userns: Convert group_info values from gid_t to kgid_t.
[linux-2.6-block.git] / kernel / sys.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
9984de1a 7#include <linux/export.h>
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
1da177e4
LT
11#include <linux/reboot.h>
12#include <linux/prctl.h>
1da177e4
LT
13#include <linux/highuid.h>
14#include <linux/fs.h>
74da1ff7 15#include <linux/kmod.h>
cdd6c482 16#include <linux/perf_event.h>
3e88c553 17#include <linux/resource.h>
dc009d92
EB
18#include <linux/kernel.h>
19#include <linux/kexec.h>
1da177e4 20#include <linux/workqueue.h>
c59ede7b 21#include <linux/capability.h>
1da177e4
LT
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
27#include <linux/dcookies.h>
28#include <linux/suspend.h>
29#include <linux/tty.h>
7ed20e1a 30#include <linux/signal.h>
9f46080c 31#include <linux/cn_proc.h>
3cfc348b 32#include <linux/getcpu.h>
6eaeeaba 33#include <linux/task_io_accounting_ops.h>
1d9d02fe 34#include <linux/seccomp.h>
4047727e 35#include <linux/cpu.h>
e28cbf22 36#include <linux/personality.h>
e3d5a27d 37#include <linux/ptrace.h>
5ad4e53b 38#include <linux/fs_struct.h>
5a0e3ad6 39#include <linux/gfp.h>
40dc166c 40#include <linux/syscore_ops.h>
be27425d
AK
41#include <linux/version.h>
42#include <linux/ctype.h>
1da177e4
LT
43
44#include <linux/compat.h>
45#include <linux/syscalls.h>
00d7c05a 46#include <linux/kprobes.h>
acce292c 47#include <linux/user_namespace.h>
1da177e4 48
04c6862c 49#include <linux/kmsg_dump.h>
be27425d
AK
50/* Move somewhere else to avoid recompiling? */
51#include <generated/utsrelease.h>
04c6862c 52
1da177e4
LT
53#include <asm/uaccess.h>
54#include <asm/io.h>
55#include <asm/unistd.h>
56
57#ifndef SET_UNALIGN_CTL
58# define SET_UNALIGN_CTL(a,b) (-EINVAL)
59#endif
60#ifndef GET_UNALIGN_CTL
61# define GET_UNALIGN_CTL(a,b) (-EINVAL)
62#endif
63#ifndef SET_FPEMU_CTL
64# define SET_FPEMU_CTL(a,b) (-EINVAL)
65#endif
66#ifndef GET_FPEMU_CTL
67# define GET_FPEMU_CTL(a,b) (-EINVAL)
68#endif
69#ifndef SET_FPEXC_CTL
70# define SET_FPEXC_CTL(a,b) (-EINVAL)
71#endif
72#ifndef GET_FPEXC_CTL
73# define GET_FPEXC_CTL(a,b) (-EINVAL)
74#endif
651d765d
AB
75#ifndef GET_ENDIAN
76# define GET_ENDIAN(a,b) (-EINVAL)
77#endif
78#ifndef SET_ENDIAN
79# define SET_ENDIAN(a,b) (-EINVAL)
80#endif
8fb402bc
EB
81#ifndef GET_TSC_CTL
82# define GET_TSC_CTL(a) (-EINVAL)
83#endif
84#ifndef SET_TSC_CTL
85# define SET_TSC_CTL(a) (-EINVAL)
86#endif
1da177e4
LT
87
88/*
89 * this is where the system-wide overflow UID and GID are defined, for
90 * architectures that now have 32-bit UID/GID but didn't in the past
91 */
92
93int overflowuid = DEFAULT_OVERFLOWUID;
94int overflowgid = DEFAULT_OVERFLOWGID;
95
1da177e4
LT
96EXPORT_SYMBOL(overflowuid);
97EXPORT_SYMBOL(overflowgid);
1da177e4
LT
98
99/*
100 * the same as above, but for filesystems which can only store a 16-bit
101 * UID and GID. as such, this is needed on all architectures
102 */
103
104int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
105int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
106
107EXPORT_SYMBOL(fs_overflowuid);
108EXPORT_SYMBOL(fs_overflowgid);
109
110/*
111 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
112 */
113
114int C_A_D = 1;
9ec52099
CLG
115struct pid *cad_pid;
116EXPORT_SYMBOL(cad_pid);
1da177e4 117
bd804eba
RW
118/*
119 * If set, this is used for preparing the system to power off.
120 */
121
122void (*pm_power_off_prepare)(void);
bd804eba 123
fc832ad3
SH
124/*
125 * Returns true if current's euid is same as p's uid or euid,
126 * or has CAP_SYS_NICE to p's user_ns.
127 *
128 * Called with rcu_read_lock, creds are safe
129 */
130static bool set_one_prio_perm(struct task_struct *p)
131{
132 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
133
c4a4d603 134 if (pcred->user_ns == cred->user_ns &&
fc832ad3
SH
135 (pcred->uid == cred->euid ||
136 pcred->euid == cred->euid))
137 return true;
c4a4d603 138 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
fc832ad3
SH
139 return true;
140 return false;
141}
142
c69e8d9c
DH
143/*
144 * set the priority of a task
145 * - the caller must hold the RCU read lock
146 */
1da177e4
LT
147static int set_one_prio(struct task_struct *p, int niceval, int error)
148{
149 int no_nice;
150
fc832ad3 151 if (!set_one_prio_perm(p)) {
1da177e4
LT
152 error = -EPERM;
153 goto out;
154 }
e43379f1 155 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
156 error = -EACCES;
157 goto out;
158 }
159 no_nice = security_task_setnice(p, niceval);
160 if (no_nice) {
161 error = no_nice;
162 goto out;
163 }
164 if (error == -ESRCH)
165 error = 0;
166 set_user_nice(p, niceval);
167out:
168 return error;
169}
170
754fe8d2 171SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
1da177e4
LT
172{
173 struct task_struct *g, *p;
174 struct user_struct *user;
86a264ab 175 const struct cred *cred = current_cred();
1da177e4 176 int error = -EINVAL;
41487c65 177 struct pid *pgrp;
7b44ab97
EB
178 kuid_t cred_uid;
179 kuid_t uid;
1da177e4 180
3e88c553 181 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
182 goto out;
183
184 /* normalize: avoid signed division (rounding problems) */
185 error = -ESRCH;
186 if (niceval < -20)
187 niceval = -20;
188 if (niceval > 19)
189 niceval = 19;
190
d4581a23 191 rcu_read_lock();
1da177e4
LT
192 read_lock(&tasklist_lock);
193 switch (which) {
194 case PRIO_PROCESS:
41487c65 195 if (who)
228ebcbe 196 p = find_task_by_vpid(who);
41487c65
EB
197 else
198 p = current;
1da177e4
LT
199 if (p)
200 error = set_one_prio(p, niceval, error);
201 break;
202 case PRIO_PGRP:
41487c65 203 if (who)
b488893a 204 pgrp = find_vpid(who);
41487c65
EB
205 else
206 pgrp = task_pgrp(current);
2d70b68d 207 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4 208 error = set_one_prio(p, niceval, error);
2d70b68d 209 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
210 break;
211 case PRIO_USER:
7b44ab97
EB
212 cred_uid = make_kuid(cred->user_ns, cred->uid);
213 uid = make_kuid(cred->user_ns, who);
74ba508f 214 user = cred->user;
1da177e4 215 if (!who)
7b44ab97
EB
216 uid = cred_uid;
217 else if (!uid_eq(uid, cred_uid) &&
218 !(user = find_user(uid)))
86a264ab 219 goto out_unlock; /* No processes for this user */
1da177e4 220
dfc6a736 221 do_each_thread(g, p) {
7b44ab97
EB
222 const struct cred *tcred = __task_cred(p);
223 kuid_t tcred_uid = make_kuid(tcred->user_ns, tcred->uid);
224 if (uid_eq(tcred_uid, uid))
1da177e4 225 error = set_one_prio(p, niceval, error);
dfc6a736 226 } while_each_thread(g, p);
7b44ab97 227 if (!uid_eq(uid, cred_uid))
1da177e4
LT
228 free_uid(user); /* For find_user() */
229 break;
230 }
231out_unlock:
232 read_unlock(&tasklist_lock);
d4581a23 233 rcu_read_unlock();
1da177e4
LT
234out:
235 return error;
236}
237
238/*
239 * Ugh. To avoid negative return values, "getpriority()" will
240 * not return the normal nice-value, but a negated value that
241 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
242 * to stay compatible.
