pid namespaces: changes to show virtual ids to user
[linux-2.6-block.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
1da177e4
LT
40
41#include <asm/uaccess.h>
42#include <asm/unistd.h>
43#include <asm/div64.h>
44#include <asm/timex.h>
45#include <asm/io.h>
46
ecea8d19
TG
47u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
48
49EXPORT_SYMBOL(jiffies_64);
50
1da177e4
LT
51/*
52 * per-CPU timer vector definitions:
53 */
1da177e4
LT
54#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
55#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
56#define TVN_SIZE (1 << TVN_BITS)
57#define TVR_SIZE (1 << TVR_BITS)
58#define TVN_MASK (TVN_SIZE - 1)
59#define TVR_MASK (TVR_SIZE - 1)
60
61typedef struct tvec_s {
62 struct list_head vec[TVN_SIZE];
63} tvec_t;
64
65typedef struct tvec_root_s {
66 struct list_head vec[TVR_SIZE];
67} tvec_root_t;
68
69struct tvec_t_base_s {
3691c519
ON
70 spinlock_t lock;
71 struct timer_list *running_timer;
1da177e4 72 unsigned long timer_jiffies;
1da177e4
LT
73 tvec_root_t tv1;
74 tvec_t tv2;
75 tvec_t tv3;
76 tvec_t tv4;
77 tvec_t tv5;
6e453a67 78} ____cacheline_aligned;
1da177e4
LT
79
80typedef struct tvec_t_base_s tvec_base_t;
ba6edfcd 81
3691c519
ON
82tvec_base_t boot_tvec_bases;
83EXPORT_SYMBOL(boot_tvec_bases);
51d8c5ed 84static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases;
1da177e4 85
6e453a67
VP
86/*
87 * Note that all tvec_bases is 2 byte aligned and lower bit of
88 * base in timer_list is guaranteed to be zero. Use the LSB for
89 * the new flag to indicate whether the timer is deferrable
90 */
91#define TBASE_DEFERRABLE_FLAG (0x1)
92
93/* Functions below help us manage 'deferrable' flag */
94static inline unsigned int tbase_get_deferrable(tvec_base_t *base)
95{
e9910846 96 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
6e453a67
VP
97}
98
99static inline tvec_base_t *tbase_get_base(tvec_base_t *base)
100{
e9910846 101 return ((tvec_base_t *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
6e453a67
VP
102}
103
104static inline void timer_set_deferrable(struct timer_list *timer)
105{
e9910846 106 timer->base = ((tvec_base_t *)((unsigned long)(timer->base) |
6819457d 107 TBASE_DEFERRABLE_FLAG));
6e453a67
VP
108}
109
110static inline void
111timer_set_base(struct timer_list *timer, tvec_base_t *new_base)
112{
e9910846 113 timer->base = (tvec_base_t *)((unsigned long)(new_base) |
6819457d 114 tbase_get_deferrable(timer->base));
6e453a67
VP
115}
116
4c36a5de
AV
117/**
118 * __round_jiffies - function to round jiffies to a full second
119 * @j: the time in (absolute) jiffies that should be rounded
120 * @cpu: the processor number on which the timeout will happen
121 *
72fd4a35 122 * __round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
123 * up or down to (approximately) full seconds. This is useful for timers
124 * for which the exact time they fire does not matter too much, as long as
125 * they fire approximately every X seconds.
126 *
127 * By rounding these timers to whole seconds, all such timers will fire
128 * at the same time, rather than at various times spread out. The goal
129 * of this is to have the CPU wake up less, which saves power.
130 *
131 * The exact rounding is skewed for each processor to avoid all
132 * processors firing at the exact same time, which could lead
133 * to lock contention or spurious cache line bouncing.
134 *
72fd4a35 135 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
136 */
137unsigned long __round_jiffies(unsigned long j, int cpu)
138{
139 int rem;
140 unsigned long original = j;
141
142 /*
143 * We don't want all cpus firing their timers at once hitting the
144 * same lock or cachelines, so we skew each extra cpu with an extra
145 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
146 * already did this.
147 * The skew is done by adding 3*cpunr, then round, then subtract this
148 * extra offset again.
149 */
150 j += cpu * 3;
151
152 rem = j % HZ;
153
154 /*
155 * If the target jiffie is just after a whole second (which can happen
156 * due to delays of the timer irq, long irq off times etc etc) then
157 * we should round down to the whole second, not up. Use 1/4th second
158 * as cutoff for this rounding as an extreme upper bound for this.
159 */
160 if (rem < HZ/4) /* round down */
161 j = j - rem;
162 else /* round up */
163 j = j - rem + HZ;
164
165 /* now that we have rounded, subtract the extra skew again */
166 j -= cpu * 3;
167
168 if (j <= jiffies) /* rounding ate our timeout entirely; */
169 return original;
170 return j;
171}
172EXPORT_SYMBOL_GPL(__round_jiffies);
173
174/**
175 * __round_jiffies_relative - function to round jiffies to a full second
176 * @j: the time in (relative) jiffies that should be rounded
177 * @cpu: the processor number on which the timeout will happen
178 *
72fd4a35 179 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
180 * up or down to (approximately) full seconds. This is useful for timers
181 * for which the exact time they fire does not matter too much, as long as
182 * they fire approximately every X seconds.
183 *
184 * By rounding these timers to whole seconds, all such timers will fire
185 * at the same time, rather than at various times spread out. The goal
186 * of this is to have the CPU wake up less, which saves power.
187 *
188 * The exact rounding is skewed for each processor to avoid all
189 * processors firing at the exact same time, which could lead
190 * to lock contention or spurious cache line bouncing.
