hrtimer: Remove cb_entry from struct hrtimer
[linux-2.6-block.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
925d519a 40#include <linux/perf_counter.h>
eea08f32 41#include <linux/sched.h>
1da177e4
LT
42
43#include <asm/uaccess.h>
44#include <asm/unistd.h>
45#include <asm/div64.h>
46#include <asm/timex.h>
47#include <asm/io.h>
48
ecea8d19
TG
49u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
50
51EXPORT_SYMBOL(jiffies_64);
52
1da177e4
LT
53/*
54 * per-CPU timer vector definitions:
55 */
1da177e4
LT
56#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
57#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
58#define TVN_SIZE (1 << TVN_BITS)
59#define TVR_SIZE (1 << TVR_BITS)
60#define TVN_MASK (TVN_SIZE - 1)
61#define TVR_MASK (TVR_SIZE - 1)
62
a6fa8e5a 63struct tvec {
1da177e4 64 struct list_head vec[TVN_SIZE];
a6fa8e5a 65};
1da177e4 66
a6fa8e5a 67struct tvec_root {
1da177e4 68 struct list_head vec[TVR_SIZE];
a6fa8e5a 69};
1da177e4 70
a6fa8e5a 71struct tvec_base {
3691c519
ON
72 spinlock_t lock;
73 struct timer_list *running_timer;
1da177e4 74 unsigned long timer_jiffies;
a6fa8e5a
PM
75 struct tvec_root tv1;
76 struct tvec tv2;
77 struct tvec tv3;
78 struct tvec tv4;
79 struct tvec tv5;
6e453a67 80} ____cacheline_aligned;
1da177e4 81
a6fa8e5a 82struct tvec_base boot_tvec_bases;
3691c519 83EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 84static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 85
6e453a67 86/*
a6fa8e5a 87 * Note that all tvec_bases are 2 byte aligned and lower bit of
6e453a67
VP
88 * base in timer_list is guaranteed to be zero. Use the LSB for
89 * the new flag to indicate whether the timer is deferrable
90 */
91#define TBASE_DEFERRABLE_FLAG (0x1)
92
93/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 94static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 95{
e9910846 96 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
6e453a67
VP
97}
98
a6fa8e5a 99static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 100{
a6fa8e5a 101 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
6e453a67
VP
102}
103
104static inline void timer_set_deferrable(struct timer_list *timer)
105{
a6fa8e5a 106 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
6819457d 107 TBASE_DEFERRABLE_FLAG));
6e453a67
VP
108}
109
110static inline void
a6fa8e5a 111timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 112{
a6fa8e5a 113 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
6819457d 114 tbase_get_deferrable(timer->base));
6e453a67
VP
115}
116
9c133c46
AS
117static unsigned long round_jiffies_common(unsigned long j, int cpu,
118 bool force_up)
4c36a5de
AV
119{
120 int rem;
121 unsigned long original = j;
122
123 /*
124 * We don't want all cpus firing their timers at once hitting the
125 * same lock or cachelines, so we skew each extra cpu with an extra
126 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
127 * already did this.
128 * The skew is done by adding 3*cpunr, then round, then subtract this
129 * extra offset again.
130 */
131 j += cpu * 3;
132
133 rem = j % HZ;
134
135 /*
136 * If the target jiffie is just after a whole second (which can happen
137 * due to delays of the timer irq, long irq off times etc etc) then
138 * we should round down to the whole second, not up. Use 1/4th second
139 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 140 * But never round down if @force_up is set.
4c36a5de 141 */
9c133c46 142 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
143 j = j - rem;
144 else /* round up */
145 j = j - rem + HZ;
146
147 /* now that we have rounded, subtract the extra skew again */
148 j -= cpu * 3;
149
150 if (j <= jiffies) /* rounding ate our timeout entirely; */
151 return original;
152 return j;
153}
9c133c46
AS
154
155/**
156 * __round_jiffies - function to round jiffies to a full second
157 * @j: the time in (absolute) jiffies that should be rounded
158 * @cpu: the processor number on which the timeout will happen
159 *
160 * __round_jiffies() rounds an absolute time in the future (in jiffies)
161 * up or down to (approximately) full seconds. This is useful for timers
162 * for which the exact time they fire does not matter too much, as long as
163 * they fire approximately every X seconds.
164 *
165 * By rounding these timers to whole seconds, all such timers will fire
166 * at the same time, rather than at various times spread out. The goal
167 * of this is to have the CPU wake up less, which saves power.
168 *
169 * The exact rounding is skewed for each processor to avoid all
170 * processors firing at the exact same time, which could lead
171 * to lock contention or spurious cache line bouncing.
172 *
173 * The return value is the rounded version of the @j parameter.
174 */
175unsigned long __round_jiffies(unsigned long j, int cpu)
176{
177 return round_jiffies_common(j, cpu, false);
178}
4c36a5de
AV
179EXPORT_SYMBOL_GPL(__round_jiffies);
180
181/**
182 * __round_jiffies_relative - function to round jiffies to a full second
183 * @j: the time in (relative) jiffies that should be rounded
184 * @cpu: the processor number on which the timeout will happen
185 *
72fd4a35 186 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
187 * up or down to (approximately) full seconds. This is useful for timers
188 * for which the exact time they fire does not matter too much, as long as
189 * they fire approximately every X seconds.
190 *
191 * By rounding these timers to whole seconds, all such timers will fire
192 * at the same time, rather than at various times spread out. The goal
193 * of this is to have the CPU wake up less, which saves power.
194 *
195 * The exact rounding is skewed for each processor to avoid all
196 * processors firing at the exact same time, which could lead
197 * to lock contention or spurious cache line bouncing.
198 *
72fd4a35 199 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
200 */
201unsigned long __round_jiffies_relative(unsigned long j, int cpu)
202{
9c133c46
AS
203 unsigned long j0 = jiffies;
204
205 /* Use j0 because jiffies might change while we run */
206 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
207}
208EXPORT_SYMBOL_GPL(__round_jiffies_relative);
209
210/**
211 * round_jiffies - function to round jiffies to a full second
212 * @j: the time in (absolute) jiffies that should be rounded
213 *
72fd4a35 214 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
215 * up or down to (approximately) full seconds. This is useful for timers
216 * for which the exact time they fire does not matter too much, as long as
217 * they fire approximately every X seconds.
218 *
219 * By rounding these timers to whole seconds, all such timers will fire
220 * at the same time, rather than at various times spread out. The goal
221 * of this is to have the CPU wake up less, which saves power.
222 *
72fd4a35 223 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
224 */
225unsigned long round_jiffies(unsigned long j)
226{
9c133c46 227 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
228}
229EXPORT_SYMBOL_GPL(round_jiffies);
230
231/**
232 * round_jiffies_relative - function to round jiffies to a full second
233 * @j: the time in (relative) jiffies that should be rounded
234 *
72fd4a35 235 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
236 * up or down to (approximately) full seconds. This is useful for timers
237 * for which the exact time they fire does not matter too much, as long as
238 * they fire approximately every X seconds.
