OPP: Don't return 0 on error from of_get_required_opp_performance_state()
[linux-2.6-block.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e 23 *
9a261491 24 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669 41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
bce90380 47#include <linux/nodemask.h>
4c16bd32 48#include <linux/moduleparam.h>
3d1cb205 49#include <linux/uaccess.h>
c98a9805 50#include <linux/sched/isolation.h>
62635ea8 51#include <linux/nmi.h>
e22bee78 52
ea138446 53#include "workqueue_internal.h"
1da177e4 54
c8e55f36 55enum {
24647570
TH
56 /*
57 * worker_pool flags
bc2ae0f5 58 *
24647570 59 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
60 * While associated (!DISASSOCIATED), all workers are bound to the
61 * CPU and none has %WORKER_UNBOUND set and concurrency management
62 * is in effect.
63 *
64 * While DISASSOCIATED, the cpu may be offline and all workers have
65 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 66 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 67 *
bc3a1afc 68 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 69 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 70 * worker_attach_to_pool() is in progress.
bc2ae0f5 71 */
692b4825 72 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 73 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 74
c8e55f36 75 /* worker flags */
c8e55f36
TH
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 78 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 82
a9ab775b
TH
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 85
e34cdddb 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 87
29c91e99 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 90
e22bee78
TH
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
3233cdbd
TH
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
e22bee78
TH
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
8698a745 102 * all cpus. Give MIN_NICE.
e22bee78 103 */
8698a745
DY
104 RESCUER_NICE_LEVEL = MIN_NICE,
105 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
106
107 WQ_NAME_LEN = 24,
c8e55f36 108};
1da177e4
LT
109
110/*
4690c4ab
TH
111 * Structure fields follow one of the following exclusion rules.
112 *
e41e704b
TH
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
4690c4ab 115 *
e22bee78
TH
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
d565ed63 119 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 120 *
d565ed63
TH
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 125 *
1258fae7 126 * A: wq_pool_attach_mutex protected.
822d8405 127 *
68e13a67 128 * PL: wq_pool_mutex protected.
5bcab335 129 *
68e13a67 130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 131 *
5b95e1af
LJ
132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
133 *
134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
135 * sched-RCU for reads.
136 *
3c25a55d
LJ
137 * WQ: wq->mutex protected.
138 *
b5927605 139 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
140 *
141 * MD: wq_mayday_lock protected.
1da177e4 142 */
1da177e4 143
2eaebdb3 144/* struct worker is defined in workqueue_internal.h */
c34056a3 145
bd7bdd43 146struct worker_pool {
d565ed63 147 spinlock_t lock; /* the pool lock */
d84ff051 148 int cpu; /* I: the associated cpu */
f3f90ad4 149 int node; /* I: the associated node ID */
9daf9e67 150 int id; /* I: pool ID */
11ebea50 151 unsigned int flags; /* X: flags */
bd7bdd43 152
82607adc
TH
153 unsigned long watchdog_ts; /* L: watchdog timestamp */
154
bd7bdd43 155 struct list_head worklist; /* L: list of pending works */
ea1abd61 156
5826cc8f
LJ
157 int nr_workers; /* L: total number of workers */
158 int nr_idle; /* L: currently idle workers */
bd7bdd43
TH
159
160 struct list_head idle_list; /* X: list of idle workers */
161 struct timer_list idle_timer; /* L: worker idle timeout */
162 struct timer_list mayday_timer; /* L: SOS timer for workers */
163
c5aa87bb 164 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
165 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
166 /* L: hash of busy workers */
167
2607d7a6 168 struct worker *manager; /* L: purely informational */
92f9c5c4 169 struct list_head workers; /* A: attached workers */
60f5a4bc 170 struct completion *detach_completion; /* all workers detached */
e19e397a 171
7cda9aae 172 struct ida worker_ida; /* worker IDs for task name */
e19e397a 173
7a4e344c 174 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
175 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
176 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 177
e19e397a
TH
178 /*
179 * The current concurrency level. As it's likely to be accessed
180 * from other CPUs during try_to_wake_up(), put it in a separate
181 * cacheline.
182 */
183 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
184
185 /*
186 * Destruction of pool is sched-RCU protected to allow dereferences
187 * from get_work_pool().
188 */
189 struct rcu_head rcu;
8b03ae3c
TH
190} ____cacheline_aligned_in_smp;
191
1da177e4 192/*
112202d9
TH
193 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
194 * of work_struct->data are used for flags and the remaining high bits
195 * point to the pwq; thus, pwqs need to be aligned at two's power of the
196 * number of flag bits.
1da177e4 197 */
112202d9 198struct pool_workqueue {
bd7bdd43 199 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 200 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
201 int work_color; /* L: current color */
202 int flush_color; /* L: flushing color */
8864b4e5 203 int refcnt; /* L: reference count */
73f53c4a
TH
204 int nr_in_flight[WORK_NR_COLORS];
205 /* L: nr of in_flight works */
1e19ffc6 206 int nr_active; /* L: nr of active works */
a0a1a5fd 207 int max_active; /* L: max active works */
1e19ffc6 208 struct list_head delayed_works; /* L: delayed works */
3c25a55d 209 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 210 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
211
212 /*
213 * Release of unbound pwq is punted to system_wq. See put_pwq()
214 * and pwq_unbound_release_workfn() for details. pool_workqueue
215 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 216 * determined without grabbing wq->mutex.
8864b4e5
TH
217 */
218 struct work_struct unbound_release_work;
219 struct rcu_head rcu;
e904e6c2 220} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 221
73f53c4a
TH
222/*
223 * Structure used to wait for workqueue flush.
224 */
225struct wq_flusher {
3c25a55d
LJ
226 struct list_head list; /* WQ: list of flushers */
227 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
228 struct completion done; /* flush completion */
229};
230
226223ab
TH
231struct wq_device;
232
1da177e4 233/*
c5aa87bb
TH
234 * The externally visible workqueue. It relays the issued work items to
235 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
236 */
237struct workqueue_struct {
3c25a55d 238 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 239 struct list_head list; /* PR: list of all workqueues */
73f53c4a 240
3c25a55d
LJ
241 struct mutex mutex; /* protects this wq */
242 int work_color; /* WQ: current work color */
243 int flush_color; /* WQ: current flush color */
112202d9 244 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
245 struct wq_flusher *first_flusher; /* WQ: first flusher */
246 struct list_head flusher_queue; /* WQ: flush waiters */
247 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 248
2e109a28 249 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
250 struct worker *rescuer; /* I: rescue worker */
251
87fc741e 252 int nr_drainers; /* WQ: drain in progress */
a357fc03 253 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 254
5b95e1af
LJ
255 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
256 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 257
226223ab
TH
258#ifdef CONFIG_SYSFS
259 struct wq_device *wq_dev; /* I: for sysfs interface */
260#endif
4e6045f1 261#ifdef CONFIG_LOCKDEP
4690c4ab 262 struct lockdep_map lockdep_map;
4e6045f1 263#endif
ecf6881f 264 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 265
e2dca7ad
TH
266 /*
267 * Destruction of workqueue_struct is sched-RCU protected to allow
268 * walking the workqueues list without grabbing wq_pool_mutex.
269 * This is used to dump all workqueues from sysrq.
270 */
271 struct rcu_head rcu;
272
2728fd2f
TH
273 /* hot fields used during command issue, aligned to cacheline */
274 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
275 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 276 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
277};
278
e904e6c2
TH
279static struct kmem_cache *pwq_cache;
280
bce90380
TH
281static cpumask_var_t *wq_numa_possible_cpumask;
282 /* possible CPUs of each node */
283
d55262c4
TH
284static bool wq_disable_numa;
285module_param_named(disable_numa, wq_disable_numa, bool, 0444);
286
cee22a15 287/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 288static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
289module_param_named(power_efficient, wq_power_efficient, bool, 0444);
290
863b710b 291static bool wq_online; /* can kworkers be created yet? */
3347fa09 292
bce90380
TH
293static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
294
4c16bd32
TH
295/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
297
68e13a67 298static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 299static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
2e109a28 300static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
692b4825 301static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
5bcab335 302
e2dca7ad 303static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 304static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 305
ef557180
MG
306/* PL: allowable cpus for unbound wqs and work items */
307static cpumask_var_t wq_unbound_cpumask;
308
309/* CPU where unbound work was last round robin scheduled from this CPU */
310static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 311
f303fccb
TH
312/*
313 * Local execution of unbound work items is no longer guaranteed. The
314 * following always forces round-robin CPU selection on unbound work items
315 * to uncover usages which depend on it.
316 */
317#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
318static bool wq_debug_force_rr_cpu = true;
319#else
320static bool wq_debug_force_rr_cpu = false;
321#endif
322module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
323
7d19c5ce 324/* the per-cpu worker pools */
25528213 325static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 326
68e13a67 327static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 328
68e13a67 329/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
330static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
331
c5aa87bb 332/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
333static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
334
8a2b7538
TH
335/* I: attributes used when instantiating ordered pools on demand */
336static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
337
d320c038 338struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 339EXPORT_SYMBOL(system_wq);
044c782c 340struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 341EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 342struct workqueue_struct *system_long_wq __read_mostly;
d320c038 343EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 344struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 345EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 346struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 347EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
348struct workqueue_struct *system_power_efficient_wq __read_mostly;
349EXPORT_SYMBOL_GPL(system_power_efficient_wq);
350struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
351EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 352
7d19c5ce 353static int worker_thread(void *__worker);
6ba94429 354static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 355
97bd2347
TH
356#define CREATE_TRACE_POINTS
357#include <trace/events/workqueue.h>
358
68e13a67 359#define assert_rcu_or_pool_mutex() \
f78f5b90
PM
360 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
361 !lockdep_is_held(&wq_pool_mutex), \
362 "sched RCU or wq_pool_mutex should be held")
5bcab335 363
b09f4fd3 364#define assert_rcu_or_wq_mutex(wq) \
f78f5b90
PM
365 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
366 !lockdep_is_held(&wq->mutex), \
367 "sched RCU or wq->mutex should be held")
76af4d93 368
5b95e1af 369#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
f78f5b90
PM
370 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
371 !lockdep_is_held(&wq->mutex) && \
372 !lockdep_is_held(&wq_pool_mutex), \
373 "sched RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 374
f02ae73a
TH
375#define for_each_cpu_worker_pool(pool, cpu) \
376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 378 (pool)++)
4ce62e9e 379
17116969
TH
380/**
381 * for_each_pool - iterate through all worker_pools in the system
382 * @pool: iteration cursor
611c92a0 383 * @pi: integer used for iteration
fa1b54e6 384 *
68e13a67
LJ
385 * This must be called either with wq_pool_mutex held or sched RCU read
386 * locked. If the pool needs to be used beyond the locking in effect, the
387 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
388 *
389 * The if/else clause exists only for the lockdep assertion and can be
390 * ignored.
17116969 391 */
611c92a0
TH
392#define for_each_pool(pool, pi) \
393 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 395 else
17116969 396
822d8405
TH
397/**
398 * for_each_pool_worker - iterate through all workers of a worker_pool
399 * @worker: iteration cursor
822d8405
TH
400 * @pool: worker_pool to iterate workers of
401 *
1258fae7 402 * This must be called with wq_pool_attach_mutex.
822d8405
TH
403 *
404 * The if/else clause exists only for the lockdep assertion and can be
405 * ignored.
406 */
da028469
LJ
407#define for_each_pool_worker(worker, pool) \
408 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 409 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
410 else
411
49e3cf44
TH
412/**
413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
414 * @pwq: iteration cursor
415 * @wq: the target workqueue
76af4d93 416 *
b09f4fd3 417 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
418 * If the pwq needs to be used beyond the locking in effect, the caller is
419 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
420 *
421 * The if/else clause exists only for the lockdep assertion and can be
422 * ignored.
49e3cf44
TH
423 */
424#define for_each_pwq(pwq, wq) \
76af4d93 425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 426 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 427 else
f3421797 428
dc186ad7
TG
429#ifdef CONFIG_DEBUG_OBJECTS_WORK
430
431static struct debug_obj_descr work_debug_descr;
432
99777288
SG
433static void *work_debug_hint(void *addr)
434{
435 return ((struct work_struct *) addr)->func;
436}
437
b9fdac7f
DC
438static bool work_is_static_object(void *addr)
439{
440 struct work_struct *work = addr;
441
442 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
443}
444
dc186ad7
TG
445/*
446 * fixup_init is called when:
447 * - an active object is initialized
448 */
02a982a6 449static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
450{
451 struct work_struct *work = addr;
452
453 switch (state) {
454 case ODEBUG_STATE_ACTIVE:
455 cancel_work_sync(work);
456 debug_object_init(work, &work_debug_descr);
02a982a6 457 return true;
dc186ad7 458 default:
02a982a6 459 return false;
dc186ad7
TG
460 }
461}
462
dc186ad7
TG
463/*
464 * fixup_free is called when:
465 * - an active object is freed
466 */
02a982a6 467static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
468{
469 struct work_struct *work = addr;
470
471 switch (state) {
472 case ODEBUG_STATE_ACTIVE:
473 cancel_work_sync(work);
474 debug_object_free(work, &work_debug_descr);
02a982a6 475 return true;
dc186ad7 476 default:
02a982a6 477 return false;
dc186ad7
TG
478 }
479}
480
481static struct debug_obj_descr work_debug_descr = {
482 .name = "work_struct",
99777288 483 .debug_hint = work_debug_hint,
b9fdac7f 484 .is_static_object = work_is_static_object,
dc186ad7 485 .fixup_init = work_fixup_init,
dc186ad7
TG
486 .fixup_free = work_fixup_free,
487};
488
489static inline void debug_work_activate(struct work_struct *work)
490{
491 debug_object_activate(work, &work_debug_descr);
492}
493
494static inline void debug_work_deactivate(struct work_struct *work)
495{
496 debug_object_deactivate(work, &work_debug_descr);
497}
498
499void __init_work(struct work_struct *work, int onstack)
500{
501 if (onstack)
502 debug_object_init_on_stack(work, &work_debug_descr);
503 else
504 debug_object_init(work, &work_debug_descr);
505}
506EXPORT_SYMBOL_GPL(__init_work);
507
508void destroy_work_on_stack(struct work_struct *work)
509{
510 debug_object_free(work, &work_debug_descr);
511}
512EXPORT_SYMBOL_GPL(destroy_work_on_stack);
513
ea2e64f2
TG
514void destroy_delayed_work_on_stack(struct delayed_work *work)
515{
516 destroy_timer_on_stack(&work->timer);
517 debug_object_free(&work->work, &work_debug_descr);
518}
519EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
520
dc186ad7
TG
521#else
522static inline void debug_work_activate(struct work_struct *work) { }
523static inline void debug_work_deactivate(struct work_struct *work) { }
524#endif
525
4e8b22bd
LB
526/**
527 * worker_pool_assign_id - allocate ID and assing it to @pool
528 * @pool: the pool pointer of interest
529 *
530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
531 * successfully, -errno on failure.
532 */
9daf9e67
TH
533static int worker_pool_assign_id(struct worker_pool *pool)
534{
535 int ret;
536
68e13a67 537 lockdep_assert_held(&wq_pool_mutex);
5bcab335 538
4e8b22bd
LB
539 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
540 GFP_KERNEL);
229641a6 541 if (ret >= 0) {
e68035fb 542 pool->id = ret;
229641a6
TH
543 return 0;
544 }
fa1b54e6 545 return ret;
7c3eed5c
TH
546}
547
df2d5ae4
TH
548/**
549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
550 * @wq: the target workqueue
551 * @node: the node ID
552 *
5b95e1af
LJ
553 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
554 * read locked.
df2d5ae4
TH
555 * If the pwq needs to be used beyond the locking in effect, the caller is
556 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
557 *
558 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
559 */
560static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
561 int node)
562{
5b95e1af 563 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
564
565 /*
566 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
567 * delayed item is pending. The plan is to keep CPU -> NODE
568 * mapping valid and stable across CPU on/offlines. Once that
569 * happens, this workaround can be removed.
570 */
571 if (unlikely(node == NUMA_NO_NODE))
572 return wq->dfl_pwq;
573
df2d5ae4
TH
574 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
575}
576
73f53c4a
TH
577static unsigned int work_color_to_flags(int color)
578{
579 return color << WORK_STRUCT_COLOR_SHIFT;
580}
581
582static int get_work_color(struct work_struct *work)
583{
584 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
585 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
586}
587
588static int work_next_color(int color)
589{
590 return (color + 1) % WORK_NR_COLORS;
591}
1da177e4 592
14441960 593/*
112202d9
TH
594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
595 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 596 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 597 *
112202d9
TH
598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
599 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
600 * work->data. These functions should only be called while the work is
601 * owned - ie. while the PENDING bit is set.
7a22ad75 602 *
112202d9 603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 604 * corresponding to a work. Pool is available once the work has been
112202d9 605 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 606 * available only while the work item is queued.
7a22ad75 607 *
bbb68dfa
TH
608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
609 * canceled. While being canceled, a work item may have its PENDING set
610 * but stay off timer and worklist for arbitrarily long and nobody should
611 * try to steal the PENDING bit.
14441960 612 */
7a22ad75
TH
613static inline void set_work_data(struct work_struct *work, unsigned long data,
614 unsigned long flags)
365970a1 615{
6183c009 616 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
617 atomic_long_set(&work->data, data | flags | work_static(work));
618}
365970a1 619
112202d9 620static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
621 unsigned long extra_flags)
622{
112202d9
TH
623 set_work_data(work, (unsigned long)pwq,
624 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
625}
626
4468a00f
LJ
627static void set_work_pool_and_keep_pending(struct work_struct *work,
628 int pool_id)
629{
630 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
631 WORK_STRUCT_PENDING);
632}
633
7c3eed5c
TH
634static void set_work_pool_and_clear_pending(struct work_struct *work,
635 int pool_id)
7a22ad75 636{
23657bb1
TH
637 /*
638 * The following wmb is paired with the implied mb in
639 * test_and_set_bit(PENDING) and ensures all updates to @work made
640 * here are visible to and precede any updates by the next PENDING
641 * owner.
642 */
643 smp_wmb();
7c3eed5c 644 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
645 /*
646 * The following mb guarantees that previous clear of a PENDING bit
647 * will not be reordered with any speculative LOADS or STORES from
648 * work->current_func, which is executed afterwards. This possible
649 * reordering can lead to a missed execution on attempt to qeueue
650 * the same @work. E.g. consider this case:
651 *
652 * CPU#0 CPU#1
653 * ---------------------------- --------------------------------
654 *
655 * 1 STORE event_indicated
656 * 2 queue_work_on() {
657 * 3 test_and_set_bit(PENDING)
658 * 4 } set_..._and_clear_pending() {
659 * 5 set_work_data() # clear bit
660 * 6 smp_mb()
661 * 7 work->current_func() {
662 * 8 LOAD event_indicated
663 * }
664 *
665 * Without an explicit full barrier speculative LOAD on line 8 can
666 * be executed before CPU#0 does STORE on line 1. If that happens,
667 * CPU#0 observes the PENDING bit is still set and new execution of
668 * a @work is not queued in a hope, that CPU#1 will eventually
669 * finish the queued @work. Meanwhile CPU#1 does not see
670 * event_indicated is set, because speculative LOAD was executed
671 * before actual STORE.
672 */
673 smp_mb();
7a22ad75 674}
f756d5e2 675
7a22ad75 676static void clear_work_data(struct work_struct *work)
1da177e4 677{
7c3eed5c
TH
678 smp_wmb(); /* see set_work_pool_and_clear_pending() */
679 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
680}
681
112202d9 682static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 683{
e120153d 684 unsigned long data = atomic_long_read(&work->data);
7a22ad75 685
112202d9 686 if (data & WORK_STRUCT_PWQ)
e120153d
TH
687 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
688 else
689 return NULL;
4d707b9f
ON
690}
691
7c3eed5c
TH
692/**
693 * get_work_pool - return the worker_pool a given work was associated with
694 * @work: the work item of interest
695 *
68e13a67
LJ
696 * Pools are created and destroyed under wq_pool_mutex, and allows read
697 * access under sched-RCU read lock. As such, this function should be
698 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
699 *
700 * All fields of the returned pool are accessible as long as the above
701 * mentioned locking is in effect. If the returned pool needs to be used
702 * beyond the critical section, the caller is responsible for ensuring the
703 * returned pool is and stays online.
d185af30
YB
704 *
705 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
706 */
707static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 708{
e120153d 709 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 710 int pool_id;
7a22ad75 711
68e13a67 712 assert_rcu_or_pool_mutex();
fa1b54e6 713
112202d9
TH
714 if (data & WORK_STRUCT_PWQ)
715 return ((struct pool_workqueue *)
7c3eed5c 716 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 717
7c3eed5c
TH
718 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
719 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
720 return NULL;
721
fa1b54e6 722 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
723}
724
725/**
726 * get_work_pool_id - return the worker pool ID a given work is associated with
727 * @work: the work item of interest
728 *
d185af30 729 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
730 * %WORK_OFFQ_POOL_NONE if none.
731 */
732static int get_work_pool_id(struct work_struct *work)
733{
54d5b7d0
LJ
734 unsigned long data = atomic_long_read(&work->data);
735
112202d9
TH
736 if (data & WORK_STRUCT_PWQ)
737 return ((struct pool_workqueue *)
54d5b7d0 738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 739
54d5b7d0 740 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
741}
742
bbb68dfa
TH
743static void mark_work_canceling(struct work_struct *work)
744{
7c3eed5c 745 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 746
7c3eed5c
TH
747 pool_id <<= WORK_OFFQ_POOL_SHIFT;
748 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
749}
750
751static bool work_is_canceling(struct work_struct *work)
752{
753 unsigned long data = atomic_long_read(&work->data);
754
112202d9 755 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
756}
757
e22bee78 758/*
3270476a
TH
759 * Policy functions. These define the policies on how the global worker
760 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 761 * they're being called with pool->lock held.
e22bee78
TH
762 */
763
63d95a91 764static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 765{
e19e397a 766 return !atomic_read(&pool->nr_running);
a848e3b6
ON
767}
768
4594bf15 769/*
e22bee78
TH
770 * Need to wake up a worker? Called from anything but currently
771 * running workers.
974271c4
TH
772 *
773 * Note that, because unbound workers never contribute to nr_running, this
706026c2 774 * function will always return %true for unbound pools as long as the
974271c4 775 * worklist isn't empty.
4594bf15 776 */
63d95a91 777static bool need_more_worker(struct worker_pool *pool)
365970a1 778{
63d95a91 779 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 780}
4594bf15 781
e22bee78 782/* Can I start working? Called from busy but !running workers. */
63d95a91 783static bool may_start_working(struct worker_pool *pool)
e22bee78 784{
63d95a91 785 return pool->nr_idle;
e22bee78
TH
786}
787
788/* Do I need to keep working? Called from currently running workers. */
63d95a91 789static bool keep_working(struct worker_pool *pool)
e22bee78 790{
e19e397a
TH
791 return !list_empty(&pool->worklist) &&
792 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
793}
794
795/* Do we need a new worker? Called from manager. */
63d95a91 796static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 797{
63d95a91 798 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 799}
365970a1 800
e22bee78 801/* Do we have too many workers and should some go away? */
63d95a91 802static bool too_many_workers(struct worker_pool *pool)
e22bee78 803{
692b4825 804 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
805 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
806 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
807
808 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
809}
810
4d707b9f 811/*
e22bee78
TH
812 * Wake up functions.
813 */
814
1037de36
LJ
815/* Return the first idle worker. Safe with preemption disabled */
816static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 817{
63d95a91 818 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
819 return NULL;
820
63d95a91 821 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
822}
823
824/**
825 * wake_up_worker - wake up an idle worker
63d95a91 826 * @pool: worker pool to wake worker from
7e11629d 827 *
63d95a91 828 * Wake up the first idle worker of @pool.