191 *
72fd4a35 192 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
193 */
194unsigned long __round_jiffies_relative(unsigned long j, int cpu)
195{
196 /*
197 * In theory the following code can skip a jiffy in case jiffies
198 * increments right between the addition and the later subtraction.
199 * However since the entire point of this function is to use approximate
200 * timeouts, it's entirely ok to not handle that.
201 */
202 return __round_jiffies(j + jiffies, cpu) - jiffies;
203}
204EXPORT_SYMBOL_GPL(__round_jiffies_relative);
205
206/**
207 * round_jiffies - function to round jiffies to a full second
208 * @j: the time in (absolute) jiffies that should be rounded
209 *
72fd4a35 210 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
211 * up or down to (approximately) full seconds. This is useful for timers
212 * for which the exact time they fire does not matter too much, as long as
213 * they fire approximately every X seconds.
214 *
215 * By rounding these timers to whole seconds, all such timers will fire
216 * at the same time, rather than at various times spread out. The goal
217 * of this is to have the CPU wake up less, which saves power.
218 *
72fd4a35 219 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
220 */
221unsigned long round_jiffies(unsigned long j)
222{
223 return __round_jiffies(j, raw_smp_processor_id());
224}
225EXPORT_SYMBOL_GPL(round_jiffies);
226
227/**
228 * round_jiffies_relative - function to round jiffies to a full second
229 * @j: the time in (relative) jiffies that should be rounded
230 *
72fd4a35 231 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
232 * up or down to (approximately) full seconds. This is useful for timers
233 * for which the exact time they fire does not matter too much, as long as
234 * they fire approximately every X seconds.
235 *
236 * By rounding these timers to whole seconds, all such timers will fire
237 * at the same time, rather than at various times spread out. The goal
238 * of this is to have the CPU wake up less, which saves power.
239 *
72fd4a35 240 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
241 */
242unsigned long round_jiffies_relative(unsigned long j)
243{
244 return __round_jiffies_relative(j, raw_smp_processor_id());
245}
246EXPORT_SYMBOL_GPL(round_jiffies_relative);
247
248
1da177e4
LT
249static inline void set_running_timer(tvec_base_t *base,
250 struct timer_list *timer)
251{
252#ifdef CONFIG_SMP
3691c519 253 base->running_timer = timer;
1da177e4
LT
254#endif
255}
256
1da177e4
LT
257static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
258{
259 unsigned long expires = timer->expires;
260 unsigned long idx = expires - base->timer_jiffies;
261 struct list_head *vec;
262
263 if (idx < TVR_SIZE) {
264 int i = expires & TVR_MASK;
265 vec = base->tv1.vec + i;
266 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
267 int i = (expires >> TVR_BITS) & TVN_MASK;
268 vec = base->tv2.vec + i;
269 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
270 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
271 vec = base->tv3.vec + i;
272 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
273 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
274 vec = base->tv4.vec + i;
275 } else if ((signed long) idx < 0) {
276 /*
277 * Can happen if you add a timer with expires == jiffies,
278 * or you set a timer to go off in the past
279 */
280 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
281 } else {
282 int i;
283 /* If the timeout is larger than 0xffffffff on 64-bit
284 * architectures then we use the maximum timeout:
285 */
286 if (idx > 0xffffffffUL) {
287 idx = 0xffffffffUL;
288 expires = idx + base->timer_jiffies;
289 }
290 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
291 vec = base->tv5.vec + i;
292 }
293 /*
294 * Timers are FIFO:
295 */
296 list_add_tail(&timer->entry, vec);
297}
298
82f67cd9
IM
299#ifdef CONFIG_TIMER_STATS
300void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
301{
302 if (timer->start_site)
303 return;
304
305 timer->start_site = addr;
306 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
307 timer->start_pid = current->pid;
308}
c5c061b8
VP
309
310static void timer_stats_account_timer(struct timer_list *timer)
311{
312 unsigned int flag = 0;
313
314 if (unlikely(tbase_get_deferrable(timer->base)))
315 flag |= TIMER_STATS_FLAG_DEFERRABLE;
316
317 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
318 timer->function, timer->start_comm, flag);
319}
320
321#else
322static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
323#endif
324
2aae4a10 325/**
55c888d6
ON
326 * init_timer - initialize a timer.
327 * @timer: the timer to be initialized
328 *
329 * init_timer() must be done to a timer prior calling *any* of the
330 * other timer functions.
331 */
332void fastcall init_timer(struct timer_list *timer)
333{
334 timer->entry.next = NULL;
bfe5d834 335 timer->base = __raw_get_cpu_var(tvec_bases);
82f67cd9
IM
336#ifdef CONFIG_TIMER_STATS
337 timer->start_site = NULL;
338 timer->start_pid = -1;
339 memset(timer->start_comm, 0, TASK_COMM_LEN);
340#endif
55c888d6
ON
341}
342EXPORT_SYMBOL(init_timer);
343
6e453a67
VP
344void fastcall init_timer_deferrable(struct timer_list *timer)
345{
346 init_timer(timer);
347 timer_set_deferrable(timer);
348}
349EXPORT_SYMBOL(init_timer_deferrable);
350
55c888d6 351static inline void detach_timer(struct timer_list *timer,
82f67cd9 352 int clear_pending)
55c888d6
ON
353{
354 struct list_head *entry = &timer->entry;
355
356 __list_del(entry->prev, entry->next);
357 if (clear_pending)
358 entry->next = NULL;
359 entry->prev = LIST_POISON2;
360}
361
362/*
3691c519 363 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
364 * means that all timers which are tied to this base via timer->base are
365 * locked, and the base itself is locked too.
366 *
367 * So __run_timers/migrate_timers can safely modify all timers which could
368 * be found on ->tvX lists.
369 *
370 * When the timer's base is locked, and the timer removed from list, it is
371 * possible to set timer->base = NULL and drop the lock: the timer remains
372 * locked.
