io_uring: offload write to async worker in case of -EAGAIN
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e 23 *
9a261491 24 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669 41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
bce90380 47#include <linux/nodemask.h>
4c16bd32 48#include <linux/moduleparam.h>
3d1cb205 49#include <linux/uaccess.h>
c98a9805 50#include <linux/sched/isolation.h>
62635ea8 51#include <linux/nmi.h>
e22bee78 52
ea138446 53#include "workqueue_internal.h"
1da177e4 54
c8e55f36 55enum {
24647570
TH
56 /*
57 * worker_pool flags
bc2ae0f5 58 *
24647570 59 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
60 * While associated (!DISASSOCIATED), all workers are bound to the
61 * CPU and none has %WORKER_UNBOUND set and concurrency management
62 * is in effect.
63 *
64 * While DISASSOCIATED, the cpu may be offline and all workers have
65 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 66 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 67 *
bc3a1afc 68 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 69 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 70 * worker_attach_to_pool() is in progress.
bc2ae0f5 71 */
692b4825 72 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 73 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 74
c8e55f36 75 /* worker flags */
c8e55f36
TH
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 78 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 82
a9ab775b
TH
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 85
e34cdddb 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 87
29c91e99 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 90
e22bee78
TH
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
3233cdbd
TH
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
e22bee78
TH
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
8698a745 102 * all cpus. Give MIN_NICE.
e22bee78 103 */
8698a745
DY
104 RESCUER_NICE_LEVEL = MIN_NICE,
105 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
106
107 WQ_NAME_LEN = 24,
c8e55f36 108};
1da177e4
LT
109
110/*
4690c4ab
TH
111 * Structure fields follow one of the following exclusion rules.
112 *
e41e704b
TH
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
4690c4ab 115 *
e22bee78
TH
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
d565ed63 119 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 120 *
d565ed63
TH
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 125 *
1258fae7 126 * A: wq_pool_attach_mutex protected.
822d8405 127 *
68e13a67 128 * PL: wq_pool_mutex protected.
5bcab335 129 *
68e13a67 130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 131 *
5b95e1af
LJ
132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
133 *
134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
135 * sched-RCU for reads.
136 *
3c25a55d
LJ
137 * WQ: wq->mutex protected.
138 *
b5927605 139 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
140 *
141 * MD: wq_mayday_lock protected.
1da177e4 142 */
1da177e4 143
2eaebdb3 144/* struct worker is defined in workqueue_internal.h */
c34056a3 145
bd7bdd43 146struct worker_pool {
d565ed63 147 spinlock_t lock; /* the pool lock */
d84ff051 148 int cpu; /* I: the associated cpu */
f3f90ad4 149 int node; /* I: the associated node ID */
9daf9e67 150 int id; /* I: pool ID */
11ebea50 151 unsigned int flags; /* X: flags */
bd7bdd43 152
82607adc
TH
153 unsigned long watchdog_ts; /* L: watchdog timestamp */
154
bd7bdd43 155 struct list_head worklist; /* L: list of pending works */
ea1abd61 156
5826cc8f
LJ
157 int nr_workers; /* L: total number of workers */
158 int nr_idle; /* L: currently idle workers */
bd7bdd43
TH
159
160 struct list_head idle_list; /* X: list of idle workers */
161 struct timer_list idle_timer; /* L: worker idle timeout */
162 struct timer_list mayday_timer; /* L: SOS timer for workers */
163
c5aa87bb 164 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
165 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
166 /* L: hash of busy workers */
167
2607d7a6 168 struct worker *manager; /* L: purely informational */
92f9c5c4 169 struct list_head workers; /* A: attached workers */
60f5a4bc 170 struct completion *detach_completion; /* all workers detached */
e19e397a 171
7cda9aae 172 struct ida worker_ida; /* worker IDs for task name */
e19e397a 173
7a4e344c 174 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
175 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
176 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 177
e19e397a
TH
178 /*
179 * The current concurrency level. As it's likely to be accessed
180 * from other CPUs during try_to_wake_up(), put it in a separate
181 * cacheline.
182 */
183 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
184
185 /*
186 * Destruction of pool is sched-RCU protected to allow dereferences
187 * from get_work_pool().
188 */
189 struct rcu_head rcu;
8b03ae3c
TH
190} ____cacheline_aligned_in_smp;
191
1da177e4 192/*
112202d9
TH
193 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
194 * of work_struct->data are used for flags and the remaining high bits
195 * point to the pwq; thus, pwqs need to be aligned at two's power of the
196 * number of flag bits.
1da177e4 197 */
112202d9 198struct pool_workqueue {
bd7bdd43 199 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 200 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
201 int work_color; /* L: current color */
202 int flush_color; /* L: flushing color */
8864b4e5 203 int refcnt; /* L: reference count */
73f53c4a
TH
204 int nr_in_flight[WORK_NR_COLORS];
205 /* L: nr of in_flight works */
1e19ffc6 206 int nr_active; /* L: nr of active works */
a0a1a5fd 207 int max_active; /* L: max active works */
1e19ffc6 208 struct list_head delayed_works; /* L: delayed works */
3c25a55d 209 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 210 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
211
212 /*
213 * Release of unbound pwq is punted to system_wq. See put_pwq()
214 * and pwq_unbound_release_workfn() for details. pool_workqueue
215 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 216 * determined without grabbing wq->mutex.
8864b4e5
TH
217 */
218 struct work_struct unbound_release_work;
219 struct rcu_head rcu;
e904e6c2 220} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 221
73f53c4a
TH
222/*
223 * Structure used to wait for workqueue flush.
224 */
225struct wq_flusher {
3c25a55d
LJ
226 struct list_head list; /* WQ: list of flushers */
227 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
228 struct completion done; /* flush completion */
229};
230
226223ab
TH
231struct wq_device;
232
1da177e4 233/*
c5aa87bb
TH
234 * The externally visible workqueue. It relays the issued work items to
235 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
236 */
237struct workqueue_struct {
3c25a55d 238 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 239 struct list_head list; /* PR: list of all workqueues */
73f53c4a 240
3c25a55d
LJ
241 struct mutex mutex; /* protects this wq */
242 int work_color; /* WQ: current work color */
243 int flush_color; /* WQ: current flush color */
112202d9 244 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
245 struct wq_flusher *first_flusher; /* WQ: first flusher */
246 struct list_head flusher_queue; /* WQ: flush waiters */
247 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 248
2e109a28 249 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
250 struct worker *rescuer; /* I: rescue worker */
251
87fc741e 252 int nr_drainers; /* WQ: drain in progress */
a357fc03 253 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 254
5b95e1af
LJ
255 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
256 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 257
226223ab
TH
258#ifdef CONFIG_SYSFS
259 struct wq_device *wq_dev; /* I: for sysfs interface */
260#endif
4e6045f1 261#ifdef CONFIG_LOCKDEP
669de8bd
BVA
262 char *lock_name;
263 struct lock_class_key key;
4690c4ab 264 struct lockdep_map lockdep_map;
4e6045f1 265#endif
ecf6881f 266 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 267
e2dca7ad
TH
268 /*
269 * Destruction of workqueue_struct is sched-RCU protected to allow
270 * walking the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
272 */
273 struct rcu_head rcu;
274
2728fd2f
TH
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
279};
280
e904e6c2
TH
281static struct kmem_cache *pwq_cache;
282
bce90380
TH
283static cpumask_var_t *wq_numa_possible_cpumask;
284 /* possible CPUs of each node */
285
d55262c4
TH
286static bool wq_disable_numa;
287module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288
cee22a15 289/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 290static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
291module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292
863b710b 293static bool wq_online; /* can kworkers be created yet? */
3347fa09 294
bce90380
TH
295static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
296
4c16bd32
TH
297/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
298static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
299
68e13a67 300static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 301static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
2e109a28 302static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
692b4825 303static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
5bcab335 304
e2dca7ad 305static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 306static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 307
ef557180
MG
308/* PL: allowable cpus for unbound wqs and work items */
309static cpumask_var_t wq_unbound_cpumask;
310
311/* CPU where unbound work was last round robin scheduled from this CPU */
312static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 313
f303fccb
TH
314/*
315 * Local execution of unbound work items is no longer guaranteed. The
316 * following always forces round-robin CPU selection on unbound work items
317 * to uncover usages which depend on it.
318 */
319#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
320static bool wq_debug_force_rr_cpu = true;
321#else
322static bool wq_debug_force_rr_cpu = false;
323#endif
324module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
325
7d19c5ce 326/* the per-cpu worker pools */
25528213 327static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 328
68e13a67 329static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 330
68e13a67 331/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
332static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
333
c5aa87bb 334/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
335static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
336
8a2b7538
TH
337/* I: attributes used when instantiating ordered pools on demand */
338static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
339
d320c038 340struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 341EXPORT_SYMBOL(system_wq);
044c782c 342struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 343EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 344struct workqueue_struct *system_long_wq __read_mostly;
d320c038 345EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 346struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 347EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 348struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 349EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
350struct workqueue_struct *system_power_efficient_wq __read_mostly;
351EXPORT_SYMBOL_GPL(system_power_efficient_wq);
352struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
353EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 354
7d19c5ce 355static int worker_thread(void *__worker);
6ba94429 356static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 357
97bd2347
TH
358#define CREATE_TRACE_POINTS
359#include <trace/events/workqueue.h>
360
68e13a67 361#define assert_rcu_or_pool_mutex() \
f78f5b90
PM
362 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
363 !lockdep_is_held(&wq_pool_mutex), \
364 "sched RCU or wq_pool_mutex should be held")
5bcab335 365
b09f4fd3 366#define assert_rcu_or_wq_mutex(wq) \
f78f5b90
PM
367 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
368 !lockdep_is_held(&wq->mutex), \
369 "sched RCU or wq->mutex should be held")
76af4d93 370
5b95e1af 371#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
f78f5b90
PM
372 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
373 !lockdep_is_held(&wq->mutex) && \
374 !lockdep_is_held(&wq_pool_mutex), \
375 "sched RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 376
f02ae73a
TH
377#define for_each_cpu_worker_pool(pool, cpu) \
378 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
379 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 380 (pool)++)
4ce62e9e 381
17116969
TH
382/**
383 * for_each_pool - iterate through all worker_pools in the system
384 * @pool: iteration cursor
611c92a0 385 * @pi: integer used for iteration
fa1b54e6 386 *
68e13a67
LJ
387 * This must be called either with wq_pool_mutex held or sched RCU read
388 * locked. If the pool needs to be used beyond the locking in effect, the
389 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
390 *
391 * The if/else clause exists only for the lockdep assertion and can be
392 * ignored.
17116969 393 */
611c92a0
TH
394#define for_each_pool(pool, pi) \
395 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 396 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 397 else
17116969 398
822d8405
TH
399/**
400 * for_each_pool_worker - iterate through all workers of a worker_pool
401 * @worker: iteration cursor
822d8405
TH
402 * @pool: worker_pool to iterate workers of
403 *
1258fae7 404 * This must be called with wq_pool_attach_mutex.
822d8405
TH
405 *
406 * The if/else clause exists only for the lockdep assertion and can be
407 * ignored.
408 */
da028469
LJ
409#define for_each_pool_worker(worker, pool) \
410 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 411 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
412 else
413
49e3cf44
TH
414/**
415 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
416 * @pwq: iteration cursor
417 * @wq: the target workqueue
76af4d93 418 *
b09f4fd3 419 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
420 * If the pwq needs to be used beyond the locking in effect, the caller is
421 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
422 *
423 * The if/else clause exists only for the lockdep assertion and can be
424 * ignored.
49e3cf44
TH
425 */
426#define for_each_pwq(pwq, wq) \
76af4d93 427 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 428 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 429 else
f3421797 430
dc186ad7
TG
431#ifdef CONFIG_DEBUG_OBJECTS_WORK
432
433static struct debug_obj_descr work_debug_descr;
434
99777288
SG
435static void *work_debug_hint(void *addr)
436{
437 return ((struct work_struct *) addr)->func;
438}
439
b9fdac7f
DC
440static bool work_is_static_object(void *addr)
441{
442 struct work_struct *work = addr;
443
444 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
445}
446
dc186ad7
TG
447/*
448 * fixup_init is called when:
449 * - an active object is initialized
450 */
02a982a6 451static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
452{
453 struct work_struct *work = addr;
454
455 switch (state) {
456 case ODEBUG_STATE_ACTIVE:
457 cancel_work_sync(work);
458 debug_object_init(work, &work_debug_descr);
02a982a6 459 return true;
dc186ad7 460 default:
02a982a6 461 return false;
dc186ad7
TG
462 }
463}
464
dc186ad7
TG
465/*
466 * fixup_free is called when:
467 * - an active object is freed
468 */
02a982a6 469static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
470{
471 struct work_struct *work = addr;
472
473 switch (state) {
474 case ODEBUG_STATE_ACTIVE:
475 cancel_work_sync(work);
476 debug_object_free(work, &work_debug_descr);
02a982a6 477 return true;
dc186ad7 478 default:
02a982a6 479 return false;
dc186ad7
TG
480 }
481}
482
483static struct debug_obj_descr work_debug_descr = {
484 .name = "work_struct",
99777288 485 .debug_hint = work_debug_hint,
b9fdac7f 486 .is_static_object = work_is_static_object,
dc186ad7 487 .fixup_init = work_fixup_init,
dc186ad7
TG
488 .fixup_free = work_fixup_free,
489};
490
491static inline void debug_work_activate(struct work_struct *work)
492{
493 debug_object_activate(work, &work_debug_descr);
494}
495
496static inline void debug_work_deactivate(struct work_struct *work)
497{
498 debug_object_deactivate(work, &work_debug_descr);
499}
500
501void __init_work(struct work_struct *work, int onstack)
502{
503 if (onstack)
504 debug_object_init_on_stack(work, &work_debug_descr);
505 else
506 debug_object_init(work, &work_debug_descr);
507}
508EXPORT_SYMBOL_GPL(__init_work);
509
510void destroy_work_on_stack(struct work_struct *work)
511{
512 debug_object_free(work, &work_debug_descr);
513}
514EXPORT_SYMBOL_GPL(destroy_work_on_stack);
515
ea2e64f2
TG
516void destroy_delayed_work_on_stack(struct delayed_work *work)
517{
518 destroy_timer_on_stack(&work->timer);
519 debug_object_free(&work->work, &work_debug_descr);
520}
521EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
522
dc186ad7
TG
523#else
524static inline void debug_work_activate(struct work_struct *work) { }
525static inline void debug_work_deactivate(struct work_struct *work) { }
526#endif
527
4e8b22bd
LB
528/**
529 * worker_pool_assign_id - allocate ID and assing it to @pool
530 * @pool: the pool pointer of interest
531 *
532 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
533 * successfully, -errno on failure.
534 */
9daf9e67
TH
535static int worker_pool_assign_id(struct worker_pool *pool)
536{
537 int ret;
538
68e13a67 539 lockdep_assert_held(&wq_pool_mutex);
5bcab335 540
4e8b22bd
LB
541 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
542 GFP_KERNEL);
229641a6 543 if (ret >= 0) {
e68035fb 544 pool->id = ret;
229641a6
TH
545 return 0;
546 }
fa1b54e6 547 return ret;
7c3eed5c
TH
548}
549
df2d5ae4
TH
550/**
551 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
552 * @wq: the target workqueue
553 * @node: the node ID
554 *
5b95e1af
LJ
555 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
556 * read locked.
df2d5ae4
TH
557 * If the pwq needs to be used beyond the locking in effect, the caller is
558 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
559 *
560 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
561 */
562static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
563 int node)
564{
5b95e1af 565 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
566
567 /*
568 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
569 * delayed item is pending. The plan is to keep CPU -> NODE
570 * mapping valid and stable across CPU on/offlines. Once that
571 * happens, this workaround can be removed.
572 */
573 if (unlikely(node == NUMA_NO_NODE))
574 return wq->dfl_pwq;
575
df2d5ae4
TH
576 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
577}
578
73f53c4a
TH
579static unsigned int work_color_to_flags(int color)
580{
581 return color << WORK_STRUCT_COLOR_SHIFT;
582}
583
584static int get_work_color(struct work_struct *work)
585{
586 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
587 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
588}
589
590static int work_next_color(int color)
591{
592 return (color + 1) % WORK_NR_COLORS;
593}
1da177e4 594
14441960 595/*
112202d9
TH
596 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
597 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 598 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 599 *
112202d9
TH
600 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
601 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
602 * work->data. These functions should only be called while the work is
603 * owned - ie. while the PENDING bit is set.
7a22ad75 604 *
112202d9 605 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 606 * corresponding to a work. Pool is available once the work has been
112202d9 607 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 608 * available only while the work item is queued.
7a22ad75 609 *
bbb68dfa
TH
610 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
611 * canceled. While being canceled, a work item may have its PENDING set
612 * but stay off timer and worklist for arbitrarily long and nobody should
613 * try to steal the PENDING bit.
14441960 614 */
7a22ad75
TH
615static inline void set_work_data(struct work_struct *work, unsigned long data,
616 unsigned long flags)
365970a1 617{
6183c009 618 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
619 atomic_long_set(&work->data, data | flags | work_static(work));
620}
365970a1 621
112202d9 622static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
623 unsigned long extra_flags)
624{
112202d9
TH
625 set_work_data(work, (unsigned long)pwq,
626 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
627}
628
4468a00f
LJ
629static void set_work_pool_and_keep_pending(struct work_struct *work,
630 int pool_id)
631{
632 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
633 WORK_STRUCT_PENDING);
634}
635
7c3eed5c
TH
636static void set_work_pool_and_clear_pending(struct work_struct *work,
637 int pool_id)
7a22ad75 638{
23657bb1
TH
639 /*
640 * The following wmb is paired with the implied mb in
641 * test_and_set_bit(PENDING) and ensures all updates to @work made
642 * here are visible to and precede any updates by the next PENDING
643 * owner.
644 */
645 smp_wmb();
7c3eed5c 646 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
647 /*
648 * The following mb guarantees that previous clear of a PENDING bit
649 * will not be reordered with any speculative LOADS or STORES from
650 * work->current_func, which is executed afterwards. This possible
8bdc6201 651 * reordering can lead to a missed execution on attempt to queue
346c09f8
RP
652 * the same @work. E.g. consider this case:
653 *
654 * CPU#0 CPU#1
655 * ---------------------------- --------------------------------
656 *
657 * 1 STORE event_indicated
658 * 2 queue_work_on() {
659 * 3 test_and_set_bit(PENDING)
660 * 4 } set_..._and_clear_pending() {
661 * 5 set_work_data() # clear bit
662 * 6 smp_mb()
663 * 7 work->current_func() {
664 * 8 LOAD event_indicated
665 * }
666 *
667 * Without an explicit full barrier speculative LOAD on line 8 can
668 * be executed before CPU#0 does STORE on line 1. If that happens,
669 * CPU#0 observes the PENDING bit is still set and new execution of
670 * a @work is not queued in a hope, that CPU#1 will eventually
671 * finish the queued @work. Meanwhile CPU#1 does not see
672 * event_indicated is set, because speculative LOAD was executed
673 * before actual STORE.
674 */
675 smp_mb();
7a22ad75 676}
f756d5e2 677
7a22ad75 678static void clear_work_data(struct work_struct *work)
1da177e4 679{
7c3eed5c
TH
680 smp_wmb(); /* see set_work_pool_and_clear_pending() */
681 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
682}
683
112202d9 684static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 685{
e120153d 686 unsigned long data = atomic_long_read(&work->data);
7a22ad75 687
112202d9 688 if (data & WORK_STRUCT_PWQ)
e120153d
TH
689 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
690 else
691 return NULL;
4d707b9f
ON
692}
693
7c3eed5c
TH
694/**
695 * get_work_pool - return the worker_pool a given work was associated with
696 * @work: the work item of interest
697 *
68e13a67
LJ
698 * Pools are created and destroyed under wq_pool_mutex, and allows read
699 * access under sched-RCU read lock. As such, this function should be
700 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
701 *
702 * All fields of the returned pool are accessible as long as the above
703 * mentioned locking is in effect. If the returned pool needs to be used
704 * beyond the critical section, the caller is responsible for ensuring the
705 * returned pool is and stays online.
d185af30
YB
706 *
707 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
708 */
709static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 710{
e120153d 711 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 712 int pool_id;
7a22ad75 713
68e13a67 714 assert_rcu_or_pool_mutex();
fa1b54e6 715
112202d9
TH
716 if (data & WORK_STRUCT_PWQ)
717 return ((struct pool_workqueue *)
7c3eed5c 718 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 719
7c3eed5c
TH
720 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
721 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
722 return NULL;
723
fa1b54e6 724 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
725}
726
727/**
728 * get_work_pool_id - return the worker pool ID a given work is associated with
729 * @work: the work item of interest
730 *
d185af30 731 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
732 * %WORK_OFFQ_POOL_NONE if none.
733 */
734static int get_work_pool_id(struct work_struct *work)
735{
54d5b7d0
LJ
736 unsigned long data = atomic_long_read(&work->data);
737
112202d9
TH
738 if (data & WORK_STRUCT_PWQ)
739 return ((struct pool_workqueue *)
54d5b7d0 740 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 741
54d5b7d0 742 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
743}
744
bbb68dfa
TH
745static void mark_work_canceling(struct work_struct *work)
746{
7c3eed5c 747 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 748
7c3eed5c
TH
749 pool_id <<= WORK_OFFQ_POOL_SHIFT;
750 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
751}
752
753static bool work_is_canceling(struct work_struct *work)
754{
755 unsigned long data = atomic_long_read(&work->data);
756
112202d9 757 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
758}
759
e22bee78 760/*
3270476a
TH
761 * Policy functions. These define the policies on how the global worker
762 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 763 * they're being called with pool->lock held.
e22bee78
TH
764 */
765
63d95a91 766static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 767{
e19e397a 768 return !atomic_read(&pool->nr_running);
a848e3b6
ON
769}
770
4594bf15 771/*
e22bee78
TH
772 * Need to wake up a worker? Called from anything but currently
773 * running workers.
974271c4
TH
774 *
775 * Note that, because unbound workers never contribute to nr_running, this
706026c2 776 * function will always return %true for unbound pools as long as the
974271c4 777 * worklist isn't empty.
4594bf15 778 */
63d95a91 779static bool need_more_worker(struct worker_pool *pool)
365970a1 780{
63d95a91 781 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 782}
4594bf15 783
e22bee78 784/* Can I start working? Called from busy but !running workers. */
63d95a91 785static bool may_start_working(struct worker_pool *pool)
e22bee78 786{
63d95a91 787 return pool->nr_idle;
e22bee78
TH
788}
789
790/* Do I need to keep working? Called from currently running workers. */
63d95a91 791static bool keep_working(struct worker_pool *pool)
e22bee78 792{
e19e397a
TH
793 return !list_empty(&pool->worklist) &&
794 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
795}
796
797/* Do we need a new worker? Called from manager. */
63d95a91 798static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 799{
63d95a91 800 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 801}
365970a1 802
e22bee78 803/* Do we have too many workers and should some go away? */
63d95a91 804static bool too_many_workers(struct worker_pool *pool)
e22bee78 805{
692b4825 806 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
807 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
808 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
809
810 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
811}
812
4d707b9f 813/*
e22bee78
TH
814 * Wake up functions.
815 */
816
1037de36
LJ
817/* Return the first idle worker. Safe with preemption disabled */
818static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 819{
63d95a91 820 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
821 return NULL;
822
63d95a91 823 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
824}
825
826/**
827 * wake_up_worker - wake up an idle worker
63d95a91 828 * @pool: worker pool to wake worker from
7e11629d 829 *
63d95a91 830 * Wake up the first idle worker of @pool.
7e11629d
TH
831 *
832 * CONTEXT:
d565ed63 833 * spin_lock_irq(pool->lock).
7e11629d 834 */
63d95a91 835static void wake_up_worker(struct worker_pool *pool)
7e11629d 836{
1037de36 837 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
838
839 if (likely(worker))
840 wake_up_process(worker->task);
841}
842
d302f017 843/**
e22bee78
TH
844 * wq_worker_waking_up - a worker is waking up
845 * @task: task waking up
846 * @cpu: CPU @task is waking up to
847 *
848 * This function is called during try_to_wake_up() when a worker is
849 * being awoken.
