952 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3953 max_active, name, 1, lim);
b71ab8c2 3954
f3421797 3955 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3956}
3957
b196be89 3958struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3959 unsigned int flags,
3960 int max_active,
3961 struct lock_class_key *key,
b196be89 3962 const char *lock_name, ...)
1da177e4 3963{
df2d5ae4 3964 size_t tbl_size = 0;
ecf6881f 3965 va_list args;
1da177e4 3966 struct workqueue_struct *wq;
49e3cf44 3967 struct pool_workqueue *pwq;
b196be89 3968
5c0338c6
TH
3969 /*
3970 * Unbound && max_active == 1 used to imply ordered, which is no
3971 * longer the case on NUMA machines due to per-node pools. While
3972 * alloc_ordered_workqueue() is the right way to create an ordered
3973 * workqueue, keep the previous behavior to avoid subtle breakages
3974 * on NUMA.
3975 */
3976 if ((flags & WQ_UNBOUND) && max_active == 1)
3977 flags |= __WQ_ORDERED;
3978
cee22a15
VK
3979 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3980 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3981 flags |= WQ_UNBOUND;
3982
ecf6881f 3983 /* allocate wq and format name */
df2d5ae4 3984 if (flags & WQ_UNBOUND)
ddcb57e2 3985 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
3986
3987 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 3988 if (!wq)
d2c1d404 3989 return NULL;
b196be89 3990
6029a918
TH
3991 if (flags & WQ_UNBOUND) {
3992 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3993 if (!wq->unbound_attrs)
3994 goto err_free_wq;
3995 }
3996
ecf6881f
TH
3997 va_start(args, lock_name);
3998 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 3999 va_end(args);
1da177e4 4000
d320c038 4001 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4002 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4003
b196be89 4004 /* init wq */
97e37d7b 4005 wq->flags = flags;
a0a1a5fd 4006 wq->saved_max_active = max_active;
3c25a55d 4007 mutex_init(&wq->mutex);
112202d9 4008 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4009 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4010 INIT_LIST_HEAD(&wq->flusher_queue);
4011 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4012 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4013
eb13ba87 4014 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4015 INIT_LIST_HEAD(&wq->list);
3af24433 4016
30cdf249 4017 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4018 goto err_free_wq;
1537663f 4019
493008a8
TH
4020 /*
4021 * Workqueues which may be used during memory reclaim should
4022 * have a rescuer to guarantee forward progress.
4023 */
4024 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4025 struct worker *rescuer;
4026
f7537df5 4027 rescuer = alloc_worker(NUMA_NO_NODE);
e22bee78 4028 if (!rescuer)
d2c1d404 4029 goto err_destroy;
e22bee78 4030
111c225a
TH
4031 rescuer->rescue_wq = wq;
4032 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4033 wq->name);
d2c1d404
TH
4034 if (IS_ERR(rescuer->task)) {
4035 kfree(rescuer);
4036 goto err_destroy;
4037 }
e22bee78 4038
d2c1d404 4039 wq->rescuer = rescuer;
25834c73 4040 kthread_bind_mask(rescuer->task, cpu_possible_mask);
e22bee78 4041 wake_up_process(rescuer->task);
3af24433
ON
4042 }
4043
226223ab
TH
4044 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4045 goto err_destroy;
4046
a0a1a5fd 4047 /*
68e13a67
LJ
4048 * wq_pool_mutex protects global freeze state and workqueues list.
4049 * Grab it, adjust max_active and add the new @wq to workqueues
4050 * list.
a0a1a5fd 4051 */
68e13a67 4052 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4053
a357fc03 4054 mutex_lock(&wq->mutex);
699ce097
TH
4055 for_each_pwq(pwq, wq)
4056 pwq_adjust_max_active(pwq);
a357fc03 4057 mutex_unlock(&wq->mutex);
a0a1a5fd 4058
e2dca7ad 4059 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4060
68e13a67 4061 mutex_unlock(&wq_pool_mutex);
1537663f 4062
3af24433 4063 return wq;
d2c1d404
TH
4064
4065err_free_wq:
6029a918 4066 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4067 kfree(wq);
4068 return NULL;
4069err_destroy:
4070 destroy_workqueue(wq);
4690c4ab 4071 return NULL;
3af24433 4072}
d320c038 4073EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4074
3af24433
ON
4075/**
4076 * destroy_workqueue - safely terminate a workqueue
4077 * @wq: target workqueue
4078 *
4079 * Safely destroy a workqueue. All work currently pending will be done first.
4080 */
4081void destroy_workqueue(struct workqueue_struct *wq)
4082{
49e3cf44 4083 struct pool_workqueue *pwq;
4c16bd32 4084 int node;
3af24433 4085
9c5a2ba7
TH
4086 /* drain it before proceeding with destruction */
4087 drain_workqueue(wq);
c8efcc25 4088
6183c009 4089 /* sanity checks */
b09f4fd3 4090 mutex_lock(&wq->mutex);
49e3cf44 4091 for_each_pwq(pwq, wq) {
6183c009
TH
4092 int i;
4093
76af4d93
TH
4094 for (i = 0; i < WORK_NR_COLORS; i++) {
4095 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4096 mutex_unlock(&wq->mutex);
fa07fb6a 4097 show_workqueue_state();
6183c009 4098 return;
76af4d93
TH
4099 }
4100 }
4101
5c529597 4102 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4103 WARN_ON(pwq->nr_active) ||
76af4d93 4104 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4105 mutex_unlock(&wq->mutex);
fa07fb6a 4106 show_workqueue_state();
6183c009 4107 return;
76af4d93 4108 }
6183c009 4109 }
b09f4fd3 4110 mutex_unlock(&wq->mutex);
6183c009 4111
a0a1a5fd
TH
4112 /*
4113 * wq list is used to freeze wq, remove from list after
4114 * flushing is complete in case freeze races us.
4115 */
68e13a67 4116 mutex_lock(&wq_pool_mutex);
e2dca7ad 4117 list_del_rcu(&wq->list);
68e13a67 4118 mutex_unlock(&wq_pool_mutex);
3af24433 4119
226223ab
TH
4120 workqueue_sysfs_unregister(wq);
4121
e2dca7ad 4122 if (wq->rescuer)
e22bee78 4123 kthread_stop(wq->rescuer->task);
e22bee78 4124
8864b4e5
TH
4125 if (!(wq->flags & WQ_UNBOUND)) {
4126 /*
4127 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4128 * schedule RCU free.
8864b4e5 4129 */
e2dca7ad 4130 call_rcu_sched(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4131 } else {
4132 /*
4133 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4134 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4135 * @wq will be freed when the last pwq is released.
8864b4e5 4136 */
4c16bd32
TH
4137 for_each_node(node) {
4138 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4139 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4140 put_pwq_unlocked(pwq);
4141 }
4142
4143 /*
4144 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4145 * put. Don't access it afterwards.
