lib/bug.c: use common WARN helper
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc 67 * Note that DISASSOCIATED should be flipped only while holding
92f9c5c4 68 * attach_mutex to avoid changing binding state while
4736cbf7 69 * worker_attach_to_pool() is in progress.
bc2ae0f5 70 */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 72
c8e55f36 73 /* worker flags */
c8e55f36
TH
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 76 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 80
a9ab775b
TH
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 83
e34cdddb 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 85
29c91e99 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 88
e22bee78
TH
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
3233cdbd
TH
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
e22bee78
TH
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
8698a745 100 * all cpus. Give MIN_NICE.
e22bee78 101 */
8698a745
DY
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
104
105 WQ_NAME_LEN = 24,
c8e55f36 106};
1da177e4
LT
107
108/*
4690c4ab
TH
109 * Structure fields follow one of the following exclusion rules.
110 *
e41e704b
TH
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
4690c4ab 113 *
e22bee78
TH
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
d565ed63 117 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 118 *
d565ed63
TH
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 123 *
92f9c5c4 124 * A: pool->attach_mutex protected.
822d8405 125 *
68e13a67 126 * PL: wq_pool_mutex protected.
5bcab335 127 *
68e13a67 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 129 *
5b95e1af
LJ
130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
131 *
132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
133 * sched-RCU for reads.
134 *
3c25a55d
LJ
135 * WQ: wq->mutex protected.
136 *
b5927605 137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
138 *
139 * MD: wq_mayday_lock protected.
1da177e4 140 */
1da177e4 141
2eaebdb3 142/* struct worker is defined in workqueue_internal.h */
c34056a3 143
bd7bdd43 144struct worker_pool {
d565ed63 145 spinlock_t lock; /* the pool lock */
d84ff051 146 int cpu; /* I: the associated cpu */
f3f90ad4 147 int node; /* I: the associated node ID */
9daf9e67 148 int id; /* I: pool ID */
11ebea50 149 unsigned int flags; /* X: flags */
bd7bdd43 150
82607adc
TH
151 unsigned long watchdog_ts; /* L: watchdog timestamp */
152
bd7bdd43
TH
153 struct list_head worklist; /* L: list of pending works */
154 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
155
156 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
157 int nr_idle; /* L: currently idle ones */
158
159 struct list_head idle_list; /* X: list of idle workers */
160 struct timer_list idle_timer; /* L: worker idle timeout */
161 struct timer_list mayday_timer; /* L: SOS timer for workers */
162
c5aa87bb 163 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 /* L: hash of busy workers */
166
bc3a1afc 167 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 168 struct mutex manager_arb; /* manager arbitration */
2607d7a6 169 struct worker *manager; /* L: purely informational */
92f9c5c4
LJ
170 struct mutex attach_mutex; /* attach/detach exclusion */
171 struct list_head workers; /* A: attached workers */
60f5a4bc 172 struct completion *detach_completion; /* all workers detached */
e19e397a 173
7cda9aae 174 struct ida worker_ida; /* worker IDs for task name */
e19e397a 175
7a4e344c 176 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 179
e19e397a
TH
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
186
187 /*
188 * Destruction of pool is sched-RCU protected to allow dereferences
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
8b03ae3c
TH
192} ____cacheline_aligned_in_smp;
193
1da177e4 194/*
112202d9
TH
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
1da177e4 199 */
112202d9 200struct pool_workqueue {
bd7bdd43 201 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 202 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
8864b4e5 205 int refcnt; /* L: reference count */
73f53c4a
TH
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
1e19ffc6 208 int nr_active; /* L: nr of active works */
a0a1a5fd 209 int max_active; /* L: max active works */
1e19ffc6 210 struct list_head delayed_works; /* L: delayed works */
3c25a55d 211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 212 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
213
214 /*
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 218 * determined without grabbing wq->mutex.
8864b4e5
TH
219 */
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
e904e6c2 222} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 223
73f53c4a
TH
224/*
225 * Structure used to wait for workqueue flush.
226 */
227struct wq_flusher {
3c25a55d
LJ
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
230 struct completion done; /* flush completion */
231};
232
226223ab
TH
233struct wq_device;
234
1da177e4 235/*
c5aa87bb
TH
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
238 */
239struct workqueue_struct {
3c25a55d 240 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 241 struct list_head list; /* PR: list of all workqueues */
73f53c4a 242
3c25a55d
LJ
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
112202d9 246 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 250
2e109a28 251 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
252 struct worker *rescuer; /* I: rescue worker */
253
87fc741e 254 int nr_drainers; /* WQ: drain in progress */
a357fc03 255 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 256
5b95e1af
LJ
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 259
226223ab
TH
260#ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262#endif
4e6045f1 263#ifdef CONFIG_LOCKDEP
4690c4ab 264 struct lockdep_map lockdep_map;
4e6045f1 265#endif
ecf6881f 266 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 267
e2dca7ad
TH
268 /*
269 * Destruction of workqueue_struct is sched-RCU protected to allow
270 * walking the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
272 */
273 struct rcu_head rcu;
274
2728fd2f
TH
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
279};
280
e904e6c2
TH
281static struct kmem_cache *pwq_cache;
282
bce90380
TH
283static cpumask_var_t *wq_numa_possible_cpumask;
284 /* possible CPUs of each node */
285
d55262c4
TH
286static bool wq_disable_numa;
287module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288
cee22a15 289/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 290static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
291module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292
bce90380
TH
293static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
294
4c16bd32
TH
295/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
297
68e13a67 298static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 299static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 300
e2dca7ad 301static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 302static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 303
ef557180
MG
304/* PL: allowable cpus for unbound wqs and work items */
305static cpumask_var_t wq_unbound_cpumask;
306
307/* CPU where unbound work was last round robin scheduled from this CPU */
308static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 309
f303fccb
TH
310/*
311 * Local execution of unbound work items is no longer guaranteed. The
312 * following always forces round-robin CPU selection on unbound work items
313 * to uncover usages which depend on it.
314 */
315#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
316static bool wq_debug_force_rr_cpu = true;
317#else
318static bool wq_debug_force_rr_cpu = false;
319#endif
320module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
321
7d19c5ce 322/* the per-cpu worker pools */
25528213 323static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 324
68e13a67 325static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 326
68e13a67 327/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
328static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
329
c5aa87bb 330/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
331static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
332
8a2b7538
TH
333/* I: attributes used when instantiating ordered pools on demand */
334static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
335
d320c038 336struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 337EXPORT_SYMBOL(system_wq);
044c782c 338struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 339EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 340struct workqueue_struct *system_long_wq __read_mostly;
d320c038 341EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 342struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 343EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 344struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 345EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
346struct workqueue_struct *system_power_efficient_wq __read_mostly;
347EXPORT_SYMBOL_GPL(system_power_efficient_wq);
348struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
349EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 350
7d19c5ce 351static int worker_thread(void *__worker);
6ba94429 352static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 353
97bd2347
TH
354#define CREATE_TRACE_POINTS
355#include <trace/events/workqueue.h>
356
68e13a67 357#define assert_rcu_or_pool_mutex() \
f78f5b90
PM
358 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
359 !lockdep_is_held(&wq_pool_mutex), \
360 "sched RCU or wq_pool_mutex should be held")
5bcab335 361
b09f4fd3 362#define assert_rcu_or_wq_mutex(wq) \
f78f5b90
PM
363 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
364 !lockdep_is_held(&wq->mutex), \
365 "sched RCU or wq->mutex should be held")
76af4d93 366
5b95e1af 367#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
f78f5b90
PM
368 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
369 !lockdep_is_held(&wq->mutex) && \
370 !lockdep_is_held(&wq_pool_mutex), \
371 "sched RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 372
f02ae73a
TH
373#define for_each_cpu_worker_pool(pool, cpu) \
374 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
375 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 376 (pool)++)
4ce62e9e 377
17116969
TH
378/**
379 * for_each_pool - iterate through all worker_pools in the system
380 * @pool: iteration cursor
611c92a0 381 * @pi: integer used for iteration
fa1b54e6 382 *
68e13a67
LJ
383 * This must be called either with wq_pool_mutex held or sched RCU read
384 * locked. If the pool needs to be used beyond the locking in effect, the
385 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
386 *
387 * The if/else clause exists only for the lockdep assertion and can be
388 * ignored.
17116969 389 */
611c92a0
TH
390#define for_each_pool(pool, pi) \
391 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 392 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 393 else
17116969 394
822d8405
TH
395/**
396 * for_each_pool_worker - iterate through all workers of a worker_pool
397 * @worker: iteration cursor
822d8405
TH
398 * @pool: worker_pool to iterate workers of
399 *
92f9c5c4 400 * This must be called with @pool->attach_mutex.
822d8405
TH
401 *
402 * The if/else clause exists only for the lockdep assertion and can be
403 * ignored.
404 */
da028469
LJ
405#define for_each_pool_worker(worker, pool) \
406 list_for_each_entry((worker), &(pool)->workers, node) \
92f9c5c4 407 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
822d8405
TH
408 else
409
49e3cf44
TH
410/**
411 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
412 * @pwq: iteration cursor
413 * @wq: the target workqueue
76af4d93 414 *
b09f4fd3 415 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
416 * If the pwq needs to be used beyond the locking in effect, the caller is
417 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
418 *
419 * The if/else clause exists only for the lockdep assertion and can be
420 * ignored.
49e3cf44
TH
421 */
422#define for_each_pwq(pwq, wq) \
76af4d93 423 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 424 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 425 else
f3421797 426
dc186ad7
TG
427#ifdef CONFIG_DEBUG_OBJECTS_WORK
428
429static struct debug_obj_descr work_debug_descr;
430
99777288
SG
431static void *work_debug_hint(void *addr)
432{
433 return ((struct work_struct *) addr)->func;
434}
435
dc186ad7
TG
436/*
437 * fixup_init is called when:
438 * - an active object is initialized
439 */
440static int work_fixup_init(void *addr, enum debug_obj_state state)
441{
442 struct work_struct *work = addr;
443
444 switch (state) {
445 case ODEBUG_STATE_ACTIVE:
446 cancel_work_sync(work);
447 debug_object_init(work, &work_debug_descr);
448 return 1;
449 default:
450 return 0;
451 }
452}
453
454/*
455 * fixup_activate is called when:
456 * - an active object is activated
457 * - an unknown object is activated (might be a statically initialized object)
458 */
459static int work_fixup_activate(void *addr, enum debug_obj_state state)
460{
461 struct work_struct *work = addr;
462
463 switch (state) {
464
465 case ODEBUG_STATE_NOTAVAILABLE:
466 /*
467 * This is not really a fixup. The work struct was
468 * statically initialized. We just make sure that it
469 * is tracked in the object tracker.
470 */
22df02bb 471 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
472 debug_object_init(work, &work_debug_descr);
473 debug_object_activate(work, &work_debug_descr);
474 return 0;
475 }
476 WARN_ON_ONCE(1);
477 return 0;
478
479 case ODEBUG_STATE_ACTIVE:
480 WARN_ON(1);
481
482 default:
483 return 0;
484 }
485}
486
487/*
488 * fixup_free is called when:
489 * - an active object is freed
490 */
491static int work_fixup_free(void *addr, enum debug_obj_state state)
492{
493 struct work_struct *work = addr;
494
495 switch (state) {
496 case ODEBUG_STATE_ACTIVE:
497 cancel_work_sync(work);
498 debug_object_free(work, &work_debug_descr);
499 return 1;
500 default:
501 return 0;
502 }
503}
504
505static struct debug_obj_descr work_debug_descr = {
506 .name = "work_struct",
99777288 507 .debug_hint = work_debug_hint,
dc186ad7
TG
508 .fixup_init = work_fixup_init,
509 .fixup_activate = work_fixup_activate,
510 .fixup_free = work_fixup_free,
511};
512
513static inline void debug_work_activate(struct work_struct *work)
514{
515 debug_object_activate(work, &work_debug_descr);
516}
517
518static inline void debug_work_deactivate(struct work_struct *work)
519{
520 debug_object_deactivate(work, &work_debug_descr);
521}
522
523void __init_work(struct work_struct *work, int onstack)
524{
525 if (onstack)
526 debug_object_init_on_stack(work, &work_debug_descr);
527 else
528 debug_object_init(work, &work_debug_descr);
529}
530EXPORT_SYMBOL_GPL(__init_work);
531
532void destroy_work_on_stack(struct work_struct *work)
533{
534 debug_object_free(work, &work_debug_descr);
535}
536EXPORT_SYMBOL_GPL(destroy_work_on_stack);
537
ea2e64f2
TG
538void destroy_delayed_work_on_stack(struct delayed_work *work)
539{
540 destroy_timer_on_stack(&work->timer);
541 debug_object_free(&work->work, &work_debug_descr);
542}
543EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
544
dc186ad7
TG
545#else
546static inline void debug_work_activate(struct work_struct *work) { }
547static inline void debug_work_deactivate(struct work_struct *work) { }
548#endif
549
4e8b22bd
LB
550/**
551 * worker_pool_assign_id - allocate ID and assing it to @pool
552 * @pool: the pool pointer of interest
553 *
554 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
555 * successfully, -errno on failure.
556 */
9daf9e67
TH
557static int worker_pool_assign_id(struct worker_pool *pool)
558{
559 int ret;
560
68e13a67 561 lockdep_assert_held(&wq_pool_mutex);
5bcab335 562
4e8b22bd
LB
563 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
564 GFP_KERNEL);
229641a6 565 if (ret >= 0) {
e68035fb 566 pool->id = ret;
229641a6
TH
567 return 0;
568 }
fa1b54e6 569 return ret;
7c3eed5c
TH
570}
571
df2d5ae4
TH
572/**
573 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
574 * @wq: the target workqueue
575 * @node: the node ID
576 *
5b95e1af
LJ
577 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
578 * read locked.
df2d5ae4
TH
579 * If the pwq needs to be used beyond the locking in effect, the caller is
580 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
581 *
582 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
583 */
584static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
585 int node)
586{
5b95e1af 587 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
588
589 /*
590 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
591 * delayed item is pending. The plan is to keep CPU -> NODE
592 * mapping valid and stable across CPU on/offlines. Once that
593 * happens, this workaround can be removed.
594 */
595 if (unlikely(node == NUMA_NO_NODE))
596 return wq->dfl_pwq;
597
df2d5ae4
TH
598 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
599}
600
73f53c4a
TH
601static unsigned int work_color_to_flags(int color)
602{
603 return color << WORK_STRUCT_COLOR_SHIFT;
604}
605
606static int get_work_color(struct work_struct *work)
607{
608 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
609 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
610}
611
612static int work_next_color(int color)
613{
614 return (color + 1) % WORK_NR_COLORS;
615}
1da177e4 616
14441960 617/*
112202d9
TH
618 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
619 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 620 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 621 *
112202d9
TH
622 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
623 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
624 * work->data. These functions should only be called while the work is
625 * owned - ie. while the PENDING bit is set.
7a22ad75 626 *
112202d9 627 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 628 * corresponding to a work. Pool is available once the work has been
112202d9 629 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 630 * available only while the work item is queued.
7a22ad75 631 *
bbb68dfa
TH
632 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
633 * canceled. While being canceled, a work item may have its PENDING set
634 * but stay off timer and worklist for arbitrarily long and nobody should
635 * try to steal the PENDING bit.
14441960 636 */
7a22ad75
TH
637static inline void set_work_data(struct work_struct *work, unsigned long data,
638 unsigned long flags)
365970a1 639{
6183c009 640 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
641 atomic_long_set(&work->data, data | flags | work_static(work));
642}
365970a1 643
112202d9 644static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
645 unsigned long extra_flags)
646{
112202d9
TH
647 set_work_data(work, (unsigned long)pwq,
648 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
649}
650
4468a00f
LJ
651static void set_work_pool_and_keep_pending(struct work_struct *work,
652 int pool_id)
653{
654 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
655 WORK_STRUCT_PENDING);
656}
657
7c3eed5c
TH
658static void set_work_pool_and_clear_pending(struct work_struct *work,
659 int pool_id)
7a22ad75 660{
23657bb1
TH
661 /*
662 * The following wmb is paired with the implied mb in
663 * test_and_set_bit(PENDING) and ensures all updates to @work made
664 * here are visible to and precede any updates by the next PENDING
665 * owner.
666 */
667 smp_wmb();
7c3eed5c 668 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 669}
f756d5e2 670
7a22ad75 671static void clear_work_data(struct work_struct *work)
1da177e4 672{
7c3eed5c
TH
673 smp_wmb(); /* see set_work_pool_and_clear_pending() */
674 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
675}
676
112202d9 677static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 678{
e120153d 679 unsigned long data = atomic_long_read(&work->data);
7a22ad75 680
112202d9 681 if (data & WORK_STRUCT_PWQ)
e120153d
TH
682 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
683 else
684 return NULL;
4d707b9f
ON
685}
686
7c3eed5c
TH
687/**
688 * get_work_pool - return the worker_pool a given work was associated with
689 * @work: the work item of interest
690 *
68e13a67
LJ
691 * Pools are created and destroyed under wq_pool_mutex, and allows read
692 * access under sched-RCU read lock. As such, this function should be
693 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
694 *
695 * All fields of the returned pool are accessible as long as the above
696 * mentioned locking is in effect. If the returned pool needs to be used
697 * beyond the critical section, the caller is responsible for ensuring the
698 * returned pool is and stays online.
d185af30
YB
699 *
700 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
701 */
702static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 703{
e120153d 704 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 705 int pool_id;
7a22ad75 706
68e13a67 707 assert_rcu_or_pool_mutex();
fa1b54e6 708
112202d9
TH
709 if (data & WORK_STRUCT_PWQ)
710 return ((struct pool_workqueue *)
7c3eed5c 711 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 712
7c3eed5c
TH
713 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
714 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
715 return NULL;
716
fa1b54e6 717 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
718}
719
720/**
721 * get_work_pool_id - return the worker pool ID a given work is associated with
722 * @work: the work item of interest
723 *
d185af30 724 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
725 * %WORK_OFFQ_POOL_NONE if none.
726 */
727static int get_work_pool_id(struct work_struct *work)
728{
54d5b7d0
LJ
729 unsigned long data = atomic_long_read(&work->data);
730
112202d9
TH
731 if (data & WORK_STRUCT_PWQ)
732 return ((struct pool_workqueue *)
54d5b7d0 733 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 734
54d5b7d0 735 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
736}
737
bbb68dfa
TH
738static void mark_work_canceling(struct work_struct *work)
739{
7c3eed5c 740 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 741
7c3eed5c
TH
742 pool_id <<= WORK_OFFQ_POOL_SHIFT;
743 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
744}
745
746static bool work_is_canceling(struct work_struct *work)
747{
748 unsigned long data = atomic_long_read(&work->data);
749
112202d9 750 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
751}
752
e22bee78 753/*
3270476a
TH
754 * Policy functions. These define the policies on how the global worker
755 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 756 * they're being called with pool->lock held.
e22bee78
TH
757 */
758
63d95a91 759static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 760{
e19e397a 761 return !atomic_read(&pool->nr_running);
a848e3b6
ON
762}
763
4594bf15 764/*
e22bee78
TH
765 * Need to wake up a worker? Called from anything but currently
766 * running workers.
974271c4
TH
767 *
768 * Note that, because unbound workers never contribute to nr_running, this
706026c2 769 * function will always return %true for unbound pools as long as the
974271c4 770 * worklist isn't empty.
4594bf15 771 */
63d95a91 772static bool need_more_worker(struct worker_pool *pool)
365970a1 773{
63d95a91 774 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 775}
4594bf15 776
e22bee78 777/* Can I start working? Called from busy but !running workers. */
63d95a91 778static bool may_start_working(struct worker_pool *pool)
e22bee78 779{
63d95a91 780 return pool->nr_idle;
e22bee78
TH
781}
782
783/* Do I need to keep working? Called from currently running workers. */
63d95a91 784static bool keep_working(struct worker_pool *pool)
e22bee78 785{
e19e397a
TH
786 return !list_empty(&pool->worklist) &&
787 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
788}
789
790/* Do we need a new worker? Called from manager. */
63d95a91 791static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 792{
63d95a91 793 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 794}
365970a1 795
e22bee78 796/* Do we have too many workers and should some go away? */
63d95a91 797static bool too_many_workers(struct worker_pool *pool)
e22bee78 798{
34a06bd6 799 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
800 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
801 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
802
803 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
804}
805
4d707b9f 806/*
e22bee78
TH
807 * Wake up functions.
808 */
809
1037de36
LJ
810/* Return the first idle worker. Safe with preemption disabled */
811static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 812{
63d95a91 813 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
814 return NULL;
815
63d95a91 816 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
817}
818
819/**
820 * wake_up_worker - wake up an idle worker
63d95a91 821 * @pool: worker pool to wake worker from
7e11629d 822 *
63d95a91 823 * Wake up the first idle worker of @pool.
7e11629d
TH
824 *
825 * CONTEXT:
d565ed63 826 * spin_lock_irq(pool->lock).
7e11629d 827 */
63d95a91 828static void wake_up_worker(struct worker_pool *pool)
7e11629d 829{
1037de36 830 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
831
832 if (likely(worker))
833 wake_up_process(worker->task);
834}
835
d302f017 836/**
e22bee78
TH
837 * wq_worker_waking_up - a worker is waking up
838 * @task: task waking up
839 * @cpu: CPU @task is waking up to
840 *
841 * This function is called during try_to_wake_up() when a worker is
842 * being awoken.
843 *
844 * CONTEXT:
845 * spin_lock_irq(rq->lock)
846 */
d84ff051 847void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
848{
849 struct worker *worker = kthread_data(task);
850
36576000 851 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 852 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 853 atomic_inc(&worker->pool->nr_running);
36576000 854 }
e22bee78
TH
855}
856
857/**
858 * wq_worker_sleeping - a worker is going to sleep
859 * @task: task going to sleep
860 * @cpu: CPU in question, must be the current CPU number
861 *
862 * This function is called during schedule() when a busy worker is
863 * going to sleep. Worker on the same cpu can be woken up by
864 * returning pointer to its task.
865 *
866 * CONTEXT:
867 * spin_lock_irq(rq->lock)
868 *
d185af30 869 * Return:
e22bee78
TH
870 * Worker task on @cpu to wake up, %NULL if none.
871 */
d84ff051 872struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
873{
874 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 875 struct worker_pool *pool;
e22bee78 876
111c225a
TH
877 /*
878 * Rescuers, which may not have all the fields set up like normal
879 * workers, also reach here, let's not access anything before
880 * checking NOT_RUNNING.
