Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
f30c2269 | 2 | * linux/kernel/posix-timers.c |
1da177e4 LT |
3 | * |
4 | * | |
5 | * 2002-10-15 Posix Clocks & timers | |
6 | * by George Anzinger george@mvista.com | |
7 | * | |
8 | * Copyright (C) 2002 2003 by MontaVista Software. | |
9 | * | |
10 | * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. | |
11 | * Copyright (C) 2004 Boris Hu | |
12 | * | |
13 | * This program is free software; you can redistribute it and/or modify | |
14 | * it under the terms of the GNU General Public License as published by | |
15 | * the Free Software Foundation; either version 2 of the License, or (at | |
16 | * your option) any later version. | |
17 | * | |
18 | * This program is distributed in the hope that it will be useful, but | |
19 | * WITHOUT ANY WARRANTY; without even the implied warranty of | |
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
21 | * General Public License for more details. | |
22 | ||
23 | * You should have received a copy of the GNU General Public License | |
24 | * along with this program; if not, write to the Free Software | |
25 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | |
26 | * | |
27 | * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA | |
28 | */ | |
29 | ||
30 | /* These are all the functions necessary to implement | |
31 | * POSIX clocks & timers | |
32 | */ | |
33 | #include <linux/mm.h> | |
1da177e4 LT |
34 | #include <linux/interrupt.h> |
35 | #include <linux/slab.h> | |
36 | #include <linux/time.h> | |
97d1f15b | 37 | #include <linux/mutex.h> |
1da177e4 LT |
38 | |
39 | #include <asm/uaccess.h> | |
1da177e4 LT |
40 | #include <linux/list.h> |
41 | #include <linux/init.h> | |
42 | #include <linux/compiler.h> | |
5ed67f05 | 43 | #include <linux/hash.h> |
0606f422 | 44 | #include <linux/posix-clock.h> |
1da177e4 LT |
45 | #include <linux/posix-timers.h> |
46 | #include <linux/syscalls.h> | |
47 | #include <linux/wait.h> | |
48 | #include <linux/workqueue.h> | |
9984de1a | 49 | #include <linux/export.h> |
5ed67f05 | 50 | #include <linux/hashtable.h> |
1da177e4 | 51 | |
8b094cd0 TG |
52 | #include "timekeeping.h" |
53 | ||
1da177e4 | 54 | /* |
5ed67f05 PE |
55 | * Management arrays for POSIX timers. Timers are now kept in static hash table |
56 | * with 512 entries. | |
57 | * Timer ids are allocated by local routine, which selects proper hash head by | |
58 | * key, constructed from current->signal address and per signal struct counter. | |
59 | * This keeps timer ids unique per process, but now they can intersect between | |
60 | * processes. | |
1da177e4 LT |
61 | */ |
62 | ||
63 | /* | |
64 | * Lets keep our timers in a slab cache :-) | |
65 | */ | |
e18b890b | 66 | static struct kmem_cache *posix_timers_cache; |
5ed67f05 PE |
67 | |
68 | static DEFINE_HASHTABLE(posix_timers_hashtable, 9); | |
69 | static DEFINE_SPINLOCK(hash_lock); | |
1da177e4 | 70 | |
1da177e4 LT |
71 | /* |
72 | * we assume that the new SIGEV_THREAD_ID shares no bits with the other | |
73 | * SIGEV values. Here we put out an error if this assumption fails. | |
74 | */ | |
75 | #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ | |
76 | ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) | |
77 | #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" | |
78 | #endif | |
79 | ||
65da528d TG |
80 | /* |
81 | * parisc wants ENOTSUP instead of EOPNOTSUPP | |
82 | */ | |
83 | #ifndef ENOTSUP | |
84 | # define ENANOSLEEP_NOTSUP EOPNOTSUPP | |
85 | #else | |
86 | # define ENANOSLEEP_NOTSUP ENOTSUP | |
87 | #endif | |
1da177e4 LT |
88 | |
89 | /* | |
90 | * The timer ID is turned into a timer address by idr_find(). | |
91 | * Verifying a valid ID consists of: | |
92 | * | |
93 | * a) checking that idr_find() returns other than -1. | |
94 | * b) checking that the timer id matches the one in the timer itself. | |
95 | * c) that the timer owner is in the callers thread group. | |
96 | */ | |
97 | ||
98 | /* | |
99 | * CLOCKs: The POSIX standard calls for a couple of clocks and allows us | |
100 | * to implement others. This structure defines the various | |
0061748d | 101 | * clocks. |
1da177e4 LT |
102 | * |
103 | * RESOLUTION: Clock resolution is used to round up timer and interval | |
104 | * times, NOT to report clock times, which are reported with as | |
105 | * much resolution as the system can muster. In some cases this | |
106 | * resolution may depend on the underlying clock hardware and | |
107 | * may not be quantifiable until run time, and only then is the | |
108 | * necessary code is written. The standard says we should say | |
109 | * something about this issue in the documentation... | |
110 | * | |
0061748d RC |
111 | * FUNCTIONS: The CLOCKs structure defines possible functions to |
112 | * handle various clock functions. | |
1da177e4 | 113 | * |
0061748d RC |
114 | * The standard POSIX timer management code assumes the |
115 | * following: 1.) The k_itimer struct (sched.h) is used for | |
116 | * the timer. 2.) The list, it_lock, it_clock, it_id and | |
117 | * it_pid fields are not modified by timer code. | |
1da177e4 LT |
118 | * |
119 | * Permissions: It is assumed that the clock_settime() function defined | |
120 | * for each clock will take care of permission checks. Some | |
121 | * clocks may be set able by any user (i.e. local process | |
122 | * clocks) others not. Currently the only set able clock we | |
123 | * have is CLOCK_REALTIME and its high res counter part, both of | |
124 | * which we beg off on and pass to do_sys_settimeofday(). | |
125 | */ | |
126 | ||
127 | static struct k_clock posix_clocks[MAX_CLOCKS]; | |