4146 */
4147 pwq = wq->dfl_pwq;
4148 wq->dfl_pwq = NULL;
dce90d47 4149 put_pwq_unlocked(pwq);
29c91e99 4150 }
3af24433
ON
4151}
4152EXPORT_SYMBOL_GPL(destroy_workqueue);
4153
dcd989cb
TH
4154/**
4155 * workqueue_set_max_active - adjust max_active of a workqueue
4156 * @wq: target workqueue
4157 * @max_active: new max_active value.
4158 *
4159 * Set max_active of @wq to @max_active.
4160 *
4161 * CONTEXT:
4162 * Don't call from IRQ context.
4163 */
4164void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4165{
49e3cf44 4166 struct pool_workqueue *pwq;
dcd989cb 4167
8719dcea 4168 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4169 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4170 return;
4171
f3421797 4172 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4173
a357fc03 4174 mutex_lock(&wq->mutex);
dcd989cb 4175
0a94efb5 4176 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4177 wq->saved_max_active = max_active;
4178
699ce097
TH
4179 for_each_pwq(pwq, wq)
4180 pwq_adjust_max_active(pwq);
93981800 4181
a357fc03 4182 mutex_unlock(&wq->mutex);
15316ba8 4183}
dcd989cb 4184EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4185
e6267616
TH
4186/**
4187 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4188 *
4189 * Determine whether %current is a workqueue rescuer. Can be used from
4190 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4191 *
4192 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4193 */
4194bool current_is_workqueue_rescuer(void)
4195{
4196 struct worker *worker = current_wq_worker();
4197
6a092dfd 4198 return worker && worker->rescue_wq;
e6267616
TH
4199}
4200
eef6a7d5 4201/**
dcd989cb
TH
4202 * workqueue_congested - test whether a workqueue is congested
4203 * @cpu: CPU in question
4204 * @wq: target workqueue
eef6a7d5 4205 *
dcd989cb
TH
4206 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4207 * no synchronization around this function and the test result is
4208 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4209 *
d3251859
TH
4210 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4211 * Note that both per-cpu and unbound workqueues may be associated with
4212 * multiple pool_workqueues which have separate congested states. A
4213 * workqueue being congested on one CPU doesn't mean the workqueue is also
4214 * contested on other CPUs / NUMA nodes.
4215 *
d185af30 4216 * Return:
dcd989cb 4217 * %true if congested, %false otherwise.
eef6a7d5 4218 */
d84ff051 4219bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4220{
7fb98ea7 4221 struct pool_workqueue *pwq;
76af4d93
TH
4222 bool ret;
4223
88109453 4224 rcu_read_lock_sched();
7fb98ea7 4225
d3251859
TH
4226 if (cpu == WORK_CPU_UNBOUND)
4227 cpu = smp_processor_id();
4228
7fb98ea7
TH
4229 if (!(wq->flags & WQ_UNBOUND))
4230 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4231 else
df2d5ae4 4232 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4233
76af4d93 4234 ret = !list_empty(&pwq->delayed_works);
88109453 4235 rcu_read_unlock_sched();
76af4d93
TH
4236
4237 return ret;
1da177e4 4238}
dcd989cb 4239EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4240
dcd989cb
TH
4241/**
4242 * work_busy - test whether a work is currently pending or running
4243 * @work: the work to be tested
4244 *
4245 * Test whether @work is currently pending or running. There is no
4246 * synchronization around this function and the test result is
4247 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4248 *
d185af30 4249 * Return:
dcd989cb
TH
4250 * OR'd bitmask of WORK_BUSY_* bits.
4251 */
4252unsigned int work_busy(struct work_struct *work)
1da177e4 4253{
fa1b54e6 4254 struct worker_pool *pool;
dcd989cb
TH
4255 unsigned long flags;
4256 unsigned int ret = 0;
1da177e4 4257
dcd989cb
TH
4258 if (work_pending(work))
4259 ret |= WORK_BUSY_PENDING;
1da177e4 4260
fa1b54e6
TH
4261 local_irq_save(flags);
4262 pool = get_work_pool(work);
038366c5 4263 if (pool) {
fa1b54e6 4264 spin_lock(&pool->lock);
038366c5
LJ
4265 if (find_worker_executing_work(pool, work))
4266 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4267 spin_unlock(&pool->lock);
038366c5 4268 }
fa1b54e6 4269 local_irq_restore(flags);
1da177e4 4270
dcd989cb 4271 return ret;
1da177e4 4272}
dcd989cb 4273EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4274
3d1cb205
TH
4275/**
4276 * set_worker_desc - set description for the current work item
4277 * @fmt: printf-style format string
4278 * @...: arguments for the format string
4279 *
4280 * This function can be called by a running work function to describe what
4281 * the work item is about. If the worker task gets dumped, this
4282 * information will be printed out together to help debugging. The
4283 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4284 */
4285void set_worker_desc(const char *fmt, ...)
4286{
4287 struct worker *worker = current_wq_worker();
4288 va_list args;
4289
4290 if (worker) {
4291 va_start(args, fmt);
4292 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4293 va_end(args);
4294 worker->desc_valid = true;
4295 }
4296}
4297
4298/**
4299 * print_worker_info - print out worker information and description
4300 * @log_lvl: the log level to use when printing
4301 * @task: target task
4302 *
4303 * If @task is a worker and currently executing a work item, print out the
4304 * name of the workqueue being serviced and worker description set with
4305 * set_worker_desc() by the currently executing work item.
4306 *
4307 * This function can be safely called on any task as long as the
4308 * task_struct itself is accessible. While safe, this function isn't
4309 * synchronized and may print out mixups or garbages of limited length.
4310 */
4311void print_worker_info(const char *log_lvl, struct task_struct *task)
4312{
4313 work_func_t *fn = NULL;
4314 char name[WQ_NAME_LEN] = { };
4315 char desc[WORKER_DESC_LEN] = { };
4316 struct pool_workqueue *pwq = NULL;
4317 struct workqueue_struct *wq = NULL;
4318 bool desc_valid = false;
4319 struct worker *worker;
4320
4321 if (!(task->flags & PF_WQ_WORKER))
4322 return;
4323
4324 /*
4325 * This function is called without any synchronization and @task
4326 * could be in any state. Be careful with dereferences.
4327 */
e700591a 4328 worker = kthread_probe_data(task);
3d1cb205
TH
4329
4330 /*
4331 * Carefully copy the associated workqueue's workfn and name. Keep
4332 * the original last '\0' in case the original contains garbage.