881 */
2d64672e 882 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
883 return NULL;
884
111c225a 885 pool = worker->pool;
111c225a 886
e22bee78 887 /* this can only happen on the local cpu */
92b69f50 888 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
6183c009 889 return NULL;
e22bee78
TH
890
891 /*
892 * The counterpart of the following dec_and_test, implied mb,
893 * worklist not empty test sequence is in insert_work().
894 * Please read comment there.
895 *
628c78e7
TH
896 * NOT_RUNNING is clear. This means that we're bound to and
897 * running on the local cpu w/ rq lock held and preemption
898 * disabled, which in turn means that none else could be
d565ed63 899 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 900 * lock is safe.
e22bee78 901 */
e19e397a
TH
902 if (atomic_dec_and_test(&pool->nr_running) &&
903 !list_empty(&pool->worklist))
1037de36 904 to_wakeup = first_idle_worker(pool);
e22bee78
TH
905 return to_wakeup ? to_wakeup->task : NULL;
906}
907
908/**
909 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 910 * @worker: self
d302f017 911 * @flags: flags to set
d302f017 912 *
228f1d00 913 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 914 *
cb444766 915 * CONTEXT:
d565ed63 916 * spin_lock_irq(pool->lock)
d302f017 917 */
228f1d00 918static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 919{
bd7bdd43 920 struct worker_pool *pool = worker->pool;
e22bee78 921
cb444766
TH
922 WARN_ON_ONCE(worker->task != current);
923
228f1d00 924 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
925 if ((flags & WORKER_NOT_RUNNING) &&
926 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 927 atomic_dec(&pool->nr_running);
e22bee78
TH
928 }
929
d302f017
TH
930 worker->flags |= flags;
931}
932
933/**
e22bee78 934 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 935 * @worker: self
d302f017
TH
936 * @flags: flags to clear
937 *
e22bee78 938 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 939 *
cb444766 940 * CONTEXT:
d565ed63 941 * spin_lock_irq(pool->lock)
d302f017
TH
942 */
943static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
944{
63d95a91 945 struct worker_pool *pool = worker->pool;
e22bee78
TH
946 unsigned int oflags = worker->flags;
947
cb444766
TH
948 WARN_ON_ONCE(worker->task != current);
949
d302f017 950 worker->flags &= ~flags;
e22bee78 951
42c025f3
TH
952 /*
953 * If transitioning out of NOT_RUNNING, increment nr_running. Note
954 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
955 * of multiple flags, not a single flag.
956 */
e22bee78
TH
957 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
958 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 959 atomic_inc(&pool->nr_running);
d302f017
TH
960}
961
8cca0eea
TH
962/**
963 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 964 * @pool: pool of interest
8cca0eea
TH
965 * @work: work to find worker for
966 *
c9e7cf27
TH
967 * Find a worker which is executing @work on @pool by searching
968 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
969 * to match, its current execution should match the address of @work and
970 * its work function. This is to avoid unwanted dependency between
971 * unrelated work executions through a work item being recycled while still
972 * being executed.
973 *
974 * This is a bit tricky. A work item may be freed once its execution
975 * starts and nothing prevents the freed area from being recycled for
976 * another work item. If the same work item address ends up being reused
977 * before the original execution finishes, workqueue will identify the
978 * recycled work item as currently executing and make it wait until the
979 * current execution finishes, introducing an unwanted dependency.
980 *
c5aa87bb
TH
981 * This function checks the work item address and work function to avoid
982 * false positives. Note that this isn't complete as one may construct a
983 * work function which can introduce dependency onto itself through a
984 * recycled work item. Well, if somebody wants to shoot oneself in the
985 * foot that badly, there's only so much we can do, and if such deadlock
986 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
987 *
988 * CONTEXT:
d565ed63 989 * spin_lock_irq(pool->lock).
8cca0eea 990 *
d185af30
YB
991 * Return:
992 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 993 * otherwise.
4d707b9f 994 */
c9e7cf27 995static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 996 struct work_struct *work)
4d707b9f 997{
42f8570f 998 struct worker *worker;
42f8570f 999
b67bfe0d 1000 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1001 (unsigned long)work)
1002 if (worker->current_work == work &&
1003 worker->current_func == work->func)
42f8570f
SL
1004 return worker;
1005
1006 return NULL;
4d707b9f
ON
1007}
1008
bf4ede01
TH
1009/**
1010 * move_linked_works - move linked works to a list
1011 * @work: start of series of works to be scheduled
1012 * @head: target list to append @work to
402dd89d 1013 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1014 *
1015 * Schedule linked works starting from @work to @head. Work series to
1016 * be scheduled starts at @work and includes any consecutive work with
1017 * WORK_STRUCT_LINKED set in its predecessor.
1018 *
1019 * If @nextp is not NULL, it's updated to point to the next work of
1020 * the last scheduled work. This allows move_linked_works() to be
1021 * nested inside outer list_for_each_entry_safe().
1022 *
1023 * CONTEXT:
d565ed63 1024 * spin_lock_irq(pool->lock).
bf4ede01
TH
1025 */
1026static void move_linked_works(struct work_struct *work, struct list_head *head,
1027 struct work_struct **nextp)
1028{
1029 struct work_struct *n;
1030
1031 /*
1032 * Linked worklist will always end before the end of the list,
1033 * use NULL for list head.
1034 */
1035 list_for_each_entry_safe_from(work, n, NULL, entry) {
1036 list_move_tail(&work->entry, head);
1037 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1038 break;
1039 }
1040
1041 /*
1042 * If we're already inside safe list traversal and have moved
1043 * multiple works to the scheduled queue, the next position
1044 * needs to be updated.
1045 */
1046 if (nextp)
1047 *nextp = n;
1048}
1049
8864b4e5
TH
1050/**
1051 * get_pwq - get an extra reference on the specified pool_workqueue
1052 * @pwq: pool_workqueue to get
1053 *
1054 * Obtain an extra reference on @pwq. The caller should guarantee that
1055 * @pwq has positive refcnt and be holding the matching pool->lock.
1056 */
1057static void get_pwq(struct pool_workqueue *pwq)
1058{
1059 lockdep_assert_held(&pwq->pool->lock);
1060 WARN_ON_ONCE(pwq->refcnt <= 0);
1061 pwq->refcnt++;
1062}
1063
1064/**
1065 * put_pwq - put a pool_workqueue reference
1066 * @pwq: pool_workqueue to put
1067 *
1068 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1069 * destruction. The caller should be holding the matching pool->lock.
1070 */
1071static void put_pwq(struct pool_workqueue *pwq)
1072{
1073 lockdep_assert_held(&pwq->pool->lock);
1074 if (likely(--pwq->refcnt))
1075 return;
1076 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1077 return;
1078 /*
1079 * @pwq can't be released under pool->lock, bounce to
1080 * pwq_unbound_release_workfn(). This never recurses on the same
1081 * pool->lock as this path is taken only for unbound workqueues and
1082 * the release work item is scheduled on a per-cpu workqueue. To
1083 * avoid lockdep warning, unbound pool->locks are given lockdep
1084 * subclass of 1 in get_unbound_pool().
1085 */
1086 schedule_work(&pwq->unbound_release_work);
1087}
1088
dce90d47
TH
1089/**
1090 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1091 * @pwq: pool_workqueue to put (can be %NULL)
1092 *
1093 * put_pwq() with locking. This function also allows %NULL @pwq.
1094 */
1095static void put_pwq_unlocked(struct pool_workqueue *pwq)
1096{
1097 if (pwq) {
1098 /*
1099 * As both pwqs and pools are sched-RCU protected, the
1100 * following lock operations are safe.
1101 */
1102 spin_lock_irq(&pwq->pool->lock);
1103 put_pwq(pwq);
1104 spin_unlock_irq(&pwq->pool->lock);
1105 }
1106}
1107
112202d9 1108static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1109{
112202d9 1110 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1111
1112 trace_workqueue_activate_work(work);
82607adc
TH
1113 if (list_empty(&pwq->pool->worklist))
1114 pwq->pool->watchdog_ts = jiffies;
112202d9 1115 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1116 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1117 pwq->nr_active++;
bf4ede01
TH
1118}
1119
112202d9 1120static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1121{
112202d9 1122 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1123 struct work_struct, entry);
1124
112202d9 1125 pwq_activate_delayed_work(work);
3aa62497
LJ
1126}
1127
bf4ede01 1128/**
112202d9
TH
1129 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1130 * @pwq: pwq of interest
bf4ede01 1131 * @color: color of work which left the queue
bf4ede01
TH
1132 *
1133 * A work either has completed or is removed from pending queue,
112202d9 1134 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1135 *
1136 * CONTEXT:
d565ed63 1137 * spin_lock_irq(pool->lock).
bf4ede01 1138 */
112202d9 1139static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1140{
8864b4e5 1141 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1142 if (color == WORK_NO_COLOR)
8864b4e5 1143 goto out_put;
bf4ede01 1144
112202d9 1145 pwq->nr_in_flight[color]--;
bf4ede01 1146
112202d9
TH
1147 pwq->nr_active--;
1148 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1149 /* one down, submit a delayed one */
112202d9
TH
1150 if (pwq->nr_active < pwq->max_active)
1151 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1152 }
1153
1154 /* is flush in progress and are we at the flushing tip? */
112202d9 1155 if (likely(pwq->flush_color != color))
8864b4e5 1156 goto out_put;
bf4ede01
TH
1157
1158 /* are there still in-flight works? */
112202d9 1159 if (pwq->nr_in_flight[color])
8864b4e5 1160 goto out_put;
bf4ede01 1161
112202d9
TH
1162 /* this pwq is done, clear flush_color */
1163 pwq->flush_color = -1;
bf4ede01
TH
1164
1165 /*
112202d9 1166 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1167 * will handle the rest.
1168 */
112202d9
TH
1169 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1170 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1171out_put:
1172 put_pwq(pwq);
bf4ede01
TH
1173}
1174
36e227d2 1175/**
bbb68dfa 1176 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1177 * @work: work item to steal
1178 * @is_dwork: @work is a delayed_work
bbb68dfa 1179 * @flags: place to store irq state
36e227d2
TH
1180 *
1181 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1182 * stable state - idle, on timer or on worklist.
36e227d2 1183 *
d185af30 1184 * Return:
36e227d2
TH
1185 * 1 if @work was pending and we successfully stole PENDING
1186 * 0 if @work was idle and we claimed PENDING
1187 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1188 * -ENOENT if someone else is canceling @work, this state may persist
1189 * for arbitrarily long
36e227d2 1190 *
d185af30 1191 * Note:
bbb68dfa 1192 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1193 * interrupted while holding PENDING and @work off queue, irq must be
1194 * disabled on entry. This, combined with delayed_work->timer being
1195 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1196 *
1197 * On successful return, >= 0, irq is disabled and the caller is
1198 * responsible for releasing it using local_irq_restore(*@flags).
1199 *
e0aecdd8 1200 * This function is safe to call from any context including IRQ handler.
bf4ede01 1201 */
bbb68dfa
TH
1202static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1203 unsigned long *flags)
bf4ede01 1204{
d565ed63 1205 struct worker_pool *pool;
112202d9 1206 struct pool_workqueue *pwq;
bf4ede01 1207
bbb68dfa
TH
1208 local_irq_save(*flags);
1209
36e227d2
TH
1210 /* try to steal the timer if it exists */
1211 if (is_dwork) {
1212 struct delayed_work *dwork = to_delayed_work(work);
1213
e0aecdd8
TH
1214 /*
1215 * dwork->timer is irqsafe. If del_timer() fails, it's
1216 * guaranteed that the timer is not queued anywhere and not
1217 * running on the local CPU.
1218 */
36e227d2
TH
1219 if (likely(del_timer(&dwork->timer)))
1220 return 1;
1221 }
1222
1223 /* try to claim PENDING the normal way */
bf4ede01
TH
1224 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1225 return 0;
1226
1227 /*
1228 * The queueing is in progress, or it is already queued. Try to
1229 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1230 */
d565ed63
TH
1231 pool = get_work_pool(work);
1232 if (!pool)
bbb68dfa 1233 goto fail;
bf4ede01 1234
d565ed63 1235 spin_lock(&pool->lock);
0b3dae68 1236 /*
112202d9
TH
1237 * work->data is guaranteed to point to pwq only while the work
1238 * item is queued on pwq->wq, and both updating work->data to point
1239 * to pwq on queueing and to pool on dequeueing are done under
1240 * pwq->pool->lock. This in turn guarantees that, if work->data
1241 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1242 * item is currently queued on that pool.
1243 */
112202d9
TH
1244 pwq = get_work_pwq(work);
1245 if (pwq && pwq->pool == pool) {
16062836
TH
1246 debug_work_deactivate(work);
1247
1248 /*
1249 * A delayed work item cannot be grabbed directly because
1250 * it might have linked NO_COLOR work items which, if left
112202d9 1251 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1252 * management later on and cause stall. Make sure the work
1253 * item is activated before grabbing.
1254 */
1255 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1256 pwq_activate_delayed_work(work);
16062836
TH
1257
1258 list_del_init(&work->entry);
9c34a704 1259 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1260
112202d9 1261 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1262 set_work_pool_and_keep_pending(work, pool->id);
1263
1264 spin_unlock(&pool->lock);
1265 return 1;
bf4ede01 1266 }
d565ed63 1267 spin_unlock(&pool->lock);
bbb68dfa
TH
1268fail:
1269 local_irq_restore(*flags);
1270 if (work_is_canceling(work))
1271 return -ENOENT;
1272 cpu_relax();
36e227d2 1273 return -EAGAIN;
bf4ede01
TH
1274}
1275
4690c4ab 1276/**
706026c2 1277 * insert_work - insert a work into a pool
112202d9 1278 * @pwq: pwq @work belongs to
4690c4ab
TH
1279 * @work: work to insert
1280 * @head: insertion point
1281 * @extra_flags: extra WORK_STRUCT_* flags to set
1282 *
112202d9 1283 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1284 * work_struct flags.
4690c4ab
TH
1285 *
1286 * CONTEXT:
d565ed63 1287 * spin_lock_irq(pool->lock).
4690c4ab 1288 */
112202d9
TH
1289static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1290 struct list_head *head, unsigned int extra_flags)
b89deed3 1291{
112202d9 1292 struct worker_pool *pool = pwq->pool;
e22bee78 1293
4690c4ab 1294 /* we own @work, set data and link */
112202d9 1295 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1296 list_add_tail(&work->entry, head);
8864b4e5 1297 get_pwq(pwq);
e22bee78
TH
1298
1299 /*
c5aa87bb
TH
1300 * Ensure either wq_worker_sleeping() sees the above
1301 * list_add_tail() or we see zero nr_running to avoid workers lying
1302 * around lazily while there are works to be processed.
e22bee78
TH
1303 */
1304 smp_mb();
1305
63d95a91
TH
1306 if (__need_more_worker(pool))
1307 wake_up_worker(pool);
b89deed3
ON
1308}
1309
c8efcc25
TH
1310/*
1311 * Test whether @work is being queued from another work executing on the
8d03ecfe 1312 * same workqueue.
c8efcc25
TH
1313 */
1314static bool is_chained_work(struct workqueue_struct *wq)
1315{
8d03ecfe
TH
1316 struct worker *worker;
1317
1318 worker = current_wq_worker();
1319 /*
1320 * Return %true iff I'm a worker execuing a work item on @wq. If
1321 * I'm @worker, it's safe to dereference it without locking.
1322 */
112202d9 1323 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1324}
1325
ef557180
MG
1326/*
1327 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1328 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1329 * avoid perturbing sensitive tasks.
1330 */
1331static int wq_select_unbound_cpu(int cpu)
1332{
f303fccb 1333 static bool printed_dbg_warning;
ef557180
MG
1334 int new_cpu;
1335
f303fccb
TH
1336 if (likely(!wq_debug_force_rr_cpu)) {
1337 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1338 return cpu;
1339 } else if (!printed_dbg_warning) {
1340 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1341 printed_dbg_warning = true;
1342 }
1343
ef557180
MG
1344 if (cpumask_empty(wq_unbound_cpumask))
1345 return cpu;
1346
1347 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1348 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1349 if (unlikely(new_cpu >= nr_cpu_ids)) {
1350 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1351 if (unlikely(new_cpu >= nr_cpu_ids))
1352 return cpu;
1353 }
1354 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1355
1356 return new_cpu;
1357}
1358
d84ff051 1359static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1360 struct work_struct *work)
1361{
112202d9 1362 struct pool_workqueue *pwq;
c9178087 1363 struct worker_pool *last_pool;
1e19ffc6 1364 struct list_head *worklist;
8a2e8e5d 1365 unsigned int work_flags;
b75cac93 1366 unsigned int req_cpu = cpu;
8930caba
TH
1367
1368 /*
1369 * While a work item is PENDING && off queue, a task trying to
1370 * steal the PENDING will busy-loop waiting for it to either get
1371 * queued or lose PENDING. Grabbing PENDING and queueing should
1372 * happen with IRQ disabled.
1373 */
1374 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1375
dc186ad7 1376 debug_work_activate(work);
1e19ffc6 1377
9ef28a73 1378 /* if draining, only works from the same workqueue are allowed */
618b01eb 1379 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1380 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1381 return;
9e8cd2f5 1382retry:
df2d5ae4 1383 if (req_cpu == WORK_CPU_UNBOUND)
ef557180 1384 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1385
c9178087 1386 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1387 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1388 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1389 else
1390 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1391
c9178087
TH
1392 /*
1393 * If @work was previously on a different pool, it might still be
1394 * running there, in which case the work needs to be queued on that
1395 * pool to guarantee non-reentrancy.
1396 */
1397 last_pool = get_work_pool(work);
1398 if (last_pool && last_pool != pwq->pool) {
1399 struct worker *worker;
18aa9eff 1400
c9178087 1401 spin_lock(&last_pool->lock);
18aa9eff 1402
c9178087 1403 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1404
c9178087
TH
1405 if (worker && worker->current_pwq->wq == wq) {
1406 pwq = worker->current_pwq;
8930caba 1407 } else {
c9178087
TH
1408 /* meh... not running there, queue here */
1409 spin_unlock(&last_pool->lock);
112202d9 1410 spin_lock(&pwq->pool->lock);
8930caba 1411 }
f3421797 1412 } else {
112202d9 1413 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1414 }
1415
9e8cd2f5
TH
1416 /*
1417 * pwq is determined and locked. For unbound pools, we could have
1418 * raced with pwq release and it could already be dead. If its
1419 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1420 * without another pwq replacing it in the numa_pwq_tbl or while
1421 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1422 * make forward-progress.
1423 */
1424 if (unlikely(!pwq->refcnt)) {
1425 if (wq->flags & WQ_UNBOUND) {
1426 spin_unlock(&pwq->pool->lock);
1427 cpu_relax();
1428 goto retry;
1429 }
1430 /* oops */
1431 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1432 wq->name, cpu);
1433 }
1434
112202d9
TH
1435 /* pwq determined, queue */
1436 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1437
f5b2552b 1438 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1439 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1440 return;
1441 }
1e19ffc6 1442
112202d9
TH
1443 pwq->nr_in_flight[pwq->work_color]++;
1444 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1445
112202d9 1446 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1447 trace_workqueue_activate_work(work);
112202d9
TH
1448 pwq->nr_active++;
1449 worklist = &pwq->pool->worklist;
82607adc
TH
1450 if (list_empty(worklist))
1451 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1452 } else {
1453 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1454 worklist = &pwq->delayed_works;
8a2e8e5d 1455 }
1e19ffc6 1456
112202d9 1457 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1458
112202d9 1459 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1460}
1461
0fcb78c2 1462/**
c1a220e7
ZR
1463 * queue_work_on - queue work on specific cpu
1464 * @cpu: CPU number to execute work on
0fcb78c2
REB
1465 * @wq: workqueue to use
1466 * @work: work to queue
1467 *
c1a220e7
ZR
1468 * We queue the work to a specific CPU, the caller must ensure it
1469 * can't go away.
d185af30
YB
1470 *
1471 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1472 */
d4283e93
TH
1473bool queue_work_on(int cpu, struct workqueue_struct *wq,
1474 struct work_struct *work)
1da177e4 1475{
d4283e93 1476 bool ret = false;
8930caba 1477 unsigned long flags;
ef1ca236 1478
8930caba 1479 local_irq_save(flags);
c1a220e7 1480
22df02bb 1481 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1482 __queue_work(cpu, wq, work);
d4283e93 1483 ret = true;
c1a220e7 1484 }
ef1ca236 1485
8930caba 1486 local_irq_restore(flags);
1da177e4
LT
1487 return ret;
1488}
ad7b1f84 1489EXPORT_SYMBOL(queue_work_on);
1da177e4 1490
d8e794df 1491void delayed_work_timer_fn(unsigned long __data)
1da177e4 1492{
52bad64d 1493 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1494
e0aecdd8 1495 /* should have been called from irqsafe timer with irq already off */
60c057bc 1496 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1497}
1438ade5 1498EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1499
7beb2edf
TH
1500static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1501 struct delayed_work *dwork, unsigned long delay)
1da177e4 1502{
7beb2edf
TH
1503 struct timer_list *timer = &dwork->timer;
1504 struct work_struct *work = &dwork->work;
7beb2edf
TH
1505
1506 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1507 timer->data != (unsigned long)dwork);
fc4b514f
TH
1508 WARN_ON_ONCE(timer_pending(timer));
1509 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1510
8852aac2
TH
1511 /*
1512 * If @delay is 0, queue @dwork->work immediately. This is for
1513 * both optimization and correctness. The earliest @timer can
1514 * expire is on the closest next tick and delayed_work users depend
1515 * on that there's no such delay when @delay is 0.
1516 */
1517 if (!delay) {
1518 __queue_work(cpu, wq, &dwork->work);
1519 return;
1520 }
1521
7beb2edf 1522 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1523
60c057bc 1524 dwork->wq = wq;
1265057f 1525 dwork->cpu = cpu;
7beb2edf
TH
1526 timer->expires = jiffies + delay;
1527
041bd12e
TH
1528 if (unlikely(cpu != WORK_CPU_UNBOUND))
1529 add_timer_on(timer, cpu);
1530 else
1531 add_timer(timer);
1da177e4
LT
1532}
1533
0fcb78c2
REB
1534/**
1535 * queue_delayed_work_on - queue work on specific CPU after delay
1536 * @cpu: CPU number to execute work on
1537 * @wq: workqueue to use
af9997e4 1538 * @dwork: work to queue
0fcb78c2
REB
1539 * @delay: number of jiffies to wait before queueing
1540 *
d185af30 1541 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1542 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1543 * execution.