373 */
3691c519 374static tvec_base_t *lock_timer_base(struct timer_list *timer,
55c888d6 375 unsigned long *flags)
89e7e374 376 __acquires(timer->base->lock)
55c888d6 377{
3691c519 378 tvec_base_t *base;
55c888d6
ON
379
380 for (;;) {
6e453a67
VP
381 tvec_base_t *prelock_base = timer->base;
382 base = tbase_get_base(prelock_base);
55c888d6
ON
383 if (likely(base != NULL)) {
384 spin_lock_irqsave(&base->lock, *flags);
6e453a67 385 if (likely(prelock_base == timer->base))
55c888d6
ON
386 return base;
387 /* The timer has migrated to another CPU */
388 spin_unlock_irqrestore(&base->lock, *flags);
389 }
390 cpu_relax();
391 }
392}
393
1da177e4
LT
394int __mod_timer(struct timer_list *timer, unsigned long expires)
395{
3691c519 396 tvec_base_t *base, *new_base;
1da177e4
LT
397 unsigned long flags;
398 int ret = 0;
399
82f67cd9 400 timer_stats_timer_set_start_info(timer);
1da177e4 401 BUG_ON(!timer->function);
1da177e4 402
55c888d6
ON
403 base = lock_timer_base(timer, &flags);
404
405 if (timer_pending(timer)) {
406 detach_timer(timer, 0);
407 ret = 1;
408 }
409
a4a6198b 410 new_base = __get_cpu_var(tvec_bases);
1da177e4 411
3691c519 412 if (base != new_base) {
1da177e4 413 /*
55c888d6
ON
414 * We are trying to schedule the timer on the local CPU.
415 * However we can't change timer's base while it is running,
416 * otherwise del_timer_sync() can't detect that the timer's
417 * handler yet has not finished. This also guarantees that
418 * the timer is serialized wrt itself.
1da177e4 419 */
a2c348fe 420 if (likely(base->running_timer != timer)) {
55c888d6 421 /* See the comment in lock_timer_base() */
6e453a67 422 timer_set_base(timer, NULL);
55c888d6 423 spin_unlock(&base->lock);
a2c348fe
ON
424 base = new_base;
425 spin_lock(&base->lock);
6e453a67 426 timer_set_base(timer, base);
1da177e4
LT
427 }
428 }
429
1da177e4 430 timer->expires = expires;
a2c348fe
ON
431 internal_add_timer(base, timer);
432 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
433
434 return ret;
435}
436
437EXPORT_SYMBOL(__mod_timer);
438
2aae4a10 439/**
1da177e4
LT
440 * add_timer_on - start a timer on a particular CPU
441 * @timer: the timer to be added
442 * @cpu: the CPU to start it on
443 *
444 * This is not very scalable on SMP. Double adds are not possible.
445 */
446void add_timer_on(struct timer_list *timer, int cpu)
447{
a4a6198b 448 tvec_base_t *base = per_cpu(tvec_bases, cpu);
6819457d 449 unsigned long flags;
55c888d6 450
82f67cd9 451 timer_stats_timer_set_start_info(timer);
6819457d 452 BUG_ON(timer_pending(timer) || !timer->function);
3691c519 453 spin_lock_irqsave(&base->lock, flags);
6e453a67 454 timer_set_base(timer, base);
1da177e4 455 internal_add_timer(base, timer);
3691c519 456 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
457}
458
459
2aae4a10 460/**
1da177e4
LT
461 * mod_timer - modify a timer's timeout
462 * @timer: the timer to be modified
2aae4a10 463 * @expires: new timeout in jiffies
1da177e4 464 *
72fd4a35 465 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
466 * active timer (if the timer is inactive it will be activated)
467 *
468 * mod_timer(timer, expires) is equivalent to:
469 *
470 * del_timer(timer); timer->expires = expires; add_timer(timer);
471 *
472 * Note that if there are multiple unserialized concurrent users of the
473 * same timer, then mod_timer() is the only safe way to modify the timeout,
474 * since add_timer() cannot modify an already running timer.
475 *
476 * The function returns whether it has modified a pending timer or not.
477 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
478 * active timer returns 1.)
479 */
480int mod_timer(struct timer_list *timer, unsigned long expires)
481{
482 BUG_ON(!timer->function);
483
82f67cd9 484 timer_stats_timer_set_start_info(timer);
1da177e4
LT
485 /*
486 * This is a common optimization triggered by the
487 * networking code - if the timer is re-modified
488 * to be the same thing then just return:
489 */
490 if (timer->expires == expires && timer_pending(timer))
491 return 1;
492
493 return __mod_timer(timer, expires);
494}
495
496EXPORT_SYMBOL(mod_timer);
497
2aae4a10 498/**
1da177e4
LT
499 * del_timer - deactive a timer.
500 * @timer: the timer to be deactivated
501 *
502 * del_timer() deactivates a timer - this works on both active and inactive
503 * timers.
504 *
505 * The function returns whether it has deactivated a pending timer or not.
506 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
507 * active timer returns 1.)
508 */
509int del_timer(struct timer_list *timer)
510{
3691c519 511 tvec_base_t *base;
1da177e4 512 unsigned long flags;
55c888d6 513 int ret = 0;
1da177e4 514
82f67cd9 515 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
516 if (timer_pending(timer)) {
517 base = lock_timer_base(timer, &flags);
518 if (timer_pending(timer)) {
519 detach_timer(timer, 1);
520 ret = 1;
521 }
1da177e4 522 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 523 }
1da177e4 524
55c888d6 525 return ret;
1da177e4
LT
526}
527
528EXPORT_SYMBOL(del_timer);
529
530#ifdef CONFIG_SMP
2aae4a10
REB
531/**
532 * try_to_del_timer_sync - Try to deactivate a timer
533 * @timer: timer do del
534 *
fd450b73
ON
535 * This function tries to deactivate a timer. Upon successful (ret >= 0)
536 * exit the timer is not queued and the handler is not running on any CPU.
