binfmt_misc.c: avoid potential kernel stack overflow
[linux-2.6-block.git] / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
6fa6c3b1 12 *
1da177e4 13 * 1993-09-02 Philip Gladstone
6fa6c3b1 14 * Created file with time related functions from sched.c and adjtimex()
1da177e4
LT
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30#include <linux/module.h>
31#include <linux/timex.h>
c59ede7b 32#include <linux/capability.h>
2c622148 33#include <linux/clocksource.h>
1da177e4 34#include <linux/errno.h>
1da177e4
LT
35#include <linux/syscalls.h>
36#include <linux/security.h>
37#include <linux/fs.h>
1da177e4
LT
38
39#include <asm/uaccess.h>
40#include <asm/unistd.h>
41
bdc80787
PA
42#include "timeconst.h"
43
6fa6c3b1 44/*
1da177e4
LT
45 * The timezone where the local system is located. Used as a default by some
46 * programs who obtain this value by using gettimeofday.
47 */
48struct timezone sys_tz;
49
50EXPORT_SYMBOL(sys_tz);
51
52#ifdef __ARCH_WANT_SYS_TIME
53
54/*
55 * sys_time() can be implemented in user-level using
56 * sys_gettimeofday(). Is this for backwards compatibility? If so,
57 * why not move it into the appropriate arch directory (for those
58 * architectures that need it).
59 */
60asmlinkage long sys_time(time_t __user * tloc)
61{
f20bf612 62 time_t i = get_seconds();
1da177e4
LT
63
64 if (tloc) {
20082208 65 if (put_user(i,tloc))
1da177e4
LT
66 i = -EFAULT;
67 }
68 return i;
69}
70
71/*
72 * sys_stime() can be implemented in user-level using
73 * sys_settimeofday(). Is this for backwards compatibility? If so,
74 * why not move it into the appropriate arch directory (for those
75 * architectures that need it).
76 */
6fa6c3b1 77
1da177e4
LT
78asmlinkage long sys_stime(time_t __user *tptr)
79{
80 struct timespec tv;
81 int err;
82
83 if (get_user(tv.tv_sec, tptr))
84 return -EFAULT;
85
86 tv.tv_nsec = 0;
87
88 err = security_settime(&tv, NULL);
89 if (err)
90 return err;
91
92 do_settimeofday(&tv);
93 return 0;
94}
95
96#endif /* __ARCH_WANT_SYS_TIME */
97
bdc80787
PA
98asmlinkage long sys_gettimeofday(struct timeval __user *tv,
99 struct timezone __user *tz)
1da177e4
LT
100{
101 if (likely(tv != NULL)) {
102 struct timeval ktv;
103 do_gettimeofday(&ktv);
104 if (copy_to_user(tv, &ktv, sizeof(ktv)))
105 return -EFAULT;
106 }
107 if (unlikely(tz != NULL)) {
108 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
109 return -EFAULT;
110 }
111 return 0;
112}
113
114/*
115 * Adjust the time obtained from the CMOS to be UTC time instead of
116 * local time.
6fa6c3b1 117 *
1da177e4
LT
118 * This is ugly, but preferable to the alternatives. Otherwise we
119 * would either need to write a program to do it in /etc/rc (and risk
6fa6c3b1 120 * confusion if the program gets run more than once; it would also be
1da177e4
LT
121 * hard to make the program warp the clock precisely n hours) or
122 * compile in the timezone information into the kernel. Bad, bad....
123 *
bdc80787 124 * - TYT, 1992-01-01
1da177e4
LT
125 *
126 * The best thing to do is to keep the CMOS clock in universal time (UTC)
127 * as real UNIX machines always do it. This avoids all headaches about
128 * daylight saving times and warping kernel clocks.
129 */
77933d72 130static inline void warp_clock(void)
1da177e4
LT
131{
132 write_seqlock_irq(&xtime_lock);
133 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
134 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
1001d0a9 135 update_xtime_cache(0);
1da177e4
LT
136 write_sequnlock_irq(&xtime_lock);
137 clock_was_set();
138}
139
140/*
141 * In case for some reason the CMOS clock has not already been running
142 * in UTC, but in some local time: The first time we set the timezone,
143 * we will warp the clock so that it is ticking UTC time instead of
144 * local time. Presumably, if someone is setting the timezone then we
145 * are running in an environment where the programs understand about
146 * timezones. This should be done at boot time in the /etc/rc script,
147 * as soon as possible, so that the clock can be set right. Otherwise,
148 * various programs will get confused when the clock gets warped.