4333 */
4334 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4335 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4336 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4337 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4338
4339 /* copy worker description */
4340 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4341 if (desc_valid)
4342 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4343
4344 if (fn || name[0] || desc[0]) {
4345 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4346 if (desc[0])
4347 pr_cont(" (%s)", desc);
4348 pr_cont("\n");
4349 }
4350}
4351
3494fc30
TH
4352static void pr_cont_pool_info(struct worker_pool *pool)
4353{
4354 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4355 if (pool->node != NUMA_NO_NODE)
4356 pr_cont(" node=%d", pool->node);
4357 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4358}
4359
4360static void pr_cont_work(bool comma, struct work_struct *work)
4361{
4362 if (work->func == wq_barrier_func) {
4363 struct wq_barrier *barr;
4364
4365 barr = container_of(work, struct wq_barrier, work);
4366
4367 pr_cont("%s BAR(%d)", comma ? "," : "",
4368 task_pid_nr(barr->task));
4369 } else {
4370 pr_cont("%s %pf", comma ? "," : "", work->func);
4371 }
4372}
4373
4374static void show_pwq(struct pool_workqueue *pwq)
4375{
4376 struct worker_pool *pool = pwq->pool;
4377 struct work_struct *work;
4378 struct worker *worker;
4379 bool has_in_flight = false, has_pending = false;
4380 int bkt;
4381
4382 pr_info(" pwq %d:", pool->id);
4383 pr_cont_pool_info(pool);
4384
4385 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4386 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4387
4388 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4389 if (worker->current_pwq == pwq) {
4390 has_in_flight = true;
4391 break;
4392 }
4393 }
4394 if (has_in_flight) {
4395 bool comma = false;
4396
4397 pr_info(" in-flight:");
4398 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4399 if (worker->current_pwq != pwq)
4400 continue;
4401
4402 pr_cont("%s %d%s:%pf", comma ? "," : "",
4403 task_pid_nr(worker->task),
4404 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4405 worker->current_func);
4406 list_for_each_entry(work, &worker->scheduled, entry)
4407 pr_cont_work(false, work);
4408 comma = true;
4409 }
4410 pr_cont("\n");
4411 }
4412
4413 list_for_each_entry(work, &pool->worklist, entry) {
4414 if (get_work_pwq(work) == pwq) {
4415 has_pending = true;
4416 break;
4417 }
4418 }
4419 if (has_pending) {
4420 bool comma = false;
4421
4422 pr_info(" pending:");
4423 list_for_each_entry(work, &pool->worklist, entry) {
4424 if (get_work_pwq(work) != pwq)
4425 continue;
4426
4427 pr_cont_work(comma, work);
4428 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4429 }
4430 pr_cont("\n");
4431 }
4432
4433 if (!list_empty(&pwq->delayed_works)) {
4434 bool comma = false;
4435
4436 pr_info(" delayed:");
4437 list_for_each_entry(work, &pwq->delayed_works, entry) {
4438 pr_cont_work(comma, work);
4439 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4440 }
4441 pr_cont("\n");
4442 }
4443}
4444
4445/**
4446 * show_workqueue_state - dump workqueue state
4447 *
7b776af6
RL
4448 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4449 * all busy workqueues and pools.
3494fc30
TH
4450 */
4451void show_workqueue_state(void)
4452{
4453 struct workqueue_struct *wq;
4454 struct worker_pool *pool;
4455 unsigned long flags;
4456 int pi;
4457
4458 rcu_read_lock_sched();
4459
4460 pr_info("Showing busy workqueues and worker pools:\n");
4461
4462 list_for_each_entry_rcu(wq, &workqueues, list) {
4463 struct pool_workqueue *pwq;
4464 bool idle = true;
4465
4466 for_each_pwq(pwq, wq) {
4467 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4468 idle = false;
4469 break;
4470 }
4471 }
4472 if (idle)
4473 continue;
4474
4475 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4476
4477 for_each_pwq(pwq, wq) {
4478 spin_lock_irqsave(&pwq->pool->lock, flags);
4479 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4480 show_pwq(pwq);
4481 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4482 }
4483 }
4484
4485 for_each_pool(pool, pi) {
4486 struct worker *worker;
4487 bool first = true;
4488
4489 spin_lock_irqsave(&pool->lock, flags);
4490 if (pool->nr_workers == pool->nr_idle)
4491 goto next_pool;
4492
4493 pr_info("pool %d:", pool->id);
4494 pr_cont_pool_info(pool);
82607adc
TH
4495 pr_cont(" hung=%us workers=%d",
4496 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4497 pool->nr_workers);
3494fc30
TH
4498 if (pool->manager)
4499 pr_cont(" manager: %d",
4500 task_pid_nr(pool->manager->task));
4501 list_for_each_entry(worker, &pool->idle_list, entry) {
4502 pr_cont(" %s%d", first ? "idle: " : "",
4503 task_pid_nr(worker->task));
4504 first = false;
4505 }
4506 pr_cont("\n");
4507 next_pool:
4508 spin_unlock_irqrestore(&pool->lock, flags);
4509 }
4510
4511 rcu_read_unlock_sched();
4512}
4513
db7bccf4
TH
4514/*
4515 * CPU hotplug.
4516 *
e22bee78 4517 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4518 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4519 * pool which make migrating pending and scheduled works very
e22bee78 4520 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4521 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4522 * blocked draining impractical.
4523 *
24647570 4524 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4525 * running as an unbound one and allowing it to be reattached later if the
4526 * cpu comes back online.
db7bccf4 4527 */
1da177e4 4528
706026c2 4529static void wq_unbind_fn(struct work_struct *work)
3af24433 4530{
38db41d9 4531 int cpu = smp_processor_id();
4ce62e9e 4532 struct worker_pool *pool;
db7bccf4 4533 struct worker *worker;
3af24433 4534
f02ae73a 4535 for_each_cpu_worker_pool(pool, cpu) {
92f9c5c4 4536 mutex_lock(&pool->attach_mutex);
94cf58bb 4537 spin_lock_irq(&pool->lock);
3af24433 4538
94cf58bb 4539 /*
92f9c5c4 4540 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4541 * unbound and set DISASSOCIATED. Before this, all workers
4542 * except for the ones which are still executing works from
4543 * before the last CPU down must be on the cpu. After
4544 * this, they may become diasporas.
4545 */
da028469 4546 for_each_pool_worker(worker, pool)
c9e7cf27 4547 worker->flags |= WORKER_UNBOUND;
06ba38a9 4548
24647570 4549 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4550
94cf58bb 4551 spin_unlock_irq(&pool->lock);
92f9c5c4 4552 mutex_unlock(&pool->attach_mutex);
628c78e7 4553
eb283428
LJ
4554 /*
4555 * Call schedule() so that we cross rq->lock and thus can
4556 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4557 * This is necessary as scheduler callbacks may be invoked
4558 * from other cpus.
4559 */
4560 schedule();
06ba38a9 4561
eb283428
LJ
4562 /*
4563 * Sched callbacks are disabled now. Zap nr_running.
4564 * After this, nr_running stays zero and need_more_worker()
4565 * and keep_working() are always true as long as the
4566 * worklist is not empty. This pool now behaves as an
4567 * unbound (in terms of concurrency management) pool which
4568 * are served by workers tied to the pool.
4569 */
e19e397a 4570 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4571
4572 /*
4573 * With concurrency management just turned off, a busy
4574 * worker blocking could lead to lengthy stalls. Kick off
4575 * unbound chain execution of currently pending work items.