becf8b5d | 128 | |
1da177e4 | 129 | /* |
becf8b5d | 130 | * These ones are defined below. |
1da177e4 | 131 | */ |
becf8b5d TG |
132 | static int common_nsleep(const clockid_t, int flags, struct timespec *t, |
133 | struct timespec __user *rmtp); | |
838394fb | 134 | static int common_timer_create(struct k_itimer *new_timer); |
becf8b5d TG |
135 | static void common_timer_get(struct k_itimer *, struct itimerspec *); |
136 | static int common_timer_set(struct k_itimer *, int, | |
137 | struct itimerspec *, struct itimerspec *); | |
138 | static int common_timer_del(struct k_itimer *timer); | |
1da177e4 | 139 | |
c9cb2e3d | 140 | static enum hrtimer_restart posix_timer_fn(struct hrtimer *data); |
1da177e4 | 141 | |
20f33a03 NK |
142 | static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags); |
143 | ||
144 | #define lock_timer(tid, flags) \ | |
145 | ({ struct k_itimer *__timr; \ | |
146 | __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \ | |
147 | __timr; \ | |
148 | }) | |
1da177e4 | 149 | |
5ed67f05 PE |
150 | static int hash(struct signal_struct *sig, unsigned int nr) |
151 | { | |
152 | return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable)); | |
153 | } | |
154 | ||
155 | static struct k_itimer *__posix_timers_find(struct hlist_head *head, | |
156 | struct signal_struct *sig, | |
157 | timer_t id) | |
158 | { | |
5ed67f05 PE |
159 | struct k_itimer *timer; |
160 | ||
161 | hlist_for_each_entry_rcu(timer, head, t_hash) { | |
162 | if ((timer->it_signal == sig) && (timer->it_id == id)) | |
163 | return timer; | |
164 | } | |
165 | return NULL; | |
166 | } | |
167 | ||
168 | static struct k_itimer *posix_timer_by_id(timer_t id) | |
169 | { | |
170 | struct signal_struct *sig = current->signal; | |
171 | struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)]; | |
172 | ||
173 | return __posix_timers_find(head, sig, id); | |
174 | } | |
175 | ||
176 | static int posix_timer_add(struct k_itimer *timer) | |
177 | { | |
178 | struct signal_struct *sig = current->signal; | |
179 | int first_free_id = sig->posix_timer_id; | |
180 | struct hlist_head *head; | |
181 | int ret = -ENOENT; | |
182 | ||
183 | do { | |
184 | spin_lock(&hash_lock); | |
185 | head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)]; | |
186 | if (!__posix_timers_find(head, sig, sig->posix_timer_id)) { | |
187 | hlist_add_head_rcu(&timer->t_hash, head); | |
188 | ret = sig->posix_timer_id; | |
189 | } | |
190 | if (++sig->posix_timer_id < 0) | |
191 | sig->posix_timer_id = 0; | |
192 | if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT)) | |
193 | /* Loop over all possible ids completed */ | |
194 | ret = -EAGAIN; | |
195 | spin_unlock(&hash_lock); | |
196 | } while (ret == -ENOENT); | |
197 | return ret; | |
198 | } | |
199 | ||
1da177e4 LT |
200 | static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) |
201 | { | |
202 | spin_unlock_irqrestore(&timr->it_lock, flags); | |
203 | } | |
204 | ||
42285777 TG |
205 | /* Get clock_realtime */ |
206 | static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp) | |
207 | { | |
208 | ktime_get_real_ts(tp); | |
209 | return 0; | |
210 | } | |
211 | ||
26f9a479 TG |
212 | /* Set clock_realtime */ |
213 | static int posix_clock_realtime_set(const clockid_t which_clock, | |
214 | const struct timespec *tp) | |
215 | { | |
216 | return do_sys_settimeofday(tp, NULL); | |
217 | } | |
218 | ||
f1f1d5eb RC |
219 | static int posix_clock_realtime_adj(const clockid_t which_clock, |
220 | struct timex *t) | |
221 | { | |
222 | return do_adjtimex(t); | |
223 | } | |
224 | ||
becf8b5d TG |
225 | /* |
226 | * Get monotonic time for posix timers | |
227 | */ | |
228 | static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp) | |
229 | { | |
230 | ktime_get_ts(tp); | |
231 | return 0; | |
232 | } | |
1da177e4 | 233 | |
2d42244a | 234 | /* |
7fdd7f89 | 235 | * Get monotonic-raw time for posix timers |
2d42244a JS |
236 | */ |
237 | static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp) | |
238 | { | |
239 | getrawmonotonic(tp); | |
240 | return 0; | |
241 | } | |
242 | ||
da15cfda | 243 | |
244 | static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp) | |
245 | { | |
246 | *tp = current_kernel_time(); | |
247 | return 0; | |
248 | } | |
249 | ||
250 | static int posix_get_monotonic_coarse(clockid_t which_clock, | |
251 | struct timespec *tp) | |
252 | { | |
253 | *tp = get_monotonic_coarse(); | |
254 | return 0; | |
255 | } | |
256 | ||
6622e670 | 257 | static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp) |
da15cfda | 258 | { |
259 | *tp = ktime_to_timespec(KTIME_LOW_RES); | |
260 | return 0; | |
261 | } | |
7fdd7f89 JS |
262 | |
263 | static int posix_get_boottime(const clockid_t which_clock, struct timespec *tp) | |
264 | { | |
265 | get_monotonic_boottime(tp); | |
266 | return 0; | |
267 | } | |
268 | ||
1ff3c967 JS |
269 | static int posix_get_tai(clockid_t which_clock, struct timespec *tp) |
270 | { | |
271 | timekeeping_clocktai(tp); | |
272 | return 0; | |
273 | } | |
7fdd7f89 | 274 | |
056a3cac TG |
275 | static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec *tp) |
276 | { | |
277 | tp->tv_sec = 0; | |
278 | tp->tv_nsec = hrtimer_resolution; | |
279 | return 0; | |
280 | } | |
281 | ||
1da177e4 LT |
282 | /* |
283 | * Initialize everything, well, just everything in Posix clocks/timers ;) | |
284 | */ | |
285 | static __init int init_posix_timers(void) | |
286 | { | |
becf8b5d | 287 | struct k_clock clock_realtime = { |
056a3cac | 288 | .clock_getres = posix_get_hrtimer_res, |