0fcb78c2 1544 */
d4283e93
TH
1545bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1546 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1547{
52bad64d 1548 struct work_struct *work = &dwork->work;
d4283e93 1549 bool ret = false;
8930caba 1550 unsigned long flags;
7a6bc1cd 1551
8930caba
TH
1552 /* read the comment in __queue_work() */
1553 local_irq_save(flags);
7a6bc1cd 1554
22df02bb 1555 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1556 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1557 ret = true;
7a6bc1cd 1558 }
8a3e77cc 1559
8930caba 1560 local_irq_restore(flags);
7a6bc1cd
VP
1561 return ret;
1562}
ad7b1f84 1563EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1564
8376fe22
TH
1565/**
1566 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1567 * @cpu: CPU number to execute work on
1568 * @wq: workqueue to use
1569 * @dwork: work to queue
1570 * @delay: number of jiffies to wait before queueing
1571 *
1572 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1573 * modify @dwork's timer so that it expires after @delay. If @delay is
1574 * zero, @work is guaranteed to be scheduled immediately regardless of its
1575 * current state.
1576 *
d185af30 1577 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1578 * pending and its timer was modified.
1579 *
e0aecdd8 1580 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1581 * See try_to_grab_pending() for details.
1582 */
1583bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1584 struct delayed_work *dwork, unsigned long delay)
1585{
1586 unsigned long flags;
1587 int ret;
c7fc77f7 1588
8376fe22
TH
1589 do {
1590 ret = try_to_grab_pending(&dwork->work, true, &flags);
1591 } while (unlikely(ret == -EAGAIN));
63bc0362 1592
8376fe22
TH
1593 if (likely(ret >= 0)) {
1594 __queue_delayed_work(cpu, wq, dwork, delay);
1595 local_irq_restore(flags);
7a6bc1cd 1596 }
8376fe22
TH
1597
1598 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1599 return ret;
1600}
8376fe22
TH
1601EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1602
c8e55f36
TH
1603/**
1604 * worker_enter_idle - enter idle state
1605 * @worker: worker which is entering idle state
1606 *
1607 * @worker is entering idle state. Update stats and idle timer if
1608 * necessary.
1609 *
1610 * LOCKING:
d565ed63 1611 * spin_lock_irq(pool->lock).
c8e55f36
TH
1612 */
1613static void worker_enter_idle(struct worker *worker)
1da177e4 1614{
bd7bdd43 1615 struct worker_pool *pool = worker->pool;
c8e55f36 1616
6183c009
TH
1617 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1618 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1619 (worker->hentry.next || worker->hentry.pprev)))
1620 return;
c8e55f36 1621
051e1850 1622 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1623 worker->flags |= WORKER_IDLE;
bd7bdd43 1624 pool->nr_idle++;
e22bee78 1625 worker->last_active = jiffies;
c8e55f36
TH
1626
1627 /* idle_list is LIFO */
bd7bdd43 1628 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1629
628c78e7
TH
1630 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1631 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1632
544ecf31 1633 /*
706026c2 1634 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1635 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1636 * nr_running, the warning may trigger spuriously. Check iff
1637 * unbind is not in progress.
544ecf31 1638 */
24647570 1639 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1640 pool->nr_workers == pool->nr_idle &&
e19e397a 1641 atomic_read(&pool->nr_running));
c8e55f36
TH
1642}
1643
1644/**
1645 * worker_leave_idle - leave idle state
1646 * @worker: worker which is leaving idle state
1647 *
1648 * @worker is leaving idle state. Update stats.
1649 *
1650 * LOCKING:
d565ed63 1651 * spin_lock_irq(pool->lock).
c8e55f36
TH
1652 */
1653static void worker_leave_idle(struct worker *worker)
1654{
bd7bdd43 1655 struct worker_pool *pool = worker->pool;
c8e55f36 1656
6183c009
TH
1657 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1658 return;
d302f017 1659 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1660 pool->nr_idle--;
c8e55f36
TH
1661 list_del_init(&worker->entry);
1662}
1663
f7537df5 1664static struct worker *alloc_worker(int node)
c34056a3
TH
1665{
1666 struct worker *worker;
1667
f7537df5 1668 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1669 if (worker) {
1670 INIT_LIST_HEAD(&worker->entry);
affee4b2 1671 INIT_LIST_HEAD(&worker->scheduled);
da028469 1672 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1673 /* on creation a worker is in !idle && prep state */
1674 worker->flags = WORKER_PREP;
c8e55f36 1675 }
c34056a3
TH
1676 return worker;
1677}
1678
4736cbf7
LJ
1679/**
1680 * worker_attach_to_pool() - attach a worker to a pool
1681 * @worker: worker to be attached
1682 * @pool: the target pool
1683 *
1684 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1685 * cpu-binding of @worker are kept coordinated with the pool across
1686 * cpu-[un]hotplugs.
1687 */
1688static void worker_attach_to_pool(struct worker *worker,
1689 struct worker_pool *pool)
1690{
1691 mutex_lock(&pool->attach_mutex);
1692
1693 /*
1694 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1695 * online CPUs. It'll be re-applied when any of the CPUs come up.
1696 */
1697 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1698
1699 /*
1700 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1701 * stable across this function. See the comments above the
1702 * flag definition for details.
1703 */
1704 if (pool->flags & POOL_DISASSOCIATED)
1705 worker->flags |= WORKER_UNBOUND;
1706
1707 list_add_tail(&worker->node, &pool->workers);
1708
1709 mutex_unlock(&pool->attach_mutex);
1710}
1711
60f5a4bc
LJ
1712/**
1713 * worker_detach_from_pool() - detach a worker from its pool
1714 * @worker: worker which is attached to its pool
1715 * @pool: the pool @worker is attached to
1716 *
4736cbf7
LJ
1717 * Undo the attaching which had been done in worker_attach_to_pool(). The
1718 * caller worker shouldn't access to the pool after detached except it has
1719 * other reference to the pool.
60f5a4bc
LJ
1720 */
1721static void worker_detach_from_pool(struct worker *worker,
1722 struct worker_pool *pool)
1723{
1724 struct completion *detach_completion = NULL;
1725
92f9c5c4 1726 mutex_lock(&pool->attach_mutex);
da028469
LJ
1727 list_del(&worker->node);
1728 if (list_empty(&pool->workers))
60f5a4bc 1729 detach_completion = pool->detach_completion;
92f9c5c4 1730 mutex_unlock(&pool->attach_mutex);
60f5a4bc 1731
b62c0751
LJ
1732 /* clear leftover flags without pool->lock after it is detached */
1733 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1734
60f5a4bc
LJ
1735 if (detach_completion)
1736 complete(detach_completion);
1737}
1738
c34056a3
TH
1739/**
1740 * create_worker - create a new workqueue worker
63d95a91 1741 * @pool: pool the new worker will belong to
c34056a3 1742 *
051e1850 1743 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1744 *
1745 * CONTEXT:
1746 * Might sleep. Does GFP_KERNEL allocations.
1747 *
d185af30 1748 * Return:
c34056a3
TH
1749 * Pointer to the newly created worker.
1750 */
bc2ae0f5 1751static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1752{
c34056a3 1753 struct worker *worker = NULL;
f3421797 1754 int id = -1;
e3c916a4 1755 char id_buf[16];
c34056a3 1756
7cda9aae
LJ
1757 /* ID is needed to determine kthread name */
1758 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1759 if (id < 0)
1760 goto fail;
c34056a3 1761
f7537df5 1762 worker = alloc_worker(pool->node);
c34056a3
TH
1763 if (!worker)
1764 goto fail;
1765
bd7bdd43 1766 worker->pool = pool;
c34056a3
TH
1767 worker->id = id;
1768
29c91e99 1769 if (pool->cpu >= 0)
e3c916a4
TH
1770 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1771 pool->attrs->nice < 0 ? "H" : "");
f3421797 1772 else
e3c916a4
TH
1773 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1774
f3f90ad4 1775 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1776 "kworker/%s", id_buf);
c34056a3
TH
1777 if (IS_ERR(worker->task))
1778 goto fail;
1779
91151228 1780 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1781 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1782
da028469 1783 /* successful, attach the worker to the pool */
4736cbf7 1784 worker_attach_to_pool(worker, pool);
822d8405 1785
051e1850
LJ
1786 /* start the newly created worker */
1787 spin_lock_irq(&pool->lock);
1788 worker->pool->nr_workers++;
1789 worker_enter_idle(worker);
1790 wake_up_process(worker->task);
1791 spin_unlock_irq(&pool->lock);
1792
c34056a3 1793 return worker;
822d8405 1794
c34056a3 1795fail:
9625ab17 1796 if (id >= 0)
7cda9aae 1797 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1798 kfree(worker);
1799 return NULL;
1800}
1801
c34056a3
TH
1802/**
1803 * destroy_worker - destroy a workqueue worker
1804 * @worker: worker to be destroyed
1805 *
73eb7fe7
LJ
1806 * Destroy @worker and adjust @pool stats accordingly. The worker should
1807 * be idle.
c8e55f36
TH
1808 *
1809 * CONTEXT:
60f5a4bc 1810 * spin_lock_irq(pool->lock).
c34056a3
TH
1811 */
1812static void destroy_worker(struct worker *worker)
1813{
bd7bdd43 1814 struct worker_pool *pool = worker->pool;
c34056a3 1815
cd549687
TH
1816 lockdep_assert_held(&pool->lock);
1817
c34056a3 1818 /* sanity check frenzy */
6183c009 1819 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1820 WARN_ON(!list_empty(&worker->scheduled)) ||
1821 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1822 return;
c34056a3 1823
73eb7fe7
LJ
1824 pool->nr_workers--;
1825 pool->nr_idle--;
5bdfff96 1826
c8e55f36 1827 list_del_init(&worker->entry);
cb444766 1828 worker->flags |= WORKER_DIE;
60f5a4bc 1829 wake_up_process(worker->task);
c34056a3
TH
1830}
1831
63d95a91 1832static void idle_worker_timeout(unsigned long __pool)
e22bee78 1833{
63d95a91 1834 struct worker_pool *pool = (void *)__pool;
e22bee78 1835
d565ed63 1836 spin_lock_irq(&pool->lock);
e22bee78 1837
3347fc9f 1838 while (too_many_workers(pool)) {
e22bee78
TH
1839 struct worker *worker;
1840 unsigned long expires;
1841
1842 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1843 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1844 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1845
3347fc9f 1846 if (time_before(jiffies, expires)) {
63d95a91 1847 mod_timer(&pool->idle_timer, expires);
3347fc9f 1848 break;
d5abe669 1849 }
3347fc9f
LJ
1850
1851 destroy_worker(worker);
e22bee78
TH
1852 }
1853
d565ed63 1854 spin_unlock_irq(&pool->lock);
e22bee78 1855}
d5abe669 1856
493a1724 1857static void send_mayday(struct work_struct *work)
e22bee78 1858{
112202d9
TH
1859 struct pool_workqueue *pwq = get_work_pwq(work);
1860 struct workqueue_struct *wq = pwq->wq;
493a1724 1861
2e109a28 1862 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1863
493008a8 1864 if (!wq->rescuer)
493a1724 1865 return;
e22bee78
TH
1866
1867 /* mayday mayday mayday */
493a1724 1868 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1869 /*
1870 * If @pwq is for an unbound wq, its base ref may be put at
1871 * any time due to an attribute change. Pin @pwq until the
1872 * rescuer is done with it.
1873 */
1874 get_pwq(pwq);
493a1724 1875 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1876 wake_up_process(wq->rescuer->task);
493a1724 1877 }
e22bee78
TH
1878}
1879
706026c2 1880static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1881{
63d95a91 1882 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1883 struct work_struct *work;
1884
b2d82909
TH
1885 spin_lock_irq(&pool->lock);
1886 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 1887
63d95a91 1888 if (need_to_create_worker(pool)) {
e22bee78
TH
1889 /*
1890 * We've been trying to create a new worker but
1891 * haven't been successful. We might be hitting an
1892 * allocation deadlock. Send distress signals to
1893 * rescuers.
1894 */
63d95a91 1895 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1896 send_mayday(work);
1da177e4 1897 }
e22bee78 1898
b2d82909
TH
1899 spin_unlock(&wq_mayday_lock);
1900 spin_unlock_irq(&pool->lock);
e22bee78 1901
63d95a91 1902 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1903}
1904
e22bee78
TH
1905/**
1906 * maybe_create_worker - create a new worker if necessary
63d95a91 1907 * @pool: pool to create a new worker for
e22bee78 1908 *
63d95a91 1909 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1910 * have at least one idle worker on return from this function. If
1911 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1912 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1913 * possible allocation deadlock.
1914 *
c5aa87bb
TH
1915 * On return, need_to_create_worker() is guaranteed to be %false and
1916 * may_start_working() %true.
e22bee78
TH
1917 *
1918 * LOCKING:
d565ed63 1919 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1920 * multiple times. Does GFP_KERNEL allocations. Called only from
1921 * manager.
e22bee78 1922 */
29187a9e 1923static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1924__releases(&pool->lock)
1925__acquires(&pool->lock)
1da177e4 1926{
e22bee78 1927restart:
d565ed63 1928 spin_unlock_irq(&pool->lock);
9f9c2364 1929
e22bee78 1930 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1931 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1932
1933 while (true) {
051e1850 1934 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 1935 break;
1da177e4 1936
e212f361 1937 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1938
63d95a91 1939 if (!need_to_create_worker(pool))
e22bee78
TH
1940 break;
1941 }
1942
63d95a91 1943 del_timer_sync(&pool->mayday_timer);
d565ed63 1944 spin_lock_irq(&pool->lock);
051e1850
LJ
1945 /*
1946 * This is necessary even after a new worker was just successfully
1947 * created as @pool->lock was dropped and the new worker might have
1948 * already become busy.
1949 */
63d95a91 1950 if (need_to_create_worker(pool))
e22bee78 1951 goto restart;
e22bee78
TH
1952}
1953
73f53c4a 1954/**
e22bee78
TH
1955 * manage_workers - manage worker pool
1956 * @worker: self
73f53c4a 1957 *
706026c2 1958 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1959 * to. At any given time, there can be only zero or one manager per
706026c2 1960 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1961 *
1962 * The caller can safely start processing works on false return. On
1963 * true return, it's guaranteed that need_to_create_worker() is false
1964 * and may_start_working() is true.
73f53c4a
TH
1965 *
1966 * CONTEXT:
d565ed63 1967 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1968 * multiple times. Does GFP_KERNEL allocations.
1969 *
d185af30 1970 * Return:
29187a9e
TH
1971 * %false if the pool doesn't need management and the caller can safely
1972 * start processing works, %true if management function was performed and
1973 * the conditions that the caller verified before calling the function may
1974 * no longer be true.
73f53c4a 1975 */
e22bee78 1976static bool manage_workers(struct worker *worker)
73f53c4a 1977{
63d95a91 1978 struct worker_pool *pool = worker->pool;
73f53c4a 1979
bc3a1afc 1980 /*
bc3a1afc
TH
1981 * Anyone who successfully grabs manager_arb wins the arbitration
1982 * and becomes the manager. mutex_trylock() on pool->manager_arb
1983 * failure while holding pool->lock reliably indicates that someone
1984 * else is managing the pool and the worker which failed trylock
1985 * can proceed to executing work items. This means that anyone
1986 * grabbing manager_arb is responsible for actually performing
1987 * manager duties. If manager_arb is grabbed and released without
1988 * actual management, the pool may stall indefinitely.
bc3a1afc 1989 */
34a06bd6 1990 if (!mutex_trylock(&pool->manager_arb))
29187a9e 1991 return false;
2607d7a6 1992 pool->manager = worker;
1e19ffc6 1993
29187a9e 1994 maybe_create_worker(pool);
e22bee78 1995
2607d7a6 1996 pool->manager = NULL;
34a06bd6 1997 mutex_unlock(&pool->manager_arb);
29187a9e 1998 return true;
73f53c4a
TH
1999}
2000
a62428c0
TH
2001/**
2002 * process_one_work - process single work
c34056a3 2003 * @worker: self
a62428c0
TH
2004 * @work: work to process
2005 *
2006 * Process @work. This function contains all the logics necessary to
2007 * process a single work including synchronization against and
2008 * interaction with other workers on the same cpu, queueing and
2009 * flushing. As long as context requirement is met, any worker can
2010 * call this function to process a work.
2011 *
2012 * CONTEXT:
d565ed63 2013 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2014 */
c34056a3 2015static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2016__releases(&pool->lock)
2017__acquires(&pool->lock)
a62428c0 2018{
112202d9 2019 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2020 struct worker_pool *pool = worker->pool;
112202d9 2021 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2022 int work_color;
7e11629d 2023 struct worker *collision;
a62428c0
TH
2024#ifdef CONFIG_LOCKDEP
2025 /*
2026 * It is permissible to free the struct work_struct from
2027 * inside the function that is called from it, this we need to
2028 * take into account for lockdep too. To avoid bogus "held
2029 * lock freed" warnings as well as problems when looking into
2030 * work->lockdep_map, make a copy and use that here.
2031 */
4d82a1de
PZ
2032 struct lockdep_map lockdep_map;
2033
2034 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2035#endif
807407c0 2036 /* ensure we're on the correct CPU */
85327af6 2037 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2038 raw_smp_processor_id() != pool->cpu);
25511a47 2039
7e11629d
TH
2040 /*
2041 * A single work shouldn't be executed concurrently by
2042 * multiple workers on a single cpu. Check whether anyone is
2043 * already processing the work. If so, defer the work to the
2044 * currently executing one.
2045 */
c9e7cf27 2046 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2047 if (unlikely(collision)) {
2048 move_linked_works(work, &collision->scheduled, NULL);
2049 return;
2050 }
2051
8930caba 2052 /* claim and dequeue */
a62428c0 2053 debug_work_deactivate(work);
c9e7cf27 2054 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2055 worker->current_work = work;
a2c1c57b 2056 worker->current_func = work->func;
112202d9 2057 worker->current_pwq = pwq;
73f53c4a 2058 work_color = get_work_color(work);
7a22ad75 2059
a62428c0
TH
2060 list_del_init(&work->entry);
2061
fb0e7beb 2062 /*
228f1d00
LJ
2063 * CPU intensive works don't participate in concurrency management.
2064 * They're the scheduler's responsibility. This takes @worker out
2065 * of concurrency management and the next code block will chain
2066 * execution of the pending work items.
fb0e7beb
TH
2067 */
2068 if (unlikely(cpu_intensive))
228f1d00 2069 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2070
974271c4 2071 /*
a489a03e
LJ
2072 * Wake up another worker if necessary. The condition is always
2073 * false for normal per-cpu workers since nr_running would always
2074 * be >= 1 at this point. This is used to chain execution of the
2075 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2076 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2077 */
a489a03e 2078 if (need_more_worker(pool))
63d95a91 2079 wake_up_worker(pool);
974271c4 2080
8930caba 2081 /*
7c3eed5c 2082 * Record the last pool and clear PENDING which should be the last
d565ed63 2083 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2084 * PENDING and queued state changes happen together while IRQ is
2085 * disabled.
8930caba 2086 */
7c3eed5c 2087 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2088
d565ed63 2089 spin_unlock_irq(&pool->lock);
a62428c0 2090
112202d9 2091 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2092 lock_map_acquire(&lockdep_map);
e36c886a 2093 trace_workqueue_execute_start(work);
a2c1c57b 2094 worker->current_func(work);
e36c886a
AV
2095 /*
2096 * While we must be careful to not use "work" after this, the trace
2097 * point will only record its address.
2098 */
2099 trace_workqueue_execute_end(work);
a62428c0 2100 lock_map_release(&lockdep_map);
112202d9 2101 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2102
2103 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2104 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2105 " last function: %pf\n",
a2c1c57b
TH
2106 current->comm, preempt_count(), task_pid_nr(current),
2107 worker->current_func);
a62428c0
TH
2108 debug_show_held_locks(current);
2109 dump_stack();
2110 }
2111
b22ce278
TH
2112 /*
2113 * The following prevents a kworker from hogging CPU on !PREEMPT
2114 * kernels, where a requeueing work item waiting for something to
2115 * happen could deadlock with stop_machine as such work item could
2116 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2117 * stop_machine. At the same time, report a quiescent RCU state so
2118 * the same condition doesn't freeze RCU.
b22ce278 2119 */
3e28e377 2120 cond_resched_rcu_qs();
b22ce278 2121
d565ed63 2122 spin_lock_irq(&pool->lock);
a62428c0 2123
fb0e7beb
TH
2124 /* clear cpu intensive status */
2125 if (unlikely(cpu_intensive))
2126 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2127
a62428c0 2128 /* we're done with it, release */
42f8570f 2129 hash_del(&worker->hentry);
c34056a3 2130 worker->current_work = NULL;
a2c1c57b 2131 worker->current_func = NULL;
112202d9 2132 worker->current_pwq = NULL;
3d1cb205 2133 worker->desc_valid = false;
112202d9 2134 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2135}
2136
affee4b2
TH
2137/**
2138 * process_scheduled_works - process scheduled works
2139 * @worker: self
2140 *
2141 * Process all scheduled works. Please note that the scheduled list
2142 * may change while processing a work, so this function repeatedly
2143 * fetches a work from the top and executes it.
2144 *
2145 * CONTEXT:
d565ed63 2146 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2147 * multiple times.