149 */
150
151int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
152{
153 static int firsttime = 1;
154 int error = 0;
155
951069e3 156 if (tv && !timespec_valid(tv))
718bcceb
TG
157 return -EINVAL;
158
1da177e4
LT
159 error = security_settime(tv, tz);
160 if (error)
161 return error;
162
163 if (tz) {
164 /* SMP safe, global irq locking makes it work. */
165 sys_tz = *tz;
2c622148 166 update_vsyscall_tz();
1da177e4
LT
167 if (firsttime) {
168 firsttime = 0;
169 if (!tv)
170 warp_clock();
171 }
172 }
173 if (tv)
174 {
175 /* SMP safe, again the code in arch/foo/time.c should
176 * globally block out interrupts when it runs.
177 */
178 return do_settimeofday(tv);
179 }
180 return 0;
181}
182
183asmlinkage long sys_settimeofday(struct timeval __user *tv,
184 struct timezone __user *tz)
185{
186 struct timeval user_tv;
187 struct timespec new_ts;
188 struct timezone new_tz;
189
190 if (tv) {
191 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
192 return -EFAULT;
193 new_ts.tv_sec = user_tv.tv_sec;
194 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
195 }
196 if (tz) {
197 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
198 return -EFAULT;
199 }
200
201 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
202}
203
1da177e4
LT
204asmlinkage long sys_adjtimex(struct timex __user *txc_p)
205{
206 struct timex txc; /* Local copy of parameter */
207 int ret;
208
209 /* Copy the user data space into the kernel copy
210 * structure. But bear in mind that the structures
211 * may change
212 */
213 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
214 return -EFAULT;
215 ret = do_adjtimex(&txc);
216 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
217}
218
1da177e4
LT
219/**
220 * current_fs_time - Return FS time
221 * @sb: Superblock.
222 *
8ba8e95e 223 * Return the current time truncated to the time granularity supported by
1da177e4
LT
224 * the fs.
225 */
226struct timespec current_fs_time(struct super_block *sb)
227{
228 struct timespec now = current_kernel_time();
229 return timespec_trunc(now, sb->s_time_gran);
230}
231EXPORT_SYMBOL(current_fs_time);
232
753e9c5c
ED
233/*
234 * Convert jiffies to milliseconds and back.
235 *
236 * Avoid unnecessary multiplications/divisions in the
237 * two most common HZ cases:
238 */
239unsigned int inline jiffies_to_msecs(const unsigned long j)
240{
241#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
242 return (MSEC_PER_SEC / HZ) * j;
243#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
244 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
245#else
bdc80787
PA
246# if BITS_PER_LONG == 32
247 return ((u64)HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
248# else
249 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
250# endif
753e9c5c
ED
251#endif
252}
253EXPORT_SYMBOL(jiffies_to_msecs);
254
255unsigned int inline jiffies_to_usecs(const unsigned long j)
256{
257#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
258 return (USEC_PER_SEC / HZ) * j;
259#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
260 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
261#else
bdc80787
PA
262# if BITS_PER_LONG == 32
263 return ((u64)HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
264# else
265 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
266# endif
753e9c5c
ED
267#endif
268}
269EXPORT_SYMBOL(jiffies_to_usecs);
270
1da177e4 271/**
8ba8e95e 272 * timespec_trunc - Truncate timespec to a granularity
1da177e4 273 * @t: Timespec
8ba8e95e 274 * @gran: Granularity in ns.
1da177e4 275 *
8ba8e95e 276 * Truncate a timespec to a granularity. gran must be smaller than a second.
1da177e4
LT
277 * Always rounds down.
278 *
279 * This function should be only used for timestamps returned by
280 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
3eb05676 281 * it doesn't handle the better resolution of the latter.
1da177e4
LT
282 */
283struct timespec timespec_trunc(struct timespec t, unsigned gran)
284{
285 /*
286 * Division is pretty slow so avoid it for common cases.