239 *
240 * By rounding these timers to whole seconds, all such timers will fire
241 * at the same time, rather than at various times spread out. The goal
242 * of this is to have the CPU wake up less, which saves power.
243 *
72fd4a35 244 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
245 */
246unsigned long round_jiffies_relative(unsigned long j)
247{
248 return __round_jiffies_relative(j, raw_smp_processor_id());
249}
250EXPORT_SYMBOL_GPL(round_jiffies_relative);
251
9c133c46
AS
252/**
253 * __round_jiffies_up - function to round jiffies up to a full second
254 * @j: the time in (absolute) jiffies that should be rounded
255 * @cpu: the processor number on which the timeout will happen
256 *
257 * This is the same as __round_jiffies() except that it will never
258 * round down. This is useful for timeouts for which the exact time
259 * of firing does not matter too much, as long as they don't fire too
260 * early.
261 */
262unsigned long __round_jiffies_up(unsigned long j, int cpu)
263{
264 return round_jiffies_common(j, cpu, true);
265}
266EXPORT_SYMBOL_GPL(__round_jiffies_up);
267
268/**
269 * __round_jiffies_up_relative - function to round jiffies up to a full second
270 * @j: the time in (relative) jiffies that should be rounded
271 * @cpu: the processor number on which the timeout will happen
272 *
273 * This is the same as __round_jiffies_relative() except that it will never
274 * round down. This is useful for timeouts for which the exact time
275 * of firing does not matter too much, as long as they don't fire too
276 * early.
277 */
278unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
279{
280 unsigned long j0 = jiffies;
281
282 /* Use j0 because jiffies might change while we run */
283 return round_jiffies_common(j + j0, cpu, true) - j0;
284}
285EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
286
287/**
288 * round_jiffies_up - function to round jiffies up to a full second
289 * @j: the time in (absolute) jiffies that should be rounded
290 *
291 * This is the same as round_jiffies() except that it will never
292 * round down. This is useful for timeouts for which the exact time
293 * of firing does not matter too much, as long as they don't fire too
294 * early.
295 */
296unsigned long round_jiffies_up(unsigned long j)
297{
298 return round_jiffies_common(j, raw_smp_processor_id(), true);
299}
300EXPORT_SYMBOL_GPL(round_jiffies_up);
301
302/**
303 * round_jiffies_up_relative - function to round jiffies up to a full second
304 * @j: the time in (relative) jiffies that should be rounded
305 *
306 * This is the same as round_jiffies_relative() except that it will never
307 * round down. This is useful for timeouts for which the exact time
308 * of firing does not matter too much, as long as they don't fire too
309 * early.
310 */
311unsigned long round_jiffies_up_relative(unsigned long j)
312{
313 return __round_jiffies_up_relative(j, raw_smp_processor_id());
314}
315EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
316
4c36a5de 317
a6fa8e5a 318static inline void set_running_timer(struct tvec_base *base,
1da177e4
LT
319 struct timer_list *timer)
320{
321#ifdef CONFIG_SMP
3691c519 322 base->running_timer = timer;
1da177e4
LT
323#endif
324}
325
a6fa8e5a 326static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
327{
328 unsigned long expires = timer->expires;
329 unsigned long idx = expires - base->timer_jiffies;
330 struct list_head *vec;
331
332 if (idx < TVR_SIZE) {
333 int i = expires & TVR_MASK;
334 vec = base->tv1.vec + i;
335 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
336 int i = (expires >> TVR_BITS) & TVN_MASK;
337 vec = base->tv2.vec + i;
338 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
339 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
340 vec = base->tv3.vec + i;
341 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
342 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
343 vec = base->tv4.vec + i;
344 } else if ((signed long) idx < 0) {
345 /*
346 * Can happen if you add a timer with expires == jiffies,
347 * or you set a timer to go off in the past
348 */
349 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
350 } else {
351 int i;
352 /* If the timeout is larger than 0xffffffff on 64-bit
353 * architectures then we use the maximum timeout:
354 */
355 if (idx > 0xffffffffUL) {
356 idx = 0xffffffffUL;
357 expires = idx + base->timer_jiffies;
358 }
359 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
360 vec = base->tv5.vec + i;
361 }
362 /*
363 * Timers are FIFO:
364 */
365 list_add_tail(&timer->entry, vec);
366}
367
82f67cd9
IM
368#ifdef CONFIG_TIMER_STATS
369void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
370{
371 if (timer->start_site)
372 return;
373
374 timer->start_site = addr;
375 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
376 timer->start_pid = current->pid;
377}
c5c061b8
VP
378
379static void timer_stats_account_timer(struct timer_list *timer)
380{
381 unsigned int flag = 0;
382
507e1231
HC
383 if (likely(!timer->start_site))
384 return;
c5c061b8
VP
385 if (unlikely(tbase_get_deferrable(timer->base)))
386 flag |= TIMER_STATS_FLAG_DEFERRABLE;
387
388 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
389 timer->function, timer->start_comm, flag);
390}
391
392#else
393static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
394#endif
395
c6f3a97f
TG
396#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
397
398static struct debug_obj_descr timer_debug_descr;
399
400/*
401 * fixup_init is called when:
402 * - an active object is initialized
55c888d6 403 */
c6f3a97f
TG
404static int timer_fixup_init(void *addr, enum debug_obj_state state)
405{
406 struct timer_list *timer = addr;
407
408 switch (state) {
409 case ODEBUG_STATE_ACTIVE:
410 del_timer_sync(timer);
411 debug_object_init(timer, &timer_debug_descr);
412 return 1;
413 default:
414 return 0;
415 }
416}
417
418/*
419 * fixup_activate is called when:
420 * - an active object is activated
421 * - an unknown object is activated (might be a statically initialized object)
422 */
423static int timer_fixup_activate(void *addr, enum debug_obj_state state)
424{
425 struct timer_list *timer = addr;
426
427 switch (state) {
428
429 case ODEBUG_STATE_NOTAVAILABLE:
430 /*
431 * This is not really a fixup. The timer was
432 * statically initialized. We just make sure that it
433 * is tracked in the object tracker.
