ARM: Merge for-2635/samsung-hwmon
[linux-2.6-block.git] / kernel / time / timekeeping.c
CommitLineData
8524070b 1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11#include <linux/module.h>
12#include <linux/interrupt.h>
13#include <linux/percpu.h>
14#include <linux/init.h>
15#include <linux/mm.h>
d43c36dc 16#include <linux/sched.h>
8524070b 17#include <linux/sysdev.h>
18#include <linux/clocksource.h>
19#include <linux/jiffies.h>
20#include <linux/time.h>
21#include <linux/tick.h>
75c5158f 22#include <linux/stop_machine.h>
8524070b 23
155ec602
MS
24/* Structure holding internal timekeeping values. */
25struct timekeeper {
26 /* Current clocksource used for timekeeping. */
27 struct clocksource *clock;
23ce7211
MS
28 /* The shift value of the current clocksource. */
29 int shift;
155ec602
MS
30
31 /* Number of clock cycles in one NTP interval. */
32 cycle_t cycle_interval;
33 /* Number of clock shifted nano seconds in one NTP interval. */
34 u64 xtime_interval;
35 /* Raw nano seconds accumulated per NTP interval. */
36 u32 raw_interval;
37
38 /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
39 u64 xtime_nsec;
40 /* Difference between accumulated time and NTP time in ntp
41 * shifted nano seconds. */
42 s64 ntp_error;
23ce7211
MS
43 /* Shift conversion between clock shifted nano seconds and
44 * ntp shifted nano seconds. */
45 int ntp_error_shift;
0a544198
MS
46 /* NTP adjusted clock multiplier */
47 u32 mult;
155ec602
MS
48};
49
50struct timekeeper timekeeper;
51
52/**
53 * timekeeper_setup_internals - Set up internals to use clocksource clock.
54 *
55 * @clock: Pointer to clocksource.
56 *
57 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
58 * pair and interval request.
59 *
60 * Unless you're the timekeeping code, you should not be using this!
61 */
62static void timekeeper_setup_internals(struct clocksource *clock)
63{
64 cycle_t interval;
65 u64 tmp;
66
67 timekeeper.clock = clock;
68 clock->cycle_last = clock->read(clock);
69
70 /* Do the ns -> cycle conversion first, using original mult */
71 tmp = NTP_INTERVAL_LENGTH;
72 tmp <<= clock->shift;
0a544198
MS
73 tmp += clock->mult/2;
74 do_div(tmp, clock->mult);
155ec602
MS
75 if (tmp == 0)
76 tmp = 1;
77
78 interval = (cycle_t) tmp;
79 timekeeper.cycle_interval = interval;
80
81 /* Go back from cycles -> shifted ns */
82 timekeeper.xtime_interval = (u64) interval * clock->mult;
83 timekeeper.raw_interval =
0a544198 84 ((u64) interval * clock->mult) >> clock->shift;
155ec602
MS
85
86 timekeeper.xtime_nsec = 0;
23ce7211 87 timekeeper.shift = clock->shift;
155ec602
MS
88
89 timekeeper.ntp_error = 0;
23ce7211 90 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
0a544198
MS
91
92 /*
93 * The timekeeper keeps its own mult values for the currently
94 * active clocksource. These value will be adjusted via NTP
95 * to counteract clock drifting.
96 */
97 timekeeper.mult = clock->mult;
155ec602 98}
8524070b 99
2ba2a305
MS
100/* Timekeeper helper functions. */
101static inline s64 timekeeping_get_ns(void)
102{
103 cycle_t cycle_now, cycle_delta;
104 struct clocksource *clock;
105
106 /* read clocksource: */
107 clock = timekeeper.clock;
108 cycle_now = clock->read(clock);
109
110 /* calculate the delta since the last update_wall_time: */
111 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
112
113 /* return delta convert to nanoseconds using ntp adjusted mult. */
114 return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
115 timekeeper.shift);
116}
117
118static inline s64 timekeeping_get_ns_raw(void)
119{
120 cycle_t cycle_now, cycle_delta;
121 struct clocksource *clock;
122
123 /* read clocksource: */
124 clock = timekeeper.clock;
125 cycle_now = clock->read(clock);
126
127 /* calculate the delta since the last update_wall_time: */
128 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
129
130 /* return delta convert to nanoseconds using ntp adjusted mult. */
131 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
132}
133
8524070b 134/*
135 * This read-write spinlock protects us from races in SMP while
dce48a84 136 * playing with xtime.