243 */
754fe8d2 244SYSCALL_DEFINE2(getpriority, int, which, int, who)
1da177e4
LT
245{
246 struct task_struct *g, *p;
247 struct user_struct *user;
86a264ab 248 const struct cred *cred = current_cred();
1da177e4 249 long niceval, retval = -ESRCH;
41487c65 250 struct pid *pgrp;
7b44ab97
EB
251 kuid_t cred_uid;
252 kuid_t uid;
1da177e4 253
3e88c553 254 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
255 return -EINVAL;
256
70118837 257 rcu_read_lock();
1da177e4
LT
258 read_lock(&tasklist_lock);
259 switch (which) {
260 case PRIO_PROCESS:
41487c65 261 if (who)
228ebcbe 262 p = find_task_by_vpid(who);
41487c65
EB
263 else
264 p = current;
1da177e4
LT
265 if (p) {
266 niceval = 20 - task_nice(p);
267 if (niceval > retval)
268 retval = niceval;
269 }
270 break;
271 case PRIO_PGRP:
41487c65 272 if (who)
b488893a 273 pgrp = find_vpid(who);
41487c65
EB
274 else
275 pgrp = task_pgrp(current);
2d70b68d 276 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4
LT
277 niceval = 20 - task_nice(p);
278 if (niceval > retval)
279 retval = niceval;
2d70b68d 280 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
281 break;
282 case PRIO_USER:
7b44ab97
EB
283 cred_uid = make_kuid(cred->user_ns, cred->uid);
284 uid = make_kuid(cred->user_ns, who);
74ba508f 285 user = cred->user;
1da177e4 286 if (!who)
7b44ab97
EB
287 uid = cred_uid;
288 else if (!uid_eq(uid, cred_uid) &&
289 !(user = find_user(uid)))
86a264ab 290 goto out_unlock; /* No processes for this user */
1da177e4 291
dfc6a736 292 do_each_thread(g, p) {
7b44ab97
EB
293 const struct cred *tcred = __task_cred(p);
294 kuid_t tcred_uid = make_kuid(tcred->user_ns, tcred->uid);
295 if (uid_eq(tcred_uid, uid)) {
1da177e4
LT
296 niceval = 20 - task_nice(p);
297 if (niceval > retval)
298 retval = niceval;
299 }
dfc6a736 300 } while_each_thread(g, p);
7b44ab97 301 if (!uid_eq(uid, cred_uid))
1da177e4
LT
302 free_uid(user); /* for find_user() */
303 break;
304 }
305out_unlock:
306 read_unlock(&tasklist_lock);
70118837 307 rcu_read_unlock();
1da177e4
LT
308
309 return retval;
310}
311
e4c94330
EB
312/**
313 * emergency_restart - reboot the system
314 *
315 * Without shutting down any hardware or taking any locks
316 * reboot the system. This is called when we know we are in
317 * trouble so this is our best effort to reboot. This is
318 * safe to call in interrupt context.
319 */
7c903473
EB
320void emergency_restart(void)
321{
04c6862c 322 kmsg_dump(KMSG_DUMP_EMERG);
7c903473
EB
323 machine_emergency_restart();
324}
325EXPORT_SYMBOL_GPL(emergency_restart);
326
ca195b7f 327void kernel_restart_prepare(char *cmd)
4a00ea1e 328{
e041c683 329 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
4a00ea1e 330 system_state = SYSTEM_RESTART;
b50fa7c8 331 usermodehelper_disable();
4a00ea1e 332 device_shutdown();
40dc166c 333 syscore_shutdown();
e4c94330 334}
1e5d5331 335
c5f41752
AW
336/**
337 * register_reboot_notifier - Register function to be called at reboot time
338 * @nb: Info about notifier function to be called
339 *
340 * Registers a function with the list of functions
341 * to be called at reboot time.
342 *
343 * Currently always returns zero, as blocking_notifier_chain_register()
344 * always returns zero.
345 */
346int register_reboot_notifier(struct notifier_block *nb)
347{
348 return blocking_notifier_chain_register(&reboot_notifier_list, nb);
349}
350EXPORT_SYMBOL(register_reboot_notifier);
351
352/**
353 * unregister_reboot_notifier - Unregister previously registered reboot notifier
354 * @nb: Hook to be unregistered
355 *
356 * Unregisters a previously registered reboot
357 * notifier function.
358 *
359 * Returns zero on success, or %-ENOENT on failure.
360 */
361int unregister_reboot_notifier(struct notifier_block *nb)
362{
363 return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
364}
365EXPORT_SYMBOL(unregister_reboot_notifier);
366
1e5d5331
RD
367/**
368 * kernel_restart - reboot the system
369 * @cmd: pointer to buffer containing command to execute for restart
b8887e6e 370 * or %NULL
1e5d5331
RD
371 *
372 * Shutdown everything and perform a clean reboot.
373 * This is not safe to call in interrupt context.
374 */
e4c94330
EB
375void kernel_restart(char *cmd)
376{
377 kernel_restart_prepare(cmd);
756184b7 378 if (!cmd)
4a00ea1e 379 printk(KERN_EMERG "Restarting system.\n");
756184b7 380 else
4a00ea1e 381 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
04c6862c 382 kmsg_dump(KMSG_DUMP_RESTART);
4a00ea1e
EB
383 machine_restart(cmd);
384}
385EXPORT_SYMBOL_GPL(kernel_restart);
386
4ef7229f 387static void kernel_shutdown_prepare(enum system_states state)
729b4d4c 388{
e041c683 389 blocking_notifier_call_chain(&reboot_notifier_list,
729b4d4c
AS
390 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
391 system_state = state;
b50fa7c8 392 usermodehelper_disable();
729b4d4c
AS
393 device_shutdown();
394}
e4c94330
EB
395/**
396 * kernel_halt - halt the system
397 *
398 * Shutdown everything and perform a clean system halt.
399 */
e4c94330
EB
400void kernel_halt(void)
401{
729b4d4c 402 kernel_shutdown_prepare(SYSTEM_HALT);
40dc166c 403 syscore_shutdown();
4a00ea1e 404 printk(KERN_EMERG "System halted.\n");
04c6862c 405 kmsg_dump(KMSG_DUMP_HALT);
4a00ea1e
EB
406 machine_halt();
407}
729b4d4c 408
4a00ea1e
EB
409EXPORT_SYMBOL_GPL(kernel_halt);
410
e4c94330
EB
411/**
412 * kernel_power_off - power_off the system
413 *
414 * Shutdown everything and perform a clean system power_off.
415 */
e4c94330
EB
416void kernel_power_off(void)
417{
729b4d4c 418 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
bd804eba
RW
419 if (pm_power_off_prepare)
420 pm_power_off_prepare();
4047727e 421 disable_nonboot_cpus();
40dc166c 422 syscore_shutdown();
4a00ea1e 423 printk(KERN_EMERG "Power down.\n");
04c6862c 424 kmsg_dump(KMSG_DUMP_POWEROFF);
4a00ea1e
EB
425 machine_power_off();
426}
427EXPORT_SYMBOL_GPL(kernel_power_off);
6f15fa50
TG
428
429static DEFINE_MUTEX(reboot_mutex);
430
1da177e4
LT
431/*
432 * Reboot system call: for obvious reasons only root may call it,
433 * and even root needs to set up some magic numbers in the registers
434 * so that some mistake won't make this reboot the whole machine.
435 * You can also set the meaning of the ctrl-alt-del-key here.
436 *
437 * reboot doesn't sync: do that yourself before calling this.
438 */
754fe8d2
HC
439SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
440 void __user *, arg)
1da177e4
LT
441{
442 char buffer[256];
3d26dcf7 443 int ret = 0;
1da177e4
LT
444
445 /* We only trust the superuser with rebooting the system. */
446 if (!capable(CAP_SYS_BOOT))
447 return -EPERM;
448
449 /* For safety, we require "magic" arguments. */
450 if (magic1 != LINUX_REBOOT_MAGIC1 ||
451 (magic2 != LINUX_REBOOT_MAGIC2 &&
452 magic2 != LINUX_REBOOT_MAGIC2A &&
453 magic2 != LINUX_REBOOT_MAGIC2B &&
454 magic2 != LINUX_REBOOT_MAGIC2C))
455 return -EINVAL;
456
cf3f8921
DL
457 /*
458 * If pid namespaces are enabled and the current task is in a child
459 * pid_namespace, the command is handled by reboot_pid_ns() which will
460 * call do_exit().
461 */
462 ret = reboot_pid_ns(task_active_pid_ns(current), cmd);
463 if (ret)
464 return ret;
465
5e38291d
EB
466 /* Instead of trying to make the power_off code look like
467 * halt when pm_power_off is not set do it the easy way.
468 */
469 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
470 cmd = LINUX_REBOOT_CMD_HALT;
471
6f15fa50 472 mutex_lock(&reboot_mutex);
1da177e4
LT
473 switch (cmd) {
474 case LINUX_REBOOT_CMD_RESTART:
4a00ea1e 475 kernel_restart(NULL);
1da177e4
LT
476 break;
477
478 case LINUX_REBOOT_CMD_CAD_ON:
479 C_A_D = 1;
480 break;
481
482 case LINUX_REBOOT_CMD_CAD_OFF:
483 C_A_D = 0;
484 break;
485
486 case LINUX_REBOOT_CMD_HALT:
4a00ea1e 487 kernel_halt();
1da177e4 488 do_exit(0);
3d26dcf7 489 panic("cannot halt");
1da177e4
LT
490
491 case LINUX_REBOOT_CMD_POWER_OFF:
4a00ea1e 492 kernel_power_off();
1da177e4
LT
493 do_exit(0);
494 break;
495
496 case LINUX_REBOOT_CMD_RESTART2:
497 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
6f15fa50
TG
498 ret = -EFAULT;
499 break;
1da177e4
LT
500 }
501 buffer[sizeof(buffer) - 1] = '\0';
502
4a00ea1e 503 kernel_restart(buffer);
1da177e4
LT
504 break;
505
3ab83521 506#ifdef CONFIG_KEXEC
dc009d92 507 case LINUX_REBOOT_CMD_KEXEC:
3d26dcf7
AK
508 ret = kernel_kexec();
509 break;
3ab83521 510#endif
4a00ea1e 511
b0cb1a19 512#ifdef CONFIG_HIBERNATION
1da177e4 513 case LINUX_REBOOT_CMD_SW_SUSPEND:
3d26dcf7
AK
514 ret = hibernate();
515 break;
1da177e4
LT
516#endif
517
518 default:
3d26dcf7
AK
519 ret = -EINVAL;
520 break;
1da177e4 521 }
6f15fa50 522 mutex_unlock(&reboot_mutex);
3d26dcf7 523 return ret;
1da177e4
LT
524}
525
65f27f38 526static void deferred_cad(struct work_struct *dummy)
1da177e4 527{
abcd9e51 528 kernel_restart(NULL);
1da177e4
LT
529}
530
531/*
532 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
533 * As it's called within an interrupt, it may NOT sync: the only choice
534 * is whether to reboot at once, or just ignore the ctrl-alt-del.