850 *
851 * CONTEXT:
852 * spin_lock_irq(rq->lock)
853 */
d84ff051 854void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
855{
856 struct worker *worker = kthread_data(task);
857
36576000 858 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 859 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 860 atomic_inc(&worker->pool->nr_running);
36576000 861 }
e22bee78
TH
862}
863
864/**
865 * wq_worker_sleeping - a worker is going to sleep
866 * @task: task going to sleep
e22bee78
TH
867 *
868 * This function is called during schedule() when a busy worker is
869 * going to sleep. Worker on the same cpu can be woken up by
870 * returning pointer to its task.
871 *
872 * CONTEXT:
873 * spin_lock_irq(rq->lock)
874 *
d185af30 875 * Return:
e22bee78
TH
876 * Worker task on @cpu to wake up, %NULL if none.
877 */
9b7f6597 878struct task_struct *wq_worker_sleeping(struct task_struct *task)
e22bee78
TH
879{
880 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 881 struct worker_pool *pool;
e22bee78 882
111c225a
TH
883 /*
884 * Rescuers, which may not have all the fields set up like normal
885 * workers, also reach here, let's not access anything before
886 * checking NOT_RUNNING.
887 */
2d64672e 888 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
889 return NULL;
890
111c225a 891 pool = worker->pool;
111c225a 892
e22bee78 893 /* this can only happen on the local cpu */
9b7f6597 894 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
6183c009 895 return NULL;
e22bee78
TH
896
897 /*
898 * The counterpart of the following dec_and_test, implied mb,
899 * worklist not empty test sequence is in insert_work().
900 * Please read comment there.
901 *
628c78e7
TH
902 * NOT_RUNNING is clear. This means that we're bound to and
903 * running on the local cpu w/ rq lock held and preemption
904 * disabled, which in turn means that none else could be
d565ed63 905 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 906 * lock is safe.
e22bee78 907 */
e19e397a
TH
908 if (atomic_dec_and_test(&pool->nr_running) &&
909 !list_empty(&pool->worklist))
1037de36 910 to_wakeup = first_idle_worker(pool);
e22bee78
TH
911 return to_wakeup ? to_wakeup->task : NULL;
912}
913
1b69ac6b
JW
914/**
915 * wq_worker_last_func - retrieve worker's last work function
916 *
917 * Determine the last function a worker executed. This is called from
918 * the scheduler to get a worker's last known identity.
919 *
920 * CONTEXT:
921 * spin_lock_irq(rq->lock)
922 *
4b047002
JW
923 * This function is called during schedule() when a kworker is going
924 * to sleep. It's used by psi to identify aggregation workers during
925 * dequeuing, to allow periodic aggregation to shut-off when that
926 * worker is the last task in the system or cgroup to go to sleep.
927 *
928 * As this function doesn't involve any workqueue-related locking, it
929 * only returns stable values when called from inside the scheduler's
930 * queuing and dequeuing paths, when @task, which must be a kworker,
931 * is guaranteed to not be processing any works.
932 *
1b69ac6b
JW
933 * Return:
934 * The last work function %current executed as a worker, NULL if it
935 * hasn't executed any work yet.
936 */
937work_func_t wq_worker_last_func(struct task_struct *task)
938{
939 struct worker *worker = kthread_data(task);
940
941 return worker->last_func;
942}
943
e22bee78
TH
944/**
945 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 946 * @worker: self
d302f017 947 * @flags: flags to set
d302f017 948 *
228f1d00 949 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 950 *
cb444766 951 * CONTEXT:
d565ed63 952 * spin_lock_irq(pool->lock)
d302f017 953 */
228f1d00 954static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 955{
bd7bdd43 956 struct worker_pool *pool = worker->pool;
e22bee78 957
cb444766
TH
958 WARN_ON_ONCE(worker->task != current);
959
228f1d00 960 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
961 if ((flags & WORKER_NOT_RUNNING) &&
962 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 963 atomic_dec(&pool->nr_running);
e22bee78
TH
964 }
965
d302f017
TH
966 worker->flags |= flags;
967}
968
969/**
e22bee78 970 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 971 * @worker: self
d302f017
TH
972 * @flags: flags to clear
973 *
e22bee78 974 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 975 *
cb444766 976 * CONTEXT:
d565ed63 977 * spin_lock_irq(pool->lock)
d302f017
TH
978 */
979static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
980{
63d95a91 981 struct worker_pool *pool = worker->pool;
e22bee78
TH
982 unsigned int oflags = worker->flags;
983
cb444766
TH
984 WARN_ON_ONCE(worker->task != current);
985
d302f017 986 worker->flags &= ~flags;
e22bee78 987
42c025f3
TH
988 /*
989 * If transitioning out of NOT_RUNNING, increment nr_running. Note
990 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
991 * of multiple flags, not a single flag.
992 */
e22bee78
TH
993 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
994 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 995 atomic_inc(&pool->nr_running);
d302f017
TH
996}
997
8cca0eea
TH
998/**
999 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 1000 * @pool: pool of interest
8cca0eea
TH
1001 * @work: work to find worker for
1002 *
c9e7cf27
TH
1003 * Find a worker which is executing @work on @pool by searching
1004 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
1005 * to match, its current execution should match the address of @work and
1006 * its work function. This is to avoid unwanted dependency between
1007 * unrelated work executions through a work item being recycled while still
1008 * being executed.
1009 *
1010 * This is a bit tricky. A work item may be freed once its execution
1011 * starts and nothing prevents the freed area from being recycled for
1012 * another work item. If the same work item address ends up being reused
1013 * before the original execution finishes, workqueue will identify the
1014 * recycled work item as currently executing and make it wait until the
1015 * current execution finishes, introducing an unwanted dependency.
1016 *
c5aa87bb
TH
1017 * This function checks the work item address and work function to avoid
1018 * false positives. Note that this isn't complete as one may construct a
1019 * work function which can introduce dependency onto itself through a
1020 * recycled work item. Well, if somebody wants to shoot oneself in the
1021 * foot that badly, there's only so much we can do, and if such deadlock
1022 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
1023 *
1024 * CONTEXT:
d565ed63 1025 * spin_lock_irq(pool->lock).
8cca0eea 1026 *
d185af30
YB
1027 * Return:
1028 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 1029 * otherwise.
4d707b9f 1030 */
c9e7cf27 1031static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1032 struct work_struct *work)
4d707b9f 1033{
42f8570f 1034 struct worker *worker;
42f8570f 1035
b67bfe0d 1036 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1037 (unsigned long)work)
1038 if (worker->current_work == work &&
1039 worker->current_func == work->func)
42f8570f
SL
1040 return worker;
1041
1042 return NULL;
4d707b9f
ON
1043}
1044
bf4ede01
TH
1045/**
1046 * move_linked_works - move linked works to a list
1047 * @work: start of series of works to be scheduled
1048 * @head: target list to append @work to
402dd89d 1049 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1050 *
1051 * Schedule linked works starting from @work to @head. Work series to
1052 * be scheduled starts at @work and includes any consecutive work with
1053 * WORK_STRUCT_LINKED set in its predecessor.
1054 *
1055 * If @nextp is not NULL, it's updated to point to the next work of
1056 * the last scheduled work. This allows move_linked_works() to be
1057 * nested inside outer list_for_each_entry_safe().
1058 *
1059 * CONTEXT:
d565ed63 1060 * spin_lock_irq(pool->lock).
bf4ede01
TH
1061 */
1062static void move_linked_works(struct work_struct *work, struct list_head *head,
1063 struct work_struct **nextp)
1064{
1065 struct work_struct *n;
1066
1067 /*
1068 * Linked worklist will always end before the end of the list,
1069 * use NULL for list head.
1070 */
1071 list_for_each_entry_safe_from(work, n, NULL, entry) {
1072 list_move_tail(&work->entry, head);
1073 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1074 break;
1075 }
1076
1077 /*
1078 * If we're already inside safe list traversal and have moved
1079 * multiple works to the scheduled queue, the next position
1080 * needs to be updated.
1081 */
1082 if (nextp)
1083 *nextp = n;
1084}
1085
8864b4e5
TH
1086/**
1087 * get_pwq - get an extra reference on the specified pool_workqueue
1088 * @pwq: pool_workqueue to get
1089 *
1090 * Obtain an extra reference on @pwq. The caller should guarantee that
1091 * @pwq has positive refcnt and be holding the matching pool->lock.
1092 */
1093static void get_pwq(struct pool_workqueue *pwq)
1094{
1095 lockdep_assert_held(&pwq->pool->lock);
1096 WARN_ON_ONCE(pwq->refcnt <= 0);
1097 pwq->refcnt++;
1098}
1099
1100/**
1101 * put_pwq - put a pool_workqueue reference
1102 * @pwq: pool_workqueue to put
1103 *
1104 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1105 * destruction. The caller should be holding the matching pool->lock.
1106 */
1107static void put_pwq(struct pool_workqueue *pwq)
1108{
1109 lockdep_assert_held(&pwq->pool->lock);
1110 if (likely(--pwq->refcnt))
1111 return;
1112 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1113 return;
1114 /*
1115 * @pwq can't be released under pool->lock, bounce to
1116 * pwq_unbound_release_workfn(). This never recurses on the same
1117 * pool->lock as this path is taken only for unbound workqueues and
1118 * the release work item is scheduled on a per-cpu workqueue. To
1119 * avoid lockdep warning, unbound pool->locks are given lockdep
1120 * subclass of 1 in get_unbound_pool().
1121 */
1122 schedule_work(&pwq->unbound_release_work);
1123}
1124
dce90d47
TH
1125/**
1126 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1127 * @pwq: pool_workqueue to put (can be %NULL)
1128 *
1129 * put_pwq() with locking. This function also allows %NULL @pwq.
1130 */
1131static void put_pwq_unlocked(struct pool_workqueue *pwq)
1132{
1133 if (pwq) {
1134 /*
1135 * As both pwqs and pools are sched-RCU protected, the
1136 * following lock operations are safe.
1137 */
1138 spin_lock_irq(&pwq->pool->lock);
1139 put_pwq(pwq);
1140 spin_unlock_irq(&pwq->pool->lock);
1141 }
1142}
1143
112202d9 1144static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1145{
112202d9 1146 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1147
1148 trace_workqueue_activate_work(work);
82607adc
TH
1149 if (list_empty(&pwq->pool->worklist))
1150 pwq->pool->watchdog_ts = jiffies;
112202d9 1151 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1152 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1153 pwq->nr_active++;
bf4ede01
TH
1154}
1155
112202d9 1156static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1157{
112202d9 1158 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1159 struct work_struct, entry);
1160
112202d9 1161 pwq_activate_delayed_work(work);
3aa62497
LJ
1162}
1163
bf4ede01 1164/**
112202d9
TH
1165 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1166 * @pwq: pwq of interest
bf4ede01 1167 * @color: color of work which left the queue
bf4ede01
TH
1168 *
1169 * A work either has completed or is removed from pending queue,
112202d9 1170 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1171 *
1172 * CONTEXT:
d565ed63 1173 * spin_lock_irq(pool->lock).
bf4ede01 1174 */
112202d9 1175static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1176{
8864b4e5 1177 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1178 if (color == WORK_NO_COLOR)
8864b4e5 1179 goto out_put;
bf4ede01 1180
112202d9 1181 pwq->nr_in_flight[color]--;
bf4ede01 1182
112202d9
TH
1183 pwq->nr_active--;
1184 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1185 /* one down, submit a delayed one */
112202d9
TH
1186 if (pwq->nr_active < pwq->max_active)
1187 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1188 }
1189
1190 /* is flush in progress and are we at the flushing tip? */
112202d9 1191 if (likely(pwq->flush_color != color))
8864b4e5 1192 goto out_put;
bf4ede01
TH
1193
1194 /* are there still in-flight works? */
112202d9 1195 if (pwq->nr_in_flight[color])
8864b4e5 1196 goto out_put;
bf4ede01 1197
112202d9
TH
1198 /* this pwq is done, clear flush_color */
1199 pwq->flush_color = -1;
bf4ede01
TH
1200
1201 /*
112202d9 1202 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1203 * will handle the rest.
1204 */
112202d9
TH
1205 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1206 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1207out_put:
1208 put_pwq(pwq);
bf4ede01
TH
1209}
1210
36e227d2 1211/**
bbb68dfa 1212 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1213 * @work: work item to steal
1214 * @is_dwork: @work is a delayed_work
bbb68dfa 1215 * @flags: place to store irq state
36e227d2
TH
1216 *
1217 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1218 * stable state - idle, on timer or on worklist.
36e227d2 1219 *
d185af30 1220 * Return:
36e227d2
TH
1221 * 1 if @work was pending and we successfully stole PENDING
1222 * 0 if @work was idle and we claimed PENDING
1223 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1224 * -ENOENT if someone else is canceling @work, this state may persist
1225 * for arbitrarily long
36e227d2 1226 *
d185af30 1227 * Note:
bbb68dfa 1228 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1229 * interrupted while holding PENDING and @work off queue, irq must be
1230 * disabled on entry. This, combined with delayed_work->timer being
1231 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1232 *
1233 * On successful return, >= 0, irq is disabled and the caller is
1234 * responsible for releasing it using local_irq_restore(*@flags).
1235 *
e0aecdd8 1236 * This function is safe to call from any context including IRQ handler.
bf4ede01 1237 */
bbb68dfa
TH
1238static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1239 unsigned long *flags)
bf4ede01 1240{
d565ed63 1241 struct worker_pool *pool;
112202d9 1242 struct pool_workqueue *pwq;
bf4ede01 1243
bbb68dfa
TH
1244 local_irq_save(*flags);
1245
36e227d2
TH
1246 /* try to steal the timer if it exists */
1247 if (is_dwork) {
1248 struct delayed_work *dwork = to_delayed_work(work);
1249
e0aecdd8
TH
1250 /*
1251 * dwork->timer is irqsafe. If del_timer() fails, it's
1252 * guaranteed that the timer is not queued anywhere and not
1253 * running on the local CPU.
1254 */
36e227d2
TH
1255 if (likely(del_timer(&dwork->timer)))
1256 return 1;
1257 }
1258
1259 /* try to claim PENDING the normal way */
bf4ede01
TH
1260 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1261 return 0;
1262
1263 /*
1264 * The queueing is in progress, or it is already queued. Try to
1265 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1266 */
d565ed63
TH
1267 pool = get_work_pool(work);
1268 if (!pool)
bbb68dfa 1269 goto fail;
bf4ede01 1270
d565ed63 1271 spin_lock(&pool->lock);
0b3dae68 1272 /*
112202d9
TH
1273 * work->data is guaranteed to point to pwq only while the work
1274 * item is queued on pwq->wq, and both updating work->data to point
1275 * to pwq on queueing and to pool on dequeueing are done under
1276 * pwq->pool->lock. This in turn guarantees that, if work->data
1277 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1278 * item is currently queued on that pool.
1279 */
112202d9
TH
1280 pwq = get_work_pwq(work);
1281 if (pwq && pwq->pool == pool) {
16062836
TH
1282 debug_work_deactivate(work);
1283
1284 /*
1285 * A delayed work item cannot be grabbed directly because
1286 * it might have linked NO_COLOR work items which, if left
112202d9 1287 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1288 * management later on and cause stall. Make sure the work
1289 * item is activated before grabbing.
1290 */
1291 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1292 pwq_activate_delayed_work(work);
16062836
TH
1293
1294 list_del_init(&work->entry);
9c34a704 1295 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1296
112202d9 1297 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1298 set_work_pool_and_keep_pending(work, pool->id);
1299
1300 spin_unlock(&pool->lock);
1301 return 1;
bf4ede01 1302 }
d565ed63 1303 spin_unlock(&pool->lock);
bbb68dfa
TH
1304fail:
1305 local_irq_restore(*flags);
1306 if (work_is_canceling(work))
1307 return -ENOENT;
1308 cpu_relax();
36e227d2 1309 return -EAGAIN;
bf4ede01
TH
1310}
1311
4690c4ab 1312/**
706026c2 1313 * insert_work - insert a work into a pool
112202d9 1314 * @pwq: pwq @work belongs to
4690c4ab
TH
1315 * @work: work to insert
1316 * @head: insertion point
1317 * @extra_flags: extra WORK_STRUCT_* flags to set
1318 *
112202d9 1319 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1320 * work_struct flags.
4690c4ab
TH
1321 *
1322 * CONTEXT:
d565ed63 1323 * spin_lock_irq(pool->lock).
4690c4ab 1324 */
112202d9
TH
1325static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1326 struct list_head *head, unsigned int extra_flags)
b89deed3 1327{
112202d9 1328 struct worker_pool *pool = pwq->pool;
e22bee78 1329
4690c4ab 1330 /* we own @work, set data and link */
112202d9 1331 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1332 list_add_tail(&work->entry, head);
8864b4e5 1333 get_pwq(pwq);
e22bee78
TH
1334
1335 /*
c5aa87bb
TH
1336 * Ensure either wq_worker_sleeping() sees the above
1337 * list_add_tail() or we see zero nr_running to avoid workers lying
1338 * around lazily while there are works to be processed.
e22bee78
TH
1339 */
1340 smp_mb();
1341
63d95a91
TH
1342 if (__need_more_worker(pool))
1343 wake_up_worker(pool);
b89deed3
ON
1344}
1345
c8efcc25
TH
1346/*
1347 * Test whether @work is being queued from another work executing on the
8d03ecfe 1348 * same workqueue.
c8efcc25
TH
1349 */
1350static bool is_chained_work(struct workqueue_struct *wq)
1351{
8d03ecfe
TH
1352 struct worker *worker;
1353
1354 worker = current_wq_worker();
1355 /*
bf393fd4 1356 * Return %true iff I'm a worker executing a work item on @wq. If
8d03ecfe
TH
1357 * I'm @worker, it's safe to dereference it without locking.
1358 */
112202d9 1359 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1360}
1361
ef557180
MG
1362/*
1363 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1364 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1365 * avoid perturbing sensitive tasks.
1366 */
1367static int wq_select_unbound_cpu(int cpu)
1368{
f303fccb 1369 static bool printed_dbg_warning;
ef557180
MG
1370 int new_cpu;
1371
f303fccb
TH
1372 if (likely(!wq_debug_force_rr_cpu)) {
1373 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1374 return cpu;
1375 } else if (!printed_dbg_warning) {
1376 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1377 printed_dbg_warning = true;
1378 }
1379
ef557180
MG
1380 if (cpumask_empty(wq_unbound_cpumask))
1381 return cpu;
1382
1383 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1384 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1385 if (unlikely(new_cpu >= nr_cpu_ids)) {
1386 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1387 if (unlikely(new_cpu >= nr_cpu_ids))
1388 return cpu;
1389 }
1390 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1391
1392 return new_cpu;
1393}
1394
d84ff051 1395static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1396 struct work_struct *work)
1397{
112202d9 1398 struct pool_workqueue *pwq;
c9178087 1399 struct worker_pool *last_pool;
1e19ffc6 1400 struct list_head *worklist;
8a2e8e5d 1401 unsigned int work_flags;
b75cac93 1402 unsigned int req_cpu = cpu;
8930caba
TH
1403
1404 /*
1405 * While a work item is PENDING && off queue, a task trying to
1406 * steal the PENDING will busy-loop waiting for it to either get
1407 * queued or lose PENDING. Grabbing PENDING and queueing should
1408 * happen with IRQ disabled.
1409 */
8e8eb730 1410 lockdep_assert_irqs_disabled();
1da177e4 1411
dc186ad7 1412 debug_work_activate(work);
1e19ffc6 1413
9ef28a73 1414 /* if draining, only works from the same workqueue are allowed */
618b01eb 1415 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1416 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1417 return;
9e8cd2f5 1418retry:
df2d5ae4 1419 if (req_cpu == WORK_CPU_UNBOUND)
ef557180 1420 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1421
c9178087 1422 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1423 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1424 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1425 else
1426 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1427
c9178087
TH
1428 /*
1429 * If @work was previously on a different pool, it might still be
1430 * running there, in which case the work needs to be queued on that
1431 * pool to guarantee non-reentrancy.
1432 */
1433 last_pool = get_work_pool(work);
1434 if (last_pool && last_pool != pwq->pool) {
1435 struct worker *worker;
18aa9eff 1436
c9178087 1437 spin_lock(&last_pool->lock);
18aa9eff 1438
c9178087 1439 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1440
c9178087
TH
1441 if (worker && worker->current_pwq->wq == wq) {
1442 pwq = worker->current_pwq;
8930caba 1443 } else {
c9178087
TH
1444 /* meh... not running there, queue here */
1445 spin_unlock(&last_pool->lock);
112202d9 1446 spin_lock(&pwq->pool->lock);
8930caba 1447 }
f3421797 1448 } else {
112202d9 1449 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1450 }
1451
9e8cd2f5
TH
1452 /*
1453 * pwq is determined and locked. For unbound pools, we could have
1454 * raced with pwq release and it could already be dead. If its
1455 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1456 * without another pwq replacing it in the numa_pwq_tbl or while
1457 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1458 * make forward-progress.
1459 */
1460 if (unlikely(!pwq->refcnt)) {
1461 if (wq->flags & WQ_UNBOUND) {
1462 spin_unlock(&pwq->pool->lock);
1463 cpu_relax();
1464 goto retry;
1465 }
1466 /* oops */
1467 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1468 wq->name, cpu);
1469 }
1470
112202d9
TH
1471 /* pwq determined, queue */
1472 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1473
f5b2552b 1474 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1475 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1476 return;
1477 }
1e19ffc6 1478
112202d9
TH
1479 pwq->nr_in_flight[pwq->work_color]++;
1480 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1481
112202d9 1482 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1483 trace_workqueue_activate_work(work);
112202d9
TH
1484 pwq->nr_active++;
1485 worklist = &pwq->pool->worklist;
82607adc
TH
1486 if (list_empty(worklist))
1487 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1488 } else {
1489 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1490 worklist = &pwq->delayed_works;
8a2e8e5d 1491 }
1e19ffc6 1492
112202d9 1493 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1494
112202d9 1495 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1496}
1497
0fcb78c2 1498/**
c1a220e7
ZR
1499 * queue_work_on - queue work on specific cpu
1500 * @cpu: CPU number to execute work on
0fcb78c2
REB
1501 * @wq: workqueue to use
1502 * @work: work to queue
1503 *
c1a220e7
ZR
1504 * We queue the work to a specific CPU, the caller must ensure it
1505 * can't go away.
d185af30
YB
1506 *
1507 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1508 */
d4283e93
TH
1509bool queue_work_on(int cpu, struct workqueue_struct *wq,
1510 struct work_struct *work)
1da177e4 1511{
d4283e93 1512 bool ret = false;
8930caba 1513 unsigned long flags;
ef1ca236 1514
8930caba 1515 local_irq_save(flags);
c1a220e7 1516
22df02bb 1517 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1518 __queue_work(cpu, wq, work);
d4283e93 1519 ret = true;
c1a220e7 1520 }
ef1ca236 1521
8930caba 1522 local_irq_restore(flags);
1da177e4
LT
1523 return ret;
1524}
ad7b1f84 1525EXPORT_SYMBOL(queue_work_on);
1da177e4 1526
8204e0c1
AD
1527/**
1528 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1529 * @node: NUMA node ID that we want to select a CPU from
1530 *
1531 * This function will attempt to find a "random" cpu available on a given
1532 * node. If there are no CPUs available on the given node it will return
1533 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1534 * available CPU if we need to schedule this work.
1535 */
1536static int workqueue_select_cpu_near(int node)
1537{
1538 int cpu;
1539
1540 /* No point in doing this if NUMA isn't enabled for workqueues */
1541 if (!wq_numa_enabled)
1542 return WORK_CPU_UNBOUND;
1543
1544 /* Delay binding to CPU if node is not valid or online */
1545 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1546 return WORK_CPU_UNBOUND;
1547
1548 /* Use local node/cpu if we are already there */
1549 cpu = raw_smp_processor_id();
1550 if (node == cpu_to_node(cpu))
1551 return cpu;
1552
1553 /* Use "random" otherwise know as "first" online CPU of node */
1554 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1555
1556 /* If CPU is valid return that, otherwise just defer */
1557 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1558}
1559
1560/**
1561 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1562 * @node: NUMA node that we are targeting the work for
1563 * @wq: workqueue to use
1564 * @work: work to queue
1565 *
1566 * We queue the work to a "random" CPU within a given NUMA node. The basic
1567 * idea here is to provide a way to somehow associate work with a given
1568 * NUMA node.
1569 *
1570 * This function will only make a best effort attempt at getting this onto
1571 * the right NUMA node. If no node is requested or the requested node is
1572 * offline then we just fall back to standard queue_work behavior.
1573 *
1574 * Currently the "random" CPU ends up being the first available CPU in the
1575 * intersection of cpu_online_mask and the cpumask of the node, unless we
1576 * are running on the node. In that case we just use the current CPU.