537 *
538 * It must not be called from interrupt contexts.
539 */
540int try_to_del_timer_sync(struct timer_list *timer)
541{
3691c519 542 tvec_base_t *base;
fd450b73
ON
543 unsigned long flags;
544 int ret = -1;
545
546 base = lock_timer_base(timer, &flags);
547
548 if (base->running_timer == timer)
549 goto out;
550
551 ret = 0;
552 if (timer_pending(timer)) {
553 detach_timer(timer, 1);
554 ret = 1;
555 }
556out:
557 spin_unlock_irqrestore(&base->lock, flags);
558
559 return ret;
560}
561
e19dff1f
DH
562EXPORT_SYMBOL(try_to_del_timer_sync);
563
2aae4a10 564/**
1da177e4
LT
565 * del_timer_sync - deactivate a timer and wait for the handler to finish.
566 * @timer: the timer to be deactivated
567 *
568 * This function only differs from del_timer() on SMP: besides deactivating
569 * the timer it also makes sure the handler has finished executing on other
570 * CPUs.
571 *
72fd4a35 572 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4
LT
573 * otherwise this function is meaningless. It must not be called from
574 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
575 * completion of the timer's handler. The timer's handler must not call
576 * add_timer_on(). Upon exit the timer is not queued and the handler is
577 * not running on any CPU.
1da177e4
LT
578 *
579 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
580 */
581int del_timer_sync(struct timer_list *timer)
582{
fd450b73
ON
583 for (;;) {
584 int ret = try_to_del_timer_sync(timer);
585 if (ret >= 0)
586 return ret;
a0009652 587 cpu_relax();
fd450b73 588 }
1da177e4 589}
1da177e4 590
55c888d6 591EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
592#endif
593
594static int cascade(tvec_base_t *base, tvec_t *tv, int index)
595{
596 /* cascade all the timers from tv up one level */
3439dd86
P
597 struct timer_list *timer, *tmp;
598 struct list_head tv_list;
599
600 list_replace_init(tv->vec + index, &tv_list);
1da177e4 601
1da177e4 602 /*
3439dd86
P
603 * We are removing _all_ timers from the list, so we
604 * don't have to detach them individually.
1da177e4 605 */
3439dd86 606 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 607 BUG_ON(tbase_get_base(timer->base) != base);
3439dd86 608 internal_add_timer(base, timer);
1da177e4 609 }
1da177e4
LT
610
611 return index;
612}
613
2aae4a10
REB
614#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
615
616/**
1da177e4
LT
617 * __run_timers - run all expired timers (if any) on this CPU.
618 * @base: the timer vector to be processed.
619 *
620 * This function cascades all vectors and executes all expired timer
621 * vectors.
622 */
1da177e4
LT
623static inline void __run_timers(tvec_base_t *base)
624{
625 struct timer_list *timer;
626
3691c519 627 spin_lock_irq(&base->lock);
1da177e4 628 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 629 struct list_head work_list;
1da177e4 630 struct list_head *head = &work_list;
6819457d 631 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 632
1da177e4
LT
633 /*
634 * Cascade timers:
635 */
636 if (!index &&
637 (!cascade(base, &base->tv2, INDEX(0))) &&
638 (!cascade(base, &base->tv3, INDEX(1))) &&
639 !cascade(base, &base->tv4, INDEX(2)))
640 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
641 ++base->timer_jiffies;
642 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 643 while (!list_empty(head)) {
1da177e4
LT
644 void (*fn)(unsigned long);
645 unsigned long data;
646
b5e61818 647 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
648 fn = timer->function;
649 data = timer->data;
1da177e4 650
82f67cd9
IM
651 timer_stats_account_timer(timer);
652
1da177e4 653 set_running_timer(base, timer);
55c888d6 654 detach_timer(timer, 1);
3691c519 655 spin_unlock_irq(&base->lock);
1da177e4 656 {
be5b4fbd 657 int preempt_count = preempt_count();
1da177e4
LT
658 fn(data);
659 if (preempt_count != preempt_count()) {
be5b4fbd
JJ
660 printk(KERN_WARNING "huh, entered %p "
661 "with preempt_count %08x, exited"
662 " with %08x?\n",
663 fn, preempt_count,
664 preempt_count());
1da177e4
LT
665 BUG();
666 }
667 }
3691c519 668 spin_lock_irq(&base->lock);
1da177e4
LT
669 }
670 }
671 set_running_timer(base, NULL);
3691c519 672 spin_unlock_irq(&base->lock);
1da177e4
LT
673}
674
fd064b9b 675#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
1da177e4
LT
676/*
677 * Find out when the next timer event is due to happen. This
678 * is used on S/390 to stop all activity when a cpus is idle.
679 * This functions needs to be called disabled.