7e11629d
TH
829 *
830 * CONTEXT:
d565ed63 831 * spin_lock_irq(pool->lock).
7e11629d 832 */
63d95a91 833static void wake_up_worker(struct worker_pool *pool)
7e11629d 834{
1037de36 835 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
836
837 if (likely(worker))
838 wake_up_process(worker->task);
839}
840
d302f017 841/**
e22bee78
TH
842 * wq_worker_waking_up - a worker is waking up
843 * @task: task waking up
844 * @cpu: CPU @task is waking up to
845 *
846 * This function is called during try_to_wake_up() when a worker is
847 * being awoken.
848 *
849 * CONTEXT:
850 * spin_lock_irq(rq->lock)
851 */
d84ff051 852void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
853{
854 struct worker *worker = kthread_data(task);
855
36576000 856 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 857 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 858 atomic_inc(&worker->pool->nr_running);
36576000 859 }
e22bee78
TH
860}
861
862/**
863 * wq_worker_sleeping - a worker is going to sleep
864 * @task: task going to sleep
e22bee78
TH
865 *
866 * This function is called during schedule() when a busy worker is
867 * going to sleep. Worker on the same cpu can be woken up by
868 * returning pointer to its task.
869 *
870 * CONTEXT:
871 * spin_lock_irq(rq->lock)
872 *
d185af30 873 * Return:
e22bee78
TH
874 * Worker task on @cpu to wake up, %NULL if none.
875 */
9b7f6597 876struct task_struct *wq_worker_sleeping(struct task_struct *task)
e22bee78
TH
877{
878 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 879 struct worker_pool *pool;
e22bee78 880
111c225a
TH
881 /*
882 * Rescuers, which may not have all the fields set up like normal
883 * workers, also reach here, let's not access anything before
884 * checking NOT_RUNNING.
885 */
2d64672e 886 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
887 return NULL;
888
111c225a 889 pool = worker->pool;
111c225a 890
e22bee78 891 /* this can only happen on the local cpu */
9b7f6597 892 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
6183c009 893 return NULL;
e22bee78
TH
894
895 /*
896 * The counterpart of the following dec_and_test, implied mb,
897 * worklist not empty test sequence is in insert_work().
898 * Please read comment there.
899 *
628c78e7
TH
900 * NOT_RUNNING is clear. This means that we're bound to and
901 * running on the local cpu w/ rq lock held and preemption
902 * disabled, which in turn means that none else could be
d565ed63 903 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 904 * lock is safe.
e22bee78 905 */
e19e397a
TH
906 if (atomic_dec_and_test(&pool->nr_running) &&
907 !list_empty(&pool->worklist))
1037de36 908 to_wakeup = first_idle_worker(pool);
e22bee78
TH
909 return to_wakeup ? to_wakeup->task : NULL;
910}
911
912/**
913 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 914 * @worker: self
d302f017 915 * @flags: flags to set
d302f017 916 *
228f1d00 917 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 918 *
cb444766 919 * CONTEXT:
d565ed63 920 * spin_lock_irq(pool->lock)
d302f017 921 */
228f1d00 922static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 923{
bd7bdd43 924 struct worker_pool *pool = worker->pool;
e22bee78 925
cb444766
TH
926 WARN_ON_ONCE(worker->task != current);
927
228f1d00 928 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
929 if ((flags & WORKER_NOT_RUNNING) &&
930 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 931 atomic_dec(&pool->nr_running);
e22bee78
TH
932 }
933
d302f017
TH
934 worker->flags |= flags;
935}
936
937/**
e22bee78 938 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 939 * @worker: self
d302f017
TH
940 * @flags: flags to clear
941 *
e22bee78 942 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 943 *
cb444766 944 * CONTEXT:
d565ed63 945 * spin_lock_irq(pool->lock)
d302f017
TH
946 */
947static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
948{
63d95a91 949 struct worker_pool *pool = worker->pool;
e22bee78
TH
950 unsigned int oflags = worker->flags;
951
cb444766
TH
952 WARN_ON_ONCE(worker->task != current);
953
d302f017 954 worker->flags &= ~flags;
e22bee78 955
42c025f3
TH
956 /*
957 * If transitioning out of NOT_RUNNING, increment nr_running. Note
958 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
959 * of multiple flags, not a single flag.
960 */
e22bee78
TH
961 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
962 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 963 atomic_inc(&pool->nr_running);
d302f017
TH
964}
965
8cca0eea
TH
966/**
967 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 968 * @pool: pool of interest
8cca0eea
TH
969 * @work: work to find worker for
970 *
c9e7cf27
TH
971 * Find a worker which is executing @work on @pool by searching
972 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
973 * to match, its current execution should match the address of @work and
974 * its work function. This is to avoid unwanted dependency between
975 * unrelated work executions through a work item being recycled while still
976 * being executed.
977 *
978 * This is a bit tricky. A work item may be freed once its execution
979 * starts and nothing prevents the freed area from being recycled for
980 * another work item. If the same work item address ends up being reused
981 * before the original execution finishes, workqueue will identify the
982 * recycled work item as currently executing and make it wait until the
983 * current execution finishes, introducing an unwanted dependency.
984 *
c5aa87bb
TH
985 * This function checks the work item address and work function to avoid
986 * false positives. Note that this isn't complete as one may construct a
987 * work function which can introduce dependency onto itself through a
988 * recycled work item. Well, if somebody wants to shoot oneself in the
989 * foot that badly, there's only so much we can do, and if such deadlock
990 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
991 *
992 * CONTEXT:
d565ed63 993 * spin_lock_irq(pool->lock).
8cca0eea 994 *
d185af30
YB
995 * Return:
996 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 997 * otherwise.
4d707b9f 998 */
c9e7cf27 999static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1000 struct work_struct *work)
4d707b9f 1001{
42f8570f 1002 struct worker *worker;
42f8570f 1003
b67bfe0d 1004 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1005 (unsigned long)work)
1006 if (worker->current_work == work &&
1007 worker->current_func == work->func)
42f8570f
SL
1008 return worker;
1009
1010 return NULL;
4d707b9f
ON
1011}
1012
bf4ede01
TH
1013/**
1014 * move_linked_works - move linked works to a list
1015 * @work: start of series of works to be scheduled
1016 * @head: target list to append @work to
402dd89d 1017 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1018 *
1019 * Schedule linked works starting from @work to @head. Work series to
1020 * be scheduled starts at @work and includes any consecutive work with
1021 * WORK_STRUCT_LINKED set in its predecessor.
1022 *
1023 * If @nextp is not NULL, it's updated to point to the next work of
1024 * the last scheduled work. This allows move_linked_works() to be
1025 * nested inside outer list_for_each_entry_safe().
1026 *
1027 * CONTEXT:
d565ed63 1028 * spin_lock_irq(pool->lock).
bf4ede01
TH
1029 */
1030static void move_linked_works(struct work_struct *work, struct list_head *head,
1031 struct work_struct **nextp)
1032{
1033 struct work_struct *n;
1034
1035 /*
1036 * Linked worklist will always end before the end of the list,
1037 * use NULL for list head.
1038 */
1039 list_for_each_entry_safe_from(work, n, NULL, entry) {
1040 list_move_tail(&work->entry, head);
1041 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1042 break;
1043 }
1044
1045 /*
1046 * If we're already inside safe list traversal and have moved
1047 * multiple works to the scheduled queue, the next position
1048 * needs to be updated.
1049 */
1050 if (nextp)
1051 *nextp = n;
1052}
1053
8864b4e5
TH
1054/**
1055 * get_pwq - get an extra reference on the specified pool_workqueue
1056 * @pwq: pool_workqueue to get
1057 *
1058 * Obtain an extra reference on @pwq. The caller should guarantee that
1059 * @pwq has positive refcnt and be holding the matching pool->lock.
1060 */
1061static void get_pwq(struct pool_workqueue *pwq)
1062{
1063 lockdep_assert_held(&pwq->pool->lock);
1064 WARN_ON_ONCE(pwq->refcnt <= 0);
1065 pwq->refcnt++;
1066}
1067
1068/**
1069 * put_pwq - put a pool_workqueue reference
1070 * @pwq: pool_workqueue to put
1071 *
1072 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1073 * destruction. The caller should be holding the matching pool->lock.
1074 */
1075static void put_pwq(struct pool_workqueue *pwq)
1076{
1077 lockdep_assert_held(&pwq->pool->lock);
1078 if (likely(--pwq->refcnt))
1079 return;
1080 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1081 return;
1082 /*
1083 * @pwq can't be released under pool->lock, bounce to
1084 * pwq_unbound_release_workfn(). This never recurses on the same
1085 * pool->lock as this path is taken only for unbound workqueues and
1086 * the release work item is scheduled on a per-cpu workqueue. To
1087 * avoid lockdep warning, unbound pool->locks are given lockdep
1088 * subclass of 1 in get_unbound_pool().
1089 */
1090 schedule_work(&pwq->unbound_release_work);
1091}
1092
dce90d47
TH
1093/**
1094 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1095 * @pwq: pool_workqueue to put (can be %NULL)
1096 *
1097 * put_pwq() with locking. This function also allows %NULL @pwq.
1098 */
1099static void put_pwq_unlocked(struct pool_workqueue *pwq)
1100{
1101 if (pwq) {
1102 /*
1103 * As both pwqs and pools are sched-RCU protected, the
1104 * following lock operations are safe.
1105 */
1106 spin_lock_irq(&pwq->pool->lock);
1107 put_pwq(pwq);
1108 spin_unlock_irq(&pwq->pool->lock);
1109 }
1110}
1111
112202d9 1112static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1113{
112202d9 1114 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1115
1116 trace_workqueue_activate_work(work);
82607adc
TH
1117 if (list_empty(&pwq->pool->worklist))
1118 pwq->pool->watchdog_ts = jiffies;
112202d9 1119 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1120 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1121 pwq->nr_active++;
bf4ede01
TH
1122}
1123
112202d9 1124static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1125{
112202d9 1126 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1127 struct work_struct, entry);
1128
112202d9 1129 pwq_activate_delayed_work(work);
3aa62497
LJ
1130}
1131
bf4ede01 1132/**
112202d9
TH
1133 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1134 * @pwq: pwq of interest
bf4ede01 1135 * @color: color of work which left the queue
bf4ede01
TH
1136 *
1137 * A work either has completed or is removed from pending queue,
112202d9 1138 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1139 *
1140 * CONTEXT:
d565ed63 1141 * spin_lock_irq(pool->lock).
bf4ede01 1142 */
112202d9 1143static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1144{
8864b4e5 1145 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1146 if (color == WORK_NO_COLOR)
8864b4e5 1147 goto out_put;
bf4ede01 1148
112202d9 1149 pwq->nr_in_flight[color]--;
bf4ede01 1150
112202d9
TH
1151 pwq->nr_active--;
1152 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1153 /* one down, submit a delayed one */
112202d9
TH
1154 if (pwq->nr_active < pwq->max_active)
1155 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1156 }
1157
1158 /* is flush in progress and are we at the flushing tip? */
112202d9 1159 if (likely(pwq->flush_color != color))
8864b4e5 1160 goto out_put;
bf4ede01
TH
1161
1162 /* are there still in-flight works? */
112202d9 1163 if (pwq->nr_in_flight[color])
8864b4e5 1164 goto out_put;
bf4ede01 1165
112202d9
TH
1166 /* this pwq is done, clear flush_color */
1167 pwq->flush_color = -1;
bf4ede01
TH
1168
1169 /*
112202d9 1170 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1171 * will handle the rest.
1172 */
112202d9
TH
1173 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1174 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1175out_put:
1176 put_pwq(pwq);
bf4ede01
TH
1177}
1178
36e227d2 1179/**
bbb68dfa 1180 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1181 * @work: work item to steal
1182 * @is_dwork: @work is a delayed_work
bbb68dfa 1183 * @flags: place to store irq state
36e227d2
TH
1184 *
1185 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1186 * stable state - idle, on timer or on worklist.
36e227d2 1187 *
d185af30 1188 * Return:
36e227d2
TH
1189 * 1 if @work was pending and we successfully stole PENDING
1190 * 0 if @work was idle and we claimed PENDING
1191 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1192 * -ENOENT if someone else is canceling @work, this state may persist
1193 * for arbitrarily long
36e227d2 1194 *
d185af30 1195 * Note:
bbb68dfa 1196 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1197 * interrupted while holding PENDING and @work off queue, irq must be
1198 * disabled on entry. This, combined with delayed_work->timer being
1199 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1200 *
1201 * On successful return, >= 0, irq is disabled and the caller is
1202 * responsible for releasing it using local_irq_restore(*@flags).
1203 *
e0aecdd8 1204 * This function is safe to call from any context including IRQ handler.
bf4ede01 1205 */
bbb68dfa
TH
1206static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1207 unsigned long *flags)
bf4ede01 1208{
d565ed63 1209 struct worker_pool *pool;
112202d9 1210 struct pool_workqueue *pwq;
bf4ede01 1211
bbb68dfa
TH
1212 local_irq_save(*flags);
1213
36e227d2
TH
1214 /* try to steal the timer if it exists */
1215 if (is_dwork) {
1216 struct delayed_work *dwork = to_delayed_work(work);
1217
e0aecdd8
TH
1218 /*
1219 * dwork->timer is irqsafe. If del_timer() fails, it's
1220 * guaranteed that the timer is not queued anywhere and not
1221 * running on the local CPU.
1222 */
36e227d2
TH
1223 if (likely(del_timer(&dwork->timer)))
1224 return 1;
1225 }
1226
1227 /* try to claim PENDING the normal way */
bf4ede01
TH
1228 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1229 return 0;
1230
1231 /*
1232 * The queueing is in progress, or it is already queued. Try to
1233 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1234 */
d565ed63
TH
1235 pool = get_work_pool(work);
1236 if (!pool)
bbb68dfa 1237 goto fail;
bf4ede01 1238
d565ed63 1239 spin_lock(&pool->lock);
0b3dae68 1240 /*
112202d9
TH
1241 * work->data is guaranteed to point to pwq only while the work
1242 * item is queued on pwq->wq, and both updating work->data to point
1243 * to pwq on queueing and to pool on dequeueing are done under
1244 * pwq->pool->lock. This in turn guarantees that, if work->data
1245 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1246 * item is currently queued on that pool.
1247 */
112202d9
TH
1248 pwq = get_work_pwq(work);
1249 if (pwq && pwq->pool == pool) {
16062836
TH
1250 debug_work_deactivate(work);
1251
1252 /*
1253 * A delayed work item cannot be grabbed directly because
1254 * it might have linked NO_COLOR work items which, if left
112202d9 1255 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1256 * management later on and cause stall. Make sure the work
1257 * item is activated before grabbing.
1258 */
1259 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1260 pwq_activate_delayed_work(work);
16062836
TH
1261
1262 list_del_init(&work->entry);
9c34a704 1263 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1264
112202d9 1265 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1266 set_work_pool_and_keep_pending(work, pool->id);
1267
1268 spin_unlock(&pool->lock);
1269 return 1;
bf4ede01 1270 }
d565ed63 1271 spin_unlock(&pool->lock);
bbb68dfa
TH
1272fail:
1273 local_irq_restore(*flags);
1274 if (work_is_canceling(work))
1275 return -ENOENT;
1276 cpu_relax();
36e227d2 1277 return -EAGAIN;
bf4ede01
TH
1278}
1279
4690c4ab 1280/**
706026c2 1281 * insert_work - insert a work into a pool
112202d9 1282 * @pwq: pwq @work belongs to
4690c4ab
TH
1283 * @work: work to insert
1284 * @head: insertion point
1285 * @extra_flags: extra WORK_STRUCT_* flags to set
1286 *
112202d9 1287 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1288 * work_struct flags.
4690c4ab
TH
1289 *
1290 * CONTEXT:
d565ed63 1291 * spin_lock_irq(pool->lock).
4690c4ab 1292 */
112202d9
TH
1293static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1294 struct list_head *head, unsigned int extra_flags)
b89deed3 1295{
112202d9 1296 struct worker_pool *pool = pwq->pool;
e22bee78 1297
4690c4ab 1298 /* we own @work, set data and link */
112202d9 1299 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1300 list_add_tail(&work->entry, head);
8864b4e5 1301 get_pwq(pwq);
e22bee78
TH
1302
1303 /*
c5aa87bb
TH
1304 * Ensure either wq_worker_sleeping() sees the above
1305 * list_add_tail() or we see zero nr_running to avoid workers lying
1306 * around lazily while there are works to be processed.
e22bee78
TH
1307 */
1308 smp_mb();
1309
63d95a91
TH
1310 if (__need_more_worker(pool))
1311 wake_up_worker(pool);
b89deed3
ON
1312}
1313
c8efcc25
TH
1314/*
1315 * Test whether @work is being queued from another work executing on the
8d03ecfe 1316 * same workqueue.
c8efcc25
TH
1317 */
1318static bool is_chained_work(struct workqueue_struct *wq)
1319{
8d03ecfe
TH
1320 struct worker *worker;
1321
1322 worker = current_wq_worker();
1323 /*
1324 * Return %true iff I'm a worker execuing a work item on @wq. If
1325 * I'm @worker, it's safe to dereference it without locking.
1326 */
112202d9 1327 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1328}
1329
ef557180
MG
1330/*
1331 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1332 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1333 * avoid perturbing sensitive tasks.
1334 */
1335static int wq_select_unbound_cpu(int cpu)
1336{
f303fccb 1337 static bool printed_dbg_warning;
ef557180
MG
1338 int new_cpu;
1339
f303fccb
TH
1340 if (likely(!wq_debug_force_rr_cpu)) {
1341 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1342 return cpu;
1343 } else if (!printed_dbg_warning) {
1344 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1345 printed_dbg_warning = true;
1346 }
1347
ef557180
MG
1348 if (cpumask_empty(wq_unbound_cpumask))
1349 return cpu;
1350
1351 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1352 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1353 if (unlikely(new_cpu >= nr_cpu_ids)) {
1354 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1355 if (unlikely(new_cpu >= nr_cpu_ids))
1356 return cpu;
1357 }
1358 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1359
1360 return new_cpu;
1361}
1362
d84ff051 1363static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1364 struct work_struct *work)
1365{
112202d9 1366 struct pool_workqueue *pwq;
c9178087 1367 struct worker_pool *last_pool;
1e19ffc6 1368 struct list_head *worklist;
8a2e8e5d 1369 unsigned int work_flags;
b75cac93 1370 unsigned int req_cpu = cpu;
8930caba
TH
1371
1372 /*
1373 * While a work item is PENDING && off queue, a task trying to
1374 * steal the PENDING will busy-loop waiting for it to either get
1375 * queued or lose PENDING. Grabbing PENDING and queueing should
1376 * happen with IRQ disabled.
1377 */
8e8eb730 1378 lockdep_assert_irqs_disabled();
1da177e4 1379
dc186ad7 1380 debug_work_activate(work);
1e19ffc6 1381
9ef28a73 1382 /* if draining, only works from the same workqueue are allowed */
618b01eb 1383 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1384 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1385 return;
9e8cd2f5 1386retry:
df2d5ae4 1387 if (req_cpu == WORK_CPU_UNBOUND)
ef557180 1388 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1389
c9178087 1390 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1391 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1392 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1393 else
1394 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1395
c9178087
TH
1396 /*
1397 * If @work was previously on a different pool, it might still be
1398 * running there, in which case the work needs to be queued on that
1399 * pool to guarantee non-reentrancy.
1400 */
1401 last_pool = get_work_pool(work);
1402 if (last_pool && last_pool != pwq->pool) {
1403 struct worker *worker;
18aa9eff 1404
c9178087 1405 spin_lock(&last_pool->lock);
18aa9eff 1406
c9178087 1407 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1408
c9178087
TH
1409 if (worker && worker->current_pwq->wq == wq) {
1410 pwq = worker->current_pwq;
8930caba 1411 } else {
c9178087
TH
1412 /* meh... not running there, queue here */
1413 spin_unlock(&last_pool->lock);
112202d9 1414 spin_lock(&pwq->pool->lock);
8930caba 1415 }
f3421797 1416 } else {
112202d9 1417 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1418 }
1419
9e8cd2f5
TH
1420 /*
1421 * pwq is determined and locked. For unbound pools, we could have
1422 * raced with pwq release and it could already be dead. If its
1423 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1424 * without another pwq replacing it in the numa_pwq_tbl or while
1425 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1426 * make forward-progress.
1427 */
1428 if (unlikely(!pwq->refcnt)) {
1429 if (wq->flags & WQ_UNBOUND) {
1430 spin_unlock(&pwq->pool->lock);
1431 cpu_relax();
1432 goto retry;
1433 }
1434 /* oops */
1435 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1436 wq->name, cpu);
1437 }
1438
112202d9
TH
1439 /* pwq determined, queue */
1440 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1441
f5b2552b 1442 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1443 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1444 return;
1445 }
1e19ffc6 1446
112202d9
TH
1447 pwq->nr_in_flight[pwq->work_color]++;
1448 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1449
112202d9 1450 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1451 trace_workqueue_activate_work(work);
112202d9
TH
1452 pwq->nr_active++;
1453 worklist = &pwq->pool->worklist;
82607adc
TH
1454 if (list_empty(worklist))
1455 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1456 } else {
1457 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1458 worklist = &pwq->delayed_works;
8a2e8e5d 1459 }
1e19ffc6 1460
112202d9 1461 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1462
112202d9 1463 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1464}
1465
0fcb78c2 1466/**
c1a220e7
ZR
1467 * queue_work_on - queue work on specific cpu
1468 * @cpu: CPU number to execute work on
0fcb78c2
REB
1469 * @wq: workqueue to use
1470 * @work: work to queue
1471 *
c1a220e7
ZR
1472 * We queue the work to a specific CPU, the caller must ensure it
1473 * can't go away.
d185af30
YB
1474 *
1475 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1476 */
d4283e93
TH
1477bool queue_work_on(int cpu, struct workqueue_struct *wq,
1478 struct work_struct *work)
1da177e4 1479{
d4283e93 1480 bool ret = false;
8930caba 1481 unsigned long flags;
ef1ca236 1482
8930caba 1483 local_irq_save(flags);
c1a220e7 1484
22df02bb 1485 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1486 __queue_work(cpu, wq, work);
d4283e93 1487 ret = true;
c1a220e7 1488 }
ef1ca236 1489
8930caba 1490 local_irq_restore(flags);
1da177e4
LT
1491 return ret;
1492}
ad7b1f84 1493EXPORT_SYMBOL(queue_work_on);
1da177e4 1494
8c20feb6 1495void delayed_work_timer_fn(struct timer_list *t)
1da177e4 1496{
8c20feb6 1497 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 1498
e0aecdd8 1499 /* should have been called from irqsafe timer with irq already off */
60c057bc 1500 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1501}
1438ade5 1502EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1503
7beb2edf
TH
1504static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1505 struct delayed_work *dwork, unsigned long delay)
1da177e4 1506{
7beb2edf
TH
1507 struct timer_list *timer = &dwork->timer;
1508 struct work_struct *work = &dwork->work;
7beb2edf 1509
637fdbae 1510 WARN_ON_ONCE(!wq);
841b86f3 1511 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
fc4b514f
TH
1512 WARN_ON_ONCE(timer_pending(timer));
1513 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1514
8852aac2
TH
1515 /*
1516 * If @delay is 0, queue @dwork->work immediately. This is for
1517 * both optimization and correctness. The earliest @timer can
1518 * expire is on the closest next tick and delayed_work users depend
1519 * on that there's no such delay when @delay is 0.