42285777 | 289 | .clock_get = posix_clock_realtime_get, |
26f9a479 | 290 | .clock_set = posix_clock_realtime_set, |
f1f1d5eb | 291 | .clock_adj = posix_clock_realtime_adj, |
a5cd2880 | 292 | .nsleep = common_nsleep, |
59bd5bc2 | 293 | .nsleep_restart = hrtimer_nanosleep_restart, |
838394fb | 294 | .timer_create = common_timer_create, |
27722df1 | 295 | .timer_set = common_timer_set, |
a7319fa2 | 296 | .timer_get = common_timer_get, |
6761c670 | 297 | .timer_del = common_timer_del, |
1da177e4 | 298 | }; |
becf8b5d | 299 | struct k_clock clock_monotonic = { |
056a3cac | 300 | .clock_getres = posix_get_hrtimer_res, |
2fd1f040 | 301 | .clock_get = posix_ktime_get_ts, |
a5cd2880 | 302 | .nsleep = common_nsleep, |
59bd5bc2 | 303 | .nsleep_restart = hrtimer_nanosleep_restart, |
838394fb | 304 | .timer_create = common_timer_create, |
27722df1 | 305 | .timer_set = common_timer_set, |
a7319fa2 | 306 | .timer_get = common_timer_get, |
6761c670 | 307 | .timer_del = common_timer_del, |
1da177e4 | 308 | }; |
2d42244a | 309 | struct k_clock clock_monotonic_raw = { |
056a3cac | 310 | .clock_getres = posix_get_hrtimer_res, |
2fd1f040 | 311 | .clock_get = posix_get_monotonic_raw, |
2d42244a | 312 | }; |
da15cfda | 313 | struct k_clock clock_realtime_coarse = { |
2fd1f040 TG |
314 | .clock_getres = posix_get_coarse_res, |
315 | .clock_get = posix_get_realtime_coarse, | |
da15cfda | 316 | }; |
317 | struct k_clock clock_monotonic_coarse = { | |
2fd1f040 TG |
318 | .clock_getres = posix_get_coarse_res, |
319 | .clock_get = posix_get_monotonic_coarse, | |
da15cfda | 320 | }; |
1ff3c967 | 321 | struct k_clock clock_tai = { |
056a3cac | 322 | .clock_getres = posix_get_hrtimer_res, |
1ff3c967 | 323 | .clock_get = posix_get_tai, |
90adda98 JS |
324 | .nsleep = common_nsleep, |
325 | .nsleep_restart = hrtimer_nanosleep_restart, | |
326 | .timer_create = common_timer_create, | |
327 | .timer_set = common_timer_set, | |
328 | .timer_get = common_timer_get, | |
329 | .timer_del = common_timer_del, | |
1ff3c967 | 330 | }; |
7fdd7f89 | 331 | struct k_clock clock_boottime = { |
056a3cac | 332 | .clock_getres = posix_get_hrtimer_res, |
7fdd7f89 JS |
333 | .clock_get = posix_get_boottime, |
334 | .nsleep = common_nsleep, | |
335 | .nsleep_restart = hrtimer_nanosleep_restart, | |
336 | .timer_create = common_timer_create, | |
337 | .timer_set = common_timer_set, | |
338 | .timer_get = common_timer_get, | |
339 | .timer_del = common_timer_del, | |
340 | }; | |
1da177e4 | 341 | |
52708737 TG |
342 | posix_timers_register_clock(CLOCK_REALTIME, &clock_realtime); |
343 | posix_timers_register_clock(CLOCK_MONOTONIC, &clock_monotonic); | |
344 | posix_timers_register_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw); | |
345 | posix_timers_register_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse); | |
346 | posix_timers_register_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse); | |
7fdd7f89 | 347 | posix_timers_register_clock(CLOCK_BOOTTIME, &clock_boottime); |
1ff3c967 | 348 | posix_timers_register_clock(CLOCK_TAI, &clock_tai); |
1da177e4 LT |
349 | |
350 | posix_timers_cache = kmem_cache_create("posix_timers_cache", | |
040b5c6f AD |
351 | sizeof (struct k_itimer), 0, SLAB_PANIC, |
352 | NULL); | |
1da177e4 LT |
353 | return 0; |
354 | } | |
355 | ||
356 | __initcall(init_posix_timers); | |
357 | ||
1da177e4 LT |
358 | static void schedule_next_timer(struct k_itimer *timr) |
359 | { | |
44f21475 RZ |
360 | struct hrtimer *timer = &timr->it.real.timer; |
361 | ||
becf8b5d | 362 | if (timr->it.real.interval.tv64 == 0) |
1da177e4 LT |
363 | return; |
364 | ||
4d672e7a DL |
365 | timr->it_overrun += (unsigned int) hrtimer_forward(timer, |
366 | timer->base->get_time(), | |
367 | timr->it.real.interval); | |
44f21475 | 368 | |
1da177e4 LT |
369 | timr->it_overrun_last = timr->it_overrun; |
370 | timr->it_overrun = -1; | |
371 | ++timr->it_requeue_pending; | |
44f21475 | 372 | hrtimer_restart(timer); |
1da177e4 LT |
373 | } |
374 | ||
375 | /* | |
376 | * This function is exported for use by the signal deliver code. It is | |
377 | * called just prior to the info block being released and passes that | |
378 | * block to us. It's function is to update the overrun entry AND to | |
379 | * restart the timer. It should only be called if the timer is to be | |
380 | * restarted (i.e. we have flagged this in the sys_private entry of the | |
381 | * info block). | |
382 | * | |
25985edc | 383 | * To protect against the timer going away while the interrupt is queued, |
1da177e4 LT |
384 | * we require that the it_requeue_pending flag be set. |
385 | */ | |
386 | void do_schedule_next_timer(struct siginfo *info) | |
387 | { | |
388 | struct k_itimer *timr; | |
389 | unsigned long flags; | |
390 | ||
391 | timr = lock_timer(info->si_tid, &flags); | |
392 | ||
becf8b5d TG |
393 | if (timr && timr->it_requeue_pending == info->si_sys_private) { |
394 | if (timr->it_clock < 0) | |
395 | posix_cpu_timer_schedule(timr); | |
396 | else | |
397 | schedule_next_timer(timr); | |
1da177e4 | 398 | |
54da1174 | 399 | info->si_overrun += timr->it_overrun_last; |
becf8b5d TG |
400 | } |
401 | ||
b6557fbc TG |
402 | if (timr) |
403 | unlock_timer(timr, flags); | |
1da177e4 LT |
404 | } |
405 | ||
ba661292 | 406 | int posix_timer_event(struct k_itimer *timr, int si_private) |
1da177e4 | 407 | { |
27af4245 ON |
408 | struct task_struct *task; |
409 | int shared, ret = -1; | |
ba661292 ON |
410 | /* |
411 | * FIXME: if ->sigq is queued we can race with | |
412 | * dequeue_signal()->do_schedule_next_timer(). | |
413 | * | |
414 | * If dequeue_signal() sees the "right" value of | |