680 */
1cfd6849 681static unsigned long __next_timer_interrupt(tvec_base_t *base)
1da177e4 682{
1cfd6849 683 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 684 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 685 int index, slot, array, found = 0;
1da177e4 686 struct timer_list *nte;
1da177e4 687 tvec_t *varray[4];
1da177e4
LT
688
689 /* Look for timer events in tv1. */
1cfd6849 690 index = slot = timer_jiffies & TVR_MASK;
1da177e4 691 do {
1cfd6849 692 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
693 if (tbase_get_deferrable(nte->base))
694 continue;
6e453a67 695
1cfd6849 696 found = 1;
1da177e4 697 expires = nte->expires;
1cfd6849
TG
698 /* Look at the cascade bucket(s)? */
699 if (!index || slot < index)
700 goto cascade;
701 return expires;
1da177e4 702 }
1cfd6849
TG
703 slot = (slot + 1) & TVR_MASK;
704 } while (slot != index);
705
706cascade:
707 /* Calculate the next cascade event */
708 if (index)
709 timer_jiffies += TVR_SIZE - index;
710 timer_jiffies >>= TVR_BITS;
1da177e4
LT
711
712 /* Check tv2-tv5. */
713 varray[0] = &base->tv2;
714 varray[1] = &base->tv3;
715 varray[2] = &base->tv4;
716 varray[3] = &base->tv5;
1cfd6849
TG
717
718 for (array = 0; array < 4; array++) {
719 tvec_t *varp = varray[array];
720
721 index = slot = timer_jiffies & TVN_MASK;
1da177e4 722 do {
1cfd6849
TG
723 list_for_each_entry(nte, varp->vec + slot, entry) {
724 found = 1;
1da177e4
LT
725 if (time_before(nte->expires, expires))
726 expires = nte->expires;
1cfd6849
TG
727 }
728 /*
729 * Do we still search for the first timer or are
730 * we looking up the cascade buckets ?
731 */
732 if (found) {
733 /* Look at the cascade bucket(s)? */
734 if (!index || slot < index)
735 break;
736 return expires;
737 }
738 slot = (slot + 1) & TVN_MASK;
739 } while (slot != index);
740
741 if (index)
742 timer_jiffies += TVN_SIZE - index;
743 timer_jiffies >>= TVN_BITS;
1da177e4 744 }
1cfd6849
TG
745 return expires;
746}
69239749 747
1cfd6849
TG
748/*
749 * Check, if the next hrtimer event is before the next timer wheel
750 * event:
751 */
752static unsigned long cmp_next_hrtimer_event(unsigned long now,
753 unsigned long expires)
754{
755 ktime_t hr_delta = hrtimer_get_next_event();
756 struct timespec tsdelta;
9501b6cf 757 unsigned long delta;
1cfd6849
TG
758
759 if (hr_delta.tv64 == KTIME_MAX)
760 return expires;
0662b713 761
9501b6cf
TG
762 /*
763 * Expired timer available, let it expire in the next tick
764 */
765 if (hr_delta.tv64 <= 0)
766 return now + 1;
69239749 767
1cfd6849 768 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 769 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
770
771 /*
772 * Limit the delta to the max value, which is checked in
773 * tick_nohz_stop_sched_tick():
774 */
775 if (delta > NEXT_TIMER_MAX_DELTA)
776 delta = NEXT_TIMER_MAX_DELTA;
777
9501b6cf
TG
778 /*
779 * Take rounding errors in to account and make sure, that it
780 * expires in the next tick. Otherwise we go into an endless
781 * ping pong due to tick_nohz_stop_sched_tick() retriggering
782 * the timer softirq
783 */
784 if (delta < 1)
785 delta = 1;
786 now += delta;
1cfd6849
TG
787 if (time_before(now, expires))
788 return now;
1da177e4
LT
789 return expires;
790}
1cfd6849
TG
791
792/**
793 * next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 794 * @now: current time (in jiffies)
1cfd6849 795 */
fd064b9b 796unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849
TG
797{
798 tvec_base_t *base = __get_cpu_var(tvec_bases);
fd064b9b 799 unsigned long expires;
1cfd6849
TG
800
801 spin_lock(&base->lock);
802 expires = __next_timer_interrupt(base);
803 spin_unlock(&base->lock);
804
805 if (time_before_eq(expires, now))
806 return now;
807
808 return cmp_next_hrtimer_event(now, expires);
809}
fd064b9b
TG
810
811#ifdef CONFIG_NO_IDLE_HZ
812unsigned long next_timer_interrupt(void)
813{
814 return get_next_timer_interrupt(jiffies);
815}
816#endif
817
1da177e4
LT
818#endif
819
1da177e4 820/*
5b4db0c2 821 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
822 * process. user_tick is 1 if the tick is user time, 0 for system.
823 */
824void update_process_times(int user_tick)
825{
826 struct task_struct *p = current;
827 int cpu = smp_processor_id();
828
829 /* Note: this timer irq context must be accounted for as well. */
c66f08be 830 if (user_tick) {
1da177e4 831 account_user_time(p, jiffies_to_cputime(1));
c66f08be
MN
832 account_user_time_scaled(p, jiffies_to_cputime(1));
833 } else {
1da177e4 834 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
c66f08be
MN
835 account_system_time_scaled(p, jiffies_to_cputime(1));
836 }
1da177e4
LT
837 run_local_timers();
838 if (rcu_pending(cpu))
839 rcu_check_callbacks(cpu, user_tick);
840 scheduler_tick();
6819457d 841 run_posix_cpu_timers(p);
1da177e4
LT
842}
843
844/*
845 * Nr of active tasks - counted in fixed-point numbers
846 */
847static unsigned long count_active_tasks(void)
848{
db1b1fef 849 return nr_active() * FIXED_1;
1da177e4
LT
850}
851
852/*
853 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
854 * imply that avenrun[] is the standard name for this kind of thing.
855 * Nothing else seems to be standardized: the fractional size etc
856 * all seem to differ on different machines.
857 *
858 * Requires xtime_lock to access.
859 */
860unsigned long avenrun[3];
861
862EXPORT_SYMBOL(avenrun);
863
864/*
865 * calc_load - given tick count, update the avenrun load estimates.
866 * This is called while holding a write_lock on xtime_lock.