8524070b 137 */
ba2a631b 138__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
8524070b 139
140
141/*
142 * The current time
143 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
144 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
145 * at zero at system boot time, so wall_to_monotonic will be negative,
146 * however, we will ALWAYS keep the tv_nsec part positive so we can use
147 * the usual normalization.
7c3f1a57
TJ
148 *
149 * wall_to_monotonic is moved after resume from suspend for the monotonic
150 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
151 * to get the real boot based time offset.
152 *
153 * - wall_to_monotonic is no longer the boot time, getboottime must be
154 * used instead.
8524070b 155 */
156struct timespec xtime __attribute__ ((aligned (16)));
157struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
d4f587c6 158static struct timespec total_sleep_time;
8524070b 159
155ec602
MS
160/*
161 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
162 */
163struct timespec raw_time;
164
1c5745aa
TG
165/* flag for if timekeeping is suspended */
166int __read_mostly timekeeping_suspended;
167
83f57a11
LT
168static struct timespec xtime_cache __attribute__ ((aligned (16)));
169void update_xtime_cache(u64 nsec)
170{
171 xtime_cache = xtime;
172 timespec_add_ns(&xtime_cache, nsec);
173}
174
31089c13
JS
175/* must hold xtime_lock */
176void timekeeping_leap_insert(int leapsecond)
177{
178 xtime.tv_sec += leapsecond;
179 wall_to_monotonic.tv_sec -= leapsecond;
0696b711 180 update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
31089c13 181}
8524070b 182
183#ifdef CONFIG_GENERIC_TIME
75c5158f 184
8524070b 185/**
155ec602 186 * timekeeping_forward_now - update clock to the current time
8524070b 187 *
9a055117
RZ
188 * Forward the current clock to update its state since the last call to
189 * update_wall_time(). This is useful before significant clock changes,
190 * as it avoids having to deal with this time offset explicitly.
8524070b 191 */
155ec602 192static void timekeeping_forward_now(void)
8524070b 193{
194 cycle_t cycle_now, cycle_delta;
155ec602 195 struct clocksource *clock;
9a055117 196 s64 nsec;
8524070b 197
155ec602 198 clock = timekeeper.clock;
a0f7d48b 199 cycle_now = clock->read(clock);
8524070b 200 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
9a055117 201 clock->cycle_last = cycle_now;
8524070b 202
0a544198
MS
203 nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
204 timekeeper.shift);
7d27558c 205
206 /* If arch requires, add in gettimeoffset() */
207 nsec += arch_gettimeoffset();
208
9a055117 209 timespec_add_ns(&xtime, nsec);
2d42244a 210
0a544198 211 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
155ec602 212 timespec_add_ns(&raw_time, nsec);
8524070b 213}
214
215/**
efd9ac86 216 * getnstimeofday - Returns the time of day in a timespec
8524070b 217 * @ts: pointer to the timespec to be set
218 *
efd9ac86 219 * Returns the time of day in a timespec.