4576 */
4577 spin_lock_irq(&pool->lock);
4578 wake_up_worker(pool);
4579 spin_unlock_irq(&pool->lock);
4580 }
3af24433 4581}
3af24433 4582
bd7c089e
TH
4583/**
4584 * rebind_workers - rebind all workers of a pool to the associated CPU
4585 * @pool: pool of interest
4586 *
a9ab775b 4587 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4588 */
4589static void rebind_workers(struct worker_pool *pool)
4590{
a9ab775b 4591 struct worker *worker;
bd7c089e 4592
92f9c5c4 4593 lockdep_assert_held(&pool->attach_mutex);
bd7c089e 4594
a9ab775b
TH
4595 /*
4596 * Restore CPU affinity of all workers. As all idle workers should
4597 * be on the run-queue of the associated CPU before any local
402dd89d 4598 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4599 * of all workers first and then clear UNBOUND. As we're called
4600 * from CPU_ONLINE, the following shouldn't fail.
4601 */
da028469 4602 for_each_pool_worker(worker, pool)
a9ab775b
TH
4603 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4604 pool->attrs->cpumask) < 0);
bd7c089e 4605
a9ab775b 4606 spin_lock_irq(&pool->lock);
f7c17d26
WL
4607
4608 /*
4609 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4610 * w/o preceding DOWN_PREPARE. Work around it. CPU hotplug is
4611 * being reworked and this can go away in time.
4612 */
4613 if (!(pool->flags & POOL_DISASSOCIATED)) {
4614 spin_unlock_irq(&pool->lock);
4615 return;
4616 }
4617
3de5e884 4618 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4619
da028469 4620 for_each_pool_worker(worker, pool) {
a9ab775b 4621 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4622
4623 /*
a9ab775b
TH
4624 * A bound idle worker should actually be on the runqueue
4625 * of the associated CPU for local wake-ups targeting it to
4626 * work. Kick all idle workers so that they migrate to the
4627 * associated CPU. Doing this in the same loop as
4628 * replacing UNBOUND with REBOUND is safe as no worker will
4629 * be bound before @pool->lock is released.
bd7c089e 4630 */
a9ab775b
TH
4631 if (worker_flags & WORKER_IDLE)
4632 wake_up_process(worker->task);
bd7c089e 4633
a9ab775b
TH
4634 /*
4635 * We want to clear UNBOUND but can't directly call
4636 * worker_clr_flags() or adjust nr_running. Atomically
4637 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4638 * @worker will clear REBOUND using worker_clr_flags() when
4639 * it initiates the next execution cycle thus restoring
4640 * concurrency management. Note that when or whether
4641 * @worker clears REBOUND doesn't affect correctness.
4642 *
4643 * ACCESS_ONCE() is necessary because @worker->flags may be
4644 * tested without holding any lock in
4645 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4646 * fail incorrectly leading to premature concurrency
4647 * management operations.
4648 */
4649 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4650 worker_flags |= WORKER_REBOUND;
4651 worker_flags &= ~WORKER_UNBOUND;
4652 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4653 }
a9ab775b
TH
4654
4655 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4656}
4657
7dbc725e
TH
4658/**
4659 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4660 * @pool: unbound pool of interest
4661 * @cpu: the CPU which is coming up
4662 *
4663 * An unbound pool may end up with a cpumask which doesn't have any online
4664 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4665 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4666 * online CPU before, cpus_allowed of all its workers should be restored.
4667 */
4668static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4669{
4670 static cpumask_t cpumask;
4671 struct worker *worker;
7dbc725e 4672
92f9c5c4 4673 lockdep_assert_held(&pool->attach_mutex);
7dbc725e
TH
4674
4675 /* is @cpu allowed for @pool? */
4676 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4677 return;
4678
7dbc725e 4679 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
4680
4681 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4682 for_each_pool_worker(worker, pool)
d945b5e9 4683 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
4684}
4685
7ee681b2
TG
4686int workqueue_prepare_cpu(unsigned int cpu)
4687{
4688 struct worker_pool *pool;
4689
4690 for_each_cpu_worker_pool(pool, cpu) {
4691 if (pool->nr_workers)
4692 continue;
4693 if (!create_worker(pool))
4694 return -ENOMEM;
4695 }
4696 return 0;
4697}
4698
4699int workqueue_online_cpu(unsigned int cpu)
3af24433 4700{
4ce62e9e 4701 struct worker_pool *pool;
4c16bd32 4702 struct workqueue_struct *wq;
7dbc725e 4703 int pi;
3ce63377 4704
7ee681b2 4705 mutex_lock(&wq_pool_mutex);
7dbc725e 4706
7ee681b2
TG
4707 for_each_pool(pool, pi) {
4708 mutex_lock(&pool->attach_mutex);
94cf58bb 4709
7ee681b2
TG
4710 if (pool->cpu == cpu)
4711 rebind_workers(pool);
4712 else if (pool->cpu < 0)
4713 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 4714
7ee681b2
TG
4715 mutex_unlock(&pool->attach_mutex);
4716 }
6ba94429 4717
7ee681b2
TG
4718 /* update NUMA affinity of unbound workqueues */
4719 list_for_each_entry(wq, &workqueues, list)
4720 wq_update_unbound_numa(wq, cpu, true);
6ba94429 4721
7ee681b2
TG
4722 mutex_unlock(&wq_pool_mutex);
4723 return 0;
6ba94429
FW
4724}
4725
7ee681b2 4726int workqueue_offline_cpu(unsigned int cpu)
6ba94429 4727{
6ba94429
FW
4728 struct work_struct unbind_work;
4729 struct workqueue_struct *wq;
4730
7ee681b2
TG
4731 /* unbinding per-cpu workers should happen on the local CPU */
4732 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4733 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4734
4735 /* update NUMA affinity of unbound workqueues */
4736 mutex_lock(&wq_pool_mutex);
4737 list_for_each_entry(wq, &workqueues, list)
4738 wq_update_unbound_numa(wq, cpu, false);
4739 mutex_unlock(&wq_pool_mutex);
4740
4741 /* wait for per-cpu unbinding to finish */
4742 flush_work(&unbind_work);
4743 destroy_work_on_stack(&unbind_work);
4744 return 0;
6ba94429
FW
4745}
4746
4747#ifdef CONFIG_SMP
4748
4749struct work_for_cpu {
4750 struct work_struct work;
4751 long (*fn)(void *);
4752 void *arg;
4753 long ret;
4754};
4755
4756static void work_for_cpu_fn(struct work_struct *work)
4757{
4758 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4759
4760 wfc->ret = wfc->fn(wfc->arg);
4761}
4762
4763/**
22aceb31 4764 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
4765 * @cpu: the cpu to run on
4766 * @fn: the function to run
4767 * @arg: the function arg
4768 *
4769 * It is up to the caller to ensure that the cpu doesn't go offline.
4770 * The caller must not hold any locks which would prevent @fn from completing.
4771 *
4772 * Return: The value @fn returns.
4773 */
4774long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4775{
4776 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4777
4778 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4779 schedule_work_on(cpu, &wfc.work);
4780 flush_work(&wfc.work);
4781 destroy_work_on_stack(&wfc.work);
4782 return wfc.ret;
4783}
4784EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
4785
4786/**
4787 * work_on_cpu_safe - run a function in thread context on a particular cpu
4788 * @cpu: the cpu to run on
4789 * @fn: the function to run
4790 * @arg: the function argument
4791 *
4792 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4793 * any locks which would prevent @fn from completing.