2148 */
2149static void process_scheduled_works(struct worker *worker)
1da177e4 2150{
affee4b2
TH
2151 while (!list_empty(&worker->scheduled)) {
2152 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2153 struct work_struct, entry);
c34056a3 2154 process_one_work(worker, work);
1da177e4 2155 }
1da177e4
LT
2156}
2157
4690c4ab
TH
2158/**
2159 * worker_thread - the worker thread function
c34056a3 2160 * @__worker: self
4690c4ab 2161 *
c5aa87bb
TH
2162 * The worker thread function. All workers belong to a worker_pool -
2163 * either a per-cpu one or dynamic unbound one. These workers process all
2164 * work items regardless of their specific target workqueue. The only
2165 * exception is work items which belong to workqueues with a rescuer which
2166 * will be explained in rescuer_thread().
d185af30
YB
2167 *
2168 * Return: 0
4690c4ab 2169 */
c34056a3 2170static int worker_thread(void *__worker)
1da177e4 2171{
c34056a3 2172 struct worker *worker = __worker;
bd7bdd43 2173 struct worker_pool *pool = worker->pool;
1da177e4 2174
e22bee78
TH
2175 /* tell the scheduler that this is a workqueue worker */
2176 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2177woke_up:
d565ed63 2178 spin_lock_irq(&pool->lock);
1da177e4 2179
a9ab775b
TH
2180 /* am I supposed to die? */
2181 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2182 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2183 WARN_ON_ONCE(!list_empty(&worker->entry));
2184 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2185
2186 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2187 ida_simple_remove(&pool->worker_ida, worker->id);
60f5a4bc
LJ
2188 worker_detach_from_pool(worker, pool);
2189 kfree(worker);
a9ab775b 2190 return 0;
c8e55f36 2191 }
affee4b2 2192
c8e55f36 2193 worker_leave_idle(worker);
db7bccf4 2194recheck:
e22bee78 2195 /* no more worker necessary? */
63d95a91 2196 if (!need_more_worker(pool))
e22bee78
TH
2197 goto sleep;
2198
2199 /* do we need to manage? */
63d95a91 2200 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2201 goto recheck;
2202
c8e55f36
TH
2203 /*
2204 * ->scheduled list can only be filled while a worker is
2205 * preparing to process a work or actually processing it.
2206 * Make sure nobody diddled with it while I was sleeping.
2207 */
6183c009 2208 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2209
e22bee78 2210 /*
a9ab775b
TH
2211 * Finish PREP stage. We're guaranteed to have at least one idle
2212 * worker or that someone else has already assumed the manager
2213 * role. This is where @worker starts participating in concurrency
2214 * management if applicable and concurrency management is restored
2215 * after being rebound. See rebind_workers() for details.
e22bee78 2216 */
a9ab775b 2217 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2218
2219 do {
c8e55f36 2220 struct work_struct *work =
bd7bdd43 2221 list_first_entry(&pool->worklist,
c8e55f36
TH
2222 struct work_struct, entry);
2223
82607adc
TH
2224 pool->watchdog_ts = jiffies;
2225
c8e55f36
TH
2226 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2227 /* optimization path, not strictly necessary */
2228 process_one_work(worker, work);
2229 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2230 process_scheduled_works(worker);
c8e55f36
TH
2231 } else {
2232 move_linked_works(work, &worker->scheduled, NULL);
2233 process_scheduled_works(worker);
affee4b2 2234 }
63d95a91 2235 } while (keep_working(pool));
e22bee78 2236
228f1d00 2237 worker_set_flags(worker, WORKER_PREP);
d313dd85 2238sleep:
c8e55f36 2239 /*
d565ed63
TH
2240 * pool->lock is held and there's no work to process and no need to
2241 * manage, sleep. Workers are woken up only while holding
2242 * pool->lock or from local cpu, so setting the current state
2243 * before releasing pool->lock is enough to prevent losing any
2244 * event.
c8e55f36
TH
2245 */
2246 worker_enter_idle(worker);
2247 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2248 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2249 schedule();
2250 goto woke_up;
1da177e4
LT
2251}
2252
e22bee78
TH
2253/**
2254 * rescuer_thread - the rescuer thread function
111c225a 2255 * @__rescuer: self
e22bee78
TH
2256 *
2257 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2258 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2259 *
706026c2 2260 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2261 * worker which uses GFP_KERNEL allocation which has slight chance of
2262 * developing into deadlock if some works currently on the same queue
2263 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2264 * the problem rescuer solves.
2265 *
706026c2
TH
2266 * When such condition is possible, the pool summons rescuers of all
2267 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2268 * those works so that forward progress can be guaranteed.
2269 *
2270 * This should happen rarely.
d185af30
YB
2271 *
2272 * Return: 0
e22bee78 2273 */
111c225a 2274static int rescuer_thread(void *__rescuer)
e22bee78 2275{
111c225a
TH
2276 struct worker *rescuer = __rescuer;
2277 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2278 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2279 bool should_stop;
e22bee78
TH
2280
2281 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2282
2283 /*
2284 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2285 * doesn't participate in concurrency management.
2286 */
2287 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2288repeat:
2289 set_current_state(TASK_INTERRUPTIBLE);
2290
4d595b86
LJ
2291 /*
2292 * By the time the rescuer is requested to stop, the workqueue
2293 * shouldn't have any work pending, but @wq->maydays may still have
2294 * pwq(s) queued. This can happen by non-rescuer workers consuming
2295 * all the work items before the rescuer got to them. Go through
2296 * @wq->maydays processing before acting on should_stop so that the
2297 * list is always empty on exit.
2298 */
2299 should_stop = kthread_should_stop();
e22bee78 2300
493a1724 2301 /* see whether any pwq is asking for help */
2e109a28 2302 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2303
2304 while (!list_empty(&wq->maydays)) {
2305 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2306 struct pool_workqueue, mayday_node);
112202d9 2307 struct worker_pool *pool = pwq->pool;
e22bee78 2308 struct work_struct *work, *n;
82607adc 2309 bool first = true;
e22bee78
TH
2310
2311 __set_current_state(TASK_RUNNING);
493a1724
TH
2312 list_del_init(&pwq->mayday_node);
2313
2e109a28 2314 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2315
51697d39
LJ
2316 worker_attach_to_pool(rescuer, pool);
2317
2318 spin_lock_irq(&pool->lock);
b3104104 2319 rescuer->pool = pool;
e22bee78
TH
2320
2321 /*
2322 * Slurp in all works issued via this workqueue and
2323 * process'em.
2324 */
0479c8c5 2325 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2326 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2327 if (get_work_pwq(work) == pwq) {
2328 if (first)
2329 pool->watchdog_ts = jiffies;
e22bee78 2330 move_linked_works(work, scheduled, &n);
82607adc
TH
2331 }
2332 first = false;
2333 }
e22bee78 2334
008847f6
N
2335 if (!list_empty(scheduled)) {
2336 process_scheduled_works(rescuer);
2337
2338 /*
2339 * The above execution of rescued work items could
2340 * have created more to rescue through
2341 * pwq_activate_first_delayed() or chained
2342 * queueing. Let's put @pwq back on mayday list so
2343 * that such back-to-back work items, which may be
2344 * being used to relieve memory pressure, don't
2345 * incur MAYDAY_INTERVAL delay inbetween.
2346 */
2347 if (need_to_create_worker(pool)) {
2348 spin_lock(&wq_mayday_lock);
2349 get_pwq(pwq);
2350 list_move_tail(&pwq->mayday_node, &wq->maydays);
2351 spin_unlock(&wq_mayday_lock);
2352 }
2353 }
7576958a 2354
77668c8b
LJ
2355 /*
2356 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2357 * go away while we're still attached to it.
77668c8b
LJ
2358 */
2359 put_pwq(pwq);
2360
7576958a 2361 /*
d8ca83e6 2362 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2363 * regular worker; otherwise, we end up with 0 concurrency
2364 * and stalling the execution.
2365 */
d8ca83e6 2366 if (need_more_worker(pool))
63d95a91 2367 wake_up_worker(pool);
7576958a 2368
b3104104 2369 rescuer->pool = NULL;
13b1d625
LJ
2370 spin_unlock_irq(&pool->lock);
2371
2372 worker_detach_from_pool(rescuer, pool);
2373
2374 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2375 }
2376
2e109a28 2377 spin_unlock_irq(&wq_mayday_lock);
493a1724 2378
4d595b86
LJ
2379 if (should_stop) {
2380 __set_current_state(TASK_RUNNING);
2381 rescuer->task->flags &= ~PF_WQ_WORKER;
2382 return 0;
2383 }
2384
111c225a
TH
2385 /* rescuers should never participate in concurrency management */
2386 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2387 schedule();
2388 goto repeat;
1da177e4
LT
2389}
2390
fca839c0
TH
2391/**
2392 * check_flush_dependency - check for flush dependency sanity
2393 * @target_wq: workqueue being flushed
2394 * @target_work: work item being flushed (NULL for workqueue flushes)
2395 *
2396 * %current is trying to flush the whole @target_wq or @target_work on it.
2397 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2398 * reclaiming memory or running on a workqueue which doesn't have
2399 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2400 * a deadlock.
2401 */
2402static void check_flush_dependency(struct workqueue_struct *target_wq,
2403 struct work_struct *target_work)
2404{
2405 work_func_t target_func = target_work ? target_work->func : NULL;
2406 struct worker *worker;
2407
2408 if (target_wq->flags & WQ_MEM_RECLAIM)
2409 return;
2410
2411 worker = current_wq_worker();
2412
2413 WARN_ONCE(current->flags & PF_MEMALLOC,
2414 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2415 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2416 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2417 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
fca839c0
TH
2418 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2419 worker->current_pwq->wq->name, worker->current_func,
2420 target_wq->name, target_func);
2421}
2422
fc2e4d70
ON
2423struct wq_barrier {
2424 struct work_struct work;
2425 struct completion done;
2607d7a6 2426 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2427};
2428
2429static void wq_barrier_func(struct work_struct *work)
2430{
2431 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2432 complete(&barr->done);
2433}
2434
4690c4ab
TH
2435/**
2436 * insert_wq_barrier - insert a barrier work
112202d9 2437 * @pwq: pwq to insert barrier into
4690c4ab 2438 * @barr: wq_barrier to insert
affee4b2
TH
2439 * @target: target work to attach @barr to
2440 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2441 *
affee4b2
TH
2442 * @barr is linked to @target such that @barr is completed only after
2443 * @target finishes execution. Please note that the ordering
2444 * guarantee is observed only with respect to @target and on the local
2445 * cpu.
2446 *
2447 * Currently, a queued barrier can't be canceled. This is because
2448 * try_to_grab_pending() can't determine whether the work to be
2449 * grabbed is at the head of the queue and thus can't clear LINKED
2450 * flag of the previous work while there must be a valid next work
2451 * after a work with LINKED flag set.
2452 *
2453 * Note that when @worker is non-NULL, @target may be modified
112202d9 2454 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2455 *
2456 * CONTEXT:
d565ed63 2457 * spin_lock_irq(pool->lock).
4690c4ab 2458 */
112202d9 2459static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2460 struct wq_barrier *barr,
2461 struct work_struct *target, struct worker *worker)
fc2e4d70 2462{
affee4b2
TH
2463 struct list_head *head;
2464 unsigned int linked = 0;
2465
dc186ad7 2466 /*
d565ed63 2467 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2468 * as we know for sure that this will not trigger any of the
2469 * checks and call back into the fixup functions where we
2470 * might deadlock.
2471 */
ca1cab37 2472 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2473 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2474 init_completion(&barr->done);
2607d7a6 2475 barr->task = current;
83c22520 2476
affee4b2
TH
2477 /*
2478 * If @target is currently being executed, schedule the
2479 * barrier to the worker; otherwise, put it after @target.
2480 */
2481 if (worker)
2482 head = worker->scheduled.next;
2483 else {
2484 unsigned long *bits = work_data_bits(target);
2485
2486 head = target->entry.next;
2487 /* there can already be other linked works, inherit and set */
2488 linked = *bits & WORK_STRUCT_LINKED;
2489 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2490 }
2491
dc186ad7 2492 debug_work_activate(&barr->work);
112202d9 2493 insert_work(pwq, &barr->work, head,
affee4b2 2494 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2495}
2496
73f53c4a 2497/**
112202d9 2498 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2499 * @wq: workqueue being flushed
2500 * @flush_color: new flush color, < 0 for no-op
2501 * @work_color: new work color, < 0 for no-op
2502 *
112202d9 2503 * Prepare pwqs for workqueue flushing.
73f53c4a 2504 *
112202d9
TH
2505 * If @flush_color is non-negative, flush_color on all pwqs should be
2506 * -1. If no pwq has in-flight commands at the specified color, all
2507 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2508 * has in flight commands, its pwq->flush_color is set to
2509 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2510 * wakeup logic is armed and %true is returned.
2511 *
2512 * The caller should have initialized @wq->first_flusher prior to
2513 * calling this function with non-negative @flush_color. If
2514 * @flush_color is negative, no flush color update is done and %false
2515 * is returned.
2516 *
112202d9 2517 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2518 * work_color which is previous to @work_color and all will be
2519 * advanced to @work_color.
2520 *
2521 * CONTEXT:
3c25a55d 2522 * mutex_lock(wq->mutex).
73f53c4a 2523 *
d185af30 2524 * Return:
73f53c4a
TH
2525 * %true if @flush_color >= 0 and there's something to flush. %false
2526 * otherwise.
2527 */
112202d9 2528static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2529 int flush_color, int work_color)
1da177e4 2530{
73f53c4a 2531 bool wait = false;
49e3cf44 2532 struct pool_workqueue *pwq;
1da177e4 2533
73f53c4a 2534 if (flush_color >= 0) {
6183c009 2535 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2536 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2537 }
2355b70f 2538
49e3cf44 2539 for_each_pwq(pwq, wq) {
112202d9 2540 struct worker_pool *pool = pwq->pool;
fc2e4d70 2541
b09f4fd3 2542 spin_lock_irq(&pool->lock);
83c22520 2543
73f53c4a 2544 if (flush_color >= 0) {
6183c009 2545 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2546
112202d9
TH
2547 if (pwq->nr_in_flight[flush_color]) {
2548 pwq->flush_color = flush_color;
2549 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2550 wait = true;
2551 }
2552 }
1da177e4 2553
73f53c4a 2554 if (work_color >= 0) {
6183c009 2555 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2556 pwq->work_color = work_color;
73f53c4a 2557 }
1da177e4 2558
b09f4fd3 2559 spin_unlock_irq(&pool->lock);
1da177e4 2560 }
2355b70f 2561
112202d9 2562 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2563 complete(&wq->first_flusher->done);
14441960 2564
73f53c4a 2565 return wait;
1da177e4
LT
2566}
2567
0fcb78c2 2568/**
1da177e4 2569 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2570 * @wq: workqueue to flush
1da177e4 2571 *
c5aa87bb
TH
2572 * This function sleeps until all work items which were queued on entry
2573 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2574 */
7ad5b3a5 2575void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2576{
73f53c4a
TH
2577 struct wq_flusher this_flusher = {
2578 .list = LIST_HEAD_INIT(this_flusher.list),
2579 .flush_color = -1,
2580 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2581 };
2582 int next_color;
1da177e4 2583
3295f0ef
IM
2584 lock_map_acquire(&wq->lockdep_map);
2585 lock_map_release(&wq->lockdep_map);
73f53c4a 2586
3c25a55d 2587 mutex_lock(&wq->mutex);
73f53c4a
TH
2588
2589 /*
2590 * Start-to-wait phase
2591 */
2592 next_color = work_next_color(wq->work_color);
2593
2594 if (next_color != wq->flush_color) {
2595 /*
2596 * Color space is not full. The current work_color
2597 * becomes our flush_color and work_color is advanced
2598 * by one.
2599 */
6183c009 2600 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2601 this_flusher.flush_color = wq->work_color;
2602 wq->work_color = next_color;
2603
2604 if (!wq->first_flusher) {
2605 /* no flush in progress, become the first flusher */
6183c009 2606 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2607
2608 wq->first_flusher = &this_flusher;
2609
112202d9 2610 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2611 wq->work_color)) {
2612 /* nothing to flush, done */
2613 wq->flush_color = next_color;
2614 wq->first_flusher = NULL;
2615 goto out_unlock;
2616 }
2617 } else {
2618 /* wait in queue */
6183c009 2619 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2620 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2621 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2622 }
2623 } else {
2624 /*
2625 * Oops, color space is full, wait on overflow queue.
2626 * The next flush completion will assign us
2627 * flush_color and transfer to flusher_queue.
2628 */
2629 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2630 }
2631
fca839c0
TH
2632 check_flush_dependency(wq, NULL);
2633
3c25a55d 2634 mutex_unlock(&wq->mutex);
73f53c4a
TH
2635
2636 wait_for_completion(&this_flusher.done);
2637
2638 /*
2639 * Wake-up-and-cascade phase
2640 *
2641 * First flushers are responsible for cascading flushes and
2642 * handling overflow. Non-first flushers can simply return.
2643 */
2644 if (wq->first_flusher != &this_flusher)
2645 return;
2646
3c25a55d 2647 mutex_lock(&wq->mutex);
73f53c4a 2648
4ce48b37
TH
2649 /* we might have raced, check again with mutex held */
2650 if (wq->first_flusher != &this_flusher)
2651 goto out_unlock;
2652
73f53c4a
TH
2653 wq->first_flusher = NULL;
2654
6183c009
TH
2655 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2656 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2657
2658 while (true) {
2659 struct wq_flusher *next, *tmp;
2660
2661 /* complete all the flushers sharing the current flush color */
2662 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2663 if (next->flush_color != wq->flush_color)
2664 break;
2665 list_del_init(&next->list);
2666 complete(&next->done);
2667 }
2668
6183c009
TH
2669 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2670 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2671
2672 /* this flush_color is finished, advance by one */
2673 wq->flush_color = work_next_color(wq->flush_color);
2674
2675 /* one color has been freed, handle overflow queue */
2676 if (!list_empty(&wq->flusher_overflow)) {
2677 /*
2678 * Assign the same color to all overflowed
2679 * flushers, advance work_color and append to
2680 * flusher_queue. This is the start-to-wait
2681 * phase for these overflowed flushers.
2682 */
2683 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2684 tmp->flush_color = wq->work_color;
2685
2686 wq->work_color = work_next_color(wq->work_color);
2687
2688 list_splice_tail_init(&wq->flusher_overflow,
2689 &wq->flusher_queue);
112202d9 2690 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2691 }
2692
2693 if (list_empty(&wq->flusher_queue)) {
6183c009 2694 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2695 break;
2696 }
2697
2698 /*
2699 * Need to flush more colors. Make the next flusher
112202d9 2700 * the new first flusher and arm pwqs.
73f53c4a 2701 */
6183c009
TH
2702 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2703 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2704
2705 list_del_init(&next->list);
2706 wq->first_flusher = next;
2707
112202d9 2708 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2709 break;
2710
2711 /*
2712 * Meh... this color is already done, clear first
2713 * flusher and repeat cascading.
2714 */
2715 wq->first_flusher = NULL;
2716 }
2717
2718out_unlock:
3c25a55d 2719 mutex_unlock(&wq->mutex);
1da177e4 2720}
1dadafa8 2721EXPORT_SYMBOL(flush_workqueue);
1da177e4 2722
9c5a2ba7
TH
2723/**
2724 * drain_workqueue - drain a workqueue
2725 * @wq: workqueue to drain
2726 *
2727 * Wait until the workqueue becomes empty. While draining is in progress,
2728 * only chain queueing is allowed. IOW, only currently pending or running
2729 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2730 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2731 * by the depth of chaining and should be relatively short. Whine if it
2732 * takes too long.
2733 */
2734void drain_workqueue(struct workqueue_struct *wq)
2735{
2736 unsigned int flush_cnt = 0;
49e3cf44 2737 struct pool_workqueue *pwq;
9c5a2ba7
TH
2738
2739 /*
2740 * __queue_work() needs to test whether there are drainers, is much
2741 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2742 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2743 */
87fc741e 2744 mutex_lock(&wq->mutex);
9c5a2ba7 2745 if (!wq->nr_drainers++)
618b01eb 2746 wq->flags |= __WQ_DRAINING;
87fc741e 2747 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2748reflush:
2749 flush_workqueue(wq);
2750
b09f4fd3 2751 mutex_lock(&wq->mutex);
76af4d93 2752
49e3cf44 2753 for_each_pwq(pwq, wq) {
fa2563e4 2754 bool drained;
9c5a2ba7 2755
b09f4fd3 2756 spin_lock_irq(&pwq->pool->lock);
112202d9 2757 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2758 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2759
2760 if (drained)
9c5a2ba7
TH
2761 continue;
2762
2763 if (++flush_cnt == 10 ||
2764 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2765 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2766 wq->name, flush_cnt);
76af4d93 2767
b09f4fd3 2768 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2769 goto reflush;
2770 }
2771
9c5a2ba7 2772 if (!--wq->nr_drainers)
618b01eb 2773 wq->flags &= ~__WQ_DRAINING;
87fc741e 2774 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2775}
2776EXPORT_SYMBOL_GPL(drain_workqueue);
2777
606a5020 2778static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2779{
affee4b2 2780 struct worker *worker = NULL;
c9e7cf27 2781 struct worker_pool *pool;
112202d9 2782 struct pool_workqueue *pwq;
db700897
ON
2783
2784 might_sleep();
fa1b54e6
TH
2785
2786 local_irq_disable();
c9e7cf27 2787 pool = get_work_pool(work);
fa1b54e6
TH
2788 if (!pool) {
2789 local_irq_enable();
baf59022 2790 return false;
fa1b54e6 2791 }
db700897 2792
fa1b54e6 2793 spin_lock(&pool->lock);
0b3dae68 2794 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2795 pwq = get_work_pwq(work);
2796 if (pwq) {
2797 if (unlikely(pwq->pool != pool))
4690c4ab 2798 goto already_gone;
606a5020 2799 } else {
c9e7cf27 2800 worker = find_worker_executing_work(pool, work);
affee4b2 2801 if (!worker)
4690c4ab 2802 goto already_gone;
112202d9 2803 pwq = worker->current_pwq;
606a5020 2804 }
db700897 2805
fca839c0
TH
2806 check_flush_dependency(pwq->wq, work);
2807
112202d9 2808 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2809 spin_unlock_irq(&pool->lock);
7a22ad75 2810
e159489b
TH
2811 /*
2812 * If @max_active is 1 or rescuer is in use, flushing another work
2813 * item on the same workqueue may lead to deadlock. Make sure the
2814 * flusher is not running on the same workqueue by verifying write
2815 * access.
2816 */
493008a8 2817 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2818 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2819 else
112202d9
TH
2820 lock_map_acquire_read(&pwq->wq->lockdep_map);
2821 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2822
401a8d04 2823 return true;
4690c4ab 2824already_gone:
d565ed63 2825 spin_unlock_irq(&pool->lock);
401a8d04 2826 return false;
db700897 2827}
baf59022
TH
2828
2829/**
2830 * flush_work - wait for a work to finish executing the last queueing instance
2831 * @work: the work to flush
2832 *
606a5020
TH
2833 * Wait until @work has finished execution. @work is guaranteed to be idle
2834 * on return if it hasn't been requeued since flush started.
baf59022 2835 *
d185af30 2836 * Return:
baf59022
TH
2837 * %true if flush_work() waited for the work to finish execution,
2838 * %false if it was already idle.