8524070b 220 */
efd9ac86 221void getnstimeofday(struct timespec *ts)
8524070b 222{
223 unsigned long seq;
224 s64 nsecs;
225
1c5745aa
TG
226 WARN_ON(timekeeping_suspended);
227
8524070b 228 do {
229 seq = read_seqbegin(&xtime_lock);
230
231 *ts = xtime;
2ba2a305 232 nsecs = timekeeping_get_ns();
8524070b 233
7d27558c 234 /* If arch requires, add in gettimeoffset() */
235 nsecs += arch_gettimeoffset();
236
8524070b 237 } while (read_seqretry(&xtime_lock, seq));
238
239 timespec_add_ns(ts, nsecs);
240}
241
8524070b 242EXPORT_SYMBOL(getnstimeofday);
243
951ed4d3
MS
244ktime_t ktime_get(void)
245{
951ed4d3
MS
246 unsigned int seq;
247 s64 secs, nsecs;
248
249 WARN_ON(timekeeping_suspended);
250
251 do {
252 seq = read_seqbegin(&xtime_lock);
253 secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
254 nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
2ba2a305 255 nsecs += timekeeping_get_ns();
951ed4d3
MS
256
257 } while (read_seqretry(&xtime_lock, seq));
258 /*
259 * Use ktime_set/ktime_add_ns to create a proper ktime on
260 * 32-bit architectures without CONFIG_KTIME_SCALAR.
261 */
262 return ktime_add_ns(ktime_set(secs, 0), nsecs);
263}
264EXPORT_SYMBOL_GPL(ktime_get);
265
266/**
267 * ktime_get_ts - get the monotonic clock in timespec format
268 * @ts: pointer to timespec variable
269 *
270 * The function calculates the monotonic clock from the realtime
271 * clock and the wall_to_monotonic offset and stores the result
272 * in normalized timespec format in the variable pointed to by @ts.
273 */
274void ktime_get_ts(struct timespec *ts)
275{
951ed4d3
MS
276 struct timespec tomono;
277 unsigned int seq;
278 s64 nsecs;
279
280 WARN_ON(timekeeping_suspended);
281
282 do {
283 seq = read_seqbegin(&xtime_lock);
284 *ts = xtime;
285 tomono = wall_to_monotonic;
2ba2a305 286 nsecs = timekeeping_get_ns();
951ed4d3
MS
287
288 } while (read_seqretry(&xtime_lock, seq));
289
290 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
291 ts->tv_nsec + tomono.tv_nsec + nsecs);
292}
293EXPORT_SYMBOL_GPL(ktime_get_ts);
294
8524070b 295/**
296 * do_gettimeofday - Returns the time of day in a timeval
297 * @tv: pointer to the timeval to be set
298 *
efd9ac86 299 * NOTE: Users should be converted to using getnstimeofday()
8524070b 300 */
301void do_gettimeofday(struct timeval *tv)
302{
303 struct timespec now;
304
efd9ac86 305 getnstimeofday(&now);
8524070b 306 tv->tv_sec = now.tv_sec;
307 tv->tv_usec = now.tv_nsec/1000;
308}
309
310EXPORT_SYMBOL(do_gettimeofday);
311/**
312 * do_settimeofday - Sets the time of day
313 * @tv: pointer to the timespec variable containing the new time
314 *
315 * Sets the time of day to the new time and update NTP and notify hrtimers
316 */
317int do_settimeofday(struct timespec *tv)
318{
9a055117 319 struct timespec ts_delta;
8524070b 320 unsigned long flags;
8524070b 321
322 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
323 return -EINVAL;
324
325 write_seqlock_irqsave(&xtime_lock, flags);
326
155ec602 327 timekeeping_forward_now();
9a055117
RZ
328
329 ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
330 ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
331 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
8524070b 332
9a055117 333 xtime = *tv;
8524070b 334
83f57a11
LT
335 update_xtime_cache(0);
336
155ec602 337 timekeeper.ntp_error = 0;
8524070b 338 ntp_clear();
339
0696b711 340 update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
8524070b 341
342 write_sequnlock_irqrestore(&xtime_lock, flags);
343
344 /* signal hrtimers about time change */
345 clock_was_set();
346
347 return 0;
348}
349
350EXPORT_SYMBOL(do_settimeofday);
351
352/**
353 * change_clocksource - Swaps clocksources if a new one is available
354 *
355 * Accumulates current time interval and initializes new clocksource
356 */
75c5158f 357static int change_clocksource(void *data)
8524070b 358{
4614e6ad 359 struct clocksource *new, *old;
8524070b 360
75c5158f 361 new = (struct clocksource *) data;
8524070b 362
155ec602 363 timekeeping_forward_now();
75c5158f
MS
364 if (!new->enable || new->enable(new) == 0) {
365 old = timekeeper.clock;
366 timekeeper_setup_internals(new);
367 if (old->disable)
368 old->disable(old);
369 }
370 return 0;
371}
8524070b 372
75c5158f
MS
373/**
374 * timekeeping_notify - Install a new clock source
375 * @clock: pointer to the clock source
376 *
377 * This function is called from clocksource.c after a new, better clock
378 * source has been registered. The caller holds the clocksource_mutex.