287 * Currently current_kernel_time() never returns better than
288 * jiffies resolution. Exploit that.
289 */
290 if (gran <= jiffies_to_usecs(1) * 1000) {
291 /* nothing */
292 } else if (gran == 1000000000) {
293 t.tv_nsec = 0;
294 } else {
295 t.tv_nsec -= t.tv_nsec % gran;
296 }
297 return t;
298}
299EXPORT_SYMBOL(timespec_trunc);
300
cf3c769b 301#ifndef CONFIG_GENERIC_TIME
1da177e4
LT
302/*
303 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
304 * and therefore only yields usec accuracy
305 */
306void getnstimeofday(struct timespec *tv)
307{
308 struct timeval x;
309
310 do_gettimeofday(&x);
311 tv->tv_sec = x.tv_sec;
312 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
313}
c6ecf7ed 314EXPORT_SYMBOL_GPL(getnstimeofday);
1da177e4
LT
315#endif
316
753be622
TG
317/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
318 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
319 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
320 *
321 * [For the Julian calendar (which was used in Russia before 1917,
322 * Britain & colonies before 1752, anywhere else before 1582,
323 * and is still in use by some communities) leave out the
324 * -year/100+year/400 terms, and add 10.]
325 *
326 * This algorithm was first published by Gauss (I think).
327 *
328 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
3eb05676 329 * machines where long is 32-bit! (However, as time_t is signed, we
753be622
TG
330 * will already get problems at other places on 2038-01-19 03:14:08)
331 */
332unsigned long
f4818900
IM
333mktime(const unsigned int year0, const unsigned int mon0,
334 const unsigned int day, const unsigned int hour,
335 const unsigned int min, const unsigned int sec)
753be622 336{
f4818900
IM
337 unsigned int mon = mon0, year = year0;
338
339 /* 1..12 -> 11,12,1..10 */
340 if (0 >= (int) (mon -= 2)) {
341 mon += 12; /* Puts Feb last since it has leap day */
753be622
TG
342 year -= 1;
343 }
344
345 return ((((unsigned long)
346 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
347 year*365 - 719499
348 )*24 + hour /* now have hours */
349 )*60 + min /* now have minutes */
350 )*60 + sec; /* finally seconds */
351}
352
199e7056
AM
353EXPORT_SYMBOL(mktime);
354
753be622
TG
355/**
356 * set_normalized_timespec - set timespec sec and nsec parts and normalize
357 *
358 * @ts: pointer to timespec variable to be set
359 * @sec: seconds to set
360 * @nsec: nanoseconds to set
361 *
362 * Set seconds and nanoseconds field of a timespec variable and
363 * normalize to the timespec storage format
364 *
365 * Note: The tv_nsec part is always in the range of
bdc80787 366 * 0 <= tv_nsec < NSEC_PER_SEC
753be622
TG
367 * For negative values only the tv_sec field is negative !
368 */
f4818900 369void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
753be622
TG
370{
371 while (nsec >= NSEC_PER_SEC) {
372 nsec -= NSEC_PER_SEC;
373 ++sec;
374 }
375 while (nsec < 0) {
376 nsec += NSEC_PER_SEC;
377 --sec;
378 }
379 ts->tv_sec = sec;
380 ts->tv_nsec = nsec;
381}
7c3f944e 382EXPORT_SYMBOL(set_normalized_timespec);
753be622 383
f8f46da3
TG
384/**
385 * ns_to_timespec - Convert nanoseconds to timespec
386 * @nsec: the nanoseconds value to be converted
387 *
388 * Returns the timespec representation of the nsec parameter.
389 */
df869b63 390struct timespec ns_to_timespec(const s64 nsec)
f8f46da3
TG
391{
392 struct timespec ts;
393
88fc3897
GA
394 if (!nsec)
395 return (struct timespec) {0, 0};
396
397 ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
398 if (unlikely(nsec < 0))
399 set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
f8f46da3
TG
400
401 return ts;
402}
85795d64 403EXPORT_SYMBOL(ns_to_timespec);
f8f46da3
TG
404
405/**
406 * ns_to_timeval - Convert nanoseconds to timeval
407 * @nsec: the nanoseconds value to be converted
408 *
409 * Returns the timeval representation of the nsec parameter.