1577 *
1578 * Return: %false if @work was already on a queue, %true otherwise.
1579 */
1580bool queue_work_node(int node, struct workqueue_struct *wq,
1581 struct work_struct *work)
1582{
1583 unsigned long flags;
1584 bool ret = false;
1585
1586 /*
1587 * This current implementation is specific to unbound workqueues.
1588 * Specifically we only return the first available CPU for a given
1589 * node instead of cycling through individual CPUs within the node.
1590 *
1591 * If this is used with a per-cpu workqueue then the logic in
1592 * workqueue_select_cpu_near would need to be updated to allow for
1593 * some round robin type logic.
1594 */
1595 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1596
1597 local_irq_save(flags);
1598
1599 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1600 int cpu = workqueue_select_cpu_near(node);
1601
1602 __queue_work(cpu, wq, work);
1603 ret = true;
1604 }
1605
1606 local_irq_restore(flags);
1607 return ret;
1608}
1609EXPORT_SYMBOL_GPL(queue_work_node);
1610
8c20feb6 1611void delayed_work_timer_fn(struct timer_list *t)
1da177e4 1612{
8c20feb6 1613 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 1614
e0aecdd8 1615 /* should have been called from irqsafe timer with irq already off */
60c057bc 1616 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1617}
1438ade5 1618EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1619
7beb2edf
TH
1620static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1621 struct delayed_work *dwork, unsigned long delay)
1da177e4 1622{
7beb2edf
TH
1623 struct timer_list *timer = &dwork->timer;
1624 struct work_struct *work = &dwork->work;
7beb2edf 1625
637fdbae 1626 WARN_ON_ONCE(!wq);
841b86f3 1627 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
fc4b514f
TH
1628 WARN_ON_ONCE(timer_pending(timer));
1629 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1630
8852aac2
TH
1631 /*
1632 * If @delay is 0, queue @dwork->work immediately. This is for
1633 * both optimization and correctness. The earliest @timer can
1634 * expire is on the closest next tick and delayed_work users depend
1635 * on that there's no such delay when @delay is 0.
1636 */
1637 if (!delay) {
1638 __queue_work(cpu, wq, &dwork->work);
1639 return;
1640 }
1641
60c057bc 1642 dwork->wq = wq;
1265057f 1643 dwork->cpu = cpu;
7beb2edf
TH
1644 timer->expires = jiffies + delay;
1645
041bd12e
TH
1646 if (unlikely(cpu != WORK_CPU_UNBOUND))
1647 add_timer_on(timer, cpu);
1648 else
1649 add_timer(timer);
1da177e4
LT
1650}
1651
0fcb78c2
REB
1652/**
1653 * queue_delayed_work_on - queue work on specific CPU after delay
1654 * @cpu: CPU number to execute work on
1655 * @wq: workqueue to use
af9997e4 1656 * @dwork: work to queue
0fcb78c2
REB
1657 * @delay: number of jiffies to wait before queueing
1658 *
d185af30 1659 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1660 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1661 * execution.
0fcb78c2 1662 */
d4283e93
TH
1663bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1664 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1665{
52bad64d 1666 struct work_struct *work = &dwork->work;
d4283e93 1667 bool ret = false;
8930caba 1668 unsigned long flags;
7a6bc1cd 1669
8930caba
TH
1670 /* read the comment in __queue_work() */
1671 local_irq_save(flags);
7a6bc1cd 1672
22df02bb 1673 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1674 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1675 ret = true;
7a6bc1cd 1676 }
8a3e77cc 1677
8930caba 1678 local_irq_restore(flags);
7a6bc1cd
VP
1679 return ret;
1680}
ad7b1f84 1681EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1682
8376fe22
TH
1683/**
1684 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1685 * @cpu: CPU number to execute work on
1686 * @wq: workqueue to use
1687 * @dwork: work to queue
1688 * @delay: number of jiffies to wait before queueing
1689 *
1690 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1691 * modify @dwork's timer so that it expires after @delay. If @delay is
1692 * zero, @work is guaranteed to be scheduled immediately regardless of its
1693 * current state.
1694 *
d185af30 1695 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1696 * pending and its timer was modified.
1697 *
e0aecdd8 1698 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1699 * See try_to_grab_pending() for details.
1700 */
1701bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1702 struct delayed_work *dwork, unsigned long delay)
1703{
1704 unsigned long flags;
1705 int ret;
c7fc77f7 1706
8376fe22
TH
1707 do {
1708 ret = try_to_grab_pending(&dwork->work, true, &flags);
1709 } while (unlikely(ret == -EAGAIN));
63bc0362 1710
8376fe22
TH
1711 if (likely(ret >= 0)) {
1712 __queue_delayed_work(cpu, wq, dwork, delay);
1713 local_irq_restore(flags);
7a6bc1cd 1714 }
8376fe22
TH
1715
1716 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1717 return ret;
1718}
8376fe22
TH
1719EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1720
05f0fe6b
TH
1721static void rcu_work_rcufn(struct rcu_head *rcu)
1722{
1723 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1724
1725 /* read the comment in __queue_work() */
1726 local_irq_disable();
1727 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1728 local_irq_enable();
1729}
1730
1731/**
1732 * queue_rcu_work - queue work after a RCU grace period
1733 * @wq: workqueue to use
1734 * @rwork: work to queue
1735 *
1736 * Return: %false if @rwork was already pending, %true otherwise. Note
1737 * that a full RCU grace period is guaranteed only after a %true return.
bf393fd4 1738 * While @rwork is guaranteed to be executed after a %false return, the
05f0fe6b
TH
1739 * execution may happen before a full RCU grace period has passed.
1740 */
1741bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1742{
1743 struct work_struct *work = &rwork->work;
1744
1745 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1746 rwork->wq = wq;
1747 call_rcu(&rwork->rcu, rcu_work_rcufn);
1748 return true;
1749 }
1750
1751 return false;
1752}
1753EXPORT_SYMBOL(queue_rcu_work);
1754
c8e55f36
TH
1755/**
1756 * worker_enter_idle - enter idle state
1757 * @worker: worker which is entering idle state
1758 *
1759 * @worker is entering idle state. Update stats and idle timer if
1760 * necessary.
1761 *
1762 * LOCKING:
d565ed63 1763 * spin_lock_irq(pool->lock).
c8e55f36
TH
1764 */
1765static void worker_enter_idle(struct worker *worker)
1da177e4 1766{
bd7bdd43 1767 struct worker_pool *pool = worker->pool;
c8e55f36 1768
6183c009
TH
1769 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1770 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1771 (worker->hentry.next || worker->hentry.pprev)))
1772 return;
c8e55f36 1773
051e1850 1774 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1775 worker->flags |= WORKER_IDLE;
bd7bdd43 1776 pool->nr_idle++;
e22bee78 1777 worker->last_active = jiffies;
c8e55f36
TH
1778
1779 /* idle_list is LIFO */
bd7bdd43 1780 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1781
628c78e7
TH
1782 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1783 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1784
544ecf31 1785 /*
e8b3f8db 1786 * Sanity check nr_running. Because unbind_workers() releases
d565ed63 1787 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1788 * nr_running, the warning may trigger spuriously. Check iff
1789 * unbind is not in progress.
544ecf31 1790 */
24647570 1791 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1792 pool->nr_workers == pool->nr_idle &&
e19e397a 1793 atomic_read(&pool->nr_running));
c8e55f36
TH
1794}
1795
1796/**
1797 * worker_leave_idle - leave idle state
1798 * @worker: worker which is leaving idle state
1799 *
1800 * @worker is leaving idle state. Update stats.
1801 *
1802 * LOCKING:
d565ed63 1803 * spin_lock_irq(pool->lock).
c8e55f36
TH
1804 */
1805static void worker_leave_idle(struct worker *worker)
1806{
bd7bdd43 1807 struct worker_pool *pool = worker->pool;
c8e55f36 1808
6183c009
TH
1809 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1810 return;
d302f017 1811 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1812 pool->nr_idle--;
c8e55f36
TH
1813 list_del_init(&worker->entry);
1814}
1815
f7537df5 1816static struct worker *alloc_worker(int node)
c34056a3
TH
1817{
1818 struct worker *worker;
1819
f7537df5 1820 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1821 if (worker) {
1822 INIT_LIST_HEAD(&worker->entry);
affee4b2 1823 INIT_LIST_HEAD(&worker->scheduled);
da028469 1824 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1825 /* on creation a worker is in !idle && prep state */
1826 worker->flags = WORKER_PREP;
c8e55f36 1827 }
c34056a3
TH
1828 return worker;
1829}
1830
4736cbf7
LJ
1831/**
1832 * worker_attach_to_pool() - attach a worker to a pool
1833 * @worker: worker to be attached
1834 * @pool: the target pool
1835 *
1836 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1837 * cpu-binding of @worker are kept coordinated with the pool across
1838 * cpu-[un]hotplugs.
1839 */
1840static void worker_attach_to_pool(struct worker *worker,
1841 struct worker_pool *pool)
1842{
1258fae7 1843 mutex_lock(&wq_pool_attach_mutex);
4736cbf7
LJ
1844
1845 /*
1846 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1847 * online CPUs. It'll be re-applied when any of the CPUs come up.
1848 */
1849 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1850
1851 /*
1258fae7
TH
1852 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1853 * stable across this function. See the comments above the flag
1854 * definition for details.
4736cbf7
LJ
1855 */
1856 if (pool->flags & POOL_DISASSOCIATED)
1857 worker->flags |= WORKER_UNBOUND;
1858
1859 list_add_tail(&worker->node, &pool->workers);
a2d812a2 1860 worker->pool = pool;
4736cbf7 1861
1258fae7 1862 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
1863}
1864
60f5a4bc
LJ
1865/**
1866 * worker_detach_from_pool() - detach a worker from its pool
1867 * @worker: worker which is attached to its pool
60f5a4bc 1868 *
4736cbf7
LJ
1869 * Undo the attaching which had been done in worker_attach_to_pool(). The
1870 * caller worker shouldn't access to the pool after detached except it has
1871 * other reference to the pool.
60f5a4bc 1872 */
a2d812a2 1873static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 1874{
a2d812a2 1875 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
1876 struct completion *detach_completion = NULL;
1877
1258fae7 1878 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 1879
da028469 1880 list_del(&worker->node);
a2d812a2
TH
1881 worker->pool = NULL;
1882
da028469 1883 if (list_empty(&pool->workers))
60f5a4bc 1884 detach_completion = pool->detach_completion;
1258fae7 1885 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 1886
b62c0751
LJ
1887 /* clear leftover flags without pool->lock after it is detached */
1888 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1889
60f5a4bc
LJ
1890 if (detach_completion)
1891 complete(detach_completion);
1892}
1893
c34056a3
TH
1894/**
1895 * create_worker - create a new workqueue worker
63d95a91 1896 * @pool: pool the new worker will belong to
c34056a3 1897 *
051e1850 1898 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1899 *
1900 * CONTEXT:
1901 * Might sleep. Does GFP_KERNEL allocations.
1902 *
d185af30 1903 * Return:
c34056a3
TH
1904 * Pointer to the newly created worker.
1905 */
bc2ae0f5 1906static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1907{
c34056a3 1908 struct worker *worker = NULL;
f3421797 1909 int id = -1;
e3c916a4 1910 char id_buf[16];
c34056a3 1911
7cda9aae
LJ
1912 /* ID is needed to determine kthread name */
1913 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1914 if (id < 0)
1915 goto fail;
c34056a3 1916
f7537df5 1917 worker = alloc_worker(pool->node);
c34056a3
TH
1918 if (!worker)
1919 goto fail;
1920
c34056a3
TH
1921 worker->id = id;
1922
29c91e99 1923 if (pool->cpu >= 0)
e3c916a4
TH
1924 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1925 pool->attrs->nice < 0 ? "H" : "");
f3421797 1926 else
e3c916a4
TH
1927 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1928
f3f90ad4 1929 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1930 "kworker/%s", id_buf);
c34056a3
TH
1931 if (IS_ERR(worker->task))
1932 goto fail;
1933
91151228 1934 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1935 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1936
da028469 1937 /* successful, attach the worker to the pool */
4736cbf7 1938 worker_attach_to_pool(worker, pool);
822d8405 1939
051e1850
LJ
1940 /* start the newly created worker */
1941 spin_lock_irq(&pool->lock);
1942 worker->pool->nr_workers++;
1943 worker_enter_idle(worker);
1944 wake_up_process(worker->task);
1945 spin_unlock_irq(&pool->lock);
1946
c34056a3 1947 return worker;
822d8405 1948
c34056a3 1949fail:
9625ab17 1950 if (id >= 0)
7cda9aae 1951 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1952 kfree(worker);
1953 return NULL;
1954}
1955
c34056a3
TH
1956/**
1957 * destroy_worker - destroy a workqueue worker
1958 * @worker: worker to be destroyed
1959 *
73eb7fe7
LJ
1960 * Destroy @worker and adjust @pool stats accordingly. The worker should
1961 * be idle.
c8e55f36
TH
1962 *
1963 * CONTEXT:
60f5a4bc 1964 * spin_lock_irq(pool->lock).
c34056a3
TH
1965 */
1966static void destroy_worker(struct worker *worker)
1967{
bd7bdd43 1968 struct worker_pool *pool = worker->pool;
c34056a3 1969
cd549687
TH
1970 lockdep_assert_held(&pool->lock);
1971
c34056a3 1972 /* sanity check frenzy */
6183c009 1973 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1974 WARN_ON(!list_empty(&worker->scheduled)) ||
1975 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1976 return;
c34056a3 1977
73eb7fe7
LJ
1978 pool->nr_workers--;
1979 pool->nr_idle--;
5bdfff96 1980
c8e55f36 1981 list_del_init(&worker->entry);
cb444766 1982 worker->flags |= WORKER_DIE;
60f5a4bc 1983 wake_up_process(worker->task);
c34056a3
TH
1984}
1985
32a6c723 1986static void idle_worker_timeout(struct timer_list *t)
e22bee78 1987{
32a6c723 1988 struct worker_pool *pool = from_timer(pool, t, idle_timer);
e22bee78 1989
d565ed63 1990 spin_lock_irq(&pool->lock);
e22bee78 1991
3347fc9f 1992 while (too_many_workers(pool)) {
e22bee78
TH
1993 struct worker *worker;
1994 unsigned long expires;
1995
1996 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1997 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1998 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1999
3347fc9f 2000 if (time_before(jiffies, expires)) {
63d95a91 2001 mod_timer(&pool->idle_timer, expires);
3347fc9f 2002 break;
d5abe669 2003 }
3347fc9f
LJ
2004
2005 destroy_worker(worker);
e22bee78
TH
2006 }
2007
d565ed63 2008 spin_unlock_irq(&pool->lock);
e22bee78 2009}
d5abe669 2010
493a1724 2011static void send_mayday(struct work_struct *work)
e22bee78 2012{
112202d9
TH
2013 struct pool_workqueue *pwq = get_work_pwq(work);
2014 struct workqueue_struct *wq = pwq->wq;
493a1724 2015
2e109a28 2016 lockdep_assert_held(&wq_mayday_lock);
e22bee78 2017
493008a8 2018 if (!wq->rescuer)
493a1724 2019 return;
e22bee78
TH
2020
2021 /* mayday mayday mayday */
493a1724 2022 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
2023 /*
2024 * If @pwq is for an unbound wq, its base ref may be put at
2025 * any time due to an attribute change. Pin @pwq until the
2026 * rescuer is done with it.
2027 */
2028 get_pwq(pwq);
493a1724 2029 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 2030 wake_up_process(wq->rescuer->task);
493a1724 2031 }
e22bee78
TH
2032}
2033
32a6c723 2034static void pool_mayday_timeout(struct timer_list *t)
e22bee78 2035{
32a6c723 2036 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
2037 struct work_struct *work;
2038
b2d82909
TH
2039 spin_lock_irq(&pool->lock);
2040 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 2041
63d95a91 2042 if (need_to_create_worker(pool)) {
e22bee78
TH
2043 /*
2044 * We've been trying to create a new worker but
2045 * haven't been successful. We might be hitting an
2046 * allocation deadlock. Send distress signals to
2047 * rescuers.
2048 */
63d95a91 2049 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 2050 send_mayday(work);
1da177e4 2051 }
e22bee78 2052
b2d82909
TH
2053 spin_unlock(&wq_mayday_lock);
2054 spin_unlock_irq(&pool->lock);
e22bee78 2055
63d95a91 2056 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
2057}
2058
e22bee78
TH
2059/**
2060 * maybe_create_worker - create a new worker if necessary
63d95a91 2061 * @pool: pool to create a new worker for
e22bee78 2062 *
63d95a91 2063 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
2064 * have at least one idle worker on return from this function. If
2065 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 2066 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
2067 * possible allocation deadlock.
2068 *
c5aa87bb
TH
2069 * On return, need_to_create_worker() is guaranteed to be %false and
2070 * may_start_working() %true.
e22bee78
TH
2071 *
2072 * LOCKING:
d565ed63 2073 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2074 * multiple times. Does GFP_KERNEL allocations. Called only from
2075 * manager.
e22bee78 2076 */
29187a9e 2077static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
2078__releases(&pool->lock)
2079__acquires(&pool->lock)
1da177e4 2080{
e22bee78 2081restart:
d565ed63 2082 spin_unlock_irq(&pool->lock);
9f9c2364 2083
e22bee78 2084 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 2085 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
2086
2087 while (true) {
051e1850 2088 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 2089 break;
1da177e4 2090
e212f361 2091 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 2092
63d95a91 2093 if (!need_to_create_worker(pool))
e22bee78
TH
2094 break;
2095 }
2096
63d95a91 2097 del_timer_sync(&pool->mayday_timer);
d565ed63 2098 spin_lock_irq(&pool->lock);
051e1850
LJ
2099 /*
2100 * This is necessary even after a new worker was just successfully
2101 * created as @pool->lock was dropped and the new worker might have
2102 * already become busy.
2103 */
63d95a91 2104 if (need_to_create_worker(pool))
e22bee78 2105 goto restart;
e22bee78
TH
2106}
2107
73f53c4a 2108/**
e22bee78
TH
2109 * manage_workers - manage worker pool
2110 * @worker: self
73f53c4a 2111 *
706026c2 2112 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2113 * to. At any given time, there can be only zero or one manager per
706026c2 2114 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2115 *
2116 * The caller can safely start processing works on false return. On
2117 * true return, it's guaranteed that need_to_create_worker() is false
2118 * and may_start_working() is true.
73f53c4a
TH
2119 *
2120 * CONTEXT:
d565ed63 2121 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2122 * multiple times. Does GFP_KERNEL allocations.
2123 *
d185af30 2124 * Return:
29187a9e
TH
2125 * %false if the pool doesn't need management and the caller can safely
2126 * start processing works, %true if management function was performed and
2127 * the conditions that the caller verified before calling the function may
2128 * no longer be true.
73f53c4a 2129 */
e22bee78 2130static bool manage_workers(struct worker *worker)
73f53c4a 2131{
63d95a91 2132 struct worker_pool *pool = worker->pool;
73f53c4a 2133
692b4825 2134 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 2135 return false;
692b4825
TH
2136
2137 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 2138 pool->manager = worker;
1e19ffc6 2139
29187a9e 2140 maybe_create_worker(pool);
e22bee78 2141
2607d7a6 2142 pool->manager = NULL;
692b4825
TH
2143 pool->flags &= ~POOL_MANAGER_ACTIVE;
2144 wake_up(&wq_manager_wait);
29187a9e 2145 return true;
73f53c4a
TH
2146}
2147
a62428c0
TH
2148/**
2149 * process_one_work - process single work
c34056a3 2150 * @worker: self
a62428c0
TH
2151 * @work: work to process
2152 *
2153 * Process @work. This function contains all the logics necessary to
2154 * process a single work including synchronization against and
2155 * interaction with other workers on the same cpu, queueing and
2156 * flushing. As long as context requirement is met, any worker can
2157 * call this function to process a work.
2158 *
2159 * CONTEXT:
d565ed63 2160 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2161 */
c34056a3 2162static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2163__releases(&pool->lock)
2164__acquires(&pool->lock)
a62428c0 2165{
112202d9 2166 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2167 struct worker_pool *pool = worker->pool;
112202d9 2168 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2169 int work_color;
7e11629d 2170 struct worker *collision;
a62428c0
TH
2171#ifdef CONFIG_LOCKDEP
2172 /*
2173 * It is permissible to free the struct work_struct from
2174 * inside the function that is called from it, this we need to
2175 * take into account for lockdep too. To avoid bogus "held
2176 * lock freed" warnings as well as problems when looking into
2177 * work->lockdep_map, make a copy and use that here.
2178 */
4d82a1de
PZ
2179 struct lockdep_map lockdep_map;
2180
2181 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2182#endif
807407c0 2183 /* ensure we're on the correct CPU */
85327af6 2184 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2185 raw_smp_processor_id() != pool->cpu);
25511a47 2186
7e11629d
TH
2187 /*
2188 * A single work shouldn't be executed concurrently by
2189 * multiple workers on a single cpu. Check whether anyone is
2190 * already processing the work. If so, defer the work to the
2191 * currently executing one.
2192 */
c9e7cf27 2193 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2194 if (unlikely(collision)) {
2195 move_linked_works(work, &collision->scheduled, NULL);
2196 return;
2197 }
2198
8930caba 2199 /* claim and dequeue */
a62428c0 2200 debug_work_deactivate(work);
c9e7cf27 2201 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2202 worker->current_work = work;
a2c1c57b 2203 worker->current_func = work->func;
112202d9 2204 worker->current_pwq = pwq;
73f53c4a 2205 work_color = get_work_color(work);
7a22ad75 2206
8bf89593
TH
2207 /*
2208 * Record wq name for cmdline and debug reporting, may get
2209 * overridden through set_worker_desc().
2210 */
2211 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2212
a62428c0
TH
2213 list_del_init(&work->entry);
2214
fb0e7beb 2215 /*
228f1d00
LJ
2216 * CPU intensive works don't participate in concurrency management.
2217 * They're the scheduler's responsibility. This takes @worker out
2218 * of concurrency management and the next code block will chain
2219 * execution of the pending work items.
fb0e7beb
TH
2220 */
2221 if (unlikely(cpu_intensive))
228f1d00 2222 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2223
974271c4 2224 /*
a489a03e
LJ
2225 * Wake up another worker if necessary. The condition is always
2226 * false for normal per-cpu workers since nr_running would always
2227 * be >= 1 at this point. This is used to chain execution of the
2228 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2229 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2230 */
a489a03e 2231 if (need_more_worker(pool))
63d95a91 2232 wake_up_worker(pool);
974271c4 2233
8930caba 2234 /*
7c3eed5c 2235 * Record the last pool and clear PENDING which should be the last
d565ed63 2236 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2237 * PENDING and queued state changes happen together while IRQ is
2238 * disabled.
8930caba 2239 */
7c3eed5c 2240 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2241
d565ed63 2242 spin_unlock_irq(&pool->lock);
a62428c0 2243
a1d14934 2244 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2245 lock_map_acquire(&lockdep_map);
e6f3faa7 2246 /*
f52be570
PZ
2247 * Strictly speaking we should mark the invariant state without holding
2248 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2249 *
2250 * However, that would result in:
2251 *
2252 * A(W1)
2253 * WFC(C)
2254 * A(W1)
2255 * C(C)
2256 *
2257 * Which would create W1->C->W1 dependencies, even though there is no
2258 * actual deadlock possible. There are two solutions, using a
2259 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2260 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2261 * these locks.
2262 *
2263 * AFAICT there is no possible deadlock scenario between the
2264 * flush_work() and complete() primitives (except for single-threaded
2265 * workqueues), so hiding them isn't a problem.
2266 */
f52be570 2267 lockdep_invariant_state(true);
e36c886a 2268 trace_workqueue_execute_start(work);
a2c1c57b 2269 worker->current_func(work);
e36c886a
AV
2270 /*
2271 * While we must be careful to not use "work" after this, the trace
2272 * point will only record its address.