415 | * si_sys_private it calls do_schedule_next_timer(). | |
416 | * We re-queue ->sigq and drop ->it_lock(). | |
417 | * do_schedule_next_timer() locks the timer | |
418 | * and re-schedules it while ->sigq is pending. | |
419 | * Not really bad, but not that we want. | |
420 | */ | |
1da177e4 | 421 | timr->sigq->info.si_sys_private = si_private; |
1da177e4 | 422 | |
27af4245 ON |
423 | rcu_read_lock(); |
424 | task = pid_task(timr->it_pid, PIDTYPE_PID); | |
425 | if (task) { | |
426 | shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID); | |
427 | ret = send_sigqueue(timr->sigq, task, shared); | |
428 | } | |
429 | rcu_read_unlock(); | |
4aa73611 ON |
430 | /* If we failed to send the signal the timer stops. */ |
431 | return ret > 0; | |
1da177e4 LT |
432 | } |
433 | EXPORT_SYMBOL_GPL(posix_timer_event); | |
434 | ||
435 | /* | |
436 | * This function gets called when a POSIX.1b interval timer expires. It | |
437 | * is used as a callback from the kernel internal timer. The | |
438 | * run_timer_list code ALWAYS calls with interrupts on. | |
439 | ||
440 | * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. | |
441 | */ | |
c9cb2e3d | 442 | static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) |
1da177e4 | 443 | { |
05cfb614 | 444 | struct k_itimer *timr; |
1da177e4 | 445 | unsigned long flags; |
becf8b5d | 446 | int si_private = 0; |
c9cb2e3d | 447 | enum hrtimer_restart ret = HRTIMER_NORESTART; |
1da177e4 | 448 | |
05cfb614 | 449 | timr = container_of(timer, struct k_itimer, it.real.timer); |
1da177e4 | 450 | spin_lock_irqsave(&timr->it_lock, flags); |
1da177e4 | 451 | |
becf8b5d TG |
452 | if (timr->it.real.interval.tv64 != 0) |
453 | si_private = ++timr->it_requeue_pending; | |
1da177e4 | 454 | |
becf8b5d TG |
455 | if (posix_timer_event(timr, si_private)) { |
456 | /* | |
457 | * signal was not sent because of sig_ignor | |
458 | * we will not get a call back to restart it AND | |
459 | * it should be restarted. | |
460 | */ | |
461 | if (timr->it.real.interval.tv64 != 0) { | |
58229a18 TG |
462 | ktime_t now = hrtimer_cb_get_time(timer); |
463 | ||
464 | /* | |
465 | * FIXME: What we really want, is to stop this | |
466 | * timer completely and restart it in case the | |
467 | * SIG_IGN is removed. This is a non trivial | |
468 | * change which involves sighand locking | |
469 | * (sigh !), which we don't want to do late in | |
470 | * the release cycle. | |
471 | * | |
472 | * For now we just let timers with an interval | |
473 | * less than a jiffie expire every jiffie to | |
474 | * avoid softirq starvation in case of SIG_IGN | |
475 | * and a very small interval, which would put | |
476 | * the timer right back on the softirq pending | |
477 | * list. By moving now ahead of time we trick | |
478 | * hrtimer_forward() to expire the timer | |
479 | * later, while we still maintain the overrun | |
480 | * accuracy, but have some inconsistency in | |
481 | * the timer_gettime() case. This is at least | |
482 | * better than a starved softirq. A more | |
483 | * complex fix which solves also another related | |
484 | * inconsistency is already in the pipeline. | |
485 | */ | |
486 | #ifdef CONFIG_HIGH_RES_TIMERS | |
487 | { | |
488 | ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ); | |
489 | ||
490 | if (timr->it.real.interval.tv64 < kj.tv64) | |
491 | now = ktime_add(now, kj); | |
492 | } | |
493 | #endif | |
4d672e7a | 494 | timr->it_overrun += (unsigned int) |
58229a18 | 495 | hrtimer_forward(timer, now, |
becf8b5d TG |
496 | timr->it.real.interval); |
497 | ret = HRTIMER_RESTART; | |
a0a0c28c | 498 | ++timr->it_requeue_pending; |
1da177e4 | 499 | } |
1da177e4 | 500 | } |
1da177e4 | 501 | |
becf8b5d TG |
502 | unlock_timer(timr, flags); |
503 | return ret; | |
504 | } | |
1da177e4 | 505 | |
27af4245 | 506 | static struct pid *good_sigevent(sigevent_t * event) |
1da177e4 LT |
507 | { |
508 | struct task_struct *rtn = current->group_leader; | |
509 | ||
510 | if ((event->sigev_notify & SIGEV_THREAD_ID ) && | |
8dc86af0 | 511 | (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) || |
bac0abd6 | 512 | !same_thread_group(rtn, current) || |
1da177e4 LT |
513 | (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL)) |
514 | return NULL; | |
515 | ||
516 | if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) && | |
517 | ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX))) | |
518 | return NULL; | |
519 | ||
27af4245 | 520 | return task_pid(rtn); |
1da177e4 LT |
521 | } |
522 | ||
52708737 TG |
523 | void posix_timers_register_clock(const clockid_t clock_id, |
524 | struct k_clock *new_clock) | |
1da177e4 LT |
525 | { |
526 | if ((unsigned) clock_id >= MAX_CLOCKS) { | |
4359ac0a TG |
527 | printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n", |
528 | clock_id); | |
529 | return; | |
530 | } | |
531 | ||
532 | if (!new_clock->clock_get) { | |
533 | printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n", | |
534 | clock_id); | |
535 | return; | |
536 | } | |
537 | if (!new_clock->clock_getres) { | |
538 | printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n", | |
1da177e4 LT |
539 | clock_id); |
540 | return; | |
541 | } | |
542 | ||
543 | posix_clocks[clock_id] = *new_clock; | |
544 | } | |
52708737 | 545 | EXPORT_SYMBOL_GPL(posix_timers_register_clock); |
1da177e4 LT |
546 | |
547 | static struct k_itimer * alloc_posix_timer(void) | |
548 | { | |
549 | struct k_itimer *tmr; | |
c3762229 | 550 | tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); |
1da177e4 LT |
551 | if (!tmr) |
552 | return tmr; | |
1da177e4 LT |