2839 */
2840bool flush_work(struct work_struct *work)
2841{
12997d1a
BH
2842 struct wq_barrier barr;
2843
0976dfc1
SB
2844 lock_map_acquire(&work->lockdep_map);
2845 lock_map_release(&work->lockdep_map);
2846
12997d1a
BH
2847 if (start_flush_work(work, &barr)) {
2848 wait_for_completion(&barr.done);
2849 destroy_work_on_stack(&barr.work);
2850 return true;
2851 } else {
2852 return false;
2853 }
6e84d644 2854}
606a5020 2855EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2856
8603e1b3
TH
2857struct cwt_wait {
2858 wait_queue_t wait;
2859 struct work_struct *work;
2860};
2861
2862static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2863{
2864 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2865
2866 if (cwait->work != key)
2867 return 0;
2868 return autoremove_wake_function(wait, mode, sync, key);
2869}
2870
36e227d2 2871static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2872{
8603e1b3 2873 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 2874 unsigned long flags;
1f1f642e
ON
2875 int ret;
2876
2877 do {
bbb68dfa
TH
2878 ret = try_to_grab_pending(work, is_dwork, &flags);
2879 /*
8603e1b3
TH
2880 * If someone else is already canceling, wait for it to
2881 * finish. flush_work() doesn't work for PREEMPT_NONE
2882 * because we may get scheduled between @work's completion
2883 * and the other canceling task resuming and clearing
2884 * CANCELING - flush_work() will return false immediately
2885 * as @work is no longer busy, try_to_grab_pending() will
2886 * return -ENOENT as @work is still being canceled and the
2887 * other canceling task won't be able to clear CANCELING as
2888 * we're hogging the CPU.
2889 *
2890 * Let's wait for completion using a waitqueue. As this
2891 * may lead to the thundering herd problem, use a custom
2892 * wake function which matches @work along with exclusive
2893 * wait and wakeup.
bbb68dfa 2894 */
8603e1b3
TH
2895 if (unlikely(ret == -ENOENT)) {
2896 struct cwt_wait cwait;
2897
2898 init_wait(&cwait.wait);
2899 cwait.wait.func = cwt_wakefn;
2900 cwait.work = work;
2901
2902 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2903 TASK_UNINTERRUPTIBLE);
2904 if (work_is_canceling(work))
2905 schedule();
2906 finish_wait(&cancel_waitq, &cwait.wait);
2907 }
1f1f642e
ON
2908 } while (unlikely(ret < 0));
2909
bbb68dfa
TH
2910 /* tell other tasks trying to grab @work to back off */
2911 mark_work_canceling(work);
2912 local_irq_restore(flags);
2913
606a5020 2914 flush_work(work);
7a22ad75 2915 clear_work_data(work);
8603e1b3
TH
2916
2917 /*
2918 * Paired with prepare_to_wait() above so that either
2919 * waitqueue_active() is visible here or !work_is_canceling() is
2920 * visible there.
2921 */
2922 smp_mb();
2923 if (waitqueue_active(&cancel_waitq))
2924 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2925
1f1f642e
ON
2926 return ret;
2927}
2928
6e84d644 2929/**
401a8d04
TH
2930 * cancel_work_sync - cancel a work and wait for it to finish
2931 * @work: the work to cancel
6e84d644 2932 *
401a8d04
TH
2933 * Cancel @work and wait for its execution to finish. This function
2934 * can be used even if the work re-queues itself or migrates to
2935 * another workqueue. On return from this function, @work is
2936 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2937 *
401a8d04
TH
2938 * cancel_work_sync(&delayed_work->work) must not be used for
2939 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2940 *
401a8d04 2941 * The caller must ensure that the workqueue on which @work was last
6e84d644 2942 * queued can't be destroyed before this function returns.
401a8d04 2943 *
d185af30 2944 * Return:
401a8d04 2945 * %true if @work was pending, %false otherwise.
6e84d644 2946 */
401a8d04 2947bool cancel_work_sync(struct work_struct *work)
6e84d644 2948{
36e227d2 2949 return __cancel_work_timer(work, false);
b89deed3 2950}
28e53bdd 2951EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2952
6e84d644 2953/**
401a8d04
TH
2954 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2955 * @dwork: the delayed work to flush
6e84d644 2956 *
401a8d04
TH
2957 * Delayed timer is cancelled and the pending work is queued for
2958 * immediate execution. Like flush_work(), this function only
2959 * considers the last queueing instance of @dwork.
1f1f642e 2960 *
d185af30 2961 * Return:
401a8d04
TH
2962 * %true if flush_work() waited for the work to finish execution,
2963 * %false if it was already idle.
6e84d644 2964 */
401a8d04
TH
2965bool flush_delayed_work(struct delayed_work *dwork)
2966{
8930caba 2967 local_irq_disable();
401a8d04 2968 if (del_timer_sync(&dwork->timer))
60c057bc 2969 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2970 local_irq_enable();
401a8d04
TH
2971 return flush_work(&dwork->work);
2972}
2973EXPORT_SYMBOL(flush_delayed_work);
2974
09383498 2975/**
57b30ae7
TH
2976 * cancel_delayed_work - cancel a delayed work
2977 * @dwork: delayed_work to cancel
09383498 2978 *
d185af30
YB
2979 * Kill off a pending delayed_work.
2980 *
2981 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2982 * pending.
2983 *
2984 * Note:
2985 * The work callback function may still be running on return, unless
2986 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2987 * use cancel_delayed_work_sync() to wait on it.
09383498 2988 *
57b30ae7 2989 * This function is safe to call from any context including IRQ handler.
09383498 2990 */
57b30ae7 2991bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2992{
57b30ae7
TH
2993 unsigned long flags;
2994 int ret;
2995
2996 do {
2997 ret = try_to_grab_pending(&dwork->work, true, &flags);
2998 } while (unlikely(ret == -EAGAIN));
2999
3000 if (unlikely(ret < 0))
3001 return false;
3002
7c3eed5c
TH
3003 set_work_pool_and_clear_pending(&dwork->work,
3004 get_work_pool_id(&dwork->work));
57b30ae7 3005 local_irq_restore(flags);
c0158ca6 3006 return ret;
09383498 3007}
57b30ae7 3008EXPORT_SYMBOL(cancel_delayed_work);
09383498 3009
401a8d04
TH
3010/**
3011 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3012 * @dwork: the delayed work cancel
3013 *
3014 * This is cancel_work_sync() for delayed works.
3015 *
d185af30 3016 * Return:
401a8d04
TH
3017 * %true if @dwork was pending, %false otherwise.
3018 */
3019bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3020{
36e227d2 3021 return __cancel_work_timer(&dwork->work, true);
6e84d644 3022}
f5a421a4 3023EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3024
b6136773 3025/**
31ddd871 3026 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3027 * @func: the function to call
b6136773 3028 *
31ddd871
TH
3029 * schedule_on_each_cpu() executes @func on each online CPU using the
3030 * system workqueue and blocks until all CPUs have completed.
b6136773 3031 * schedule_on_each_cpu() is very slow.
31ddd871 3032 *
d185af30 3033 * Return:
31ddd871 3034 * 0 on success, -errno on failure.
b6136773 3035 */
65f27f38 3036int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3037{
3038 int cpu;
38f51568 3039 struct work_struct __percpu *works;
15316ba8 3040
b6136773
AM
3041 works = alloc_percpu(struct work_struct);
3042 if (!works)
15316ba8 3043 return -ENOMEM;
b6136773 3044
93981800
TH
3045 get_online_cpus();
3046
15316ba8 3047 for_each_online_cpu(cpu) {
9bfb1839
IM
3048 struct work_struct *work = per_cpu_ptr(works, cpu);
3049
3050 INIT_WORK(work, func);
b71ab8c2 3051 schedule_work_on(cpu, work);
65a64464 3052 }
93981800
TH
3053
3054 for_each_online_cpu(cpu)
3055 flush_work(per_cpu_ptr(works, cpu));
3056
95402b38 3057 put_online_cpus();
b6136773 3058 free_percpu(works);
15316ba8
CL
3059 return 0;
3060}
3061
1fa44eca
JB
3062/**
3063 * execute_in_process_context - reliably execute the routine with user context
3064 * @fn: the function to execute
1fa44eca
JB
3065 * @ew: guaranteed storage for the execute work structure (must
3066 * be available when the work executes)
3067 *
3068 * Executes the function immediately if process context is available,
3069 * otherwise schedules the function for delayed execution.
3070 *
d185af30 3071 * Return: 0 - function was executed
1fa44eca
JB
3072 * 1 - function was scheduled for execution
3073 */
65f27f38 3074int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3075{
3076 if (!in_interrupt()) {
65f27f38 3077 fn(&ew->work);
1fa44eca
JB
3078 return 0;
3079 }
3080
65f27f38 3081 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3082 schedule_work(&ew->work);
3083
3084 return 1;
3085}
3086EXPORT_SYMBOL_GPL(execute_in_process_context);
3087
6ba94429
FW
3088/**
3089 * free_workqueue_attrs - free a workqueue_attrs
3090 * @attrs: workqueue_attrs to free
226223ab 3091 *
6ba94429 3092 * Undo alloc_workqueue_attrs().
226223ab 3093 */
6ba94429 3094void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3095{
6ba94429
FW
3096 if (attrs) {
3097 free_cpumask_var(attrs->cpumask);
3098 kfree(attrs);
3099 }
226223ab
TH
3100}
3101
6ba94429
FW
3102/**
3103 * alloc_workqueue_attrs - allocate a workqueue_attrs
3104 * @gfp_mask: allocation mask to use
3105 *
3106 * Allocate a new workqueue_attrs, initialize with default settings and
3107 * return it.
3108 *
3109 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3110 */
3111struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
226223ab 3112{
6ba94429 3113 struct workqueue_attrs *attrs;
226223ab 3114
6ba94429
FW
3115 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3116 if (!attrs)
3117 goto fail;
3118 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3119 goto fail;
3120
3121 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3122 return attrs;
3123fail:
3124 free_workqueue_attrs(attrs);
3125 return NULL;
226223ab
TH
3126}
3127
6ba94429
FW
3128static void copy_workqueue_attrs(struct workqueue_attrs *to,
3129 const struct workqueue_attrs *from)
226223ab 3130{
6ba94429
FW
3131 to->nice = from->nice;
3132 cpumask_copy(to->cpumask, from->cpumask);
3133 /*
3134 * Unlike hash and equality test, this function doesn't ignore
3135 * ->no_numa as it is used for both pool and wq attrs. Instead,
3136 * get_unbound_pool() explicitly clears ->no_numa after copying.
3137 */
3138 to->no_numa = from->no_numa;
226223ab
TH
3139}
3140
6ba94429
FW
3141/* hash value of the content of @attr */
3142static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3143{
6ba94429 3144 u32 hash = 0;
226223ab 3145
6ba94429
FW
3146 hash = jhash_1word(attrs->nice, hash);
3147 hash = jhash(cpumask_bits(attrs->cpumask),
3148 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3149 return hash;
226223ab 3150}
226223ab 3151
6ba94429
FW
3152/* content equality test */
3153static bool wqattrs_equal(const struct workqueue_attrs *a,
3154 const struct workqueue_attrs *b)
226223ab 3155{
6ba94429
FW
3156 if (a->nice != b->nice)
3157 return false;
3158 if (!cpumask_equal(a->cpumask, b->cpumask))
3159 return false;
3160 return true;
226223ab
TH
3161}
3162
6ba94429
FW
3163/**
3164 * init_worker_pool - initialize a newly zalloc'd worker_pool
3165 * @pool: worker_pool to initialize
3166 *
402dd89d 3167 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3168 *
3169 * Return: 0 on success, -errno on failure. Even on failure, all fields
3170 * inside @pool proper are initialized and put_unbound_pool() can be called
3171 * on @pool safely to release it.
3172 */
3173static int init_worker_pool(struct worker_pool *pool)
226223ab 3174{
6ba94429
FW
3175 spin_lock_init(&pool->lock);
3176 pool->id = -1;
3177 pool->cpu = -1;
3178 pool->node = NUMA_NO_NODE;
3179 pool->flags |= POOL_DISASSOCIATED;
82607adc 3180 pool->watchdog_ts = jiffies;
6ba94429
FW
3181 INIT_LIST_HEAD(&pool->worklist);
3182 INIT_LIST_HEAD(&pool->idle_list);
3183 hash_init(pool->busy_hash);
226223ab 3184
6ba94429
FW
3185 init_timer_deferrable(&pool->idle_timer);
3186 pool->idle_timer.function = idle_worker_timeout;
3187 pool->idle_timer.data = (unsigned long)pool;
226223ab 3188
6ba94429
FW
3189 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3190 (unsigned long)pool);
226223ab 3191
6ba94429
FW
3192 mutex_init(&pool->manager_arb);
3193 mutex_init(&pool->attach_mutex);
3194 INIT_LIST_HEAD(&pool->workers);
226223ab 3195
6ba94429
FW
3196 ida_init(&pool->worker_ida);
3197 INIT_HLIST_NODE(&pool->hash_node);
3198 pool->refcnt = 1;
226223ab 3199
6ba94429
FW
3200 /* shouldn't fail above this point */
3201 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3202 if (!pool->attrs)
3203 return -ENOMEM;
3204 return 0;
226223ab
TH
3205}
3206
6ba94429 3207static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3208{
6ba94429
FW
3209 struct workqueue_struct *wq =
3210 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3211
6ba94429
FW
3212 if (!(wq->flags & WQ_UNBOUND))
3213 free_percpu(wq->cpu_pwqs);
226223ab 3214 else
6ba94429 3215 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3216
6ba94429
FW
3217 kfree(wq->rescuer);
3218 kfree(wq);
226223ab
TH
3219}
3220
6ba94429 3221static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3222{
6ba94429 3223 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3224
6ba94429
FW
3225 ida_destroy(&pool->worker_ida);
3226 free_workqueue_attrs(pool->attrs);
3227 kfree(pool);
226223ab
TH
3228}
3229
6ba94429
FW
3230/**
3231 * put_unbound_pool - put a worker_pool
3232 * @pool: worker_pool to put
3233 *
3234 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3235 * safe manner. get_unbound_pool() calls this function on its failure path
3236 * and this function should be able to release pools which went through,
3237 * successfully or not, init_worker_pool().
3238 *
3239 * Should be called with wq_pool_mutex held.
3240 */
3241static void put_unbound_pool(struct worker_pool *pool)
226223ab 3242{
6ba94429
FW
3243 DECLARE_COMPLETION_ONSTACK(detach_completion);
3244 struct worker *worker;
226223ab 3245
6ba94429 3246 lockdep_assert_held(&wq_pool_mutex);
226223ab 3247
6ba94429
FW
3248 if (--pool->refcnt)
3249 return;
226223ab 3250
6ba94429
FW
3251 /* sanity checks */
3252 if (WARN_ON(!(pool->cpu < 0)) ||
3253 WARN_ON(!list_empty(&pool->worklist)))
3254 return;
226223ab 3255
6ba94429
FW
3256 /* release id and unhash */
3257 if (pool->id >= 0)
3258 idr_remove(&worker_pool_idr, pool->id);
3259 hash_del(&pool->hash_node);
d55262c4 3260
6ba94429
FW
3261 /*
3262 * Become the manager and destroy all workers. Grabbing
3263 * manager_arb prevents @pool's workers from blocking on
3264 * attach_mutex.
3265 */
3266 mutex_lock(&pool->manager_arb);
d55262c4 3267
6ba94429
FW
3268 spin_lock_irq(&pool->lock);
3269 while ((worker = first_idle_worker(pool)))
3270 destroy_worker(worker);
3271 WARN_ON(pool->nr_workers || pool->nr_idle);
3272 spin_unlock_irq(&pool->lock);
d55262c4 3273
6ba94429
FW
3274 mutex_lock(&pool->attach_mutex);
3275 if (!list_empty(&pool->workers))
3276 pool->detach_completion = &detach_completion;
3277 mutex_unlock(&pool->attach_mutex);
226223ab 3278
6ba94429
FW
3279 if (pool->detach_completion)
3280 wait_for_completion(pool->detach_completion);
226223ab 3281
6ba94429 3282 mutex_unlock(&pool->manager_arb);
226223ab 3283
6ba94429
FW
3284 /* shut down the timers */
3285 del_timer_sync(&pool->idle_timer);
3286 del_timer_sync(&pool->mayday_timer);
226223ab 3287
6ba94429
FW
3288 /* sched-RCU protected to allow dereferences from get_work_pool() */
3289 call_rcu_sched(&pool->rcu, rcu_free_pool);
226223ab
TH
3290}
3291
3292/**
6ba94429
FW
3293 * get_unbound_pool - get a worker_pool with the specified attributes
3294 * @attrs: the attributes of the worker_pool to get
226223ab 3295 *
6ba94429
FW
3296 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3297 * reference count and return it. If there already is a matching
3298 * worker_pool, it will be used; otherwise, this function attempts to
3299 * create a new one.
226223ab 3300 *
6ba94429 3301 * Should be called with wq_pool_mutex held.
226223ab 3302 *
6ba94429
FW
3303 * Return: On success, a worker_pool with the same attributes as @attrs.
3304 * On failure, %NULL.
226223ab 3305 */
6ba94429 3306static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3307{
6ba94429
FW
3308 u32 hash = wqattrs_hash(attrs);
3309 struct worker_pool *pool;
3310 int node;
e2273584 3311 int target_node = NUMA_NO_NODE;
226223ab 3312
6ba94429 3313 lockdep_assert_held(&wq_pool_mutex);
226223ab 3314
6ba94429
FW
3315 /* do we already have a matching pool? */
3316 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3317 if (wqattrs_equal(pool->attrs, attrs)) {
3318 pool->refcnt++;
3319 return pool;
3320 }
3321 }
226223ab 3322
e2273584
XP
3323 /* if cpumask is contained inside a NUMA node, we belong to that node */
3324 if (wq_numa_enabled) {
3325 for_each_node(node) {
3326 if (cpumask_subset(attrs->cpumask,
3327 wq_numa_possible_cpumask[node])) {
3328 target_node = node;
3329 break;
3330 }
3331 }
3332 }
3333
6ba94429 3334 /* nope, create a new one */
e2273584 3335 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3336 if (!pool || init_worker_pool(pool) < 0)
3337 goto fail;
3338
3339 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3340 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3341 pool->node = target_node;
226223ab
TH
3342
3343 /*
6ba94429
FW
3344 * no_numa isn't a worker_pool attribute, always clear it. See
3345 * 'struct workqueue_attrs' comments for detail.
226223ab 3346 */
6ba94429 3347 pool->attrs->no_numa = false;
226223ab 3348
6ba94429
FW
3349 if (worker_pool_assign_id(pool) < 0)
3350 goto fail;
226223ab 3351
6ba94429
FW
3352 /* create and start the initial worker */
3353 if (!create_worker(pool))
3354 goto fail;
226223ab 3355
6ba94429
FW
3356 /* install */
3357 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3358
6ba94429
FW
3359 return pool;
3360fail:
3361 if (pool)
3362 put_unbound_pool(pool);
3363 return NULL;
226223ab 3364}
226223ab 3365
6ba94429 3366static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3367{
6ba94429
FW
3368 kmem_cache_free(pwq_cache,
3369 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3370}
3371
6ba94429
FW
3372/*
3373 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3374 * and needs to be destroyed.
7a4e344c 3375 */
6ba94429 3376static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3377{
6ba94429
FW
3378 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3379 unbound_release_work);
3380 struct workqueue_struct *wq = pwq->wq;
3381 struct worker_pool *pool = pwq->pool;
3382 bool is_last;
7a4e344c 3383
6ba94429
FW
3384 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3385 return;
7a4e344c 3386
6ba94429
FW
3387 mutex_lock(&wq->mutex);
3388 list_del_rcu(&pwq->pwqs_node);
3389 is_last = list_empty(&wq->pwqs);
3390 mutex_unlock(&wq->mutex);
3391
3392 mutex_lock(&wq_pool_mutex);
3393 put_unbound_pool(pool);
3394 mutex_unlock(&wq_pool_mutex);
3395
3396 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
7a4e344c 3397
2865a8fb 3398 /*
6ba94429
FW
3399 * If we're the last pwq going away, @wq is already dead and no one
3400 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3401 */
6ba94429
FW
3402 if (is_last)
3403 call_rcu_sched(&wq->rcu, rcu_free_wq);
29c91e99
TH
3404}
3405
7a4e344c 3406/**
6ba94429
FW
3407 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3408 * @pwq: target pool_workqueue
d185af30 3409 *
6ba94429
FW
3410 * If @pwq isn't freezing, set @pwq->max_active to the associated
3411 * workqueue's saved_max_active and activate delayed work items
3412 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3413 */
6ba94429 3414static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3415{
6ba94429
FW
3416 struct workqueue_struct *wq = pwq->wq;
3417 bool freezable = wq->flags & WQ_FREEZABLE;
4e1a1f9a 3418
6ba94429
FW
3419 /* for @wq->saved_max_active */
3420 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3421
6ba94429
FW
3422 /* fast exit for non-freezable wqs */
3423 if (!freezable && pwq->max_active == wq->saved_max_active)
3424 return;
7a4e344c 3425
6ba94429 3426 spin_lock_irq(&pwq->pool->lock);
29c91e99 3427
6ba94429
FW
3428 /*
3429 * During [un]freezing, the caller is responsible for ensuring that
3430 * this function is called at least once after @workqueue_freezing
3431 * is updated and visible.
3432 */
3433 if (!freezable || !workqueue_freezing) {
3434 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3435
6ba94429
FW
3436 while (!list_empty(&pwq->delayed_works) &&
3437 pwq->nr_active < pwq->max_active)
3438 pwq_activate_first_delayed(pwq);
e2dca7ad 3439
6ba94429
FW
3440 /*
3441 * Need to kick a worker after thawed or an unbound wq's
3442 * max_active is bumped. It's a slow path. Do it always.