4794 *
4795 * Return: The value @fn returns.
4796 */
4797long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4798{
4799 long ret = -ENODEV;
4800
4801 get_online_cpus();
4802 if (cpu_online(cpu))
4803 ret = work_on_cpu(cpu, fn, arg);
4804 put_online_cpus();
4805 return ret;
4806}
4807EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
4808#endif /* CONFIG_SMP */
4809
4810#ifdef CONFIG_FREEZER
4811
4812/**
4813 * freeze_workqueues_begin - begin freezing workqueues
4814 *
4815 * Start freezing workqueues. After this function returns, all freezable
4816 * workqueues will queue new works to their delayed_works list instead of
4817 * pool->worklist.
4818 *
4819 * CONTEXT:
4820 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4821 */
4822void freeze_workqueues_begin(void)
4823{
4824 struct workqueue_struct *wq;
4825 struct pool_workqueue *pwq;
4826
4827 mutex_lock(&wq_pool_mutex);
4828
4829 WARN_ON_ONCE(workqueue_freezing);
4830 workqueue_freezing = true;
4831
4832 list_for_each_entry(wq, &workqueues, list) {
4833 mutex_lock(&wq->mutex);
4834 for_each_pwq(pwq, wq)
4835 pwq_adjust_max_active(pwq);
4836 mutex_unlock(&wq->mutex);
4837 }
4838
4839 mutex_unlock(&wq_pool_mutex);
4840}
4841
4842/**
4843 * freeze_workqueues_busy - are freezable workqueues still busy?
4844 *
4845 * Check whether freezing is complete. This function must be called
4846 * between freeze_workqueues_begin() and thaw_workqueues().
4847 *
4848 * CONTEXT:
4849 * Grabs and releases wq_pool_mutex.
4850 *
4851 * Return:
4852 * %true if some freezable workqueues are still busy. %false if freezing
4853 * is complete.
4854 */
4855bool freeze_workqueues_busy(void)
4856{
4857 bool busy = false;
4858 struct workqueue_struct *wq;
4859 struct pool_workqueue *pwq;
4860
4861 mutex_lock(&wq_pool_mutex);
4862
4863 WARN_ON_ONCE(!workqueue_freezing);
4864
4865 list_for_each_entry(wq, &workqueues, list) {
4866 if (!(wq->flags & WQ_FREEZABLE))
4867 continue;
4868 /*
4869 * nr_active is monotonically decreasing. It's safe
4870 * to peek without lock.
4871 */
4872 rcu_read_lock_sched();
4873 for_each_pwq(pwq, wq) {
4874 WARN_ON_ONCE(pwq->nr_active < 0);
4875 if (pwq->nr_active) {
4876 busy = true;
4877 rcu_read_unlock_sched();
4878 goto out_unlock;
4879 }
4880 }
4881 rcu_read_unlock_sched();
4882 }
4883out_unlock:
4884 mutex_unlock(&wq_pool_mutex);
4885 return busy;
4886}
4887
4888/**
4889 * thaw_workqueues - thaw workqueues
4890 *
4891 * Thaw workqueues. Normal queueing is restored and all collected
4892 * frozen works are transferred to their respective pool worklists.
4893 *
4894 * CONTEXT:
4895 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4896 */
4897void thaw_workqueues(void)
4898{
4899 struct workqueue_struct *wq;
4900 struct pool_workqueue *pwq;
4901
4902 mutex_lock(&wq_pool_mutex);
4903
4904 if (!workqueue_freezing)
4905 goto out_unlock;
4906
4907 workqueue_freezing = false;
4908
4909 /* restore max_active and repopulate worklist */
4910 list_for_each_entry(wq, &workqueues, list) {
4911 mutex_lock(&wq->mutex);
4912 for_each_pwq(pwq, wq)
4913 pwq_adjust_max_active(pwq);
4914 mutex_unlock(&wq->mutex);
4915 }
4916
4917out_unlock:
4918 mutex_unlock(&wq_pool_mutex);
4919}
4920#endif /* CONFIG_FREEZER */
4921
042f7df1
LJ
4922static int workqueue_apply_unbound_cpumask(void)
4923{
4924 LIST_HEAD(ctxs);
4925 int ret = 0;
4926 struct workqueue_struct *wq;
4927 struct apply_wqattrs_ctx *ctx, *n;
4928
4929 lockdep_assert_held(&wq_pool_mutex);
4930
4931 list_for_each_entry(wq, &workqueues, list) {
4932 if (!(wq->flags & WQ_UNBOUND))
4933 continue;
4934 /* creating multiple pwqs breaks ordering guarantee */
4935 if (wq->flags & __WQ_ORDERED)
4936 continue;
4937
4938 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4939 if (!ctx) {
4940 ret = -ENOMEM;
4941 break;
4942 }
4943
4944 list_add_tail(&ctx->list, &ctxs);
4945 }
4946
4947 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4948 if (!ret)
4949 apply_wqattrs_commit(ctx);
4950 apply_wqattrs_cleanup(ctx);
4951 }
4952
4953 return ret;
4954}
4955
4956/**
4957 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4958 * @cpumask: the cpumask to set
4959 *
4960 * The low-level workqueues cpumask is a global cpumask that limits
4961 * the affinity of all unbound workqueues. This function check the @cpumask
4962 * and apply it to all unbound workqueues and updates all pwqs of them.
4963 *
4964 * Retun: 0 - Success
4965 * -EINVAL - Invalid @cpumask
4966 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4967 */
4968int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4969{
4970 int ret = -EINVAL;
4971 cpumask_var_t saved_cpumask;
4972
4973 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4974 return -ENOMEM;
4975
042f7df1
LJ
4976 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4977 if (!cpumask_empty(cpumask)) {
a0111cf6 4978 apply_wqattrs_lock();
042f7df1
LJ
4979
4980 /* save the old wq_unbound_cpumask. */
4981 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4982
4983 /* update wq_unbound_cpumask at first and apply it to wqs. */
4984 cpumask_copy(wq_unbound_cpumask, cpumask);
4985 ret = workqueue_apply_unbound_cpumask();
4986
4987 /* restore the wq_unbound_cpumask when failed. */
4988 if (ret < 0)
4989 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4990
a0111cf6 4991 apply_wqattrs_unlock();
042f7df1 4992 }
042f7df1
LJ
4993
4994 free_cpumask_var(saved_cpumask);
4995 return ret;
4996}
4997
6ba94429
FW
4998#ifdef CONFIG_SYSFS
4999/*
5000 * Workqueues with WQ_SYSFS flag set is visible to userland via
5001 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5002 * following attributes.
5003 *
5004 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5005 * max_active RW int : maximum number of in-flight work items
5006 *
5007 * Unbound workqueues have the following extra attributes.
