pinctrl: at91-pio4: add missing of_node_put
[linux-2.6-block.git] / kernel / sys.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
9984de1a 8#include <linux/export.h>
1da177e4
LT
9#include <linux/mm.h>
10#include <linux/utsname.h>
11#include <linux/mman.h>
1da177e4
LT
12#include <linux/reboot.h>
13#include <linux/prctl.h>
1da177e4
LT
14#include <linux/highuid.h>
15#include <linux/fs.h>
74da1ff7 16#include <linux/kmod.h>
cdd6c482 17#include <linux/perf_event.h>
3e88c553 18#include <linux/resource.h>
dc009d92 19#include <linux/kernel.h>
1da177e4 20#include <linux/workqueue.h>
c59ede7b 21#include <linux/capability.h>
1da177e4
LT
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
27#include <linux/dcookies.h>
28#include <linux/suspend.h>
29#include <linux/tty.h>
7ed20e1a 30#include <linux/signal.h>
9f46080c 31#include <linux/cn_proc.h>
3cfc348b 32#include <linux/getcpu.h>
6eaeeaba 33#include <linux/task_io_accounting_ops.h>
1d9d02fe 34#include <linux/seccomp.h>
4047727e 35#include <linux/cpu.h>
e28cbf22 36#include <linux/personality.h>
e3d5a27d 37#include <linux/ptrace.h>
5ad4e53b 38#include <linux/fs_struct.h>
b32dfe37
CG
39#include <linux/file.h>
40#include <linux/mount.h>
5a0e3ad6 41#include <linux/gfp.h>
40dc166c 42#include <linux/syscore_ops.h>
be27425d
AK
43#include <linux/version.h>
44#include <linux/ctype.h>
1da177e4
LT
45
46#include <linux/compat.h>
47#include <linux/syscalls.h>
00d7c05a 48#include <linux/kprobes.h>
acce292c 49#include <linux/user_namespace.h>
7fe5e042 50#include <linux/binfmts.h>
1da177e4 51
4a22f166 52#include <linux/sched.h>
4eb5aaa3 53#include <linux/sched/autogroup.h>
4f17722c 54#include <linux/sched/loadavg.h>
03441a34 55#include <linux/sched/stat.h>
6e84f315 56#include <linux/sched/mm.h>
f7ccbae4 57#include <linux/sched/coredump.h>
29930025 58#include <linux/sched/task.h>
32ef5517 59#include <linux/sched/cputime.h>
4a22f166
SR
60#include <linux/rcupdate.h>
61#include <linux/uidgid.h>
62#include <linux/cred.h>
63
04c6862c 64#include <linux/kmsg_dump.h>
be27425d
AK
65/* Move somewhere else to avoid recompiling? */
66#include <generated/utsrelease.h>
04c6862c 67
7c0f6ba6 68#include <linux/uaccess.h>
1da177e4
LT
69#include <asm/io.h>
70#include <asm/unistd.h>
71
e530dca5
DB
72#include "uid16.h"
73
1da177e4 74#ifndef SET_UNALIGN_CTL
ec94fc3d 75# define SET_UNALIGN_CTL(a, b) (-EINVAL)
1da177e4
LT
76#endif
77#ifndef GET_UNALIGN_CTL
ec94fc3d 78# define GET_UNALIGN_CTL(a, b) (-EINVAL)
1da177e4
LT
79#endif
80#ifndef SET_FPEMU_CTL
ec94fc3d 81# define SET_FPEMU_CTL(a, b) (-EINVAL)
1da177e4
LT
82#endif
83#ifndef GET_FPEMU_CTL
ec94fc3d 84# define GET_FPEMU_CTL(a, b) (-EINVAL)
1da177e4
LT
85#endif
86#ifndef SET_FPEXC_CTL
ec94fc3d 87# define SET_FPEXC_CTL(a, b) (-EINVAL)
1da177e4
LT
88#endif
89#ifndef GET_FPEXC_CTL
ec94fc3d 90# define GET_FPEXC_CTL(a, b) (-EINVAL)
1da177e4 91#endif
651d765d 92#ifndef GET_ENDIAN
ec94fc3d 93# define GET_ENDIAN(a, b) (-EINVAL)
651d765d
AB