379 */
380void timekeeping_notify(struct clocksource *clock)
381{
382 if (timekeeper.clock == clock)
4614e6ad 383 return;
75c5158f 384 stop_machine(change_clocksource, clock, NULL);
8524070b 385 tick_clock_notify();
8524070b 386}
75c5158f 387
a40f262c 388#else /* GENERIC_TIME */
75c5158f 389
155ec602 390static inline void timekeeping_forward_now(void) { }
a40f262c
TG
391
392/**
393 * ktime_get - get the monotonic time in ktime_t format
394 *
395 * returns the time in ktime_t format
396 */
397ktime_t ktime_get(void)
398{
399 struct timespec now;
400
401 ktime_get_ts(&now);
402
403 return timespec_to_ktime(now);
404}
405EXPORT_SYMBOL_GPL(ktime_get);
406
407/**
408 * ktime_get_ts - get the monotonic clock in timespec format
409 * @ts: pointer to timespec variable
410 *
411 * The function calculates the monotonic clock from the realtime
412 * clock and the wall_to_monotonic offset and stores the result
413 * in normalized timespec format in the variable pointed to by @ts.
414 */
415void ktime_get_ts(struct timespec *ts)
416{
417 struct timespec tomono;
418 unsigned long seq;
419
420 do {
421 seq = read_seqbegin(&xtime_lock);
422 getnstimeofday(ts);
423 tomono = wall_to_monotonic;
424
425 } while (read_seqretry(&xtime_lock, seq));
426
427 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
428 ts->tv_nsec + tomono.tv_nsec);
429}
430EXPORT_SYMBOL_GPL(ktime_get_ts);
75c5158f 431
a40f262c
TG
432#endif /* !GENERIC_TIME */
433
434/**
435 * ktime_get_real - get the real (wall-) time in ktime_t format
436 *
437 * returns the time in ktime_t format
438 */
439ktime_t ktime_get_real(void)
440{
441 struct timespec now;
442
443 getnstimeofday(&now);
444
445 return timespec_to_ktime(now);
446}
447EXPORT_SYMBOL_GPL(ktime_get_real);
8524070b 448
2d42244a
JS
449/**
450 * getrawmonotonic - Returns the raw monotonic time in a timespec
451 * @ts: pointer to the timespec to be set
452 *
453 * Returns the raw monotonic time (completely un-modified by ntp)
454 */
455void getrawmonotonic(struct timespec *ts)
456{
457 unsigned long seq;
458 s64 nsecs;
2d42244a
JS
459
460 do {
461 seq = read_seqbegin(&xtime_lock);
2ba2a305 462 nsecs = timekeeping_get_ns_raw();
155ec602 463 *ts = raw_time;
2d42244a
JS
464
465 } while (read_seqretry(&xtime_lock, seq));
466
467 timespec_add_ns(ts, nsecs);
468}
469EXPORT_SYMBOL(getrawmonotonic);
470
471
8524070b 472/**
cf4fc6cb 473 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 474 */
cf4fc6cb 475int timekeeping_valid_for_hres(void)
8524070b 476{
477 unsigned long seq;
478 int ret;
479
480 do {
481 seq = read_seqbegin(&xtime_lock);
482
155ec602 483 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 484
485 } while (read_seqretry(&xtime_lock, seq));
486
487 return ret;
488}
489
98962465
JH
490/**
491 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
492 *
493 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
494 * ensure that the clocksource does not change!