2273 */
2274 trace_workqueue_execute_end(work);
a62428c0 2275 lock_map_release(&lockdep_map);
112202d9 2276 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2277
2278 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2279 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2280 " last function: %pf\n",
a2c1c57b
TH
2281 current->comm, preempt_count(), task_pid_nr(current),
2282 worker->current_func);
a62428c0
TH
2283 debug_show_held_locks(current);
2284 dump_stack();
2285 }
2286
b22ce278
TH
2287 /*
2288 * The following prevents a kworker from hogging CPU on !PREEMPT
2289 * kernels, where a requeueing work item waiting for something to
2290 * happen could deadlock with stop_machine as such work item could
2291 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2292 * stop_machine. At the same time, report a quiescent RCU state so
2293 * the same condition doesn't freeze RCU.
b22ce278 2294 */
a7e6425e 2295 cond_resched();
b22ce278 2296
d565ed63 2297 spin_lock_irq(&pool->lock);
a62428c0 2298
fb0e7beb
TH
2299 /* clear cpu intensive status */
2300 if (unlikely(cpu_intensive))
2301 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2302
1b69ac6b
JW
2303 /* tag the worker for identification in schedule() */
2304 worker->last_func = worker->current_func;
2305
a62428c0 2306 /* we're done with it, release */
42f8570f 2307 hash_del(&worker->hentry);
c34056a3 2308 worker->current_work = NULL;
a2c1c57b 2309 worker->current_func = NULL;
112202d9
TH
2310 worker->current_pwq = NULL;
2311 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2312}
2313
affee4b2
TH
2314/**
2315 * process_scheduled_works - process scheduled works
2316 * @worker: self
2317 *
2318 * Process all scheduled works. Please note that the scheduled list
2319 * may change while processing a work, so this function repeatedly
2320 * fetches a work from the top and executes it.
2321 *
2322 * CONTEXT:
d565ed63 2323 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2324 * multiple times.
2325 */
2326static void process_scheduled_works(struct worker *worker)
1da177e4 2327{
affee4b2
TH
2328 while (!list_empty(&worker->scheduled)) {
2329 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2330 struct work_struct, entry);
c34056a3 2331 process_one_work(worker, work);
1da177e4 2332 }
1da177e4
LT
2333}
2334
197f6acc
TH
2335static void set_pf_worker(bool val)
2336{
2337 mutex_lock(&wq_pool_attach_mutex);
2338 if (val)
2339 current->flags |= PF_WQ_WORKER;
2340 else
2341 current->flags &= ~PF_WQ_WORKER;
2342 mutex_unlock(&wq_pool_attach_mutex);
2343}
2344
4690c4ab
TH
2345/**
2346 * worker_thread - the worker thread function
c34056a3 2347 * @__worker: self
4690c4ab 2348 *
c5aa87bb
TH
2349 * The worker thread function. All workers belong to a worker_pool -
2350 * either a per-cpu one or dynamic unbound one. These workers process all
2351 * work items regardless of their specific target workqueue. The only
2352 * exception is work items which belong to workqueues with a rescuer which
2353 * will be explained in rescuer_thread().
d185af30
YB
2354 *
2355 * Return: 0
4690c4ab 2356 */
c34056a3 2357static int worker_thread(void *__worker)
1da177e4 2358{
c34056a3 2359 struct worker *worker = __worker;
bd7bdd43 2360 struct worker_pool *pool = worker->pool;
1da177e4 2361
e22bee78 2362 /* tell the scheduler that this is a workqueue worker */
197f6acc 2363 set_pf_worker(true);
c8e55f36 2364woke_up:
d565ed63 2365 spin_lock_irq(&pool->lock);
1da177e4 2366
a9ab775b
TH
2367 /* am I supposed to die? */
2368 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2369 spin_unlock_irq(&pool->lock);
a9ab775b 2370 WARN_ON_ONCE(!list_empty(&worker->entry));
197f6acc 2371 set_pf_worker(false);
60f5a4bc
LJ
2372
2373 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2374 ida_simple_remove(&pool->worker_ida, worker->id);
a2d812a2 2375 worker_detach_from_pool(worker);
60f5a4bc 2376 kfree(worker);
a9ab775b 2377 return 0;
c8e55f36 2378 }
affee4b2 2379
c8e55f36 2380 worker_leave_idle(worker);
db7bccf4 2381recheck:
e22bee78 2382 /* no more worker necessary? */
63d95a91 2383 if (!need_more_worker(pool))
e22bee78
TH
2384 goto sleep;
2385
2386 /* do we need to manage? */
63d95a91 2387 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2388 goto recheck;
2389
c8e55f36
TH
2390 /*
2391 * ->scheduled list can only be filled while a worker is
2392 * preparing to process a work or actually processing it.
2393 * Make sure nobody diddled with it while I was sleeping.
2394 */
6183c009 2395 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2396
e22bee78 2397 /*
a9ab775b
TH
2398 * Finish PREP stage. We're guaranteed to have at least one idle
2399 * worker or that someone else has already assumed the manager
2400 * role. This is where @worker starts participating in concurrency
2401 * management if applicable and concurrency management is restored
2402 * after being rebound. See rebind_workers() for details.
e22bee78 2403 */
a9ab775b 2404 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2405
2406 do {
c8e55f36 2407 struct work_struct *work =
bd7bdd43 2408 list_first_entry(&pool->worklist,
c8e55f36
TH
2409 struct work_struct, entry);
2410
82607adc
TH
2411 pool->watchdog_ts = jiffies;
2412
c8e55f36
TH
2413 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2414 /* optimization path, not strictly necessary */
2415 process_one_work(worker, work);
2416 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2417 process_scheduled_works(worker);
c8e55f36
TH
2418 } else {
2419 move_linked_works(work, &worker->scheduled, NULL);
2420 process_scheduled_works(worker);
affee4b2 2421 }
63d95a91 2422 } while (keep_working(pool));
e22bee78 2423
228f1d00 2424 worker_set_flags(worker, WORKER_PREP);
d313dd85 2425sleep:
c8e55f36 2426 /*
d565ed63
TH
2427 * pool->lock is held and there's no work to process and no need to
2428 * manage, sleep. Workers are woken up only while holding
2429 * pool->lock or from local cpu, so setting the current state
2430 * before releasing pool->lock is enough to prevent losing any
2431 * event.
c8e55f36
TH
2432 */
2433 worker_enter_idle(worker);
c5a94a61 2434 __set_current_state(TASK_IDLE);
d565ed63 2435 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2436 schedule();
2437 goto woke_up;
1da177e4
LT
2438}
2439
e22bee78
TH
2440/**
2441 * rescuer_thread - the rescuer thread function
111c225a 2442 * @__rescuer: self
e22bee78
TH
2443 *
2444 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2445 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2446 *
706026c2 2447 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2448 * worker which uses GFP_KERNEL allocation which has slight chance of
2449 * developing into deadlock if some works currently on the same queue
2450 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2451 * the problem rescuer solves.
2452 *
706026c2
TH
2453 * When such condition is possible, the pool summons rescuers of all
2454 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2455 * those works so that forward progress can be guaranteed.
2456 *
2457 * This should happen rarely.
d185af30
YB
2458 *
2459 * Return: 0
e22bee78 2460 */
111c225a 2461static int rescuer_thread(void *__rescuer)
e22bee78 2462{
111c225a
TH
2463 struct worker *rescuer = __rescuer;
2464 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2465 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2466 bool should_stop;
e22bee78
TH
2467
2468 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2469
2470 /*
2471 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2472 * doesn't participate in concurrency management.
2473 */
197f6acc 2474 set_pf_worker(true);
e22bee78 2475repeat:
c5a94a61 2476 set_current_state(TASK_IDLE);
e22bee78 2477
4d595b86
LJ
2478 /*
2479 * By the time the rescuer is requested to stop, the workqueue
2480 * shouldn't have any work pending, but @wq->maydays may still have
2481 * pwq(s) queued. This can happen by non-rescuer workers consuming
2482 * all the work items before the rescuer got to them. Go through
2483 * @wq->maydays processing before acting on should_stop so that the
2484 * list is always empty on exit.
2485 */
2486 should_stop = kthread_should_stop();
e22bee78 2487
493a1724 2488 /* see whether any pwq is asking for help */
2e109a28 2489 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2490
2491 while (!list_empty(&wq->maydays)) {
2492 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2493 struct pool_workqueue, mayday_node);
112202d9 2494 struct worker_pool *pool = pwq->pool;
e22bee78 2495 struct work_struct *work, *n;
82607adc 2496 bool first = true;
e22bee78
TH
2497
2498 __set_current_state(TASK_RUNNING);
493a1724
TH
2499 list_del_init(&pwq->mayday_node);
2500
2e109a28 2501 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2502
51697d39
LJ
2503 worker_attach_to_pool(rescuer, pool);
2504
2505 spin_lock_irq(&pool->lock);
e22bee78
TH
2506
2507 /*
2508 * Slurp in all works issued via this workqueue and
2509 * process'em.
2510 */
0479c8c5 2511 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2512 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2513 if (get_work_pwq(work) == pwq) {
2514 if (first)
2515 pool->watchdog_ts = jiffies;
e22bee78 2516 move_linked_works(work, scheduled, &n);
82607adc
TH
2517 }
2518 first = false;
2519 }
e22bee78 2520
008847f6
N
2521 if (!list_empty(scheduled)) {
2522 process_scheduled_works(rescuer);
2523
2524 /*
2525 * The above execution of rescued work items could
2526 * have created more to rescue through
2527 * pwq_activate_first_delayed() or chained
2528 * queueing. Let's put @pwq back on mayday list so
2529 * that such back-to-back work items, which may be
2530 * being used to relieve memory pressure, don't
2531 * incur MAYDAY_INTERVAL delay inbetween.
2532 */
2533 if (need_to_create_worker(pool)) {
2534 spin_lock(&wq_mayday_lock);
2535 get_pwq(pwq);
2536 list_move_tail(&pwq->mayday_node, &wq->maydays);
2537 spin_unlock(&wq_mayday_lock);
2538 }
2539 }
7576958a 2540
77668c8b
LJ
2541 /*
2542 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2543 * go away while we're still attached to it.
77668c8b
LJ
2544 */
2545 put_pwq(pwq);
2546
7576958a 2547 /*
d8ca83e6 2548 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2549 * regular worker; otherwise, we end up with 0 concurrency
2550 * and stalling the execution.
2551 */
d8ca83e6 2552 if (need_more_worker(pool))
63d95a91 2553 wake_up_worker(pool);
7576958a 2554
13b1d625
LJ
2555 spin_unlock_irq(&pool->lock);
2556
a2d812a2 2557 worker_detach_from_pool(rescuer);
13b1d625
LJ
2558
2559 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2560 }
2561
2e109a28 2562 spin_unlock_irq(&wq_mayday_lock);
493a1724 2563
4d595b86
LJ
2564 if (should_stop) {
2565 __set_current_state(TASK_RUNNING);
197f6acc 2566 set_pf_worker(false);
4d595b86
LJ
2567 return 0;
2568 }
2569
111c225a
TH
2570 /* rescuers should never participate in concurrency management */
2571 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2572 schedule();
2573 goto repeat;
1da177e4
LT
2574}
2575
fca839c0
TH
2576/**
2577 * check_flush_dependency - check for flush dependency sanity
2578 * @target_wq: workqueue being flushed
2579 * @target_work: work item being flushed (NULL for workqueue flushes)
2580 *
2581 * %current is trying to flush the whole @target_wq or @target_work on it.
2582 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2583 * reclaiming memory or running on a workqueue which doesn't have
2584 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2585 * a deadlock.
2586 */
2587static void check_flush_dependency(struct workqueue_struct *target_wq,
2588 struct work_struct *target_work)
2589{
2590 work_func_t target_func = target_work ? target_work->func : NULL;
2591 struct worker *worker;
2592
2593 if (target_wq->flags & WQ_MEM_RECLAIM)
2594 return;
2595
2596 worker = current_wq_worker();
2597
2598 WARN_ONCE(current->flags & PF_MEMALLOC,
2599 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2600 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2601 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2602 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
fca839c0
TH
2603 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2604 worker->current_pwq->wq->name, worker->current_func,
2605 target_wq->name, target_func);
2606}
2607
fc2e4d70
ON
2608struct wq_barrier {
2609 struct work_struct work;
2610 struct completion done;
2607d7a6 2611 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2612};
2613
2614static void wq_barrier_func(struct work_struct *work)
2615{
2616 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2617 complete(&barr->done);
2618}
2619
4690c4ab
TH
2620/**
2621 * insert_wq_barrier - insert a barrier work
112202d9 2622 * @pwq: pwq to insert barrier into
4690c4ab 2623 * @barr: wq_barrier to insert
affee4b2
TH
2624 * @target: target work to attach @barr to
2625 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2626 *
affee4b2
TH
2627 * @barr is linked to @target such that @barr is completed only after
2628 * @target finishes execution. Please note that the ordering
2629 * guarantee is observed only with respect to @target and on the local
2630 * cpu.
2631 *
2632 * Currently, a queued barrier can't be canceled. This is because
2633 * try_to_grab_pending() can't determine whether the work to be
2634 * grabbed is at the head of the queue and thus can't clear LINKED
2635 * flag of the previous work while there must be a valid next work
2636 * after a work with LINKED flag set.
2637 *
2638 * Note that when @worker is non-NULL, @target may be modified
112202d9 2639 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2640 *
2641 * CONTEXT:
d565ed63 2642 * spin_lock_irq(pool->lock).
4690c4ab 2643 */
112202d9 2644static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2645 struct wq_barrier *barr,
2646 struct work_struct *target, struct worker *worker)
fc2e4d70 2647{
affee4b2
TH
2648 struct list_head *head;
2649 unsigned int linked = 0;
2650
dc186ad7 2651 /*
d565ed63 2652 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2653 * as we know for sure that this will not trigger any of the
2654 * checks and call back into the fixup functions where we
2655 * might deadlock.
2656 */
ca1cab37 2657 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2658 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 2659
fd1a5b04
BP
2660 init_completion_map(&barr->done, &target->lockdep_map);
2661
2607d7a6 2662 barr->task = current;
83c22520 2663
affee4b2
TH
2664 /*
2665 * If @target is currently being executed, schedule the
2666 * barrier to the worker; otherwise, put it after @target.
2667 */
2668 if (worker)
2669 head = worker->scheduled.next;
2670 else {
2671 unsigned long *bits = work_data_bits(target);
2672
2673 head = target->entry.next;
2674 /* there can already be other linked works, inherit and set */
2675 linked = *bits & WORK_STRUCT_LINKED;
2676 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2677 }
2678
dc186ad7 2679 debug_work_activate(&barr->work);
112202d9 2680 insert_work(pwq, &barr->work, head,
affee4b2 2681 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2682}
2683
73f53c4a 2684/**
112202d9 2685 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2686 * @wq: workqueue being flushed
2687 * @flush_color: new flush color, < 0 for no-op
2688 * @work_color: new work color, < 0 for no-op
2689 *
112202d9 2690 * Prepare pwqs for workqueue flushing.
73f53c4a 2691 *
112202d9
TH
2692 * If @flush_color is non-negative, flush_color on all pwqs should be
2693 * -1. If no pwq has in-flight commands at the specified color, all
2694 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2695 * has in flight commands, its pwq->flush_color is set to
2696 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2697 * wakeup logic is armed and %true is returned.
2698 *
2699 * The caller should have initialized @wq->first_flusher prior to
2700 * calling this function with non-negative @flush_color. If
2701 * @flush_color is negative, no flush color update is done and %false
2702 * is returned.
2703 *
112202d9 2704 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2705 * work_color which is previous to @work_color and all will be
2706 * advanced to @work_color.
2707 *
2708 * CONTEXT:
3c25a55d 2709 * mutex_lock(wq->mutex).
73f53c4a 2710 *
d185af30 2711 * Return:
73f53c4a
TH
2712 * %true if @flush_color >= 0 and there's something to flush. %false
2713 * otherwise.
2714 */
112202d9 2715static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2716 int flush_color, int work_color)
1da177e4 2717{
73f53c4a 2718 bool wait = false;
49e3cf44 2719 struct pool_workqueue *pwq;
1da177e4 2720
73f53c4a 2721 if (flush_color >= 0) {
6183c009 2722 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2723 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2724 }
2355b70f 2725
49e3cf44 2726 for_each_pwq(pwq, wq) {
112202d9 2727 struct worker_pool *pool = pwq->pool;
fc2e4d70 2728
b09f4fd3 2729 spin_lock_irq(&pool->lock);
83c22520 2730
73f53c4a 2731 if (flush_color >= 0) {
6183c009 2732 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2733
112202d9
TH
2734 if (pwq->nr_in_flight[flush_color]) {
2735 pwq->flush_color = flush_color;
2736 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2737 wait = true;
2738 }
2739 }
1da177e4 2740
73f53c4a 2741 if (work_color >= 0) {
6183c009 2742 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2743 pwq->work_color = work_color;
73f53c4a 2744 }
1da177e4 2745
b09f4fd3 2746 spin_unlock_irq(&pool->lock);
1da177e4 2747 }
2355b70f 2748
112202d9 2749 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2750 complete(&wq->first_flusher->done);
14441960 2751
73f53c4a 2752 return wait;
1da177e4
LT
2753}
2754
0fcb78c2 2755/**
1da177e4 2756 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2757 * @wq: workqueue to flush
1da177e4 2758 *
c5aa87bb
TH
2759 * This function sleeps until all work items which were queued on entry
2760 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2761 */
7ad5b3a5 2762void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2763{
73f53c4a
TH
2764 struct wq_flusher this_flusher = {
2765 .list = LIST_HEAD_INIT(this_flusher.list),
2766 .flush_color = -1,
fd1a5b04 2767 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
2768 };
2769 int next_color;
1da177e4 2770
3347fa09
TH
2771 if (WARN_ON(!wq_online))
2772 return;
2773
87915adc
JB
2774 lock_map_acquire(&wq->lockdep_map);
2775 lock_map_release(&wq->lockdep_map);
2776
3c25a55d 2777 mutex_lock(&wq->mutex);
73f53c4a
TH
2778
2779 /*
2780 * Start-to-wait phase
2781 */
2782 next_color = work_next_color(wq->work_color);
2783
2784 if (next_color != wq->flush_color) {
2785 /*
2786 * Color space is not full. The current work_color
2787 * becomes our flush_color and work_color is advanced
2788 * by one.
2789 */
6183c009 2790 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2791 this_flusher.flush_color = wq->work_color;
2792 wq->work_color = next_color;
2793
2794 if (!wq->first_flusher) {
2795 /* no flush in progress, become the first flusher */
6183c009 2796 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2797
2798 wq->first_flusher = &this_flusher;
2799
112202d9 2800 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2801 wq->work_color)) {
2802 /* nothing to flush, done */
2803 wq->flush_color = next_color;
2804 wq->first_flusher = NULL;
2805 goto out_unlock;
2806 }
2807 } else {
2808 /* wait in queue */
6183c009 2809 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2810 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2811 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2812 }
2813 } else {
2814 /*
2815 * Oops, color space is full, wait on overflow queue.
2816 * The next flush completion will assign us
2817 * flush_color and transfer to flusher_queue.
2818 */
2819 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2820 }
2821
fca839c0
TH
2822 check_flush_dependency(wq, NULL);
2823
3c25a55d 2824 mutex_unlock(&wq->mutex);
73f53c4a
TH
2825
2826 wait_for_completion(&this_flusher.done);
2827
2828 /*
2829 * Wake-up-and-cascade phase
2830 *
2831 * First flushers are responsible for cascading flushes and
2832 * handling overflow. Non-first flushers can simply return.
2833 */
2834 if (wq->first_flusher != &this_flusher)
2835 return;
2836
3c25a55d 2837 mutex_lock(&wq->mutex);
73f53c4a 2838
4ce48b37
TH
2839 /* we might have raced, check again with mutex held */
2840 if (wq->first_flusher != &this_flusher)
2841 goto out_unlock;
2842
73f53c4a
TH
2843 wq->first_flusher = NULL;
2844
6183c009
TH
2845 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2846 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2847
2848 while (true) {
2849 struct wq_flusher *next, *tmp;
2850
2851 /* complete all the flushers sharing the current flush color */
2852 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2853 if (next->flush_color != wq->flush_color)
2854 break;
2855 list_del_init(&next->list);
2856 complete(&next->done);
2857 }
2858
6183c009
TH
2859 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2860 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2861
2862 /* this flush_color is finished, advance by one */
2863 wq->flush_color = work_next_color(wq->flush_color);
2864
2865 /* one color has been freed, handle overflow queue */
2866 if (!list_empty(&wq->flusher_overflow)) {
2867 /*
2868 * Assign the same color to all overflowed
2869 * flushers, advance work_color and append to
2870 * flusher_queue. This is the start-to-wait
2871 * phase for these overflowed flushers.
2872 */
2873 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2874 tmp->flush_color = wq->work_color;
2875
2876 wq->work_color = work_next_color(wq->work_color);
2877
2878 list_splice_tail_init(&wq->flusher_overflow,
2879 &wq->flusher_queue);
112202d9 2880 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2881 }
2882
2883 if (list_empty(&wq->flusher_queue)) {
6183c009 2884 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2885 break;
2886 }
2887
2888 /*
2889 * Need to flush more colors. Make the next flusher
112202d9 2890 * the new first flusher and arm pwqs.
73f53c4a 2891 */
6183c009
TH
2892 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2893 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2894
2895 list_del_init(&next->list);
2896 wq->first_flusher = next;
2897
112202d9 2898 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2899 break;
2900
2901 /*
2902 * Meh... this color is already done, clear first
2903 * flusher and repeat cascading.
2904 */
2905 wq->first_flusher = NULL;
2906 }
2907
2908out_unlock:
3c25a55d 2909 mutex_unlock(&wq->mutex);
1da177e4 2910}
1dadafa8 2911EXPORT_SYMBOL(flush_workqueue);
1da177e4 2912
9c5a2ba7
TH
2913/**
2914 * drain_workqueue - drain a workqueue
2915 * @wq: workqueue to drain
2916 *
2917 * Wait until the workqueue becomes empty. While draining is in progress,
2918 * only chain queueing is allowed. IOW, only currently pending or running
2919 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2920 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2921 * by the depth of chaining and should be relatively short. Whine if it
2922 * takes too long.
2923 */
2924void drain_workqueue(struct workqueue_struct *wq)
2925{
2926 unsigned int flush_cnt = 0;
49e3cf44 2927 struct pool_workqueue *pwq;
9c5a2ba7
TH
2928
2929 /*
2930 * __queue_work() needs to test whether there are drainers, is much
2931 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2932 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2933 */
87fc741e 2934 mutex_lock(&wq->mutex);
9c5a2ba7 2935 if (!wq->nr_drainers++)
618b01eb 2936 wq->flags |= __WQ_DRAINING;
87fc741e 2937 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2938reflush:
2939 flush_workqueue(wq);
2940
b09f4fd3 2941 mutex_lock(&wq->mutex);
76af4d93 2942
49e3cf44 2943 for_each_pwq(pwq, wq) {
fa2563e4 2944 bool drained;
9c5a2ba7 2945
b09f4fd3 2946 spin_lock_irq(&pwq->pool->lock);
112202d9 2947 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2948 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2949
2950 if (drained)
9c5a2ba7
TH
2951 continue;
2952
2953 if (++flush_cnt == 10 ||
2954 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2955 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2956 wq->name, flush_cnt);
76af4d93 2957
b09f4fd3 2958 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2959 goto reflush;
2960 }
2961
9c5a2ba7 2962 if (!--wq->nr_drainers)
618b01eb 2963 wq->flags &= ~__WQ_DRAINING;
87fc741e 2964 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2965}
2966EXPORT_SYMBOL_GPL(drain_workqueue);
2967
d6e89786
JB
2968static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2969 bool from_cancel)
db700897 2970{
affee4b2 2971 struct worker *worker = NULL;
c9e7cf27 2972 struct worker_pool *pool;
112202d9 2973 struct pool_workqueue *pwq;
db700897
ON
2974
2975 might_sleep();
fa1b54e6
TH
2976
2977 local_irq_disable();
c9e7cf27 2978 pool = get_work_pool(work);
fa1b54e6
TH
2979 if (!pool) {
2980 local_irq_enable();
baf59022 2981 return false;
fa1b54e6 2982 }
db700897 2983
fa1b54e6 2984 spin_lock(&pool->lock);
0b3dae68 2985 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2986 pwq = get_work_pwq(work);
2987 if (pwq) {
2988 if (unlikely(pwq->pool != pool))
4690c4ab 2989 goto already_gone;
606a5020 2990 } else {
c9e7cf27 2991 worker = find_worker_executing_work(pool, work);
affee4b2 2992 if (!worker)
4690c4ab 2993 goto already_gone;
112202d9 2994 pwq = worker->current_pwq;
606a5020 2995 }
db700897 2996
fca839c0
TH
2997 check_flush_dependency(pwq->wq, work);
2998
112202d9 2999 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 3000 spin_unlock_irq(&pool->lock);
7a22ad75 3001
e159489b 3002 /*
a1d14934
PZ
3003 * Force a lock recursion deadlock when using flush_work() inside a
3004 * single-threaded or rescuer equipped workqueue.