410 */
df869b63 411struct timeval ns_to_timeval(const s64 nsec)
f8f46da3
TG
412{
413 struct timespec ts = ns_to_timespec(nsec);
414 struct timeval tv;
415
416 tv.tv_sec = ts.tv_sec;
417 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
418
419 return tv;
420}
b7aa0bf7 421EXPORT_SYMBOL(ns_to_timeval);
f8f46da3 422
41cf5445
IM
423/*
424 * When we convert to jiffies then we interpret incoming values
425 * the following way:
426 *
427 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
428 *
429 * - 'too large' values [that would result in larger than
430 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
431 *
432 * - all other values are converted to jiffies by either multiplying
433 * the input value by a factor or dividing it with a factor
434 *
435 * We must also be careful about 32-bit overflows.
436 */
8b9365d7
IM
437unsigned long msecs_to_jiffies(const unsigned int m)
438{
41cf5445
IM
439 /*
440 * Negative value, means infinite timeout:
441 */
442 if ((int)m < 0)
8b9365d7 443 return MAX_JIFFY_OFFSET;
41cf5445 444
8b9365d7 445#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
41cf5445
IM
446 /*
447 * HZ is equal to or smaller than 1000, and 1000 is a nice
448 * round multiple of HZ, divide with the factor between them,
449 * but round upwards:
450 */
8b9365d7
IM
451 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
452#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
41cf5445
IM
453 /*
454 * HZ is larger than 1000, and HZ is a nice round multiple of
455 * 1000 - simply multiply with the factor between them.
456 *
457 * But first make sure the multiplication result cannot
458 * overflow:
459 */
460 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
461 return MAX_JIFFY_OFFSET;
462
8b9365d7
IM
463 return m * (HZ / MSEC_PER_SEC);
464#else
41cf5445
IM
465 /*
466 * Generic case - multiply, round and divide. But first
467 * check that if we are doing a net multiplication, that
bdc80787 468 * we wouldn't overflow:
41cf5445
IM
469 */
470 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
471 return MAX_JIFFY_OFFSET;
472
bdc80787
PA
473 return ((u64)MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
474 >> MSEC_TO_HZ_SHR32;
8b9365d7
IM
475#endif
476}
477EXPORT_SYMBOL(msecs_to_jiffies);
478
479unsigned long usecs_to_jiffies(const unsigned int u)
480{
481 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
482 return MAX_JIFFY_OFFSET;
483#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
484 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
485#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
486 return u * (HZ / USEC_PER_SEC);
487#else
bdc80787
PA
488 return ((u64)USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
489 >> USEC_TO_HZ_SHR32;
8b9365d7
IM
490#endif
491}
492EXPORT_SYMBOL(usecs_to_jiffies);
493
494/*
495 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
496 * that a remainder subtract here would not do the right thing as the
497 * resolution values don't fall on second boundries. I.e. the line:
498 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
499 *
500 * Rather, we just shift the bits off the right.
501 *
502 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
503 * value to a scaled second value.
504 */
505unsigned long
506timespec_to_jiffies(const struct timespec *value)
507{
508 unsigned long sec = value->tv_sec;
509 long nsec = value->tv_nsec + TICK_NSEC - 1;
510
511 if (sec >= MAX_SEC_IN_JIFFIES){
512 sec = MAX_SEC_IN_JIFFIES;
513 nsec = 0;
514 }
515 return (((u64)sec * SEC_CONVERSION) +
516 (((u64)nsec * NSEC_CONVERSION) >>
517 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
518
519}
520EXPORT_SYMBOL(timespec_to_jiffies);
521
522void
523jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
524{
525 /*
526 * Convert jiffies to nanoseconds and separate with
527 * one divide.
528 */
529 u64 nsec = (u64)jiffies * TICK_NSEC;
530 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
531}
532EXPORT_SYMBOL(jiffies_to_timespec);
533
534/* Same for "timeval"
535 *
536 * Well, almost. The problem here is that the real system resolution is
537 * in nanoseconds and the value being converted is in micro seconds.
538 * Also for some machines (those that use HZ = 1024, in-particular),
539 * there is a LARGE error in the tick size in microseconds.
540
541 * The solution we use is to do the rounding AFTER we convert the
542 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
543 * Instruction wise, this should cost only an additional add with carry
544 * instruction above the way it was done above.