3443 */
3444 wake_up_worker(pwq->pool);
3445 } else {
3446 pwq->max_active = 0;
3447 }
e2dca7ad 3448
6ba94429 3449 spin_unlock_irq(&pwq->pool->lock);
e2dca7ad
TH
3450}
3451
6ba94429
FW
3452/* initialize newly alloced @pwq which is associated with @wq and @pool */
3453static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3454 struct worker_pool *pool)
29c91e99 3455{
6ba94429 3456 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3457
6ba94429
FW
3458 memset(pwq, 0, sizeof(*pwq));
3459
3460 pwq->pool = pool;
3461 pwq->wq = wq;
3462 pwq->flush_color = -1;
3463 pwq->refcnt = 1;
3464 INIT_LIST_HEAD(&pwq->delayed_works);
3465 INIT_LIST_HEAD(&pwq->pwqs_node);
3466 INIT_LIST_HEAD(&pwq->mayday_node);
3467 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3468}
3469
6ba94429
FW
3470/* sync @pwq with the current state of its associated wq and link it */
3471static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3472{
6ba94429 3473 struct workqueue_struct *wq = pwq->wq;
29c91e99 3474
6ba94429 3475 lockdep_assert_held(&wq->mutex);
a892cacc 3476
6ba94429
FW
3477 /* may be called multiple times, ignore if already linked */
3478 if (!list_empty(&pwq->pwqs_node))
29c91e99 3479 return;
29c91e99 3480
6ba94429
FW
3481 /* set the matching work_color */
3482 pwq->work_color = wq->work_color;
29c91e99 3483
6ba94429
FW
3484 /* sync max_active to the current setting */
3485 pwq_adjust_max_active(pwq);
29c91e99 3486
6ba94429
FW
3487 /* link in @pwq */
3488 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3489}
29c91e99 3490
6ba94429
FW
3491/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3492static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3493 const struct workqueue_attrs *attrs)
3494{
3495 struct worker_pool *pool;
3496 struct pool_workqueue *pwq;
60f5a4bc 3497
6ba94429 3498 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3499
6ba94429
FW
3500 pool = get_unbound_pool(attrs);
3501 if (!pool)
3502 return NULL;
60f5a4bc 3503
6ba94429
FW
3504 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3505 if (!pwq) {
3506 put_unbound_pool(pool);
3507 return NULL;
3508 }
29c91e99 3509
6ba94429
FW
3510 init_pwq(pwq, wq, pool);
3511 return pwq;
3512}
29c91e99 3513
29c91e99 3514/**
30186c6f 3515 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3516 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3517 * @node: the target NUMA node
3518 * @cpu_going_down: if >= 0, the CPU to consider as offline
3519 * @cpumask: outarg, the resulting cpumask
29c91e99 3520 *
6ba94429
FW
3521 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3522 * @cpu_going_down is >= 0, that cpu is considered offline during
3523 * calculation. The result is stored in @cpumask.
a892cacc 3524 *
6ba94429
FW
3525 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3526 * enabled and @node has online CPUs requested by @attrs, the returned
3527 * cpumask is the intersection of the possible CPUs of @node and
3528 * @attrs->cpumask.
d185af30 3529 *
6ba94429
FW
3530 * The caller is responsible for ensuring that the cpumask of @node stays
3531 * stable.
3532 *
3533 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3534 * %false if equal.
29c91e99 3535 */
6ba94429
FW
3536static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3537 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3538{
6ba94429
FW
3539 if (!wq_numa_enabled || attrs->no_numa)
3540 goto use_dfl;
29c91e99 3541
6ba94429
FW
3542 /* does @node have any online CPUs @attrs wants? */
3543 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3544 if (cpu_going_down >= 0)
3545 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3546
6ba94429
FW
3547 if (cpumask_empty(cpumask))
3548 goto use_dfl;
4c16bd32
TH
3549
3550 /* yeap, return possible CPUs in @node that @attrs wants */
3551 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3552 return !cpumask_equal(cpumask, attrs->cpumask);
3553
3554use_dfl:
3555 cpumask_copy(cpumask, attrs->cpumask);
3556 return false;
3557}
3558
1befcf30
TH
3559/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3560static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3561 int node,
3562 struct pool_workqueue *pwq)
3563{
3564 struct pool_workqueue *old_pwq;
3565
5b95e1af 3566 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3567 lockdep_assert_held(&wq->mutex);
3568
3569 /* link_pwq() can handle duplicate calls */
3570 link_pwq(pwq);
3571
3572 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3573 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3574 return old_pwq;
3575}
3576
2d5f0764
LJ
3577/* context to store the prepared attrs & pwqs before applying */
3578struct apply_wqattrs_ctx {
3579 struct workqueue_struct *wq; /* target workqueue */
3580 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3581 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3582 struct pool_workqueue *dfl_pwq;
3583 struct pool_workqueue *pwq_tbl[];
3584};
3585
3586/* free the resources after success or abort */
3587static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3588{
3589 if (ctx) {
3590 int node;
3591
3592 for_each_node(node)
3593 put_pwq_unlocked(ctx->pwq_tbl[node]);
3594 put_pwq_unlocked(ctx->dfl_pwq);
3595
3596 free_workqueue_attrs(ctx->attrs);
3597
3598 kfree(ctx);
3599 }
3600}
3601
3602/* allocate the attrs and pwqs for later installation */
3603static struct apply_wqattrs_ctx *
3604apply_wqattrs_prepare(struct workqueue_struct *wq,
3605 const struct workqueue_attrs *attrs)
9e8cd2f5 3606{
2d5f0764 3607 struct apply_wqattrs_ctx *ctx;
4c16bd32 3608 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3609 int node;
9e8cd2f5 3610
2d5f0764 3611 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3612
2d5f0764
LJ
3613 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3614 GFP_KERNEL);
8719dcea 3615
13e2e556 3616 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32 3617 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
2d5f0764
LJ
3618 if (!ctx || !new_attrs || !tmp_attrs)
3619 goto out_free;
13e2e556 3620
042f7df1
LJ
3621 /*
3622 * Calculate the attrs of the default pwq.
3623 * If the user configured cpumask doesn't overlap with the
3624 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3625 */
13e2e556 3626 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3627 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3628 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3629 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3630
4c16bd32
TH
3631 /*
3632 * We may create multiple pwqs with differing cpumasks. Make a
3633 * copy of @new_attrs which will be modified and used to obtain
3634 * pools.
3635 */
3636 copy_workqueue_attrs(tmp_attrs, new_attrs);
3637
4c16bd32
TH
3638 /*
3639 * If something goes wrong during CPU up/down, we'll fall back to
3640 * the default pwq covering whole @attrs->cpumask. Always create
3641 * it even if we don't use it immediately.
3642 */
2d5f0764
LJ
3643 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3644 if (!ctx->dfl_pwq)
3645 goto out_free;
4c16bd32
TH
3646
3647 for_each_node(node) {
042f7df1 3648 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3649 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3650 if (!ctx->pwq_tbl[node])
3651 goto out_free;
4c16bd32 3652 } else {
2d5f0764
LJ
3653 ctx->dfl_pwq->refcnt++;
3654 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3655 }
3656 }
3657
042f7df1
LJ
3658 /* save the user configured attrs and sanitize it. */
3659 copy_workqueue_attrs(new_attrs, attrs);
3660 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3661 ctx->attrs = new_attrs;
042f7df1 3662
2d5f0764
LJ
3663 ctx->wq = wq;
3664 free_workqueue_attrs(tmp_attrs);
3665 return ctx;
3666
3667out_free:
3668 free_workqueue_attrs(tmp_attrs);
3669 free_workqueue_attrs(new_attrs);
3670 apply_wqattrs_cleanup(ctx);
3671 return NULL;
3672}
3673
3674/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3675static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3676{
3677 int node;
9e8cd2f5 3678
4c16bd32 3679 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3680 mutex_lock(&ctx->wq->mutex);
a892cacc 3681
2d5f0764 3682 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3683
3684 /* save the previous pwq and install the new one */
f147f29e 3685 for_each_node(node)
2d5f0764
LJ
3686 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3687 ctx->pwq_tbl[node]);
4c16bd32
TH
3688
3689 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3690 link_pwq(ctx->dfl_pwq);
3691 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3692
2d5f0764
LJ
3693 mutex_unlock(&ctx->wq->mutex);
3694}
9e8cd2f5 3695
a0111cf6
LJ
3696static void apply_wqattrs_lock(void)
3697{
3698 /* CPUs should stay stable across pwq creations and installations */
3699 get_online_cpus();
3700 mutex_lock(&wq_pool_mutex);
3701}
3702
3703static void apply_wqattrs_unlock(void)
3704{
3705 mutex_unlock(&wq_pool_mutex);
3706 put_online_cpus();
3707}
3708
3709static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3710 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3711{
3712 struct apply_wqattrs_ctx *ctx;
4c16bd32 3713
2d5f0764
LJ
3714 /* only unbound workqueues can change attributes */
3715 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3716 return -EINVAL;
13e2e556 3717
2d5f0764
LJ
3718 /* creating multiple pwqs breaks ordering guarantee */
3719 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3720 return -EINVAL;
3721
2d5f0764 3722 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 3723 if (!ctx)
3724 return -ENOMEM;
2d5f0764
LJ
3725
3726 /* the ctx has been prepared successfully, let's commit it */
6201171e 3727 apply_wqattrs_commit(ctx);
2d5f0764
LJ
3728 apply_wqattrs_cleanup(ctx);
3729
6201171e 3730 return 0;
9e8cd2f5
TH
3731}
3732
a0111cf6
LJ
3733/**
3734 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3735 * @wq: the target workqueue
3736 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3737 *
3738 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3739 * machines, this function maps a separate pwq to each NUMA node with
3740 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3741 * NUMA node it was issued on. Older pwqs are released as in-flight work
3742 * items finish. Note that a work item which repeatedly requeues itself
3743 * back-to-back will stay on its current pwq.
3744 *
3745 * Performs GFP_KERNEL allocations.
3746 *
3747 * Return: 0 on success and -errno on failure.
3748 */
3749int apply_workqueue_attrs(struct workqueue_struct *wq,
3750 const struct workqueue_attrs *attrs)
3751{
3752 int ret;
3753
3754 apply_wqattrs_lock();
3755 ret = apply_workqueue_attrs_locked(wq, attrs);
3756 apply_wqattrs_unlock();
3757
3758 return ret;
3759}
3760
4c16bd32
TH
3761/**
3762 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3763 * @wq: the target workqueue
3764 * @cpu: the CPU coming up or going down
3765 * @online: whether @cpu is coming up or going down
3766 *
3767 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3768 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3769 * @wq accordingly.
3770 *
3771 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3772 * falls back to @wq->dfl_pwq which may not be optimal but is always
3773 * correct.
3774 *
3775 * Note that when the last allowed CPU of a NUMA node goes offline for a
3776 * workqueue with a cpumask spanning multiple nodes, the workers which were
3777 * already executing the work items for the workqueue will lose their CPU
3778 * affinity and may execute on any CPU. This is similar to how per-cpu
3779 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3780 * affinity, it's the user's responsibility to flush the work item from
3781 * CPU_DOWN_PREPARE.
3782 */
3783static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3784 bool online)
3785{
3786 int node = cpu_to_node(cpu);
3787 int cpu_off = online ? -1 : cpu;
3788 struct pool_workqueue *old_pwq = NULL, *pwq;
3789 struct workqueue_attrs *target_attrs;
3790 cpumask_t *cpumask;
3791
3792 lockdep_assert_held(&wq_pool_mutex);
3793
f7142ed4
LJ
3794 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3795 wq->unbound_attrs->no_numa)
4c16bd32
TH
3796 return;
3797
3798 /*
3799 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3800 * Let's use a preallocated one. The following buf is protected by
3801 * CPU hotplug exclusion.
3802 */
3803 target_attrs = wq_update_unbound_numa_attrs_buf;
3804 cpumask = target_attrs->cpumask;
3805
4c16bd32
TH
3806 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3807 pwq = unbound_pwq_by_node(wq, node);
3808
3809 /*
3810 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
3811 * different from the default pwq's, we need to compare it to @pwq's
3812 * and create a new one if they don't match. If the target cpumask
3813 * equals the default pwq's, the default pwq should be used.
4c16bd32 3814 */
042f7df1 3815 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 3816 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 3817 return;
4c16bd32 3818 } else {
534a3fbb 3819 goto use_dfl_pwq;
4c16bd32
TH
3820 }
3821
4c16bd32
TH
3822 /* create a new pwq */
3823 pwq = alloc_unbound_pwq(wq, target_attrs);
3824 if (!pwq) {
2d916033
FF
3825 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3826 wq->name);
77f300b1 3827 goto use_dfl_pwq;
4c16bd32
TH
3828 }
3829
f7142ed4 3830 /* Install the new pwq. */
4c16bd32
TH
3831 mutex_lock(&wq->mutex);
3832 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3833 goto out_unlock;
3834
3835use_dfl_pwq:
f7142ed4 3836 mutex_lock(&wq->mutex);
4c16bd32
TH
3837 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3838 get_pwq(wq->dfl_pwq);
3839 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3840 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3841out_unlock:
3842 mutex_unlock(&wq->mutex);
3843 put_pwq_unlocked(old_pwq);
3844}
3845
30cdf249 3846static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3847{
49e3cf44 3848 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 3849 int cpu, ret;
30cdf249
TH
3850
3851 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3852 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3853 if (!wq->cpu_pwqs)
30cdf249
TH
3854 return -ENOMEM;
3855
3856 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3857 struct pool_workqueue *pwq =
3858 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3859 struct worker_pool *cpu_pools =
f02ae73a 3860 per_cpu(cpu_worker_pools, cpu);
f3421797 3861
f147f29e
TH
3862 init_pwq(pwq, wq, &cpu_pools[highpri]);
3863
3864 mutex_lock(&wq->mutex);
1befcf30 3865 link_pwq(pwq);
f147f29e 3866 mutex_unlock(&wq->mutex);
30cdf249 3867 }
9e8cd2f5 3868 return 0;
8a2b7538
TH
3869 } else if (wq->flags & __WQ_ORDERED) {
3870 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3871 /* there should only be single pwq for ordering guarantee */
3872 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3873 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3874 "ordering guarantee broken for workqueue %s\n", wq->name);
3875 return ret;
30cdf249 3876 } else {
9e8cd2f5 3877 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3878 }
0f900049
TH
3879}
3880
f3421797
TH
3881static int wq_clamp_max_active(int max_active, unsigned int flags,
3882 const char *name)
b71ab8c2 3883{
f3421797
TH
3884 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3885
3886 if (max_active < 1 || max_active > lim)
044c782c
VI
3887 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3888 max_active, name, 1, lim);
b71ab8c2 3889
f3421797 3890 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3891}
3892
b196be89 3893struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3894 unsigned int flags,
3895 int max_active,
3896 struct lock_class_key *key,
b196be89 3897 const char *lock_name, ...)
1da177e4 3898{
df2d5ae4 3899 size_t tbl_size = 0;
ecf6881f 3900 va_list args;
1da177e4 3901 struct workqueue_struct *wq;
49e3cf44 3902 struct pool_workqueue *pwq;
b196be89 3903
cee22a15
VK
3904 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3905 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3906 flags |= WQ_UNBOUND;
3907
ecf6881f 3908 /* allocate wq and format name */
df2d5ae4 3909 if (flags & WQ_UNBOUND)
ddcb57e2 3910 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
3911
3912 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 3913 if (!wq)
d2c1d404 3914 return NULL;
b196be89 3915
6029a918
TH
3916 if (flags & WQ_UNBOUND) {
3917 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3918 if (!wq->unbound_attrs)
3919 goto err_free_wq;
3920 }
3921
ecf6881f
TH
3922 va_start(args, lock_name);
3923 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 3924 va_end(args);
1da177e4 3925
d320c038 3926 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3927 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3928
b196be89 3929 /* init wq */
97e37d7b 3930 wq->flags = flags;
a0a1a5fd 3931 wq->saved_max_active = max_active;
3c25a55d 3932 mutex_init(&wq->mutex);
112202d9 3933 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3934 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3935 INIT_LIST_HEAD(&wq->flusher_queue);
3936 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3937 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3938
eb13ba87 3939 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3940 INIT_LIST_HEAD(&wq->list);
3af24433 3941
30cdf249 3942 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 3943 goto err_free_wq;
1537663f 3944
493008a8
TH
3945 /*
3946 * Workqueues which may be used during memory reclaim should
3947 * have a rescuer to guarantee forward progress.
3948 */
3949 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
3950 struct worker *rescuer;
3951
f7537df5 3952 rescuer = alloc_worker(NUMA_NO_NODE);
e22bee78 3953 if (!rescuer)
d2c1d404 3954 goto err_destroy;
e22bee78 3955
111c225a
TH
3956 rescuer->rescue_wq = wq;
3957 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3958 wq->name);
d2c1d404
TH
3959 if (IS_ERR(rescuer->task)) {
3960 kfree(rescuer);
3961 goto err_destroy;
3962 }
e22bee78 3963
d2c1d404 3964 wq->rescuer = rescuer;
25834c73 3965 kthread_bind_mask(rescuer->task, cpu_possible_mask);
e22bee78 3966 wake_up_process(rescuer->task);
3af24433
ON
3967 }
3968
226223ab
TH
3969 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3970 goto err_destroy;
3971
a0a1a5fd 3972 /*
68e13a67
LJ
3973 * wq_pool_mutex protects global freeze state and workqueues list.
3974 * Grab it, adjust max_active and add the new @wq to workqueues
3975 * list.
a0a1a5fd 3976 */
68e13a67 3977 mutex_lock(&wq_pool_mutex);
a0a1a5fd 3978
a357fc03 3979 mutex_lock(&wq->mutex);
699ce097
TH
3980 for_each_pwq(pwq, wq)
3981 pwq_adjust_max_active(pwq);
a357fc03 3982 mutex_unlock(&wq->mutex);
a0a1a5fd 3983
e2dca7ad 3984 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 3985
68e13a67 3986 mutex_unlock(&wq_pool_mutex);
1537663f 3987
3af24433 3988 return wq;
d2c1d404
TH
3989
3990err_free_wq:
6029a918 3991 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
3992 kfree(wq);
3993 return NULL;
3994err_destroy:
3995 destroy_workqueue(wq);
4690c4ab 3996 return NULL;
3af24433 3997}
d320c038 3998EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3999
3af24433
ON
4000/**
4001 * destroy_workqueue - safely terminate a workqueue
4002 * @wq: target workqueue
4003 *
4004 * Safely destroy a workqueue. All work currently pending will be done first.
4005 */
4006void destroy_workqueue(struct workqueue_struct *wq)
4007{
49e3cf44 4008 struct pool_workqueue *pwq;
4c16bd32 4009 int node;
3af24433 4010
9c5a2ba7
TH
4011 /* drain it before proceeding with destruction */
4012 drain_workqueue(wq);
c8efcc25 4013
6183c009 4014 /* sanity checks */
b09f4fd3 4015 mutex_lock(&wq->mutex);
49e3cf44 4016 for_each_pwq(pwq, wq) {
6183c009
TH
4017 int i;
4018
76af4d93
TH
4019 for (i = 0; i < WORK_NR_COLORS; i++) {
4020 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4021 mutex_unlock(&wq->mutex);
6183c009 4022 return;
76af4d93
TH
4023 }
4024 }
4025
5c529597 4026 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4027 WARN_ON(pwq->nr_active) ||
76af4d93 4028 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4029 mutex_unlock(&wq->mutex);
6183c009 4030 return;
76af4d93 4031 }
6183c009 4032 }
b09f4fd3 4033 mutex_unlock(&wq->mutex);
6183c009 4034
a0a1a5fd
TH
4035 /*
4036 * wq list is used to freeze wq, remove from list after
4037 * flushing is complete in case freeze races us.
4038 */
68e13a67 4039 mutex_lock(&wq_pool_mutex);
e2dca7ad 4040 list_del_rcu(&wq->list);
68e13a67 4041 mutex_unlock(&wq_pool_mutex);
3af24433 4042
226223ab
TH
4043 workqueue_sysfs_unregister(wq);
4044
e2dca7ad 4045 if (wq->rescuer)
e22bee78 4046 kthread_stop(wq->rescuer->task);
e22bee78 4047
8864b4e5
TH
4048 if (!(wq->flags & WQ_UNBOUND)) {
4049 /*
4050 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4051 * schedule RCU free.
8864b4e5 4052 */
e2dca7ad 4053 call_rcu_sched(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4054 } else {
4055 /*
4056 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4057 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4058 * @wq will be freed when the last pwq is released.
8864b4e5 4059 */
4c16bd32
TH
4060 for_each_node(node) {
4061 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4062 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4063 put_pwq_unlocked(pwq);
4064 }
4065
4066 /*
4067 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4068 * put. Don't access it afterwards.
4069 */
4070 pwq = wq->dfl_pwq;
4071 wq->dfl_pwq = NULL;
dce90d47 4072 put_pwq_unlocked(pwq);
29c91e99 4073 }
3af24433
ON
4074}
4075EXPORT_SYMBOL_GPL(destroy_workqueue);
4076
dcd989cb
TH
4077/**
4078 * workqueue_set_max_active - adjust max_active of a workqueue
4079 * @wq: target workqueue
4080 * @max_active: new max_active value.
4081 *
4082 * Set max_active of @wq to @max_active.
4083 *
4084 * CONTEXT:
4085 * Don't call from IRQ context.
4086 */
4087void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4088{
49e3cf44 4089 struct pool_workqueue *pwq;
dcd989cb 4090
8719dcea
TH
4091 /* disallow meddling with max_active for ordered workqueues */
4092 if (WARN_ON(wq->flags & __WQ_ORDERED))
4093 return;
4094
f3421797 4095 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4096
a357fc03 4097 mutex_lock(&wq->mutex);
dcd989cb
TH
4098
4099 wq->saved_max_active = max_active;
4100
699ce097
TH
4101 for_each_pwq(pwq, wq)
4102 pwq_adjust_max_active(pwq);
93981800 4103
a357fc03 4104 mutex_unlock(&wq->mutex);
15316ba8 4105}
dcd989cb 4106EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4107
e6267616
TH
4108/**
4109 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4110 *
4111 * Determine whether %current is a workqueue rescuer. Can be used from
4112 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4113 *
4114 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4115 */
4116bool current_is_workqueue_rescuer(void)
4117{
4118 struct worker *worker = current_wq_worker();
4119
6a092dfd 4120 return worker && worker->rescue_wq;
e6267616
TH
4121}
4122
eef6a7d5 4123/**
dcd989cb
TH
4124 * workqueue_congested - test whether a workqueue is congested
4125 * @cpu: CPU in question
4126 * @wq: target workqueue
eef6a7d5 4127 *
dcd989cb
TH
4128 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4129 * no synchronization around this function and the test result is
4130 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4131 *
d3251859
TH
4132 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4133 * Note that both per-cpu and unbound workqueues may be associated with
4134 * multiple pool_workqueues which have separate congested states. A
4135 * workqueue being congested on one CPU doesn't mean the workqueue is also
4136 * contested on other CPUs / NUMA nodes.