1520 */
1521 if (!delay) {
1522 __queue_work(cpu, wq, &dwork->work);
1523 return;
1524 }
1525
60c057bc 1526 dwork->wq = wq;
1265057f 1527 dwork->cpu = cpu;
7beb2edf
TH
1528 timer->expires = jiffies + delay;
1529
041bd12e
TH
1530 if (unlikely(cpu != WORK_CPU_UNBOUND))
1531 add_timer_on(timer, cpu);
1532 else
1533 add_timer(timer);
1da177e4
LT
1534}
1535
0fcb78c2
REB
1536/**
1537 * queue_delayed_work_on - queue work on specific CPU after delay
1538 * @cpu: CPU number to execute work on
1539 * @wq: workqueue to use
af9997e4 1540 * @dwork: work to queue
0fcb78c2
REB
1541 * @delay: number of jiffies to wait before queueing
1542 *
d185af30 1543 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1544 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1545 * execution.
0fcb78c2 1546 */
d4283e93
TH
1547bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1548 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1549{
52bad64d 1550 struct work_struct *work = &dwork->work;
d4283e93 1551 bool ret = false;
8930caba 1552 unsigned long flags;
7a6bc1cd 1553
8930caba
TH
1554 /* read the comment in __queue_work() */
1555 local_irq_save(flags);
7a6bc1cd 1556
22df02bb 1557 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1558 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1559 ret = true;
7a6bc1cd 1560 }
8a3e77cc 1561
8930caba 1562 local_irq_restore(flags);
7a6bc1cd
VP
1563 return ret;
1564}
ad7b1f84 1565EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1566
8376fe22
TH
1567/**
1568 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1569 * @cpu: CPU number to execute work on
1570 * @wq: workqueue to use
1571 * @dwork: work to queue
1572 * @delay: number of jiffies to wait before queueing
1573 *
1574 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1575 * modify @dwork's timer so that it expires after @delay. If @delay is
1576 * zero, @work is guaranteed to be scheduled immediately regardless of its
1577 * current state.
1578 *
d185af30 1579 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1580 * pending and its timer was modified.
1581 *
e0aecdd8 1582 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1583 * See try_to_grab_pending() for details.
1584 */
1585bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1586 struct delayed_work *dwork, unsigned long delay)
1587{
1588 unsigned long flags;
1589 int ret;
c7fc77f7 1590
8376fe22
TH
1591 do {
1592 ret = try_to_grab_pending(&dwork->work, true, &flags);
1593 } while (unlikely(ret == -EAGAIN));
63bc0362 1594
8376fe22
TH
1595 if (likely(ret >= 0)) {
1596 __queue_delayed_work(cpu, wq, dwork, delay);
1597 local_irq_restore(flags);
7a6bc1cd 1598 }
8376fe22
TH
1599
1600 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1601 return ret;
1602}
8376fe22
TH
1603EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1604
05f0fe6b
TH
1605static void rcu_work_rcufn(struct rcu_head *rcu)
1606{
1607 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1608
1609 /* read the comment in __queue_work() */
1610 local_irq_disable();
1611 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1612 local_irq_enable();
1613}
1614
1615/**
1616 * queue_rcu_work - queue work after a RCU grace period
1617 * @wq: workqueue to use
1618 * @rwork: work to queue
1619 *
1620 * Return: %false if @rwork was already pending, %true otherwise. Note
1621 * that a full RCU grace period is guaranteed only after a %true return.
1622 * While @rwork is guarnateed to be executed after a %false return, the
1623 * execution may happen before a full RCU grace period has passed.
1624 */
1625bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1626{
1627 struct work_struct *work = &rwork->work;
1628
1629 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1630 rwork->wq = wq;
1631 call_rcu(&rwork->rcu, rcu_work_rcufn);
1632 return true;
1633 }
1634
1635 return false;
1636}
1637EXPORT_SYMBOL(queue_rcu_work);
1638
c8e55f36
TH
1639/**
1640 * worker_enter_idle - enter idle state
1641 * @worker: worker which is entering idle state
1642 *
1643 * @worker is entering idle state. Update stats and idle timer if
1644 * necessary.
1645 *
1646 * LOCKING:
d565ed63 1647 * spin_lock_irq(pool->lock).
c8e55f36
TH
1648 */
1649static void worker_enter_idle(struct worker *worker)
1da177e4 1650{
bd7bdd43 1651 struct worker_pool *pool = worker->pool;
c8e55f36 1652
6183c009
TH
1653 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1654 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1655 (worker->hentry.next || worker->hentry.pprev)))
1656 return;
c8e55f36 1657
051e1850 1658 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1659 worker->flags |= WORKER_IDLE;
bd7bdd43 1660 pool->nr_idle++;
e22bee78 1661 worker->last_active = jiffies;
c8e55f36
TH
1662
1663 /* idle_list is LIFO */
bd7bdd43 1664 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1665
628c78e7
TH
1666 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1667 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1668
544ecf31 1669 /*
e8b3f8db 1670 * Sanity check nr_running. Because unbind_workers() releases
d565ed63 1671 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1672 * nr_running, the warning may trigger spuriously. Check iff
1673 * unbind is not in progress.
544ecf31 1674 */
24647570 1675 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1676 pool->nr_workers == pool->nr_idle &&
e19e397a 1677 atomic_read(&pool->nr_running));
c8e55f36
TH
1678}
1679
1680/**
1681 * worker_leave_idle - leave idle state
1682 * @worker: worker which is leaving idle state
1683 *
1684 * @worker is leaving idle state. Update stats.
1685 *
1686 * LOCKING:
d565ed63 1687 * spin_lock_irq(pool->lock).
c8e55f36
TH
1688 */
1689static void worker_leave_idle(struct worker *worker)
1690{
bd7bdd43 1691 struct worker_pool *pool = worker->pool;
c8e55f36 1692
6183c009
TH
1693 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1694 return;
d302f017 1695 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1696 pool->nr_idle--;
c8e55f36
TH
1697 list_del_init(&worker->entry);
1698}
1699
f7537df5 1700static struct worker *alloc_worker(int node)
c34056a3
TH
1701{
1702 struct worker *worker;
1703
f7537df5 1704 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1705 if (worker) {
1706 INIT_LIST_HEAD(&worker->entry);
affee4b2 1707 INIT_LIST_HEAD(&worker->scheduled);
da028469 1708 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1709 /* on creation a worker is in !idle && prep state */
1710 worker->flags = WORKER_PREP;
c8e55f36 1711 }
c34056a3
TH
1712 return worker;
1713}
1714
4736cbf7
LJ
1715/**
1716 * worker_attach_to_pool() - attach a worker to a pool
1717 * @worker: worker to be attached
1718 * @pool: the target pool
1719 *
1720 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1721 * cpu-binding of @worker are kept coordinated with the pool across
1722 * cpu-[un]hotplugs.
1723 */
1724static void worker_attach_to_pool(struct worker *worker,
1725 struct worker_pool *pool)
1726{
1258fae7 1727 mutex_lock(&wq_pool_attach_mutex);
4736cbf7
LJ
1728
1729 /*
1730 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1731 * online CPUs. It'll be re-applied when any of the CPUs come up.
1732 */
1733 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1734
1735 /*
1258fae7
TH
1736 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1737 * stable across this function. See the comments above the flag
1738 * definition for details.
4736cbf7
LJ
1739 */
1740 if (pool->flags & POOL_DISASSOCIATED)
1741 worker->flags |= WORKER_UNBOUND;
1742
1743 list_add_tail(&worker->node, &pool->workers);
a2d812a2 1744 worker->pool = pool;
4736cbf7 1745
1258fae7 1746 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
1747}
1748
60f5a4bc
LJ
1749/**
1750 * worker_detach_from_pool() - detach a worker from its pool
1751 * @worker: worker which is attached to its pool
60f5a4bc 1752 *
4736cbf7
LJ
1753 * Undo the attaching which had been done in worker_attach_to_pool(). The
1754 * caller worker shouldn't access to the pool after detached except it has
1755 * other reference to the pool.
60f5a4bc 1756 */
a2d812a2 1757static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 1758{
a2d812a2 1759 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
1760 struct completion *detach_completion = NULL;
1761
1258fae7 1762 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 1763
da028469 1764 list_del(&worker->node);
a2d812a2
TH
1765 worker->pool = NULL;
1766
da028469 1767 if (list_empty(&pool->workers))
60f5a4bc 1768 detach_completion = pool->detach_completion;
1258fae7 1769 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 1770
b62c0751
LJ
1771 /* clear leftover flags without pool->lock after it is detached */
1772 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1773
60f5a4bc
LJ
1774 if (detach_completion)
1775 complete(detach_completion);
1776}
1777
c34056a3
TH
1778/**
1779 * create_worker - create a new workqueue worker
63d95a91 1780 * @pool: pool the new worker will belong to
c34056a3 1781 *
051e1850 1782 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1783 *
1784 * CONTEXT:
1785 * Might sleep. Does GFP_KERNEL allocations.
1786 *
d185af30 1787 * Return:
c34056a3
TH
1788 * Pointer to the newly created worker.
1789 */
bc2ae0f5 1790static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1791{
c34056a3 1792 struct worker *worker = NULL;
f3421797 1793 int id = -1;
e3c916a4 1794 char id_buf[16];
c34056a3 1795
7cda9aae
LJ
1796 /* ID is needed to determine kthread name */
1797 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1798 if (id < 0)
1799 goto fail;
c34056a3 1800
f7537df5 1801 worker = alloc_worker(pool->node);
c34056a3
TH
1802 if (!worker)
1803 goto fail;
1804
c34056a3
TH
1805 worker->id = id;
1806
29c91e99 1807 if (pool->cpu >= 0)
e3c916a4
TH
1808 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1809 pool->attrs->nice < 0 ? "H" : "");
f3421797 1810 else
e3c916a4
TH
1811 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1812
f3f90ad4 1813 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1814 "kworker/%s", id_buf);
c34056a3
TH
1815 if (IS_ERR(worker->task))
1816 goto fail;
1817
91151228 1818 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1819 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1820
da028469 1821 /* successful, attach the worker to the pool */
4736cbf7 1822 worker_attach_to_pool(worker, pool);
822d8405 1823
051e1850
LJ
1824 /* start the newly created worker */
1825 spin_lock_irq(&pool->lock);
1826 worker->pool->nr_workers++;
1827 worker_enter_idle(worker);
1828 wake_up_process(worker->task);
1829 spin_unlock_irq(&pool->lock);
1830
c34056a3 1831 return worker;
822d8405 1832
c34056a3 1833fail:
9625ab17 1834 if (id >= 0)
7cda9aae 1835 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1836 kfree(worker);
1837 return NULL;
1838}
1839
c34056a3
TH
1840/**
1841 * destroy_worker - destroy a workqueue worker
1842 * @worker: worker to be destroyed
1843 *
73eb7fe7
LJ
1844 * Destroy @worker and adjust @pool stats accordingly. The worker should
1845 * be idle.
c8e55f36
TH
1846 *
1847 * CONTEXT:
60f5a4bc 1848 * spin_lock_irq(pool->lock).
c34056a3
TH
1849 */
1850static void destroy_worker(struct worker *worker)
1851{
bd7bdd43 1852 struct worker_pool *pool = worker->pool;
c34056a3 1853
cd549687
TH
1854 lockdep_assert_held(&pool->lock);
1855
c34056a3 1856 /* sanity check frenzy */
6183c009 1857 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1858 WARN_ON(!list_empty(&worker->scheduled)) ||
1859 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1860 return;
c34056a3 1861
73eb7fe7
LJ
1862 pool->nr_workers--;
1863 pool->nr_idle--;
5bdfff96 1864
c8e55f36 1865 list_del_init(&worker->entry);
cb444766 1866 worker->flags |= WORKER_DIE;
60f5a4bc 1867 wake_up_process(worker->task);
c34056a3
TH
1868}
1869
32a6c723 1870static void idle_worker_timeout(struct timer_list *t)
e22bee78 1871{
32a6c723 1872 struct worker_pool *pool = from_timer(pool, t, idle_timer);
e22bee78 1873
d565ed63 1874 spin_lock_irq(&pool->lock);
e22bee78 1875
3347fc9f 1876 while (too_many_workers(pool)) {
e22bee78
TH
1877 struct worker *worker;
1878 unsigned long expires;
1879
1880 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1881 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1882 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1883
3347fc9f 1884 if (time_before(jiffies, expires)) {
63d95a91 1885 mod_timer(&pool->idle_timer, expires);
3347fc9f 1886 break;
d5abe669 1887 }
3347fc9f
LJ
1888
1889 destroy_worker(worker);
e22bee78
TH
1890 }
1891
d565ed63 1892 spin_unlock_irq(&pool->lock);
e22bee78 1893}
d5abe669 1894
493a1724 1895static void send_mayday(struct work_struct *work)
e22bee78 1896{
112202d9
TH
1897 struct pool_workqueue *pwq = get_work_pwq(work);
1898 struct workqueue_struct *wq = pwq->wq;
493a1724 1899
2e109a28 1900 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1901
493008a8 1902 if (!wq->rescuer)
493a1724 1903 return;
e22bee78
TH
1904
1905 /* mayday mayday mayday */
493a1724 1906 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1907 /*
1908 * If @pwq is for an unbound wq, its base ref may be put at
1909 * any time due to an attribute change. Pin @pwq until the
1910 * rescuer is done with it.
1911 */
1912 get_pwq(pwq);
493a1724 1913 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1914 wake_up_process(wq->rescuer->task);
493a1724 1915 }
e22bee78
TH
1916}
1917
32a6c723 1918static void pool_mayday_timeout(struct timer_list *t)
e22bee78 1919{
32a6c723 1920 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
1921 struct work_struct *work;
1922
b2d82909
TH
1923 spin_lock_irq(&pool->lock);
1924 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 1925
63d95a91 1926 if (need_to_create_worker(pool)) {
e22bee78
TH
1927 /*
1928 * We've been trying to create a new worker but
1929 * haven't been successful. We might be hitting an
1930 * allocation deadlock. Send distress signals to
1931 * rescuers.
1932 */
63d95a91 1933 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1934 send_mayday(work);
1da177e4 1935 }
e22bee78 1936
b2d82909
TH
1937 spin_unlock(&wq_mayday_lock);
1938 spin_unlock_irq(&pool->lock);
e22bee78 1939
63d95a91 1940 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1941}
1942
e22bee78
TH
1943/**
1944 * maybe_create_worker - create a new worker if necessary
63d95a91 1945 * @pool: pool to create a new worker for
e22bee78 1946 *
63d95a91 1947 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1948 * have at least one idle worker on return from this function. If
1949 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1950 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1951 * possible allocation deadlock.
1952 *
c5aa87bb
TH
1953 * On return, need_to_create_worker() is guaranteed to be %false and
1954 * may_start_working() %true.
e22bee78
TH
1955 *
1956 * LOCKING:
d565ed63 1957 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1958 * multiple times. Does GFP_KERNEL allocations. Called only from
1959 * manager.
e22bee78 1960 */
29187a9e 1961static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1962__releases(&pool->lock)
1963__acquires(&pool->lock)
1da177e4 1964{
e22bee78 1965restart:
d565ed63 1966 spin_unlock_irq(&pool->lock);
9f9c2364 1967
e22bee78 1968 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1969 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1970
1971 while (true) {
051e1850 1972 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 1973 break;
1da177e4 1974
e212f361 1975 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1976
63d95a91 1977 if (!need_to_create_worker(pool))
e22bee78
TH
1978 break;
1979 }
1980
63d95a91 1981 del_timer_sync(&pool->mayday_timer);
d565ed63 1982 spin_lock_irq(&pool->lock);
051e1850
LJ
1983 /*
1984 * This is necessary even after a new worker was just successfully
1985 * created as @pool->lock was dropped and the new worker might have
1986 * already become busy.
1987 */
63d95a91 1988 if (need_to_create_worker(pool))
e22bee78 1989 goto restart;
e22bee78
TH
1990}
1991
73f53c4a 1992/**
e22bee78
TH
1993 * manage_workers - manage worker pool
1994 * @worker: self
73f53c4a 1995 *
706026c2 1996 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1997 * to. At any given time, there can be only zero or one manager per
706026c2 1998 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1999 *
2000 * The caller can safely start processing works on false return. On
2001 * true return, it's guaranteed that need_to_create_worker() is false
2002 * and may_start_working() is true.
73f53c4a
TH
2003 *
2004 * CONTEXT:
d565ed63 2005 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2006 * multiple times. Does GFP_KERNEL allocations.
2007 *
d185af30 2008 * Return:
29187a9e
TH
2009 * %false if the pool doesn't need management and the caller can safely
2010 * start processing works, %true if management function was performed and
2011 * the conditions that the caller verified before calling the function may
2012 * no longer be true.
73f53c4a 2013 */
e22bee78 2014static bool manage_workers(struct worker *worker)
73f53c4a 2015{
63d95a91 2016 struct worker_pool *pool = worker->pool;
73f53c4a 2017
692b4825 2018 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 2019 return false;
692b4825
TH
2020
2021 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 2022 pool->manager = worker;
1e19ffc6 2023
29187a9e 2024 maybe_create_worker(pool);
e22bee78 2025
2607d7a6 2026 pool->manager = NULL;
692b4825
TH
2027 pool->flags &= ~POOL_MANAGER_ACTIVE;
2028 wake_up(&wq_manager_wait);
29187a9e 2029 return true;
73f53c4a
TH
2030}
2031
a62428c0
TH
2032/**
2033 * process_one_work - process single work
c34056a3 2034 * @worker: self
a62428c0
TH
2035 * @work: work to process
2036 *
2037 * Process @work. This function contains all the logics necessary to
2038 * process a single work including synchronization against and
2039 * interaction with other workers on the same cpu, queueing and
2040 * flushing. As long as context requirement is met, any worker can
2041 * call this function to process a work.
2042 *
2043 * CONTEXT:
d565ed63 2044 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2045 */
c34056a3 2046static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2047__releases(&pool->lock)
2048__acquires(&pool->lock)
a62428c0 2049{
112202d9 2050 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2051 struct worker_pool *pool = worker->pool;
112202d9 2052 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2053 int work_color;
7e11629d 2054 struct worker *collision;
a62428c0
TH
2055#ifdef CONFIG_LOCKDEP
2056 /*
2057 * It is permissible to free the struct work_struct from
2058 * inside the function that is called from it, this we need to
2059 * take into account for lockdep too. To avoid bogus "held
2060 * lock freed" warnings as well as problems when looking into
2061 * work->lockdep_map, make a copy and use that here.
2062 */
4d82a1de
PZ
2063 struct lockdep_map lockdep_map;
2064
2065 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2066#endif
807407c0 2067 /* ensure we're on the correct CPU */
85327af6 2068 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2069 raw_smp_processor_id() != pool->cpu);
25511a47 2070
7e11629d
TH
2071 /*
2072 * A single work shouldn't be executed concurrently by
2073 * multiple workers on a single cpu. Check whether anyone is
2074 * already processing the work. If so, defer the work to the
2075 * currently executing one.
2076 */
c9e7cf27 2077 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2078 if (unlikely(collision)) {
2079 move_linked_works(work, &collision->scheduled, NULL);
2080 return;
2081 }
2082
8930caba 2083 /* claim and dequeue */
a62428c0 2084 debug_work_deactivate(work);
c9e7cf27 2085 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2086 worker->current_work = work;
a2c1c57b 2087 worker->current_func = work->func;
112202d9 2088 worker->current_pwq = pwq;
73f53c4a 2089 work_color = get_work_color(work);
7a22ad75 2090
8bf89593
TH
2091 /*
2092 * Record wq name for cmdline and debug reporting, may get
2093 * overridden through set_worker_desc().
2094 */
2095 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2096
a62428c0
TH
2097 list_del_init(&work->entry);
2098
fb0e7beb 2099 /*
228f1d00
LJ
2100 * CPU intensive works don't participate in concurrency management.
2101 * They're the scheduler's responsibility. This takes @worker out
2102 * of concurrency management and the next code block will chain
2103 * execution of the pending work items.
fb0e7beb
TH
2104 */
2105 if (unlikely(cpu_intensive))
228f1d00 2106 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2107
974271c4 2108 /*
a489a03e
LJ
2109 * Wake up another worker if necessary. The condition is always
2110 * false for normal per-cpu workers since nr_running would always
2111 * be >= 1 at this point. This is used to chain execution of the
2112 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2113 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2114 */
a489a03e 2115 if (need_more_worker(pool))
63d95a91 2116 wake_up_worker(pool);
974271c4 2117
8930caba 2118 /*
7c3eed5c 2119 * Record the last pool and clear PENDING which should be the last
d565ed63 2120 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2121 * PENDING and queued state changes happen together while IRQ is
2122 * disabled.
8930caba 2123 */
7c3eed5c 2124 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2125
d565ed63 2126 spin_unlock_irq(&pool->lock);
a62428c0 2127
a1d14934 2128 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2129 lock_map_acquire(&lockdep_map);
e6f3faa7 2130 /*
f52be570
PZ
2131 * Strictly speaking we should mark the invariant state without holding
2132 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2133 *
2134 * However, that would result in:
2135 *
2136 * A(W1)
2137 * WFC(C)
2138 * A(W1)
2139 * C(C)
2140 *
2141 * Which would create W1->C->W1 dependencies, even though there is no
2142 * actual deadlock possible. There are two solutions, using a
2143 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2144 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2145 * these locks.
2146 *
2147 * AFAICT there is no possible deadlock scenario between the
2148 * flush_work() and complete() primitives (except for single-threaded
2149 * workqueues), so hiding them isn't a problem.
2150 */
f52be570 2151 lockdep_invariant_state(true);
e36c886a 2152 trace_workqueue_execute_start(work);
a2c1c57b 2153 worker->current_func(work);
e36c886a
AV
2154 /*
2155 * While we must be careful to not use "work" after this, the trace
2156 * point will only record its address.
2157 */
2158 trace_workqueue_execute_end(work);
a62428c0 2159 lock_map_release(&lockdep_map);
112202d9 2160 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2161
2162 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2163 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2164 " last function: %pf\n",
a2c1c57b
TH
2165 current->comm, preempt_count(), task_pid_nr(current),
2166 worker->current_func);
a62428c0
TH
2167 debug_show_held_locks(current);
2168 dump_stack();
2169 }
2170
b22ce278
TH
2171 /*
2172 * The following prevents a kworker from hogging CPU on !PREEMPT
2173 * kernels, where a requeueing work item waiting for something to
2174 * happen could deadlock with stop_machine as such work item could
2175 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2176 * stop_machine. At the same time, report a quiescent RCU state so
2177 * the same condition doesn't freeze RCU.
b22ce278 2178 */
a7e6425e 2179 cond_resched();
b22ce278 2180
d565ed63 2181 spin_lock_irq(&pool->lock);
a62428c0 2182
fb0e7beb
TH
2183 /* clear cpu intensive status */
2184 if (unlikely(cpu_intensive))
2185 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2186
a62428c0 2187 /* we're done with it, release */
42f8570f 2188 hash_del(&worker->hentry);
c34056a3 2189 worker->current_work = NULL;
a2c1c57b 2190 worker->current_func = NULL;
112202d9
TH
2191 worker->current_pwq = NULL;
2192 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2193}
2194
affee4b2
TH
2195/**
2196 * process_scheduled_works - process scheduled works
2197 * @worker: self
2198 *
2199 * Process all scheduled works. Please note that the scheduled list
2200 * may change while processing a work, so this function repeatedly
2201 * fetches a work from the top and executes it.
2202 *
2203 * CONTEXT:
d565ed63 2204 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2205 * multiple times.