553 | if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { |
554 | kmem_cache_free(posix_timers_cache, tmr); | |
aa94fbd5 | 555 | return NULL; |
1da177e4 | 556 | } |
ba661292 | 557 | memset(&tmr->sigq->info, 0, sizeof(siginfo_t)); |
1da177e4 LT |
558 | return tmr; |
559 | } | |
560 | ||
8af08871 ED |
561 | static void k_itimer_rcu_free(struct rcu_head *head) |
562 | { | |
563 | struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu); | |
564 | ||
565 | kmem_cache_free(posix_timers_cache, tmr); | |
566 | } | |
567 | ||
1da177e4 LT |
568 | #define IT_ID_SET 1 |
569 | #define IT_ID_NOT_SET 0 | |
570 | static void release_posix_timer(struct k_itimer *tmr, int it_id_set) | |
571 | { | |
572 | if (it_id_set) { | |
573 | unsigned long flags; | |
5ed67f05 PE |
574 | spin_lock_irqsave(&hash_lock, flags); |
575 | hlist_del_rcu(&tmr->t_hash); | |
576 | spin_unlock_irqrestore(&hash_lock, flags); | |
1da177e4 | 577 | } |
89992102 | 578 | put_pid(tmr->it_pid); |
1da177e4 | 579 | sigqueue_free(tmr->sigq); |
8af08871 | 580 | call_rcu(&tmr->it.rcu, k_itimer_rcu_free); |
1da177e4 LT |
581 | } |
582 | ||
cc785ac2 TG |
583 | static struct k_clock *clockid_to_kclock(const clockid_t id) |
584 | { | |
585 | if (id < 0) | |
0606f422 RC |
586 | return (id & CLOCKFD_MASK) == CLOCKFD ? |
587 | &clock_posix_dynamic : &clock_posix_cpu; | |
cc785ac2 TG |
588 | |
589 | if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres) | |
590 | return NULL; | |
591 | return &posix_clocks[id]; | |
592 | } | |
593 | ||
838394fb TG |
594 | static int common_timer_create(struct k_itimer *new_timer) |
595 | { | |
596 | hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); | |
597 | return 0; | |
598 | } | |
599 | ||
1da177e4 LT |
600 | /* Create a POSIX.1b interval timer. */ |
601 | ||
362e9c07 HC |
602 | SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, |
603 | struct sigevent __user *, timer_event_spec, | |
604 | timer_t __user *, created_timer_id) | |
1da177e4 | 605 | { |
838394fb | 606 | struct k_clock *kc = clockid_to_kclock(which_clock); |
2cd499e3 | 607 | struct k_itimer *new_timer; |
ef864c95 | 608 | int error, new_timer_id; |
1da177e4 LT |
609 | sigevent_t event; |
610 | int it_id_set = IT_ID_NOT_SET; | |
611 | ||
838394fb | 612 | if (!kc) |
1da177e4 | 613 | return -EINVAL; |
838394fb TG |
614 | if (!kc->timer_create) |
615 | return -EOPNOTSUPP; | |
1da177e4 LT |
616 | |
617 | new_timer = alloc_posix_timer(); | |
618 | if (unlikely(!new_timer)) | |
619 | return -EAGAIN; | |
620 | ||
621 | spin_lock_init(&new_timer->it_lock); | |
5ed67f05 PE |
622 | new_timer_id = posix_timer_add(new_timer); |
623 | if (new_timer_id < 0) { | |
624 | error = new_timer_id; | |
1da177e4 LT |
625 | goto out; |
626 | } | |
627 | ||
628 | it_id_set = IT_ID_SET; | |
629 | new_timer->it_id = (timer_t) new_timer_id; | |
630 | new_timer->it_clock = which_clock; | |
631 | new_timer->it_overrun = -1; | |
1da177e4 | 632 | |
1da177e4 LT |
633 | if (timer_event_spec) { |
634 | if (copy_from_user(&event, timer_event_spec, sizeof (event))) { | |
635 | error = -EFAULT; | |
636 | goto out; | |
637 | } | |
36b2f046 | 638 | rcu_read_lock(); |
89992102 | 639 | new_timer->it_pid = get_pid(good_sigevent(&event)); |
36b2f046 | 640 | rcu_read_unlock(); |
89992102 | 641 | if (!new_timer->it_pid) { |
1da177e4 LT |
642 | error = -EINVAL; |
643 | goto out; | |
644 | } | |
645 | } else { | |
6891c450 | 646 | memset(&event.sigev_value, 0, sizeof(event.sigev_value)); |
5a9fa730 ON |
647 | event.sigev_notify = SIGEV_SIGNAL; |
648 | event.sigev_signo = SIGALRM; | |
649 | event.sigev_value.sival_int = new_timer->it_id; | |
89992102 | 650 | new_timer->it_pid = get_pid(task_tgid(current)); |
1da177e4 LT |
651 | } |
652 | ||
5a9fa730 ON |
653 | new_timer->it_sigev_notify = event.sigev_notify; |
654 | new_timer->sigq->info.si_signo = event.sigev_signo; | |
655 | new_timer->sigq->info.si_value = event.sigev_value; | |
717835d9 | 656 | new_timer->sigq->info.si_tid = new_timer->it_id; |
5a9fa730 | 657 | new_timer->sigq->info.si_code = SI_TIMER; |
717835d9 | 658 | |
2b08de00 AV |
659 | if (copy_to_user(created_timer_id, |
660 | &new_timer_id, sizeof (new_timer_id))) { | |
661 | error = -EFAULT; | |
662 | goto out; | |
663 | } | |
664 | ||
838394fb | 665 | error = kc->timer_create(new_timer); |
45e0fffc AV |
666 | if (error) |
667 | goto out; | |
668 | ||
36b2f046 | 669 | spin_lock_irq(¤t->sighand->siglock); |
27af4245 | 670 | new_timer->it_signal = current->signal; |
36b2f046 ON |
671 | list_add(&new_timer->list, ¤t->signal->posix_timers); |
672 | spin_unlock_irq(¤t->sighand->siglock); | |
ef864c95 ON |
673 | |
674 | return 0; | |
838394fb | 675 | /* |
1da177e4 LT |
676 | * In the case of the timer belonging to another task, after |
677 | * the task is unlocked, the timer is owned by the other task | |
678 | * and may cease to exist at any time. Don't use or modify | |
679 | * new_timer after the unlock call. | |
680 | */ | |
1da177e4 | 681 | out: |
ef864c95 | 682 | release_posix_timer(new_timer, it_id_set); |
1da177e4 LT |
683 | return error; |
684 | } | |
685 | ||
1da177e4 LT |
686 | /* |
687 | * Locking issues: We need to protect the result of the id look up until | |
688 | * we get the timer locked down so it is not deleted under us. The | |
689 | * removal is done under the idr spinlock so we use that here to bridge | |
690 | * the find to the timer lock. To avoid a dead lock, the timer id MUST | |
691 | * be release with out holding the timer lock. | |
692 | */ | |
20f33a03 | 693 | static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags) |
1da177e4 LT |
694 | { |