867 */
868static inline void calc_load(unsigned long ticks)
869{
870 unsigned long active_tasks; /* fixed-point */
871 static int count = LOAD_FREQ;
872
cd7175ed
ED
873 count -= ticks;
874 if (unlikely(count < 0)) {
875 active_tasks = count_active_tasks();
876 do {
877 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
878 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
879 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
880 count += LOAD_FREQ;
881 } while (count < 0);
1da177e4
LT
882 }
883}
884
1da177e4
LT
885/*
886 * This function runs timers and the timer-tq in bottom half context.
887 */
888static void run_timer_softirq(struct softirq_action *h)
889{
a4a6198b 890 tvec_base_t *base = __get_cpu_var(tvec_bases);
1da177e4 891
82f67cd9
IM
892 hrtimer_run_queues();
893
1da177e4
LT
894 if (time_after_eq(jiffies, base->timer_jiffies))
895 __run_timers(base);
896}
897
898/*
899 * Called by the local, per-CPU timer interrupt on SMP.
900 */
901void run_local_timers(void)
902{
903 raise_softirq(TIMER_SOFTIRQ);
6687a97d 904 softlockup_tick();
1da177e4
LT
905}
906
907/*
908 * Called by the timer interrupt. xtime_lock must already be taken
909 * by the timer IRQ!
910 */
3171a030 911static inline void update_times(unsigned long ticks)
1da177e4 912{
ad596171 913 update_wall_time();
1da177e4
LT
914 calc_load(ticks);
915}
6819457d 916
1da177e4
LT
917/*
918 * The 64-bit jiffies value is not atomic - you MUST NOT read it
919 * without sampling the sequence number in xtime_lock.
920 * jiffies is defined in the linker script...
921 */
922
3171a030 923void do_timer(unsigned long ticks)
1da177e4 924{
3171a030
AN
925 jiffies_64 += ticks;
926 update_times(ticks);
1da177e4
LT
927}
928
929#ifdef __ARCH_WANT_SYS_ALARM
930
931/*
932 * For backwards compatibility? This can be done in libc so Alpha
933 * and all newer ports shouldn't need it.
934 */
935asmlinkage unsigned long sys_alarm(unsigned int seconds)
936{
c08b8a49 937 return alarm_setitimer(seconds);
1da177e4
LT
938}
939
940#endif
941
942#ifndef __alpha__
943
944/*
945 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
946 * should be moved into arch/i386 instead?
947 */
948
949/**
950 * sys_getpid - return the thread group id of the current process
951 *
952 * Note, despite the name, this returns the tgid not the pid. The tgid and
953 * the pid are identical unless CLONE_THREAD was specified on clone() in
954 * which case the tgid is the same in all threads of the same group.
955 *
956 * This is SMP safe as current->tgid does not change.
957 */
958asmlinkage long sys_getpid(void)
959{
b488893a 960 return task_tgid_vnr(current);
1da177e4
LT
961}
962
963/*
6997a6fa
KK
964 * Accessing ->real_parent is not SMP-safe, it could
965 * change from under us. However, we can use a stale
966 * value of ->real_parent under rcu_read_lock(), see
967 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4
LT
968 */
969asmlinkage long sys_getppid(void)
970{
971 int pid;
1da177e4 972
6997a6fa 973 rcu_read_lock();
b488893a 974 pid = task_ppid_nr_ns(current, current->nsproxy->pid_ns);
6997a6fa 975 rcu_read_unlock();
1da177e4 976
1da177e4
LT
977 return pid;
978}
979
980asmlinkage long sys_getuid(void)
981{
982 /* Only we change this so SMP safe */
983 return current->uid;
984}
985
986asmlinkage long sys_geteuid(void)
987{
988 /* Only we change this so SMP safe */
989 return current->euid;
990}
991
992asmlinkage long sys_getgid(void)
993{
994 /* Only we change this so SMP safe */
995 return current->gid;
996}
997
998asmlinkage long sys_getegid(void)
999{
1000 /* Only we change this so SMP safe */
1001 return current->egid;
1002}
1003
1004#endif
1005
1006static void process_timeout(unsigned long __data)
1007{
36c8b586 1008 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1009}
1010
1011/**
1012 * schedule_timeout - sleep until timeout
1013 * @timeout: timeout value in jiffies
1014 *
1015 * Make the current task sleep until @timeout jiffies have
1016 * elapsed. The routine will return immediately unless
1017 * the current task state has been set (see set_current_state()).
1018 *
1019 * You can set the task state as follows -
1020 *
1021 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1022 * pass before the routine returns. The routine will return 0
1023 *
1024 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1025 * delivered to the current task. In this case the remaining time
1026 * in jiffies will be returned, or 0 if the timer expired in time
1027 *
1028 * The current task state is guaranteed to be TASK_RUNNING when this
1029 * routine returns.
1030 *
1031 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1032 * the CPU away without a bound on the timeout. In this case the return
1033 * value will be %MAX_SCHEDULE_TIMEOUT.
1034 *
1035 * In all cases the return value is guaranteed to be non-negative.
1036 */
1037fastcall signed long __sched schedule_timeout(signed long timeout)
1038{
1039 struct timer_list timer;
1040 unsigned long expire;
1041
1042 switch (timeout)
1043 {
1044 case MAX_SCHEDULE_TIMEOUT:
1045 /*
1046 * These two special cases are useful to be comfortable
1047 * in the caller. Nothing more. We could take
1048 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1049 * but I' d like to return a valid offset (>=0) to allow
1050 * the caller to do everything it want with the retval.
1051 */
1052 schedule();
1053 goto out;
1054 default:
1055 /*
1056 * Another bit of PARANOID. Note that the retval will be
1057 * 0 since no piece of kernel is supposed to do a check
1058 * for a negative retval of schedule_timeout() (since it
1059 * should never happens anyway). You just have the printk()
1060 * that will tell you if something is gone wrong and where.