4137 *
d185af30 4138 * Return:
dcd989cb 4139 * %true if congested, %false otherwise.
eef6a7d5 4140 */
d84ff051 4141bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4142{
7fb98ea7 4143 struct pool_workqueue *pwq;
76af4d93
TH
4144 bool ret;
4145
88109453 4146 rcu_read_lock_sched();
7fb98ea7 4147
d3251859
TH
4148 if (cpu == WORK_CPU_UNBOUND)
4149 cpu = smp_processor_id();
4150
7fb98ea7
TH
4151 if (!(wq->flags & WQ_UNBOUND))
4152 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4153 else
df2d5ae4 4154 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4155
76af4d93 4156 ret = !list_empty(&pwq->delayed_works);
88109453 4157 rcu_read_unlock_sched();
76af4d93
TH
4158
4159 return ret;
1da177e4 4160}
dcd989cb 4161EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4162
dcd989cb
TH
4163/**
4164 * work_busy - test whether a work is currently pending or running
4165 * @work: the work to be tested
4166 *
4167 * Test whether @work is currently pending or running. There is no
4168 * synchronization around this function and the test result is
4169 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4170 *
d185af30 4171 * Return:
dcd989cb
TH
4172 * OR'd bitmask of WORK_BUSY_* bits.
4173 */
4174unsigned int work_busy(struct work_struct *work)
1da177e4 4175{
fa1b54e6 4176 struct worker_pool *pool;
dcd989cb
TH
4177 unsigned long flags;
4178 unsigned int ret = 0;
1da177e4 4179
dcd989cb
TH
4180 if (work_pending(work))
4181 ret |= WORK_BUSY_PENDING;
1da177e4 4182
fa1b54e6
TH
4183 local_irq_save(flags);
4184 pool = get_work_pool(work);
038366c5 4185 if (pool) {
fa1b54e6 4186 spin_lock(&pool->lock);
038366c5
LJ
4187 if (find_worker_executing_work(pool, work))
4188 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4189 spin_unlock(&pool->lock);
038366c5 4190 }
fa1b54e6 4191 local_irq_restore(flags);
1da177e4 4192
dcd989cb 4193 return ret;
1da177e4 4194}
dcd989cb 4195EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4196
3d1cb205
TH
4197/**
4198 * set_worker_desc - set description for the current work item
4199 * @fmt: printf-style format string
4200 * @...: arguments for the format string
4201 *
4202 * This function can be called by a running work function to describe what
4203 * the work item is about. If the worker task gets dumped, this
4204 * information will be printed out together to help debugging. The
4205 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4206 */
4207void set_worker_desc(const char *fmt, ...)
4208{
4209 struct worker *worker = current_wq_worker();
4210 va_list args;
4211
4212 if (worker) {
4213 va_start(args, fmt);
4214 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4215 va_end(args);
4216 worker->desc_valid = true;
4217 }
4218}
4219
4220/**
4221 * print_worker_info - print out worker information and description
4222 * @log_lvl: the log level to use when printing
4223 * @task: target task
4224 *
4225 * If @task is a worker and currently executing a work item, print out the
4226 * name of the workqueue being serviced and worker description set with
4227 * set_worker_desc() by the currently executing work item.
4228 *
4229 * This function can be safely called on any task as long as the
4230 * task_struct itself is accessible. While safe, this function isn't
4231 * synchronized and may print out mixups or garbages of limited length.
4232 */
4233void print_worker_info(const char *log_lvl, struct task_struct *task)
4234{
4235 work_func_t *fn = NULL;
4236 char name[WQ_NAME_LEN] = { };
4237 char desc[WORKER_DESC_LEN] = { };
4238 struct pool_workqueue *pwq = NULL;
4239 struct workqueue_struct *wq = NULL;
4240 bool desc_valid = false;
4241 struct worker *worker;
4242
4243 if (!(task->flags & PF_WQ_WORKER))
4244 return;
4245
4246 /*
4247 * This function is called without any synchronization and @task
4248 * could be in any state. Be careful with dereferences.
4249 */
4250 worker = probe_kthread_data(task);
4251
4252 /*
4253 * Carefully copy the associated workqueue's workfn and name. Keep
4254 * the original last '\0' in case the original contains garbage.
4255 */
4256 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4257 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4258 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4259 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4260
4261 /* copy worker description */
4262 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4263 if (desc_valid)
4264 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4265
4266 if (fn || name[0] || desc[0]) {
4267 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4268 if (desc[0])
4269 pr_cont(" (%s)", desc);
4270 pr_cont("\n");
4271 }
4272}
4273
3494fc30
TH
4274static void pr_cont_pool_info(struct worker_pool *pool)
4275{
4276 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4277 if (pool->node != NUMA_NO_NODE)
4278 pr_cont(" node=%d", pool->node);
4279 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4280}
4281
4282static void pr_cont_work(bool comma, struct work_struct *work)
4283{
4284 if (work->func == wq_barrier_func) {
4285 struct wq_barrier *barr;
4286
4287 barr = container_of(work, struct wq_barrier, work);
4288
4289 pr_cont("%s BAR(%d)", comma ? "," : "",
4290 task_pid_nr(barr->task));
4291 } else {
4292 pr_cont("%s %pf", comma ? "," : "", work->func);
4293 }
4294}
4295
4296static void show_pwq(struct pool_workqueue *pwq)
4297{
4298 struct worker_pool *pool = pwq->pool;
4299 struct work_struct *work;
4300 struct worker *worker;
4301 bool has_in_flight = false, has_pending = false;
4302 int bkt;
4303
4304 pr_info(" pwq %d:", pool->id);
4305 pr_cont_pool_info(pool);
4306
4307 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4308 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4309
4310 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4311 if (worker->current_pwq == pwq) {
4312 has_in_flight = true;
4313 break;
4314 }
4315 }
4316 if (has_in_flight) {
4317 bool comma = false;
4318
4319 pr_info(" in-flight:");
4320 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4321 if (worker->current_pwq != pwq)
4322 continue;
4323
4324 pr_cont("%s %d%s:%pf", comma ? "," : "",
4325 task_pid_nr(worker->task),
4326 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4327 worker->current_func);
4328 list_for_each_entry(work, &worker->scheduled, entry)
4329 pr_cont_work(false, work);
4330 comma = true;
4331 }
4332 pr_cont("\n");
4333 }
4334
4335 list_for_each_entry(work, &pool->worklist, entry) {
4336 if (get_work_pwq(work) == pwq) {
4337 has_pending = true;
4338 break;
4339 }
4340 }
4341 if (has_pending) {
4342 bool comma = false;
4343
4344 pr_info(" pending:");
4345 list_for_each_entry(work, &pool->worklist, entry) {
4346 if (get_work_pwq(work) != pwq)
4347 continue;
4348
4349 pr_cont_work(comma, work);
4350 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4351 }
4352 pr_cont("\n");
4353 }
4354
4355 if (!list_empty(&pwq->delayed_works)) {
4356 bool comma = false;
4357
4358 pr_info(" delayed:");
4359 list_for_each_entry(work, &pwq->delayed_works, entry) {
4360 pr_cont_work(comma, work);
4361 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4362 }
4363 pr_cont("\n");
4364 }
4365}
4366
4367/**
4368 * show_workqueue_state - dump workqueue state
4369 *
4370 * Called from a sysrq handler and prints out all busy workqueues and
4371 * pools.
4372 */
4373void show_workqueue_state(void)
4374{
4375 struct workqueue_struct *wq;
4376 struct worker_pool *pool;
4377 unsigned long flags;
4378 int pi;
4379
4380 rcu_read_lock_sched();
4381
4382 pr_info("Showing busy workqueues and worker pools:\n");
4383
4384 list_for_each_entry_rcu(wq, &workqueues, list) {
4385 struct pool_workqueue *pwq;
4386 bool idle = true;
4387
4388 for_each_pwq(pwq, wq) {
4389 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4390 idle = false;
4391 break;
4392 }
4393 }
4394 if (idle)
4395 continue;
4396
4397 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4398
4399 for_each_pwq(pwq, wq) {
4400 spin_lock_irqsave(&pwq->pool->lock, flags);
4401 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4402 show_pwq(pwq);
4403 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4404 }
4405 }
4406
4407 for_each_pool(pool, pi) {
4408 struct worker *worker;
4409 bool first = true;
4410
4411 spin_lock_irqsave(&pool->lock, flags);
4412 if (pool->nr_workers == pool->nr_idle)
4413 goto next_pool;
4414
4415 pr_info("pool %d:", pool->id);
4416 pr_cont_pool_info(pool);
82607adc
TH
4417 pr_cont(" hung=%us workers=%d",
4418 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4419 pool->nr_workers);
3494fc30
TH
4420 if (pool->manager)
4421 pr_cont(" manager: %d",
4422 task_pid_nr(pool->manager->task));
4423 list_for_each_entry(worker, &pool->idle_list, entry) {
4424 pr_cont(" %s%d", first ? "idle: " : "",
4425 task_pid_nr(worker->task));
4426 first = false;
4427 }
4428 pr_cont("\n");
4429 next_pool:
4430 spin_unlock_irqrestore(&pool->lock, flags);
4431 }
4432
4433 rcu_read_unlock_sched();
4434}
4435
db7bccf4
TH
4436/*
4437 * CPU hotplug.
4438 *
e22bee78 4439 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4440 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4441 * pool which make migrating pending and scheduled works very
e22bee78 4442 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4443 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4444 * blocked draining impractical.
4445 *
24647570 4446 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4447 * running as an unbound one and allowing it to be reattached later if the
4448 * cpu comes back online.
db7bccf4 4449 */
1da177e4 4450
706026c2 4451static void wq_unbind_fn(struct work_struct *work)
3af24433 4452{
38db41d9 4453 int cpu = smp_processor_id();
4ce62e9e 4454 struct worker_pool *pool;
db7bccf4 4455 struct worker *worker;
3af24433 4456
f02ae73a 4457 for_each_cpu_worker_pool(pool, cpu) {
92f9c5c4 4458 mutex_lock(&pool->attach_mutex);
94cf58bb 4459 spin_lock_irq(&pool->lock);
3af24433 4460
94cf58bb 4461 /*
92f9c5c4 4462 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4463 * unbound and set DISASSOCIATED. Before this, all workers
4464 * except for the ones which are still executing works from
4465 * before the last CPU down must be on the cpu. After
4466 * this, they may become diasporas.
4467 */
da028469 4468 for_each_pool_worker(worker, pool)
c9e7cf27 4469 worker->flags |= WORKER_UNBOUND;
06ba38a9 4470
24647570 4471 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4472
94cf58bb 4473 spin_unlock_irq(&pool->lock);
92f9c5c4 4474 mutex_unlock(&pool->attach_mutex);
628c78e7 4475
eb283428
LJ
4476 /*
4477 * Call schedule() so that we cross rq->lock and thus can
4478 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4479 * This is necessary as scheduler callbacks may be invoked
4480 * from other cpus.
4481 */
4482 schedule();
06ba38a9 4483
eb283428
LJ
4484 /*
4485 * Sched callbacks are disabled now. Zap nr_running.
4486 * After this, nr_running stays zero and need_more_worker()
4487 * and keep_working() are always true as long as the
4488 * worklist is not empty. This pool now behaves as an
4489 * unbound (in terms of concurrency management) pool which
4490 * are served by workers tied to the pool.
4491 */
e19e397a 4492 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4493
4494 /*
4495 * With concurrency management just turned off, a busy
4496 * worker blocking could lead to lengthy stalls. Kick off
4497 * unbound chain execution of currently pending work items.
4498 */
4499 spin_lock_irq(&pool->lock);
4500 wake_up_worker(pool);
4501 spin_unlock_irq(&pool->lock);
4502 }
3af24433 4503}
3af24433 4504
bd7c089e
TH
4505/**
4506 * rebind_workers - rebind all workers of a pool to the associated CPU
4507 * @pool: pool of interest
4508 *
a9ab775b 4509 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4510 */
4511static void rebind_workers(struct worker_pool *pool)
4512{
a9ab775b 4513 struct worker *worker;
bd7c089e 4514
92f9c5c4 4515 lockdep_assert_held(&pool->attach_mutex);
bd7c089e 4516
a9ab775b
TH
4517 /*
4518 * Restore CPU affinity of all workers. As all idle workers should
4519 * be on the run-queue of the associated CPU before any local
402dd89d 4520 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4521 * of all workers first and then clear UNBOUND. As we're called
4522 * from CPU_ONLINE, the following shouldn't fail.
4523 */
da028469 4524 for_each_pool_worker(worker, pool)
a9ab775b
TH
4525 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4526 pool->attrs->cpumask) < 0);
bd7c089e 4527
a9ab775b 4528 spin_lock_irq(&pool->lock);
3de5e884 4529 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4530
da028469 4531 for_each_pool_worker(worker, pool) {
a9ab775b 4532 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4533
4534 /*
a9ab775b
TH
4535 * A bound idle worker should actually be on the runqueue
4536 * of the associated CPU for local wake-ups targeting it to
4537 * work. Kick all idle workers so that they migrate to the
4538 * associated CPU. Doing this in the same loop as
4539 * replacing UNBOUND with REBOUND is safe as no worker will
4540 * be bound before @pool->lock is released.
bd7c089e 4541 */
a9ab775b
TH
4542 if (worker_flags & WORKER_IDLE)
4543 wake_up_process(worker->task);
bd7c089e 4544
a9ab775b
TH
4545 /*
4546 * We want to clear UNBOUND but can't directly call
4547 * worker_clr_flags() or adjust nr_running. Atomically
4548 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4549 * @worker will clear REBOUND using worker_clr_flags() when
4550 * it initiates the next execution cycle thus restoring
4551 * concurrency management. Note that when or whether
4552 * @worker clears REBOUND doesn't affect correctness.
4553 *
4554 * ACCESS_ONCE() is necessary because @worker->flags may be
4555 * tested without holding any lock in
4556 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4557 * fail incorrectly leading to premature concurrency
4558 * management operations.
4559 */
4560 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4561 worker_flags |= WORKER_REBOUND;
4562 worker_flags &= ~WORKER_UNBOUND;
4563 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4564 }
a9ab775b
TH
4565
4566 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4567}
4568
7dbc725e
TH
4569/**
4570 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4571 * @pool: unbound pool of interest
4572 * @cpu: the CPU which is coming up
4573 *
4574 * An unbound pool may end up with a cpumask which doesn't have any online
4575 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4576 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4577 * online CPU before, cpus_allowed of all its workers should be restored.
4578 */
4579static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4580{
4581 static cpumask_t cpumask;
4582 struct worker *worker;
7dbc725e 4583
92f9c5c4 4584 lockdep_assert_held(&pool->attach_mutex);
7dbc725e
TH
4585
4586 /* is @cpu allowed for @pool? */
4587 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4588 return;
4589
4590 /* is @cpu the only online CPU? */
4591 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4592 if (cpumask_weight(&cpumask) != 1)
4593 return;
4594
4595 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4596 for_each_pool_worker(worker, pool)
7dbc725e
TH
4597 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4598 pool->attrs->cpumask) < 0);
4599}
4600
8db25e78
TH
4601/*
4602 * Workqueues should be brought up before normal priority CPU notifiers.
4603 * This will be registered high priority CPU notifier.
4604 */
0db0628d 4605static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4606 unsigned long action,
4607 void *hcpu)
3af24433 4608{
d84ff051 4609 int cpu = (unsigned long)hcpu;
4ce62e9e 4610 struct worker_pool *pool;
4c16bd32 4611 struct workqueue_struct *wq;
7dbc725e 4612 int pi;
3ce63377 4613
8db25e78 4614 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4615 case CPU_UP_PREPARE:
f02ae73a 4616 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4617 if (pool->nr_workers)
4618 continue;
051e1850 4619 if (!create_worker(pool))
3ce63377 4620 return NOTIFY_BAD;
3af24433 4621 }
8db25e78 4622 break;
3af24433 4623
db7bccf4
TH
4624 case CPU_DOWN_FAILED:
4625 case CPU_ONLINE:
68e13a67 4626 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4627
4628 for_each_pool(pool, pi) {
92f9c5c4 4629 mutex_lock(&pool->attach_mutex);
94cf58bb 4630
f05b558d 4631 if (pool->cpu == cpu)
7dbc725e 4632 rebind_workers(pool);
f05b558d 4633 else if (pool->cpu < 0)
7dbc725e 4634 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 4635
6ba94429
FW
4636 mutex_unlock(&pool->attach_mutex);
4637 }
4638
4639 /* update NUMA affinity of unbound workqueues */
4640 list_for_each_entry(wq, &workqueues, list)
4641 wq_update_unbound_numa(wq, cpu, true);
4642
4643 mutex_unlock(&wq_pool_mutex);
4644 break;
4645 }
4646 return NOTIFY_OK;
4647}
4648
4649/*
4650 * Workqueues should be brought down after normal priority CPU notifiers.
4651 * This will be registered as low priority CPU notifier.
4652 */
4653static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4654 unsigned long action,
4655 void *hcpu)
4656{
4657 int cpu = (unsigned long)hcpu;
4658 struct work_struct unbind_work;
4659 struct workqueue_struct *wq;
4660
4661 switch (action & ~CPU_TASKS_FROZEN) {
4662 case CPU_DOWN_PREPARE:
4663 /* unbinding per-cpu workers should happen on the local CPU */
4664 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4665 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4666
4667 /* update NUMA affinity of unbound workqueues */
4668 mutex_lock(&wq_pool_mutex);
4669 list_for_each_entry(wq, &workqueues, list)
4670 wq_update_unbound_numa(wq, cpu, false);
4671 mutex_unlock(&wq_pool_mutex);
4672
4673 /* wait for per-cpu unbinding to finish */
4674 flush_work(&unbind_work);
4675 destroy_work_on_stack(&unbind_work);
4676 break;
4677 }
4678 return NOTIFY_OK;
4679}
4680
4681#ifdef CONFIG_SMP
4682
4683struct work_for_cpu {
4684 struct work_struct work;
4685 long (*fn)(void *);
4686 void *arg;
4687 long ret;
4688};
4689
4690static void work_for_cpu_fn(struct work_struct *work)
4691{
4692 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4693
4694 wfc->ret = wfc->fn(wfc->arg);
4695}
4696
4697/**
4698 * work_on_cpu - run a function in user context on a particular cpu
4699 * @cpu: the cpu to run on
4700 * @fn: the function to run
4701 * @arg: the function arg
4702 *
4703 * It is up to the caller to ensure that the cpu doesn't go offline.
4704 * The caller must not hold any locks which would prevent @fn from completing.
4705 *
4706 * Return: The value @fn returns.
4707 */
4708long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4709{
4710 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4711
4712 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4713 schedule_work_on(cpu, &wfc.work);
4714 flush_work(&wfc.work);
4715 destroy_work_on_stack(&wfc.work);
4716 return wfc.ret;
4717}
4718EXPORT_SYMBOL_GPL(work_on_cpu);
4719#endif /* CONFIG_SMP */
4720
4721#ifdef CONFIG_FREEZER
4722
4723/**
4724 * freeze_workqueues_begin - begin freezing workqueues
4725 *
4726 * Start freezing workqueues. After this function returns, all freezable
4727 * workqueues will queue new works to their delayed_works list instead of
4728 * pool->worklist.
4729 *
4730 * CONTEXT:
4731 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4732 */
4733void freeze_workqueues_begin(void)
4734{
4735 struct workqueue_struct *wq;
4736 struct pool_workqueue *pwq;
4737
4738 mutex_lock(&wq_pool_mutex);
4739
4740 WARN_ON_ONCE(workqueue_freezing);
4741 workqueue_freezing = true;
4742
4743 list_for_each_entry(wq, &workqueues, list) {
4744 mutex_lock(&wq->mutex);
4745 for_each_pwq(pwq, wq)
4746 pwq_adjust_max_active(pwq);
4747 mutex_unlock(&wq->mutex);
4748 }
4749
4750 mutex_unlock(&wq_pool_mutex);
4751}
4752
4753/**
4754 * freeze_workqueues_busy - are freezable workqueues still busy?
4755 *
4756 * Check whether freezing is complete. This function must be called
4757 * between freeze_workqueues_begin() and thaw_workqueues().
4758 *
4759 * CONTEXT:
4760 * Grabs and releases wq_pool_mutex.
4761 *
4762 * Return:
4763 * %true if some freezable workqueues are still busy. %false if freezing
4764 * is complete.
4765 */
4766bool freeze_workqueues_busy(void)
4767{
4768 bool busy = false;
4769 struct workqueue_struct *wq;
4770 struct pool_workqueue *pwq;
4771
4772 mutex_lock(&wq_pool_mutex);
4773
4774 WARN_ON_ONCE(!workqueue_freezing);
4775
4776 list_for_each_entry(wq, &workqueues, list) {
4777 if (!(wq->flags & WQ_FREEZABLE))
4778 continue;
4779 /*
4780 * nr_active is monotonically decreasing. It's safe
4781 * to peek without lock.
4782 */
4783 rcu_read_lock_sched();
4784 for_each_pwq(pwq, wq) {
4785 WARN_ON_ONCE(pwq->nr_active < 0);
4786 if (pwq->nr_active) {
4787 busy = true;
4788 rcu_read_unlock_sched();
4789 goto out_unlock;
4790 }
4791 }
4792 rcu_read_unlock_sched();
4793 }
4794out_unlock:
4795 mutex_unlock(&wq_pool_mutex);
4796 return busy;
4797}
4798
4799/**
4800 * thaw_workqueues - thaw workqueues
4801 *
4802 * Thaw workqueues. Normal queueing is restored and all collected
4803 * frozen works are transferred to their respective pool worklists.