535 */
536void ctrl_alt_del(void)
537{
65f27f38 538 static DECLARE_WORK(cad_work, deferred_cad);
1da177e4
LT
539
540 if (C_A_D)
541 schedule_work(&cad_work);
542 else
9ec52099 543 kill_cad_pid(SIGINT, 1);
1da177e4
LT
544}
545
1da177e4
LT
546/*
547 * Unprivileged users may change the real gid to the effective gid
548 * or vice versa. (BSD-style)
549 *
550 * If you set the real gid at all, or set the effective gid to a value not
551 * equal to the real gid, then the saved gid is set to the new effective gid.
552 *
553 * This makes it possible for a setgid program to completely drop its
554 * privileges, which is often a useful assertion to make when you are doing
555 * a security audit over a program.
556 *
557 * The general idea is that a program which uses just setregid() will be
558 * 100% compatible with BSD. A program which uses just setgid() will be
559 * 100% compatible with POSIX with saved IDs.
560 *
561 * SMP: There are not races, the GIDs are checked only by filesystem
562 * operations (as far as semantic preservation is concerned).
563 */
ae1251ab 564SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
1da177e4 565{
d84f4f99
DH
566 const struct cred *old;
567 struct cred *new;
1da177e4
LT
568 int retval;
569
d84f4f99
DH
570 new = prepare_creds();
571 if (!new)
572 return -ENOMEM;
573 old = current_cred();
574
d84f4f99 575 retval = -EPERM;
1da177e4 576 if (rgid != (gid_t) -1) {
d84f4f99
DH
577 if (old->gid == rgid ||
578 old->egid == rgid ||
fc832ad3 579 nsown_capable(CAP_SETGID))
d84f4f99 580 new->gid = rgid;
1da177e4 581 else
d84f4f99 582 goto error;
1da177e4
LT
583 }
584 if (egid != (gid_t) -1) {
d84f4f99
DH
585 if (old->gid == egid ||
586 old->egid == egid ||
587 old->sgid == egid ||
fc832ad3 588 nsown_capable(CAP_SETGID))
d84f4f99 589 new->egid = egid;
756184b7 590 else
d84f4f99 591 goto error;
1da177e4 592 }
d84f4f99 593
1da177e4 594 if (rgid != (gid_t) -1 ||
d84f4f99
DH
595 (egid != (gid_t) -1 && egid != old->gid))
596 new->sgid = new->egid;
597 new->fsgid = new->egid;
598
599 return commit_creds(new);
600
601error:
602 abort_creds(new);
603 return retval;
1da177e4
LT
604}
605
606/*
607 * setgid() is implemented like SysV w/ SAVED_IDS
608 *
609 * SMP: Same implicit races as above.
610 */
ae1251ab 611SYSCALL_DEFINE1(setgid, gid_t, gid)
1da177e4 612{
d84f4f99
DH
613 const struct cred *old;
614 struct cred *new;
1da177e4
LT
615 int retval;
616
d84f4f99
DH
617 new = prepare_creds();
618 if (!new)
619 return -ENOMEM;
620 old = current_cred();
621
d84f4f99 622 retval = -EPERM;
fc832ad3 623 if (nsown_capable(CAP_SETGID))
d84f4f99
DH
624 new->gid = new->egid = new->sgid = new->fsgid = gid;
625 else if (gid == old->gid || gid == old->sgid)
626 new->egid = new->fsgid = gid;
1da177e4 627 else
d84f4f99 628 goto error;
1da177e4 629
d84f4f99
DH
630 return commit_creds(new);
631
632error:
633 abort_creds(new);
634 return retval;
1da177e4 635}
54e99124 636
d84f4f99
DH
637/*
638 * change the user struct in a credentials set to match the new UID
639 */
640static int set_user(struct cred *new)
1da177e4
LT
641{
642 struct user_struct *new_user;
643
7b44ab97 644 new_user = alloc_uid(make_kuid(new->user_ns, new->uid));
1da177e4
LT
645 if (!new_user)
646 return -EAGAIN;
647
72fa5997
VK
648 /*
649 * We don't fail in case of NPROC limit excess here because too many
650 * poorly written programs don't check set*uid() return code, assuming
651 * it never fails if called by root. We may still enforce NPROC limit
652 * for programs doing set*uid()+execve() by harmlessly deferring the
653 * failure to the execve() stage.
654 */
78d7d407 655 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
72fa5997
VK
656 new_user != INIT_USER)
657 current->flags |= PF_NPROC_EXCEEDED;
658 else
659 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 660
d84f4f99
DH
661 free_uid(new->user);
662 new->user = new_user;
1da177e4
LT
663 return 0;
664}
665
666/*
667 * Unprivileged users may change the real uid to the effective uid
668 * or vice versa. (BSD-style)
669 *
670 * If you set the real uid at all, or set the effective uid to a value not
671 * equal to the real uid, then the saved uid is set to the new effective uid.
672 *
673 * This makes it possible for a setuid program to completely drop its
674 * privileges, which is often a useful assertion to make when you are doing
675 * a security audit over a program.
676 *
677 * The general idea is that a program which uses just setreuid() will be
678 * 100% compatible with BSD. A program which uses just setuid() will be
679 * 100% compatible with POSIX with saved IDs.
680 */
ae1251ab 681SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
1da177e4 682{
d84f4f99
DH
683 const struct cred *old;
684 struct cred *new;
1da177e4
LT
685 int retval;
686
d84f4f99
DH
687 new = prepare_creds();
688 if (!new)
689 return -ENOMEM;
690 old = current_cred();
691
d84f4f99 692 retval = -EPERM;
1da177e4 693 if (ruid != (uid_t) -1) {
d84f4f99
DH
694 new->uid = ruid;
695 if (old->uid != ruid &&
696 old->euid != ruid &&
fc832ad3 697 !nsown_capable(CAP_SETUID))
d84f4f99 698 goto error;
1da177e4
LT
699 }
700
701 if (euid != (uid_t) -1) {
d84f4f99
DH
702 new->euid = euid;
703 if (old->uid != euid &&
704 old->euid != euid &&
705 old->suid != euid &&
fc832ad3 706 !nsown_capable(CAP_SETUID))
d84f4f99 707 goto error;
1da177e4
LT
708 }
709
54e99124
DG
710 if (new->uid != old->uid) {
711 retval = set_user(new);
712 if (retval < 0)
713 goto error;
714 }
1da177e4 715 if (ruid != (uid_t) -1 ||
d84f4f99
DH
716 (euid != (uid_t) -1 && euid != old->uid))
717 new->suid = new->euid;
718 new->fsuid = new->euid;
1da177e4 719
d84f4f99
DH
720 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
721 if (retval < 0)
722 goto error;
1da177e4 723
d84f4f99 724 return commit_creds(new);
1da177e4 725
d84f4f99
DH
726error:
727 abort_creds(new);
728 return retval;
729}
1da177e4
LT
730
731/*
732 * setuid() is implemented like SysV with SAVED_IDS
733 *
734 * Note that SAVED_ID's is deficient in that a setuid root program
735 * like sendmail, for example, cannot set its uid to be a normal
736 * user and then switch back, because if you're root, setuid() sets
737 * the saved uid too. If you don't like this, blame the bright people
738 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
739 * will allow a root program to temporarily drop privileges and be able to
740 * regain them by swapping the real and effective uid.
741 */
ae1251ab 742SYSCALL_DEFINE1(setuid, uid_t, uid)
1da177e4 743{
d84f4f99
DH
744 const struct cred *old;
745 struct cred *new;
1da177e4
LT
746 int retval;
747
d84f4f99
DH
748 new = prepare_creds();
749 if (!new)
750 return -ENOMEM;
751 old = current_cred();
752
d84f4f99 753 retval = -EPERM;
fc832ad3 754 if (nsown_capable(CAP_SETUID)) {
d84f4f99 755 new->suid = new->uid = uid;
54e99124
DG
756 if (uid != old->uid) {
757 retval = set_user(new);
758 if (retval < 0)
759 goto error;
d84f4f99
DH
760 }
761 } else if (uid != old->uid && uid != new->suid) {
762 goto error;
1da177e4 763 }
1da177e4 764
d84f4f99
DH
765 new->fsuid = new->euid = uid;
766
767 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
768 if (retval < 0)
769 goto error;
1da177e4 770
d84f4f99 771 return commit_creds(new);
1da177e4 772
d84f4f99
DH
773error:
774 abort_creds(new);
775 return retval;
1da177e4
LT
776}
777
778
779/*
780 * This function implements a generic ability to update ruid, euid,
781 * and suid. This allows you to implement the 4.4 compatible seteuid().