3005 *
3006 * For single threaded workqueues the deadlock happens when the work
3007 * is after the work issuing the flush_work(). For rescuer equipped
3008 * workqueues the deadlock happens when the rescuer stalls, blocking
3009 * forward progress.
e159489b 3010 */
d6e89786
JB
3011 if (!from_cancel &&
3012 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
112202d9 3013 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
3014 lock_map_release(&pwq->wq->lockdep_map);
3015 }
e159489b 3016
401a8d04 3017 return true;
4690c4ab 3018already_gone:
d565ed63 3019 spin_unlock_irq(&pool->lock);
401a8d04 3020 return false;
db700897 3021}
baf59022 3022
d6e89786
JB
3023static bool __flush_work(struct work_struct *work, bool from_cancel)
3024{
3025 struct wq_barrier barr;
3026
3027 if (WARN_ON(!wq_online))
3028 return false;
3029
4d43d395
TH
3030 if (WARN_ON(!work->func))
3031 return false;
3032
87915adc
JB
3033 if (!from_cancel) {
3034 lock_map_acquire(&work->lockdep_map);
3035 lock_map_release(&work->lockdep_map);
3036 }
3037
d6e89786
JB
3038 if (start_flush_work(work, &barr, from_cancel)) {
3039 wait_for_completion(&barr.done);
3040 destroy_work_on_stack(&barr.work);
3041 return true;
3042 } else {
3043 return false;
3044 }
3045}
3046
baf59022
TH
3047/**
3048 * flush_work - wait for a work to finish executing the last queueing instance
3049 * @work: the work to flush
3050 *
606a5020
TH
3051 * Wait until @work has finished execution. @work is guaranteed to be idle
3052 * on return if it hasn't been requeued since flush started.
baf59022 3053 *
d185af30 3054 * Return:
baf59022
TH
3055 * %true if flush_work() waited for the work to finish execution,
3056 * %false if it was already idle.
3057 */
3058bool flush_work(struct work_struct *work)
3059{
d6e89786 3060 return __flush_work(work, false);
6e84d644 3061}
606a5020 3062EXPORT_SYMBOL_GPL(flush_work);
6e84d644 3063
8603e1b3 3064struct cwt_wait {
ac6424b9 3065 wait_queue_entry_t wait;
8603e1b3
TH
3066 struct work_struct *work;
3067};
3068
ac6424b9 3069static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
3070{
3071 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3072
3073 if (cwait->work != key)
3074 return 0;
3075 return autoremove_wake_function(wait, mode, sync, key);
3076}
3077
36e227d2 3078static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 3079{
8603e1b3 3080 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 3081 unsigned long flags;
1f1f642e
ON
3082 int ret;
3083
3084 do {
bbb68dfa
TH
3085 ret = try_to_grab_pending(work, is_dwork, &flags);
3086 /*
8603e1b3
TH
3087 * If someone else is already canceling, wait for it to
3088 * finish. flush_work() doesn't work for PREEMPT_NONE
3089 * because we may get scheduled between @work's completion
3090 * and the other canceling task resuming and clearing
3091 * CANCELING - flush_work() will return false immediately
3092 * as @work is no longer busy, try_to_grab_pending() will
3093 * return -ENOENT as @work is still being canceled and the
3094 * other canceling task won't be able to clear CANCELING as
3095 * we're hogging the CPU.
3096 *
3097 * Let's wait for completion using a waitqueue. As this
3098 * may lead to the thundering herd problem, use a custom
3099 * wake function which matches @work along with exclusive
3100 * wait and wakeup.
bbb68dfa 3101 */
8603e1b3
TH
3102 if (unlikely(ret == -ENOENT)) {
3103 struct cwt_wait cwait;
3104
3105 init_wait(&cwait.wait);
3106 cwait.wait.func = cwt_wakefn;
3107 cwait.work = work;
3108
3109 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3110 TASK_UNINTERRUPTIBLE);
3111 if (work_is_canceling(work))
3112 schedule();
3113 finish_wait(&cancel_waitq, &cwait.wait);
3114 }
1f1f642e
ON
3115 } while (unlikely(ret < 0));
3116
bbb68dfa
TH
3117 /* tell other tasks trying to grab @work to back off */
3118 mark_work_canceling(work);
3119 local_irq_restore(flags);
3120
3347fa09
TH
3121 /*
3122 * This allows canceling during early boot. We know that @work
3123 * isn't executing.
3124 */
3125 if (wq_online)
d6e89786 3126 __flush_work(work, true);
3347fa09 3127
7a22ad75 3128 clear_work_data(work);
8603e1b3
TH
3129
3130 /*
3131 * Paired with prepare_to_wait() above so that either
3132 * waitqueue_active() is visible here or !work_is_canceling() is
3133 * visible there.
3134 */
3135 smp_mb();
3136 if (waitqueue_active(&cancel_waitq))
3137 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3138
1f1f642e
ON
3139 return ret;
3140}
3141
6e84d644 3142/**
401a8d04
TH
3143 * cancel_work_sync - cancel a work and wait for it to finish
3144 * @work: the work to cancel
6e84d644 3145 *
401a8d04
TH
3146 * Cancel @work and wait for its execution to finish. This function
3147 * can be used even if the work re-queues itself or migrates to
3148 * another workqueue. On return from this function, @work is
3149 * guaranteed to be not pending or executing on any CPU.
1f1f642e 3150 *
401a8d04
TH
3151 * cancel_work_sync(&delayed_work->work) must not be used for
3152 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 3153 *
401a8d04 3154 * The caller must ensure that the workqueue on which @work was last
6e84d644 3155 * queued can't be destroyed before this function returns.
401a8d04 3156 *
d185af30 3157 * Return:
401a8d04 3158 * %true if @work was pending, %false otherwise.
6e84d644 3159 */
401a8d04 3160bool cancel_work_sync(struct work_struct *work)
6e84d644 3161{
36e227d2 3162 return __cancel_work_timer(work, false);
b89deed3 3163}
28e53bdd 3164EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3165
6e84d644 3166/**
401a8d04
TH
3167 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3168 * @dwork: the delayed work to flush
6e84d644 3169 *
401a8d04
TH
3170 * Delayed timer is cancelled and the pending work is queued for
3171 * immediate execution. Like flush_work(), this function only
3172 * considers the last queueing instance of @dwork.
1f1f642e 3173 *
d185af30 3174 * Return:
401a8d04
TH
3175 * %true if flush_work() waited for the work to finish execution,
3176 * %false if it was already idle.
6e84d644 3177 */
401a8d04
TH
3178bool flush_delayed_work(struct delayed_work *dwork)
3179{
8930caba 3180 local_irq_disable();
401a8d04 3181 if (del_timer_sync(&dwork->timer))
60c057bc 3182 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3183 local_irq_enable();
401a8d04
TH
3184 return flush_work(&dwork->work);
3185}
3186EXPORT_SYMBOL(flush_delayed_work);
3187
05f0fe6b
TH
3188/**
3189 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3190 * @rwork: the rcu work to flush
3191 *
3192 * Return:
3193 * %true if flush_rcu_work() waited for the work to finish execution,
3194 * %false if it was already idle.
3195 */
3196bool flush_rcu_work(struct rcu_work *rwork)
3197{
3198 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3199 rcu_barrier();
3200 flush_work(&rwork->work);
3201 return true;
3202 } else {
3203 return flush_work(&rwork->work);
3204 }
3205}
3206EXPORT_SYMBOL(flush_rcu_work);
3207
f72b8792
JA
3208static bool __cancel_work(struct work_struct *work, bool is_dwork)
3209{
3210 unsigned long flags;
3211 int ret;
3212
3213 do {
3214 ret = try_to_grab_pending(work, is_dwork, &flags);
3215 } while (unlikely(ret == -EAGAIN));
3216
3217 if (unlikely(ret < 0))
3218 return false;
3219
3220 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3221 local_irq_restore(flags);
3222 return ret;
3223}
3224
09383498 3225/**
57b30ae7
TH
3226 * cancel_delayed_work - cancel a delayed work
3227 * @dwork: delayed_work to cancel
09383498 3228 *
d185af30
YB
3229 * Kill off a pending delayed_work.
3230 *
3231 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3232 * pending.
3233 *
3234 * Note:
3235 * The work callback function may still be running on return, unless
3236 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3237 * use cancel_delayed_work_sync() to wait on it.
09383498 3238 *
57b30ae7 3239 * This function is safe to call from any context including IRQ handler.
09383498 3240 */
57b30ae7 3241bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3242{
f72b8792 3243 return __cancel_work(&dwork->work, true);
09383498 3244}
57b30ae7 3245EXPORT_SYMBOL(cancel_delayed_work);
09383498 3246
401a8d04
TH
3247/**
3248 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3249 * @dwork: the delayed work cancel
3250 *
3251 * This is cancel_work_sync() for delayed works.
3252 *
d185af30 3253 * Return:
401a8d04
TH
3254 * %true if @dwork was pending, %false otherwise.
3255 */
3256bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3257{
36e227d2 3258 return __cancel_work_timer(&dwork->work, true);
6e84d644 3259}
f5a421a4 3260EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3261
b6136773 3262/**
31ddd871 3263 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3264 * @func: the function to call
b6136773 3265 *
31ddd871
TH
3266 * schedule_on_each_cpu() executes @func on each online CPU using the
3267 * system workqueue and blocks until all CPUs have completed.
b6136773 3268 * schedule_on_each_cpu() is very slow.
31ddd871 3269 *
d185af30 3270 * Return:
31ddd871 3271 * 0 on success, -errno on failure.
b6136773 3272 */
65f27f38 3273int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3274{
3275 int cpu;
38f51568 3276 struct work_struct __percpu *works;
15316ba8 3277
b6136773
AM
3278 works = alloc_percpu(struct work_struct);
3279 if (!works)
15316ba8 3280 return -ENOMEM;
b6136773 3281
93981800
TH
3282 get_online_cpus();
3283
15316ba8 3284 for_each_online_cpu(cpu) {
9bfb1839
IM
3285 struct work_struct *work = per_cpu_ptr(works, cpu);
3286
3287 INIT_WORK(work, func);
b71ab8c2 3288 schedule_work_on(cpu, work);
65a64464 3289 }
93981800
TH
3290
3291 for_each_online_cpu(cpu)
3292 flush_work(per_cpu_ptr(works, cpu));
3293
95402b38 3294 put_online_cpus();
b6136773 3295 free_percpu(works);
15316ba8
CL
3296 return 0;
3297}
3298
1fa44eca
JB
3299/**
3300 * execute_in_process_context - reliably execute the routine with user context
3301 * @fn: the function to execute
1fa44eca
JB
3302 * @ew: guaranteed storage for the execute work structure (must
3303 * be available when the work executes)
3304 *
3305 * Executes the function immediately if process context is available,
3306 * otherwise schedules the function for delayed execution.
3307 *
d185af30 3308 * Return: 0 - function was executed
1fa44eca
JB
3309 * 1 - function was scheduled for execution
3310 */
65f27f38 3311int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3312{
3313 if (!in_interrupt()) {
65f27f38 3314 fn(&ew->work);
1fa44eca
JB
3315 return 0;
3316 }
3317
65f27f38 3318 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3319 schedule_work(&ew->work);
3320
3321 return 1;
3322}
3323EXPORT_SYMBOL_GPL(execute_in_process_context);
3324
6ba94429
FW
3325/**
3326 * free_workqueue_attrs - free a workqueue_attrs
3327 * @attrs: workqueue_attrs to free
226223ab 3328 *
6ba94429 3329 * Undo alloc_workqueue_attrs().
226223ab 3330 */
6ba94429 3331void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3332{
6ba94429
FW
3333 if (attrs) {
3334 free_cpumask_var(attrs->cpumask);
3335 kfree(attrs);
3336 }
226223ab
TH
3337}
3338
6ba94429
FW
3339/**
3340 * alloc_workqueue_attrs - allocate a workqueue_attrs
3341 * @gfp_mask: allocation mask to use
3342 *
3343 * Allocate a new workqueue_attrs, initialize with default settings and
3344 * return it.
3345 *
3346 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3347 */
3348struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
226223ab 3349{
6ba94429 3350 struct workqueue_attrs *attrs;
226223ab 3351
6ba94429
FW
3352 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3353 if (!attrs)
3354 goto fail;
3355 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3356 goto fail;
3357
3358 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3359 return attrs;
3360fail:
3361 free_workqueue_attrs(attrs);
3362 return NULL;
226223ab
TH
3363}
3364
6ba94429
FW
3365static void copy_workqueue_attrs(struct workqueue_attrs *to,
3366 const struct workqueue_attrs *from)
226223ab 3367{
6ba94429
FW
3368 to->nice = from->nice;
3369 cpumask_copy(to->cpumask, from->cpumask);
3370 /*
3371 * Unlike hash and equality test, this function doesn't ignore
3372 * ->no_numa as it is used for both pool and wq attrs. Instead,
3373 * get_unbound_pool() explicitly clears ->no_numa after copying.
3374 */
3375 to->no_numa = from->no_numa;
226223ab
TH
3376}
3377
6ba94429
FW
3378/* hash value of the content of @attr */
3379static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3380{
6ba94429 3381 u32 hash = 0;
226223ab 3382
6ba94429
FW
3383 hash = jhash_1word(attrs->nice, hash);
3384 hash = jhash(cpumask_bits(attrs->cpumask),
3385 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3386 return hash;
226223ab 3387}
226223ab 3388
6ba94429
FW
3389/* content equality test */
3390static bool wqattrs_equal(const struct workqueue_attrs *a,
3391 const struct workqueue_attrs *b)
226223ab 3392{
6ba94429
FW
3393 if (a->nice != b->nice)
3394 return false;
3395 if (!cpumask_equal(a->cpumask, b->cpumask))
3396 return false;
3397 return true;
226223ab
TH
3398}
3399
6ba94429
FW
3400/**
3401 * init_worker_pool - initialize a newly zalloc'd worker_pool
3402 * @pool: worker_pool to initialize
3403 *
402dd89d 3404 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3405 *
3406 * Return: 0 on success, -errno on failure. Even on failure, all fields
3407 * inside @pool proper are initialized and put_unbound_pool() can be called
3408 * on @pool safely to release it.
3409 */
3410static int init_worker_pool(struct worker_pool *pool)
226223ab 3411{
6ba94429
FW
3412 spin_lock_init(&pool->lock);
3413 pool->id = -1;
3414 pool->cpu = -1;
3415 pool->node = NUMA_NO_NODE;
3416 pool->flags |= POOL_DISASSOCIATED;
82607adc 3417 pool->watchdog_ts = jiffies;
6ba94429
FW
3418 INIT_LIST_HEAD(&pool->worklist);
3419 INIT_LIST_HEAD(&pool->idle_list);
3420 hash_init(pool->busy_hash);
226223ab 3421
32a6c723 3422 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
226223ab 3423
32a6c723 3424 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 3425
6ba94429 3426 INIT_LIST_HEAD(&pool->workers);
226223ab 3427
6ba94429
FW
3428 ida_init(&pool->worker_ida);
3429 INIT_HLIST_NODE(&pool->hash_node);
3430 pool->refcnt = 1;
226223ab 3431
6ba94429
FW
3432 /* shouldn't fail above this point */
3433 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3434 if (!pool->attrs)
3435 return -ENOMEM;
3436 return 0;
226223ab
TH
3437}
3438
669de8bd
BVA
3439#ifdef CONFIG_LOCKDEP
3440static void wq_init_lockdep(struct workqueue_struct *wq)
3441{
3442 char *lock_name;
3443
3444 lockdep_register_key(&wq->key);
3445 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3446 if (!lock_name)
3447 lock_name = wq->name;
69a106c0
QC
3448
3449 wq->lock_name = lock_name;
669de8bd
BVA
3450 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3451}
3452
3453static void wq_unregister_lockdep(struct workqueue_struct *wq)
3454{
3455 lockdep_unregister_key(&wq->key);
3456}
3457
3458static void wq_free_lockdep(struct workqueue_struct *wq)
3459{
3460 if (wq->lock_name != wq->name)
3461 kfree(wq->lock_name);
3462}
3463#else
3464static void wq_init_lockdep(struct workqueue_struct *wq)
3465{
3466}
3467
3468static void wq_unregister_lockdep(struct workqueue_struct *wq)
3469{
3470}
3471
3472static void wq_free_lockdep(struct workqueue_struct *wq)
3473{
3474}
3475#endif
3476
6ba94429 3477static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3478{
6ba94429
FW
3479 struct workqueue_struct *wq =
3480 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3481
669de8bd
BVA
3482 wq_free_lockdep(wq);
3483
6ba94429
FW
3484 if (!(wq->flags & WQ_UNBOUND))
3485 free_percpu(wq->cpu_pwqs);
226223ab 3486 else
6ba94429 3487 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3488
6ba94429
FW
3489 kfree(wq->rescuer);
3490 kfree(wq);
226223ab
TH
3491}
3492
6ba94429 3493static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3494{
6ba94429 3495 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3496
6ba94429
FW
3497 ida_destroy(&pool->worker_ida);
3498 free_workqueue_attrs(pool->attrs);
3499 kfree(pool);
226223ab
TH
3500}
3501
6ba94429
FW
3502/**
3503 * put_unbound_pool - put a worker_pool
3504 * @pool: worker_pool to put
3505 *
3506 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3507 * safe manner. get_unbound_pool() calls this function on its failure path
3508 * and this function should be able to release pools which went through,
3509 * successfully or not, init_worker_pool().
3510 *
3511 * Should be called with wq_pool_mutex held.
3512 */
3513static void put_unbound_pool(struct worker_pool *pool)
226223ab 3514{
6ba94429
FW
3515 DECLARE_COMPLETION_ONSTACK(detach_completion);
3516 struct worker *worker;
226223ab 3517
6ba94429 3518 lockdep_assert_held(&wq_pool_mutex);
226223ab 3519
6ba94429
FW
3520 if (--pool->refcnt)
3521 return;
226223ab 3522
6ba94429
FW
3523 /* sanity checks */
3524 if (WARN_ON(!(pool->cpu < 0)) ||
3525 WARN_ON(!list_empty(&pool->worklist)))
3526 return;
226223ab 3527
6ba94429
FW
3528 /* release id and unhash */
3529 if (pool->id >= 0)
3530 idr_remove(&worker_pool_idr, pool->id);
3531 hash_del(&pool->hash_node);
d55262c4 3532
6ba94429 3533 /*
692b4825
TH
3534 * Become the manager and destroy all workers. This prevents
3535 * @pool's workers from blocking on attach_mutex. We're the last
3536 * manager and @pool gets freed with the flag set.
6ba94429 3537 */
6ba94429 3538 spin_lock_irq(&pool->lock);
692b4825
TH
3539 wait_event_lock_irq(wq_manager_wait,
3540 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3541 pool->flags |= POOL_MANAGER_ACTIVE;
3542
6ba94429
FW
3543 while ((worker = first_idle_worker(pool)))
3544 destroy_worker(worker);
3545 WARN_ON(pool->nr_workers || pool->nr_idle);
3546 spin_unlock_irq(&pool->lock);
d55262c4 3547
1258fae7 3548 mutex_lock(&wq_pool_attach_mutex);
6ba94429
FW
3549 if (!list_empty(&pool->workers))
3550 pool->detach_completion = &detach_completion;
1258fae7 3551 mutex_unlock(&wq_pool_attach_mutex);
226223ab 3552
6ba94429
FW
3553 if (pool->detach_completion)
3554 wait_for_completion(pool->detach_completion);
226223ab 3555
6ba94429
FW
3556 /* shut down the timers */
3557 del_timer_sync(&pool->idle_timer);
3558 del_timer_sync(&pool->mayday_timer);
226223ab 3559
6ba94429 3560 /* sched-RCU protected to allow dereferences from get_work_pool() */
25b00775 3561 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
3562}
3563
3564/**
6ba94429
FW
3565 * get_unbound_pool - get a worker_pool with the specified attributes
3566 * @attrs: the attributes of the worker_pool to get
226223ab 3567 *
6ba94429
FW
3568 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3569 * reference count and return it. If there already is a matching
3570 * worker_pool, it will be used; otherwise, this function attempts to
3571 * create a new one.
226223ab 3572 *
6ba94429 3573 * Should be called with wq_pool_mutex held.
226223ab 3574 *
6ba94429
FW
3575 * Return: On success, a worker_pool with the same attributes as @attrs.
3576 * On failure, %NULL.
226223ab 3577 */
6ba94429 3578static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3579{
6ba94429
FW
3580 u32 hash = wqattrs_hash(attrs);
3581 struct worker_pool *pool;
3582 int node;
e2273584 3583 int target_node = NUMA_NO_NODE;
226223ab 3584
6ba94429 3585 lockdep_assert_held(&wq_pool_mutex);
226223ab 3586
6ba94429
FW
3587 /* do we already have a matching pool? */
3588 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3589 if (wqattrs_equal(pool->attrs, attrs)) {
3590 pool->refcnt++;
3591 return pool;
3592 }
3593 }
226223ab 3594
e2273584
XP
3595 /* if cpumask is contained inside a NUMA node, we belong to that node */
3596 if (wq_numa_enabled) {
3597 for_each_node(node) {
3598 if (cpumask_subset(attrs->cpumask,
3599 wq_numa_possible_cpumask[node])) {
3600 target_node = node;
3601 break;
3602 }
3603 }
3604 }
3605
6ba94429 3606 /* nope, create a new one */
e2273584 3607 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3608 if (!pool || init_worker_pool(pool) < 0)
3609 goto fail;
3610
3611 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3612 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3613 pool->node = target_node;
226223ab
TH
3614
3615 /*
6ba94429
FW
3616 * no_numa isn't a worker_pool attribute, always clear it. See
3617 * 'struct workqueue_attrs' comments for detail.
226223ab 3618 */
6ba94429 3619 pool->attrs->no_numa = false;
226223ab 3620
6ba94429
FW
3621 if (worker_pool_assign_id(pool) < 0)
3622 goto fail;
226223ab 3623
6ba94429 3624 /* create and start the initial worker */
3347fa09 3625 if (wq_online && !create_worker(pool))
6ba94429 3626 goto fail;
226223ab 3627
6ba94429
FW
3628 /* install */
3629 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3630
6ba94429
FW
3631 return pool;
3632fail:
3633 if (pool)
3634 put_unbound_pool(pool);
3635 return NULL;
226223ab 3636}
226223ab 3637
6ba94429 3638static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3639{
6ba94429
FW
3640 kmem_cache_free(pwq_cache,
3641 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3642}
3643
6ba94429
FW
3644/*
3645 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3646 * and needs to be destroyed.
7a4e344c 3647 */
6ba94429 3648static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3649{
6ba94429
FW
3650 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3651 unbound_release_work);
3652 struct workqueue_struct *wq = pwq->wq;
3653 struct worker_pool *pool = pwq->pool;
3654 bool is_last;
7a4e344c 3655
6ba94429
FW
3656 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3657 return;
7a4e344c 3658
6ba94429
FW
3659 mutex_lock(&wq->mutex);
3660 list_del_rcu(&pwq->pwqs_node);
3661 is_last = list_empty(&wq->pwqs);
3662 mutex_unlock(&wq->mutex);
3663
3664 mutex_lock(&wq_pool_mutex);
3665 put_unbound_pool(pool);
3666 mutex_unlock(&wq_pool_mutex);
3667
25b00775 3668 call_rcu(&pwq->rcu, rcu_free_pwq);
7a4e344c 3669
2865a8fb 3670 /*
6ba94429
FW
3671 * If we're the last pwq going away, @wq is already dead and no one
3672 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3673 */
669de8bd
BVA
3674 if (is_last) {
3675 wq_unregister_lockdep(wq);
25b00775 3676 call_rcu(&wq->rcu, rcu_free_wq);
669de8bd 3677 }
29c91e99
TH
3678}
3679
7a4e344c 3680/**
6ba94429
FW
3681 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3682 * @pwq: target pool_workqueue
d185af30 3683 *
6ba94429
FW
3684 * If @pwq isn't freezing, set @pwq->max_active to the associated
3685 * workqueue's saved_max_active and activate delayed work items
3686 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3687 */
6ba94429 3688static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3689{
6ba94429
FW
3690 struct workqueue_struct *wq = pwq->wq;
3691 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3692 unsigned long flags;
4e1a1f9a 3693
6ba94429
FW
3694 /* for @wq->saved_max_active */
3695 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3696
6ba94429
FW
3697 /* fast exit for non-freezable wqs */
3698 if (!freezable && pwq->max_active == wq->saved_max_active)
3699 return;
7a4e344c 3700
3347fa09
TH
3701 /* this function can be called during early boot w/ irq disabled */
3702 spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3703
6ba94429
FW
3704 /*
3705 * During [un]freezing, the caller is responsible for ensuring that
3706 * this function is called at least once after @workqueue_freezing
3707 * is updated and visible.