434 */
435 if (timer->entry.next == NULL &&
436 timer->entry.prev == TIMER_ENTRY_STATIC) {
437 debug_object_init(timer, &timer_debug_descr);
438 debug_object_activate(timer, &timer_debug_descr);
439 return 0;
440 } else {
441 WARN_ON_ONCE(1);
442 }
443 return 0;
444
445 case ODEBUG_STATE_ACTIVE:
446 WARN_ON(1);
447
448 default:
449 return 0;
450 }
451}
452
453/*
454 * fixup_free is called when:
455 * - an active object is freed
456 */
457static int timer_fixup_free(void *addr, enum debug_obj_state state)
458{
459 struct timer_list *timer = addr;
460
461 switch (state) {
462 case ODEBUG_STATE_ACTIVE:
463 del_timer_sync(timer);
464 debug_object_free(timer, &timer_debug_descr);
465 return 1;
466 default:
467 return 0;
468 }
469}
470
471static struct debug_obj_descr timer_debug_descr = {
472 .name = "timer_list",
473 .fixup_init = timer_fixup_init,
474 .fixup_activate = timer_fixup_activate,
475 .fixup_free = timer_fixup_free,
476};
477
478static inline void debug_timer_init(struct timer_list *timer)
479{
480 debug_object_init(timer, &timer_debug_descr);
481}
482
483static inline void debug_timer_activate(struct timer_list *timer)
484{
485 debug_object_activate(timer, &timer_debug_descr);
486}
487
488static inline void debug_timer_deactivate(struct timer_list *timer)
489{
490 debug_object_deactivate(timer, &timer_debug_descr);
491}
492
493static inline void debug_timer_free(struct timer_list *timer)
494{
495 debug_object_free(timer, &timer_debug_descr);
496}
497
6f2b9b9a
JB
498static void __init_timer(struct timer_list *timer,
499 const char *name,
500 struct lock_class_key *key);
c6f3a97f 501
6f2b9b9a
JB
502void init_timer_on_stack_key(struct timer_list *timer,
503 const char *name,
504 struct lock_class_key *key)
c6f3a97f
TG
505{
506 debug_object_init_on_stack(timer, &timer_debug_descr);
6f2b9b9a 507 __init_timer(timer, name, key);
c6f3a97f 508}
6f2b9b9a 509EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
510
511void destroy_timer_on_stack(struct timer_list *timer)
512{
513 debug_object_free(timer, &timer_debug_descr);
514}
515EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
516
517#else
518static inline void debug_timer_init(struct timer_list *timer) { }
519static inline void debug_timer_activate(struct timer_list *timer) { }
520static inline void debug_timer_deactivate(struct timer_list *timer) { }
521#endif
522
6f2b9b9a
JB
523static void __init_timer(struct timer_list *timer,
524 const char *name,
525 struct lock_class_key *key)
55c888d6
ON
526{
527 timer->entry.next = NULL;
bfe5d834 528 timer->base = __raw_get_cpu_var(tvec_bases);
82f67cd9
IM
529#ifdef CONFIG_TIMER_STATS
530 timer->start_site = NULL;
531 timer->start_pid = -1;
532 memset(timer->start_comm, 0, TASK_COMM_LEN);
533#endif
6f2b9b9a 534 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 535}
c6f3a97f
TG
536
537/**
633fe795 538 * init_timer_key - initialize a timer
c6f3a97f 539 * @timer: the timer to be initialized
633fe795
RD
540 * @name: name of the timer
541 * @key: lockdep class key of the fake lock used for tracking timer
542 * sync lock dependencies
c6f3a97f 543 *
633fe795 544 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
545 * other timer functions.
546 */
6f2b9b9a
JB
547void init_timer_key(struct timer_list *timer,
548 const char *name,
549 struct lock_class_key *key)
c6f3a97f
TG
550{
551 debug_timer_init(timer);
6f2b9b9a 552 __init_timer(timer, name, key);
c6f3a97f 553}
6f2b9b9a 554EXPORT_SYMBOL(init_timer_key);
55c888d6 555
6f2b9b9a
JB
556void init_timer_deferrable_key(struct timer_list *timer,
557 const char *name,
558 struct lock_class_key *key)
6e453a67 559{
6f2b9b9a 560 init_timer_key(timer, name, key);
6e453a67
VP
561 timer_set_deferrable(timer);
562}
6f2b9b9a 563EXPORT_SYMBOL(init_timer_deferrable_key);
6e453a67 564
55c888d6 565static inline void detach_timer(struct timer_list *timer,
82f67cd9 566 int clear_pending)
55c888d6
ON
567{
568 struct list_head *entry = &timer->entry;
569
c6f3a97f
TG
570 debug_timer_deactivate(timer);
571
55c888d6
ON
572 __list_del(entry->prev, entry->next);
573 if (clear_pending)
574 entry->next = NULL;
575 entry->prev = LIST_POISON2;
576}
577
578/*
3691c519 579 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
580 * means that all timers which are tied to this base via timer->base are
581 * locked, and the base itself is locked too.
582 *
583 * So __run_timers/migrate_timers can safely modify all timers which could
584 * be found on ->tvX lists.
585 *
586 * When the timer's base is locked, and the timer removed from list, it is
587 * possible to set timer->base = NULL and drop the lock: the timer remains
588 * locked.
589 */
a6fa8e5a 590static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 591 unsigned long *flags)
89e7e374 592 __acquires(timer->base->lock)
55c888d6 593{
a6fa8e5a 594 struct tvec_base *base;
55c888d6
ON
595
596 for (;;) {
a6fa8e5a 597 struct tvec_base *prelock_base = timer->base;
6e453a67 598 base = tbase_get_base(prelock_base);
55c888d6
ON
599 if (likely(base != NULL)) {
600 spin_lock_irqsave(&base->lock, *flags);
6e453a67 601 if (likely(prelock_base == timer->base))
55c888d6
ON
602 return base;
603 /* The timer has migrated to another CPU */
604 spin_unlock_irqrestore(&base->lock, *flags);
605 }
606 cpu_relax();
607 }
608}
609
74019224 610static inline int
597d0275
AB
611__mod_timer(struct timer_list *timer, unsigned long expires,
612 bool pending_only, int pinned)
1da177e4 613{
a6fa8e5a 614 struct tvec_base *base, *new_base;
1da177e4 615 unsigned long flags;
eea08f32 616 int ret = 0 , cpu;
1da177e4 617
82f67cd9 618 timer_stats_timer_set_start_info(timer);
1da177e4 619 BUG_ON(!timer->function);
1da177e4 620
55c888d6
ON
621 base = lock_timer_base(timer, &flags);
622
623 if (timer_pending(timer)) {
624 detach_timer(timer, 0);
625 ret = 1;
74019224
IM
626 } else {
627 if (pending_only)
628 goto out_unlock;
55c888d6
ON
629 }
630
c6f3a97f
TG
631 debug_timer_activate(timer);
632
a4a6198b 633 new_base = __get_cpu_var(tvec_bases);
1da177e4 634
eea08f32
AB
635 cpu = smp_processor_id();
636
637#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
638 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) {
639 int preferred_cpu = get_nohz_load_balancer();
640
641 if (preferred_cpu >= 0)
642 cpu = preferred_cpu;
643 }
644#endif
645 new_base = per_cpu(tvec_bases, cpu);
646
3691c519 647 if (base != new_base) {
1da177e4 648 /*
55c888d6
ON
649 * We are trying to schedule the timer on the local CPU.