695 | struct k_itimer *timr; | |
8af08871 | 696 | |
e182bb38 TH |
697 | /* |
698 | * timer_t could be any type >= int and we want to make sure any | |
699 | * @timer_id outside positive int range fails lookup. | |
700 | */ | |
701 | if ((unsigned long long)timer_id > INT_MAX) | |
702 | return NULL; | |
703 | ||
8af08871 | 704 | rcu_read_lock(); |
5ed67f05 | 705 | timr = posix_timer_by_id(timer_id); |
1da177e4 | 706 | if (timr) { |
8af08871 | 707 | spin_lock_irqsave(&timr->it_lock, *flags); |
89992102 | 708 | if (timr->it_signal == current->signal) { |
8af08871 | 709 | rcu_read_unlock(); |
31d92845 ON |
710 | return timr; |
711 | } | |
8af08871 | 712 | spin_unlock_irqrestore(&timr->it_lock, *flags); |
31d92845 | 713 | } |
8af08871 | 714 | rcu_read_unlock(); |
1da177e4 | 715 | |
31d92845 | 716 | return NULL; |
1da177e4 LT |
717 | } |
718 | ||
719 | /* | |
720 | * Get the time remaining on a POSIX.1b interval timer. This function | |
721 | * is ALWAYS called with spin_lock_irq on the timer, thus it must not | |
722 | * mess with irq. | |
723 | * | |
724 | * We have a couple of messes to clean up here. First there is the case | |
725 | * of a timer that has a requeue pending. These timers should appear to | |
726 | * be in the timer list with an expiry as if we were to requeue them | |
727 | * now. | |
728 | * | |
729 | * The second issue is the SIGEV_NONE timer which may be active but is | |
730 | * not really ever put in the timer list (to save system resources). | |
731 | * This timer may be expired, and if so, we will do it here. Otherwise | |
732 | * it is the same as a requeue pending timer WRT to what we should | |
733 | * report. | |
734 | */ | |
735 | static void | |
736 | common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) | |
737 | { | |
3b98a532 | 738 | ktime_t now, remaining, iv; |
becf8b5d | 739 | struct hrtimer *timer = &timr->it.real.timer; |
1da177e4 | 740 | |
becf8b5d | 741 | memset(cur_setting, 0, sizeof(struct itimerspec)); |
becf8b5d | 742 | |
3b98a532 RZ |
743 | iv = timr->it.real.interval; |
744 | ||
becf8b5d | 745 | /* interval timer ? */ |
3b98a532 RZ |
746 | if (iv.tv64) |
747 | cur_setting->it_interval = ktime_to_timespec(iv); | |
748 | else if (!hrtimer_active(timer) && | |
749 | (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) | |
becf8b5d | 750 | return; |
3b98a532 RZ |
751 | |
752 | now = timer->base->get_time(); | |
753 | ||
becf8b5d | 754 | /* |
3b98a532 RZ |
755 | * When a requeue is pending or this is a SIGEV_NONE |
756 | * timer move the expiry time forward by intervals, so | |
757 | * expiry is > now. | |
becf8b5d | 758 | */ |
3b98a532 RZ |
759 | if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING || |
760 | (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) | |
4d672e7a | 761 | timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv); |
3b98a532 | 762 | |
572c3917 | 763 | remaining = __hrtimer_expires_remaining_adjusted(timer, now); |
becf8b5d | 764 | /* Return 0 only, when the timer is expired and not pending */ |
3b98a532 RZ |
765 | if (remaining.tv64 <= 0) { |
766 | /* | |
767 | * A single shot SIGEV_NONE timer must return 0, when | |
768 | * it is expired ! | |
769 | */ | |
770 | if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) | |
771 | cur_setting->it_value.tv_nsec = 1; | |
772 | } else | |
becf8b5d | 773 | cur_setting->it_value = ktime_to_timespec(remaining); |
1da177e4 LT |
774 | } |
775 | ||
776 | /* Get the time remaining on a POSIX.1b interval timer. */ | |
362e9c07 HC |
777 | SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, |
778 | struct itimerspec __user *, setting) | |
1da177e4 | 779 | { |
1da177e4 | 780 | struct itimerspec cur_setting; |
a7319fa2 TG |
781 | struct k_itimer *timr; |
782 | struct k_clock *kc; | |
1da177e4 | 783 | unsigned long flags; |
a7319fa2 | 784 | int ret = 0; |
1da177e4 LT |
785 | |
786 | timr = lock_timer(timer_id, &flags); | |
787 | if (!timr) | |
788 | return -EINVAL; | |
789 | ||
a7319fa2 TG |
790 | kc = clockid_to_kclock(timr->it_clock); |
791 | if (WARN_ON_ONCE(!kc || !kc->timer_get)) | |
792 | ret = -EINVAL; | |
793 | else | |
794 | kc->timer_get(timr, &cur_setting); | |
1da177e4 LT |
795 | |
796 | unlock_timer(timr, flags); | |
797 | ||
a7319fa2 | 798 | if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting))) |
1da177e4 LT |
799 | return -EFAULT; |
800 | ||
a7319fa2 | 801 | return ret; |
1da177e4 | 802 | } |
becf8b5d | 803 | |
1da177e4 LT |
804 | /* |
805 | * Get the number of overruns of a POSIX.1b interval timer. This is to | |
806 | * be the overrun of the timer last delivered. At the same time we are | |
807 | * accumulating overruns on the next timer. The overrun is frozen when | |
808 | * the signal is delivered, either at the notify time (if the info block | |
809 | * is not queued) or at the actual delivery time (as we are informed by | |
810 | * the call back to do_schedule_next_timer(). So all we need to do is | |
811 | * to pick up the frozen overrun. | |
812 | */ | |
362e9c07 | 813 | SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) |
1da177e4 LT |
814 | { |
815 | struct k_itimer *timr; | |
816 | int overrun; | |
5ba25331 | 817 | unsigned long flags; |
1da177e4 LT |
818 | |
819 | timr = lock_timer(timer_id, &flags); | |
820 | if (!timr) | |
821 | return -EINVAL; | |
822 | ||
823 | overrun = timr->it_overrun_last; | |
824 | unlock_timer(timr, flags); | |
825 | ||
826 | return overrun; | |
827 | } | |
1da177e4 LT |
828 | |
829 | /* Set a POSIX.1b interval timer. */ | |
830 | /* timr->it_lock is taken. */ | |
858119e1 | 831 | static int |
1da177e4 LT |