5008 *
5009 * id RO int : the associated pool ID
5010 * nice RW int : nice value of the workers
5011 * cpumask RW mask : bitmask of allowed CPUs for the workers
5012 */
5013struct wq_device {
5014 struct workqueue_struct *wq;
5015 struct device dev;
5016};
5017
5018static struct workqueue_struct *dev_to_wq(struct device *dev)
5019{
5020 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5021
5022 return wq_dev->wq;
5023}
5024
5025static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5026 char *buf)
5027{
5028 struct workqueue_struct *wq = dev_to_wq(dev);
5029
5030 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5031}
5032static DEVICE_ATTR_RO(per_cpu);
5033
5034static ssize_t max_active_show(struct device *dev,
5035 struct device_attribute *attr, char *buf)
5036{
5037 struct workqueue_struct *wq = dev_to_wq(dev);
5038
5039 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5040}
5041
5042static ssize_t max_active_store(struct device *dev,
5043 struct device_attribute *attr, const char *buf,
5044 size_t count)
5045{
5046 struct workqueue_struct *wq = dev_to_wq(dev);
5047 int val;
5048
5049 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5050 return -EINVAL;
5051
5052 workqueue_set_max_active(wq, val);
5053 return count;
5054}
5055static DEVICE_ATTR_RW(max_active);
5056
5057static struct attribute *wq_sysfs_attrs[] = {
5058 &dev_attr_per_cpu.attr,
5059 &dev_attr_max_active.attr,
5060 NULL,
5061};
5062ATTRIBUTE_GROUPS(wq_sysfs);
5063
5064static ssize_t wq_pool_ids_show(struct device *dev,
5065 struct device_attribute *attr, char *buf)
5066{
5067 struct workqueue_struct *wq = dev_to_wq(dev);
5068 const char *delim = "";
5069 int node, written = 0;
5070
5071 rcu_read_lock_sched();
5072 for_each_node(node) {
5073 written += scnprintf(buf + written, PAGE_SIZE - written,
5074 "%s%d:%d", delim, node,
5075 unbound_pwq_by_node(wq, node)->pool->id);
5076 delim = " ";
5077 }
5078 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5079 rcu_read_unlock_sched();
5080
5081 return written;
5082}
5083
5084static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5085 char *buf)
5086{
5087 struct workqueue_struct *wq = dev_to_wq(dev);
5088 int written;
5089
5090 mutex_lock(&wq->mutex);
5091 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5092 mutex_unlock(&wq->mutex);
5093
5094 return written;
5095}
5096
5097/* prepare workqueue_attrs for sysfs store operations */
5098static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5099{
5100 struct workqueue_attrs *attrs;
5101
899a94fe
LJ
5102 lockdep_assert_held(&wq_pool_mutex);
5103
6ba94429
FW
5104 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5105 if (!attrs)
5106 return NULL;
5107
6ba94429 5108 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5109 return attrs;
5110}
5111
5112static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5113 const char *buf, size_t count)
5114{
5115 struct workqueue_struct *wq = dev_to_wq(dev);
5116 struct workqueue_attrs *attrs;
d4d3e257
LJ
5117 int ret = -ENOMEM;
5118
5119 apply_wqattrs_lock();
6ba94429
FW
5120
5121 attrs = wq_sysfs_prep_attrs(wq);
5122 if (!attrs)
d4d3e257 5123 goto out_unlock;
6ba94429
FW
5124
5125 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5126 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5127 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5128 else
5129 ret = -EINVAL;
5130
d4d3e257
LJ
5131out_unlock:
5132 apply_wqattrs_unlock();
6ba94429
FW
5133 free_workqueue_attrs(attrs);
5134 return ret ?: count;
5135}
5136
5137static ssize_t wq_cpumask_show(struct device *dev,
5138 struct device_attribute *attr, char *buf)
5139{
5140 struct workqueue_struct *wq = dev_to_wq(dev);
5141 int written;
5142
5143 mutex_lock(&wq->mutex);
5144 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5145 cpumask_pr_args(wq->unbound_attrs->cpumask));
5146 mutex_unlock(&wq->mutex);
5147 return written;
5148}
5149
5150static ssize_t wq_cpumask_store(struct device *dev,
5151 struct device_attribute *attr,
5152 const char *buf, size_t count)
5153{
5154 struct workqueue_struct *wq = dev_to_wq(dev);
5155 struct workqueue_attrs *attrs;
d4d3e257
LJ
5156 int ret = -ENOMEM;
5157
5158 apply_wqattrs_lock();
6ba94429
FW
5159
5160 attrs = wq_sysfs_prep_attrs(wq);
5161 if (!attrs)
d4d3e257 5162 goto out_unlock;
6ba94429
FW
5163
5164 ret = cpumask_parse(buf, attrs->cpumask);
5165 if (!ret)
d4d3e257 5166 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5167
d4d3e257
LJ
5168out_unlock:
5169 apply_wqattrs_unlock();
6ba94429
FW
5170 free_workqueue_attrs(attrs);
5171 return ret ?: count;
5172}
5173
5174static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5175 char *buf)
5176{
5177 struct workqueue_struct *wq = dev_to_wq(dev);
5178 int written;
7dbc725e 5179
6ba94429
FW
5180 mutex_lock(&wq->mutex);
5181 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5182 !wq->unbound_attrs->no_numa);
5183 mutex_unlock(&wq->mutex);
4c16bd32 5184
6ba94429 5185 return written;
65758202
TH
5186}
5187
6ba94429
FW
5188static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5189 const char *buf, size_t count)
65758202 5190{
6ba94429
FW
5191 struct workqueue_struct *wq = dev_to_wq(dev);
5192 struct workqueue_attrs *attrs;
d4d3e257
LJ
5193 int v, ret = -ENOMEM;
5194
5195 apply_wqattrs_lock();
4c16bd32 5196
6ba94429
FW
5197 attrs = wq_sysfs_prep_attrs(wq);
5198 if (!attrs)
d4d3e257 5199 goto out_unlock;
4c16bd32 5200
6ba94429
FW
5201 ret = -EINVAL;
5202 if (sscanf(buf, "%d", &v) == 1) {
5203 attrs->no_numa = !v;
d4d3e257 5204 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5205 }
6ba94429 5206
d4d3e257
LJ
5207out_unlock:
5208 apply_wqattrs_unlock();
6ba94429
FW
5209 free_workqueue_attrs(attrs);
5210 return ret ?: count;
65758202
TH
5211}
5212
6ba94429
FW
5213static struct device_attribute wq_sysfs_unbound_attrs[] = {
5214 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5215 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5216 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5217 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5218 __ATTR_NULL,
5219};
8ccad40d 5220
6ba94429
FW
5221static struct bus_type wq_subsys = {
5222 .name = "workqueue",
5223 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5224};
5225
b05a7928
FW
5226static ssize_t wq_unbound_cpumask_show(struct device *dev,
5227 struct device_attribute *attr, char *buf)
5228{
5229 int written;
5230
042f7df1 5231 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5232 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5233 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5234 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5235
5236 return written;
5237}
5238
042f7df1
LJ
5239static ssize_t wq_unbound_cpumask_store(struct device *dev,
5240 struct device_attribute *attr, const char *buf, size_t count)
5241{
5242 cpumask_var_t cpumask;
5243 int ret;
5244
5245 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5246 return -ENOMEM;
5247
5248 ret = cpumask_parse(buf, cpumask);
5249 if (!ret)
5250 ret = workqueue_set_unbound_cpumask(cpumask);
5251
5252 free_cpumask_var(cpumask);
5253 return ret ? ret : count;
5254}
5255
b05a7928 5256static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5257 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5258 wq_unbound_cpumask_store);
b05a7928 5259
6ba94429 5260static int __init wq_sysfs_init(void)
2d3854a3 5261{
b05a7928
FW
5262 int err;
5263
5264 err = subsys_virtual_register(&wq_subsys, NULL);
5265 if (err)
5266 return err;
5267
5268 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5269}
6ba94429 5270core_initcall(wq_sysfs_init);
2d3854a3 5271
6ba94429 5272static void wq_device_release(struct device *dev)
2d3854a3 5273{
6ba94429 5274 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5275
6ba94429 5276 kfree(wq_dev);
2d3854a3 5277}
a0a1a5fd
TH
5278
5279/**
6ba94429
FW
5280 * workqueue_sysfs_register - make a workqueue visible in sysfs
5281 * @wq: the workqueue to register
a0a1a5fd 5282 *
6ba94429
FW
5283 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5284 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5285 * which is the preferred method.