650 * However we can't change timer's base while it is running,
651 * otherwise del_timer_sync() can't detect that the timer's
652 * handler yet has not finished. This also guarantees that
653 * the timer is serialized wrt itself.
1da177e4 654 */
a2c348fe 655 if (likely(base->running_timer != timer)) {
55c888d6 656 /* See the comment in lock_timer_base() */
6e453a67 657 timer_set_base(timer, NULL);
55c888d6 658 spin_unlock(&base->lock);
a2c348fe
ON
659 base = new_base;
660 spin_lock(&base->lock);
6e453a67 661 timer_set_base(timer, base);
1da177e4
LT
662 }
663 }
664
1da177e4 665 timer->expires = expires;
a2c348fe 666 internal_add_timer(base, timer);
74019224
IM
667
668out_unlock:
a2c348fe 669 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
670
671 return ret;
672}
673
2aae4a10 674/**
74019224
IM
675 * mod_timer_pending - modify a pending timer's timeout
676 * @timer: the pending timer to be modified
677 * @expires: new timeout in jiffies
1da177e4 678 *
74019224
IM
679 * mod_timer_pending() is the same for pending timers as mod_timer(),
680 * but will not re-activate and modify already deleted timers.
681 *
682 * It is useful for unserialized use of timers.
1da177e4 683 */
74019224 684int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 685{
597d0275 686 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 687}
74019224 688EXPORT_SYMBOL(mod_timer_pending);
1da177e4 689
2aae4a10 690/**
1da177e4
LT
691 * mod_timer - modify a timer's timeout
692 * @timer: the timer to be modified
2aae4a10 693 * @expires: new timeout in jiffies
1da177e4 694 *
72fd4a35 695 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
696 * active timer (if the timer is inactive it will be activated)
697 *
698 * mod_timer(timer, expires) is equivalent to:
699 *
700 * del_timer(timer); timer->expires = expires; add_timer(timer);
701 *
702 * Note that if there are multiple unserialized concurrent users of the
703 * same timer, then mod_timer() is the only safe way to modify the timeout,
704 * since add_timer() cannot modify an already running timer.
705 *
706 * The function returns whether it has modified a pending timer or not.
707 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
708 * active timer returns 1.)
709 */
710int mod_timer(struct timer_list *timer, unsigned long expires)
711{
1da177e4
LT
712 /*
713 * This is a common optimization triggered by the
714 * networking code - if the timer is re-modified
715 * to be the same thing then just return:
716 */
717 if (timer->expires == expires && timer_pending(timer))
718 return 1;
719
597d0275 720 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 721}
1da177e4
LT
722EXPORT_SYMBOL(mod_timer);
723
597d0275
AB
724/**
725 * mod_timer_pinned - modify a timer's timeout
726 * @timer: the timer to be modified
727 * @expires: new timeout in jiffies
728 *
729 * mod_timer_pinned() is a way to update the expire field of an
730 * active timer (if the timer is inactive it will be activated)
731 * and not allow the timer to be migrated to a different CPU.
732 *
733 * mod_timer_pinned(timer, expires) is equivalent to:
734 *
735 * del_timer(timer); timer->expires = expires; add_timer(timer);
736 */
737int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
738{
739 if (timer->expires == expires && timer_pending(timer))
740 return 1;
741
742 return __mod_timer(timer, expires, false, TIMER_PINNED);
743}
744EXPORT_SYMBOL(mod_timer_pinned);
745
74019224
IM
746/**
747 * add_timer - start a timer
748 * @timer: the timer to be added
749 *
750 * The kernel will do a ->function(->data) callback from the
751 * timer interrupt at the ->expires point in the future. The
752 * current time is 'jiffies'.
753 *
754 * The timer's ->expires, ->function (and if the handler uses it, ->data)
755 * fields must be set prior calling this function.
756 *
757 * Timers with an ->expires field in the past will be executed in the next
758 * timer tick.
759 */
760void add_timer(struct timer_list *timer)
761{
762 BUG_ON(timer_pending(timer));
763 mod_timer(timer, timer->expires);
764}
765EXPORT_SYMBOL(add_timer);
766
767/**
768 * add_timer_on - start a timer on a particular CPU
769 * @timer: the timer to be added
770 * @cpu: the CPU to start it on
771 *
772 * This is not very scalable on SMP. Double adds are not possible.
773 */
774void add_timer_on(struct timer_list *timer, int cpu)
775{
776 struct tvec_base *base = per_cpu(tvec_bases, cpu);
777 unsigned long flags;
778
779 timer_stats_timer_set_start_info(timer);
780 BUG_ON(timer_pending(timer) || !timer->function);
781 spin_lock_irqsave(&base->lock, flags);
782 timer_set_base(timer, base);
783 debug_timer_activate(timer);
784 internal_add_timer(base, timer);
785 /*
786 * Check whether the other CPU is idle and needs to be
787 * triggered to reevaluate the timer wheel when nohz is
788 * active. We are protected against the other CPU fiddling
789 * with the timer by holding the timer base lock. This also
790 * makes sure that a CPU on the way to idle can not evaluate
791 * the timer wheel.
792 */
793 wake_up_idle_cpu(cpu);
794 spin_unlock_irqrestore(&base->lock, flags);
795}
a9862e05 796EXPORT_SYMBOL_GPL(add_timer_on);
74019224 797
2aae4a10 798/**
1da177e4
LT
799 * del_timer - deactive a timer.
800 * @timer: the timer to be deactivated
801 *
802 * del_timer() deactivates a timer - this works on both active and inactive
803 * timers.
804 *
805 * The function returns whether it has deactivated a pending timer or not.
806 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
807 * active timer returns 1.)
808 */
809int del_timer(struct timer_list *timer)
810{
a6fa8e5a 811 struct tvec_base *base;
1da177e4 812 unsigned long flags;
55c888d6 813 int ret = 0;
1da177e4 814
82f67cd9 815 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
816 if (timer_pending(timer)) {
817 base = lock_timer_base(timer, &flags);
818 if (timer_pending(timer)) {
819 detach_timer(timer, 1);
820 ret = 1;
821 }
1da177e4 822 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 823 }
1da177e4 824
55c888d6 825 return ret;
1da177e4 826}
1da177e4
LT
827EXPORT_SYMBOL(del_timer);
828
829#ifdef CONFIG_SMP
2aae4a10
REB
830/**
831 * try_to_del_timer_sync - Try to deactivate a timer
832 * @timer: timer do del
833 *
fd450b73
ON
834 * This function tries to deactivate a timer. Upon successful (ret >= 0)
835 * exit the timer is not queued and the handler is not running on any CPU.
836 *
837 * It must not be called from interrupt contexts.