1061 */
5b149bcc 1062 if (timeout < 0) {
1da177e4 1063 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1064 "value %lx\n", timeout);
1065 dump_stack();
1da177e4
LT
1066 current->state = TASK_RUNNING;
1067 goto out;
1068 }
1069 }
1070
1071 expire = timeout + jiffies;
1072
a8db2db1
ON
1073 setup_timer(&timer, process_timeout, (unsigned long)current);
1074 __mod_timer(&timer, expire);
1da177e4
LT
1075 schedule();
1076 del_singleshot_timer_sync(&timer);
1077
1078 timeout = expire - jiffies;
1079
1080 out:
1081 return timeout < 0 ? 0 : timeout;
1082}
1da177e4
LT
1083EXPORT_SYMBOL(schedule_timeout);
1084
8a1c1757
AM
1085/*
1086 * We can use __set_current_state() here because schedule_timeout() calls
1087 * schedule() unconditionally.
1088 */
64ed93a2
NA
1089signed long __sched schedule_timeout_interruptible(signed long timeout)
1090{
a5a0d52c
AM
1091 __set_current_state(TASK_INTERRUPTIBLE);
1092 return schedule_timeout(timeout);
64ed93a2
NA
1093}
1094EXPORT_SYMBOL(schedule_timeout_interruptible);
1095
1096signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1097{
a5a0d52c
AM
1098 __set_current_state(TASK_UNINTERRUPTIBLE);
1099 return schedule_timeout(timeout);
64ed93a2
NA
1100}
1101EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1102
1da177e4
LT
1103/* Thread ID - the internal kernel "pid" */
1104asmlinkage long sys_gettid(void)
1105{
b488893a 1106 return task_pid_vnr(current);
1da177e4
LT
1107}
1108
2aae4a10 1109/**
d4d23add 1110 * do_sysinfo - fill in sysinfo struct
2aae4a10 1111 * @info: pointer to buffer to fill
6819457d 1112 */
d4d23add 1113int do_sysinfo(struct sysinfo *info)
1da177e4 1114{
1da177e4
LT
1115 unsigned long mem_total, sav_total;
1116 unsigned int mem_unit, bitcount;
1117 unsigned long seq;
1118
d4d23add 1119 memset(info, 0, sizeof(struct sysinfo));
1da177e4
LT
1120
1121 do {
1122 struct timespec tp;
1123 seq = read_seqbegin(&xtime_lock);
1124
1125 /*
1126 * This is annoying. The below is the same thing
1127 * posix_get_clock_monotonic() does, but it wants to
1128 * take the lock which we want to cover the loads stuff
1129 * too.
1130 */
1131
1132 getnstimeofday(&tp);
1133 tp.tv_sec += wall_to_monotonic.tv_sec;
1134 tp.tv_nsec += wall_to_monotonic.tv_nsec;
d6214141 1135 monotonic_to_bootbased(&tp);
1da177e4
LT
1136 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1137 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1138 tp.tv_sec++;
1139 }
d4d23add 1140 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1141
d4d23add
KM
1142 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1143 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1144 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1da177e4 1145
d4d23add 1146 info->procs = nr_threads;
1da177e4
LT
1147 } while (read_seqretry(&xtime_lock, seq));
1148
d4d23add
KM
1149 si_meminfo(info);
1150 si_swapinfo(info);
1da177e4
LT
1151
1152 /*
1153 * If the sum of all the available memory (i.e. ram + swap)
1154 * is less than can be stored in a 32 bit unsigned long then
1155 * we can be binary compatible with 2.2.x kernels. If not,
1156 * well, in that case 2.2.x was broken anyways...
1157 *
1158 * -Erik Andersen <andersee@debian.org>
1159 */
1160
d4d23add
KM
1161 mem_total = info->totalram + info->totalswap;
1162 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1163 goto out;
1164 bitcount = 0;
d4d23add 1165 mem_unit = info->mem_unit;
1da177e4
LT
1166 while (mem_unit > 1) {
1167 bitcount++;
1168 mem_unit >>= 1;
1169 sav_total = mem_total;
1170 mem_total <<= 1;
1171 if (mem_total < sav_total)
1172 goto out;
1173 }
1174
1175 /*
1176 * If mem_total did not overflow, multiply all memory values by
d4d23add 1177 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1178 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1179 * kernels...
1180 */
1181
d4d23add
KM
1182 info->mem_unit = 1;
1183 info->totalram <<= bitcount;
1184 info->freeram <<= bitcount;
1185 info->sharedram <<= bitcount;
1186 info->bufferram <<= bitcount;
1187 info->totalswap <<= bitcount;
1188 info->freeswap <<= bitcount;
1189 info->totalhigh <<= bitcount;
1190 info->freehigh <<= bitcount;
1191
1192out:
1193 return 0;
1194}
1195
1196asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1197{
1198 struct sysinfo val;
1199
1200 do_sysinfo(&val);
1da177e4 1201
1da177e4
LT
1202 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1203 return -EFAULT;
1204
1205 return 0;
1206}
1207
d730e882
IM
1208/*
1209 * lockdep: we want to track each per-CPU base as a separate lock-class,
1210 * but timer-bases are kmalloc()-ed, so we need to attach separate
1211 * keys to them:
1212 */
1213static struct lock_class_key base_lock_keys[NR_CPUS];
1214
a4a6198b 1215static int __devinit init_timers_cpu(int cpu)
1da177e4
LT
1216{
1217 int j;
1218 tvec_base_t *base;
ba6edfcd 1219 static char __devinitdata tvec_base_done[NR_CPUS];
55c888d6 1220
ba6edfcd 1221 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1222 static char boot_done;
1223
a4a6198b 1224 if (boot_done) {
ba6edfcd
AM
1225 /*
1226 * The APs use this path later in boot
1227 */
94f6030c
CL
1228 base = kmalloc_node(sizeof(*base),
1229 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1230 cpu_to_node(cpu));
1231 if (!base)
1232 return -ENOMEM;
6e453a67
VP
1233
1234 /* Make sure that tvec_base is 2 byte aligned */
1235 if (tbase_get_deferrable(base)) {
1236 WARN_ON(1);
1237 kfree(base);
1238 return -ENOMEM;
1239 }
ba6edfcd 1240 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1241 } else {
ba6edfcd
AM
1242 /*
1243 * This is for the boot CPU - we use compile-time
1244 * static initialisation because per-cpu memory isn't
1245 * ready yet and because the memory allocators are not
1246 * initialised either.