2206 */
2207static void process_scheduled_works(struct worker *worker)
1da177e4 2208{
affee4b2
TH
2209 while (!list_empty(&worker->scheduled)) {
2210 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2211 struct work_struct, entry);
c34056a3 2212 process_one_work(worker, work);
1da177e4 2213 }
1da177e4
LT
2214}
2215
197f6acc
TH
2216static void set_pf_worker(bool val)
2217{
2218 mutex_lock(&wq_pool_attach_mutex);
2219 if (val)
2220 current->flags |= PF_WQ_WORKER;
2221 else
2222 current->flags &= ~PF_WQ_WORKER;
2223 mutex_unlock(&wq_pool_attach_mutex);
2224}
2225
4690c4ab
TH
2226/**
2227 * worker_thread - the worker thread function
c34056a3 2228 * @__worker: self
4690c4ab 2229 *
c5aa87bb
TH
2230 * The worker thread function. All workers belong to a worker_pool -
2231 * either a per-cpu one or dynamic unbound one. These workers process all
2232 * work items regardless of their specific target workqueue. The only
2233 * exception is work items which belong to workqueues with a rescuer which
2234 * will be explained in rescuer_thread().
d185af30
YB
2235 *
2236 * Return: 0
4690c4ab 2237 */
c34056a3 2238static int worker_thread(void *__worker)
1da177e4 2239{
c34056a3 2240 struct worker *worker = __worker;
bd7bdd43 2241 struct worker_pool *pool = worker->pool;
1da177e4 2242
e22bee78 2243 /* tell the scheduler that this is a workqueue worker */
197f6acc 2244 set_pf_worker(true);
c8e55f36 2245woke_up:
d565ed63 2246 spin_lock_irq(&pool->lock);
1da177e4 2247
a9ab775b
TH
2248 /* am I supposed to die? */
2249 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2250 spin_unlock_irq(&pool->lock);
a9ab775b 2251 WARN_ON_ONCE(!list_empty(&worker->entry));
197f6acc 2252 set_pf_worker(false);
60f5a4bc
LJ
2253
2254 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2255 ida_simple_remove(&pool->worker_ida, worker->id);
a2d812a2 2256 worker_detach_from_pool(worker);
60f5a4bc 2257 kfree(worker);
a9ab775b 2258 return 0;
c8e55f36 2259 }
affee4b2 2260
c8e55f36 2261 worker_leave_idle(worker);
db7bccf4 2262recheck:
e22bee78 2263 /* no more worker necessary? */
63d95a91 2264 if (!need_more_worker(pool))
e22bee78
TH
2265 goto sleep;
2266
2267 /* do we need to manage? */
63d95a91 2268 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2269 goto recheck;
2270
c8e55f36
TH
2271 /*
2272 * ->scheduled list can only be filled while a worker is
2273 * preparing to process a work or actually processing it.
2274 * Make sure nobody diddled with it while I was sleeping.
2275 */
6183c009 2276 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2277
e22bee78 2278 /*
a9ab775b
TH
2279 * Finish PREP stage. We're guaranteed to have at least one idle
2280 * worker or that someone else has already assumed the manager
2281 * role. This is where @worker starts participating in concurrency
2282 * management if applicable and concurrency management is restored
2283 * after being rebound. See rebind_workers() for details.
e22bee78 2284 */
a9ab775b 2285 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2286
2287 do {
c8e55f36 2288 struct work_struct *work =
bd7bdd43 2289 list_first_entry(&pool->worklist,
c8e55f36
TH
2290 struct work_struct, entry);
2291
82607adc
TH
2292 pool->watchdog_ts = jiffies;
2293
c8e55f36
TH
2294 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2295 /* optimization path, not strictly necessary */
2296 process_one_work(worker, work);
2297 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2298 process_scheduled_works(worker);
c8e55f36
TH
2299 } else {
2300 move_linked_works(work, &worker->scheduled, NULL);
2301 process_scheduled_works(worker);
affee4b2 2302 }
63d95a91 2303 } while (keep_working(pool));
e22bee78 2304
228f1d00 2305 worker_set_flags(worker, WORKER_PREP);
d313dd85 2306sleep:
c8e55f36 2307 /*
d565ed63
TH
2308 * pool->lock is held and there's no work to process and no need to
2309 * manage, sleep. Workers are woken up only while holding
2310 * pool->lock or from local cpu, so setting the current state
2311 * before releasing pool->lock is enough to prevent losing any
2312 * event.
c8e55f36
TH
2313 */
2314 worker_enter_idle(worker);
c5a94a61 2315 __set_current_state(TASK_IDLE);
d565ed63 2316 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2317 schedule();
2318 goto woke_up;
1da177e4
LT
2319}
2320
e22bee78
TH
2321/**
2322 * rescuer_thread - the rescuer thread function
111c225a 2323 * @__rescuer: self
e22bee78
TH
2324 *
2325 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2326 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2327 *
706026c2 2328 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2329 * worker which uses GFP_KERNEL allocation which has slight chance of
2330 * developing into deadlock if some works currently on the same queue
2331 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2332 * the problem rescuer solves.
2333 *
706026c2
TH
2334 * When such condition is possible, the pool summons rescuers of all
2335 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2336 * those works so that forward progress can be guaranteed.
2337 *
2338 * This should happen rarely.
d185af30
YB
2339 *
2340 * Return: 0
e22bee78 2341 */
111c225a 2342static int rescuer_thread(void *__rescuer)
e22bee78 2343{
111c225a
TH
2344 struct worker *rescuer = __rescuer;
2345 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2346 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2347 bool should_stop;
e22bee78
TH
2348
2349 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2350
2351 /*
2352 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2353 * doesn't participate in concurrency management.
2354 */
197f6acc 2355 set_pf_worker(true);
e22bee78 2356repeat:
c5a94a61 2357 set_current_state(TASK_IDLE);
e22bee78 2358
4d595b86
LJ
2359 /*
2360 * By the time the rescuer is requested to stop, the workqueue
2361 * shouldn't have any work pending, but @wq->maydays may still have
2362 * pwq(s) queued. This can happen by non-rescuer workers consuming
2363 * all the work items before the rescuer got to them. Go through
2364 * @wq->maydays processing before acting on should_stop so that the
2365 * list is always empty on exit.
2366 */
2367 should_stop = kthread_should_stop();
e22bee78 2368
493a1724 2369 /* see whether any pwq is asking for help */
2e109a28 2370 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2371
2372 while (!list_empty(&wq->maydays)) {
2373 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2374 struct pool_workqueue, mayday_node);
112202d9 2375 struct worker_pool *pool = pwq->pool;
e22bee78 2376 struct work_struct *work, *n;
82607adc 2377 bool first = true;
e22bee78
TH
2378
2379 __set_current_state(TASK_RUNNING);
493a1724
TH
2380 list_del_init(&pwq->mayday_node);
2381
2e109a28 2382 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2383
51697d39
LJ
2384 worker_attach_to_pool(rescuer, pool);
2385
2386 spin_lock_irq(&pool->lock);
e22bee78
TH
2387
2388 /*
2389 * Slurp in all works issued via this workqueue and
2390 * process'em.
2391 */
0479c8c5 2392 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2393 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2394 if (get_work_pwq(work) == pwq) {
2395 if (first)
2396 pool->watchdog_ts = jiffies;
e22bee78 2397 move_linked_works(work, scheduled, &n);
82607adc
TH
2398 }
2399 first = false;
2400 }
e22bee78 2401
008847f6
N
2402 if (!list_empty(scheduled)) {
2403 process_scheduled_works(rescuer);
2404
2405 /*
2406 * The above execution of rescued work items could
2407 * have created more to rescue through
2408 * pwq_activate_first_delayed() or chained
2409 * queueing. Let's put @pwq back on mayday list so
2410 * that such back-to-back work items, which may be
2411 * being used to relieve memory pressure, don't
2412 * incur MAYDAY_INTERVAL delay inbetween.
2413 */
2414 if (need_to_create_worker(pool)) {
2415 spin_lock(&wq_mayday_lock);
2416 get_pwq(pwq);
2417 list_move_tail(&pwq->mayday_node, &wq->maydays);
2418 spin_unlock(&wq_mayday_lock);
2419 }
2420 }
7576958a 2421
77668c8b
LJ
2422 /*
2423 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2424 * go away while we're still attached to it.
77668c8b
LJ
2425 */
2426 put_pwq(pwq);
2427
7576958a 2428 /*
d8ca83e6 2429 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2430 * regular worker; otherwise, we end up with 0 concurrency
2431 * and stalling the execution.
2432 */
d8ca83e6 2433 if (need_more_worker(pool))
63d95a91 2434 wake_up_worker(pool);
7576958a 2435
13b1d625
LJ
2436 spin_unlock_irq(&pool->lock);
2437
a2d812a2 2438 worker_detach_from_pool(rescuer);
13b1d625
LJ
2439
2440 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2441 }
2442
2e109a28 2443 spin_unlock_irq(&wq_mayday_lock);
493a1724 2444
4d595b86
LJ
2445 if (should_stop) {
2446 __set_current_state(TASK_RUNNING);
197f6acc 2447 set_pf_worker(false);
4d595b86
LJ
2448 return 0;
2449 }
2450
111c225a
TH
2451 /* rescuers should never participate in concurrency management */
2452 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2453 schedule();
2454 goto repeat;
1da177e4
LT
2455}
2456
fca839c0
TH
2457/**
2458 * check_flush_dependency - check for flush dependency sanity
2459 * @target_wq: workqueue being flushed
2460 * @target_work: work item being flushed (NULL for workqueue flushes)
2461 *
2462 * %current is trying to flush the whole @target_wq or @target_work on it.
2463 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2464 * reclaiming memory or running on a workqueue which doesn't have
2465 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2466 * a deadlock.
2467 */
2468static void check_flush_dependency(struct workqueue_struct *target_wq,
2469 struct work_struct *target_work)
2470{
2471 work_func_t target_func = target_work ? target_work->func : NULL;
2472 struct worker *worker;
2473
2474 if (target_wq->flags & WQ_MEM_RECLAIM)
2475 return;
2476
2477 worker = current_wq_worker();
2478
2479 WARN_ONCE(current->flags & PF_MEMALLOC,
2480 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2481 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2482 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2483 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
fca839c0
TH
2484 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2485 worker->current_pwq->wq->name, worker->current_func,
2486 target_wq->name, target_func);
2487}
2488
fc2e4d70
ON
2489struct wq_barrier {
2490 struct work_struct work;
2491 struct completion done;
2607d7a6 2492 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2493};
2494
2495static void wq_barrier_func(struct work_struct *work)
2496{
2497 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2498 complete(&barr->done);
2499}
2500
4690c4ab
TH
2501/**
2502 * insert_wq_barrier - insert a barrier work
112202d9 2503 * @pwq: pwq to insert barrier into
4690c4ab 2504 * @barr: wq_barrier to insert
affee4b2
TH
2505 * @target: target work to attach @barr to
2506 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2507 *
affee4b2
TH
2508 * @barr is linked to @target such that @barr is completed only after
2509 * @target finishes execution. Please note that the ordering
2510 * guarantee is observed only with respect to @target and on the local
2511 * cpu.
2512 *
2513 * Currently, a queued barrier can't be canceled. This is because
2514 * try_to_grab_pending() can't determine whether the work to be
2515 * grabbed is at the head of the queue and thus can't clear LINKED
2516 * flag of the previous work while there must be a valid next work
2517 * after a work with LINKED flag set.
2518 *
2519 * Note that when @worker is non-NULL, @target may be modified
112202d9 2520 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2521 *
2522 * CONTEXT:
d565ed63 2523 * spin_lock_irq(pool->lock).
4690c4ab 2524 */
112202d9 2525static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2526 struct wq_barrier *barr,
2527 struct work_struct *target, struct worker *worker)
fc2e4d70 2528{
affee4b2
TH
2529 struct list_head *head;
2530 unsigned int linked = 0;
2531
dc186ad7 2532 /*
d565ed63 2533 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2534 * as we know for sure that this will not trigger any of the
2535 * checks and call back into the fixup functions where we
2536 * might deadlock.
2537 */
ca1cab37 2538 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2539 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 2540
fd1a5b04
BP
2541 init_completion_map(&barr->done, &target->lockdep_map);
2542
2607d7a6 2543 barr->task = current;
83c22520 2544
affee4b2
TH
2545 /*
2546 * If @target is currently being executed, schedule the
2547 * barrier to the worker; otherwise, put it after @target.
2548 */
2549 if (worker)
2550 head = worker->scheduled.next;
2551 else {
2552 unsigned long *bits = work_data_bits(target);
2553
2554 head = target->entry.next;
2555 /* there can already be other linked works, inherit and set */
2556 linked = *bits & WORK_STRUCT_LINKED;
2557 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2558 }
2559
dc186ad7 2560 debug_work_activate(&barr->work);
112202d9 2561 insert_work(pwq, &barr->work, head,
affee4b2 2562 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2563}
2564
73f53c4a 2565/**
112202d9 2566 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2567 * @wq: workqueue being flushed
2568 * @flush_color: new flush color, < 0 for no-op
2569 * @work_color: new work color, < 0 for no-op
2570 *
112202d9 2571 * Prepare pwqs for workqueue flushing.
73f53c4a 2572 *
112202d9
TH
2573 * If @flush_color is non-negative, flush_color on all pwqs should be
2574 * -1. If no pwq has in-flight commands at the specified color, all
2575 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2576 * has in flight commands, its pwq->flush_color is set to
2577 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2578 * wakeup logic is armed and %true is returned.
2579 *
2580 * The caller should have initialized @wq->first_flusher prior to
2581 * calling this function with non-negative @flush_color. If
2582 * @flush_color is negative, no flush color update is done and %false
2583 * is returned.
2584 *
112202d9 2585 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2586 * work_color which is previous to @work_color and all will be
2587 * advanced to @work_color.
2588 *
2589 * CONTEXT:
3c25a55d 2590 * mutex_lock(wq->mutex).
73f53c4a 2591 *
d185af30 2592 * Return:
73f53c4a
TH
2593 * %true if @flush_color >= 0 and there's something to flush. %false
2594 * otherwise.
2595 */
112202d9 2596static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2597 int flush_color, int work_color)
1da177e4 2598{
73f53c4a 2599 bool wait = false;
49e3cf44 2600 struct pool_workqueue *pwq;
1da177e4 2601
73f53c4a 2602 if (flush_color >= 0) {
6183c009 2603 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2604 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2605 }
2355b70f 2606
49e3cf44 2607 for_each_pwq(pwq, wq) {
112202d9 2608 struct worker_pool *pool = pwq->pool;
fc2e4d70 2609
b09f4fd3 2610 spin_lock_irq(&pool->lock);
83c22520 2611
73f53c4a 2612 if (flush_color >= 0) {
6183c009 2613 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2614
112202d9
TH
2615 if (pwq->nr_in_flight[flush_color]) {
2616 pwq->flush_color = flush_color;
2617 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2618 wait = true;
2619 }
2620 }
1da177e4 2621
73f53c4a 2622 if (work_color >= 0) {
6183c009 2623 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2624 pwq->work_color = work_color;
73f53c4a 2625 }
1da177e4 2626
b09f4fd3 2627 spin_unlock_irq(&pool->lock);
1da177e4 2628 }
2355b70f 2629
112202d9 2630 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2631 complete(&wq->first_flusher->done);
14441960 2632
73f53c4a 2633 return wait;
1da177e4
LT
2634}
2635
0fcb78c2 2636/**
1da177e4 2637 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2638 * @wq: workqueue to flush
1da177e4 2639 *
c5aa87bb
TH
2640 * This function sleeps until all work items which were queued on entry
2641 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2642 */
7ad5b3a5 2643void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2644{
73f53c4a
TH
2645 struct wq_flusher this_flusher = {
2646 .list = LIST_HEAD_INIT(this_flusher.list),
2647 .flush_color = -1,
fd1a5b04 2648 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
2649 };
2650 int next_color;
1da177e4 2651
3347fa09
TH
2652 if (WARN_ON(!wq_online))
2653 return;
2654
87915adc
JB
2655 lock_map_acquire(&wq->lockdep_map);
2656 lock_map_release(&wq->lockdep_map);
2657
3c25a55d 2658 mutex_lock(&wq->mutex);
73f53c4a
TH
2659
2660 /*
2661 * Start-to-wait phase
2662 */
2663 next_color = work_next_color(wq->work_color);
2664
2665 if (next_color != wq->flush_color) {
2666 /*
2667 * Color space is not full. The current work_color
2668 * becomes our flush_color and work_color is advanced
2669 * by one.
2670 */
6183c009 2671 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2672 this_flusher.flush_color = wq->work_color;
2673 wq->work_color = next_color;
2674
2675 if (!wq->first_flusher) {
2676 /* no flush in progress, become the first flusher */
6183c009 2677 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2678
2679 wq->first_flusher = &this_flusher;
2680
112202d9 2681 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2682 wq->work_color)) {
2683 /* nothing to flush, done */
2684 wq->flush_color = next_color;
2685 wq->first_flusher = NULL;
2686 goto out_unlock;
2687 }
2688 } else {
2689 /* wait in queue */
6183c009 2690 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2691 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2692 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2693 }
2694 } else {
2695 /*
2696 * Oops, color space is full, wait on overflow queue.
2697 * The next flush completion will assign us
2698 * flush_color and transfer to flusher_queue.
2699 */
2700 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2701 }
2702
fca839c0
TH
2703 check_flush_dependency(wq, NULL);
2704
3c25a55d 2705 mutex_unlock(&wq->mutex);
73f53c4a
TH
2706
2707 wait_for_completion(&this_flusher.done);
2708
2709 /*
2710 * Wake-up-and-cascade phase
2711 *
2712 * First flushers are responsible for cascading flushes and
2713 * handling overflow. Non-first flushers can simply return.
2714 */
2715 if (wq->first_flusher != &this_flusher)
2716 return;
2717
3c25a55d 2718 mutex_lock(&wq->mutex);
73f53c4a 2719
4ce48b37
TH
2720 /* we might have raced, check again with mutex held */
2721 if (wq->first_flusher != &this_flusher)
2722 goto out_unlock;
2723
73f53c4a
TH
2724 wq->first_flusher = NULL;
2725
6183c009
TH
2726 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2727 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2728
2729 while (true) {
2730 struct wq_flusher *next, *tmp;
2731
2732 /* complete all the flushers sharing the current flush color */
2733 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2734 if (next->flush_color != wq->flush_color)
2735 break;
2736 list_del_init(&next->list);
2737 complete(&next->done);
2738 }
2739
6183c009
TH
2740 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2741 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2742
2743 /* this flush_color is finished, advance by one */
2744 wq->flush_color = work_next_color(wq->flush_color);
2745
2746 /* one color has been freed, handle overflow queue */
2747 if (!list_empty(&wq->flusher_overflow)) {
2748 /*
2749 * Assign the same color to all overflowed
2750 * flushers, advance work_color and append to
2751 * flusher_queue. This is the start-to-wait
2752 * phase for these overflowed flushers.
2753 */
2754 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2755 tmp->flush_color = wq->work_color;
2756
2757 wq->work_color = work_next_color(wq->work_color);
2758
2759 list_splice_tail_init(&wq->flusher_overflow,
2760 &wq->flusher_queue);
112202d9 2761 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2762 }
2763
2764 if (list_empty(&wq->flusher_queue)) {
6183c009 2765 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2766 break;
2767 }
2768
2769 /*
2770 * Need to flush more colors. Make the next flusher
112202d9 2771 * the new first flusher and arm pwqs.
73f53c4a 2772 */
6183c009
TH
2773 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2774 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2775
2776 list_del_init(&next->list);
2777 wq->first_flusher = next;
2778
112202d9 2779 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2780 break;
2781
2782 /*
2783 * Meh... this color is already done, clear first
2784 * flusher and repeat cascading.
2785 */
2786 wq->first_flusher = NULL;
2787 }
2788
2789out_unlock:
3c25a55d 2790 mutex_unlock(&wq->mutex);
1da177e4 2791}
1dadafa8 2792EXPORT_SYMBOL(flush_workqueue);
1da177e4 2793
9c5a2ba7
TH
2794/**
2795 * drain_workqueue - drain a workqueue
2796 * @wq: workqueue to drain
2797 *
2798 * Wait until the workqueue becomes empty. While draining is in progress,
2799 * only chain queueing is allowed. IOW, only currently pending or running
2800 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2801 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2802 * by the depth of chaining and should be relatively short. Whine if it
2803 * takes too long.
2804 */
2805void drain_workqueue(struct workqueue_struct *wq)
2806{
2807 unsigned int flush_cnt = 0;
49e3cf44 2808 struct pool_workqueue *pwq;
9c5a2ba7
TH
2809
2810 /*
2811 * __queue_work() needs to test whether there are drainers, is much
2812 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2813 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2814 */
87fc741e 2815 mutex_lock(&wq->mutex);
9c5a2ba7 2816 if (!wq->nr_drainers++)
618b01eb 2817 wq->flags |= __WQ_DRAINING;
87fc741e 2818 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2819reflush:
2820 flush_workqueue(wq);
2821
b09f4fd3 2822 mutex_lock(&wq->mutex);
76af4d93 2823
49e3cf44 2824 for_each_pwq(pwq, wq) {
fa2563e4 2825 bool drained;
9c5a2ba7 2826
b09f4fd3 2827 spin_lock_irq(&pwq->pool->lock);
112202d9 2828 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2829 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2830
2831 if (drained)
9c5a2ba7
TH
2832 continue;
2833
2834 if (++flush_cnt == 10 ||
2835 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2836 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2837 wq->name, flush_cnt);
76af4d93 2838
b09f4fd3 2839 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2840 goto reflush;
2841 }
2842
9c5a2ba7 2843 if (!--wq->nr_drainers)
618b01eb 2844 wq->flags &= ~__WQ_DRAINING;
87fc741e 2845 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2846}
2847EXPORT_SYMBOL_GPL(drain_workqueue);
2848
d6e89786
JB
2849static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2850 bool from_cancel)
db700897 2851{
affee4b2 2852 struct worker *worker = NULL;
c9e7cf27 2853 struct worker_pool *pool;
112202d9 2854 struct pool_workqueue *pwq;
db700897
ON
2855
2856 might_sleep();
fa1b54e6
TH
2857
2858 local_irq_disable();
c9e7cf27 2859 pool = get_work_pool(work);
fa1b54e6
TH
2860 if (!pool) {
2861 local_irq_enable();
baf59022 2862 return false;
fa1b54e6 2863 }
db700897 2864
fa1b54e6 2865 spin_lock(&pool->lock);
0b3dae68 2866 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2867 pwq = get_work_pwq(work);
2868 if (pwq) {
2869 if (unlikely(pwq->pool != pool))
4690c4ab 2870 goto already_gone;
606a5020 2871 } else {
c9e7cf27 2872 worker = find_worker_executing_work(pool, work);
affee4b2 2873 if (!worker)
4690c4ab 2874 goto already_gone;
112202d9 2875 pwq = worker->current_pwq;
606a5020 2876 }
db700897 2877
fca839c0
TH
2878 check_flush_dependency(pwq->wq, work);
2879
112202d9 2880 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2881 spin_unlock_irq(&pool->lock);
7a22ad75 2882
e159489b 2883 /*
a1d14934
PZ
2884 * Force a lock recursion deadlock when using flush_work() inside a
2885 * single-threaded or rescuer equipped workqueue.
2886 *
2887 * For single threaded workqueues the deadlock happens when the work
2888 * is after the work issuing the flush_work(). For rescuer equipped
2889 * workqueues the deadlock happens when the rescuer stalls, blocking
2890 * forward progress.
e159489b 2891 */
d6e89786
JB
2892 if (!from_cancel &&
2893 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
112202d9 2894 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
2895 lock_map_release(&pwq->wq->lockdep_map);
2896 }
e159489b 2897
401a8d04 2898 return true;
4690c4ab 2899already_gone:
d565ed63 2900 spin_unlock_irq(&pool->lock);
401a8d04 2901 return false;
db700897 2902}
baf59022 2903
d6e89786
JB
2904static bool __flush_work(struct work_struct *work, bool from_cancel)
2905{
2906 struct wq_barrier barr;
2907
2908 if (WARN_ON(!wq_online))
2909 return false;
2910
87915adc
JB
2911 if (!from_cancel) {
2912 lock_map_acquire(&work->lockdep_map);
2913 lock_map_release(&work->lockdep_map);
2914 }
2915
d6e89786
JB
2916 if (start_flush_work(work, &barr, from_cancel)) {
2917 wait_for_completion(&barr.done);
2918 destroy_work_on_stack(&barr.work);
2919 return true;
2920 } else {
2921 return false;
2922 }
2923}
2924
baf59022
TH
2925/**
2926 * flush_work - wait for a work to finish executing the last queueing instance
2927 * @work: the work to flush
2928 *
606a5020
TH
2929 * Wait until @work has finished execution. @work is guaranteed to be idle
2930 * on return if it hasn't been requeued since flush started.
baf59022 2931 *
d185af30 2932 * Return:
baf59022
TH
2933 * %true if flush_work() waited for the work to finish execution,
2934 * %false if it was already idle.