838 */
839int try_to_del_timer_sync(struct timer_list *timer)
840{
a6fa8e5a 841 struct tvec_base *base;
fd450b73
ON
842 unsigned long flags;
843 int ret = -1;
844
845 base = lock_timer_base(timer, &flags);
846
847 if (base->running_timer == timer)
848 goto out;
849
850 ret = 0;
851 if (timer_pending(timer)) {
852 detach_timer(timer, 1);
853 ret = 1;
854 }
855out:
856 spin_unlock_irqrestore(&base->lock, flags);
857
858 return ret;
859}
e19dff1f
DH
860EXPORT_SYMBOL(try_to_del_timer_sync);
861
2aae4a10 862/**
1da177e4
LT
863 * del_timer_sync - deactivate a timer and wait for the handler to finish.
864 * @timer: the timer to be deactivated
865 *
866 * This function only differs from del_timer() on SMP: besides deactivating
867 * the timer it also makes sure the handler has finished executing on other
868 * CPUs.
869 *
72fd4a35 870 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4
LT
871 * otherwise this function is meaningless. It must not be called from
872 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
873 * completion of the timer's handler. The timer's handler must not call
874 * add_timer_on(). Upon exit the timer is not queued and the handler is
875 * not running on any CPU.
1da177e4
LT
876 *
877 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
878 */
879int del_timer_sync(struct timer_list *timer)
880{
6f2b9b9a
JB
881#ifdef CONFIG_LOCKDEP
882 unsigned long flags;
883
884 local_irq_save(flags);
885 lock_map_acquire(&timer->lockdep_map);
886 lock_map_release(&timer->lockdep_map);
887 local_irq_restore(flags);
888#endif
889
fd450b73
ON
890 for (;;) {
891 int ret = try_to_del_timer_sync(timer);
892 if (ret >= 0)
893 return ret;
a0009652 894 cpu_relax();
fd450b73 895 }
1da177e4 896}
55c888d6 897EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
898#endif
899
a6fa8e5a 900static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
901{
902 /* cascade all the timers from tv up one level */
3439dd86
P
903 struct timer_list *timer, *tmp;
904 struct list_head tv_list;
905
906 list_replace_init(tv->vec + index, &tv_list);
1da177e4 907
1da177e4 908 /*
3439dd86
P
909 * We are removing _all_ timers from the list, so we
910 * don't have to detach them individually.
1da177e4 911 */
3439dd86 912 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 913 BUG_ON(tbase_get_base(timer->base) != base);
3439dd86 914 internal_add_timer(base, timer);
1da177e4 915 }
1da177e4
LT
916
917 return index;
918}
919
2aae4a10
REB
920#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
921
922/**
1da177e4
LT
923 * __run_timers - run all expired timers (if any) on this CPU.
924 * @base: the timer vector to be processed.
925 *
926 * This function cascades all vectors and executes all expired timer
927 * vectors.
928 */
a6fa8e5a 929static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
930{
931 struct timer_list *timer;
932
3691c519 933 spin_lock_irq(&base->lock);
1da177e4 934 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 935 struct list_head work_list;
1da177e4 936 struct list_head *head = &work_list;
6819457d 937 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 938
1da177e4
LT
939 /*
940 * Cascade timers:
941 */
942 if (!index &&
943 (!cascade(base, &base->tv2, INDEX(0))) &&
944 (!cascade(base, &base->tv3, INDEX(1))) &&
945 !cascade(base, &base->tv4, INDEX(2)))
946 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
947 ++base->timer_jiffies;
948 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 949 while (!list_empty(head)) {
1da177e4
LT
950 void (*fn)(unsigned long);
951 unsigned long data;
952
b5e61818 953 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
954 fn = timer->function;
955 data = timer->data;
1da177e4 956
82f67cd9
IM
957 timer_stats_account_timer(timer);
958
1da177e4 959 set_running_timer(base, timer);
55c888d6 960 detach_timer(timer, 1);
6f2b9b9a 961
3691c519 962 spin_unlock_irq(&base->lock);
1da177e4 963 {
be5b4fbd 964 int preempt_count = preempt_count();
6f2b9b9a
JB
965
966#ifdef CONFIG_LOCKDEP
967 /*
968 * It is permissible to free the timer from
969 * inside the function that is called from
970 * it, this we need to take into account for
971 * lockdep too. To avoid bogus "held lock
972 * freed" warnings as well as problems when
973 * looking into timer->lockdep_map, make a
974 * copy and use that here.
975 */
976 struct lockdep_map lockdep_map =
977 timer->lockdep_map;
978#endif
979 /*
980 * Couple the lock chain with the lock chain at
981 * del_timer_sync() by acquiring the lock_map
982 * around the fn() call here and in
983 * del_timer_sync().
984 */
985 lock_map_acquire(&lockdep_map);
986
1da177e4 987 fn(data);
6f2b9b9a
JB
988
989 lock_map_release(&lockdep_map);
990
1da177e4 991 if (preempt_count != preempt_count()) {
4c9dc641 992 printk(KERN_ERR "huh, entered %p "
be5b4fbd
JJ
993 "with preempt_count %08x, exited"
994 " with %08x?\n",
995 fn, preempt_count,
996 preempt_count());
1da177e4
LT
997 BUG();
998 }
999 }
3691c519 1000 spin_lock_irq(&base->lock);
1da177e4
LT
1001 }
1002 }
1003 set_running_timer(base, NULL);
3691c519 1004 spin_unlock_irq(&base->lock);
1da177e4
LT
1005}
1006
ee9c5785 1007#ifdef CONFIG_NO_HZ
1da177e4
LT
1008/*
1009 * Find out when the next timer event is due to happen. This
1010 * is used on S/390 to stop all activity when a cpus is idle.
1011 * This functions needs to be called disabled.
1012 */
a6fa8e5a 1013static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1014{
1cfd6849 1015 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1016 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1017 int index, slot, array, found = 0;
1da177e4 1018 struct timer_list *nte;
a6fa8e5a 1019 struct tvec *varray[4];
1da177e4
LT
1020
1021 /* Look for timer events in tv1. */
1cfd6849 1022 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1023 do {
1cfd6849 1024 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
1025 if (tbase_get_deferrable(nte->base))
1026 continue;
6e453a67 1027
1cfd6849 1028 found = 1;
1da177e4 1029 expires = nte->expires;
1cfd6849
TG
1030 /* Look at the cascade bucket(s)? */
1031 if (!index || slot < index)
1032 goto cascade;
1033 return expires;
1da177e4 1034 }
1cfd6849
TG
1035 slot = (slot + 1) & TVR_MASK;
1036 } while (slot != index);
1037
1038cascade:
1039 /* Calculate the next cascade event */
1040 if (index)
1041 timer_jiffies += TVR_SIZE - index;
1042 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1043
1044 /* Check tv2-tv5. */
1045 varray[0] = &base->tv2;
1046 varray[1] = &base->tv3;
1047 varray[2] = &base->tv4;
1048 varray[3] = &base->tv5;
1cfd6849
TG
1049
1050 for (array = 0; array < 4; array++) {
a6fa8e5a 1051 struct tvec *varp = varray[array];
1cfd6849
TG
1052
1053 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1054 do {
1cfd6849 1055 list_for_each_entry(nte, varp->vec + slot, entry) {
a0419888
JH
1056 if (tbase_get_deferrable(nte->base))
1057 continue;
1058
1cfd6849 1059 found = 1;
1da177e4
LT
1060 if (time_before(nte->expires, expires))
1061 expires = nte->expires;
1cfd6849
TG
1062 }
1063 /*
1064 * Do we still search for the first timer or are
1065 * we looking up the cascade buckets ?