545 */
546unsigned long
547timeval_to_jiffies(const struct timeval *value)
548{
549 unsigned long sec = value->tv_sec;
550 long usec = value->tv_usec;
551
552 if (sec >= MAX_SEC_IN_JIFFIES){
553 sec = MAX_SEC_IN_JIFFIES;
554 usec = 0;
555 }
556 return (((u64)sec * SEC_CONVERSION) +
557 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
558 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
559}
456a09dc 560EXPORT_SYMBOL(timeval_to_jiffies);
8b9365d7
IM
561
562void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
563{
564 /*
565 * Convert jiffies to nanoseconds and separate with
566 * one divide.
567 */
568 u64 nsec = (u64)jiffies * TICK_NSEC;
569 long tv_usec;
570
571 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
572 tv_usec /= NSEC_PER_USEC;
573 value->tv_usec = tv_usec;
574}
456a09dc 575EXPORT_SYMBOL(jiffies_to_timeval);
8b9365d7
IM
576
577/*
578 * Convert jiffies/jiffies_64 to clock_t and back.
579 */
580clock_t jiffies_to_clock_t(long x)
581{
582#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a
DF
583# if HZ < USER_HZ
584 return x * (USER_HZ / HZ);
585# else
8b9365d7 586 return x / (HZ / USER_HZ);
6ffc787a 587# endif
8b9365d7
IM
588#else
589 u64 tmp = (u64)x * TICK_NSEC;
590 do_div(tmp, (NSEC_PER_SEC / USER_HZ));
591 return (long)tmp;
592#endif
593}
594EXPORT_SYMBOL(jiffies_to_clock_t);
595
596unsigned long clock_t_to_jiffies(unsigned long x)
597{
598#if (HZ % USER_HZ)==0
599 if (x >= ~0UL / (HZ / USER_HZ))
600 return ~0UL;
601 return x * (HZ / USER_HZ);
602#else
603 u64 jif;
604
605 /* Don't worry about loss of precision here .. */
606 if (x >= ~0UL / HZ * USER_HZ)
607 return ~0UL;
608
609 /* .. but do try to contain it here */
610 jif = x * (u64) HZ;
611 do_div(jif, USER_HZ);
612 return jif;
613#endif
614}
615EXPORT_SYMBOL(clock_t_to_jiffies);
616
617u64 jiffies_64_to_clock_t(u64 x)
618{
619#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
6ffc787a
DF
620# if HZ < USER_HZ
621 x *= USER_HZ;
622 do_div(x, HZ);
ec03d707 623# elif HZ > USER_HZ
8b9365d7 624 do_div(x, HZ / USER_HZ);
ec03d707
AM
625# else
626 /* Nothing to do */
6ffc787a 627# endif
8b9365d7
IM
628#else
629 /*
630 * There are better ways that don't overflow early,
631 * but even this doesn't overflow in hundreds of years
632 * in 64 bits, so..
633 */
634 x *= TICK_NSEC;
635 do_div(x, (NSEC_PER_SEC / USER_HZ));
636#endif
637 return x;
638}
8b9365d7
IM
639EXPORT_SYMBOL(jiffies_64_to_clock_t);
640
641u64 nsec_to_clock_t(u64 x)
642{
643#if (NSEC_PER_SEC % USER_HZ) == 0
644 do_div(x, (NSEC_PER_SEC / USER_HZ));
645#elif (USER_HZ % 512) == 0
646 x *= USER_HZ/512;
647 do_div(x, (NSEC_PER_SEC / 512));
648#else
649 /*
650 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
651 * overflow after 64.99 years.
652 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
653 */
654 x *= 9;
655 do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
656 USER_HZ));
657#endif
658 return x;
659}
660
1da177e4
LT
661#if (BITS_PER_LONG < 64)
662u64 get_jiffies_64(void)
663{
664 unsigned long seq;
665 u64 ret;
666
667 do {
668 seq = read_seqbegin(&xtime_lock);
669 ret = jiffies_64;
670 } while (read_seqretry(&xtime_lock, seq));
671 return ret;
672}
1da177e4
LT
673EXPORT_SYMBOL(get_jiffies_64);
674#endif
675
676EXPORT_SYMBOL(jiffies);