782 */
ae1251ab 783SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
1da177e4 784{
d84f4f99
DH
785 const struct cred *old;
786 struct cred *new;
1da177e4
LT
787 int retval;
788
d84f4f99
DH
789 new = prepare_creds();
790 if (!new)
791 return -ENOMEM;
792
d84f4f99 793 old = current_cred();
1da177e4 794
d84f4f99 795 retval = -EPERM;
fc832ad3 796 if (!nsown_capable(CAP_SETUID)) {
d84f4f99
DH
797 if (ruid != (uid_t) -1 && ruid != old->uid &&
798 ruid != old->euid && ruid != old->suid)
799 goto error;
800 if (euid != (uid_t) -1 && euid != old->uid &&
801 euid != old->euid && euid != old->suid)
802 goto error;
803 if (suid != (uid_t) -1 && suid != old->uid &&
804 suid != old->euid && suid != old->suid)
805 goto error;
1da177e4 806 }
d84f4f99 807
1da177e4 808 if (ruid != (uid_t) -1) {
d84f4f99 809 new->uid = ruid;
54e99124
DG
810 if (ruid != old->uid) {
811 retval = set_user(new);
812 if (retval < 0)
813 goto error;
814 }
1da177e4 815 }
d84f4f99
DH
816 if (euid != (uid_t) -1)
817 new->euid = euid;
1da177e4 818 if (suid != (uid_t) -1)
d84f4f99
DH
819 new->suid = suid;
820 new->fsuid = new->euid;
1da177e4 821
d84f4f99
DH
822 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
823 if (retval < 0)
824 goto error;
1da177e4 825
d84f4f99 826 return commit_creds(new);
1da177e4 827
d84f4f99
DH
828error:
829 abort_creds(new);
830 return retval;
1da177e4
LT
831}
832
dbf040d9 833SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
1da177e4 834{
86a264ab 835 const struct cred *cred = current_cred();
1da177e4
LT
836 int retval;
837
86a264ab
DH
838 if (!(retval = put_user(cred->uid, ruid)) &&
839 !(retval = put_user(cred->euid, euid)))
b6dff3ec 840 retval = put_user(cred->suid, suid);
1da177e4
LT
841
842 return retval;
843}
844
845/*
846 * Same as above, but for rgid, egid, sgid.
847 */
ae1251ab 848SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
1da177e4 849{
d84f4f99
DH
850 const struct cred *old;
851 struct cred *new;
1da177e4
LT
852 int retval;
853
d84f4f99
DH
854 new = prepare_creds();
855 if (!new)
856 return -ENOMEM;
857 old = current_cred();
858
d84f4f99 859 retval = -EPERM;
fc832ad3 860 if (!nsown_capable(CAP_SETGID)) {
d84f4f99
DH
861 if (rgid != (gid_t) -1 && rgid != old->gid &&
862 rgid != old->egid && rgid != old->sgid)
863 goto error;
864 if (egid != (gid_t) -1 && egid != old->gid &&
865 egid != old->egid && egid != old->sgid)
866 goto error;
867 if (sgid != (gid_t) -1 && sgid != old->gid &&
868 sgid != old->egid && sgid != old->sgid)
869 goto error;
1da177e4 870 }
d84f4f99 871
1da177e4 872 if (rgid != (gid_t) -1)
d84f4f99
DH
873 new->gid = rgid;
874 if (egid != (gid_t) -1)
875 new->egid = egid;
1da177e4 876 if (sgid != (gid_t) -1)
d84f4f99
DH
877 new->sgid = sgid;
878 new->fsgid = new->egid;
1da177e4 879
d84f4f99
DH
880 return commit_creds(new);
881
882error:
883 abort_creds(new);
884 return retval;
1da177e4
LT
885}
886
dbf040d9 887SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
1da177e4 888{
86a264ab 889 const struct cred *cred = current_cred();
1da177e4
LT
890 int retval;
891
86a264ab
DH
892 if (!(retval = put_user(cred->gid, rgid)) &&
893 !(retval = put_user(cred->egid, egid)))
b6dff3ec 894 retval = put_user(cred->sgid, sgid);
1da177e4
LT
895
896 return retval;
897}
898
899
900/*
901 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
902 * is used for "access()" and for the NFS daemon (letting nfsd stay at
903 * whatever uid it wants to). It normally shadows "euid", except when
904 * explicitly set by setfsuid() or for access..
905 */
ae1251ab 906SYSCALL_DEFINE1(setfsuid, uid_t, uid)
1da177e4 907{
d84f4f99
DH
908 const struct cred *old;
909 struct cred *new;
910 uid_t old_fsuid;
1da177e4 911
d84f4f99
DH
912 new = prepare_creds();
913 if (!new)
914 return current_fsuid();
915 old = current_cred();
916 old_fsuid = old->fsuid;
1da177e4 917
d84f4f99
DH
918 if (uid == old->uid || uid == old->euid ||
919 uid == old->suid || uid == old->fsuid ||
fc832ad3 920 nsown_capable(CAP_SETUID)) {
756184b7 921 if (uid != old_fsuid) {
d84f4f99
DH
922 new->fsuid = uid;
923 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
924 goto change_okay;
1da177e4 925 }
1da177e4
LT
926 }
927
d84f4f99
DH
928 abort_creds(new);
929 return old_fsuid;
1da177e4 930
d84f4f99
DH
931change_okay:
932 commit_creds(new);
1da177e4
LT
933 return old_fsuid;
934}
935
936/*
f42df9e6 937 * Samma på svenska..
1da177e4 938 */
ae1251ab 939SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1da177e4 940{
d84f4f99
DH
941 const struct cred *old;
942 struct cred *new;
943 gid_t old_fsgid;
944
945 new = prepare_creds();
946 if (!new)
947 return current_fsgid();
948 old = current_cred();
949 old_fsgid = old->fsgid;
1da177e4 950
d84f4f99
DH
951 if (gid == old->gid || gid == old->egid ||
952 gid == old->sgid || gid == old->fsgid ||
fc832ad3 953 nsown_capable(CAP_SETGID)) {
756184b7 954 if (gid != old_fsgid) {
d84f4f99
DH
955 new->fsgid = gid;
956 goto change_okay;
1da177e4 957 }
1da177e4 958 }
d84f4f99 959
d84f4f99
DH
960 abort_creds(new);
961 return old_fsgid;
962
963change_okay:
964 commit_creds(new);
1da177e4
LT
965 return old_fsgid;
966}
967
f06febc9
FM
968void do_sys_times(struct tms *tms)
969{
0cf55e1e 970 cputime_t tgutime, tgstime, cutime, cstime;
f06febc9 971
2b5fe6de 972 spin_lock_irq(&current->sighand->siglock);
0cf55e1e 973 thread_group_times(current, &tgutime, &tgstime);
f06febc9
FM
974 cutime = current->signal->cutime;
975 cstime = current->signal->cstime;
976 spin_unlock_irq(&current->sighand->siglock);
0cf55e1e
HS
977 tms->tms_utime = cputime_to_clock_t(tgutime);
978 tms->tms_stime = cputime_to_clock_t(tgstime);
f06febc9
FM
979 tms->tms_cutime = cputime_to_clock_t(cutime);
980 tms->tms_cstime = cputime_to_clock_t(cstime);
981}
982
58fd3aa2 983SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1da177e4 984{
1da177e4
LT
985 if (tbuf) {
986 struct tms tmp;
f06febc9
FM
987
988 do_sys_times(&tmp);
1da177e4
LT
989 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
990 return -EFAULT;
991 }
e3d5a27d 992 force_successful_syscall_return();
1da177e4
LT
993 return (long) jiffies_64_to_clock_t(get_jiffies_64());
994}
995
996/*
997 * This needs some heavy checking ...
998 * I just haven't the stomach for it. I also don't fully
999 * understand sessions/pgrp etc. Let somebody who does explain it.