832 | common_timer_set(struct k_itimer *timr, int flags, |
833 | struct itimerspec *new_setting, struct itimerspec *old_setting) | |
834 | { | |
becf8b5d | 835 | struct hrtimer *timer = &timr->it.real.timer; |
7978672c | 836 | enum hrtimer_mode mode; |
1da177e4 LT |
837 | |
838 | if (old_setting) | |
839 | common_timer_get(timr, old_setting); | |
840 | ||
841 | /* disable the timer */ | |
becf8b5d | 842 | timr->it.real.interval.tv64 = 0; |
1da177e4 LT |
843 | /* |
844 | * careful here. If smp we could be in the "fire" routine which will | |
845 | * be spinning as we hold the lock. But this is ONLY an SMP issue. | |
846 | */ | |
becf8b5d | 847 | if (hrtimer_try_to_cancel(timer) < 0) |
1da177e4 | 848 | return TIMER_RETRY; |
1da177e4 LT |
849 | |
850 | timr->it_requeue_pending = (timr->it_requeue_pending + 2) & | |
851 | ~REQUEUE_PENDING; | |
852 | timr->it_overrun_last = 0; | |
1da177e4 | 853 | |
becf8b5d TG |
854 | /* switch off the timer when it_value is zero */ |
855 | if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) | |
856 | return 0; | |
1da177e4 | 857 | |
c9cb2e3d | 858 | mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; |
7978672c | 859 | hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); |
7978672c | 860 | timr->it.real.timer.function = posix_timer_fn; |
becf8b5d | 861 | |
cc584b21 | 862 | hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value)); |
becf8b5d TG |
863 | |
864 | /* Convert interval */ | |
865 | timr->it.real.interval = timespec_to_ktime(new_setting->it_interval); | |
866 | ||
867 | /* SIGEV_NONE timers are not queued ! See common_timer_get */ | |
952bbc87 TG |
868 | if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) { |
869 | /* Setup correct expiry time for relative timers */ | |
5a7780e7 | 870 | if (mode == HRTIMER_MODE_REL) { |
cc584b21 | 871 | hrtimer_add_expires(timer, timer->base->get_time()); |
5a7780e7 | 872 | } |
becf8b5d | 873 | return 0; |
952bbc87 | 874 | } |
becf8b5d | 875 | |
cc584b21 | 876 | hrtimer_start_expires(timer, mode); |
1da177e4 LT |
877 | return 0; |
878 | } | |
879 | ||
880 | /* Set a POSIX.1b interval timer */ | |
362e9c07 HC |
881 | SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, |
882 | const struct itimerspec __user *, new_setting, | |
883 | struct itimerspec __user *, old_setting) | |
1da177e4 LT |
884 | { |
885 | struct k_itimer *timr; | |
886 | struct itimerspec new_spec, old_spec; | |
887 | int error = 0; | |
5ba25331 | 888 | unsigned long flag; |
1da177e4 | 889 | struct itimerspec *rtn = old_setting ? &old_spec : NULL; |
27722df1 | 890 | struct k_clock *kc; |
1da177e4 LT |
891 | |
892 | if (!new_setting) | |
893 | return -EINVAL; | |
894 | ||
895 | if (copy_from_user(&new_spec, new_setting, sizeof (new_spec))) | |
896 | return -EFAULT; | |
897 | ||
becf8b5d TG |
898 | if (!timespec_valid(&new_spec.it_interval) || |
899 | !timespec_valid(&new_spec.it_value)) | |
1da177e4 LT |
900 | return -EINVAL; |
901 | retry: | |
902 | timr = lock_timer(timer_id, &flag); | |
903 | if (!timr) | |
904 | return -EINVAL; | |
905 | ||
27722df1 TG |
906 | kc = clockid_to_kclock(timr->it_clock); |
907 | if (WARN_ON_ONCE(!kc || !kc->timer_set)) | |
908 | error = -EINVAL; | |
909 | else | |
910 | error = kc->timer_set(timr, flags, &new_spec, rtn); | |
1da177e4 LT |
911 | |
912 | unlock_timer(timr, flag); | |
913 | if (error == TIMER_RETRY) { | |
914 | rtn = NULL; // We already got the old time... | |
915 | goto retry; | |
916 | } | |
917 | ||
becf8b5d TG |
918 | if (old_setting && !error && |
919 | copy_to_user(old_setting, &old_spec, sizeof (old_spec))) | |
1da177e4 LT |
920 | error = -EFAULT; |
921 | ||
922 | return error; | |
923 | } | |
924 | ||
6761c670 | 925 | static int common_timer_del(struct k_itimer *timer) |
1da177e4 | 926 | { |
becf8b5d | 927 | timer->it.real.interval.tv64 = 0; |
f972be33 | 928 | |
becf8b5d | 929 | if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0) |
1da177e4 | 930 | return TIMER_RETRY; |
1da177e4 LT |
931 | return 0; |
932 | } | |
933 | ||
934 | static inline int timer_delete_hook(struct k_itimer *timer) | |
935 | { | |
6761c670 TG |
936 | struct k_clock *kc = clockid_to_kclock(timer->it_clock); |
937 | ||
938 | if (WARN_ON_ONCE(!kc || !kc->timer_del)) | |
939 | return -EINVAL; | |
940 | return kc->timer_del(timer); | |
1da177e4 LT |
941 | } |
942 | ||
943 | /* Delete a POSIX.1b interval timer. */ | |
362e9c07 | 944 | SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) |
1da177e4 LT |
945 | { |
946 | struct k_itimer *timer; | |
5ba25331 | 947 | unsigned long flags; |
1da177e4 | 948 | |
1da177e4 | 949 | retry_delete: |
1da177e4 LT |
950 | timer = lock_timer(timer_id, &flags); |
951 | if (!timer) | |
952 | return -EINVAL; | |
953 | ||
becf8b5d | 954 | if (timer_delete_hook(timer) == TIMER_RETRY) { |
1da177e4 LT |
955 | unlock_timer(timer, flags); |
956 | goto retry_delete; | |
957 | } | |
becf8b5d | 958 | |
1da177e4 LT |
959 | spin_lock(¤t->sighand->siglock); |
960 | list_del(&timer->list); | |
961 | spin_unlock(¤t->sighand->siglock); | |
962 | /* | |
963 | * This keeps any tasks waiting on the spin lock from thinking | |
964 | * they got something (see the lock code above). | |
965 | */ | |
89992102 | 966 | timer->it_signal = NULL; |
4b7a1304 | 967 | |
1da177e4 LT |
968 | unlock_timer(timer, flags); |
969 | release_posix_timer(timer, IT_ID_SET); | |
970 | return 0; | |
971 | } | |
becf8b5d | 972 | |
1da177e4 LT |
973 | /* |
974 | * return timer owned by the process, used by exit_itimers | |
975 | */ | |
858119e1 | 976 | static void itimer_delete(struct k_itimer *timer) |
1da177e4 LT |
977 | { |