1066 */
1067 if (found) {
1068 /* Look at the cascade bucket(s)? */
1069 if (!index || slot < index)
1070 break;
1071 return expires;
1072 }
1073 slot = (slot + 1) & TVN_MASK;
1074 } while (slot != index);
1075
1076 if (index)
1077 timer_jiffies += TVN_SIZE - index;
1078 timer_jiffies >>= TVN_BITS;
1da177e4 1079 }
1cfd6849
TG
1080 return expires;
1081}
69239749 1082
1cfd6849
TG
1083/*
1084 * Check, if the next hrtimer event is before the next timer wheel
1085 * event:
1086 */
1087static unsigned long cmp_next_hrtimer_event(unsigned long now,
1088 unsigned long expires)
1089{
1090 ktime_t hr_delta = hrtimer_get_next_event();
1091 struct timespec tsdelta;
9501b6cf 1092 unsigned long delta;
1cfd6849
TG
1093
1094 if (hr_delta.tv64 == KTIME_MAX)
1095 return expires;
0662b713 1096
9501b6cf
TG
1097 /*
1098 * Expired timer available, let it expire in the next tick
1099 */
1100 if (hr_delta.tv64 <= 0)
1101 return now + 1;
69239749 1102
1cfd6849 1103 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1104 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1105
1106 /*
1107 * Limit the delta to the max value, which is checked in
1108 * tick_nohz_stop_sched_tick():
1109 */
1110 if (delta > NEXT_TIMER_MAX_DELTA)
1111 delta = NEXT_TIMER_MAX_DELTA;
1112
9501b6cf
TG
1113 /*
1114 * Take rounding errors in to account and make sure, that it
1115 * expires in the next tick. Otherwise we go into an endless
1116 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1117 * the timer softirq
1118 */
1119 if (delta < 1)
1120 delta = 1;
1121 now += delta;
1cfd6849
TG
1122 if (time_before(now, expires))
1123 return now;
1da177e4
LT
1124 return expires;
1125}
1cfd6849
TG
1126
1127/**
8dce39c2 1128 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1129 * @now: current time (in jiffies)
1cfd6849 1130 */
fd064b9b 1131unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1132{
a6fa8e5a 1133 struct tvec_base *base = __get_cpu_var(tvec_bases);
fd064b9b 1134 unsigned long expires;
1cfd6849
TG
1135
1136 spin_lock(&base->lock);
1137 expires = __next_timer_interrupt(base);
1138 spin_unlock(&base->lock);
1139
1140 if (time_before_eq(expires, now))
1141 return now;
1142
1143 return cmp_next_hrtimer_event(now, expires);
1144}
1da177e4
LT
1145#endif
1146
1da177e4 1147/*
5b4db0c2 1148 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1149 * process. user_tick is 1 if the tick is user time, 0 for system.
1150 */
1151void update_process_times(int user_tick)
1152{
1153 struct task_struct *p = current;
1154 int cpu = smp_processor_id();
1155
1156 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1157 account_process_tick(p, user_tick);
1da177e4
LT
1158 run_local_timers();
1159 if (rcu_pending(cpu))
1160 rcu_check_callbacks(cpu, user_tick);
b845b517 1161 printk_tick();
1da177e4 1162 scheduler_tick();
6819457d 1163 run_posix_cpu_timers(p);
1da177e4
LT
1164}
1165
1da177e4
LT
1166/*
1167 * This function runs timers and the timer-tq in bottom half context.
1168 */
1169static void run_timer_softirq(struct softirq_action *h)
1170{
a6fa8e5a 1171 struct tvec_base *base = __get_cpu_var(tvec_bases);
1da177e4 1172
925d519a
PZ
1173 perf_counter_do_pending();
1174
d3d74453 1175 hrtimer_run_pending();
82f67cd9 1176
1da177e4
LT
1177 if (time_after_eq(jiffies, base->timer_jiffies))
1178 __run_timers(base);
1179}
1180
1181/*
1182 * Called by the local, per-CPU timer interrupt on SMP.
1183 */
1184void run_local_timers(void)
1185{
d3d74453 1186 hrtimer_run_queues();
1da177e4 1187 raise_softirq(TIMER_SOFTIRQ);
6687a97d 1188 softlockup_tick();
1da177e4
LT
1189}
1190
1da177e4
LT
1191/*
1192 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1193 * without sampling the sequence number in xtime_lock.
1194 * jiffies is defined in the linker script...
1195 */
1196
3171a030 1197void do_timer(unsigned long ticks)
1da177e4 1198{
3171a030 1199 jiffies_64 += ticks;
dce48a84
TG
1200 update_wall_time();
1201 calc_global_load();
1da177e4
LT
1202}
1203
1204#ifdef __ARCH_WANT_SYS_ALARM
1205
1206/*
1207 * For backwards compatibility? This can be done in libc so Alpha
1208 * and all newer ports shouldn't need it.
1209 */
58fd3aa2 1210SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1211{
c08b8a49 1212 return alarm_setitimer(seconds);
1da177e4
LT
1213}
1214
1215#endif
1216
1217#ifndef __alpha__
1218
1219/*
1220 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1221 * should be moved into arch/i386 instead?
1222 */
1223
1224/**
1225 * sys_getpid - return the thread group id of the current process
1226 *
1227 * Note, despite the name, this returns the tgid not the pid. The tgid and
1228 * the pid are identical unless CLONE_THREAD was specified on clone() in
1229 * which case the tgid is the same in all threads of the same group.
1230 *
1231 * This is SMP safe as current->tgid does not change.