4804 *
4805 * CONTEXT:
4806 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4807 */
4808void thaw_workqueues(void)
4809{
4810 struct workqueue_struct *wq;
4811 struct pool_workqueue *pwq;
4812
4813 mutex_lock(&wq_pool_mutex);
4814
4815 if (!workqueue_freezing)
4816 goto out_unlock;
4817
4818 workqueue_freezing = false;
4819
4820 /* restore max_active and repopulate worklist */
4821 list_for_each_entry(wq, &workqueues, list) {
4822 mutex_lock(&wq->mutex);
4823 for_each_pwq(pwq, wq)
4824 pwq_adjust_max_active(pwq);
4825 mutex_unlock(&wq->mutex);
4826 }
4827
4828out_unlock:
4829 mutex_unlock(&wq_pool_mutex);
4830}
4831#endif /* CONFIG_FREEZER */
4832
042f7df1
LJ
4833static int workqueue_apply_unbound_cpumask(void)
4834{
4835 LIST_HEAD(ctxs);
4836 int ret = 0;
4837 struct workqueue_struct *wq;
4838 struct apply_wqattrs_ctx *ctx, *n;
4839
4840 lockdep_assert_held(&wq_pool_mutex);
4841
4842 list_for_each_entry(wq, &workqueues, list) {
4843 if (!(wq->flags & WQ_UNBOUND))
4844 continue;
4845 /* creating multiple pwqs breaks ordering guarantee */
4846 if (wq->flags & __WQ_ORDERED)
4847 continue;
4848
4849 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4850 if (!ctx) {
4851 ret = -ENOMEM;
4852 break;
4853 }
4854
4855 list_add_tail(&ctx->list, &ctxs);
4856 }
4857
4858 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4859 if (!ret)
4860 apply_wqattrs_commit(ctx);
4861 apply_wqattrs_cleanup(ctx);
4862 }
4863
4864 return ret;
4865}
4866
4867/**
4868 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4869 * @cpumask: the cpumask to set
4870 *
4871 * The low-level workqueues cpumask is a global cpumask that limits
4872 * the affinity of all unbound workqueues. This function check the @cpumask
4873 * and apply it to all unbound workqueues and updates all pwqs of them.
4874 *
4875 * Retun: 0 - Success
4876 * -EINVAL - Invalid @cpumask
4877 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4878 */
4879int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4880{
4881 int ret = -EINVAL;
4882 cpumask_var_t saved_cpumask;
4883
4884 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4885 return -ENOMEM;
4886
042f7df1
LJ
4887 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4888 if (!cpumask_empty(cpumask)) {
a0111cf6 4889 apply_wqattrs_lock();
042f7df1
LJ
4890
4891 /* save the old wq_unbound_cpumask. */
4892 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4893
4894 /* update wq_unbound_cpumask at first and apply it to wqs. */
4895 cpumask_copy(wq_unbound_cpumask, cpumask);
4896 ret = workqueue_apply_unbound_cpumask();
4897
4898 /* restore the wq_unbound_cpumask when failed. */
4899 if (ret < 0)
4900 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4901
a0111cf6 4902 apply_wqattrs_unlock();
042f7df1 4903 }
042f7df1
LJ
4904
4905 free_cpumask_var(saved_cpumask);
4906 return ret;
4907}
4908
6ba94429
FW
4909#ifdef CONFIG_SYSFS
4910/*
4911 * Workqueues with WQ_SYSFS flag set is visible to userland via
4912 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4913 * following attributes.
4914 *
4915 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4916 * max_active RW int : maximum number of in-flight work items
4917 *
4918 * Unbound workqueues have the following extra attributes.
4919 *
4920 * id RO int : the associated pool ID
4921 * nice RW int : nice value of the workers
4922 * cpumask RW mask : bitmask of allowed CPUs for the workers
4923 */
4924struct wq_device {
4925 struct workqueue_struct *wq;
4926 struct device dev;
4927};
4928
4929static struct workqueue_struct *dev_to_wq(struct device *dev)
4930{
4931 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4932
4933 return wq_dev->wq;
4934}
4935
4936static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4937 char *buf)
4938{
4939 struct workqueue_struct *wq = dev_to_wq(dev);
4940
4941 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4942}
4943static DEVICE_ATTR_RO(per_cpu);
4944
4945static ssize_t max_active_show(struct device *dev,
4946 struct device_attribute *attr, char *buf)
4947{
4948 struct workqueue_struct *wq = dev_to_wq(dev);
4949
4950 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4951}
4952
4953static ssize_t max_active_store(struct device *dev,
4954 struct device_attribute *attr, const char *buf,
4955 size_t count)
4956{
4957 struct workqueue_struct *wq = dev_to_wq(dev);
4958 int val;
4959
4960 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4961 return -EINVAL;
4962
4963 workqueue_set_max_active(wq, val);
4964 return count;
4965}
4966static DEVICE_ATTR_RW(max_active);
4967
4968static struct attribute *wq_sysfs_attrs[] = {
4969 &dev_attr_per_cpu.attr,
4970 &dev_attr_max_active.attr,
4971 NULL,
4972};
4973ATTRIBUTE_GROUPS(wq_sysfs);
4974
4975static ssize_t wq_pool_ids_show(struct device *dev,
4976 struct device_attribute *attr, char *buf)
4977{
4978 struct workqueue_struct *wq = dev_to_wq(dev);
4979 const char *delim = "";
4980 int node, written = 0;
4981
4982 rcu_read_lock_sched();
4983 for_each_node(node) {
4984 written += scnprintf(buf + written, PAGE_SIZE - written,
4985 "%s%d:%d", delim, node,
4986 unbound_pwq_by_node(wq, node)->pool->id);
4987 delim = " ";
4988 }
4989 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4990 rcu_read_unlock_sched();
4991
4992 return written;
4993}
4994
4995static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4996 char *buf)
4997{
4998 struct workqueue_struct *wq = dev_to_wq(dev);
4999 int written;
5000
5001 mutex_lock(&wq->mutex);
5002 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5003 mutex_unlock(&wq->mutex);
5004
5005 return written;
5006}
5007
5008/* prepare workqueue_attrs for sysfs store operations */
5009static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5010{
5011 struct workqueue_attrs *attrs;
5012
899a94fe
LJ
5013 lockdep_assert_held(&wq_pool_mutex);
5014
6ba94429
FW
5015 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5016 if (!attrs)
5017 return NULL;
5018
6ba94429 5019 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5020 return attrs;
5021}
5022
5023static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5024 const char *buf, size_t count)
5025{
5026 struct workqueue_struct *wq = dev_to_wq(dev);
5027 struct workqueue_attrs *attrs;
d4d3e257
LJ
5028 int ret = -ENOMEM;
5029
5030 apply_wqattrs_lock();
6ba94429
FW
5031
5032 attrs = wq_sysfs_prep_attrs(wq);
5033 if (!attrs)
d4d3e257 5034 goto out_unlock;
6ba94429
FW
5035
5036 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5037 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5038 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5039 else
5040 ret = -EINVAL;
5041
d4d3e257
LJ
5042out_unlock:
5043 apply_wqattrs_unlock();
6ba94429
FW
5044 free_workqueue_attrs(attrs);
5045 return ret ?: count;
5046}
5047
5048static ssize_t wq_cpumask_show(struct device *dev,
5049 struct device_attribute *attr, char *buf)
5050{
5051 struct workqueue_struct *wq = dev_to_wq(dev);
5052 int written;
5053
5054 mutex_lock(&wq->mutex);
5055 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5056 cpumask_pr_args(wq->unbound_attrs->cpumask));
5057 mutex_unlock(&wq->mutex);
5058 return written;
5059}
5060
5061static ssize_t wq_cpumask_store(struct device *dev,
5062 struct device_attribute *attr,
5063 const char *buf, size_t count)
5064{
5065 struct workqueue_struct *wq = dev_to_wq(dev);
5066 struct workqueue_attrs *attrs;
d4d3e257
LJ
5067 int ret = -ENOMEM;
5068
5069 apply_wqattrs_lock();
6ba94429
FW
5070
5071 attrs = wq_sysfs_prep_attrs(wq);
5072 if (!attrs)
d4d3e257 5073 goto out_unlock;
6ba94429
FW
5074
5075 ret = cpumask_parse(buf, attrs->cpumask);
5076 if (!ret)
d4d3e257 5077 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5078
d4d3e257
LJ
5079out_unlock:
5080 apply_wqattrs_unlock();
6ba94429
FW
5081 free_workqueue_attrs(attrs);
5082 return ret ?: count;
5083}
5084
5085static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5086 char *buf)
5087{
5088 struct workqueue_struct *wq = dev_to_wq(dev);
5089 int written;
7dbc725e 5090
6ba94429
FW
5091 mutex_lock(&wq->mutex);
5092 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5093 !wq->unbound_attrs->no_numa);
5094 mutex_unlock(&wq->mutex);
4c16bd32 5095
6ba94429 5096 return written;
65758202
TH
5097}
5098
6ba94429
FW
5099static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5100 const char *buf, size_t count)
65758202 5101{
6ba94429
FW
5102 struct workqueue_struct *wq = dev_to_wq(dev);
5103 struct workqueue_attrs *attrs;
d4d3e257
LJ
5104 int v, ret = -ENOMEM;
5105
5106 apply_wqattrs_lock();
4c16bd32 5107
6ba94429
FW
5108 attrs = wq_sysfs_prep_attrs(wq);
5109 if (!attrs)
d4d3e257 5110 goto out_unlock;
4c16bd32 5111
6ba94429
FW
5112 ret = -EINVAL;
5113 if (sscanf(buf, "%d", &v) == 1) {
5114 attrs->no_numa = !v;
d4d3e257 5115 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5116 }
6ba94429 5117
d4d3e257
LJ
5118out_unlock:
5119 apply_wqattrs_unlock();
6ba94429
FW
5120 free_workqueue_attrs(attrs);
5121 return ret ?: count;
65758202
TH
5122}
5123
6ba94429
FW
5124static struct device_attribute wq_sysfs_unbound_attrs[] = {
5125 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5126 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5127 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5128 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5129 __ATTR_NULL,
5130};
8ccad40d 5131
6ba94429
FW
5132static struct bus_type wq_subsys = {
5133 .name = "workqueue",
5134 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5135};
5136
b05a7928
FW
5137static ssize_t wq_unbound_cpumask_show(struct device *dev,
5138 struct device_attribute *attr, char *buf)
5139{
5140 int written;
5141
042f7df1 5142 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5143 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5144 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5145 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5146
5147 return written;
5148}
5149
042f7df1
LJ
5150static ssize_t wq_unbound_cpumask_store(struct device *dev,
5151 struct device_attribute *attr, const char *buf, size_t count)
5152{
5153 cpumask_var_t cpumask;
5154 int ret;
5155
5156 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5157 return -ENOMEM;
5158
5159 ret = cpumask_parse(buf, cpumask);
5160 if (!ret)
5161 ret = workqueue_set_unbound_cpumask(cpumask);
5162
5163 free_cpumask_var(cpumask);
5164 return ret ? ret : count;
5165}
5166
b05a7928 5167static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5168 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5169 wq_unbound_cpumask_store);
b05a7928 5170
6ba94429 5171static int __init wq_sysfs_init(void)
2d3854a3 5172{
b05a7928
FW
5173 int err;
5174
5175 err = subsys_virtual_register(&wq_subsys, NULL);
5176 if (err)
5177 return err;
5178
5179 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5180}
6ba94429 5181core_initcall(wq_sysfs_init);
2d3854a3 5182
6ba94429 5183static void wq_device_release(struct device *dev)
2d3854a3 5184{
6ba94429 5185 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5186
6ba94429 5187 kfree(wq_dev);
2d3854a3 5188}
a0a1a5fd
TH
5189
5190/**
6ba94429
FW
5191 * workqueue_sysfs_register - make a workqueue visible in sysfs
5192 * @wq: the workqueue to register
a0a1a5fd 5193 *
6ba94429
FW
5194 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5195 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5196 * which is the preferred method.
a0a1a5fd 5197 *
6ba94429
FW
5198 * Workqueue user should use this function directly iff it wants to apply
5199 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5200 * apply_workqueue_attrs() may race against userland updating the
5201 * attributes.
5202 *
5203 * Return: 0 on success, -errno on failure.
a0a1a5fd 5204 */
6ba94429 5205int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5206{
6ba94429
FW
5207 struct wq_device *wq_dev;
5208 int ret;
a0a1a5fd 5209
6ba94429 5210 /*
402dd89d 5211 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5212 * attributes breaks ordering guarantee. Disallow exposing ordered
5213 * workqueues.
5214 */
5215 if (WARN_ON(wq->flags & __WQ_ORDERED))
5216 return -EINVAL;
a0a1a5fd 5217
6ba94429
FW
5218 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5219 if (!wq_dev)
5220 return -ENOMEM;
5bcab335 5221
6ba94429
FW
5222 wq_dev->wq = wq;
5223 wq_dev->dev.bus = &wq_subsys;
5224 wq_dev->dev.init_name = wq->name;
5225 wq_dev->dev.release = wq_device_release;
a0a1a5fd 5226
6ba94429
FW
5227 /*
5228 * unbound_attrs are created separately. Suppress uevent until
5229 * everything is ready.
5230 */
5231 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5232
6ba94429
FW
5233 ret = device_register(&wq_dev->dev);
5234 if (ret) {
5235 kfree(wq_dev);
5236 wq->wq_dev = NULL;
5237 return ret;
5238 }
a0a1a5fd 5239
6ba94429
FW
5240 if (wq->flags & WQ_UNBOUND) {
5241 struct device_attribute *attr;
a0a1a5fd 5242
6ba94429
FW
5243 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5244 ret = device_create_file(&wq_dev->dev, attr);
5245 if (ret) {
5246 device_unregister(&wq_dev->dev);
5247 wq->wq_dev = NULL;
5248 return ret;
a0a1a5fd
TH
5249 }
5250 }
5251 }
6ba94429
FW
5252
5253 dev_set_uevent_suppress(&wq_dev->dev, false);
5254 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5255 return 0;
a0a1a5fd
TH
5256}
5257
5258/**
6ba94429
FW
5259 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5260 * @wq: the workqueue to unregister
a0a1a5fd 5261 *
6ba94429 5262 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5263 */
6ba94429 5264static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5265{
6ba94429 5266 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5267
6ba94429
FW
5268 if (!wq->wq_dev)
5269 return;
a0a1a5fd 5270
6ba94429
FW
5271 wq->wq_dev = NULL;
5272 device_unregister(&wq_dev->dev);
a0a1a5fd 5273}
6ba94429
FW
5274#else /* CONFIG_SYSFS */
5275static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5276#endif /* CONFIG_SYSFS */
a0a1a5fd 5277
82607adc
TH
5278/*
5279 * Workqueue watchdog.
5280 *
5281 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5282 * flush dependency, a concurrency managed work item which stays RUNNING
5283 * indefinitely. Workqueue stalls can be very difficult to debug as the
5284 * usual warning mechanisms don't trigger and internal workqueue state is
5285 * largely opaque.
5286 *
5287 * Workqueue watchdog monitors all worker pools periodically and dumps
5288 * state if some pools failed to make forward progress for a while where
5289 * forward progress is defined as the first item on ->worklist changing.
5290 *
5291 * This mechanism is controlled through the kernel parameter
5292 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5293 * corresponding sysfs parameter file.
5294 */
5295#ifdef CONFIG_WQ_WATCHDOG
5296
5297static void wq_watchdog_timer_fn(unsigned long data);
5298
5299static unsigned long wq_watchdog_thresh = 30;
5300static struct timer_list wq_watchdog_timer =
5301 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5302
5303static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5304static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5305
5306static void wq_watchdog_reset_touched(void)
5307{
5308 int cpu;
5309
5310 wq_watchdog_touched = jiffies;
5311 for_each_possible_cpu(cpu)
5312 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5313}
5314
5315static void wq_watchdog_timer_fn(unsigned long data)
5316{
5317 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5318 bool lockup_detected = false;
5319 struct worker_pool *pool;
5320 int pi;
5321
5322 if (!thresh)
5323 return;
5324
5325 rcu_read_lock();
5326
5327 for_each_pool(pool, pi) {
5328 unsigned long pool_ts, touched, ts;
5329
5330 if (list_empty(&pool->worklist))
5331 continue;
5332
5333 /* get the latest of pool and touched timestamps */
5334 pool_ts = READ_ONCE(pool->watchdog_ts);
5335 touched = READ_ONCE(wq_watchdog_touched);
5336
5337 if (time_after(pool_ts, touched))
5338 ts = pool_ts;
5339 else
5340 ts = touched;
5341
5342 if (pool->cpu >= 0) {
5343 unsigned long cpu_touched =
5344 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5345 pool->cpu));
5346 if (time_after(cpu_touched, ts))
5347 ts = cpu_touched;
5348 }
5349
5350 /* did we stall? */
5351 if (time_after(jiffies, ts + thresh)) {
5352 lockup_detected = true;
5353 pr_emerg("BUG: workqueue lockup - pool");
5354 pr_cont_pool_info(pool);
5355 pr_cont(" stuck for %us!\n",
5356 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5357 }
5358 }
5359
5360 rcu_read_unlock();
5361
5362 if (lockup_detected)
5363 show_workqueue_state();
5364
5365 wq_watchdog_reset_touched();
5366 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5367}
5368
5369void wq_watchdog_touch(int cpu)
5370{
5371 if (cpu >= 0)
5372 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5373 else
5374 wq_watchdog_touched = jiffies;
5375}
5376
5377static void wq_watchdog_set_thresh(unsigned long thresh)
5378{
5379 wq_watchdog_thresh = 0;
5380 del_timer_sync(&wq_watchdog_timer);
5381
5382 if (thresh) {
5383 wq_watchdog_thresh = thresh;
5384 wq_watchdog_reset_touched();
5385 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5386 }
5387}
5388
5389static int wq_watchdog_param_set_thresh(const char *val,
5390 const struct kernel_param *kp)
5391{
5392 unsigned long thresh;
5393 int ret;
5394
5395 ret = kstrtoul(val, 0, &thresh);
5396 if (ret)
5397 return ret;
5398
5399 if (system_wq)
5400 wq_watchdog_set_thresh(thresh);
5401 else
5402 wq_watchdog_thresh = thresh;
5403
5404 return 0;
5405}
5406
5407static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5408 .set = wq_watchdog_param_set_thresh,
5409 .get = param_get_ulong,
5410};
5411
5412module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5413 0644);
5414
5415static void wq_watchdog_init(void)
5416{
5417 wq_watchdog_set_thresh(wq_watchdog_thresh);
5418}
5419
5420#else /* CONFIG_WQ_WATCHDOG */
5421
5422static inline void wq_watchdog_init(void) { }
5423
5424#endif /* CONFIG_WQ_WATCHDOG */
5425
bce90380
TH
5426static void __init wq_numa_init(void)
5427{
5428 cpumask_var_t *tbl;
5429 int node, cpu;
5430
bce90380
TH
5431 if (num_possible_nodes() <= 1)
5432 return;
5433
d55262c4
TH
5434 if (wq_disable_numa) {
5435 pr_info("workqueue: NUMA affinity support disabled\n");
5436 return;
5437 }
5438
4c16bd32
TH
5439 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5440 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5441
bce90380
TH
5442 /*
5443 * We want masks of possible CPUs of each node which isn't readily
5444 * available. Build one from cpu_to_node() which should have been
5445 * fully initialized by now.
5446 */
ddcb57e2 5447 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5448 BUG_ON(!tbl);
5449
5450 for_each_node(node)
5a6024f1 5451 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5452 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5453
5454 for_each_possible_cpu(cpu) {
5455 node = cpu_to_node(cpu);
5456 if (WARN_ON(node == NUMA_NO_NODE)) {
5457 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5458 /* happens iff arch is bonkers, let's just proceed */
5459 return;
5460 }
5461 cpumask_set_cpu(cpu, tbl[node]);
5462 }
5463
5464 wq_numa_possible_cpumask = tbl;
5465 wq_numa_enabled = true;
5466}
5467
6ee0578b 5468static int __init init_workqueues(void)
1da177e4 5469{
7a4e344c
TH
5470 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5471 int i, cpu;
c34056a3 5472
e904e6c2
TH
5473 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5474
b05a7928
FW
5475 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5476 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5477
e904e6c2
TH
5478 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5479
65758202 5480 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 5481 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 5482
bce90380
TH
5483 wq_numa_init();
5484
706026c2 5485 /* initialize CPU pools */
29c91e99 5486 for_each_possible_cpu(cpu) {
4ce62e9e 5487 struct worker_pool *pool;
8b03ae3c 5488
7a4e344c 5489 i = 0;
f02ae73a 5490 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5491 BUG_ON(init_worker_pool(pool));
ec22ca5e 5492 pool->cpu = cpu;
29c91e99 5493 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5494 pool->attrs->nice = std_nice[i++];
f3f90ad4 5495 pool->node = cpu_to_node(cpu);
7a4e344c 5496
9daf9e67 5497 /* alloc pool ID */
68e13a67 5498 mutex_lock(&wq_pool_mutex);
9daf9e67 5499 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5500 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5501 }
8b03ae3c
TH
5502 }
5503
e22bee78 5504 /* create the initial worker */
29c91e99 5505 for_each_online_cpu(cpu) {
4ce62e9e 5506 struct worker_pool *pool;
e22bee78 5507
f02ae73a 5508 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5509 pool->flags &= ~POOL_DISASSOCIATED;
051e1850 5510 BUG_ON(!create_worker(pool));
4ce62e9e 5511 }
e22bee78
TH
5512 }
5513
8a2b7538 5514 /* create default unbound and ordered wq attrs */
29c91e99
TH
5515 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5516 struct workqueue_attrs *attrs;
5517
5518 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5519 attrs->nice = std_nice[i];
29c91e99 5520 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5521
5522 /*
5523 * An ordered wq should have only one pwq as ordering is
5524 * guaranteed by max_active which is enforced by pwqs.
5525 * Turn off NUMA so that dfl_pwq is used for all nodes.
5526 */
5527 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5528 attrs->nice = std_nice[i];
5529 attrs->no_numa = true;
5530 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5531 }
5532
d320c038 5533 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5534 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5535 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5536 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5537 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5538 system_freezable_wq = alloc_workqueue("events_freezable",
5539 WQ_FREEZABLE, 0);
0668106c
VK
5540 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5541 WQ_POWER_EFFICIENT, 0);
5542 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5543 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5544 0);
1aabe902 5545 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5546 !system_unbound_wq || !system_freezable_wq ||
5547 !system_power_efficient_wq ||
5548 !system_freezable_power_efficient_wq);
82607adc
TH
5549
5550 wq_watchdog_init();
5551
6ee0578b 5552 return 0;
1da177e4 5553}
6ee0578b 5554early_initcall(init_workqueues);