1000 *
1001 * OK, I think I have the protection semantics right.... this is really
1002 * only important on a multi-user system anyway, to make sure one user
1003 * can't send a signal to a process owned by another. -TYT, 12/12/91
1004 *
1005 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1006 * LBT 04.03.94
1007 */
b290ebe2 1008SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1da177e4
LT
1009{
1010 struct task_struct *p;
ee0acf90 1011 struct task_struct *group_leader = current->group_leader;
4e021306
ON
1012 struct pid *pgrp;
1013 int err;
1da177e4
LT
1014
1015 if (!pid)
b488893a 1016 pid = task_pid_vnr(group_leader);
1da177e4
LT
1017 if (!pgid)
1018 pgid = pid;
1019 if (pgid < 0)
1020 return -EINVAL;
950eaaca 1021 rcu_read_lock();
1da177e4
LT
1022
1023 /* From this point forward we keep holding onto the tasklist lock
1024 * so that our parent does not change from under us. -DaveM
1025 */
1026 write_lock_irq(&tasklist_lock);
1027
1028 err = -ESRCH;
4e021306 1029 p = find_task_by_vpid(pid);
1da177e4
LT
1030 if (!p)
1031 goto out;
1032
1033 err = -EINVAL;
1034 if (!thread_group_leader(p))
1035 goto out;
1036
4e021306 1037 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 1038 err = -EPERM;
41487c65 1039 if (task_session(p) != task_session(group_leader))
1da177e4
LT
1040 goto out;
1041 err = -EACCES;
1042 if (p->did_exec)
1043 goto out;
1044 } else {
1045 err = -ESRCH;
ee0acf90 1046 if (p != group_leader)
1da177e4
LT
1047 goto out;
1048 }
1049
1050 err = -EPERM;
1051 if (p->signal->leader)
1052 goto out;
1053
4e021306 1054 pgrp = task_pid(p);
1da177e4 1055 if (pgid != pid) {
b488893a 1056 struct task_struct *g;
1da177e4 1057
4e021306
ON
1058 pgrp = find_vpid(pgid);
1059 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 1060 if (!g || task_session(g) != task_session(group_leader))
f020bc46 1061 goto out;
1da177e4
LT
1062 }
1063
1da177e4
LT
1064 err = security_task_setpgid(p, pgid);
1065 if (err)
1066 goto out;
1067
1b0f7ffd 1068 if (task_pgrp(p) != pgrp)
83beaf3c 1069 change_pid(p, PIDTYPE_PGID, pgrp);
1da177e4
LT
1070
1071 err = 0;
1072out:
1073 /* All paths lead to here, thus we are safe. -DaveM */
1074 write_unlock_irq(&tasklist_lock);
950eaaca 1075 rcu_read_unlock();
1da177e4
LT
1076 return err;
1077}
1078
dbf040d9 1079SYSCALL_DEFINE1(getpgid, pid_t, pid)
1da177e4 1080{
12a3de0a
ON
1081 struct task_struct *p;
1082 struct pid *grp;
1083 int retval;
1084
1085 rcu_read_lock();
756184b7 1086 if (!pid)
12a3de0a 1087 grp = task_pgrp(current);
756184b7 1088 else {
1da177e4 1089 retval = -ESRCH;
12a3de0a
ON
1090 p = find_task_by_vpid(pid);
1091 if (!p)
1092 goto out;
1093 grp = task_pgrp(p);
1094 if (!grp)
1095 goto out;
1096
1097 retval = security_task_getpgid(p);
1098 if (retval)
1099 goto out;
1da177e4 1100 }
12a3de0a
ON
1101 retval = pid_vnr(grp);
1102out:
1103 rcu_read_unlock();
1104 return retval;
1da177e4
LT
1105}
1106
1107#ifdef __ARCH_WANT_SYS_GETPGRP
1108
dbf040d9 1109SYSCALL_DEFINE0(getpgrp)
1da177e4 1110{
12a3de0a 1111 return sys_getpgid(0);
1da177e4
LT
1112}
1113
1114#endif
1115
dbf040d9 1116SYSCALL_DEFINE1(getsid, pid_t, pid)
1da177e4 1117{
1dd768c0
ON
1118 struct task_struct *p;
1119 struct pid *sid;
1120 int retval;
1121
1122 rcu_read_lock();
756184b7 1123 if (!pid)
1dd768c0 1124 sid = task_session(current);
756184b7 1125 else {
1da177e4 1126 retval = -ESRCH;
1dd768c0
ON
1127 p = find_task_by_vpid(pid);
1128 if (!p)
1129 goto out;
1130 sid = task_session(p);
1131 if (!sid)
1132 goto out;
1133
1134 retval = security_task_getsid(p);
1135 if (retval)
1136 goto out;
1da177e4 1137 }
1dd768c0
ON
1138 retval = pid_vnr(sid);
1139out:
1140 rcu_read_unlock();
1141 return retval;
1da177e4
LT
1142}
1143
b290ebe2 1144SYSCALL_DEFINE0(setsid)
1da177e4 1145{
e19f247a 1146 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1147 struct pid *sid = task_pid(group_leader);
1148 pid_t session = pid_vnr(sid);
1da177e4
LT
1149 int err = -EPERM;
1150
1da177e4 1151 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1152 /* Fail if I am already a session leader */
1153 if (group_leader->signal->leader)
1154 goto out;
1155
430c6231
ON
1156 /* Fail if a process group id already exists that equals the
1157 * proposed session id.
390e2ff0 1158 */
6806aac6 1159 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1160 goto out;
1161
e19f247a 1162 group_leader->signal->leader = 1;
8520d7c7 1163 __set_special_pids(sid);
24ec839c 1164
9c9f4ded 1165 proc_clear_tty(group_leader);
24ec839c 1166
e4cc0a9c 1167 err = session;
1da177e4
LT
1168out:
1169 write_unlock_irq(&tasklist_lock);
5091faa4 1170 if (err > 0) {
0d0df599 1171 proc_sid_connector(group_leader);
5091faa4
MG
1172 sched_autogroup_create_attach(group_leader);
1173 }
1da177e4
LT
1174 return err;
1175}
1176
1da177e4
LT
1177DECLARE_RWSEM(uts_sem);
1178
e28cbf22
CH
1179#ifdef COMPAT_UTS_MACHINE
1180#define override_architecture(name) \
46da2766 1181 (personality(current->personality) == PER_LINUX32 && \
e28cbf22
CH
1182 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1183 sizeof(COMPAT_UTS_MACHINE)))
1184#else
1185#define override_architecture(name) 0
1186#endif
1187
be27425d
AK
1188/*
1189 * Work around broken programs that cannot handle "Linux 3.0".
1190 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1191 */
1192static int override_release(char __user *release, int len)
1193{
1194 int ret = 0;
a84a79e4 1195 char buf[65];
be27425d
AK
1196
1197 if (current->personality & UNAME26) {
1198 char *rest = UTS_RELEASE;
1199 int ndots = 0;
1200 unsigned v;
1201
1202 while (*rest) {
1203 if (*rest == '.' && ++ndots >= 3)
1204 break;
1205 if (!isdigit(*rest) && *rest != '.')
1206 break;
1207 rest++;
1208 }
1209 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1210 snprintf(buf, len, "2.6.%u%s", v, rest);
1211 ret = copy_to_user(release, buf, len);
1212 }
1213 return ret;
1214}
1215
e48fbb69 1216SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1da177e4
LT
1217{
1218 int errno = 0;
1219
1220 down_read(&uts_sem);
e9ff3990 1221 if (copy_to_user(name, utsname(), sizeof *name))
1da177e4
LT
1222 errno = -EFAULT;
1223 up_read(&uts_sem);
e28cbf22 1224
be27425d
AK
1225 if (!errno && override_release(name->release, sizeof(name->release)))
1226 errno = -EFAULT;
e28cbf22
CH
1227 if (!errno && override_architecture(name))
1228 errno = -EFAULT;
1da177e4
LT
1229 return errno;
1230}
1231
5cacdb4a
CH
1232#ifdef __ARCH_WANT_SYS_OLD_UNAME
1233/*
1234 * Old cruft
1235 */
1236SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1237{
1238 int error = 0;
1239
1240 if (!name)
1241 return -EFAULT;
1242
1243 down_read(&uts_sem);
1244 if (copy_to_user(name, utsname(), sizeof(*name)))
1245 error = -EFAULT;
1246 up_read(&uts_sem);
1247
be27425d
AK
1248 if (!error && override_release(name->release, sizeof(name->release)))
1249 error = -EFAULT;
5cacdb4a
CH
1250 if (!error && override_architecture(name))
1251 error = -EFAULT;
1252 return error;
1253}
1254
1255SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1256{
1257 int error;
1258
1259 if (!name)
1260 return -EFAULT;
1261 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1262 return -EFAULT;
1263
1264 down_read(&uts_sem);
1265 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1266 __OLD_UTS_LEN);
1267 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1268 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1269 __OLD_UTS_LEN);
1270 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1271 error |= __copy_to_user(&name->release, &utsname()->release,
1272 __OLD_UTS_LEN);
1273 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1274 error |= __copy_to_user(&name->version, &utsname()->version,
1275 __OLD_UTS_LEN);
1276 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1277 error |= __copy_to_user(&name->machine, &utsname()->machine,
1278 __OLD_UTS_LEN);
1279 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1280 up_read(&uts_sem);
1281
1282 if (!error && override_architecture(name))
1283 error = -EFAULT;
be27425d
AK
1284 if (!error && override_release(name->release, sizeof(name->release)))
1285 error = -EFAULT;
5cacdb4a
CH
1286 return error ? -EFAULT : 0;
1287}
1288#endif
1289
5a8a82b1 1290SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1da177e4
LT
1291{
1292 int errno;
1293 char tmp[__NEW_UTS_LEN];
1294
bb96a6f5 1295 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4 1296 return -EPERM;
fc832ad3 1297
1da177e4
LT
1298 if (len < 0 || len > __NEW_UTS_LEN)
1299 return -EINVAL;
1300 down_write(&uts_sem);
1301 errno = -EFAULT;
1302 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1303 struct new_utsname *u = utsname();
1304
1305 memcpy(u->nodename, tmp, len);
1306 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4
LT
1307 errno = 0;
1308 }
f1ecf068 1309 uts_proc_notify(UTS_PROC_HOSTNAME);
1da177e4
LT
1310 up_write(&uts_sem);
1311 return errno;
1312}
1313
1314#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1315
5a8a82b1 1316SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1da177e4
LT
1317{
1318 int i, errno;
9679e4dd 1319 struct new_utsname *u;
1da177e4
LT
1320
1321 if (len < 0)
1322 return -EINVAL;
1323 down_read(&uts_sem);
9679e4dd
AM
1324 u = utsname();
1325 i = 1 + strlen(u->nodename);
1da177e4
LT
1326 if (i > len)
1327 i = len;
1328 errno = 0;
9679e4dd 1329 if (copy_to_user(name, u->nodename, i))
1da177e4
LT
1330 errno = -EFAULT;
1331 up_read(&uts_sem);
1332 return errno;
1333}
1334
1335#endif
1336
1337/*
1338 * Only setdomainname; getdomainname can be implemented by calling
1339 * uname()
1340 */
5a8a82b1 1341SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1da177e4
LT
1342{
1343 int errno;
1344 char tmp[__NEW_UTS_LEN];
1345
fc832ad3 1346 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4
LT
1347 return -EPERM;
1348 if (len < 0 || len > __NEW_UTS_LEN)
1349 return -EINVAL;
1350
1351 down_write(&uts_sem);
1352 errno = -EFAULT;
1353 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1354 struct new_utsname *u = utsname();
1355
1356 memcpy(u->domainname, tmp, len);
1357 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4
LT
1358 errno = 0;
1359 }
f1ecf068 1360 uts_proc_notify(UTS_PROC_DOMAINNAME);
1da177e4
LT
1361 up_write(&uts_sem);
1362 return errno;
1363}
1364
e48fbb69 1365SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4 1366{
b9518345
JS
1367 struct rlimit value;
1368 int ret;
1369
1370 ret = do_prlimit(current, resource, NULL, &value);
1371 if (!ret)
1372 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1373
1374 return ret;
1da177e4
LT
1375}
1376
1377#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1378
1379/*
1380 * Back compatibility for getrlimit. Needed for some apps.