2935 */
2936bool flush_work(struct work_struct *work)
2937{
d6e89786 2938 return __flush_work(work, false);
6e84d644 2939}
606a5020 2940EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2941
8603e1b3 2942struct cwt_wait {
ac6424b9 2943 wait_queue_entry_t wait;
8603e1b3
TH
2944 struct work_struct *work;
2945};
2946
ac6424b9 2947static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
2948{
2949 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2950
2951 if (cwait->work != key)
2952 return 0;
2953 return autoremove_wake_function(wait, mode, sync, key);
2954}
2955
36e227d2 2956static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2957{
8603e1b3 2958 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 2959 unsigned long flags;
1f1f642e
ON
2960 int ret;
2961
2962 do {
bbb68dfa
TH
2963 ret = try_to_grab_pending(work, is_dwork, &flags);
2964 /*
8603e1b3
TH
2965 * If someone else is already canceling, wait for it to
2966 * finish. flush_work() doesn't work for PREEMPT_NONE
2967 * because we may get scheduled between @work's completion
2968 * and the other canceling task resuming and clearing
2969 * CANCELING - flush_work() will return false immediately
2970 * as @work is no longer busy, try_to_grab_pending() will
2971 * return -ENOENT as @work is still being canceled and the
2972 * other canceling task won't be able to clear CANCELING as
2973 * we're hogging the CPU.
2974 *
2975 * Let's wait for completion using a waitqueue. As this
2976 * may lead to the thundering herd problem, use a custom
2977 * wake function which matches @work along with exclusive
2978 * wait and wakeup.
bbb68dfa 2979 */
8603e1b3
TH
2980 if (unlikely(ret == -ENOENT)) {
2981 struct cwt_wait cwait;
2982
2983 init_wait(&cwait.wait);
2984 cwait.wait.func = cwt_wakefn;
2985 cwait.work = work;
2986
2987 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2988 TASK_UNINTERRUPTIBLE);
2989 if (work_is_canceling(work))
2990 schedule();
2991 finish_wait(&cancel_waitq, &cwait.wait);
2992 }
1f1f642e
ON
2993 } while (unlikely(ret < 0));
2994
bbb68dfa
TH
2995 /* tell other tasks trying to grab @work to back off */
2996 mark_work_canceling(work);
2997 local_irq_restore(flags);
2998
3347fa09
TH
2999 /*
3000 * This allows canceling during early boot. We know that @work
3001 * isn't executing.
3002 */
3003 if (wq_online)
d6e89786 3004 __flush_work(work, true);
3347fa09 3005
7a22ad75 3006 clear_work_data(work);
8603e1b3
TH
3007
3008 /*
3009 * Paired with prepare_to_wait() above so that either
3010 * waitqueue_active() is visible here or !work_is_canceling() is
3011 * visible there.
3012 */
3013 smp_mb();
3014 if (waitqueue_active(&cancel_waitq))
3015 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3016
1f1f642e
ON
3017 return ret;
3018}
3019
6e84d644 3020/**
401a8d04
TH
3021 * cancel_work_sync - cancel a work and wait for it to finish
3022 * @work: the work to cancel
6e84d644 3023 *
401a8d04
TH
3024 * Cancel @work and wait for its execution to finish. This function
3025 * can be used even if the work re-queues itself or migrates to
3026 * another workqueue. On return from this function, @work is
3027 * guaranteed to be not pending or executing on any CPU.
1f1f642e 3028 *
401a8d04
TH
3029 * cancel_work_sync(&delayed_work->work) must not be used for
3030 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 3031 *
401a8d04 3032 * The caller must ensure that the workqueue on which @work was last
6e84d644 3033 * queued can't be destroyed before this function returns.
401a8d04 3034 *
d185af30 3035 * Return:
401a8d04 3036 * %true if @work was pending, %false otherwise.
6e84d644 3037 */
401a8d04 3038bool cancel_work_sync(struct work_struct *work)
6e84d644 3039{
36e227d2 3040 return __cancel_work_timer(work, false);
b89deed3 3041}
28e53bdd 3042EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3043
6e84d644 3044/**
401a8d04
TH
3045 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3046 * @dwork: the delayed work to flush
6e84d644 3047 *
401a8d04
TH
3048 * Delayed timer is cancelled and the pending work is queued for
3049 * immediate execution. Like flush_work(), this function only
3050 * considers the last queueing instance of @dwork.
1f1f642e 3051 *
d185af30 3052 * Return:
401a8d04
TH
3053 * %true if flush_work() waited for the work to finish execution,
3054 * %false if it was already idle.
6e84d644 3055 */
401a8d04
TH
3056bool flush_delayed_work(struct delayed_work *dwork)
3057{
8930caba 3058 local_irq_disable();
401a8d04 3059 if (del_timer_sync(&dwork->timer))
60c057bc 3060 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3061 local_irq_enable();
401a8d04
TH
3062 return flush_work(&dwork->work);
3063}
3064EXPORT_SYMBOL(flush_delayed_work);
3065
05f0fe6b
TH
3066/**
3067 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3068 * @rwork: the rcu work to flush
3069 *
3070 * Return:
3071 * %true if flush_rcu_work() waited for the work to finish execution,
3072 * %false if it was already idle.
3073 */
3074bool flush_rcu_work(struct rcu_work *rwork)
3075{
3076 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3077 rcu_barrier();
3078 flush_work(&rwork->work);
3079 return true;
3080 } else {
3081 return flush_work(&rwork->work);
3082 }
3083}
3084EXPORT_SYMBOL(flush_rcu_work);
3085
f72b8792
JA
3086static bool __cancel_work(struct work_struct *work, bool is_dwork)
3087{
3088 unsigned long flags;
3089 int ret;
3090
3091 do {
3092 ret = try_to_grab_pending(work, is_dwork, &flags);
3093 } while (unlikely(ret == -EAGAIN));
3094
3095 if (unlikely(ret < 0))
3096 return false;
3097
3098 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3099 local_irq_restore(flags);
3100 return ret;
3101}
3102
09383498 3103/**
57b30ae7
TH
3104 * cancel_delayed_work - cancel a delayed work
3105 * @dwork: delayed_work to cancel
09383498 3106 *
d185af30
YB
3107 * Kill off a pending delayed_work.
3108 *
3109 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3110 * pending.
3111 *
3112 * Note:
3113 * The work callback function may still be running on return, unless
3114 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3115 * use cancel_delayed_work_sync() to wait on it.
09383498 3116 *
57b30ae7 3117 * This function is safe to call from any context including IRQ handler.
09383498 3118 */
57b30ae7 3119bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3120{
f72b8792 3121 return __cancel_work(&dwork->work, true);
09383498 3122}
57b30ae7 3123EXPORT_SYMBOL(cancel_delayed_work);
09383498 3124
401a8d04
TH
3125/**
3126 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3127 * @dwork: the delayed work cancel
3128 *
3129 * This is cancel_work_sync() for delayed works.
3130 *
d185af30 3131 * Return:
401a8d04
TH
3132 * %true if @dwork was pending, %false otherwise.
3133 */
3134bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3135{
36e227d2 3136 return __cancel_work_timer(&dwork->work, true);
6e84d644 3137}
f5a421a4 3138EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3139
b6136773 3140/**
31ddd871 3141 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3142 * @func: the function to call
b6136773 3143 *
31ddd871
TH
3144 * schedule_on_each_cpu() executes @func on each online CPU using the
3145 * system workqueue and blocks until all CPUs have completed.
b6136773 3146 * schedule_on_each_cpu() is very slow.
31ddd871 3147 *
d185af30 3148 * Return:
31ddd871 3149 * 0 on success, -errno on failure.
b6136773 3150 */
65f27f38 3151int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3152{
3153 int cpu;
38f51568 3154 struct work_struct __percpu *works;
15316ba8 3155
b6136773
AM
3156 works = alloc_percpu(struct work_struct);
3157 if (!works)
15316ba8 3158 return -ENOMEM;
b6136773 3159
93981800
TH
3160 get_online_cpus();
3161
15316ba8 3162 for_each_online_cpu(cpu) {
9bfb1839
IM
3163 struct work_struct *work = per_cpu_ptr(works, cpu);
3164
3165 INIT_WORK(work, func);
b71ab8c2 3166 schedule_work_on(cpu, work);
65a64464 3167 }
93981800
TH
3168
3169 for_each_online_cpu(cpu)
3170 flush_work(per_cpu_ptr(works, cpu));
3171
95402b38 3172 put_online_cpus();
b6136773 3173 free_percpu(works);
15316ba8
CL
3174 return 0;
3175}
3176
1fa44eca
JB
3177/**
3178 * execute_in_process_context - reliably execute the routine with user context
3179 * @fn: the function to execute
1fa44eca
JB
3180 * @ew: guaranteed storage for the execute work structure (must
3181 * be available when the work executes)
3182 *
3183 * Executes the function immediately if process context is available,
3184 * otherwise schedules the function for delayed execution.
3185 *
d185af30 3186 * Return: 0 - function was executed
1fa44eca
JB
3187 * 1 - function was scheduled for execution
3188 */
65f27f38 3189int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3190{
3191 if (!in_interrupt()) {
65f27f38 3192 fn(&ew->work);
1fa44eca
JB
3193 return 0;
3194 }
3195
65f27f38 3196 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3197 schedule_work(&ew->work);
3198
3199 return 1;
3200}
3201EXPORT_SYMBOL_GPL(execute_in_process_context);
3202
6ba94429
FW
3203/**
3204 * free_workqueue_attrs - free a workqueue_attrs
3205 * @attrs: workqueue_attrs to free
226223ab 3206 *
6ba94429 3207 * Undo alloc_workqueue_attrs().
226223ab 3208 */
6ba94429 3209void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3210{
6ba94429
FW
3211 if (attrs) {
3212 free_cpumask_var(attrs->cpumask);
3213 kfree(attrs);
3214 }
226223ab
TH
3215}
3216
6ba94429
FW
3217/**
3218 * alloc_workqueue_attrs - allocate a workqueue_attrs
3219 * @gfp_mask: allocation mask to use
3220 *
3221 * Allocate a new workqueue_attrs, initialize with default settings and
3222 * return it.
3223 *
3224 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3225 */
3226struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
226223ab 3227{
6ba94429 3228 struct workqueue_attrs *attrs;
226223ab 3229
6ba94429
FW
3230 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3231 if (!attrs)
3232 goto fail;
3233 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3234 goto fail;
3235
3236 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3237 return attrs;
3238fail:
3239 free_workqueue_attrs(attrs);
3240 return NULL;
226223ab
TH
3241}
3242
6ba94429
FW
3243static void copy_workqueue_attrs(struct workqueue_attrs *to,
3244 const struct workqueue_attrs *from)
226223ab 3245{
6ba94429
FW
3246 to->nice = from->nice;
3247 cpumask_copy(to->cpumask, from->cpumask);
3248 /*
3249 * Unlike hash and equality test, this function doesn't ignore
3250 * ->no_numa as it is used for both pool and wq attrs. Instead,
3251 * get_unbound_pool() explicitly clears ->no_numa after copying.
3252 */
3253 to->no_numa = from->no_numa;
226223ab
TH
3254}
3255
6ba94429
FW
3256/* hash value of the content of @attr */
3257static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3258{
6ba94429 3259 u32 hash = 0;
226223ab 3260
6ba94429
FW
3261 hash = jhash_1word(attrs->nice, hash);
3262 hash = jhash(cpumask_bits(attrs->cpumask),
3263 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3264 return hash;
226223ab 3265}
226223ab 3266
6ba94429
FW
3267/* content equality test */
3268static bool wqattrs_equal(const struct workqueue_attrs *a,
3269 const struct workqueue_attrs *b)
226223ab 3270{
6ba94429
FW
3271 if (a->nice != b->nice)
3272 return false;
3273 if (!cpumask_equal(a->cpumask, b->cpumask))
3274 return false;
3275 return true;
226223ab
TH
3276}
3277
6ba94429
FW
3278/**
3279 * init_worker_pool - initialize a newly zalloc'd worker_pool
3280 * @pool: worker_pool to initialize
3281 *
402dd89d 3282 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3283 *
3284 * Return: 0 on success, -errno on failure. Even on failure, all fields
3285 * inside @pool proper are initialized and put_unbound_pool() can be called
3286 * on @pool safely to release it.
3287 */
3288static int init_worker_pool(struct worker_pool *pool)
226223ab 3289{
6ba94429
FW
3290 spin_lock_init(&pool->lock);
3291 pool->id = -1;
3292 pool->cpu = -1;
3293 pool->node = NUMA_NO_NODE;
3294 pool->flags |= POOL_DISASSOCIATED;
82607adc 3295 pool->watchdog_ts = jiffies;
6ba94429
FW
3296 INIT_LIST_HEAD(&pool->worklist);
3297 INIT_LIST_HEAD(&pool->idle_list);
3298 hash_init(pool->busy_hash);
226223ab 3299
32a6c723 3300 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
226223ab 3301
32a6c723 3302 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 3303
6ba94429 3304 INIT_LIST_HEAD(&pool->workers);
226223ab 3305
6ba94429
FW
3306 ida_init(&pool->worker_ida);
3307 INIT_HLIST_NODE(&pool->hash_node);
3308 pool->refcnt = 1;
226223ab 3309
6ba94429
FW
3310 /* shouldn't fail above this point */
3311 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3312 if (!pool->attrs)
3313 return -ENOMEM;
3314 return 0;
226223ab
TH
3315}
3316
6ba94429 3317static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3318{
6ba94429
FW
3319 struct workqueue_struct *wq =
3320 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3321
6ba94429
FW
3322 if (!(wq->flags & WQ_UNBOUND))
3323 free_percpu(wq->cpu_pwqs);
226223ab 3324 else
6ba94429 3325 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3326
6ba94429
FW
3327 kfree(wq->rescuer);
3328 kfree(wq);
226223ab
TH
3329}
3330
6ba94429 3331static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3332{
6ba94429 3333 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3334
6ba94429
FW
3335 ida_destroy(&pool->worker_ida);
3336 free_workqueue_attrs(pool->attrs);
3337 kfree(pool);
226223ab
TH
3338}
3339
6ba94429
FW
3340/**
3341 * put_unbound_pool - put a worker_pool
3342 * @pool: worker_pool to put
3343 *
3344 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3345 * safe manner. get_unbound_pool() calls this function on its failure path
3346 * and this function should be able to release pools which went through,
3347 * successfully or not, init_worker_pool().
3348 *
3349 * Should be called with wq_pool_mutex held.
3350 */
3351static void put_unbound_pool(struct worker_pool *pool)
226223ab 3352{
6ba94429
FW
3353 DECLARE_COMPLETION_ONSTACK(detach_completion);
3354 struct worker *worker;
226223ab 3355
6ba94429 3356 lockdep_assert_held(&wq_pool_mutex);
226223ab 3357
6ba94429
FW
3358 if (--pool->refcnt)
3359 return;
226223ab 3360
6ba94429
FW
3361 /* sanity checks */
3362 if (WARN_ON(!(pool->cpu < 0)) ||
3363 WARN_ON(!list_empty(&pool->worklist)))
3364 return;
226223ab 3365
6ba94429
FW
3366 /* release id and unhash */
3367 if (pool->id >= 0)
3368 idr_remove(&worker_pool_idr, pool->id);
3369 hash_del(&pool->hash_node);
d55262c4 3370
6ba94429 3371 /*
692b4825
TH
3372 * Become the manager and destroy all workers. This prevents
3373 * @pool's workers from blocking on attach_mutex. We're the last
3374 * manager and @pool gets freed with the flag set.
6ba94429 3375 */
6ba94429 3376 spin_lock_irq(&pool->lock);
692b4825
TH
3377 wait_event_lock_irq(wq_manager_wait,
3378 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3379 pool->flags |= POOL_MANAGER_ACTIVE;
3380
6ba94429
FW
3381 while ((worker = first_idle_worker(pool)))
3382 destroy_worker(worker);
3383 WARN_ON(pool->nr_workers || pool->nr_idle);
3384 spin_unlock_irq(&pool->lock);
d55262c4 3385
1258fae7 3386 mutex_lock(&wq_pool_attach_mutex);
6ba94429
FW
3387 if (!list_empty(&pool->workers))
3388 pool->detach_completion = &detach_completion;
1258fae7 3389 mutex_unlock(&wq_pool_attach_mutex);
226223ab 3390
6ba94429
FW
3391 if (pool->detach_completion)
3392 wait_for_completion(pool->detach_completion);
226223ab 3393
6ba94429
FW
3394 /* shut down the timers */
3395 del_timer_sync(&pool->idle_timer);
3396 del_timer_sync(&pool->mayday_timer);
226223ab 3397
6ba94429
FW
3398 /* sched-RCU protected to allow dereferences from get_work_pool() */
3399 call_rcu_sched(&pool->rcu, rcu_free_pool);
226223ab
TH
3400}
3401
3402/**
6ba94429
FW
3403 * get_unbound_pool - get a worker_pool with the specified attributes
3404 * @attrs: the attributes of the worker_pool to get
226223ab 3405 *
6ba94429
FW
3406 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3407 * reference count and return it. If there already is a matching
3408 * worker_pool, it will be used; otherwise, this function attempts to
3409 * create a new one.
226223ab 3410 *
6ba94429 3411 * Should be called with wq_pool_mutex held.
226223ab 3412 *
6ba94429
FW
3413 * Return: On success, a worker_pool with the same attributes as @attrs.
3414 * On failure, %NULL.
226223ab 3415 */
6ba94429 3416static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3417{
6ba94429
FW
3418 u32 hash = wqattrs_hash(attrs);
3419 struct worker_pool *pool;
3420 int node;
e2273584 3421 int target_node = NUMA_NO_NODE;
226223ab 3422
6ba94429 3423 lockdep_assert_held(&wq_pool_mutex);
226223ab 3424
6ba94429
FW
3425 /* do we already have a matching pool? */
3426 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3427 if (wqattrs_equal(pool->attrs, attrs)) {
3428 pool->refcnt++;
3429 return pool;
3430 }
3431 }
226223ab 3432
e2273584
XP
3433 /* if cpumask is contained inside a NUMA node, we belong to that node */
3434 if (wq_numa_enabled) {
3435 for_each_node(node) {
3436 if (cpumask_subset(attrs->cpumask,
3437 wq_numa_possible_cpumask[node])) {
3438 target_node = node;
3439 break;
3440 }
3441 }
3442 }
3443
6ba94429 3444 /* nope, create a new one */
e2273584 3445 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3446 if (!pool || init_worker_pool(pool) < 0)
3447 goto fail;
3448
3449 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3450 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3451 pool->node = target_node;
226223ab
TH
3452
3453 /*
6ba94429
FW
3454 * no_numa isn't a worker_pool attribute, always clear it. See
3455 * 'struct workqueue_attrs' comments for detail.
226223ab 3456 */
6ba94429 3457 pool->attrs->no_numa = false;
226223ab 3458
6ba94429
FW
3459 if (worker_pool_assign_id(pool) < 0)
3460 goto fail;
226223ab 3461
6ba94429 3462 /* create and start the initial worker */
3347fa09 3463 if (wq_online && !create_worker(pool))
6ba94429 3464 goto fail;
226223ab 3465
6ba94429
FW
3466 /* install */
3467 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3468
6ba94429
FW
3469 return pool;
3470fail:
3471 if (pool)
3472 put_unbound_pool(pool);
3473 return NULL;
226223ab 3474}
226223ab 3475
6ba94429 3476static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3477{
6ba94429
FW
3478 kmem_cache_free(pwq_cache,
3479 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3480}
3481
6ba94429
FW
3482/*
3483 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3484 * and needs to be destroyed.
7a4e344c 3485 */
6ba94429 3486static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3487{
6ba94429
FW
3488 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3489 unbound_release_work);
3490 struct workqueue_struct *wq = pwq->wq;
3491 struct worker_pool *pool = pwq->pool;
3492 bool is_last;
7a4e344c 3493
6ba94429
FW
3494 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3495 return;
7a4e344c 3496
6ba94429
FW
3497 mutex_lock(&wq->mutex);
3498 list_del_rcu(&pwq->pwqs_node);
3499 is_last = list_empty(&wq->pwqs);
3500 mutex_unlock(&wq->mutex);
3501
3502 mutex_lock(&wq_pool_mutex);
3503 put_unbound_pool(pool);
3504 mutex_unlock(&wq_pool_mutex);
3505
3506 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
7a4e344c 3507
2865a8fb 3508 /*
6ba94429
FW
3509 * If we're the last pwq going away, @wq is already dead and no one
3510 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3511 */
6ba94429
FW
3512 if (is_last)
3513 call_rcu_sched(&wq->rcu, rcu_free_wq);
29c91e99
TH
3514}
3515
7a4e344c 3516/**
6ba94429
FW
3517 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3518 * @pwq: target pool_workqueue
d185af30 3519 *
6ba94429
FW
3520 * If @pwq isn't freezing, set @pwq->max_active to the associated
3521 * workqueue's saved_max_active and activate delayed work items
3522 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3523 */
6ba94429 3524static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3525{
6ba94429
FW
3526 struct workqueue_struct *wq = pwq->wq;
3527 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3528 unsigned long flags;
4e1a1f9a 3529
6ba94429
FW
3530 /* for @wq->saved_max_active */
3531 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3532
6ba94429
FW
3533 /* fast exit for non-freezable wqs */
3534 if (!freezable && pwq->max_active == wq->saved_max_active)
3535 return;
7a4e344c 3536
3347fa09
TH
3537 /* this function can be called during early boot w/ irq disabled */
3538 spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3539
6ba94429
FW
3540 /*
3541 * During [un]freezing, the caller is responsible for ensuring that
3542 * this function is called at least once after @workqueue_freezing
3543 * is updated and visible.
3544 */
3545 if (!freezable || !workqueue_freezing) {
3546 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3547
6ba94429
FW
3548 while (!list_empty(&pwq->delayed_works) &&
3549 pwq->nr_active < pwq->max_active)
3550 pwq_activate_first_delayed(pwq);
e2dca7ad 3551
6ba94429
FW
3552 /*
3553 * Need to kick a worker after thawed or an unbound wq's
3554 * max_active is bumped. It's a slow path. Do it always.