a0a1a5fd 5286 *
6ba94429
FW
5287 * Workqueue user should use this function directly iff it wants to apply
5288 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5289 * apply_workqueue_attrs() may race against userland updating the
5290 * attributes.
5291 *
5292 * Return: 0 on success, -errno on failure.
a0a1a5fd 5293 */
6ba94429 5294int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5295{
6ba94429
FW
5296 struct wq_device *wq_dev;
5297 int ret;
a0a1a5fd 5298
6ba94429 5299 /*
402dd89d 5300 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5301 * attributes breaks ordering guarantee. Disallow exposing ordered
5302 * workqueues.
5303 */
0a94efb5 5304 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5305 return -EINVAL;
a0a1a5fd 5306
6ba94429
FW
5307 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5308 if (!wq_dev)
5309 return -ENOMEM;
5bcab335 5310
6ba94429
FW
5311 wq_dev->wq = wq;
5312 wq_dev->dev.bus = &wq_subsys;
6ba94429 5313 wq_dev->dev.release = wq_device_release;
23217b44 5314 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5315
6ba94429
FW
5316 /*
5317 * unbound_attrs are created separately. Suppress uevent until
5318 * everything is ready.
5319 */
5320 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5321
6ba94429
FW
5322 ret = device_register(&wq_dev->dev);
5323 if (ret) {
5324 kfree(wq_dev);
5325 wq->wq_dev = NULL;
5326 return ret;
5327 }
a0a1a5fd 5328
6ba94429
FW
5329 if (wq->flags & WQ_UNBOUND) {
5330 struct device_attribute *attr;
a0a1a5fd 5331
6ba94429
FW
5332 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5333 ret = device_create_file(&wq_dev->dev, attr);
5334 if (ret) {
5335 device_unregister(&wq_dev->dev);
5336 wq->wq_dev = NULL;
5337 return ret;
a0a1a5fd
TH
5338 }
5339 }
5340 }
6ba94429
FW
5341
5342 dev_set_uevent_suppress(&wq_dev->dev, false);
5343 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5344 return 0;
a0a1a5fd
TH
5345}
5346
5347/**
6ba94429
FW
5348 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5349 * @wq: the workqueue to unregister
a0a1a5fd 5350 *
6ba94429 5351 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5352 */
6ba94429 5353static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5354{
6ba94429 5355 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5356
6ba94429
FW
5357 if (!wq->wq_dev)
5358 return;
a0a1a5fd 5359
6ba94429
FW
5360 wq->wq_dev = NULL;
5361 device_unregister(&wq_dev->dev);
a0a1a5fd 5362}
6ba94429
FW
5363#else /* CONFIG_SYSFS */
5364static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5365#endif /* CONFIG_SYSFS */
a0a1a5fd 5366
82607adc
TH
5367/*
5368 * Workqueue watchdog.
5369 *
5370 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5371 * flush dependency, a concurrency managed work item which stays RUNNING
5372 * indefinitely. Workqueue stalls can be very difficult to debug as the
5373 * usual warning mechanisms don't trigger and internal workqueue state is
5374 * largely opaque.
5375 *
5376 * Workqueue watchdog monitors all worker pools periodically and dumps
5377 * state if some pools failed to make forward progress for a while where
5378 * forward progress is defined as the first item on ->worklist changing.
5379 *
5380 * This mechanism is controlled through the kernel parameter
5381 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5382 * corresponding sysfs parameter file.
5383 */
5384#ifdef CONFIG_WQ_WATCHDOG
5385
5386static void wq_watchdog_timer_fn(unsigned long data);
5387
5388static unsigned long wq_watchdog_thresh = 30;
5389static struct timer_list wq_watchdog_timer =
5390 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5391
5392static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5393static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5394
5395static void wq_watchdog_reset_touched(void)
5396{
5397 int cpu;
5398
5399 wq_watchdog_touched = jiffies;
5400 for_each_possible_cpu(cpu)
5401 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5402}
5403
5404static void wq_watchdog_timer_fn(unsigned long data)
5405{
5406 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5407 bool lockup_detected = false;
5408 struct worker_pool *pool;
5409 int pi;
5410
5411 if (!thresh)
5412 return;
5413
5414 rcu_read_lock();
5415
5416 for_each_pool(pool, pi) {
5417 unsigned long pool_ts, touched, ts;
5418
5419 if (list_empty(&pool->worklist))
5420 continue;
5421
5422 /* get the latest of pool and touched timestamps */
5423 pool_ts = READ_ONCE(pool->watchdog_ts);
5424 touched = READ_ONCE(wq_watchdog_touched);
5425
5426 if (time_after(pool_ts, touched))
5427 ts = pool_ts;
5428 else
5429 ts = touched;
5430
5431 if (pool->cpu >= 0) {
5432 unsigned long cpu_touched =
5433 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5434 pool->cpu));
5435 if (time_after(cpu_touched, ts))
5436 ts = cpu_touched;
5437 }
5438
5439 /* did we stall? */
5440 if (time_after(jiffies, ts + thresh)) {
5441 lockup_detected = true;
5442 pr_emerg("BUG: workqueue lockup - pool");
5443 pr_cont_pool_info(pool);
5444 pr_cont(" stuck for %us!\n",
5445 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5446 }
5447 }
5448
5449 rcu_read_unlock();
5450
5451 if (lockup_detected)
5452 show_workqueue_state();
5453
5454 wq_watchdog_reset_touched();
5455 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5456}
5457
5458void wq_watchdog_touch(int cpu)
5459{
5460 if (cpu >= 0)
5461 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5462 else
5463 wq_watchdog_touched = jiffies;
5464}
5465
5466static void wq_watchdog_set_thresh(unsigned long thresh)
5467{
5468 wq_watchdog_thresh = 0;
5469 del_timer_sync(&wq_watchdog_timer);
5470
5471 if (thresh) {
5472 wq_watchdog_thresh = thresh;
5473 wq_watchdog_reset_touched();
5474 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5475 }
5476}
5477
5478static int wq_watchdog_param_set_thresh(const char *val,
5479 const struct kernel_param *kp)
5480{
5481 unsigned long thresh;
5482 int ret;
5483
5484 ret = kstrtoul(val, 0, &thresh);
5485 if (ret)
5486 return ret;
5487
5488 if (system_wq)
5489 wq_watchdog_set_thresh(thresh);
5490 else
5491 wq_watchdog_thresh = thresh;
5492
5493 return 0;
5494}
5495
5496static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5497 .set = wq_watchdog_param_set_thresh,
5498 .get = param_get_ulong,
5499};
5500
5501module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5502 0644);
5503
5504static void wq_watchdog_init(void)
5505{
5506 wq_watchdog_set_thresh(wq_watchdog_thresh);
5507}
5508
5509#else /* CONFIG_WQ_WATCHDOG */
5510
5511static inline void wq_watchdog_init(void) { }
5512
5513#endif /* CONFIG_WQ_WATCHDOG */
5514
bce90380
TH
5515static void __init wq_numa_init(void)
5516{
5517 cpumask_var_t *tbl;
5518 int node, cpu;
5519
bce90380
TH
5520 if (num_possible_nodes() <= 1)
5521 return;
5522
d55262c4
TH
5523 if (wq_disable_numa) {
5524 pr_info("workqueue: NUMA affinity support disabled\n");
5525 return;
5526 }
5527
4c16bd32
TH
5528 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5529 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5530
bce90380
TH
5531 /*
5532 * We want masks of possible CPUs of each node which isn't readily
5533 * available. Build one from cpu_to_node() which should have been
5534 * fully initialized by now.