1381 */
1382
e48fbb69
HC
1383SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1384 struct rlimit __user *, rlim)
1da177e4
LT
1385{
1386 struct rlimit x;
1387 if (resource >= RLIM_NLIMITS)
1388 return -EINVAL;
1389
1390 task_lock(current->group_leader);
1391 x = current->signal->rlim[resource];
1392 task_unlock(current->group_leader);
756184b7 1393 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1394 x.rlim_cur = 0x7FFFFFFF;
756184b7 1395 if (x.rlim_max > 0x7FFFFFFF)
1da177e4
LT
1396 x.rlim_max = 0x7FFFFFFF;
1397 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1398}
1399
1400#endif
1401
c022a0ac
JS
1402static inline bool rlim64_is_infinity(__u64 rlim64)
1403{
1404#if BITS_PER_LONG < 64
1405 return rlim64 >= ULONG_MAX;
1406#else
1407 return rlim64 == RLIM64_INFINITY;
1408#endif
1409}
1410
1411static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1412{
1413 if (rlim->rlim_cur == RLIM_INFINITY)
1414 rlim64->rlim_cur = RLIM64_INFINITY;
1415 else
1416 rlim64->rlim_cur = rlim->rlim_cur;
1417 if (rlim->rlim_max == RLIM_INFINITY)
1418 rlim64->rlim_max = RLIM64_INFINITY;
1419 else
1420 rlim64->rlim_max = rlim->rlim_max;
1421}
1422
1423static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1424{
1425 if (rlim64_is_infinity(rlim64->rlim_cur))
1426 rlim->rlim_cur = RLIM_INFINITY;
1427 else
1428 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1429 if (rlim64_is_infinity(rlim64->rlim_max))
1430 rlim->rlim_max = RLIM_INFINITY;
1431 else
1432 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1433}
1434
1c1e618d 1435/* make sure you are allowed to change @tsk limits before calling this */
5b41535a
JS
1436int do_prlimit(struct task_struct *tsk, unsigned int resource,
1437 struct rlimit *new_rlim, struct rlimit *old_rlim)
1da177e4 1438{
5b41535a 1439 struct rlimit *rlim;
86f162f4 1440 int retval = 0;
1da177e4
LT
1441
1442 if (resource >= RLIM_NLIMITS)
1443 return -EINVAL;
5b41535a
JS
1444 if (new_rlim) {
1445 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1446 return -EINVAL;
1447 if (resource == RLIMIT_NOFILE &&
1448 new_rlim->rlim_max > sysctl_nr_open)
1449 return -EPERM;
1450 }
1da177e4 1451
1c1e618d
JS
1452 /* protect tsk->signal and tsk->sighand from disappearing */
1453 read_lock(&tasklist_lock);
1454 if (!tsk->sighand) {
1455 retval = -ESRCH;
1456 goto out;
1457 }
1458
5b41535a 1459 rlim = tsk->signal->rlim + resource;
86f162f4 1460 task_lock(tsk->group_leader);
5b41535a 1461 if (new_rlim) {
fc832ad3
SH
1462 /* Keep the capable check against init_user_ns until
1463 cgroups can contain all limits */
5b41535a
JS
1464 if (new_rlim->rlim_max > rlim->rlim_max &&
1465 !capable(CAP_SYS_RESOURCE))
1466 retval = -EPERM;
1467 if (!retval)
1468 retval = security_task_setrlimit(tsk->group_leader,
1469 resource, new_rlim);
1470 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1471 /*
1472 * The caller is asking for an immediate RLIMIT_CPU
1473 * expiry. But we use the zero value to mean "it was
1474 * never set". So let's cheat and make it one second
1475 * instead
1476 */
1477 new_rlim->rlim_cur = 1;
1478 }
1479 }
1480 if (!retval) {
1481 if (old_rlim)
1482 *old_rlim = *rlim;
1483 if (new_rlim)
1484 *rlim = *new_rlim;
9926e4c7 1485 }
7855c35d 1486 task_unlock(tsk->group_leader);
1da177e4 1487
d3561f78
AM
1488 /*
1489 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1490 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1491 * very long-standing error, and fixing it now risks breakage of
1492 * applications, so we live with it
1493 */
5b41535a
JS
1494 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1495 new_rlim->rlim_cur != RLIM_INFINITY)
1496 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
ec9e16ba 1497out:
1c1e618d 1498 read_unlock(&tasklist_lock);
2fb9d268 1499 return retval;
1da177e4
LT
1500}
1501
c022a0ac
JS
1502/* rcu lock must be held */
1503static int check_prlimit_permission(struct task_struct *task)
1504{
1505 const struct cred *cred = current_cred(), *tcred;
1506
fc832ad3
SH
1507 if (current == task)
1508 return 0;
c022a0ac 1509
fc832ad3 1510 tcred = __task_cred(task);
c4a4d603 1511 if (cred->user_ns == tcred->user_ns &&
fc832ad3
SH
1512 (cred->uid == tcred->euid &&
1513 cred->uid == tcred->suid &&
1514 cred->uid == tcred->uid &&
1515 cred->gid == tcred->egid &&
1516 cred->gid == tcred->sgid &&
1517 cred->gid == tcred->gid))
1518 return 0;
c4a4d603 1519 if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
fc832ad3
SH
1520 return 0;
1521
1522 return -EPERM;
c022a0ac
JS
1523}
1524
1525SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1526 const struct rlimit64 __user *, new_rlim,
1527 struct rlimit64 __user *, old_rlim)
1528{
1529 struct rlimit64 old64, new64;
1530 struct rlimit old, new;
1531 struct task_struct *tsk;
1532 int ret;
1533
1534 if (new_rlim) {
1535 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1536 return -EFAULT;
1537 rlim64_to_rlim(&new64, &new);
1538 }
1539
1540 rcu_read_lock();
1541 tsk = pid ? find_task_by_vpid(pid) : current;
1542 if (!tsk) {
1543 rcu_read_unlock();
1544 return -ESRCH;
1545 }
1546 ret = check_prlimit_permission(tsk);
1547 if (ret) {
1548 rcu_read_unlock();
1549 return ret;
1550 }
1551 get_task_struct(tsk);
1552 rcu_read_unlock();
1553
1554 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1555 old_rlim ? &old : NULL);
1556
1557 if (!ret && old_rlim) {
1558 rlim_to_rlim64(&old, &old64);
1559 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1560 ret = -EFAULT;
1561 }
1562
1563 put_task_struct(tsk);
1564 return ret;
1565}
1566
7855c35d
JS
1567SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1568{
1569 struct rlimit new_rlim;
1570
1571 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1572 return -EFAULT;
5b41535a 1573 return do_prlimit(current, resource, &new_rlim, NULL);
7855c35d
JS
1574}
1575
1da177e4
LT
1576/*
1577 * It would make sense to put struct rusage in the task_struct,
1578 * except that would make the task_struct be *really big*. After
1579 * task_struct gets moved into malloc'ed memory, it would
1580 * make sense to do this. It will make moving the rest of the information
1581 * a lot simpler! (Which we're not doing right now because we're not
1582 * measuring them yet).
1583 *
1da177e4
LT
1584 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1585 * races with threads incrementing their own counters. But since word
1586 * reads are atomic, we either get new values or old values and we don't
1587 * care which for the sums. We always take the siglock to protect reading
1588 * the c* fields from p->signal from races with exit.c updating those
1589 * fields when reaping, so a sample either gets all the additions of a
1590 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1591 *
de047c1b
RT
1592 * Locking:
1593 * We need to take the siglock for CHILDEREN, SELF and BOTH
1594 * for the cases current multithreaded, non-current single threaded
1595 * non-current multithreaded. Thread traversal is now safe with
1596 * the siglock held.