3555 */
3556 wake_up_worker(pwq->pool);
3557 } else {
3558 pwq->max_active = 0;
3559 }
e2dca7ad 3560
3347fa09 3561 spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3562}
3563
6ba94429
FW
3564/* initialize newly alloced @pwq which is associated with @wq and @pool */
3565static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3566 struct worker_pool *pool)
29c91e99 3567{
6ba94429 3568 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3569
6ba94429
FW
3570 memset(pwq, 0, sizeof(*pwq));
3571
3572 pwq->pool = pool;
3573 pwq->wq = wq;
3574 pwq->flush_color = -1;
3575 pwq->refcnt = 1;
3576 INIT_LIST_HEAD(&pwq->delayed_works);
3577 INIT_LIST_HEAD(&pwq->pwqs_node);
3578 INIT_LIST_HEAD(&pwq->mayday_node);
3579 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3580}
3581
6ba94429
FW
3582/* sync @pwq with the current state of its associated wq and link it */
3583static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3584{
6ba94429 3585 struct workqueue_struct *wq = pwq->wq;
29c91e99 3586
6ba94429 3587 lockdep_assert_held(&wq->mutex);
a892cacc 3588
6ba94429
FW
3589 /* may be called multiple times, ignore if already linked */
3590 if (!list_empty(&pwq->pwqs_node))
29c91e99 3591 return;
29c91e99 3592
6ba94429
FW
3593 /* set the matching work_color */
3594 pwq->work_color = wq->work_color;
29c91e99 3595
6ba94429
FW
3596 /* sync max_active to the current setting */
3597 pwq_adjust_max_active(pwq);
29c91e99 3598
6ba94429
FW
3599 /* link in @pwq */
3600 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3601}
29c91e99 3602
6ba94429
FW
3603/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3604static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3605 const struct workqueue_attrs *attrs)
3606{
3607 struct worker_pool *pool;
3608 struct pool_workqueue *pwq;
60f5a4bc 3609
6ba94429 3610 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3611
6ba94429
FW
3612 pool = get_unbound_pool(attrs);
3613 if (!pool)
3614 return NULL;
60f5a4bc 3615
6ba94429
FW
3616 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3617 if (!pwq) {
3618 put_unbound_pool(pool);
3619 return NULL;
3620 }
29c91e99 3621
6ba94429
FW
3622 init_pwq(pwq, wq, pool);
3623 return pwq;
3624}
29c91e99 3625
29c91e99 3626/**
30186c6f 3627 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3628 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3629 * @node: the target NUMA node
3630 * @cpu_going_down: if >= 0, the CPU to consider as offline
3631 * @cpumask: outarg, the resulting cpumask
29c91e99 3632 *
6ba94429
FW
3633 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3634 * @cpu_going_down is >= 0, that cpu is considered offline during
3635 * calculation. The result is stored in @cpumask.
a892cacc 3636 *
6ba94429
FW
3637 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3638 * enabled and @node has online CPUs requested by @attrs, the returned
3639 * cpumask is the intersection of the possible CPUs of @node and
3640 * @attrs->cpumask.
d185af30 3641 *
6ba94429
FW
3642 * The caller is responsible for ensuring that the cpumask of @node stays
3643 * stable.
3644 *
3645 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3646 * %false if equal.
29c91e99 3647 */
6ba94429
FW
3648static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3649 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3650{
6ba94429
FW
3651 if (!wq_numa_enabled || attrs->no_numa)
3652 goto use_dfl;
29c91e99 3653
6ba94429
FW
3654 /* does @node have any online CPUs @attrs wants? */
3655 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3656 if (cpu_going_down >= 0)
3657 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3658
6ba94429
FW
3659 if (cpumask_empty(cpumask))
3660 goto use_dfl;
4c16bd32
TH
3661
3662 /* yeap, return possible CPUs in @node that @attrs wants */
3663 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
3664
3665 if (cpumask_empty(cpumask)) {
3666 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3667 "possible intersect\n");
3668 return false;
3669 }
3670
4c16bd32
TH
3671 return !cpumask_equal(cpumask, attrs->cpumask);
3672
3673use_dfl:
3674 cpumask_copy(cpumask, attrs->cpumask);
3675 return false;
3676}
3677
1befcf30
TH
3678/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3679static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3680 int node,
3681 struct pool_workqueue *pwq)
3682{
3683 struct pool_workqueue *old_pwq;
3684
5b95e1af 3685 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3686 lockdep_assert_held(&wq->mutex);
3687
3688 /* link_pwq() can handle duplicate calls */
3689 link_pwq(pwq);
3690
3691 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3692 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3693 return old_pwq;
3694}
3695
2d5f0764
LJ
3696/* context to store the prepared attrs & pwqs before applying */
3697struct apply_wqattrs_ctx {
3698 struct workqueue_struct *wq; /* target workqueue */
3699 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3700 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3701 struct pool_workqueue *dfl_pwq;
3702 struct pool_workqueue *pwq_tbl[];
3703};
3704
3705/* free the resources after success or abort */
3706static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3707{
3708 if (ctx) {
3709 int node;
3710
3711 for_each_node(node)
3712 put_pwq_unlocked(ctx->pwq_tbl[node]);
3713 put_pwq_unlocked(ctx->dfl_pwq);
3714
3715 free_workqueue_attrs(ctx->attrs);
3716
3717 kfree(ctx);
3718 }
3719}
3720
3721/* allocate the attrs and pwqs for later installation */
3722static struct apply_wqattrs_ctx *
3723apply_wqattrs_prepare(struct workqueue_struct *wq,
3724 const struct workqueue_attrs *attrs)
9e8cd2f5 3725{
2d5f0764 3726 struct apply_wqattrs_ctx *ctx;
4c16bd32 3727 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3728 int node;
9e8cd2f5 3729
2d5f0764 3730 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3731
acafe7e3 3732 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
8719dcea 3733
13e2e556 3734 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32 3735 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
2d5f0764
LJ
3736 if (!ctx || !new_attrs || !tmp_attrs)
3737 goto out_free;
13e2e556 3738
042f7df1
LJ
3739 /*
3740 * Calculate the attrs of the default pwq.
3741 * If the user configured cpumask doesn't overlap with the
3742 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3743 */
13e2e556 3744 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3745 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3746 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3747 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3748
4c16bd32
TH
3749 /*
3750 * We may create multiple pwqs with differing cpumasks. Make a
3751 * copy of @new_attrs which will be modified and used to obtain
3752 * pools.
3753 */
3754 copy_workqueue_attrs(tmp_attrs, new_attrs);
3755
4c16bd32
TH
3756 /*
3757 * If something goes wrong during CPU up/down, we'll fall back to
3758 * the default pwq covering whole @attrs->cpumask. Always create
3759 * it even if we don't use it immediately.
3760 */
2d5f0764
LJ
3761 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3762 if (!ctx->dfl_pwq)
3763 goto out_free;
4c16bd32
TH
3764
3765 for_each_node(node) {
042f7df1 3766 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3767 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3768 if (!ctx->pwq_tbl[node])
3769 goto out_free;
4c16bd32 3770 } else {
2d5f0764
LJ
3771 ctx->dfl_pwq->refcnt++;
3772 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3773 }
3774 }
3775
042f7df1
LJ
3776 /* save the user configured attrs and sanitize it. */
3777 copy_workqueue_attrs(new_attrs, attrs);
3778 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3779 ctx->attrs = new_attrs;
042f7df1 3780
2d5f0764
LJ
3781 ctx->wq = wq;
3782 free_workqueue_attrs(tmp_attrs);
3783 return ctx;
3784
3785out_free:
3786 free_workqueue_attrs(tmp_attrs);
3787 free_workqueue_attrs(new_attrs);
3788 apply_wqattrs_cleanup(ctx);
3789 return NULL;
3790}
3791
3792/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3793static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3794{
3795 int node;
9e8cd2f5 3796
4c16bd32 3797 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3798 mutex_lock(&ctx->wq->mutex);
a892cacc 3799
2d5f0764 3800 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3801
3802 /* save the previous pwq and install the new one */
f147f29e 3803 for_each_node(node)
2d5f0764
LJ
3804 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3805 ctx->pwq_tbl[node]);
4c16bd32
TH
3806
3807 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3808 link_pwq(ctx->dfl_pwq);
3809 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3810
2d5f0764
LJ
3811 mutex_unlock(&ctx->wq->mutex);
3812}
9e8cd2f5 3813
a0111cf6
LJ
3814static void apply_wqattrs_lock(void)
3815{
3816 /* CPUs should stay stable across pwq creations and installations */
3817 get_online_cpus();
3818 mutex_lock(&wq_pool_mutex);
3819}
3820
3821static void apply_wqattrs_unlock(void)
3822{
3823 mutex_unlock(&wq_pool_mutex);
3824 put_online_cpus();
3825}
3826
3827static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3828 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3829{
3830 struct apply_wqattrs_ctx *ctx;
4c16bd32 3831
2d5f0764
LJ
3832 /* only unbound workqueues can change attributes */
3833 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3834 return -EINVAL;
13e2e556 3835
2d5f0764 3836 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
3837 if (!list_empty(&wq->pwqs)) {
3838 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3839 return -EINVAL;
3840
3841 wq->flags &= ~__WQ_ORDERED;
3842 }
2d5f0764 3843
2d5f0764 3844 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 3845 if (!ctx)
3846 return -ENOMEM;
2d5f0764
LJ
3847
3848 /* the ctx has been prepared successfully, let's commit it */
6201171e 3849 apply_wqattrs_commit(ctx);
2d5f0764
LJ
3850 apply_wqattrs_cleanup(ctx);
3851
6201171e 3852 return 0;
9e8cd2f5
TH
3853}
3854
a0111cf6
LJ
3855/**
3856 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3857 * @wq: the target workqueue
3858 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3859 *
3860 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3861 * machines, this function maps a separate pwq to each NUMA node with
3862 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3863 * NUMA node it was issued on. Older pwqs are released as in-flight work
3864 * items finish. Note that a work item which repeatedly requeues itself
3865 * back-to-back will stay on its current pwq.
3866 *
3867 * Performs GFP_KERNEL allocations.
3868 *
3869 * Return: 0 on success and -errno on failure.
3870 */
3871int apply_workqueue_attrs(struct workqueue_struct *wq,
3872 const struct workqueue_attrs *attrs)
3873{
3874 int ret;
3875
3876 apply_wqattrs_lock();
3877 ret = apply_workqueue_attrs_locked(wq, attrs);
3878 apply_wqattrs_unlock();
3879
3880 return ret;
3881}
6106c0f8 3882EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
a0111cf6 3883
4c16bd32
TH
3884/**
3885 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3886 * @wq: the target workqueue
3887 * @cpu: the CPU coming up or going down
3888 * @online: whether @cpu is coming up or going down
3889 *
3890 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3891 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3892 * @wq accordingly.
3893 *
3894 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3895 * falls back to @wq->dfl_pwq which may not be optimal but is always
3896 * correct.
3897 *
3898 * Note that when the last allowed CPU of a NUMA node goes offline for a
3899 * workqueue with a cpumask spanning multiple nodes, the workers which were
3900 * already executing the work items for the workqueue will lose their CPU
3901 * affinity and may execute on any CPU. This is similar to how per-cpu
3902 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3903 * affinity, it's the user's responsibility to flush the work item from
3904 * CPU_DOWN_PREPARE.
3905 */
3906static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3907 bool online)
3908{
3909 int node = cpu_to_node(cpu);
3910 int cpu_off = online ? -1 : cpu;
3911 struct pool_workqueue *old_pwq = NULL, *pwq;
3912 struct workqueue_attrs *target_attrs;
3913 cpumask_t *cpumask;
3914
3915 lockdep_assert_held(&wq_pool_mutex);
3916
f7142ed4
LJ
3917 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3918 wq->unbound_attrs->no_numa)
4c16bd32
TH
3919 return;
3920
3921 /*
3922 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3923 * Let's use a preallocated one. The following buf is protected by
3924 * CPU hotplug exclusion.
3925 */
3926 target_attrs = wq_update_unbound_numa_attrs_buf;
3927 cpumask = target_attrs->cpumask;
3928
4c16bd32
TH
3929 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3930 pwq = unbound_pwq_by_node(wq, node);
3931
3932 /*
3933 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
3934 * different from the default pwq's, we need to compare it to @pwq's
3935 * and create a new one if they don't match. If the target cpumask
3936 * equals the default pwq's, the default pwq should be used.
4c16bd32 3937 */
042f7df1 3938 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 3939 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 3940 return;
4c16bd32 3941 } else {
534a3fbb 3942 goto use_dfl_pwq;
4c16bd32
TH
3943 }
3944
4c16bd32
TH
3945 /* create a new pwq */
3946 pwq = alloc_unbound_pwq(wq, target_attrs);
3947 if (!pwq) {
2d916033
FF
3948 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3949 wq->name);
77f300b1 3950 goto use_dfl_pwq;
4c16bd32
TH
3951 }
3952
f7142ed4 3953 /* Install the new pwq. */
4c16bd32
TH
3954 mutex_lock(&wq->mutex);
3955 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3956 goto out_unlock;
3957
3958use_dfl_pwq:
f7142ed4 3959 mutex_lock(&wq->mutex);
4c16bd32
TH
3960 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3961 get_pwq(wq->dfl_pwq);
3962 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3963 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3964out_unlock:
3965 mutex_unlock(&wq->mutex);
3966 put_pwq_unlocked(old_pwq);
3967}
3968
30cdf249 3969static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3970{
49e3cf44 3971 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 3972 int cpu, ret;
30cdf249
TH
3973
3974 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3975 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3976 if (!wq->cpu_pwqs)
30cdf249
TH
3977 return -ENOMEM;
3978
3979 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3980 struct pool_workqueue *pwq =
3981 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3982 struct worker_pool *cpu_pools =
f02ae73a 3983 per_cpu(cpu_worker_pools, cpu);
f3421797 3984
f147f29e
TH
3985 init_pwq(pwq, wq, &cpu_pools[highpri]);
3986
3987 mutex_lock(&wq->mutex);
1befcf30 3988 link_pwq(pwq);
f147f29e 3989 mutex_unlock(&wq->mutex);
30cdf249 3990 }
9e8cd2f5 3991 return 0;
8a2b7538
TH
3992 } else if (wq->flags & __WQ_ORDERED) {
3993 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3994 /* there should only be single pwq for ordering guarantee */
3995 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3996 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3997 "ordering guarantee broken for workqueue %s\n", wq->name);
3998 return ret;
30cdf249 3999 } else {
9e8cd2f5 4000 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4001 }
0f900049
TH
4002}
4003
f3421797
TH
4004static int wq_clamp_max_active(int max_active, unsigned int flags,
4005 const char *name)
b71ab8c2 4006{
f3421797
TH
4007 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4008
4009 if (max_active < 1 || max_active > lim)
044c782c
VI
4010 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4011 max_active, name, 1, lim);
b71ab8c2 4012
f3421797 4013 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4014}
4015
983c7515
TH
4016/*
4017 * Workqueues which may be used during memory reclaim should have a rescuer
4018 * to guarantee forward progress.
4019 */
4020static int init_rescuer(struct workqueue_struct *wq)
4021{
4022 struct worker *rescuer;
4023 int ret;
4024
4025 if (!(wq->flags & WQ_MEM_RECLAIM))
4026 return 0;
4027
4028 rescuer = alloc_worker(NUMA_NO_NODE);
4029 if (!rescuer)
4030 return -ENOMEM;
4031
4032 rescuer->rescue_wq = wq;
4033 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4034 ret = PTR_ERR_OR_ZERO(rescuer->task);
4035 if (ret) {
4036 kfree(rescuer);
4037 return ret;
4038 }
4039
4040 wq->rescuer = rescuer;
4041 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4042 wake_up_process(rescuer->task);
4043
4044 return 0;
4045}
4046
b196be89 4047struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
4048 unsigned int flags,
4049 int max_active,
4050 struct lock_class_key *key,
b196be89 4051 const char *lock_name, ...)
1da177e4 4052{
df2d5ae4 4053 size_t tbl_size = 0;
ecf6881f 4054 va_list args;
1da177e4 4055 struct workqueue_struct *wq;
49e3cf44 4056 struct pool_workqueue *pwq;
b196be89 4057
5c0338c6
TH
4058 /*
4059 * Unbound && max_active == 1 used to imply ordered, which is no
4060 * longer the case on NUMA machines due to per-node pools. While
4061 * alloc_ordered_workqueue() is the right way to create an ordered
4062 * workqueue, keep the previous behavior to avoid subtle breakages
4063 * on NUMA.
4064 */
4065 if ((flags & WQ_UNBOUND) && max_active == 1)
4066 flags |= __WQ_ORDERED;
4067
cee22a15
VK
4068 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4069 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4070 flags |= WQ_UNBOUND;
4071
ecf6881f 4072 /* allocate wq and format name */
df2d5ae4 4073 if (flags & WQ_UNBOUND)
ddcb57e2 4074 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
4075
4076 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4077 if (!wq)
d2c1d404 4078 return NULL;
b196be89 4079
6029a918
TH
4080 if (flags & WQ_UNBOUND) {
4081 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4082 if (!wq->unbound_attrs)
4083 goto err_free_wq;
4084 }
4085
ecf6881f
TH
4086 va_start(args, lock_name);
4087 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4088 va_end(args);
1da177e4 4089
d320c038 4090 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4091 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4092
b196be89 4093 /* init wq */
97e37d7b 4094 wq->flags = flags;
a0a1a5fd 4095 wq->saved_max_active = max_active;
3c25a55d 4096 mutex_init(&wq->mutex);
112202d9 4097 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4098 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4099 INIT_LIST_HEAD(&wq->flusher_queue);
4100 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4101 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4102
eb13ba87 4103 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4104 INIT_LIST_HEAD(&wq->list);
3af24433 4105
30cdf249 4106 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4107 goto err_free_wq;
1537663f 4108
40c17f75 4109 if (wq_online && init_rescuer(wq) < 0)
983c7515 4110 goto err_destroy;
3af24433 4111
226223ab
TH
4112 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4113 goto err_destroy;
4114
a0a1a5fd 4115 /*
68e13a67
LJ
4116 * wq_pool_mutex protects global freeze state and workqueues list.
4117 * Grab it, adjust max_active and add the new @wq to workqueues
4118 * list.
a0a1a5fd 4119 */
68e13a67 4120 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4121
a357fc03 4122 mutex_lock(&wq->mutex);
699ce097
TH
4123 for_each_pwq(pwq, wq)
4124 pwq_adjust_max_active(pwq);
a357fc03 4125 mutex_unlock(&wq->mutex);
a0a1a5fd 4126
e2dca7ad 4127 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4128
68e13a67 4129 mutex_unlock(&wq_pool_mutex);
1537663f 4130
3af24433 4131 return wq;
d2c1d404
TH
4132
4133err_free_wq:
6029a918 4134 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4135 kfree(wq);
4136 return NULL;
4137err_destroy:
4138 destroy_workqueue(wq);
4690c4ab 4139 return NULL;
3af24433 4140}
d320c038 4141EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4142
3af24433
ON
4143/**
4144 * destroy_workqueue - safely terminate a workqueue
4145 * @wq: target workqueue
4146 *
4147 * Safely destroy a workqueue. All work currently pending will be done first.
4148 */
4149void destroy_workqueue(struct workqueue_struct *wq)
4150{
49e3cf44 4151 struct pool_workqueue *pwq;
4c16bd32 4152 int node;
3af24433 4153
9c5a2ba7
TH
4154 /* drain it before proceeding with destruction */
4155 drain_workqueue(wq);
c8efcc25 4156
6183c009 4157 /* sanity checks */
b09f4fd3 4158 mutex_lock(&wq->mutex);
49e3cf44 4159 for_each_pwq(pwq, wq) {
6183c009
TH
4160 int i;
4161
76af4d93
TH
4162 for (i = 0; i < WORK_NR_COLORS; i++) {
4163 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4164 mutex_unlock(&wq->mutex);
fa07fb6a 4165 show_workqueue_state();
6183c009 4166 return;
76af4d93
TH
4167 }
4168 }
4169
5c529597 4170 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4171 WARN_ON(pwq->nr_active) ||
76af4d93 4172 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4173 mutex_unlock(&wq->mutex);
fa07fb6a 4174 show_workqueue_state();
6183c009 4175 return;
76af4d93 4176 }
6183c009 4177 }
b09f4fd3 4178 mutex_unlock(&wq->mutex);
6183c009 4179
a0a1a5fd
TH
4180 /*
4181 * wq list is used to freeze wq, remove from list after
4182 * flushing is complete in case freeze races us.
4183 */
68e13a67 4184 mutex_lock(&wq_pool_mutex);
e2dca7ad 4185 list_del_rcu(&wq->list);
68e13a67 4186 mutex_unlock(&wq_pool_mutex);
3af24433 4187
226223ab
TH
4188 workqueue_sysfs_unregister(wq);
4189
e2dca7ad 4190 if (wq->rescuer)
e22bee78 4191 kthread_stop(wq->rescuer->task);
e22bee78 4192
8864b4e5
TH
4193 if (!(wq->flags & WQ_UNBOUND)) {
4194 /*
4195 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4196 * schedule RCU free.
8864b4e5 4197 */
e2dca7ad 4198 call_rcu_sched(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4199 } else {
4200 /*
4201 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4202 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4203 * @wq will be freed when the last pwq is released.
8864b4e5 4204 */
4c16bd32
TH
4205 for_each_node(node) {
4206 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4207 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4208 put_pwq_unlocked(pwq);
4209 }
4210
4211 /*
4212 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4213 * put. Don't access it afterwards.
4214 */
4215 pwq = wq->dfl_pwq;
4216 wq->dfl_pwq = NULL;
dce90d47 4217 put_pwq_unlocked(pwq);
29c91e99 4218 }
3af24433
ON
4219}
4220EXPORT_SYMBOL_GPL(destroy_workqueue);
4221
dcd989cb
TH
4222/**
4223 * workqueue_set_max_active - adjust max_active of a workqueue
4224 * @wq: target workqueue
4225 * @max_active: new max_active value.
4226 *
4227 * Set max_active of @wq to @max_active.
4228 *
4229 * CONTEXT:
4230 * Don't call from IRQ context.
4231 */
4232void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4233{
49e3cf44 4234 struct pool_workqueue *pwq;
dcd989cb 4235
8719dcea 4236 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4237 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4238 return;
4239
f3421797 4240 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4241
a357fc03 4242 mutex_lock(&wq->mutex);
dcd989cb 4243
0a94efb5 4244 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4245 wq->saved_max_active = max_active;
4246
699ce097
TH
4247 for_each_pwq(pwq, wq)
4248 pwq_adjust_max_active(pwq);
93981800 4249
a357fc03 4250 mutex_unlock(&wq->mutex);
15316ba8 4251}
dcd989cb 4252EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4253
27d4ee03
LW
4254/**
4255 * current_work - retrieve %current task's work struct
4256 *
4257 * Determine if %current task is a workqueue worker and what it's working on.
4258 * Useful to find out the context that the %current task is running in.
4259 *
4260 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4261 */
4262struct work_struct *current_work(void)
4263{
4264 struct worker *worker = current_wq_worker();
4265
4266 return worker ? worker->current_work : NULL;
4267}
4268EXPORT_SYMBOL(current_work);
4269
e6267616
TH
4270/**
4271 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4272 *
4273 * Determine whether %current is a workqueue rescuer. Can be used from
4274 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4275 *
4276 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4277 */
4278bool current_is_workqueue_rescuer(void)
4279{
4280 struct worker *worker = current_wq_worker();
4281
6a092dfd 4282 return worker && worker->rescue_wq;
e6267616
TH
4283}
4284
eef6a7d5 4285/**
dcd989cb
TH
4286 * workqueue_congested - test whether a workqueue is congested
4287 * @cpu: CPU in question
4288 * @wq: target workqueue
eef6a7d5 4289 *
dcd989cb
TH
4290 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4291 * no synchronization around this function and the test result is
4292 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4293 *
d3251859
TH
4294 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4295 * Note that both per-cpu and unbound workqueues may be associated with
4296 * multiple pool_workqueues which have separate congested states. A
4297 * workqueue being congested on one CPU doesn't mean the workqueue is also
4298 * contested on other CPUs / NUMA nodes.