3708 */
3709 if (!freezable || !workqueue_freezing) {
3710 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3711
6ba94429
FW
3712 while (!list_empty(&pwq->delayed_works) &&
3713 pwq->nr_active < pwq->max_active)
3714 pwq_activate_first_delayed(pwq);
e2dca7ad 3715
6ba94429
FW
3716 /*
3717 * Need to kick a worker after thawed or an unbound wq's
3718 * max_active is bumped. It's a slow path. Do it always.
3719 */
3720 wake_up_worker(pwq->pool);
3721 } else {
3722 pwq->max_active = 0;
3723 }
e2dca7ad 3724
3347fa09 3725 spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3726}
3727
6ba94429
FW
3728/* initialize newly alloced @pwq which is associated with @wq and @pool */
3729static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3730 struct worker_pool *pool)
29c91e99 3731{
6ba94429 3732 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3733
6ba94429
FW
3734 memset(pwq, 0, sizeof(*pwq));
3735
3736 pwq->pool = pool;
3737 pwq->wq = wq;
3738 pwq->flush_color = -1;
3739 pwq->refcnt = 1;
3740 INIT_LIST_HEAD(&pwq->delayed_works);
3741 INIT_LIST_HEAD(&pwq->pwqs_node);
3742 INIT_LIST_HEAD(&pwq->mayday_node);
3743 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3744}
3745
6ba94429
FW
3746/* sync @pwq with the current state of its associated wq and link it */
3747static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3748{
6ba94429 3749 struct workqueue_struct *wq = pwq->wq;
29c91e99 3750
6ba94429 3751 lockdep_assert_held(&wq->mutex);
a892cacc 3752
6ba94429
FW
3753 /* may be called multiple times, ignore if already linked */
3754 if (!list_empty(&pwq->pwqs_node))
29c91e99 3755 return;
29c91e99 3756
6ba94429
FW
3757 /* set the matching work_color */
3758 pwq->work_color = wq->work_color;
29c91e99 3759
6ba94429
FW
3760 /* sync max_active to the current setting */
3761 pwq_adjust_max_active(pwq);
29c91e99 3762
6ba94429
FW
3763 /* link in @pwq */
3764 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3765}
29c91e99 3766
6ba94429
FW
3767/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3768static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3769 const struct workqueue_attrs *attrs)
3770{
3771 struct worker_pool *pool;
3772 struct pool_workqueue *pwq;
60f5a4bc 3773
6ba94429 3774 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3775
6ba94429
FW
3776 pool = get_unbound_pool(attrs);
3777 if (!pool)
3778 return NULL;
60f5a4bc 3779
6ba94429
FW
3780 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3781 if (!pwq) {
3782 put_unbound_pool(pool);
3783 return NULL;
3784 }
29c91e99 3785
6ba94429
FW
3786 init_pwq(pwq, wq, pool);
3787 return pwq;
3788}
29c91e99 3789
29c91e99 3790/**
30186c6f 3791 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3792 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3793 * @node: the target NUMA node
3794 * @cpu_going_down: if >= 0, the CPU to consider as offline
3795 * @cpumask: outarg, the resulting cpumask
29c91e99 3796 *
6ba94429
FW
3797 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3798 * @cpu_going_down is >= 0, that cpu is considered offline during
3799 * calculation. The result is stored in @cpumask.
a892cacc 3800 *
6ba94429
FW
3801 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3802 * enabled and @node has online CPUs requested by @attrs, the returned
3803 * cpumask is the intersection of the possible CPUs of @node and
3804 * @attrs->cpumask.
d185af30 3805 *
6ba94429
FW
3806 * The caller is responsible for ensuring that the cpumask of @node stays
3807 * stable.
3808 *
3809 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3810 * %false if equal.
29c91e99 3811 */
6ba94429
FW
3812static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3813 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3814{
6ba94429
FW
3815 if (!wq_numa_enabled || attrs->no_numa)
3816 goto use_dfl;
29c91e99 3817
6ba94429
FW
3818 /* does @node have any online CPUs @attrs wants? */
3819 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3820 if (cpu_going_down >= 0)
3821 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3822
6ba94429
FW
3823 if (cpumask_empty(cpumask))
3824 goto use_dfl;
4c16bd32
TH
3825
3826 /* yeap, return possible CPUs in @node that @attrs wants */
3827 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
3828
3829 if (cpumask_empty(cpumask)) {
3830 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3831 "possible intersect\n");
3832 return false;
3833 }
3834
4c16bd32
TH
3835 return !cpumask_equal(cpumask, attrs->cpumask);
3836
3837use_dfl:
3838 cpumask_copy(cpumask, attrs->cpumask);
3839 return false;
3840}
3841
1befcf30
TH
3842/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3843static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3844 int node,
3845 struct pool_workqueue *pwq)
3846{
3847 struct pool_workqueue *old_pwq;
3848
5b95e1af 3849 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3850 lockdep_assert_held(&wq->mutex);
3851
3852 /* link_pwq() can handle duplicate calls */
3853 link_pwq(pwq);
3854
3855 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3856 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3857 return old_pwq;
3858}
3859
2d5f0764
LJ
3860/* context to store the prepared attrs & pwqs before applying */
3861struct apply_wqattrs_ctx {
3862 struct workqueue_struct *wq; /* target workqueue */
3863 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3864 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3865 struct pool_workqueue *dfl_pwq;
3866 struct pool_workqueue *pwq_tbl[];
3867};
3868
3869/* free the resources after success or abort */
3870static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3871{
3872 if (ctx) {
3873 int node;
3874
3875 for_each_node(node)
3876 put_pwq_unlocked(ctx->pwq_tbl[node]);
3877 put_pwq_unlocked(ctx->dfl_pwq);
3878
3879 free_workqueue_attrs(ctx->attrs);
3880
3881 kfree(ctx);
3882 }
3883}
3884
3885/* allocate the attrs and pwqs for later installation */
3886static struct apply_wqattrs_ctx *
3887apply_wqattrs_prepare(struct workqueue_struct *wq,
3888 const struct workqueue_attrs *attrs)
9e8cd2f5 3889{
2d5f0764 3890 struct apply_wqattrs_ctx *ctx;
4c16bd32 3891 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3892 int node;
9e8cd2f5 3893
2d5f0764 3894 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3895
acafe7e3 3896 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
8719dcea 3897
13e2e556 3898 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32 3899 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
2d5f0764
LJ
3900 if (!ctx || !new_attrs || !tmp_attrs)
3901 goto out_free;
13e2e556 3902
042f7df1
LJ
3903 /*
3904 * Calculate the attrs of the default pwq.
3905 * If the user configured cpumask doesn't overlap with the
3906 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3907 */
13e2e556 3908 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3909 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3910 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3911 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3912
4c16bd32
TH
3913 /*
3914 * We may create multiple pwqs with differing cpumasks. Make a
3915 * copy of @new_attrs which will be modified and used to obtain
3916 * pools.
3917 */
3918 copy_workqueue_attrs(tmp_attrs, new_attrs);
3919
4c16bd32
TH
3920 /*
3921 * If something goes wrong during CPU up/down, we'll fall back to
3922 * the default pwq covering whole @attrs->cpumask. Always create
3923 * it even if we don't use it immediately.
3924 */
2d5f0764
LJ
3925 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3926 if (!ctx->dfl_pwq)
3927 goto out_free;
4c16bd32
TH
3928
3929 for_each_node(node) {
042f7df1 3930 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3931 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3932 if (!ctx->pwq_tbl[node])
3933 goto out_free;
4c16bd32 3934 } else {
2d5f0764
LJ
3935 ctx->dfl_pwq->refcnt++;
3936 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3937 }
3938 }
3939
042f7df1
LJ
3940 /* save the user configured attrs and sanitize it. */
3941 copy_workqueue_attrs(new_attrs, attrs);
3942 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3943 ctx->attrs = new_attrs;
042f7df1 3944
2d5f0764
LJ
3945 ctx->wq = wq;
3946 free_workqueue_attrs(tmp_attrs);
3947 return ctx;
3948
3949out_free:
3950 free_workqueue_attrs(tmp_attrs);
3951 free_workqueue_attrs(new_attrs);
3952 apply_wqattrs_cleanup(ctx);
3953 return NULL;
3954}
3955
3956/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3957static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3958{
3959 int node;
9e8cd2f5 3960
4c16bd32 3961 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3962 mutex_lock(&ctx->wq->mutex);
a892cacc 3963
2d5f0764 3964 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3965
3966 /* save the previous pwq and install the new one */
f147f29e 3967 for_each_node(node)
2d5f0764
LJ
3968 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3969 ctx->pwq_tbl[node]);
4c16bd32
TH
3970
3971 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3972 link_pwq(ctx->dfl_pwq);
3973 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3974
2d5f0764
LJ
3975 mutex_unlock(&ctx->wq->mutex);
3976}
9e8cd2f5 3977
a0111cf6
LJ
3978static void apply_wqattrs_lock(void)
3979{
3980 /* CPUs should stay stable across pwq creations and installations */
3981 get_online_cpus();
3982 mutex_lock(&wq_pool_mutex);
3983}
3984
3985static void apply_wqattrs_unlock(void)
3986{
3987 mutex_unlock(&wq_pool_mutex);
3988 put_online_cpus();
3989}
3990
3991static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3992 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3993{
3994 struct apply_wqattrs_ctx *ctx;
4c16bd32 3995
2d5f0764
LJ
3996 /* only unbound workqueues can change attributes */
3997 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3998 return -EINVAL;
13e2e556 3999
2d5f0764 4000 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
4001 if (!list_empty(&wq->pwqs)) {
4002 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4003 return -EINVAL;
4004
4005 wq->flags &= ~__WQ_ORDERED;
4006 }
2d5f0764 4007
2d5f0764 4008 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 4009 if (!ctx)
4010 return -ENOMEM;
2d5f0764
LJ
4011
4012 /* the ctx has been prepared successfully, let's commit it */
6201171e 4013 apply_wqattrs_commit(ctx);
2d5f0764
LJ
4014 apply_wqattrs_cleanup(ctx);
4015
6201171e 4016 return 0;
9e8cd2f5
TH
4017}
4018
a0111cf6
LJ
4019/**
4020 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4021 * @wq: the target workqueue
4022 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4023 *
4024 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4025 * machines, this function maps a separate pwq to each NUMA node with
4026 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4027 * NUMA node it was issued on. Older pwqs are released as in-flight work
4028 * items finish. Note that a work item which repeatedly requeues itself
4029 * back-to-back will stay on its current pwq.
4030 *
4031 * Performs GFP_KERNEL allocations.
4032 *
4033 * Return: 0 on success and -errno on failure.
4034 */
4035int apply_workqueue_attrs(struct workqueue_struct *wq,
4036 const struct workqueue_attrs *attrs)
4037{
4038 int ret;
4039
4040 apply_wqattrs_lock();
4041 ret = apply_workqueue_attrs_locked(wq, attrs);
4042 apply_wqattrs_unlock();
4043
4044 return ret;
4045}
6106c0f8 4046EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
a0111cf6 4047
4c16bd32
TH
4048/**
4049 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4050 * @wq: the target workqueue
4051 * @cpu: the CPU coming up or going down
4052 * @online: whether @cpu is coming up or going down
4053 *
4054 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4055 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4056 * @wq accordingly.
4057 *
4058 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4059 * falls back to @wq->dfl_pwq which may not be optimal but is always
4060 * correct.
4061 *
4062 * Note that when the last allowed CPU of a NUMA node goes offline for a
4063 * workqueue with a cpumask spanning multiple nodes, the workers which were
4064 * already executing the work items for the workqueue will lose their CPU
4065 * affinity and may execute on any CPU. This is similar to how per-cpu
4066 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4067 * affinity, it's the user's responsibility to flush the work item from
4068 * CPU_DOWN_PREPARE.
4069 */
4070static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4071 bool online)
4072{
4073 int node = cpu_to_node(cpu);
4074 int cpu_off = online ? -1 : cpu;
4075 struct pool_workqueue *old_pwq = NULL, *pwq;
4076 struct workqueue_attrs *target_attrs;
4077 cpumask_t *cpumask;
4078
4079 lockdep_assert_held(&wq_pool_mutex);
4080
f7142ed4
LJ
4081 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4082 wq->unbound_attrs->no_numa)
4c16bd32
TH
4083 return;
4084
4085 /*
4086 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4087 * Let's use a preallocated one. The following buf is protected by
4088 * CPU hotplug exclusion.
4089 */
4090 target_attrs = wq_update_unbound_numa_attrs_buf;
4091 cpumask = target_attrs->cpumask;
4092
4c16bd32
TH
4093 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4094 pwq = unbound_pwq_by_node(wq, node);
4095
4096 /*
4097 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
4098 * different from the default pwq's, we need to compare it to @pwq's
4099 * and create a new one if they don't match. If the target cpumask
4100 * equals the default pwq's, the default pwq should be used.
4c16bd32 4101 */
042f7df1 4102 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 4103 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 4104 return;
4c16bd32 4105 } else {
534a3fbb 4106 goto use_dfl_pwq;
4c16bd32
TH
4107 }
4108
4c16bd32
TH
4109 /* create a new pwq */
4110 pwq = alloc_unbound_pwq(wq, target_attrs);
4111 if (!pwq) {
2d916033
FF
4112 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4113 wq->name);
77f300b1 4114 goto use_dfl_pwq;
4c16bd32
TH
4115 }
4116
f7142ed4 4117 /* Install the new pwq. */
4c16bd32
TH
4118 mutex_lock(&wq->mutex);
4119 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4120 goto out_unlock;
4121
4122use_dfl_pwq:
f7142ed4 4123 mutex_lock(&wq->mutex);
4c16bd32
TH
4124 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4125 get_pwq(wq->dfl_pwq);
4126 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4127 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4128out_unlock:
4129 mutex_unlock(&wq->mutex);
4130 put_pwq_unlocked(old_pwq);
4131}
4132
30cdf249 4133static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4134{
49e3cf44 4135 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 4136 int cpu, ret;
30cdf249
TH
4137
4138 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4139 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4140 if (!wq->cpu_pwqs)
30cdf249
TH
4141 return -ENOMEM;
4142
4143 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4144 struct pool_workqueue *pwq =
4145 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4146 struct worker_pool *cpu_pools =
f02ae73a 4147 per_cpu(cpu_worker_pools, cpu);
f3421797 4148
f147f29e
TH
4149 init_pwq(pwq, wq, &cpu_pools[highpri]);
4150
4151 mutex_lock(&wq->mutex);
1befcf30 4152 link_pwq(pwq);
f147f29e 4153 mutex_unlock(&wq->mutex);
30cdf249 4154 }
9e8cd2f5 4155 return 0;
8a2b7538
TH
4156 } else if (wq->flags & __WQ_ORDERED) {
4157 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4158 /* there should only be single pwq for ordering guarantee */
4159 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4160 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4161 "ordering guarantee broken for workqueue %s\n", wq->name);
4162 return ret;
30cdf249 4163 } else {
9e8cd2f5 4164 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4165 }
0f900049
TH
4166}
4167
f3421797
TH
4168static int wq_clamp_max_active(int max_active, unsigned int flags,
4169 const char *name)
b71ab8c2 4170{
f3421797
TH
4171 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4172
4173 if (max_active < 1 || max_active > lim)
044c782c
VI
4174 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4175 max_active, name, 1, lim);
b71ab8c2 4176
f3421797 4177 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4178}
4179
983c7515
TH
4180/*
4181 * Workqueues which may be used during memory reclaim should have a rescuer
4182 * to guarantee forward progress.
4183 */
4184static int init_rescuer(struct workqueue_struct *wq)
4185{
4186 struct worker *rescuer;
4187 int ret;
4188
4189 if (!(wq->flags & WQ_MEM_RECLAIM))
4190 return 0;
4191
4192 rescuer = alloc_worker(NUMA_NO_NODE);
4193 if (!rescuer)
4194 return -ENOMEM;
4195
4196 rescuer->rescue_wq = wq;
4197 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4198 ret = PTR_ERR_OR_ZERO(rescuer->task);
4199 if (ret) {
4200 kfree(rescuer);
4201 return ret;
4202 }
4203
4204 wq->rescuer = rescuer;
4205 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4206 wake_up_process(rescuer->task);
4207
4208 return 0;
4209}
4210
669de8bd
BVA
4211struct workqueue_struct *alloc_workqueue(const char *fmt,
4212 unsigned int flags,
4213 int max_active, ...)
1da177e4 4214{
df2d5ae4 4215 size_t tbl_size = 0;
ecf6881f 4216 va_list args;
1da177e4 4217 struct workqueue_struct *wq;
49e3cf44 4218 struct pool_workqueue *pwq;
b196be89 4219
5c0338c6
TH
4220 /*
4221 * Unbound && max_active == 1 used to imply ordered, which is no
4222 * longer the case on NUMA machines due to per-node pools. While
4223 * alloc_ordered_workqueue() is the right way to create an ordered
4224 * workqueue, keep the previous behavior to avoid subtle breakages
4225 * on NUMA.
4226 */
4227 if ((flags & WQ_UNBOUND) && max_active == 1)
4228 flags |= __WQ_ORDERED;
4229
cee22a15
VK
4230 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4231 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4232 flags |= WQ_UNBOUND;
4233
ecf6881f 4234 /* allocate wq and format name */
df2d5ae4 4235 if (flags & WQ_UNBOUND)
ddcb57e2 4236 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
4237
4238 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4239 if (!wq)
d2c1d404 4240 return NULL;
b196be89 4241
6029a918
TH
4242 if (flags & WQ_UNBOUND) {
4243 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4244 if (!wq->unbound_attrs)
4245 goto err_free_wq;
4246 }
4247
669de8bd 4248 va_start(args, max_active);
ecf6881f 4249 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4250 va_end(args);
1da177e4 4251
d320c038 4252 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4253 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4254
b196be89 4255 /* init wq */
97e37d7b 4256 wq->flags = flags;
a0a1a5fd 4257 wq->saved_max_active = max_active;
3c25a55d 4258 mutex_init(&wq->mutex);
112202d9 4259 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4260 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4261 INIT_LIST_HEAD(&wq->flusher_queue);
4262 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4263 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4264
669de8bd 4265 wq_init_lockdep(wq);
cce1a165 4266 INIT_LIST_HEAD(&wq->list);
3af24433 4267
30cdf249 4268 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4269 goto err_free_wq;
1537663f 4270
40c17f75 4271 if (wq_online && init_rescuer(wq) < 0)
983c7515 4272 goto err_destroy;
3af24433 4273
226223ab
TH
4274 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4275 goto err_destroy;
4276
a0a1a5fd 4277 /*
68e13a67
LJ
4278 * wq_pool_mutex protects global freeze state and workqueues list.
4279 * Grab it, adjust max_active and add the new @wq to workqueues
4280 * list.
a0a1a5fd 4281 */
68e13a67 4282 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4283
a357fc03 4284 mutex_lock(&wq->mutex);
699ce097
TH
4285 for_each_pwq(pwq, wq)
4286 pwq_adjust_max_active(pwq);
a357fc03 4287 mutex_unlock(&wq->mutex);
a0a1a5fd 4288
e2dca7ad 4289 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4290
68e13a67 4291 mutex_unlock(&wq_pool_mutex);
1537663f 4292
3af24433 4293 return wq;
d2c1d404
TH
4294
4295err_free_wq:
009bb421
BVA
4296 wq_unregister_lockdep(wq);
4297 wq_free_lockdep(wq);
6029a918 4298 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4299 kfree(wq);
4300 return NULL;
4301err_destroy:
4302 destroy_workqueue(wq);
4690c4ab 4303 return NULL;
3af24433 4304}
669de8bd 4305EXPORT_SYMBOL_GPL(alloc_workqueue);
1da177e4 4306
3af24433
ON
4307/**
4308 * destroy_workqueue - safely terminate a workqueue
4309 * @wq: target workqueue
4310 *
4311 * Safely destroy a workqueue. All work currently pending will be done first.
4312 */
4313void destroy_workqueue(struct workqueue_struct *wq)
4314{
49e3cf44 4315 struct pool_workqueue *pwq;
4c16bd32 4316 int node;
3af24433 4317
9c5a2ba7
TH
4318 /* drain it before proceeding with destruction */
4319 drain_workqueue(wq);
c8efcc25 4320
6183c009 4321 /* sanity checks */
b09f4fd3 4322 mutex_lock(&wq->mutex);
49e3cf44 4323 for_each_pwq(pwq, wq) {
6183c009
TH
4324 int i;
4325
76af4d93
TH
4326 for (i = 0; i < WORK_NR_COLORS; i++) {
4327 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4328 mutex_unlock(&wq->mutex);
fa07fb6a 4329 show_workqueue_state();
6183c009 4330 return;
76af4d93
TH
4331 }
4332 }
4333
5c529597 4334 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4335 WARN_ON(pwq->nr_active) ||
76af4d93 4336 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4337 mutex_unlock(&wq->mutex);
fa07fb6a 4338 show_workqueue_state();
6183c009 4339 return;
76af4d93 4340 }
6183c009 4341 }
b09f4fd3 4342 mutex_unlock(&wq->mutex);
6183c009 4343
a0a1a5fd
TH
4344 /*
4345 * wq list is used to freeze wq, remove from list after
4346 * flushing is complete in case freeze races us.
4347 */
68e13a67 4348 mutex_lock(&wq_pool_mutex);
e2dca7ad 4349 list_del_rcu(&wq->list);
68e13a67 4350 mutex_unlock(&wq_pool_mutex);
3af24433 4351
226223ab
TH
4352 workqueue_sysfs_unregister(wq);
4353
e2dca7ad 4354 if (wq->rescuer)
e22bee78 4355 kthread_stop(wq->rescuer->task);
e22bee78 4356
8864b4e5 4357 if (!(wq->flags & WQ_UNBOUND)) {
669de8bd 4358 wq_unregister_lockdep(wq);
8864b4e5
TH
4359 /*
4360 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4361 * schedule RCU free.
8864b4e5 4362 */
25b00775 4363 call_rcu(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4364 } else {
4365 /*
4366 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4367 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4368 * @wq will be freed when the last pwq is released.
8864b4e5 4369 */
4c16bd32
TH
4370 for_each_node(node) {
4371 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4372 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4373 put_pwq_unlocked(pwq);
4374 }
4375
4376 /*
4377 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4378 * put. Don't access it afterwards.
4379 */
4380 pwq = wq->dfl_pwq;
4381 wq->dfl_pwq = NULL;
dce90d47 4382 put_pwq_unlocked(pwq);
29c91e99 4383 }
3af24433
ON
4384}
4385EXPORT_SYMBOL_GPL(destroy_workqueue);
4386
dcd989cb
TH
4387/**
4388 * workqueue_set_max_active - adjust max_active of a workqueue
4389 * @wq: target workqueue
4390 * @max_active: new max_active value.
4391 *
4392 * Set max_active of @wq to @max_active.
4393 *
4394 * CONTEXT:
4395 * Don't call from IRQ context.
4396 */
4397void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4398{
49e3cf44 4399 struct pool_workqueue *pwq;
dcd989cb 4400
8719dcea 4401 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4402 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4403 return;
4404
f3421797 4405 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4406
a357fc03 4407 mutex_lock(&wq->mutex);
dcd989cb 4408
0a94efb5 4409 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4410 wq->saved_max_active = max_active;
4411
699ce097
TH
4412 for_each_pwq(pwq, wq)
4413 pwq_adjust_max_active(pwq);
93981800 4414
a357fc03 4415 mutex_unlock(&wq->mutex);
15316ba8 4416}
dcd989cb 4417EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4418
27d4ee03
LW
4419/**
4420 * current_work - retrieve %current task's work struct
4421 *
4422 * Determine if %current task is a workqueue worker and what it's working on.
4423 * Useful to find out the context that the %current task is running in.