495 */
496u64 timekeeping_max_deferment(void)
497{
498 return timekeeper.clock->max_idle_ns;
499}
500
8524070b 501/**
d4f587c6 502 * read_persistent_clock - Return time from the persistent clock.
8524070b 503 *
504 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
505 * Reads the time from the battery backed persistent clock.
506 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b 507 *
508 * XXX - Do be sure to remove it once all arches implement it.
509 */
d4f587c6 510void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
8524070b 511{
d4f587c6
MS
512 ts->tv_sec = 0;
513 ts->tv_nsec = 0;
8524070b 514}
515
23970e38
MS
516/**
517 * read_boot_clock - Return time of the system start.
518 *
519 * Weak dummy function for arches that do not yet support it.
520 * Function to read the exact time the system has been started.
521 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
522 *
523 * XXX - Do be sure to remove it once all arches implement it.
524 */
525void __attribute__((weak)) read_boot_clock(struct timespec *ts)
526{
527 ts->tv_sec = 0;
528 ts->tv_nsec = 0;
529}
530
8524070b 531/*
532 * timekeeping_init - Initializes the clocksource and common timekeeping values
533 */
534void __init timekeeping_init(void)
535{
155ec602 536 struct clocksource *clock;
8524070b 537 unsigned long flags;
23970e38 538 struct timespec now, boot;
d4f587c6
MS
539
540 read_persistent_clock(&now);
23970e38 541 read_boot_clock(&boot);
8524070b 542
543 write_seqlock_irqsave(&xtime_lock, flags);
544
7dffa3c6 545 ntp_init();
8524070b 546
f1b82746 547 clock = clocksource_default_clock();
a0f7d48b
MS
548 if (clock->enable)
549 clock->enable(clock);
155ec602 550 timekeeper_setup_internals(clock);
8524070b 551
d4f587c6
MS
552 xtime.tv_sec = now.tv_sec;
553 xtime.tv_nsec = now.tv_nsec;
155ec602
MS
554 raw_time.tv_sec = 0;
555 raw_time.tv_nsec = 0;
23970e38
MS
556 if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
557 boot.tv_sec = xtime.tv_sec;
558 boot.tv_nsec = xtime.tv_nsec;
559 }
8524070b 560 set_normalized_timespec(&wall_to_monotonic,
23970e38 561 -boot.tv_sec, -boot.tv_nsec);
83f57a11 562 update_xtime_cache(0);
d4f587c6
MS
563 total_sleep_time.tv_sec = 0;
564 total_sleep_time.tv_nsec = 0;
8524070b 565 write_sequnlock_irqrestore(&xtime_lock, flags);
566}
567
8524070b 568/* time in seconds when suspend began */
d4f587c6 569static struct timespec timekeeping_suspend_time;
8524070b 570
571/**
572 * timekeeping_resume - Resumes the generic timekeeping subsystem.
573 * @dev: unused
574 *
575 * This is for the generic clocksource timekeeping.
576 * xtime/wall_to_monotonic/jiffies/etc are
577 * still managed by arch specific suspend/resume code.