4299 *
d185af30 4300 * Return:
dcd989cb 4301 * %true if congested, %false otherwise.
eef6a7d5 4302 */
d84ff051 4303bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4304{
7fb98ea7 4305 struct pool_workqueue *pwq;
76af4d93
TH
4306 bool ret;
4307
88109453 4308 rcu_read_lock_sched();
7fb98ea7 4309
d3251859
TH
4310 if (cpu == WORK_CPU_UNBOUND)
4311 cpu = smp_processor_id();
4312
7fb98ea7
TH
4313 if (!(wq->flags & WQ_UNBOUND))
4314 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4315 else
df2d5ae4 4316 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4317
76af4d93 4318 ret = !list_empty(&pwq->delayed_works);
88109453 4319 rcu_read_unlock_sched();
76af4d93
TH
4320
4321 return ret;
1da177e4 4322}
dcd989cb 4323EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4324
dcd989cb
TH
4325/**
4326 * work_busy - test whether a work is currently pending or running
4327 * @work: the work to be tested
4328 *
4329 * Test whether @work is currently pending or running. There is no
4330 * synchronization around this function and the test result is
4331 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4332 *
d185af30 4333 * Return:
dcd989cb
TH
4334 * OR'd bitmask of WORK_BUSY_* bits.
4335 */
4336unsigned int work_busy(struct work_struct *work)
1da177e4 4337{
fa1b54e6 4338 struct worker_pool *pool;
dcd989cb
TH
4339 unsigned long flags;
4340 unsigned int ret = 0;
1da177e4 4341
dcd989cb
TH
4342 if (work_pending(work))
4343 ret |= WORK_BUSY_PENDING;
1da177e4 4344
fa1b54e6
TH
4345 local_irq_save(flags);
4346 pool = get_work_pool(work);
038366c5 4347 if (pool) {
fa1b54e6 4348 spin_lock(&pool->lock);
038366c5
LJ
4349 if (find_worker_executing_work(pool, work))
4350 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4351 spin_unlock(&pool->lock);
038366c5 4352 }
fa1b54e6 4353 local_irq_restore(flags);
1da177e4 4354
dcd989cb 4355 return ret;
1da177e4 4356}
dcd989cb 4357EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4358
3d1cb205
TH
4359/**
4360 * set_worker_desc - set description for the current work item
4361 * @fmt: printf-style format string
4362 * @...: arguments for the format string
4363 *
4364 * This function can be called by a running work function to describe what
4365 * the work item is about. If the worker task gets dumped, this
4366 * information will be printed out together to help debugging. The
4367 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4368 */
4369void set_worker_desc(const char *fmt, ...)
4370{
4371 struct worker *worker = current_wq_worker();
4372 va_list args;
4373
4374 if (worker) {
4375 va_start(args, fmt);
4376 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4377 va_end(args);
3d1cb205
TH
4378 }
4379}
5c750d58 4380EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
4381
4382/**
4383 * print_worker_info - print out worker information and description
4384 * @log_lvl: the log level to use when printing
4385 * @task: target task
4386 *
4387 * If @task is a worker and currently executing a work item, print out the
4388 * name of the workqueue being serviced and worker description set with
4389 * set_worker_desc() by the currently executing work item.
4390 *
4391 * This function can be safely called on any task as long as the
4392 * task_struct itself is accessible. While safe, this function isn't
4393 * synchronized and may print out mixups or garbages of limited length.
4394 */
4395void print_worker_info(const char *log_lvl, struct task_struct *task)
4396{
4397 work_func_t *fn = NULL;
4398 char name[WQ_NAME_LEN] = { };
4399 char desc[WORKER_DESC_LEN] = { };
4400 struct pool_workqueue *pwq = NULL;
4401 struct workqueue_struct *wq = NULL;
3d1cb205
TH
4402 struct worker *worker;
4403
4404 if (!(task->flags & PF_WQ_WORKER))
4405 return;
4406
4407 /*
4408 * This function is called without any synchronization and @task
4409 * could be in any state. Be careful with dereferences.
4410 */
e700591a 4411 worker = kthread_probe_data(task);
3d1cb205
TH
4412
4413 /*
8bf89593
TH
4414 * Carefully copy the associated workqueue's workfn, name and desc.
4415 * Keep the original last '\0' in case the original is garbage.
3d1cb205
TH
4416 */
4417 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4418 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4419 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4420 probe_kernel_read(name, wq->name, sizeof(name) - 1);
8bf89593 4421 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
4422
4423 if (fn || name[0] || desc[0]) {
4424 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
8bf89593 4425 if (strcmp(name, desc))
3d1cb205
TH
4426 pr_cont(" (%s)", desc);
4427 pr_cont("\n");
4428 }
4429}
4430
3494fc30
TH
4431static void pr_cont_pool_info(struct worker_pool *pool)
4432{
4433 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4434 if (pool->node != NUMA_NO_NODE)
4435 pr_cont(" node=%d", pool->node);
4436 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4437}
4438
4439static void pr_cont_work(bool comma, struct work_struct *work)
4440{
4441 if (work->func == wq_barrier_func) {
4442 struct wq_barrier *barr;
4443
4444 barr = container_of(work, struct wq_barrier, work);
4445
4446 pr_cont("%s BAR(%d)", comma ? "," : "",
4447 task_pid_nr(barr->task));
4448 } else {
4449 pr_cont("%s %pf", comma ? "," : "", work->func);
4450 }
4451}
4452
4453static void show_pwq(struct pool_workqueue *pwq)
4454{
4455 struct worker_pool *pool = pwq->pool;
4456 struct work_struct *work;
4457 struct worker *worker;
4458 bool has_in_flight = false, has_pending = false;
4459 int bkt;
4460
4461 pr_info(" pwq %d:", pool->id);
4462 pr_cont_pool_info(pool);
4463
4464 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4465 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4466
4467 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4468 if (worker->current_pwq == pwq) {
4469 has_in_flight = true;
4470 break;
4471 }
4472 }
4473 if (has_in_flight) {
4474 bool comma = false;
4475
4476 pr_info(" in-flight:");
4477 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4478 if (worker->current_pwq != pwq)
4479 continue;
4480
4481 pr_cont("%s %d%s:%pf", comma ? "," : "",
4482 task_pid_nr(worker->task),
4483 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4484 worker->current_func);
4485 list_for_each_entry(work, &worker->scheduled, entry)
4486 pr_cont_work(false, work);
4487 comma = true;
4488 }
4489 pr_cont("\n");
4490 }
4491
4492 list_for_each_entry(work, &pool->worklist, entry) {
4493 if (get_work_pwq(work) == pwq) {
4494 has_pending = true;
4495 break;
4496 }
4497 }
4498 if (has_pending) {
4499 bool comma = false;
4500
4501 pr_info(" pending:");
4502 list_for_each_entry(work, &pool->worklist, entry) {
4503 if (get_work_pwq(work) != pwq)
4504 continue;
4505
4506 pr_cont_work(comma, work);
4507 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4508 }
4509 pr_cont("\n");
4510 }
4511
4512 if (!list_empty(&pwq->delayed_works)) {
4513 bool comma = false;
4514
4515 pr_info(" delayed:");
4516 list_for_each_entry(work, &pwq->delayed_works, entry) {
4517 pr_cont_work(comma, work);
4518 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4519 }
4520 pr_cont("\n");
4521 }
4522}
4523
4524/**
4525 * show_workqueue_state - dump workqueue state
4526 *
7b776af6
RL
4527 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4528 * all busy workqueues and pools.
3494fc30
TH
4529 */
4530void show_workqueue_state(void)
4531{
4532 struct workqueue_struct *wq;
4533 struct worker_pool *pool;
4534 unsigned long flags;
4535 int pi;
4536
4537 rcu_read_lock_sched();
4538
4539 pr_info("Showing busy workqueues and worker pools:\n");
4540
4541 list_for_each_entry_rcu(wq, &workqueues, list) {
4542 struct pool_workqueue *pwq;
4543 bool idle = true;
4544
4545 for_each_pwq(pwq, wq) {
4546 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4547 idle = false;
4548 break;
4549 }
4550 }
4551 if (idle)
4552 continue;
4553
4554 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4555
4556 for_each_pwq(pwq, wq) {
4557 spin_lock_irqsave(&pwq->pool->lock, flags);
4558 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4559 show_pwq(pwq);
4560 spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
4561 /*
4562 * We could be printing a lot from atomic context, e.g.
4563 * sysrq-t -> show_workqueue_state(). Avoid triggering
4564 * hard lockup.
4565 */
4566 touch_nmi_watchdog();
3494fc30
TH
4567 }
4568 }
4569
4570 for_each_pool(pool, pi) {
4571 struct worker *worker;
4572 bool first = true;
4573
4574 spin_lock_irqsave(&pool->lock, flags);
4575 if (pool->nr_workers == pool->nr_idle)
4576 goto next_pool;
4577
4578 pr_info("pool %d:", pool->id);
4579 pr_cont_pool_info(pool);
82607adc
TH
4580 pr_cont(" hung=%us workers=%d",
4581 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4582 pool->nr_workers);
3494fc30
TH
4583 if (pool->manager)
4584 pr_cont(" manager: %d",
4585 task_pid_nr(pool->manager->task));
4586 list_for_each_entry(worker, &pool->idle_list, entry) {
4587 pr_cont(" %s%d", first ? "idle: " : "",
4588 task_pid_nr(worker->task));
4589 first = false;
4590 }
4591 pr_cont("\n");
4592 next_pool:
4593 spin_unlock_irqrestore(&pool->lock, flags);
62635ea8
SS
4594 /*
4595 * We could be printing a lot from atomic context, e.g.
4596 * sysrq-t -> show_workqueue_state(). Avoid triggering
4597 * hard lockup.
4598 */
4599 touch_nmi_watchdog();
3494fc30
TH
4600 }
4601
4602 rcu_read_unlock_sched();
4603}
4604
6b59808b
TH
4605/* used to show worker information through /proc/PID/{comm,stat,status} */
4606void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4607{
6b59808b
TH
4608 int off;
4609
4610 /* always show the actual comm */
4611 off = strscpy(buf, task->comm, size);
4612 if (off < 0)
4613 return;
4614
197f6acc 4615 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
4616 mutex_lock(&wq_pool_attach_mutex);
4617
197f6acc
TH
4618 if (task->flags & PF_WQ_WORKER) {
4619 struct worker *worker = kthread_data(task);
4620 struct worker_pool *pool = worker->pool;
6b59808b 4621
197f6acc
TH
4622 if (pool) {
4623 spin_lock_irq(&pool->lock);
4624 /*
4625 * ->desc tracks information (wq name or
4626 * set_worker_desc()) for the latest execution. If
4627 * current, prepend '+', otherwise '-'.
4628 */
4629 if (worker->desc[0] != '\0') {
4630 if (worker->current_work)
4631 scnprintf(buf + off, size - off, "+%s",
4632 worker->desc);
4633 else
4634 scnprintf(buf + off, size - off, "-%s",
4635 worker->desc);
4636 }
4637 spin_unlock_irq(&pool->lock);
6b59808b 4638 }
6b59808b
TH
4639 }
4640
4641 mutex_unlock(&wq_pool_attach_mutex);
4642}
4643
66448bc2
MM
4644#ifdef CONFIG_SMP
4645
db7bccf4
TH
4646/*
4647 * CPU hotplug.
4648 *
e22bee78 4649 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4650 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4651 * pool which make migrating pending and scheduled works very
e22bee78 4652 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4653 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4654 * blocked draining impractical.
4655 *
24647570 4656 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4657 * running as an unbound one and allowing it to be reattached later if the
4658 * cpu comes back online.
db7bccf4 4659 */
1da177e4 4660
e8b3f8db 4661static void unbind_workers(int cpu)
3af24433 4662{
4ce62e9e 4663 struct worker_pool *pool;
db7bccf4 4664 struct worker *worker;
3af24433 4665
f02ae73a 4666 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 4667 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 4668 spin_lock_irq(&pool->lock);
3af24433 4669
94cf58bb 4670 /*
92f9c5c4 4671 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4672 * unbound and set DISASSOCIATED. Before this, all workers
4673 * except for the ones which are still executing works from
4674 * before the last CPU down must be on the cpu. After
4675 * this, they may become diasporas.
4676 */
da028469 4677 for_each_pool_worker(worker, pool)
c9e7cf27 4678 worker->flags |= WORKER_UNBOUND;
06ba38a9 4679
24647570 4680 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4681
94cf58bb 4682 spin_unlock_irq(&pool->lock);
1258fae7 4683 mutex_unlock(&wq_pool_attach_mutex);
628c78e7 4684
eb283428
LJ
4685 /*
4686 * Call schedule() so that we cross rq->lock and thus can
4687 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4688 * This is necessary as scheduler callbacks may be invoked
4689 * from other cpus.
4690 */
4691 schedule();
06ba38a9 4692
eb283428
LJ
4693 /*
4694 * Sched callbacks are disabled now. Zap nr_running.
4695 * After this, nr_running stays zero and need_more_worker()
4696 * and keep_working() are always true as long as the
4697 * worklist is not empty. This pool now behaves as an
4698 * unbound (in terms of concurrency management) pool which
4699 * are served by workers tied to the pool.
4700 */
e19e397a 4701 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4702
4703 /*
4704 * With concurrency management just turned off, a busy
4705 * worker blocking could lead to lengthy stalls. Kick off
4706 * unbound chain execution of currently pending work items.
4707 */
4708 spin_lock_irq(&pool->lock);
4709 wake_up_worker(pool);
4710 spin_unlock_irq(&pool->lock);
4711 }
3af24433 4712}
3af24433 4713
bd7c089e
TH
4714/**
4715 * rebind_workers - rebind all workers of a pool to the associated CPU
4716 * @pool: pool of interest
4717 *
a9ab775b 4718 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4719 */
4720static void rebind_workers(struct worker_pool *pool)
4721{
a9ab775b 4722 struct worker *worker;
bd7c089e 4723
1258fae7 4724 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 4725
a9ab775b
TH
4726 /*
4727 * Restore CPU affinity of all workers. As all idle workers should
4728 * be on the run-queue of the associated CPU before any local
402dd89d 4729 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4730 * of all workers first and then clear UNBOUND. As we're called
4731 * from CPU_ONLINE, the following shouldn't fail.
4732 */
da028469 4733 for_each_pool_worker(worker, pool)
a9ab775b
TH
4734 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4735 pool->attrs->cpumask) < 0);
bd7c089e 4736
a9ab775b 4737 spin_lock_irq(&pool->lock);
f7c17d26 4738
3de5e884 4739 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4740
da028469 4741 for_each_pool_worker(worker, pool) {
a9ab775b 4742 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4743
4744 /*
a9ab775b
TH
4745 * A bound idle worker should actually be on the runqueue
4746 * of the associated CPU for local wake-ups targeting it to
4747 * work. Kick all idle workers so that they migrate to the
4748 * associated CPU. Doing this in the same loop as
4749 * replacing UNBOUND with REBOUND is safe as no worker will
4750 * be bound before @pool->lock is released.
bd7c089e 4751 */
a9ab775b
TH
4752 if (worker_flags & WORKER_IDLE)
4753 wake_up_process(worker->task);
bd7c089e 4754
a9ab775b
TH
4755 /*
4756 * We want to clear UNBOUND but can't directly call
4757 * worker_clr_flags() or adjust nr_running. Atomically
4758 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4759 * @worker will clear REBOUND using worker_clr_flags() when
4760 * it initiates the next execution cycle thus restoring
4761 * concurrency management. Note that when or whether
4762 * @worker clears REBOUND doesn't affect correctness.
4763 *
c95491ed 4764 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b
TH
4765 * tested without holding any lock in
4766 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4767 * fail incorrectly leading to premature concurrency
4768 * management operations.
4769 */
4770 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4771 worker_flags |= WORKER_REBOUND;
4772 worker_flags &= ~WORKER_UNBOUND;
c95491ed 4773 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 4774 }
a9ab775b
TH
4775
4776 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4777}
4778
7dbc725e
TH
4779/**
4780 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4781 * @pool: unbound pool of interest
4782 * @cpu: the CPU which is coming up
4783 *
4784 * An unbound pool may end up with a cpumask which doesn't have any online
4785 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4786 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4787 * online CPU before, cpus_allowed of all its workers should be restored.
4788 */
4789static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4790{
4791 static cpumask_t cpumask;
4792 struct worker *worker;
7dbc725e 4793
1258fae7 4794 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
4795
4796 /* is @cpu allowed for @pool? */
4797 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4798 return;
4799
7dbc725e 4800 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
4801
4802 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4803 for_each_pool_worker(worker, pool)
d945b5e9 4804 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
4805}
4806
7ee681b2
TG
4807int workqueue_prepare_cpu(unsigned int cpu)
4808{
4809 struct worker_pool *pool;
4810
4811 for_each_cpu_worker_pool(pool, cpu) {
4812 if (pool->nr_workers)
4813 continue;
4814 if (!create_worker(pool))
4815 return -ENOMEM;
4816 }
4817 return 0;
4818}
4819
4820int workqueue_online_cpu(unsigned int cpu)
3af24433 4821{
4ce62e9e 4822 struct worker_pool *pool;
4c16bd32 4823 struct workqueue_struct *wq;
7dbc725e 4824 int pi;
3ce63377 4825
7ee681b2 4826 mutex_lock(&wq_pool_mutex);
7dbc725e 4827
7ee681b2 4828 for_each_pool(pool, pi) {
1258fae7 4829 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 4830
7ee681b2
TG
4831 if (pool->cpu == cpu)
4832 rebind_workers(pool);
4833 else if (pool->cpu < 0)
4834 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 4835
1258fae7 4836 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 4837 }
6ba94429 4838
7ee681b2
TG
4839 /* update NUMA affinity of unbound workqueues */
4840 list_for_each_entry(wq, &workqueues, list)
4841 wq_update_unbound_numa(wq, cpu, true);
6ba94429 4842
7ee681b2
TG
4843 mutex_unlock(&wq_pool_mutex);
4844 return 0;
6ba94429
FW
4845}
4846
7ee681b2 4847int workqueue_offline_cpu(unsigned int cpu)
6ba94429 4848{
6ba94429
FW
4849 struct workqueue_struct *wq;
4850
7ee681b2 4851 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
4852 if (WARN_ON(cpu != smp_processor_id()))
4853 return -1;
4854
4855 unbind_workers(cpu);
7ee681b2
TG
4856
4857 /* update NUMA affinity of unbound workqueues */
4858 mutex_lock(&wq_pool_mutex);
4859 list_for_each_entry(wq, &workqueues, list)
4860 wq_update_unbound_numa(wq, cpu, false);
4861 mutex_unlock(&wq_pool_mutex);
4862
7ee681b2 4863 return 0;
6ba94429
FW
4864}
4865
6ba94429
FW
4866struct work_for_cpu {
4867 struct work_struct work;
4868 long (*fn)(void *);
4869 void *arg;
4870 long ret;
4871};
4872
4873static void work_for_cpu_fn(struct work_struct *work)
4874{
4875 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4876
4877 wfc->ret = wfc->fn(wfc->arg);
4878}
4879
4880/**
22aceb31 4881 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
4882 * @cpu: the cpu to run on
4883 * @fn: the function to run
4884 * @arg: the function arg
4885 *
4886 * It is up to the caller to ensure that the cpu doesn't go offline.
4887 * The caller must not hold any locks which would prevent @fn from completing.
4888 *
4889 * Return: The value @fn returns.
4890 */
4891long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4892{
4893 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4894
4895 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4896 schedule_work_on(cpu, &wfc.work);
4897 flush_work(&wfc.work);
4898 destroy_work_on_stack(&wfc.work);
4899 return wfc.ret;
4900}
4901EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
4902
4903/**
4904 * work_on_cpu_safe - run a function in thread context on a particular cpu
4905 * @cpu: the cpu to run on
4906 * @fn: the function to run
4907 * @arg: the function argument
4908 *
4909 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4910 * any locks which would prevent @fn from completing.
4911 *
4912 * Return: The value @fn returns.
4913 */
4914long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4915{
4916 long ret = -ENODEV;
4917
4918 get_online_cpus();
4919 if (cpu_online(cpu))
4920 ret = work_on_cpu(cpu, fn, arg);
4921 put_online_cpus();
4922 return ret;
4923}
4924EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
4925#endif /* CONFIG_SMP */
4926
4927#ifdef CONFIG_FREEZER
4928
4929/**
4930 * freeze_workqueues_begin - begin freezing workqueues
4931 *
4932 * Start freezing workqueues. After this function returns, all freezable
4933 * workqueues will queue new works to their delayed_works list instead of
4934 * pool->worklist.
4935 *
4936 * CONTEXT:
4937 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4938 */
4939void freeze_workqueues_begin(void)
4940{
4941 struct workqueue_struct *wq;
4942 struct pool_workqueue *pwq;
4943
4944 mutex_lock(&wq_pool_mutex);
4945
4946 WARN_ON_ONCE(workqueue_freezing);
4947 workqueue_freezing = true;
4948
4949 list_for_each_entry(wq, &workqueues, list) {
4950 mutex_lock(&wq->mutex);
4951 for_each_pwq(pwq, wq)
4952 pwq_adjust_max_active(pwq);
4953 mutex_unlock(&wq->mutex);
4954 }
4955
4956 mutex_unlock(&wq_pool_mutex);
4957}
4958
4959/**
4960 * freeze_workqueues_busy - are freezable workqueues still busy?
4961 *
4962 * Check whether freezing is complete. This function must be called
4963 * between freeze_workqueues_begin() and thaw_workqueues().
4964 *
4965 * CONTEXT:
4966 * Grabs and releases wq_pool_mutex.
4967 *
4968 * Return:
4969 * %true if some freezable workqueues are still busy. %false if freezing
4970 * is complete.
4971 */
4972bool freeze_workqueues_busy(void)
4973{
4974 bool busy = false;
4975 struct workqueue_struct *wq;
4976 struct pool_workqueue *pwq;
4977
4978 mutex_lock(&wq_pool_mutex);
4979
4980 WARN_ON_ONCE(!workqueue_freezing);
4981
4982 list_for_each_entry(wq, &workqueues, list) {
4983 if (!(wq->flags & WQ_FREEZABLE))
4984 continue;
4985 /*
4986 * nr_active is monotonically decreasing. It's safe
4987 * to peek without lock.
4988 */
4989 rcu_read_lock_sched();
4990 for_each_pwq(pwq, wq) {
4991 WARN_ON_ONCE(pwq->nr_active < 0);
4992 if (pwq->nr_active) {
4993 busy = true;
4994 rcu_read_unlock_sched();
4995 goto out_unlock;
4996 }
4997 }
4998 rcu_read_unlock_sched();
4999 }
5000out_unlock:
5001 mutex_unlock(&wq_pool_mutex);
5002 return busy;
5003}
5004
5005/**
5006 * thaw_workqueues - thaw workqueues
5007 *
5008 * Thaw workqueues. Normal queueing is restored and all collected
5009 * frozen works are transferred to their respective pool worklists.
5010 *
5011 * CONTEXT:
5012 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5013 */
5014void thaw_workqueues(void)
5015{
5016 struct workqueue_struct *wq;
5017 struct pool_workqueue *pwq;
5018
5019 mutex_lock(&wq_pool_mutex);
5020
5021 if (!workqueue_freezing)
5022 goto out_unlock;
5023
5024 workqueue_freezing = false;
5025
5026 /* restore max_active and repopulate worklist */
5027 list_for_each_entry(wq, &workqueues, list) {
5028 mutex_lock(&wq->mutex);
5029 for_each_pwq(pwq, wq)
5030 pwq_adjust_max_active(pwq);
5031 mutex_unlock(&wq->mutex);
5032 }
5033
5034out_unlock:
5035 mutex_unlock(&wq_pool_mutex);
5036}
5037#endif /* CONFIG_FREEZER */
5038
042f7df1
LJ
5039static int workqueue_apply_unbound_cpumask(void)
5040{
5041 LIST_HEAD(ctxs);
5042 int ret = 0;
5043 struct workqueue_struct *wq;
5044 struct apply_wqattrs_ctx *ctx, *n;
5045
5046 lockdep_assert_held(&wq_pool_mutex);
5047
5048 list_for_each_entry(wq, &workqueues, list) {
5049 if (!(wq->flags & WQ_UNBOUND))
5050 continue;
5051 /* creating multiple pwqs breaks ordering guarantee */
5052 if (wq->flags & __WQ_ORDERED)
5053 continue;
5054
5055 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5056 if (!ctx) {
5057 ret = -ENOMEM;
5058 break;
5059 }
5060
5061 list_add_tail(&ctx->list, &ctxs);
5062 }
5063
5064 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5065 if (!ret)
5066 apply_wqattrs_commit(ctx);
5067 apply_wqattrs_cleanup(ctx);
5068 }
5069
5070 return ret;
5071}
5072
5073/**
5074 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5075 * @cpumask: the cpumask to set
5076 *
5077 * The low-level workqueues cpumask is a global cpumask that limits
5078 * the affinity of all unbound workqueues. This function check the @cpumask
5079 * and apply it to all unbound workqueues and updates all pwqs of them.