4424 *
4425 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4426 */
4427struct work_struct *current_work(void)
4428{
4429 struct worker *worker = current_wq_worker();
4430
4431 return worker ? worker->current_work : NULL;
4432}
4433EXPORT_SYMBOL(current_work);
4434
e6267616
TH
4435/**
4436 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4437 *
4438 * Determine whether %current is a workqueue rescuer. Can be used from
4439 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4440 *
4441 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4442 */
4443bool current_is_workqueue_rescuer(void)
4444{
4445 struct worker *worker = current_wq_worker();
4446
6a092dfd 4447 return worker && worker->rescue_wq;
e6267616
TH
4448}
4449
eef6a7d5 4450/**
dcd989cb
TH
4451 * workqueue_congested - test whether a workqueue is congested
4452 * @cpu: CPU in question
4453 * @wq: target workqueue
eef6a7d5 4454 *
dcd989cb
TH
4455 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4456 * no synchronization around this function and the test result is
4457 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4458 *
d3251859
TH
4459 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4460 * Note that both per-cpu and unbound workqueues may be associated with
4461 * multiple pool_workqueues which have separate congested states. A
4462 * workqueue being congested on one CPU doesn't mean the workqueue is also
4463 * contested on other CPUs / NUMA nodes.
4464 *
d185af30 4465 * Return:
dcd989cb 4466 * %true if congested, %false otherwise.
eef6a7d5 4467 */
d84ff051 4468bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4469{
7fb98ea7 4470 struct pool_workqueue *pwq;
76af4d93
TH
4471 bool ret;
4472
88109453 4473 rcu_read_lock_sched();
7fb98ea7 4474
d3251859
TH
4475 if (cpu == WORK_CPU_UNBOUND)
4476 cpu = smp_processor_id();
4477
7fb98ea7
TH
4478 if (!(wq->flags & WQ_UNBOUND))
4479 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4480 else
df2d5ae4 4481 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4482
76af4d93 4483 ret = !list_empty(&pwq->delayed_works);
88109453 4484 rcu_read_unlock_sched();
76af4d93
TH
4485
4486 return ret;
1da177e4 4487}
dcd989cb 4488EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4489
dcd989cb
TH
4490/**
4491 * work_busy - test whether a work is currently pending or running
4492 * @work: the work to be tested
4493 *
4494 * Test whether @work is currently pending or running. There is no
4495 * synchronization around this function and the test result is
4496 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4497 *
d185af30 4498 * Return:
dcd989cb
TH
4499 * OR'd bitmask of WORK_BUSY_* bits.
4500 */
4501unsigned int work_busy(struct work_struct *work)
1da177e4 4502{
fa1b54e6 4503 struct worker_pool *pool;
dcd989cb
TH
4504 unsigned long flags;
4505 unsigned int ret = 0;
1da177e4 4506
dcd989cb
TH
4507 if (work_pending(work))
4508 ret |= WORK_BUSY_PENDING;
1da177e4 4509
fa1b54e6
TH
4510 local_irq_save(flags);
4511 pool = get_work_pool(work);
038366c5 4512 if (pool) {
fa1b54e6 4513 spin_lock(&pool->lock);
038366c5
LJ
4514 if (find_worker_executing_work(pool, work))
4515 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4516 spin_unlock(&pool->lock);
038366c5 4517 }
fa1b54e6 4518 local_irq_restore(flags);
1da177e4 4519
dcd989cb 4520 return ret;
1da177e4 4521}
dcd989cb 4522EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4523
3d1cb205
TH
4524/**
4525 * set_worker_desc - set description for the current work item
4526 * @fmt: printf-style format string
4527 * @...: arguments for the format string
4528 *
4529 * This function can be called by a running work function to describe what
4530 * the work item is about. If the worker task gets dumped, this
4531 * information will be printed out together to help debugging. The
4532 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4533 */
4534void set_worker_desc(const char *fmt, ...)
4535{
4536 struct worker *worker = current_wq_worker();
4537 va_list args;
4538
4539 if (worker) {
4540 va_start(args, fmt);
4541 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4542 va_end(args);
3d1cb205
TH
4543 }
4544}
5c750d58 4545EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
4546
4547/**
4548 * print_worker_info - print out worker information and description
4549 * @log_lvl: the log level to use when printing
4550 * @task: target task
4551 *
4552 * If @task is a worker and currently executing a work item, print out the
4553 * name of the workqueue being serviced and worker description set with
4554 * set_worker_desc() by the currently executing work item.
4555 *
4556 * This function can be safely called on any task as long as the
4557 * task_struct itself is accessible. While safe, this function isn't
4558 * synchronized and may print out mixups or garbages of limited length.
4559 */
4560void print_worker_info(const char *log_lvl, struct task_struct *task)
4561{
4562 work_func_t *fn = NULL;
4563 char name[WQ_NAME_LEN] = { };
4564 char desc[WORKER_DESC_LEN] = { };
4565 struct pool_workqueue *pwq = NULL;
4566 struct workqueue_struct *wq = NULL;
3d1cb205
TH
4567 struct worker *worker;
4568
4569 if (!(task->flags & PF_WQ_WORKER))
4570 return;
4571
4572 /*
4573 * This function is called without any synchronization and @task
4574 * could be in any state. Be careful with dereferences.
4575 */
e700591a 4576 worker = kthread_probe_data(task);
3d1cb205
TH
4577
4578 /*
8bf89593
TH
4579 * Carefully copy the associated workqueue's workfn, name and desc.
4580 * Keep the original last '\0' in case the original is garbage.
3d1cb205
TH
4581 */
4582 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4583 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4584 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4585 probe_kernel_read(name, wq->name, sizeof(name) - 1);
8bf89593 4586 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
4587
4588 if (fn || name[0] || desc[0]) {
4589 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
8bf89593 4590 if (strcmp(name, desc))
3d1cb205
TH
4591 pr_cont(" (%s)", desc);
4592 pr_cont("\n");
4593 }
4594}
4595
3494fc30
TH
4596static void pr_cont_pool_info(struct worker_pool *pool)
4597{
4598 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4599 if (pool->node != NUMA_NO_NODE)
4600 pr_cont(" node=%d", pool->node);
4601 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4602}
4603
4604static void pr_cont_work(bool comma, struct work_struct *work)
4605{
4606 if (work->func == wq_barrier_func) {
4607 struct wq_barrier *barr;
4608
4609 barr = container_of(work, struct wq_barrier, work);
4610
4611 pr_cont("%s BAR(%d)", comma ? "," : "",
4612 task_pid_nr(barr->task));
4613 } else {
4614 pr_cont("%s %pf", comma ? "," : "", work->func);
4615 }
4616}
4617
4618static void show_pwq(struct pool_workqueue *pwq)
4619{
4620 struct worker_pool *pool = pwq->pool;
4621 struct work_struct *work;
4622 struct worker *worker;
4623 bool has_in_flight = false, has_pending = false;
4624 int bkt;
4625
4626 pr_info(" pwq %d:", pool->id);
4627 pr_cont_pool_info(pool);
4628
4629 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4630 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4631
4632 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4633 if (worker->current_pwq == pwq) {
4634 has_in_flight = true;
4635 break;
4636 }
4637 }
4638 if (has_in_flight) {
4639 bool comma = false;
4640
4641 pr_info(" in-flight:");
4642 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4643 if (worker->current_pwq != pwq)
4644 continue;
4645
4646 pr_cont("%s %d%s:%pf", comma ? "," : "",
4647 task_pid_nr(worker->task),
4648 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4649 worker->current_func);
4650 list_for_each_entry(work, &worker->scheduled, entry)
4651 pr_cont_work(false, work);
4652 comma = true;
4653 }
4654 pr_cont("\n");
4655 }
4656
4657 list_for_each_entry(work, &pool->worklist, entry) {
4658 if (get_work_pwq(work) == pwq) {
4659 has_pending = true;
4660 break;
4661 }
4662 }
4663 if (has_pending) {
4664 bool comma = false;
4665
4666 pr_info(" pending:");
4667 list_for_each_entry(work, &pool->worklist, entry) {
4668 if (get_work_pwq(work) != pwq)
4669 continue;
4670
4671 pr_cont_work(comma, work);
4672 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4673 }
4674 pr_cont("\n");
4675 }
4676
4677 if (!list_empty(&pwq->delayed_works)) {
4678 bool comma = false;
4679
4680 pr_info(" delayed:");
4681 list_for_each_entry(work, &pwq->delayed_works, entry) {
4682 pr_cont_work(comma, work);
4683 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4684 }
4685 pr_cont("\n");
4686 }
4687}
4688
4689/**
4690 * show_workqueue_state - dump workqueue state
4691 *
7b776af6
RL
4692 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4693 * all busy workqueues and pools.
3494fc30
TH
4694 */
4695void show_workqueue_state(void)
4696{
4697 struct workqueue_struct *wq;
4698 struct worker_pool *pool;
4699 unsigned long flags;
4700 int pi;
4701
4702 rcu_read_lock_sched();
4703
4704 pr_info("Showing busy workqueues and worker pools:\n");
4705
4706 list_for_each_entry_rcu(wq, &workqueues, list) {
4707 struct pool_workqueue *pwq;
4708 bool idle = true;
4709
4710 for_each_pwq(pwq, wq) {
4711 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4712 idle = false;
4713 break;
4714 }
4715 }
4716 if (idle)
4717 continue;
4718
4719 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4720
4721 for_each_pwq(pwq, wq) {
4722 spin_lock_irqsave(&pwq->pool->lock, flags);
4723 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4724 show_pwq(pwq);
4725 spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
4726 /*
4727 * We could be printing a lot from atomic context, e.g.
4728 * sysrq-t -> show_workqueue_state(). Avoid triggering
4729 * hard lockup.
4730 */
4731 touch_nmi_watchdog();
3494fc30
TH
4732 }
4733 }
4734
4735 for_each_pool(pool, pi) {
4736 struct worker *worker;
4737 bool first = true;
4738
4739 spin_lock_irqsave(&pool->lock, flags);
4740 if (pool->nr_workers == pool->nr_idle)
4741 goto next_pool;
4742
4743 pr_info("pool %d:", pool->id);
4744 pr_cont_pool_info(pool);
82607adc
TH
4745 pr_cont(" hung=%us workers=%d",
4746 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4747 pool->nr_workers);
3494fc30
TH
4748 if (pool->manager)
4749 pr_cont(" manager: %d",
4750 task_pid_nr(pool->manager->task));
4751 list_for_each_entry(worker, &pool->idle_list, entry) {
4752 pr_cont(" %s%d", first ? "idle: " : "",
4753 task_pid_nr(worker->task));
4754 first = false;
4755 }
4756 pr_cont("\n");
4757 next_pool:
4758 spin_unlock_irqrestore(&pool->lock, flags);
62635ea8
SS
4759 /*
4760 * We could be printing a lot from atomic context, e.g.
4761 * sysrq-t -> show_workqueue_state(). Avoid triggering
4762 * hard lockup.
4763 */
4764 touch_nmi_watchdog();
3494fc30
TH
4765 }
4766
4767 rcu_read_unlock_sched();
4768}
4769
6b59808b
TH
4770/* used to show worker information through /proc/PID/{comm,stat,status} */
4771void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4772{
6b59808b
TH
4773 int off;
4774
4775 /* always show the actual comm */
4776 off = strscpy(buf, task->comm, size);
4777 if (off < 0)
4778 return;
4779
197f6acc 4780 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
4781 mutex_lock(&wq_pool_attach_mutex);
4782
197f6acc
TH
4783 if (task->flags & PF_WQ_WORKER) {
4784 struct worker *worker = kthread_data(task);
4785 struct worker_pool *pool = worker->pool;
6b59808b 4786
197f6acc
TH
4787 if (pool) {
4788 spin_lock_irq(&pool->lock);
4789 /*
4790 * ->desc tracks information (wq name or
4791 * set_worker_desc()) for the latest execution. If
4792 * current, prepend '+', otherwise '-'.
4793 */
4794 if (worker->desc[0] != '\0') {
4795 if (worker->current_work)
4796 scnprintf(buf + off, size - off, "+%s",
4797 worker->desc);
4798 else
4799 scnprintf(buf + off, size - off, "-%s",
4800 worker->desc);
4801 }
4802 spin_unlock_irq(&pool->lock);
6b59808b 4803 }
6b59808b
TH
4804 }
4805
4806 mutex_unlock(&wq_pool_attach_mutex);
4807}
4808
66448bc2
MM
4809#ifdef CONFIG_SMP
4810
db7bccf4
TH
4811/*
4812 * CPU hotplug.
4813 *
e22bee78 4814 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4815 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4816 * pool which make migrating pending and scheduled works very
e22bee78 4817 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4818 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4819 * blocked draining impractical.
4820 *
24647570 4821 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4822 * running as an unbound one and allowing it to be reattached later if the
4823 * cpu comes back online.
db7bccf4 4824 */
1da177e4 4825
e8b3f8db 4826static void unbind_workers(int cpu)
3af24433 4827{
4ce62e9e 4828 struct worker_pool *pool;
db7bccf4 4829 struct worker *worker;
3af24433 4830
f02ae73a 4831 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 4832 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 4833 spin_lock_irq(&pool->lock);
3af24433 4834
94cf58bb 4835 /*
92f9c5c4 4836 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4837 * unbound and set DISASSOCIATED. Before this, all workers
4838 * except for the ones which are still executing works from
4839 * before the last CPU down must be on the cpu. After
4840 * this, they may become diasporas.
4841 */
da028469 4842 for_each_pool_worker(worker, pool)
c9e7cf27 4843 worker->flags |= WORKER_UNBOUND;
06ba38a9 4844
24647570 4845 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4846
94cf58bb 4847 spin_unlock_irq(&pool->lock);
1258fae7 4848 mutex_unlock(&wq_pool_attach_mutex);
628c78e7 4849
eb283428
LJ
4850 /*
4851 * Call schedule() so that we cross rq->lock and thus can
4852 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4853 * This is necessary as scheduler callbacks may be invoked
4854 * from other cpus.
4855 */
4856 schedule();
06ba38a9 4857
eb283428
LJ
4858 /*
4859 * Sched callbacks are disabled now. Zap nr_running.
4860 * After this, nr_running stays zero and need_more_worker()
4861 * and keep_working() are always true as long as the
4862 * worklist is not empty. This pool now behaves as an
4863 * unbound (in terms of concurrency management) pool which
4864 * are served by workers tied to the pool.
4865 */
e19e397a 4866 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4867
4868 /*
4869 * With concurrency management just turned off, a busy
4870 * worker blocking could lead to lengthy stalls. Kick off
4871 * unbound chain execution of currently pending work items.
4872 */
4873 spin_lock_irq(&pool->lock);
4874 wake_up_worker(pool);
4875 spin_unlock_irq(&pool->lock);
4876 }
3af24433 4877}
3af24433 4878
bd7c089e
TH
4879/**
4880 * rebind_workers - rebind all workers of a pool to the associated CPU
4881 * @pool: pool of interest
4882 *
a9ab775b 4883 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4884 */
4885static void rebind_workers(struct worker_pool *pool)
4886{
a9ab775b 4887 struct worker *worker;
bd7c089e 4888
1258fae7 4889 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 4890
a9ab775b
TH
4891 /*
4892 * Restore CPU affinity of all workers. As all idle workers should
4893 * be on the run-queue of the associated CPU before any local
402dd89d 4894 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4895 * of all workers first and then clear UNBOUND. As we're called
4896 * from CPU_ONLINE, the following shouldn't fail.
4897 */
da028469 4898 for_each_pool_worker(worker, pool)
a9ab775b
TH
4899 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4900 pool->attrs->cpumask) < 0);
bd7c089e 4901
a9ab775b 4902 spin_lock_irq(&pool->lock);
f7c17d26 4903
3de5e884 4904 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4905
da028469 4906 for_each_pool_worker(worker, pool) {
a9ab775b 4907 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4908
4909 /*
a9ab775b
TH
4910 * A bound idle worker should actually be on the runqueue
4911 * of the associated CPU for local wake-ups targeting it to
4912 * work. Kick all idle workers so that they migrate to the
4913 * associated CPU. Doing this in the same loop as
4914 * replacing UNBOUND with REBOUND is safe as no worker will
4915 * be bound before @pool->lock is released.
bd7c089e 4916 */
a9ab775b
TH
4917 if (worker_flags & WORKER_IDLE)
4918 wake_up_process(worker->task);
bd7c089e 4919
a9ab775b
TH
4920 /*
4921 * We want to clear UNBOUND but can't directly call
4922 * worker_clr_flags() or adjust nr_running. Atomically
4923 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4924 * @worker will clear REBOUND using worker_clr_flags() when
4925 * it initiates the next execution cycle thus restoring
4926 * concurrency management. Note that when or whether
4927 * @worker clears REBOUND doesn't affect correctness.
4928 *
c95491ed 4929 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b
TH
4930 * tested without holding any lock in
4931 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4932 * fail incorrectly leading to premature concurrency
4933 * management operations.
4934 */
4935 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4936 worker_flags |= WORKER_REBOUND;
4937 worker_flags &= ~WORKER_UNBOUND;
c95491ed 4938 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 4939 }
a9ab775b
TH
4940
4941 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4942}
4943
7dbc725e
TH
4944/**
4945 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4946 * @pool: unbound pool of interest
4947 * @cpu: the CPU which is coming up
4948 *
4949 * An unbound pool may end up with a cpumask which doesn't have any online
4950 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4951 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4952 * online CPU before, cpus_allowed of all its workers should be restored.
4953 */
4954static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4955{
4956 static cpumask_t cpumask;
4957 struct worker *worker;
7dbc725e 4958
1258fae7 4959 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
4960
4961 /* is @cpu allowed for @pool? */
4962 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4963 return;
4964
7dbc725e 4965 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
4966
4967 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4968 for_each_pool_worker(worker, pool)
d945b5e9 4969 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
4970}
4971
7ee681b2
TG
4972int workqueue_prepare_cpu(unsigned int cpu)
4973{
4974 struct worker_pool *pool;
4975
4976 for_each_cpu_worker_pool(pool, cpu) {
4977 if (pool->nr_workers)
4978 continue;
4979 if (!create_worker(pool))
4980 return -ENOMEM;
4981 }
4982 return 0;
4983}
4984
4985int workqueue_online_cpu(unsigned int cpu)
3af24433 4986{
4ce62e9e 4987 struct worker_pool *pool;
4c16bd32 4988 struct workqueue_struct *wq;
7dbc725e 4989 int pi;
3ce63377 4990
7ee681b2 4991 mutex_lock(&wq_pool_mutex);
7dbc725e 4992
7ee681b2 4993 for_each_pool(pool, pi) {
1258fae7 4994 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 4995
7ee681b2
TG
4996 if (pool->cpu == cpu)
4997 rebind_workers(pool);
4998 else if (pool->cpu < 0)
4999 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 5000
1258fae7 5001 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 5002 }
6ba94429 5003
7ee681b2
TG
5004 /* update NUMA affinity of unbound workqueues */
5005 list_for_each_entry(wq, &workqueues, list)
5006 wq_update_unbound_numa(wq, cpu, true);
6ba94429 5007
7ee681b2
TG
5008 mutex_unlock(&wq_pool_mutex);
5009 return 0;
6ba94429
FW
5010}
5011
7ee681b2 5012int workqueue_offline_cpu(unsigned int cpu)
6ba94429 5013{
6ba94429
FW
5014 struct workqueue_struct *wq;
5015
7ee681b2 5016 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
5017 if (WARN_ON(cpu != smp_processor_id()))
5018 return -1;
5019
5020 unbind_workers(cpu);
7ee681b2
TG
5021
5022 /* update NUMA affinity of unbound workqueues */
5023 mutex_lock(&wq_pool_mutex);
5024 list_for_each_entry(wq, &workqueues, list)
5025 wq_update_unbound_numa(wq, cpu, false);
5026 mutex_unlock(&wq_pool_mutex);
5027
7ee681b2 5028 return 0;
6ba94429
FW
5029}
5030
6ba94429
FW
5031struct work_for_cpu {
5032 struct work_struct work;
5033 long (*fn)(void *);
5034 void *arg;
5035 long ret;
5036};
5037
5038static void work_for_cpu_fn(struct work_struct *work)
5039{
5040 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5041
5042 wfc->ret = wfc->fn(wfc->arg);
5043}
5044
5045/**
22aceb31 5046 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
5047 * @cpu: the cpu to run on
5048 * @fn: the function to run
5049 * @arg: the function arg
5050 *
5051 * It is up to the caller to ensure that the cpu doesn't go offline.
5052 * The caller must not hold any locks which would prevent @fn from completing.
5053 *
5054 * Return: The value @fn returns.
5055 */
5056long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5057{
5058 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5059
5060 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5061 schedule_work_on(cpu, &wfc.work);
5062 flush_work(&wfc.work);
5063 destroy_work_on_stack(&wfc.work);
5064 return wfc.ret;
5065}
5066EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
5067
5068/**
5069 * work_on_cpu_safe - run a function in thread context on a particular cpu
5070 * @cpu: the cpu to run on
5071 * @fn: the function to run
5072 * @arg: the function argument
5073 *
5074 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5075 * any locks which would prevent @fn from completing.
5076 *
5077 * Return: The value @fn returns.
5078 */
5079long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5080{
5081 long ret = -ENODEV;
5082
5083 get_online_cpus();
5084 if (cpu_online(cpu))
5085 ret = work_on_cpu(cpu, fn, arg);
5086 put_online_cpus();
5087 return ret;
5088}
5089EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
5090#endif /* CONFIG_SMP */
5091
5092#ifdef CONFIG_FREEZER
5093
5094/**
5095 * freeze_workqueues_begin - begin freezing workqueues
5096 *
5097 * Start freezing workqueues. After this function returns, all freezable
5098 * workqueues will queue new works to their delayed_works list instead of
5099 * pool->worklist.
5100 *
5101 * CONTEXT:
5102 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5103 */
5104void freeze_workqueues_begin(void)
5105{
5106 struct workqueue_struct *wq;
5107 struct pool_workqueue *pwq;
5108
5109 mutex_lock(&wq_pool_mutex);
5110
5111 WARN_ON_ONCE(workqueue_freezing);
5112 workqueue_freezing = true;
5113
5114 list_for_each_entry(wq, &workqueues, list) {
5115 mutex_lock(&wq->mutex);
5116 for_each_pwq(pwq, wq)
5117 pwq_adjust_max_active(pwq);
5118 mutex_unlock(&wq->mutex);
5119 }
5120
5121 mutex_unlock(&wq_pool_mutex);
5122}
5123
5124/**
5125 * freeze_workqueues_busy - are freezable workqueues still busy?
5126 *
5127 * Check whether freezing is complete. This function must be called
5128 * between freeze_workqueues_begin() and thaw_workqueues().
5129 *
5130 * CONTEXT:
5131 * Grabs and releases wq_pool_mutex.
5132 *
5133 * Return:
5134 * %true if some freezable workqueues are still busy. %false if freezing
5135 * is complete.
5136 */
5137bool freeze_workqueues_busy(void)
5138{
5139 bool busy = false;
5140 struct workqueue_struct *wq;
5141 struct pool_workqueue *pwq;
5142
5143 mutex_lock(&wq_pool_mutex);
5144
5145 WARN_ON_ONCE(!workqueue_freezing);
5146
5147 list_for_each_entry(wq, &workqueues, list) {
5148 if (!(wq->flags & WQ_FREEZABLE))
5149 continue;
5150 /*
5151 * nr_active is monotonically decreasing. It's safe
5152 * to peek without lock.
5153 */
5154 rcu_read_lock_sched();
5155 for_each_pwq(pwq, wq) {
5156 WARN_ON_ONCE(pwq->nr_active < 0);
5157 if (pwq->nr_active) {
5158 busy = true;
5159 rcu_read_unlock_sched();
5160 goto out_unlock;
5161 }
5162 }
5163 rcu_read_unlock_sched();
5164 }
5165out_unlock:
5166 mutex_unlock(&wq_pool_mutex);
5167 return busy;
5168}
5169
5170/**
5171 * thaw_workqueues - thaw workqueues
5172 *
5173 * Thaw workqueues. Normal queueing is restored and all collected
5174 * frozen works are transferred to their respective pool worklists.