578 */
579static int timekeeping_resume(struct sys_device *dev)
580{
581 unsigned long flags;
d4f587c6
MS
582 struct timespec ts;
583
584 read_persistent_clock(&ts);
8524070b 585
d10ff3fb
TG
586 clocksource_resume();
587
8524070b 588 write_seqlock_irqsave(&xtime_lock, flags);
589
d4f587c6
MS
590 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
591 ts = timespec_sub(ts, timekeeping_suspend_time);
592 xtime = timespec_add_safe(xtime, ts);
593 wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
594 total_sleep_time = timespec_add_safe(total_sleep_time, ts);
8524070b 595 }
83f57a11 596 update_xtime_cache(0);
8524070b 597 /* re-base the last cycle value */
155ec602
MS
598 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
599 timekeeper.ntp_error = 0;
8524070b 600 timekeeping_suspended = 0;
601 write_sequnlock_irqrestore(&xtime_lock, flags);
602
603 touch_softlockup_watchdog();
604
605 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
606
607 /* Resume hrtimers */
608 hres_timers_resume();
609
610 return 0;
611}
612
613static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
614{
615 unsigned long flags;
616
d4f587c6 617 read_persistent_clock(&timekeeping_suspend_time);
3be90950 618
8524070b 619 write_seqlock_irqsave(&xtime_lock, flags);
155ec602 620 timekeeping_forward_now();
8524070b 621 timekeeping_suspended = 1;
8524070b 622 write_sequnlock_irqrestore(&xtime_lock, flags);
623
624 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
c54a42b1 625 clocksource_suspend();
8524070b 626
627 return 0;
628}
629
630/* sysfs resume/suspend bits for timekeeping */
631static struct sysdev_class timekeeping_sysclass = {
af5ca3f4 632 .name = "timekeeping",
8524070b 633 .resume = timekeeping_resume,
634 .suspend = timekeeping_suspend,
8524070b 635};
636
637static struct sys_device device_timer = {
638 .id = 0,
639 .cls = &timekeeping_sysclass,
640};
641
642static int __init timekeeping_init_device(void)
643{
644 int error = sysdev_class_register(&timekeeping_sysclass);
645 if (!error)
646 error = sysdev_register(&device_timer);
647 return error;
648}
649
650device_initcall(timekeeping_init_device);
651
652/*
653 * If the error is already larger, we look ahead even further
654 * to compensate for late or lost adjustments.
655 */
155ec602 656static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
8524070b 657 s64 *offset)
658{
659 s64 tick_error, i;
660 u32 look_ahead, adj;
661 s32 error2, mult;
662
663 /*
664 * Use the current error value to determine how much to look ahead.
665 * The larger the error the slower we adjust for it to avoid problems
666 * with losing too many ticks, otherwise we would overadjust and
667 * produce an even larger error. The smaller the adjustment the
668 * faster we try to adjust for it, as lost ticks can do less harm
3eb05676 669 * here. This is tuned so that an error of about 1 msec is adjusted
8524070b 670 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
671 */
155ec602 672 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
8524070b 673 error2 = abs(error2);
674 for (look_ahead = 0; error2 > 0; look_ahead++)
675 error2 >>= 2;
676
677 /*
678 * Now calculate the error in (1 << look_ahead) ticks, but first
679 * remove the single look ahead already included in the error.
680 */
23ce7211 681 tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
155ec602 682 tick_error -= timekeeper.xtime_interval >> 1;
8524070b 683 error = ((error - tick_error) >> look_ahead) + tick_error;
684
685 /* Finally calculate the adjustment shift value. */
686 i = *interval;
687 mult = 1;
688 if (error < 0) {
689 error = -error;
690 *interval = -*interval;
691 *offset = -*offset;
692 mult = -1;
693 }
694 for (adj = 0; error > i; adj++)
695 error >>= 1;
696
697 *interval <<= adj;
698 *offset <<= adj;
699 return mult << adj;
700}
701
702/*
703 * Adjust the multiplier to reduce the error value,
704 * this is optimized for the most common adjustments of -1,0,1,
705 * for other values we can do a bit more work.