5080 *
5081 * Retun: 0 - Success
5082 * -EINVAL - Invalid @cpumask
5083 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5084 */
5085int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5086{
5087 int ret = -EINVAL;
5088 cpumask_var_t saved_cpumask;
5089
5090 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5091 return -ENOMEM;
5092
c98a9805
TS
5093 /*
5094 * Not excluding isolated cpus on purpose.
5095 * If the user wishes to include them, we allow that.
5096 */
042f7df1
LJ
5097 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5098 if (!cpumask_empty(cpumask)) {
a0111cf6 5099 apply_wqattrs_lock();
042f7df1
LJ
5100
5101 /* save the old wq_unbound_cpumask. */
5102 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5103
5104 /* update wq_unbound_cpumask at first and apply it to wqs. */
5105 cpumask_copy(wq_unbound_cpumask, cpumask);
5106 ret = workqueue_apply_unbound_cpumask();
5107
5108 /* restore the wq_unbound_cpumask when failed. */
5109 if (ret < 0)
5110 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5111
a0111cf6 5112 apply_wqattrs_unlock();
042f7df1 5113 }
042f7df1
LJ
5114
5115 free_cpumask_var(saved_cpumask);
5116 return ret;
5117}
5118
6ba94429
FW
5119#ifdef CONFIG_SYSFS
5120/*
5121 * Workqueues with WQ_SYSFS flag set is visible to userland via
5122 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5123 * following attributes.
5124 *
5125 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5126 * max_active RW int : maximum number of in-flight work items
5127 *
5128 * Unbound workqueues have the following extra attributes.
5129 *
9a19b463 5130 * pool_ids RO int : the associated pool IDs for each node
6ba94429
FW
5131 * nice RW int : nice value of the workers
5132 * cpumask RW mask : bitmask of allowed CPUs for the workers
9a19b463 5133 * numa RW bool : whether enable NUMA affinity
6ba94429
FW
5134 */
5135struct wq_device {
5136 struct workqueue_struct *wq;
5137 struct device dev;
5138};
5139
5140static struct workqueue_struct *dev_to_wq(struct device *dev)
5141{
5142 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5143
5144 return wq_dev->wq;
5145}
5146
5147static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5148 char *buf)
5149{
5150 struct workqueue_struct *wq = dev_to_wq(dev);
5151
5152 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5153}
5154static DEVICE_ATTR_RO(per_cpu);
5155
5156static ssize_t max_active_show(struct device *dev,
5157 struct device_attribute *attr, char *buf)
5158{
5159 struct workqueue_struct *wq = dev_to_wq(dev);
5160
5161 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5162}
5163
5164static ssize_t max_active_store(struct device *dev,
5165 struct device_attribute *attr, const char *buf,
5166 size_t count)
5167{
5168 struct workqueue_struct *wq = dev_to_wq(dev);
5169 int val;
5170
5171 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5172 return -EINVAL;
5173
5174 workqueue_set_max_active(wq, val);
5175 return count;
5176}
5177static DEVICE_ATTR_RW(max_active);
5178
5179static struct attribute *wq_sysfs_attrs[] = {
5180 &dev_attr_per_cpu.attr,
5181 &dev_attr_max_active.attr,
5182 NULL,
5183};
5184ATTRIBUTE_GROUPS(wq_sysfs);
5185
5186static ssize_t wq_pool_ids_show(struct device *dev,
5187 struct device_attribute *attr, char *buf)
5188{
5189 struct workqueue_struct *wq = dev_to_wq(dev);
5190 const char *delim = "";
5191 int node, written = 0;
5192
5193 rcu_read_lock_sched();
5194 for_each_node(node) {
5195 written += scnprintf(buf + written, PAGE_SIZE - written,
5196 "%s%d:%d", delim, node,
5197 unbound_pwq_by_node(wq, node)->pool->id);
5198 delim = " ";
5199 }
5200 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5201 rcu_read_unlock_sched();
5202
5203 return written;
5204}
5205
5206static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5207 char *buf)
5208{
5209 struct workqueue_struct *wq = dev_to_wq(dev);
5210 int written;
5211
5212 mutex_lock(&wq->mutex);
5213 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5214 mutex_unlock(&wq->mutex);
5215
5216 return written;
5217}
5218
5219/* prepare workqueue_attrs for sysfs store operations */
5220static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5221{
5222 struct workqueue_attrs *attrs;
5223
899a94fe
LJ
5224 lockdep_assert_held(&wq_pool_mutex);
5225
6ba94429
FW
5226 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5227 if (!attrs)
5228 return NULL;
5229
6ba94429 5230 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5231 return attrs;
5232}
5233
5234static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5235 const char *buf, size_t count)
5236{
5237 struct workqueue_struct *wq = dev_to_wq(dev);
5238 struct workqueue_attrs *attrs;
d4d3e257
LJ
5239 int ret = -ENOMEM;
5240
5241 apply_wqattrs_lock();
6ba94429
FW
5242
5243 attrs = wq_sysfs_prep_attrs(wq);
5244 if (!attrs)
d4d3e257 5245 goto out_unlock;
6ba94429
FW
5246
5247 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5248 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5249 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5250 else
5251 ret = -EINVAL;
5252
d4d3e257
LJ
5253out_unlock:
5254 apply_wqattrs_unlock();
6ba94429
FW
5255 free_workqueue_attrs(attrs);
5256 return ret ?: count;
5257}
5258
5259static ssize_t wq_cpumask_show(struct device *dev,
5260 struct device_attribute *attr, char *buf)
5261{
5262 struct workqueue_struct *wq = dev_to_wq(dev);
5263 int written;
5264
5265 mutex_lock(&wq->mutex);
5266 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5267 cpumask_pr_args(wq->unbound_attrs->cpumask));
5268 mutex_unlock(&wq->mutex);
5269 return written;
5270}
5271
5272static ssize_t wq_cpumask_store(struct device *dev,
5273 struct device_attribute *attr,
5274 const char *buf, size_t count)
5275{
5276 struct workqueue_struct *wq = dev_to_wq(dev);
5277 struct workqueue_attrs *attrs;
d4d3e257
LJ
5278 int ret = -ENOMEM;
5279
5280 apply_wqattrs_lock();
6ba94429
FW
5281
5282 attrs = wq_sysfs_prep_attrs(wq);
5283 if (!attrs)
d4d3e257 5284 goto out_unlock;
6ba94429
FW
5285
5286 ret = cpumask_parse(buf, attrs->cpumask);
5287 if (!ret)
d4d3e257 5288 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5289
d4d3e257
LJ
5290out_unlock:
5291 apply_wqattrs_unlock();
6ba94429
FW
5292 free_workqueue_attrs(attrs);
5293 return ret ?: count;
5294}
5295
5296static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5297 char *buf)
5298{
5299 struct workqueue_struct *wq = dev_to_wq(dev);
5300 int written;
7dbc725e 5301
6ba94429
FW
5302 mutex_lock(&wq->mutex);
5303 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5304 !wq->unbound_attrs->no_numa);
5305 mutex_unlock(&wq->mutex);
4c16bd32 5306
6ba94429 5307 return written;
65758202
TH
5308}
5309
6ba94429
FW
5310static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5311 const char *buf, size_t count)
65758202 5312{
6ba94429
FW
5313 struct workqueue_struct *wq = dev_to_wq(dev);
5314 struct workqueue_attrs *attrs;
d4d3e257
LJ
5315 int v, ret = -ENOMEM;
5316
5317 apply_wqattrs_lock();
4c16bd32 5318
6ba94429
FW
5319 attrs = wq_sysfs_prep_attrs(wq);
5320 if (!attrs)
d4d3e257 5321 goto out_unlock;
4c16bd32 5322
6ba94429
FW
5323 ret = -EINVAL;
5324 if (sscanf(buf, "%d", &v) == 1) {
5325 attrs->no_numa = !v;
d4d3e257 5326 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5327 }
6ba94429 5328
d4d3e257
LJ
5329out_unlock:
5330 apply_wqattrs_unlock();
6ba94429
FW
5331 free_workqueue_attrs(attrs);
5332 return ret ?: count;
65758202
TH
5333}
5334
6ba94429
FW
5335static struct device_attribute wq_sysfs_unbound_attrs[] = {
5336 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5337 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5338 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5339 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5340 __ATTR_NULL,
5341};
8ccad40d 5342
6ba94429
FW
5343static struct bus_type wq_subsys = {
5344 .name = "workqueue",
5345 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5346};
5347
b05a7928
FW
5348static ssize_t wq_unbound_cpumask_show(struct device *dev,
5349 struct device_attribute *attr, char *buf)
5350{
5351 int written;
5352
042f7df1 5353 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5354 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5355 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5356 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5357
5358 return written;
5359}
5360
042f7df1
LJ
5361static ssize_t wq_unbound_cpumask_store(struct device *dev,
5362 struct device_attribute *attr, const char *buf, size_t count)
5363{
5364 cpumask_var_t cpumask;
5365 int ret;
5366
5367 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5368 return -ENOMEM;
5369
5370 ret = cpumask_parse(buf, cpumask);
5371 if (!ret)
5372 ret = workqueue_set_unbound_cpumask(cpumask);
5373
5374 free_cpumask_var(cpumask);
5375 return ret ? ret : count;
5376}
5377
b05a7928 5378static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5379 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5380 wq_unbound_cpumask_store);
b05a7928 5381
6ba94429 5382static int __init wq_sysfs_init(void)
2d3854a3 5383{
b05a7928
FW
5384 int err;
5385
5386 err = subsys_virtual_register(&wq_subsys, NULL);
5387 if (err)
5388 return err;
5389
5390 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5391}
6ba94429 5392core_initcall(wq_sysfs_init);
2d3854a3 5393
6ba94429 5394static void wq_device_release(struct device *dev)
2d3854a3 5395{
6ba94429 5396 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5397
6ba94429 5398 kfree(wq_dev);
2d3854a3 5399}
a0a1a5fd
TH
5400
5401/**
6ba94429
FW
5402 * workqueue_sysfs_register - make a workqueue visible in sysfs
5403 * @wq: the workqueue to register
a0a1a5fd 5404 *
6ba94429
FW
5405 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5406 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5407 * which is the preferred method.
a0a1a5fd 5408 *
6ba94429
FW
5409 * Workqueue user should use this function directly iff it wants to apply
5410 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5411 * apply_workqueue_attrs() may race against userland updating the
5412 * attributes.
5413 *
5414 * Return: 0 on success, -errno on failure.
a0a1a5fd 5415 */
6ba94429 5416int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5417{
6ba94429
FW
5418 struct wq_device *wq_dev;
5419 int ret;
a0a1a5fd 5420
6ba94429 5421 /*
402dd89d 5422 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5423 * attributes breaks ordering guarantee. Disallow exposing ordered
5424 * workqueues.
5425 */
0a94efb5 5426 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5427 return -EINVAL;
a0a1a5fd 5428
6ba94429
FW
5429 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5430 if (!wq_dev)
5431 return -ENOMEM;
5bcab335 5432
6ba94429
FW
5433 wq_dev->wq = wq;
5434 wq_dev->dev.bus = &wq_subsys;
6ba94429 5435 wq_dev->dev.release = wq_device_release;
23217b44 5436 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5437
6ba94429
FW
5438 /*
5439 * unbound_attrs are created separately. Suppress uevent until
5440 * everything is ready.
5441 */
5442 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5443
6ba94429
FW
5444 ret = device_register(&wq_dev->dev);
5445 if (ret) {
537f4146 5446 put_device(&wq_dev->dev);
6ba94429
FW
5447 wq->wq_dev = NULL;
5448 return ret;
5449 }
a0a1a5fd 5450
6ba94429
FW
5451 if (wq->flags & WQ_UNBOUND) {
5452 struct device_attribute *attr;
a0a1a5fd 5453
6ba94429
FW
5454 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5455 ret = device_create_file(&wq_dev->dev, attr);
5456 if (ret) {
5457 device_unregister(&wq_dev->dev);
5458 wq->wq_dev = NULL;
5459 return ret;
a0a1a5fd
TH
5460 }
5461 }
5462 }
6ba94429
FW
5463
5464 dev_set_uevent_suppress(&wq_dev->dev, false);
5465 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5466 return 0;
a0a1a5fd
TH
5467}
5468
5469/**
6ba94429
FW
5470 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5471 * @wq: the workqueue to unregister
a0a1a5fd 5472 *
6ba94429 5473 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5474 */
6ba94429 5475static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5476{
6ba94429 5477 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5478
6ba94429
FW
5479 if (!wq->wq_dev)
5480 return;
a0a1a5fd 5481
6ba94429
FW
5482 wq->wq_dev = NULL;
5483 device_unregister(&wq_dev->dev);
a0a1a5fd 5484}
6ba94429
FW
5485#else /* CONFIG_SYSFS */
5486static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5487#endif /* CONFIG_SYSFS */
a0a1a5fd 5488
82607adc
TH
5489/*
5490 * Workqueue watchdog.
5491 *
5492 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5493 * flush dependency, a concurrency managed work item which stays RUNNING
5494 * indefinitely. Workqueue stalls can be very difficult to debug as the
5495 * usual warning mechanisms don't trigger and internal workqueue state is
5496 * largely opaque.
5497 *
5498 * Workqueue watchdog monitors all worker pools periodically and dumps
5499 * state if some pools failed to make forward progress for a while where
5500 * forward progress is defined as the first item on ->worklist changing.
5501 *
5502 * This mechanism is controlled through the kernel parameter
5503 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5504 * corresponding sysfs parameter file.
5505 */
5506#ifdef CONFIG_WQ_WATCHDOG
5507
82607adc 5508static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 5509static struct timer_list wq_watchdog_timer;
82607adc
TH
5510
5511static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5512static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5513
5514static void wq_watchdog_reset_touched(void)
5515{
5516 int cpu;
5517
5518 wq_watchdog_touched = jiffies;
5519 for_each_possible_cpu(cpu)
5520 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5521}
5522
5cd79d6a 5523static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
5524{
5525 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5526 bool lockup_detected = false;
5527 struct worker_pool *pool;
5528 int pi;
5529
5530 if (!thresh)
5531 return;
5532
5533 rcu_read_lock();
5534
5535 for_each_pool(pool, pi) {
5536 unsigned long pool_ts, touched, ts;
5537
5538 if (list_empty(&pool->worklist))
5539 continue;
5540
5541 /* get the latest of pool and touched timestamps */
5542 pool_ts = READ_ONCE(pool->watchdog_ts);
5543 touched = READ_ONCE(wq_watchdog_touched);
5544
5545 if (time_after(pool_ts, touched))
5546 ts = pool_ts;
5547 else
5548 ts = touched;
5549
5550 if (pool->cpu >= 0) {
5551 unsigned long cpu_touched =
5552 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5553 pool->cpu));
5554 if (time_after(cpu_touched, ts))
5555 ts = cpu_touched;
5556 }
5557
5558 /* did we stall? */
5559 if (time_after(jiffies, ts + thresh)) {
5560 lockup_detected = true;
5561 pr_emerg("BUG: workqueue lockup - pool");
5562 pr_cont_pool_info(pool);
5563 pr_cont(" stuck for %us!\n",
5564 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5565 }
5566 }
5567
5568 rcu_read_unlock();
5569
5570 if (lockup_detected)
5571 show_workqueue_state();
5572
5573 wq_watchdog_reset_touched();
5574 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5575}
5576
cb9d7fd5 5577notrace void wq_watchdog_touch(int cpu)
82607adc
TH
5578{
5579 if (cpu >= 0)
5580 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5581 else
5582 wq_watchdog_touched = jiffies;
5583}
5584
5585static void wq_watchdog_set_thresh(unsigned long thresh)
5586{
5587 wq_watchdog_thresh = 0;
5588 del_timer_sync(&wq_watchdog_timer);
5589
5590 if (thresh) {
5591 wq_watchdog_thresh = thresh;
5592 wq_watchdog_reset_touched();
5593 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5594 }
5595}
5596
5597static int wq_watchdog_param_set_thresh(const char *val,
5598 const struct kernel_param *kp)
5599{
5600 unsigned long thresh;
5601 int ret;
5602
5603 ret = kstrtoul(val, 0, &thresh);
5604 if (ret)
5605 return ret;
5606
5607 if (system_wq)
5608 wq_watchdog_set_thresh(thresh);
5609 else
5610 wq_watchdog_thresh = thresh;
5611
5612 return 0;
5613}
5614
5615static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5616 .set = wq_watchdog_param_set_thresh,
5617 .get = param_get_ulong,
5618};
5619
5620module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5621 0644);
5622
5623static void wq_watchdog_init(void)
5624{
5cd79d6a 5625 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
5626 wq_watchdog_set_thresh(wq_watchdog_thresh);
5627}
5628
5629#else /* CONFIG_WQ_WATCHDOG */
5630
5631static inline void wq_watchdog_init(void) { }
5632
5633#endif /* CONFIG_WQ_WATCHDOG */
5634
bce90380
TH
5635static void __init wq_numa_init(void)
5636{
5637 cpumask_var_t *tbl;
5638 int node, cpu;
5639
bce90380
TH
5640 if (num_possible_nodes() <= 1)
5641 return;
5642
d55262c4
TH
5643 if (wq_disable_numa) {
5644 pr_info("workqueue: NUMA affinity support disabled\n");
5645 return;
5646 }
5647
4c16bd32
TH
5648 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5649 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5650
bce90380
TH
5651 /*
5652 * We want masks of possible CPUs of each node which isn't readily
5653 * available. Build one from cpu_to_node() which should have been
5654 * fully initialized by now.
5655 */
6396bb22 5656 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5657 BUG_ON(!tbl);
5658
5659 for_each_node(node)
5a6024f1 5660 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5661 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5662
5663 for_each_possible_cpu(cpu) {
5664 node = cpu_to_node(cpu);
5665 if (WARN_ON(node == NUMA_NO_NODE)) {
5666 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5667 /* happens iff arch is bonkers, let's just proceed */
5668 return;
5669 }
5670 cpumask_set_cpu(cpu, tbl[node]);
5671 }
5672
5673 wq_numa_possible_cpumask = tbl;
5674 wq_numa_enabled = true;
5675}
5676
3347fa09
TH
5677/**
5678 * workqueue_init_early - early init for workqueue subsystem
5679 *
5680 * This is the first half of two-staged workqueue subsystem initialization
5681 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5682 * idr are up. It sets up all the data structures and system workqueues
5683 * and allows early boot code to create workqueues and queue/cancel work
5684 * items. Actual work item execution starts only after kthreads can be
5685 * created and scheduled right before early initcalls.
5686 */
5687int __init workqueue_init_early(void)
1da177e4 5688{
7a4e344c 5689 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
1bda3f80 5690 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
7a4e344c 5691 int i, cpu;
c34056a3 5692
e904e6c2
TH
5693 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5694
b05a7928 5695 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
1bda3f80 5696 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
b05a7928 5697
e904e6c2
TH
5698 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5699
706026c2 5700 /* initialize CPU pools */
29c91e99 5701 for_each_possible_cpu(cpu) {
4ce62e9e 5702 struct worker_pool *pool;
8b03ae3c 5703
7a4e344c 5704 i = 0;
f02ae73a 5705 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5706 BUG_ON(init_worker_pool(pool));
ec22ca5e 5707 pool->cpu = cpu;
29c91e99 5708 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5709 pool->attrs->nice = std_nice[i++];
f3f90ad4 5710 pool->node = cpu_to_node(cpu);
7a4e344c 5711
9daf9e67 5712 /* alloc pool ID */
68e13a67 5713 mutex_lock(&wq_pool_mutex);
9daf9e67 5714 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5715 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5716 }
8b03ae3c
TH
5717 }
5718
8a2b7538 5719 /* create default unbound and ordered wq attrs */
29c91e99
TH
5720 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5721 struct workqueue_attrs *attrs;
5722
5723 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5724 attrs->nice = std_nice[i];
29c91e99 5725 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5726
5727 /*
5728 * An ordered wq should have only one pwq as ordering is
5729 * guaranteed by max_active which is enforced by pwqs.
5730 * Turn off NUMA so that dfl_pwq is used for all nodes.
5731 */
5732 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5733 attrs->nice = std_nice[i];
5734 attrs->no_numa = true;
5735 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5736 }
5737
d320c038 5738 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5739 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5740 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5741 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5742 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5743 system_freezable_wq = alloc_workqueue("events_freezable",
5744 WQ_FREEZABLE, 0);
0668106c
VK
5745 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5746 WQ_POWER_EFFICIENT, 0);
5747 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5748 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5749 0);
1aabe902 5750 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5751 !system_unbound_wq || !system_freezable_wq ||
5752 !system_power_efficient_wq ||
5753 !system_freezable_power_efficient_wq);
82607adc 5754
3347fa09
TH
5755 return 0;
5756}
5757
5758/**
5759 * workqueue_init - bring workqueue subsystem fully online
5760 *
5761 * This is the latter half of two-staged workqueue subsystem initialization
5762 * and invoked as soon as kthreads can be created and scheduled.
5763 * Workqueues have been created and work items queued on them, but there
5764 * are no kworkers executing the work items yet. Populate the worker pools
5765 * with the initial workers and enable future kworker creations.
5766 */
5767int __init workqueue_init(void)
5768{
2186d9f9 5769 struct workqueue_struct *wq;
3347fa09
TH
5770 struct worker_pool *pool;
5771 int cpu, bkt;
5772
2186d9f9
TH
5773 /*
5774 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5775 * CPU to node mapping may not be available that early on some
5776 * archs such as power and arm64. As per-cpu pools created
5777 * previously could be missing node hint and unbound pools NUMA
5778 * affinity, fix them up.
40c17f75
TH
5779 *
5780 * Also, while iterating workqueues, create rescuers if requested.
2186d9f9
TH
5781 */
5782 wq_numa_init();
5783
5784 mutex_lock(&wq_pool_mutex);
5785
5786 for_each_possible_cpu(cpu) {
5787 for_each_cpu_worker_pool(pool, cpu) {
5788 pool->node = cpu_to_node(cpu);
5789 }
5790 }
5791
40c17f75 5792 list_for_each_entry(wq, &workqueues, list) {
2186d9f9 5793 wq_update_unbound_numa(wq, smp_processor_id(), true);
40c17f75
TH
5794 WARN(init_rescuer(wq),
5795 "workqueue: failed to create early rescuer for %s",
5796 wq->name);
5797 }
2186d9f9
TH
5798
5799 mutex_unlock(&wq_pool_mutex);
5800
3347fa09
TH
5801 /* create the initial workers */
5802 for_each_online_cpu(cpu) {
5803 for_each_cpu_worker_pool(pool, cpu) {
5804 pool->flags &= ~POOL_DISASSOCIATED;
5805 BUG_ON(!create_worker(pool));
5806 }
5807 }
5808
5809 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5810 BUG_ON(!create_worker(pool));
5811
5812 wq_online = true;
82607adc
TH
5813 wq_watchdog_init();
5814
6ee0578b 5815 return 0;
1da177e4 5816}