1232 */
58fd3aa2 1233SYSCALL_DEFINE0(getpid)
1da177e4 1234{
b488893a 1235 return task_tgid_vnr(current);
1da177e4
LT
1236}
1237
1238/*
6997a6fa
KK
1239 * Accessing ->real_parent is not SMP-safe, it could
1240 * change from under us. However, we can use a stale
1241 * value of ->real_parent under rcu_read_lock(), see
1242 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4 1243 */
dbf040d9 1244SYSCALL_DEFINE0(getppid)
1da177e4
LT
1245{
1246 int pid;
1da177e4 1247
6997a6fa 1248 rcu_read_lock();
6c5f3e7b 1249 pid = task_tgid_vnr(current->real_parent);
6997a6fa 1250 rcu_read_unlock();
1da177e4 1251
1da177e4
LT
1252 return pid;
1253}
1254
dbf040d9 1255SYSCALL_DEFINE0(getuid)
1da177e4
LT
1256{
1257 /* Only we change this so SMP safe */
76aac0e9 1258 return current_uid();
1da177e4
LT
1259}
1260
dbf040d9 1261SYSCALL_DEFINE0(geteuid)
1da177e4
LT
1262{
1263 /* Only we change this so SMP safe */
76aac0e9 1264 return current_euid();
1da177e4
LT
1265}
1266
dbf040d9 1267SYSCALL_DEFINE0(getgid)
1da177e4
LT
1268{
1269 /* Only we change this so SMP safe */
76aac0e9 1270 return current_gid();
1da177e4
LT
1271}
1272
dbf040d9 1273SYSCALL_DEFINE0(getegid)
1da177e4
LT
1274{
1275 /* Only we change this so SMP safe */
76aac0e9 1276 return current_egid();
1da177e4
LT
1277}
1278
1279#endif
1280
1281static void process_timeout(unsigned long __data)
1282{
36c8b586 1283 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1284}
1285
1286/**
1287 * schedule_timeout - sleep until timeout
1288 * @timeout: timeout value in jiffies
1289 *
1290 * Make the current task sleep until @timeout jiffies have
1291 * elapsed. The routine will return immediately unless
1292 * the current task state has been set (see set_current_state()).
1293 *
1294 * You can set the task state as follows -
1295 *
1296 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1297 * pass before the routine returns. The routine will return 0
1298 *
1299 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1300 * delivered to the current task. In this case the remaining time
1301 * in jiffies will be returned, or 0 if the timer expired in time
1302 *
1303 * The current task state is guaranteed to be TASK_RUNNING when this
1304 * routine returns.
1305 *
1306 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1307 * the CPU away without a bound on the timeout. In this case the return
1308 * value will be %MAX_SCHEDULE_TIMEOUT.
1309 *
1310 * In all cases the return value is guaranteed to be non-negative.
1311 */
7ad5b3a5 1312signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1313{
1314 struct timer_list timer;
1315 unsigned long expire;
1316
1317 switch (timeout)
1318 {
1319 case MAX_SCHEDULE_TIMEOUT:
1320 /*
1321 * These two special cases are useful to be comfortable
1322 * in the caller. Nothing more. We could take
1323 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1324 * but I' d like to return a valid offset (>=0) to allow
1325 * the caller to do everything it want with the retval.
1326 */
1327 schedule();
1328 goto out;
1329 default:
1330 /*
1331 * Another bit of PARANOID. Note that the retval will be
1332 * 0 since no piece of kernel is supposed to do a check
1333 * for a negative retval of schedule_timeout() (since it
1334 * should never happens anyway). You just have the printk()
1335 * that will tell you if something is gone wrong and where.
1336 */
5b149bcc 1337 if (timeout < 0) {
1da177e4 1338 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1339 "value %lx\n", timeout);
1340 dump_stack();
1da177e4
LT
1341 current->state = TASK_RUNNING;
1342 goto out;
1343 }
1344 }
1345
1346 expire = timeout + jiffies;
1347
c6f3a97f 1348 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1349 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1350 schedule();
1351 del_singleshot_timer_sync(&timer);
1352
c6f3a97f
TG
1353 /* Remove the timer from the object tracker */
1354 destroy_timer_on_stack(&timer);
1355
1da177e4
LT
1356 timeout = expire - jiffies;
1357
1358 out:
1359 return timeout < 0 ? 0 : timeout;
1360}
1da177e4
LT
1361EXPORT_SYMBOL(schedule_timeout);
1362
8a1c1757
AM
1363/*
1364 * We can use __set_current_state() here because schedule_timeout() calls
1365 * schedule() unconditionally.
1366 */
64ed93a2
NA
1367signed long __sched schedule_timeout_interruptible(signed long timeout)
1368{
a5a0d52c
AM
1369 __set_current_state(TASK_INTERRUPTIBLE);
1370 return schedule_timeout(timeout);
64ed93a2
NA
1371}
1372EXPORT_SYMBOL(schedule_timeout_interruptible);
1373
294d5cc2
MW
1374signed long __sched schedule_timeout_killable(signed long timeout)
1375{
1376 __set_current_state(TASK_KILLABLE);
1377 return schedule_timeout(timeout);
1378}
1379EXPORT_SYMBOL(schedule_timeout_killable);
1380
64ed93a2
NA
1381signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1382{
a5a0d52c
AM
1383 __set_current_state(TASK_UNINTERRUPTIBLE);
1384 return schedule_timeout(timeout);
64ed93a2
NA
1385}
1386EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1387
1da177e4 1388/* Thread ID - the internal kernel "pid" */
58fd3aa2 1389SYSCALL_DEFINE0(gettid)
1da177e4 1390{
b488893a 1391 return task_pid_vnr(current);
1da177e4
LT
1392}
1393
2aae4a10 1394/**
d4d23add 1395 * do_sysinfo - fill in sysinfo struct
2aae4a10 1396 * @info: pointer to buffer to fill
6819457d 1397 */
d4d23add 1398int do_sysinfo(struct sysinfo *info)
1da177e4 1399{
1da177e4
LT
1400 unsigned long mem_total, sav_total;
1401 unsigned int mem_unit, bitcount;
2d02494f 1402 struct timespec tp;
1da177e4 1403
d4d23add 1404 memset(info, 0, sizeof(struct sysinfo));
1da177e4 1405
2d02494f
TG
1406 ktime_get_ts(&tp);
1407 monotonic_to_bootbased(&tp);
1408 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1409
2d02494f 1410 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1da177e4 1411
2d02494f 1412 info->procs = nr_threads;
1da177e4 1413
d4d23add
KM
1414 si_meminfo(info);
1415 si_swapinfo(info);
1da177e4
LT
1416
1417 /*
1418 * If the sum of all the available memory (i.e. ram + swap)
1419 * is less than can be stored in a 32 bit unsigned long then
1420 * we can be binary compatible with 2.2.x kernels. If not,
1421 * well, in that case 2.2.x was broken anyways...
1422 *
1423 * -Erik Andersen <andersee@debian.org>
1424 */
1425
d4d23add
KM
1426 mem_total = info->totalram + info->totalswap;
1427 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1428 goto out;
1429 bitcount = 0;
d4d23add 1430 mem_unit = info->mem_unit;
1da177e4
LT
1431 while (mem_unit > 1) {
1432 bitcount++;
1433 mem_unit >>= 1;
1434 sav_total = mem_total;
1435 mem_total <<= 1;
1436 if (mem_total < sav_total)
1437 goto out;
1438 }
1439
1440 /*
1441 * If mem_total did not overflow, multiply all memory values by
d4d23add 1442 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1443 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1444 * kernels...