1597 * Strictly speaking, we donot need to take the siglock if we are current and
1598 * single threaded, as no one else can take our signal_struct away, no one
1599 * else can reap the children to update signal->c* counters, and no one else
1600 * can race with the signal-> fields. If we do not take any lock, the
1601 * signal-> fields could be read out of order while another thread was just
1602 * exiting. So we should place a read memory barrier when we avoid the lock.
1603 * On the writer side, write memory barrier is implied in __exit_signal
1604 * as __exit_signal releases the siglock spinlock after updating the signal->
1605 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1606 *
1da177e4
LT
1607 */
1608
f06febc9 1609static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1610{
679c9cd4
SK
1611 r->ru_nvcsw += t->nvcsw;
1612 r->ru_nivcsw += t->nivcsw;
1613 r->ru_minflt += t->min_flt;
1614 r->ru_majflt += t->maj_flt;
1615 r->ru_inblock += task_io_get_inblock(t);
1616 r->ru_oublock += task_io_get_oublock(t);
1617}
1618
1da177e4
LT
1619static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1620{
1621 struct task_struct *t;
1622 unsigned long flags;
0cf55e1e 1623 cputime_t tgutime, tgstime, utime, stime;
1f10206c 1624 unsigned long maxrss = 0;
1da177e4
LT
1625
1626 memset((char *) r, 0, sizeof *r);
64861634 1627 utime = stime = 0;
1da177e4 1628
679c9cd4 1629 if (who == RUSAGE_THREAD) {
d180c5bc 1630 task_times(current, &utime, &stime);
f06febc9 1631 accumulate_thread_rusage(p, r);
1f10206c 1632 maxrss = p->signal->maxrss;
679c9cd4
SK
1633 goto out;
1634 }
1635
d6cf723a 1636 if (!lock_task_sighand(p, &flags))
de047c1b 1637 return;
0f59cc4a 1638
1da177e4 1639 switch (who) {
0f59cc4a 1640 case RUSAGE_BOTH:
1da177e4 1641 case RUSAGE_CHILDREN:
1da177e4
LT
1642 utime = p->signal->cutime;
1643 stime = p->signal->cstime;
1644 r->ru_nvcsw = p->signal->cnvcsw;
1645 r->ru_nivcsw = p->signal->cnivcsw;
1646 r->ru_minflt = p->signal->cmin_flt;
1647 r->ru_majflt = p->signal->cmaj_flt;
6eaeeaba
ED
1648 r->ru_inblock = p->signal->cinblock;
1649 r->ru_oublock = p->signal->coublock;
1f10206c 1650 maxrss = p->signal->cmaxrss;
0f59cc4a
ON
1651
1652 if (who == RUSAGE_CHILDREN)
1653 break;
1654
1da177e4 1655 case RUSAGE_SELF:
0cf55e1e 1656 thread_group_times(p, &tgutime, &tgstime);
64861634
MS
1657 utime += tgutime;
1658 stime += tgstime;
1da177e4
LT
1659 r->ru_nvcsw += p->signal->nvcsw;
1660 r->ru_nivcsw += p->signal->nivcsw;
1661 r->ru_minflt += p->signal->min_flt;
1662 r->ru_majflt += p->signal->maj_flt;
6eaeeaba
ED
1663 r->ru_inblock += p->signal->inblock;
1664 r->ru_oublock += p->signal->oublock;
1f10206c
JP
1665 if (maxrss < p->signal->maxrss)
1666 maxrss = p->signal->maxrss;
1da177e4
LT
1667 t = p;
1668 do {
f06febc9 1669 accumulate_thread_rusage(t, r);
1da177e4
LT
1670 t = next_thread(t);
1671 } while (t != p);
1da177e4 1672 break;
0f59cc4a 1673
1da177e4
LT
1674 default:
1675 BUG();
1676 }
de047c1b 1677 unlock_task_sighand(p, &flags);
de047c1b 1678
679c9cd4 1679out:
0f59cc4a
ON
1680 cputime_to_timeval(utime, &r->ru_utime);
1681 cputime_to_timeval(stime, &r->ru_stime);
1f10206c
JP
1682
1683 if (who != RUSAGE_CHILDREN) {
1684 struct mm_struct *mm = get_task_mm(p);
1685 if (mm) {
1686 setmax_mm_hiwater_rss(&maxrss, mm);
1687 mmput(mm);
1688 }
1689 }
1690 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1da177e4
LT
1691}
1692
1693int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1694{
1695 struct rusage r;
1da177e4 1696 k_getrusage(p, who, &r);
1da177e4
LT
1697 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1698}
1699
e48fbb69 1700SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1da177e4 1701{
679c9cd4
SK
1702 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1703 who != RUSAGE_THREAD)
1da177e4
LT
1704 return -EINVAL;
1705 return getrusage(current, who, ru);
1706}
1707
e48fbb69 1708SYSCALL_DEFINE1(umask, int, mask)
1da177e4
LT
1709{
1710 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1711 return mask;
1712}
3b7391de 1713
028ee4be
CG
1714#ifdef CONFIG_CHECKPOINT_RESTORE
1715static int prctl_set_mm(int opt, unsigned long addr,
1716 unsigned long arg4, unsigned long arg5)
1717{
1718 unsigned long rlim = rlimit(RLIMIT_DATA);
1719 unsigned long vm_req_flags;
1720 unsigned long vm_bad_flags;
1721 struct vm_area_struct *vma;
1722 int error = 0;
1723 struct mm_struct *mm = current->mm;
1724
1725 if (arg4 | arg5)
1726 return -EINVAL;
1727
79f0713d 1728 if (!capable(CAP_SYS_RESOURCE))
028ee4be
CG
1729 return -EPERM;
1730
1731 if (addr >= TASK_SIZE)
1732 return -EINVAL;
1733
1734 down_read(&mm->mmap_sem);
1735 vma = find_vma(mm, addr);
1736
1737 if (opt != PR_SET_MM_START_BRK && opt != PR_SET_MM_BRK) {
1738 /* It must be existing VMA */
1739 if (!vma || vma->vm_start > addr)
1740 goto out;
1741 }
1742
1743 error = -EINVAL;
1744 switch (opt) {
1745 case PR_SET_MM_START_CODE:
1746 case PR_SET_MM_END_CODE:
1747 vm_req_flags = VM_READ | VM_EXEC;
1748 vm_bad_flags = VM_WRITE | VM_MAYSHARE;
1749
1750 if ((vma->vm_flags & vm_req_flags) != vm_req_flags ||
1751 (vma->vm_flags & vm_bad_flags))
1752 goto out;
1753
1754 if (opt == PR_SET_MM_START_CODE)
1755 mm->start_code = addr;
1756 else
1757 mm->end_code = addr;
1758 break;
1759
1760 case PR_SET_MM_START_DATA:
1761 case PR_SET_MM_END_DATA:
1762 vm_req_flags = VM_READ | VM_WRITE;
1763 vm_bad_flags = VM_EXEC | VM_MAYSHARE;
1764
1765 if ((vma->vm_flags & vm_req_flags) != vm_req_flags ||
1766 (vma->vm_flags & vm_bad_flags))
1767 goto out;
1768
1769 if (opt == PR_SET_MM_START_DATA)
1770 mm->start_data = addr;
1771 else
1772 mm->end_data = addr;
1773 break;
1774
1775 case PR_SET_MM_START_STACK:
1776
1777#ifdef CONFIG_STACK_GROWSUP
1778 vm_req_flags = VM_READ | VM_WRITE | VM_GROWSUP;
1779#else
1780 vm_req_flags = VM_READ | VM_WRITE | VM_GROWSDOWN;
1781#endif
1782 if ((vma->vm_flags & vm_req_flags) != vm_req_flags)
1783 goto out;
1784
1785 mm->start_stack = addr;
1786 break;
1787
1788 case PR_SET_MM_START_BRK:
1789 if (addr <= mm->end_data)
1790 goto out;
1791
1792 if (rlim < RLIM_INFINITY &&
1793 (mm->brk - addr) +
1794 (mm->end_data - mm->start_data) > rlim)
1795 goto out;
1796
1797 mm->start_brk = addr;
1798 break;
1799
1800 case PR_SET_MM_BRK:
1801 if (addr <= mm->end_data)
1802 goto out;
1803
1804 if (rlim < RLIM_INFINITY &&
1805 (addr - mm->start_brk) +
1806 (mm->end_data - mm->start_data) > rlim)
1807 goto out;
1808
1809 mm->brk = addr;
1810 break;
1811
1812 default:
1813 error = -EINVAL;
1814 goto out;
1815 }
1816
1817 error = 0;
1818
1819out:
1820 up_read(&mm->mmap_sem);
1821
1822 return error;
1823}
1824#else /* CONFIG_CHECKPOINT_RESTORE */
1825static int prctl_set_mm(int opt, unsigned long addr,
1826 unsigned long arg4, unsigned long arg5)
1827{
1828 return -EINVAL;
1829}
1830#endif
1831
c4ea37c2
HC
1832SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1833 unsigned long, arg4, unsigned long, arg5)