5535 */
ddcb57e2 5536 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5537 BUG_ON(!tbl);
5538
5539 for_each_node(node)
5a6024f1 5540 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5541 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5542
5543 for_each_possible_cpu(cpu) {
5544 node = cpu_to_node(cpu);
5545 if (WARN_ON(node == NUMA_NO_NODE)) {
5546 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5547 /* happens iff arch is bonkers, let's just proceed */
5548 return;
5549 }
5550 cpumask_set_cpu(cpu, tbl[node]);
5551 }
5552
5553 wq_numa_possible_cpumask = tbl;
5554 wq_numa_enabled = true;
5555}
5556
3347fa09
TH
5557/**
5558 * workqueue_init_early - early init for workqueue subsystem
5559 *
5560 * This is the first half of two-staged workqueue subsystem initialization
5561 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5562 * idr are up. It sets up all the data structures and system workqueues
5563 * and allows early boot code to create workqueues and queue/cancel work
5564 * items. Actual work item execution starts only after kthreads can be
5565 * created and scheduled right before early initcalls.
5566 */
5567int __init workqueue_init_early(void)
1da177e4 5568{
7a4e344c
TH
5569 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5570 int i, cpu;
c34056a3 5571
e904e6c2
TH
5572 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5573
b05a7928
FW
5574 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5575 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5576
e904e6c2
TH
5577 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5578
706026c2 5579 /* initialize CPU pools */
29c91e99 5580 for_each_possible_cpu(cpu) {
4ce62e9e 5581 struct worker_pool *pool;
8b03ae3c 5582
7a4e344c 5583 i = 0;
f02ae73a 5584 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5585 BUG_ON(init_worker_pool(pool));
ec22ca5e 5586 pool->cpu = cpu;
29c91e99 5587 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5588 pool->attrs->nice = std_nice[i++];
f3f90ad4 5589 pool->node = cpu_to_node(cpu);
7a4e344c 5590
9daf9e67 5591 /* alloc pool ID */
68e13a67 5592 mutex_lock(&wq_pool_mutex);
9daf9e67 5593 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5594 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5595 }
8b03ae3c
TH
5596 }
5597
8a2b7538 5598 /* create default unbound and ordered wq attrs */
29c91e99
TH
5599 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5600 struct workqueue_attrs *attrs;
5601
5602 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5603 attrs->nice = std_nice[i];
29c91e99 5604 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5605
5606 /*
5607 * An ordered wq should have only one pwq as ordering is
5608 * guaranteed by max_active which is enforced by pwqs.
5609 * Turn off NUMA so that dfl_pwq is used for all nodes.
5610 */
5611 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5612 attrs->nice = std_nice[i];
5613 attrs->no_numa = true;
5614 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5615 }
5616
d320c038 5617 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5618 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5619 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5620 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5621 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5622 system_freezable_wq = alloc_workqueue("events_freezable",
5623 WQ_FREEZABLE, 0);
0668106c
VK
5624 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5625 WQ_POWER_EFFICIENT, 0);
5626 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5627 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5628 0);
1aabe902 5629 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5630 !system_unbound_wq || !system_freezable_wq ||
5631 !system_power_efficient_wq ||
5632 !system_freezable_power_efficient_wq);
82607adc 5633
3347fa09
TH
5634 return 0;
5635}
5636
5637/**
5638 * workqueue_init - bring workqueue subsystem fully online
5639 *
5640 * This is the latter half of two-staged workqueue subsystem initialization
5641 * and invoked as soon as kthreads can be created and scheduled.
5642 * Workqueues have been created and work items queued on them, but there
5643 * are no kworkers executing the work items yet. Populate the worker pools
5644 * with the initial workers and enable future kworker creations.
5645 */
5646int __init workqueue_init(void)
5647{
2186d9f9 5648 struct workqueue_struct *wq;
3347fa09
TH
5649 struct worker_pool *pool;
5650 int cpu, bkt;
5651
2186d9f9
TH
5652 /*
5653 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5654 * CPU to node mapping may not be available that early on some
5655 * archs such as power and arm64. As per-cpu pools created
5656 * previously could be missing node hint and unbound pools NUMA
5657 * affinity, fix them up.
5658 */
5659 wq_numa_init();
5660
5661 mutex_lock(&wq_pool_mutex);
5662
5663 for_each_possible_cpu(cpu) {
5664 for_each_cpu_worker_pool(pool, cpu) {
5665 pool->node = cpu_to_node(cpu);
5666 }
5667 }
5668
5669 list_for_each_entry(wq, &workqueues, list)
5670 wq_update_unbound_numa(wq, smp_processor_id(), true);
5671
5672 mutex_unlock(&wq_pool_mutex);
5673
3347fa09
TH
5674 /* create the initial workers */
5675 for_each_online_cpu(cpu) {
5676 for_each_cpu_worker_pool(pool, cpu) {
5677 pool->flags &= ~POOL_DISASSOCIATED;
5678 BUG_ON(!create_worker(pool));
5679 }
5680 }
5681
5682 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5683 BUG_ON(!create_worker(pool));
5684
5685 wq_online = true;
82607adc
TH
5686 wq_watchdog_init();
5687
6ee0578b 5688 return 0;
1da177e4 5689}