1247 */
a4a6198b 1248 boot_done = 1;
ba6edfcd 1249 base = &boot_tvec_bases;
a4a6198b 1250 }
ba6edfcd
AM
1251 tvec_base_done[cpu] = 1;
1252 } else {
1253 base = per_cpu(tvec_bases, cpu);
a4a6198b 1254 }
ba6edfcd 1255
3691c519 1256 spin_lock_init(&base->lock);
d730e882
IM
1257 lockdep_set_class(&base->lock, base_lock_keys + cpu);
1258
1da177e4
LT
1259 for (j = 0; j < TVN_SIZE; j++) {
1260 INIT_LIST_HEAD(base->tv5.vec + j);
1261 INIT_LIST_HEAD(base->tv4.vec + j);
1262 INIT_LIST_HEAD(base->tv3.vec + j);
1263 INIT_LIST_HEAD(base->tv2.vec + j);
1264 }
1265 for (j = 0; j < TVR_SIZE; j++)
1266 INIT_LIST_HEAD(base->tv1.vec + j);
1267
1268 base->timer_jiffies = jiffies;
a4a6198b 1269 return 0;
1da177e4
LT
1270}
1271
1272#ifdef CONFIG_HOTPLUG_CPU
55c888d6 1273static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1da177e4
LT
1274{
1275 struct timer_list *timer;
1276
1277 while (!list_empty(head)) {
b5e61818 1278 timer = list_first_entry(head, struct timer_list, entry);
55c888d6 1279 detach_timer(timer, 0);
6e453a67 1280 timer_set_base(timer, new_base);
1da177e4 1281 internal_add_timer(new_base, timer);
1da177e4 1282 }
1da177e4
LT
1283}
1284
1285static void __devinit migrate_timers(int cpu)
1286{
1287 tvec_base_t *old_base;
1288 tvec_base_t *new_base;
1289 int i;
1290
1291 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1292 old_base = per_cpu(tvec_bases, cpu);
1293 new_base = get_cpu_var(tvec_bases);
1da177e4
LT
1294
1295 local_irq_disable();
e81ce1f7
HC
1296 double_spin_lock(&new_base->lock, &old_base->lock,
1297 smp_processor_id() < cpu);
3691c519
ON
1298
1299 BUG_ON(old_base->running_timer);
1da177e4 1300
1da177e4 1301 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1302 migrate_timer_list(new_base, old_base->tv1.vec + i);
1303 for (i = 0; i < TVN_SIZE; i++) {
1304 migrate_timer_list(new_base, old_base->tv2.vec + i);
1305 migrate_timer_list(new_base, old_base->tv3.vec + i);
1306 migrate_timer_list(new_base, old_base->tv4.vec + i);
1307 migrate_timer_list(new_base, old_base->tv5.vec + i);
1308 }
1309
e81ce1f7
HC
1310 double_spin_unlock(&new_base->lock, &old_base->lock,
1311 smp_processor_id() < cpu);
1da177e4
LT
1312 local_irq_enable();
1313 put_cpu_var(tvec_bases);
1da177e4
LT
1314}
1315#endif /* CONFIG_HOTPLUG_CPU */
1316
8c78f307 1317static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1318 unsigned long action, void *hcpu)
1319{
1320 long cpu = (long)hcpu;
1321 switch(action) {
1322 case CPU_UP_PREPARE:
8bb78442 1323 case CPU_UP_PREPARE_FROZEN:
a4a6198b
JB
1324 if (init_timers_cpu(cpu) < 0)
1325 return NOTIFY_BAD;
1da177e4
LT
1326 break;
1327#ifdef CONFIG_HOTPLUG_CPU
1328 case CPU_DEAD:
8bb78442 1329 case CPU_DEAD_FROZEN:
1da177e4
LT
1330 migrate_timers(cpu);
1331 break;
1332#endif
1333 default:
1334 break;
1335 }
1336 return NOTIFY_OK;
1337}
1338
8c78f307 1339static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1340 .notifier_call = timer_cpu_notify,
1341};
1342
1343
1344void __init init_timers(void)
1345{
07dccf33 1346 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1347 (void *)(long)smp_processor_id());
07dccf33 1348
82f67cd9
IM
1349 init_timer_stats();
1350
07dccf33 1351 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
1352 register_cpu_notifier(&timers_nb);
1353 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1354}
1355
1da177e4
LT
1356/**
1357 * msleep - sleep safely even with waitqueue interruptions
1358 * @msecs: Time in milliseconds to sleep for
1359 */
1360void msleep(unsigned int msecs)
1361{
1362 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1363
75bcc8c5
NA
1364 while (timeout)
1365 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1366}
1367
1368EXPORT_SYMBOL(msleep);
1369
1370/**
96ec3efd 1371 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1372 * @msecs: Time in milliseconds to sleep for
1373 */
1374unsigned long msleep_interruptible(unsigned int msecs)
1375{
1376 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1377
75bcc8c5
NA
1378 while (timeout && !signal_pending(current))
1379 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1380 return jiffies_to_msecs(timeout);
1381}
1382
1383EXPORT_SYMBOL(msleep_interruptible);