1da177e4 1834{
b6dff3ec
DH
1835 struct task_struct *me = current;
1836 unsigned char comm[sizeof(me->comm)];
1837 long error;
1da177e4 1838
d84f4f99
DH
1839 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1840 if (error != -ENOSYS)
1da177e4
LT
1841 return error;
1842
d84f4f99 1843 error = 0;
1da177e4
LT
1844 switch (option) {
1845 case PR_SET_PDEATHSIG:
0730ded5 1846 if (!valid_signal(arg2)) {
1da177e4
LT
1847 error = -EINVAL;
1848 break;
1849 }
b6dff3ec
DH
1850 me->pdeath_signal = arg2;
1851 error = 0;
1da177e4
LT
1852 break;
1853 case PR_GET_PDEATHSIG:
b6dff3ec 1854 error = put_user(me->pdeath_signal, (int __user *)arg2);
1da177e4
LT
1855 break;
1856 case PR_GET_DUMPABLE:
b6dff3ec 1857 error = get_dumpable(me->mm);
1da177e4
LT
1858 break;
1859 case PR_SET_DUMPABLE:
abf75a50 1860 if (arg2 < 0 || arg2 > 1) {
1da177e4
LT
1861 error = -EINVAL;
1862 break;
1863 }
b6dff3ec
DH
1864 set_dumpable(me->mm, arg2);
1865 error = 0;
1da177e4
LT
1866 break;
1867
1868 case PR_SET_UNALIGN:
b6dff3ec 1869 error = SET_UNALIGN_CTL(me, arg2);
1da177e4
LT
1870 break;
1871 case PR_GET_UNALIGN:
b6dff3ec 1872 error = GET_UNALIGN_CTL(me, arg2);
1da177e4
LT
1873 break;
1874 case PR_SET_FPEMU:
b6dff3ec 1875 error = SET_FPEMU_CTL(me, arg2);
1da177e4
LT
1876 break;
1877 case PR_GET_FPEMU:
b6dff3ec 1878 error = GET_FPEMU_CTL(me, arg2);
1da177e4
LT
1879 break;
1880 case PR_SET_FPEXC:
b6dff3ec 1881 error = SET_FPEXC_CTL(me, arg2);
1da177e4
LT
1882 break;
1883 case PR_GET_FPEXC:
b6dff3ec 1884 error = GET_FPEXC_CTL(me, arg2);
1da177e4
LT
1885 break;
1886 case PR_GET_TIMING:
1887 error = PR_TIMING_STATISTICAL;
1888 break;
1889 case PR_SET_TIMING:
7b26655f 1890 if (arg2 != PR_TIMING_STATISTICAL)
1da177e4 1891 error = -EINVAL;
b6dff3ec
DH
1892 else
1893 error = 0;
1da177e4
LT
1894 break;
1895
b6dff3ec
DH
1896 case PR_SET_NAME:
1897 comm[sizeof(me->comm)-1] = 0;
1898 if (strncpy_from_user(comm, (char __user *)arg2,
1899 sizeof(me->comm) - 1) < 0)
1da177e4 1900 return -EFAULT;
b6dff3ec 1901 set_task_comm(me, comm);
f786ecba 1902 proc_comm_connector(me);
1da177e4 1903 return 0;
b6dff3ec
DH
1904 case PR_GET_NAME:
1905 get_task_comm(comm, me);
1906 if (copy_to_user((char __user *)arg2, comm,
1907 sizeof(comm)))
1da177e4
LT
1908 return -EFAULT;
1909 return 0;
651d765d 1910 case PR_GET_ENDIAN:
b6dff3ec 1911 error = GET_ENDIAN(me, arg2);
651d765d
AB
1912 break;
1913 case PR_SET_ENDIAN:
b6dff3ec 1914 error = SET_ENDIAN(me, arg2);
651d765d
AB
1915 break;
1916
1d9d02fe
AA
1917 case PR_GET_SECCOMP:
1918 error = prctl_get_seccomp();
1919 break;
1920 case PR_SET_SECCOMP:
1921 error = prctl_set_seccomp(arg2);
1922 break;
8fb402bc
EB
1923 case PR_GET_TSC:
1924 error = GET_TSC_CTL(arg2);
1925 break;
1926 case PR_SET_TSC:
1927 error = SET_TSC_CTL(arg2);
1928 break;
cdd6c482
IM
1929 case PR_TASK_PERF_EVENTS_DISABLE:
1930 error = perf_event_task_disable();
1d1c7ddb 1931 break;
cdd6c482
IM
1932 case PR_TASK_PERF_EVENTS_ENABLE:
1933 error = perf_event_task_enable();
1d1c7ddb 1934 break;
6976675d
AV
1935 case PR_GET_TIMERSLACK:
1936 error = current->timer_slack_ns;
1937 break;
1938 case PR_SET_TIMERSLACK:
1939 if (arg2 <= 0)
1940 current->timer_slack_ns =
1941 current->default_timer_slack_ns;
1942 else
1943 current->timer_slack_ns = arg2;
b6dff3ec 1944 error = 0;
6976675d 1945 break;
4db96cf0
AK
1946 case PR_MCE_KILL:
1947 if (arg4 | arg5)
1948 return -EINVAL;
1949 switch (arg2) {
1087e9b4 1950 case PR_MCE_KILL_CLEAR:
4db96cf0
AK
1951 if (arg3 != 0)
1952 return -EINVAL;
1953 current->flags &= ~PF_MCE_PROCESS;
1954 break;
1087e9b4 1955 case PR_MCE_KILL_SET:
4db96cf0 1956 current->flags |= PF_MCE_PROCESS;
1087e9b4 1957 if (arg3 == PR_MCE_KILL_EARLY)
4db96cf0 1958 current->flags |= PF_MCE_EARLY;
1087e9b4 1959 else if (arg3 == PR_MCE_KILL_LATE)
4db96cf0 1960 current->flags &= ~PF_MCE_EARLY;
1087e9b4
AK
1961 else if (arg3 == PR_MCE_KILL_DEFAULT)
1962 current->flags &=
1963 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1964 else
1965 return -EINVAL;
4db96cf0
AK
1966 break;
1967 default:
1968 return -EINVAL;
1969 }
1970 error = 0;
1971 break;
1087e9b4
AK
1972 case PR_MCE_KILL_GET:
1973 if (arg2 | arg3 | arg4 | arg5)
1974 return -EINVAL;
1975 if (current->flags & PF_MCE_PROCESS)
1976 error = (current->flags & PF_MCE_EARLY) ?
1977 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1978 else
1979 error = PR_MCE_KILL_DEFAULT;
1980 break;
028ee4be
CG
1981 case PR_SET_MM:
1982 error = prctl_set_mm(arg2, arg3, arg4, arg5);
1983 break;
ebec18a6
LP
1984 case PR_SET_CHILD_SUBREAPER:
1985 me->signal->is_child_subreaper = !!arg2;
1986 error = 0;
1987 break;
1988 case PR_GET_CHILD_SUBREAPER:
1989 error = put_user(me->signal->is_child_subreaper,
1990 (int __user *) arg2);
1991 break;
1da177e4
LT
1992 default:
1993 error = -EINVAL;
1994 break;
1995 }
1996 return error;
1997}
3cfc348b 1998
836f92ad
HC
1999SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2000 struct getcpu_cache __user *, unused)
3cfc348b
AK
2001{
2002 int err = 0;
2003 int cpu = raw_smp_processor_id();
2004 if (cpup)
2005 err |= put_user(cpu, cpup);
2006 if (nodep)
2007 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
2008 return err ? -EFAULT : 0;
2009}
10a0a8d4
JF
2010
2011char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
2012
a06a4dc3 2013static void argv_cleanup(struct subprocess_info *info)
10a0a8d4 2014{
a06a4dc3 2015 argv_free(info->argv);
10a0a8d4
JF
2016}
2017
2018/**
2019 * orderly_poweroff - Trigger an orderly system poweroff
2020 * @force: force poweroff if command execution fails
2021 *
2022 * This may be called from any context to trigger a system shutdown.
2023 * If the orderly shutdown fails, it will force an immediate shutdown.
2024 */
2025int orderly_poweroff(bool force)
2026{
2027 int argc;
2028 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
2029 static char *envp[] = {
2030 "HOME=/",
2031 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2032 NULL
2033 };
2034 int ret = -ENOMEM;
2035 struct subprocess_info *info;
2036
2037 if (argv == NULL) {
2038 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
2039 __func__, poweroff_cmd);
2040 goto out;
2041 }
2042
ac331d15 2043 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
10a0a8d4
JF
2044 if (info == NULL) {
2045 argv_free(argv);
2046 goto out;
2047 }
2048
a06a4dc3 2049 call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
10a0a8d4 2050
86313c48 2051 ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
10a0a8d4
JF
2052
2053 out:
2054 if (ret && force) {
2055 printk(KERN_WARNING "Failed to start orderly shutdown: "
2056 "forcing the issue\n");
2057
2058 /* I guess this should try to kick off some daemon to
2059 sync and poweroff asap. Or not even bother syncing
2060 if we're doing an emergency shutdown? */
2061 emergency_sync();
2062 kernel_power_off();
2063 }
2064
2065 return ret;
2066}
2067EXPORT_SYMBOL_GPL(orderly_poweroff);