706 */
155ec602 707static void timekeeping_adjust(s64 offset)
8524070b 708{
155ec602 709 s64 error, interval = timekeeper.cycle_interval;
8524070b 710 int adj;
711
23ce7211 712 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
8524070b 713 if (error > interval) {
714 error >>= 2;
715 if (likely(error <= interval))
716 adj = 1;
717 else
155ec602 718 adj = timekeeping_bigadjust(error, &interval, &offset);
8524070b 719 } else if (error < -interval) {
720 error >>= 2;
721 if (likely(error >= -interval)) {
722 adj = -1;
723 interval = -interval;
724 offset = -offset;
725 } else
155ec602 726 adj = timekeeping_bigadjust(error, &interval, &offset);
8524070b 727 } else
728 return;
729
0a544198 730 timekeeper.mult += adj;
155ec602
MS
731 timekeeper.xtime_interval += interval;
732 timekeeper.xtime_nsec -= offset;
733 timekeeper.ntp_error -= (interval - offset) <<
23ce7211 734 timekeeper.ntp_error_shift;
8524070b 735}
736
83f57a11 737
a092ff0f 738/**
739 * logarithmic_accumulation - shifted accumulation of cycles
740 *
741 * This functions accumulates a shifted interval of cycles into
742 * into a shifted interval nanoseconds. Allows for O(log) accumulation
743 * loop.
744 *
745 * Returns the unconsumed cycles.
746 */
747static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
748{
749 u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
750
751 /* If the offset is smaller then a shifted interval, do nothing */
752 if (offset < timekeeper.cycle_interval<<shift)
753 return offset;
754
755 /* Accumulate one shifted interval */
756 offset -= timekeeper.cycle_interval << shift;
757 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
758
759 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
760 while (timekeeper.xtime_nsec >= nsecps) {
761 timekeeper.xtime_nsec -= nsecps;
762 xtime.tv_sec++;
763 second_overflow();
764 }
765
766 /* Accumulate into raw time */
767 raw_time.tv_nsec += timekeeper.raw_interval << shift;;
768 while (raw_time.tv_nsec >= NSEC_PER_SEC) {
769 raw_time.tv_nsec -= NSEC_PER_SEC;
770 raw_time.tv_sec++;
771 }
772
773 /* Accumulate error between NTP and clock interval */
774 timekeeper.ntp_error += tick_length << shift;
775 timekeeper.ntp_error -= timekeeper.xtime_interval <<
776 (timekeeper.ntp_error_shift + shift);
777
778 return offset;
779}
780
83f57a11 781
8524070b 782/**
783 * update_wall_time - Uses the current clocksource to increment the wall time
784 *
785 * Called from the timer interrupt, must hold a write on xtime_lock.
786 */
787void update_wall_time(void)
788{
155ec602 789 struct clocksource *clock;
8524070b 790 cycle_t offset;
83f57a11 791 u64 nsecs;
a092ff0f 792 int shift = 0, maxshift;
8524070b 793
794 /* Make sure we're fully resumed: */
795 if (unlikely(timekeeping_suspended))
796 return;
797
155ec602 798 clock = timekeeper.clock;
8524070b 799#ifdef CONFIG_GENERIC_TIME
a0f7d48b 800 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
8524070b 801#else
155ec602 802 offset = timekeeper.cycle_interval;
8524070b 803#endif
23ce7211 804 timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
8524070b 805
a092ff0f 806 /*
807 * With NO_HZ we may have to accumulate many cycle_intervals
808 * (think "ticks") worth of time at once. To do this efficiently,
809 * we calculate the largest doubling multiple of cycle_intervals
810 * that is smaller then the offset. We then accumulate that
811 * chunk in one go, and then try to consume the next smaller
812 * doubled multiple.
8524070b 813 */
a092ff0f 814 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
815 shift = max(0, shift);
816 /* Bound shift to one less then what overflows tick_length */
817 maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
818 shift = min(shift, maxshift);
155ec602 819 while (offset >= timekeeper.cycle_interval) {
a092ff0f 820 offset = logarithmic_accumulation(offset, shift);
830ec045
JS
821 if(offset < timekeeper.cycle_interval<<shift)
822 shift--;
8524070b 823 }
824
825 /* correct the clock when NTP error is too big */
155ec602 826 timekeeping_adjust(offset);
8524070b 827
6c9bacb4 828 /*
829 * Since in the loop above, we accumulate any amount of time
830 * in xtime_nsec over a second into xtime.tv_sec, its possible for
831 * xtime_nsec to be fairly small after the loop. Further, if we're
155ec602 832 * slightly speeding the clocksource up in timekeeping_adjust(),
6c9bacb4 833 * its possible the required corrective factor to xtime_nsec could
834 * cause it to underflow.