1445 */
1446
d4d23add
KM
1447 info->mem_unit = 1;
1448 info->totalram <<= bitcount;
1449 info->freeram <<= bitcount;
1450 info->sharedram <<= bitcount;
1451 info->bufferram <<= bitcount;
1452 info->totalswap <<= bitcount;
1453 info->freeswap <<= bitcount;
1454 info->totalhigh <<= bitcount;
1455 info->freehigh <<= bitcount;
1456
1457out:
1458 return 0;
1459}
1460
1e7bfb21 1461SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
d4d23add
KM
1462{
1463 struct sysinfo val;
1464
1465 do_sysinfo(&val);
1da177e4 1466
1da177e4
LT
1467 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1468 return -EFAULT;
1469
1470 return 0;
1471}
1472
b4be6258 1473static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1474{
1475 int j;
a6fa8e5a 1476 struct tvec_base *base;
b4be6258 1477 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1478
ba6edfcd 1479 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1480 static char boot_done;
1481
a4a6198b 1482 if (boot_done) {
ba6edfcd
AM
1483 /*
1484 * The APs use this path later in boot
1485 */
94f6030c
CL
1486 base = kmalloc_node(sizeof(*base),
1487 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1488 cpu_to_node(cpu));
1489 if (!base)
1490 return -ENOMEM;
6e453a67
VP
1491
1492 /* Make sure that tvec_base is 2 byte aligned */
1493 if (tbase_get_deferrable(base)) {
1494 WARN_ON(1);
1495 kfree(base);
1496 return -ENOMEM;
1497 }
ba6edfcd 1498 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1499 } else {
ba6edfcd
AM
1500 /*
1501 * This is for the boot CPU - we use compile-time
1502 * static initialisation because per-cpu memory isn't
1503 * ready yet and because the memory allocators are not
1504 * initialised either.
1505 */
a4a6198b 1506 boot_done = 1;
ba6edfcd 1507 base = &boot_tvec_bases;
a4a6198b 1508 }
ba6edfcd
AM
1509 tvec_base_done[cpu] = 1;
1510 } else {
1511 base = per_cpu(tvec_bases, cpu);
a4a6198b 1512 }
ba6edfcd 1513
3691c519 1514 spin_lock_init(&base->lock);
d730e882 1515
1da177e4
LT
1516 for (j = 0; j < TVN_SIZE; j++) {
1517 INIT_LIST_HEAD(base->tv5.vec + j);
1518 INIT_LIST_HEAD(base->tv4.vec + j);
1519 INIT_LIST_HEAD(base->tv3.vec + j);
1520 INIT_LIST_HEAD(base->tv2.vec + j);
1521 }
1522 for (j = 0; j < TVR_SIZE; j++)
1523 INIT_LIST_HEAD(base->tv1.vec + j);
1524
1525 base->timer_jiffies = jiffies;
a4a6198b 1526 return 0;
1da177e4
LT
1527}
1528
1529#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1530static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1531{
1532 struct timer_list *timer;
1533
1534 while (!list_empty(head)) {
b5e61818 1535 timer = list_first_entry(head, struct timer_list, entry);
55c888d6 1536 detach_timer(timer, 0);
6e453a67 1537 timer_set_base(timer, new_base);
1da177e4 1538 internal_add_timer(new_base, timer);
1da177e4 1539 }
1da177e4
LT
1540}
1541
48ccf3da 1542static void __cpuinit migrate_timers(int cpu)
1da177e4 1543{
a6fa8e5a
PM
1544 struct tvec_base *old_base;
1545 struct tvec_base *new_base;
1da177e4
LT
1546 int i;
1547
1548 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1549 old_base = per_cpu(tvec_bases, cpu);
1550 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1551 /*
1552 * The caller is globally serialized and nobody else
1553 * takes two locks at once, deadlock is not possible.
1554 */
1555 spin_lock_irq(&new_base->lock);
0d180406 1556 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1557
1558 BUG_ON(old_base->running_timer);
1da177e4 1559
1da177e4 1560 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1561 migrate_timer_list(new_base, old_base->tv1.vec + i);
1562 for (i = 0; i < TVN_SIZE; i++) {
1563 migrate_timer_list(new_base, old_base->tv2.vec + i);
1564 migrate_timer_list(new_base, old_base->tv3.vec + i);
1565 migrate_timer_list(new_base, old_base->tv4.vec + i);
1566 migrate_timer_list(new_base, old_base->tv5.vec + i);
1567 }
1568
0d180406 1569 spin_unlock(&old_base->lock);
d82f0b0f 1570 spin_unlock_irq(&new_base->lock);
1da177e4 1571 put_cpu_var(tvec_bases);
1da177e4
LT
1572}
1573#endif /* CONFIG_HOTPLUG_CPU */
1574
8c78f307 1575static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1576 unsigned long action, void *hcpu)
1577{
1578 long cpu = (long)hcpu;
1579 switch(action) {
1580 case CPU_UP_PREPARE:
8bb78442 1581 case CPU_UP_PREPARE_FROZEN:
a4a6198b
JB
1582 if (init_timers_cpu(cpu) < 0)
1583 return NOTIFY_BAD;
1da177e4
LT
1584 break;
1585#ifdef CONFIG_HOTPLUG_CPU
1586 case CPU_DEAD:
8bb78442 1587 case CPU_DEAD_FROZEN:
1da177e4
LT
1588 migrate_timers(cpu);
1589 break;
1590#endif
1591 default:
1592 break;
1593 }
1594 return NOTIFY_OK;
1595}
1596
8c78f307 1597static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1598 .notifier_call = timer_cpu_notify,
1599};
1600
1601
1602void __init init_timers(void)
1603{
07dccf33 1604 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1605 (void *)(long)smp_processor_id());
07dccf33 1606
82f67cd9
IM
1607 init_timer_stats();
1608
07dccf33 1609 BUG_ON(err == NOTIFY_BAD);
1da177e4 1610 register_cpu_notifier(&timers_nb);
962cf36c 1611 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1612}
1613
1da177e4
LT
1614/**
1615 * msleep - sleep safely even with waitqueue interruptions
1616 * @msecs: Time in milliseconds to sleep for
1617 */
1618void msleep(unsigned int msecs)
1619{
1620 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1621
75bcc8c5
NA
1622 while (timeout)
1623 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1624}
1625
1626EXPORT_SYMBOL(msleep);
1627
1628/**
96ec3efd 1629 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1630 * @msecs: Time in milliseconds to sleep for
1631 */
1632unsigned long msleep_interruptible(unsigned int msecs)
1633{
1634 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1635
75bcc8c5
NA
1636 while (timeout && !signal_pending(current))
1637 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1638 return jiffies_to_msecs(timeout);
1639}
1640
1641EXPORT_SYMBOL(msleep_interruptible);