978 | unsigned long flags; | |
979 | ||
1da177e4 | 980 | retry_delete: |
1da177e4 LT |
981 | spin_lock_irqsave(&timer->it_lock, flags); |
982 | ||
becf8b5d | 983 | if (timer_delete_hook(timer) == TIMER_RETRY) { |
1da177e4 LT |
984 | unlock_timer(timer, flags); |
985 | goto retry_delete; | |
986 | } | |
1da177e4 LT |
987 | list_del(&timer->list); |
988 | /* | |
989 | * This keeps any tasks waiting on the spin lock from thinking | |
990 | * they got something (see the lock code above). | |
991 | */ | |
89992102 | 992 | timer->it_signal = NULL; |
4b7a1304 | 993 | |
1da177e4 LT |
994 | unlock_timer(timer, flags); |
995 | release_posix_timer(timer, IT_ID_SET); | |
996 | } | |
997 | ||
998 | /* | |
25f407f0 | 999 | * This is called by do_exit or de_thread, only when there are no more |
1da177e4 LT |
1000 | * references to the shared signal_struct. |
1001 | */ | |
1002 | void exit_itimers(struct signal_struct *sig) | |
1003 | { | |
1004 | struct k_itimer *tmr; | |
1005 | ||
1006 | while (!list_empty(&sig->posix_timers)) { | |
1007 | tmr = list_entry(sig->posix_timers.next, struct k_itimer, list); | |
1008 | itimer_delete(tmr); | |
1009 | } | |
1010 | } | |
1011 | ||
362e9c07 HC |
1012 | SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, |
1013 | const struct timespec __user *, tp) | |
1da177e4 | 1014 | { |
26f9a479 | 1015 | struct k_clock *kc = clockid_to_kclock(which_clock); |
1da177e4 LT |
1016 | struct timespec new_tp; |
1017 | ||
26f9a479 | 1018 | if (!kc || !kc->clock_set) |
1da177e4 | 1019 | return -EINVAL; |
26f9a479 | 1020 | |
1da177e4 LT |
1021 | if (copy_from_user(&new_tp, tp, sizeof (*tp))) |
1022 | return -EFAULT; | |
1023 | ||
26f9a479 | 1024 | return kc->clock_set(which_clock, &new_tp); |
1da177e4 LT |
1025 | } |
1026 | ||
362e9c07 HC |
1027 | SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, |
1028 | struct timespec __user *,tp) | |
1da177e4 | 1029 | { |
42285777 | 1030 | struct k_clock *kc = clockid_to_kclock(which_clock); |
1da177e4 LT |
1031 | struct timespec kernel_tp; |
1032 | int error; | |
1033 | ||
42285777 | 1034 | if (!kc) |
1da177e4 | 1035 | return -EINVAL; |
42285777 TG |
1036 | |
1037 | error = kc->clock_get(which_clock, &kernel_tp); | |
1038 | ||
1da177e4 LT |
1039 | if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp))) |
1040 | error = -EFAULT; | |
1041 | ||
1042 | return error; | |
1da177e4 LT |
1043 | } |
1044 | ||
f1f1d5eb RC |
1045 | SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, |
1046 | struct timex __user *, utx) | |
1047 | { | |
1048 | struct k_clock *kc = clockid_to_kclock(which_clock); | |
1049 | struct timex ktx; | |
1050 | int err; | |
1051 | ||
1052 | if (!kc) | |
1053 | return -EINVAL; | |
1054 | if (!kc->clock_adj) | |
1055 | return -EOPNOTSUPP; | |
1056 | ||
1057 | if (copy_from_user(&ktx, utx, sizeof(ktx))) | |
1058 | return -EFAULT; | |
1059 | ||
1060 | err = kc->clock_adj(which_clock, &ktx); | |
1061 | ||
f0dbe81f | 1062 | if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx))) |
f1f1d5eb RC |
1063 | return -EFAULT; |
1064 | ||
1065 | return err; | |
1066 | } | |
1067 | ||
362e9c07 HC |
1068 | SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, |
1069 | struct timespec __user *, tp) | |
1da177e4 | 1070 | { |
e5e542ee | 1071 | struct k_clock *kc = clockid_to_kclock(which_clock); |
1da177e4 LT |
1072 | struct timespec rtn_tp; |
1073 | int error; | |
1074 | ||
e5e542ee | 1075 | if (!kc) |
1da177e4 LT |
1076 | return -EINVAL; |
1077 | ||
e5e542ee | 1078 | error = kc->clock_getres(which_clock, &rtn_tp); |
1da177e4 | 1079 | |
e5e542ee | 1080 | if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) |
1da177e4 | 1081 | error = -EFAULT; |
1da177e4 LT |
1082 | |
1083 | return error; | |
1084 | } | |
1085 | ||
97735f25 TG |
1086 | /* |
1087 | * nanosleep for monotonic and realtime clocks | |
1088 | */ | |
1089 | static int common_nsleep(const clockid_t which_clock, int flags, | |
1090 | struct timespec *tsave, struct timespec __user *rmtp) | |
1091 | { | |
080344b9 ON |
1092 | return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ? |
1093 | HRTIMER_MODE_ABS : HRTIMER_MODE_REL, | |
1094 | which_clock); | |
97735f25 | 1095 | } |
1da177e4 | 1096 | |
362e9c07 HC |
1097 | SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, |
1098 | const struct timespec __user *, rqtp, | |
1099 | struct timespec __user *, rmtp) | |
1da177e4 | 1100 | { |
a5cd2880 | 1101 | struct k_clock *kc = clockid_to_kclock(which_clock); |
1da177e4 | 1102 | struct timespec t; |
1da177e4 | 1103 | |
a5cd2880 | 1104 | if (!kc) |
1da177e4 | 1105 | return -EINVAL; |
a5cd2880 TG |
1106 | if (!kc->nsleep) |
1107 | return -ENANOSLEEP_NOTSUP; | |
1da177e4 LT |
1108 | |
1109 | if (copy_from_user(&t, rqtp, sizeof (struct timespec))) | |
1110 | return -EFAULT; | |
1111 | ||
5f82b2b7 | 1112 | if (!timespec_valid(&t)) |
1da177e4 LT |
1113 | return -EINVAL; |
1114 | ||
a5cd2880 | 1115 | return kc->nsleep(which_clock, flags, &t, rmtp); |
1da177e4 | 1116 | } |
1711ef38 | 1117 | |
1711ef38 TA |
1118 | /* |
1119 | * This will restart clock_nanosleep. This is required only by | |
1120 | * compat_clock_nanosleep_restart for now. | |
1121 | */ | |
59bd5bc2 | 1122 | long clock_nanosleep_restart(struct restart_block *restart_block) |
1711ef38 | 1123 | { |
ab8177bc | 1124 | clockid_t which_clock = restart_block->nanosleep.clockid; |
59bd5bc2 TG |
1125 | struct k_clock *kc = clockid_to_kclock(which_clock); |
1126 | ||
1127 | if (WARN_ON_ONCE(!kc || !kc->nsleep_restart)) | |
1128 | return -EINVAL; | |
1711ef38 | 1129 | |
59bd5bc2 | 1130 | return kc->nsleep_restart(restart_block); |
1711ef38 | 1131 | } |