5175 *
5176 * CONTEXT:
5177 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5178 */
5179void thaw_workqueues(void)
5180{
5181 struct workqueue_struct *wq;
5182 struct pool_workqueue *pwq;
5183
5184 mutex_lock(&wq_pool_mutex);
5185
5186 if (!workqueue_freezing)
5187 goto out_unlock;
5188
5189 workqueue_freezing = false;
5190
5191 /* restore max_active and repopulate worklist */
5192 list_for_each_entry(wq, &workqueues, list) {
5193 mutex_lock(&wq->mutex);
5194 for_each_pwq(pwq, wq)
5195 pwq_adjust_max_active(pwq);
5196 mutex_unlock(&wq->mutex);
5197 }
5198
5199out_unlock:
5200 mutex_unlock(&wq_pool_mutex);
5201}
5202#endif /* CONFIG_FREEZER */
5203
042f7df1
LJ
5204static int workqueue_apply_unbound_cpumask(void)
5205{
5206 LIST_HEAD(ctxs);
5207 int ret = 0;
5208 struct workqueue_struct *wq;
5209 struct apply_wqattrs_ctx *ctx, *n;
5210
5211 lockdep_assert_held(&wq_pool_mutex);
5212
5213 list_for_each_entry(wq, &workqueues, list) {
5214 if (!(wq->flags & WQ_UNBOUND))
5215 continue;
5216 /* creating multiple pwqs breaks ordering guarantee */
5217 if (wq->flags & __WQ_ORDERED)
5218 continue;
5219
5220 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5221 if (!ctx) {
5222 ret = -ENOMEM;
5223 break;
5224 }
5225
5226 list_add_tail(&ctx->list, &ctxs);
5227 }
5228
5229 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5230 if (!ret)
5231 apply_wqattrs_commit(ctx);
5232 apply_wqattrs_cleanup(ctx);
5233 }
5234
5235 return ret;
5236}
5237
5238/**
5239 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5240 * @cpumask: the cpumask to set
5241 *
5242 * The low-level workqueues cpumask is a global cpumask that limits
5243 * the affinity of all unbound workqueues. This function check the @cpumask
5244 * and apply it to all unbound workqueues and updates all pwqs of them.
5245 *
5246 * Retun: 0 - Success
5247 * -EINVAL - Invalid @cpumask
5248 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5249 */
5250int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5251{
5252 int ret = -EINVAL;
5253 cpumask_var_t saved_cpumask;
5254
5255 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5256 return -ENOMEM;
5257
c98a9805
TS
5258 /*
5259 * Not excluding isolated cpus on purpose.
5260 * If the user wishes to include them, we allow that.
5261 */
042f7df1
LJ
5262 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5263 if (!cpumask_empty(cpumask)) {
a0111cf6 5264 apply_wqattrs_lock();
042f7df1
LJ
5265
5266 /* save the old wq_unbound_cpumask. */
5267 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5268
5269 /* update wq_unbound_cpumask at first and apply it to wqs. */
5270 cpumask_copy(wq_unbound_cpumask, cpumask);
5271 ret = workqueue_apply_unbound_cpumask();
5272
5273 /* restore the wq_unbound_cpumask when failed. */
5274 if (ret < 0)
5275 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5276
a0111cf6 5277 apply_wqattrs_unlock();
042f7df1 5278 }
042f7df1
LJ
5279
5280 free_cpumask_var(saved_cpumask);
5281 return ret;
5282}
5283
6ba94429
FW
5284#ifdef CONFIG_SYSFS
5285/*
5286 * Workqueues with WQ_SYSFS flag set is visible to userland via
5287 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5288 * following attributes.
5289 *
5290 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5291 * max_active RW int : maximum number of in-flight work items
5292 *
5293 * Unbound workqueues have the following extra attributes.
5294 *
9a19b463 5295 * pool_ids RO int : the associated pool IDs for each node
6ba94429
FW
5296 * nice RW int : nice value of the workers
5297 * cpumask RW mask : bitmask of allowed CPUs for the workers
9a19b463 5298 * numa RW bool : whether enable NUMA affinity
6ba94429
FW
5299 */
5300struct wq_device {
5301 struct workqueue_struct *wq;
5302 struct device dev;
5303};
5304
5305static struct workqueue_struct *dev_to_wq(struct device *dev)
5306{
5307 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5308
5309 return wq_dev->wq;
5310}
5311
5312static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5313 char *buf)
5314{
5315 struct workqueue_struct *wq = dev_to_wq(dev);
5316
5317 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5318}
5319static DEVICE_ATTR_RO(per_cpu);
5320
5321static ssize_t max_active_show(struct device *dev,
5322 struct device_attribute *attr, char *buf)
5323{
5324 struct workqueue_struct *wq = dev_to_wq(dev);
5325
5326 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5327}
5328
5329static ssize_t max_active_store(struct device *dev,
5330 struct device_attribute *attr, const char *buf,
5331 size_t count)
5332{
5333 struct workqueue_struct *wq = dev_to_wq(dev);
5334 int val;
5335
5336 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5337 return -EINVAL;
5338
5339 workqueue_set_max_active(wq, val);
5340 return count;
5341}
5342static DEVICE_ATTR_RW(max_active);
5343
5344static struct attribute *wq_sysfs_attrs[] = {
5345 &dev_attr_per_cpu.attr,
5346 &dev_attr_max_active.attr,
5347 NULL,
5348};
5349ATTRIBUTE_GROUPS(wq_sysfs);
5350
5351static ssize_t wq_pool_ids_show(struct device *dev,
5352 struct device_attribute *attr, char *buf)
5353{
5354 struct workqueue_struct *wq = dev_to_wq(dev);
5355 const char *delim = "";
5356 int node, written = 0;
5357
5358 rcu_read_lock_sched();
5359 for_each_node(node) {
5360 written += scnprintf(buf + written, PAGE_SIZE - written,
5361 "%s%d:%d", delim, node,
5362 unbound_pwq_by_node(wq, node)->pool->id);
5363 delim = " ";
5364 }
5365 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5366 rcu_read_unlock_sched();
5367
5368 return written;
5369}
5370
5371static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5372 char *buf)
5373{
5374 struct workqueue_struct *wq = dev_to_wq(dev);
5375 int written;
5376
5377 mutex_lock(&wq->mutex);
5378 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5379 mutex_unlock(&wq->mutex);
5380
5381 return written;
5382}
5383
5384/* prepare workqueue_attrs for sysfs store operations */
5385static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5386{
5387 struct workqueue_attrs *attrs;
5388
899a94fe
LJ
5389 lockdep_assert_held(&wq_pool_mutex);
5390
6ba94429
FW
5391 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5392 if (!attrs)
5393 return NULL;
5394
6ba94429 5395 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5396 return attrs;
5397}
5398
5399static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5400 const char *buf, size_t count)
5401{
5402 struct workqueue_struct *wq = dev_to_wq(dev);
5403 struct workqueue_attrs *attrs;
d4d3e257
LJ
5404 int ret = -ENOMEM;
5405
5406 apply_wqattrs_lock();
6ba94429
FW
5407
5408 attrs = wq_sysfs_prep_attrs(wq);
5409 if (!attrs)
d4d3e257 5410 goto out_unlock;
6ba94429
FW
5411
5412 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5413 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5414 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5415 else
5416 ret = -EINVAL;
5417
d4d3e257
LJ
5418out_unlock:
5419 apply_wqattrs_unlock();
6ba94429
FW
5420 free_workqueue_attrs(attrs);
5421 return ret ?: count;
5422}
5423
5424static ssize_t wq_cpumask_show(struct device *dev,
5425 struct device_attribute *attr, char *buf)
5426{
5427 struct workqueue_struct *wq = dev_to_wq(dev);
5428 int written;
5429
5430 mutex_lock(&wq->mutex);
5431 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5432 cpumask_pr_args(wq->unbound_attrs->cpumask));
5433 mutex_unlock(&wq->mutex);
5434 return written;
5435}
5436
5437static ssize_t wq_cpumask_store(struct device *dev,
5438 struct device_attribute *attr,
5439 const char *buf, size_t count)
5440{
5441 struct workqueue_struct *wq = dev_to_wq(dev);
5442 struct workqueue_attrs *attrs;
d4d3e257
LJ
5443 int ret = -ENOMEM;
5444
5445 apply_wqattrs_lock();
6ba94429
FW
5446
5447 attrs = wq_sysfs_prep_attrs(wq);
5448 if (!attrs)
d4d3e257 5449 goto out_unlock;
6ba94429
FW
5450
5451 ret = cpumask_parse(buf, attrs->cpumask);
5452 if (!ret)
d4d3e257 5453 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5454
d4d3e257
LJ
5455out_unlock:
5456 apply_wqattrs_unlock();
6ba94429
FW
5457 free_workqueue_attrs(attrs);
5458 return ret ?: count;
5459}
5460
5461static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5462 char *buf)
5463{
5464 struct workqueue_struct *wq = dev_to_wq(dev);
5465 int written;
7dbc725e 5466
6ba94429
FW
5467 mutex_lock(&wq->mutex);
5468 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5469 !wq->unbound_attrs->no_numa);
5470 mutex_unlock(&wq->mutex);
4c16bd32 5471
6ba94429 5472 return written;
65758202
TH
5473}
5474
6ba94429
FW
5475static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5476 const char *buf, size_t count)
65758202 5477{
6ba94429
FW
5478 struct workqueue_struct *wq = dev_to_wq(dev);
5479 struct workqueue_attrs *attrs;
d4d3e257
LJ
5480 int v, ret = -ENOMEM;
5481
5482 apply_wqattrs_lock();
4c16bd32 5483
6ba94429
FW
5484 attrs = wq_sysfs_prep_attrs(wq);
5485 if (!attrs)
d4d3e257 5486 goto out_unlock;
4c16bd32 5487
6ba94429
FW
5488 ret = -EINVAL;
5489 if (sscanf(buf, "%d", &v) == 1) {
5490 attrs->no_numa = !v;
d4d3e257 5491 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5492 }
6ba94429 5493
d4d3e257
LJ
5494out_unlock:
5495 apply_wqattrs_unlock();
6ba94429
FW
5496 free_workqueue_attrs(attrs);
5497 return ret ?: count;
65758202
TH
5498}
5499
6ba94429
FW
5500static struct device_attribute wq_sysfs_unbound_attrs[] = {
5501 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5502 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5503 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5504 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5505 __ATTR_NULL,
5506};
8ccad40d 5507
6ba94429
FW
5508static struct bus_type wq_subsys = {
5509 .name = "workqueue",
5510 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5511};
5512
b05a7928
FW
5513static ssize_t wq_unbound_cpumask_show(struct device *dev,
5514 struct device_attribute *attr, char *buf)
5515{
5516 int written;
5517
042f7df1 5518 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5519 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5520 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5521 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5522
5523 return written;
5524}
5525
042f7df1
LJ
5526static ssize_t wq_unbound_cpumask_store(struct device *dev,
5527 struct device_attribute *attr, const char *buf, size_t count)
5528{
5529 cpumask_var_t cpumask;
5530 int ret;
5531
5532 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5533 return -ENOMEM;
5534
5535 ret = cpumask_parse(buf, cpumask);
5536 if (!ret)
5537 ret = workqueue_set_unbound_cpumask(cpumask);
5538
5539 free_cpumask_var(cpumask);
5540 return ret ? ret : count;
5541}
5542
b05a7928 5543static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5544 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5545 wq_unbound_cpumask_store);
b05a7928 5546
6ba94429 5547static int __init wq_sysfs_init(void)
2d3854a3 5548{
b05a7928
FW
5549 int err;
5550
5551 err = subsys_virtual_register(&wq_subsys, NULL);
5552 if (err)
5553 return err;
5554
5555 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5556}
6ba94429 5557core_initcall(wq_sysfs_init);
2d3854a3 5558
6ba94429 5559static void wq_device_release(struct device *dev)
2d3854a3 5560{
6ba94429 5561 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5562
6ba94429 5563 kfree(wq_dev);
2d3854a3 5564}
a0a1a5fd
TH
5565
5566/**
6ba94429
FW
5567 * workqueue_sysfs_register - make a workqueue visible in sysfs
5568 * @wq: the workqueue to register
a0a1a5fd 5569 *
6ba94429
FW
5570 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5571 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5572 * which is the preferred method.
a0a1a5fd 5573 *
6ba94429
FW
5574 * Workqueue user should use this function directly iff it wants to apply
5575 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5576 * apply_workqueue_attrs() may race against userland updating the
5577 * attributes.
5578 *
5579 * Return: 0 on success, -errno on failure.
a0a1a5fd 5580 */
6ba94429 5581int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5582{
6ba94429
FW
5583 struct wq_device *wq_dev;
5584 int ret;
a0a1a5fd 5585
6ba94429 5586 /*
402dd89d 5587 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5588 * attributes breaks ordering guarantee. Disallow exposing ordered
5589 * workqueues.
5590 */
0a94efb5 5591 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5592 return -EINVAL;
a0a1a5fd 5593
6ba94429
FW
5594 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5595 if (!wq_dev)
5596 return -ENOMEM;
5bcab335 5597
6ba94429
FW
5598 wq_dev->wq = wq;
5599 wq_dev->dev.bus = &wq_subsys;
6ba94429 5600 wq_dev->dev.release = wq_device_release;
23217b44 5601 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5602
6ba94429
FW
5603 /*
5604 * unbound_attrs are created separately. Suppress uevent until
5605 * everything is ready.
5606 */
5607 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5608
6ba94429
FW
5609 ret = device_register(&wq_dev->dev);
5610 if (ret) {
537f4146 5611 put_device(&wq_dev->dev);
6ba94429
FW
5612 wq->wq_dev = NULL;
5613 return ret;
5614 }
a0a1a5fd 5615
6ba94429
FW
5616 if (wq->flags & WQ_UNBOUND) {
5617 struct device_attribute *attr;
a0a1a5fd 5618
6ba94429
FW
5619 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5620 ret = device_create_file(&wq_dev->dev, attr);
5621 if (ret) {
5622 device_unregister(&wq_dev->dev);
5623 wq->wq_dev = NULL;
5624 return ret;
a0a1a5fd
TH
5625 }
5626 }
5627 }
6ba94429
FW
5628
5629 dev_set_uevent_suppress(&wq_dev->dev, false);
5630 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5631 return 0;
a0a1a5fd
TH
5632}
5633
5634/**
6ba94429
FW
5635 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5636 * @wq: the workqueue to unregister
a0a1a5fd 5637 *
6ba94429 5638 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5639 */
6ba94429 5640static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5641{
6ba94429 5642 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5643
6ba94429
FW
5644 if (!wq->wq_dev)
5645 return;
a0a1a5fd 5646
6ba94429
FW
5647 wq->wq_dev = NULL;
5648 device_unregister(&wq_dev->dev);
a0a1a5fd 5649}
6ba94429
FW
5650#else /* CONFIG_SYSFS */
5651static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5652#endif /* CONFIG_SYSFS */
a0a1a5fd 5653
82607adc
TH
5654/*
5655 * Workqueue watchdog.
5656 *
5657 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5658 * flush dependency, a concurrency managed work item which stays RUNNING
5659 * indefinitely. Workqueue stalls can be very difficult to debug as the
5660 * usual warning mechanisms don't trigger and internal workqueue state is
5661 * largely opaque.
5662 *
5663 * Workqueue watchdog monitors all worker pools periodically and dumps
5664 * state if some pools failed to make forward progress for a while where
5665 * forward progress is defined as the first item on ->worklist changing.
5666 *
5667 * This mechanism is controlled through the kernel parameter
5668 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5669 * corresponding sysfs parameter file.
5670 */
5671#ifdef CONFIG_WQ_WATCHDOG
5672
82607adc 5673static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 5674static struct timer_list wq_watchdog_timer;
82607adc
TH
5675
5676static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5677static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5678
5679static void wq_watchdog_reset_touched(void)
5680{
5681 int cpu;
5682
5683 wq_watchdog_touched = jiffies;
5684 for_each_possible_cpu(cpu)
5685 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5686}
5687
5cd79d6a 5688static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
5689{
5690 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5691 bool lockup_detected = false;
5692 struct worker_pool *pool;
5693 int pi;
5694
5695 if (!thresh)
5696 return;
5697
5698 rcu_read_lock();
5699
5700 for_each_pool(pool, pi) {
5701 unsigned long pool_ts, touched, ts;
5702
5703 if (list_empty(&pool->worklist))
5704 continue;
5705
5706 /* get the latest of pool and touched timestamps */
5707 pool_ts = READ_ONCE(pool->watchdog_ts);
5708 touched = READ_ONCE(wq_watchdog_touched);
5709
5710 if (time_after(pool_ts, touched))
5711 ts = pool_ts;
5712 else
5713 ts = touched;
5714
5715 if (pool->cpu >= 0) {
5716 unsigned long cpu_touched =
5717 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5718 pool->cpu));
5719 if (time_after(cpu_touched, ts))
5720 ts = cpu_touched;
5721 }
5722
5723 /* did we stall? */
5724 if (time_after(jiffies, ts + thresh)) {
5725 lockup_detected = true;
5726 pr_emerg("BUG: workqueue lockup - pool");
5727 pr_cont_pool_info(pool);
5728 pr_cont(" stuck for %us!\n",
5729 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5730 }
5731 }
5732
5733 rcu_read_unlock();
5734
5735 if (lockup_detected)
5736 show_workqueue_state();
5737
5738 wq_watchdog_reset_touched();
5739 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5740}
5741
cb9d7fd5 5742notrace void wq_watchdog_touch(int cpu)
82607adc
TH
5743{
5744 if (cpu >= 0)
5745 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5746 else
5747 wq_watchdog_touched = jiffies;
5748}
5749
5750static void wq_watchdog_set_thresh(unsigned long thresh)
5751{
5752 wq_watchdog_thresh = 0;
5753 del_timer_sync(&wq_watchdog_timer);
5754
5755 if (thresh) {
5756 wq_watchdog_thresh = thresh;
5757 wq_watchdog_reset_touched();
5758 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5759 }
5760}
5761
5762static int wq_watchdog_param_set_thresh(const char *val,
5763 const struct kernel_param *kp)
5764{
5765 unsigned long thresh;
5766 int ret;
5767
5768 ret = kstrtoul(val, 0, &thresh);
5769 if (ret)
5770 return ret;
5771
5772 if (system_wq)
5773 wq_watchdog_set_thresh(thresh);
5774 else
5775 wq_watchdog_thresh = thresh;
5776
5777 return 0;
5778}
5779
5780static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5781 .set = wq_watchdog_param_set_thresh,
5782 .get = param_get_ulong,
5783};
5784
5785module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5786 0644);
5787
5788static void wq_watchdog_init(void)
5789{
5cd79d6a 5790 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
5791 wq_watchdog_set_thresh(wq_watchdog_thresh);
5792}
5793
5794#else /* CONFIG_WQ_WATCHDOG */
5795
5796static inline void wq_watchdog_init(void) { }
5797
5798#endif /* CONFIG_WQ_WATCHDOG */
5799
bce90380
TH
5800static void __init wq_numa_init(void)
5801{
5802 cpumask_var_t *tbl;
5803 int node, cpu;
5804
bce90380
TH
5805 if (num_possible_nodes() <= 1)
5806 return;
5807
d55262c4
TH
5808 if (wq_disable_numa) {
5809 pr_info("workqueue: NUMA affinity support disabled\n");
5810 return;
5811 }
5812
4c16bd32
TH
5813 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5814 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5815
bce90380
TH
5816 /*
5817 * We want masks of possible CPUs of each node which isn't readily
5818 * available. Build one from cpu_to_node() which should have been
5819 * fully initialized by now.
5820 */
6396bb22 5821 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5822 BUG_ON(!tbl);
5823
5824 for_each_node(node)
5a6024f1 5825 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5826 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5827
5828 for_each_possible_cpu(cpu) {
5829 node = cpu_to_node(cpu);
5830 if (WARN_ON(node == NUMA_NO_NODE)) {
5831 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5832 /* happens iff arch is bonkers, let's just proceed */
5833 return;
5834 }
5835 cpumask_set_cpu(cpu, tbl[node]);
5836 }
5837
5838 wq_numa_possible_cpumask = tbl;
5839 wq_numa_enabled = true;
5840}
5841
3347fa09
TH
5842/**
5843 * workqueue_init_early - early init for workqueue subsystem
5844 *
5845 * This is the first half of two-staged workqueue subsystem initialization
5846 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5847 * idr are up. It sets up all the data structures and system workqueues
5848 * and allows early boot code to create workqueues and queue/cancel work
5849 * items. Actual work item execution starts only after kthreads can be
5850 * created and scheduled right before early initcalls.
5851 */
5852int __init workqueue_init_early(void)
1da177e4 5853{
7a4e344c 5854 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
1bda3f80 5855 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
7a4e344c 5856 int i, cpu;
c34056a3 5857
e904e6c2
TH
5858 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5859
b05a7928 5860 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
1bda3f80 5861 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
b05a7928 5862
e904e6c2
TH
5863 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5864
706026c2 5865 /* initialize CPU pools */
29c91e99 5866 for_each_possible_cpu(cpu) {
4ce62e9e 5867 struct worker_pool *pool;
8b03ae3c 5868
7a4e344c 5869 i = 0;
f02ae73a 5870 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5871 BUG_ON(init_worker_pool(pool));
ec22ca5e 5872 pool->cpu = cpu;
29c91e99 5873 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5874 pool->attrs->nice = std_nice[i++];
f3f90ad4 5875 pool->node = cpu_to_node(cpu);
7a4e344c 5876
9daf9e67 5877 /* alloc pool ID */
68e13a67 5878 mutex_lock(&wq_pool_mutex);
9daf9e67 5879 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5880 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5881 }
8b03ae3c
TH
5882 }
5883
8a2b7538 5884 /* create default unbound and ordered wq attrs */
29c91e99
TH
5885 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5886 struct workqueue_attrs *attrs;
5887
5888 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5889 attrs->nice = std_nice[i];
29c91e99 5890 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5891
5892 /*
5893 * An ordered wq should have only one pwq as ordering is
5894 * guaranteed by max_active which is enforced by pwqs.
5895 * Turn off NUMA so that dfl_pwq is used for all nodes.
5896 */
5897 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5898 attrs->nice = std_nice[i];
5899 attrs->no_numa = true;
5900 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5901 }
5902
d320c038 5903 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5904 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5905 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5906 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5907 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5908 system_freezable_wq = alloc_workqueue("events_freezable",
5909 WQ_FREEZABLE, 0);
0668106c
VK
5910 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5911 WQ_POWER_EFFICIENT, 0);
5912 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5913 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5914 0);
1aabe902 5915 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5916 !system_unbound_wq || !system_freezable_wq ||
5917 !system_power_efficient_wq ||
5918 !system_freezable_power_efficient_wq);
82607adc 5919
3347fa09
TH
5920 return 0;
5921}
5922
5923/**
5924 * workqueue_init - bring workqueue subsystem fully online
5925 *
5926 * This is the latter half of two-staged workqueue subsystem initialization
5927 * and invoked as soon as kthreads can be created and scheduled.
5928 * Workqueues have been created and work items queued on them, but there
5929 * are no kworkers executing the work items yet. Populate the worker pools
5930 * with the initial workers and enable future kworker creations.
5931 */
5932int __init workqueue_init(void)
5933{
2186d9f9 5934 struct workqueue_struct *wq;
3347fa09
TH
5935 struct worker_pool *pool;
5936 int cpu, bkt;
5937
2186d9f9
TH
5938 /*
5939 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5940 * CPU to node mapping may not be available that early on some
5941 * archs such as power and arm64. As per-cpu pools created
5942 * previously could be missing node hint and unbound pools NUMA
5943 * affinity, fix them up.
40c17f75
TH
5944 *
5945 * Also, while iterating workqueues, create rescuers if requested.
2186d9f9
TH
5946 */
5947 wq_numa_init();
5948
5949 mutex_lock(&wq_pool_mutex);
5950
5951 for_each_possible_cpu(cpu) {
5952 for_each_cpu_worker_pool(pool, cpu) {
5953 pool->node = cpu_to_node(cpu);
5954 }
5955 }
5956
40c17f75 5957 list_for_each_entry(wq, &workqueues, list) {
2186d9f9 5958 wq_update_unbound_numa(wq, smp_processor_id(), true);
40c17f75
TH
5959 WARN(init_rescuer(wq),
5960 "workqueue: failed to create early rescuer for %s",
5961 wq->name);
5962 }
2186d9f9
TH
5963
5964 mutex_unlock(&wq_pool_mutex);
5965
3347fa09
TH
5966 /* create the initial workers */
5967 for_each_online_cpu(cpu) {
5968 for_each_cpu_worker_pool(pool, cpu) {
5969 pool->flags &= ~POOL_DISASSOCIATED;
5970 BUG_ON(!create_worker(pool));
5971 }
5972 }
5973
5974 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5975 BUG_ON(!create_worker(pool));
5976
5977 wq_online = true;
82607adc
TH
5978 wq_watchdog_init();
5979
6ee0578b 5980 return 0;
1da177e4 5981}