835 *
836 * Now, we cannot simply roll the accumulated second back, since
837 * the NTP subsystem has been notified via second_overflow. So
838 * instead we push xtime_nsec forward by the amount we underflowed,
839 * and add that amount into the error.
840 *
841 * We'll correct this error next time through this function, when
842 * xtime_nsec is not as small.
843 */
155ec602
MS
844 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
845 s64 neg = -(s64)timekeeper.xtime_nsec;
846 timekeeper.xtime_nsec = 0;
23ce7211 847 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
6c9bacb4 848 }
849
5cd1c9c5
RZ
850 /* store full nanoseconds into xtime after rounding it up and
851 * add the remainder to the error difference.
852 */
23ce7211
MS
853 xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
854 timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
855 timekeeper.ntp_error += timekeeper.xtime_nsec <<
856 timekeeper.ntp_error_shift;
8524070b 857
83f57a11
LT
858 nsecs = clocksource_cyc2ns(offset, timekeeper.mult, timekeeper.shift);
859 update_xtime_cache(nsecs);
860
8524070b 861 /* check to see if there is a new clocksource to use */
0696b711 862 update_vsyscall(&xtime, timekeeper.clock, timekeeper.mult);
8524070b 863}
7c3f1a57
TJ
864
865/**
866 * getboottime - Return the real time of system boot.
867 * @ts: pointer to the timespec to be set
868 *
869 * Returns the time of day in a timespec.
870 *
871 * This is based on the wall_to_monotonic offset and the total suspend
872 * time. Calls to settimeofday will affect the value returned (which
873 * basically means that however wrong your real time clock is at boot time,
874 * you get the right time here).
875 */
876void getboottime(struct timespec *ts)
877{
36d47481
HS
878 struct timespec boottime = {
879 .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
880 .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
881 };
d4f587c6 882
d4f587c6 883 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
7c3f1a57 884}
c93d89f3 885EXPORT_SYMBOL_GPL(getboottime);
7c3f1a57
TJ
886
887/**
888 * monotonic_to_bootbased - Convert the monotonic time to boot based.
889 * @ts: pointer to the timespec to be converted
890 */
891void monotonic_to_bootbased(struct timespec *ts)
892{
d4f587c6 893 *ts = timespec_add_safe(*ts, total_sleep_time);
7c3f1a57 894}
c93d89f3 895EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
2c6b47de 896
17c38b74 897unsigned long get_seconds(void)
898{
83f57a11 899 return xtime_cache.tv_sec;
17c38b74 900}
901EXPORT_SYMBOL(get_seconds);
902
da15cfda 903struct timespec __current_kernel_time(void)
904{
83f57a11 905 return xtime_cache;
da15cfda 906}
17c38b74 907
2c6b47de 908struct timespec current_kernel_time(void)
909{
910 struct timespec now;
911 unsigned long seq;
912
913 do {
914 seq = read_seqbegin(&xtime_lock);
83f57a11
LT
915
916 now = xtime_cache;
2c6b47de 917 } while (read_seqretry(&xtime_lock, seq));
918
919 return now;
920}
2c6b47de 921EXPORT_SYMBOL(current_kernel_time);
da15cfda 922
923struct timespec get_monotonic_coarse(void)
924{
925 struct timespec now, mono;
926 unsigned long seq;
927
928 do {
929 seq = read_seqbegin(&xtime_lock);
83f57a11
LT
930
931 now = xtime_cache;
da15cfda 932 mono = wall_to_monotonic;
933 } while (read_seqretry(&xtime_lock, seq));
934
935 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
936 now.tv_nsec + mono.tv_nsec);
937 return now;
938}