94#endif
95#ifndef SET_ENDIAN
ec94fc3d 96# define SET_ENDIAN(a, b) (-EINVAL)
651d765d 97#endif
8fb402bc
EB
98#ifndef GET_TSC_CTL
99# define GET_TSC_CTL(a) (-EINVAL)
100#endif
101#ifndef SET_TSC_CTL
102# define SET_TSC_CTL(a) (-EINVAL)
103#endif
fe3d197f 104#ifndef MPX_ENABLE_MANAGEMENT
46a6e0cf 105# define MPX_ENABLE_MANAGEMENT() (-EINVAL)
fe3d197f
DH
106#endif
107#ifndef MPX_DISABLE_MANAGEMENT
46a6e0cf 108# define MPX_DISABLE_MANAGEMENT() (-EINVAL)
fe3d197f 109#endif
9791554b
PB
110#ifndef GET_FP_MODE
111# define GET_FP_MODE(a) (-EINVAL)
112#endif
113#ifndef SET_FP_MODE
114# define SET_FP_MODE(a,b) (-EINVAL)
115#endif
2d2123bc
DM
116#ifndef SVE_SET_VL
117# define SVE_SET_VL(a) (-EINVAL)
118#endif
119#ifndef SVE_GET_VL
120# define SVE_GET_VL() (-EINVAL)
121#endif
1da177e4
LT
122
123/*
124 * this is where the system-wide overflow UID and GID are defined, for
125 * architectures that now have 32-bit UID/GID but didn't in the past
126 */
127
128int overflowuid = DEFAULT_OVERFLOWUID;
129int overflowgid = DEFAULT_OVERFLOWGID;
130
1da177e4
LT
131EXPORT_SYMBOL(overflowuid);
132EXPORT_SYMBOL(overflowgid);
1da177e4
LT
133
134/*
135 * the same as above, but for filesystems which can only store a 16-bit
136 * UID and GID. as such, this is needed on all architectures
137 */
138
139int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
8b2770a4 140int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
1da177e4
LT
141
142EXPORT_SYMBOL(fs_overflowuid);
143EXPORT_SYMBOL(fs_overflowgid);
144
fc832ad3
SH
145/*
146 * Returns true if current's euid is same as p's uid or euid,
147 * or has CAP_SYS_NICE to p's user_ns.
148 *
149 * Called with rcu_read_lock, creds are safe
150 */
151static bool set_one_prio_perm(struct task_struct *p)
152{
153 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
154
5af66203
EB
155 if (uid_eq(pcred->uid, cred->euid) ||
156 uid_eq(pcred->euid, cred->euid))
fc832ad3 157 return true;
c4a4d603 158 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
fc832ad3
SH
159 return true;
160 return false;
161}
162
c69e8d9c
DH
163/*
164 * set the priority of a task
165 * - the caller must hold the RCU read lock
166 */
1da177e4
LT
167static int set_one_prio(struct task_struct *p, int niceval, int error)
168{
169 int no_nice;
170
fc832ad3 171 if (!set_one_prio_perm(p)) {
1da177e4
LT
172 error = -EPERM;
173 goto out;
174 }
e43379f1 175 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
176 error = -EACCES;
177 goto out;
178 }
179 no_nice = security_task_setnice(p, niceval);
180 if (no_nice) {
181 error = no_nice;
182 goto out;
183 }
184 if (error == -ESRCH)
185 error = 0;
186 set_user_nice(p, niceval);
187out:
188 return error;
189}
190
754fe8d2 191SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
1da177e4
LT
192{
193 struct task_struct *g, *p;
194 struct user_struct *user;
86a264ab 195 const struct cred *cred = current_cred();
1da177e4 196 int error = -EINVAL;
41487c65 197 struct pid *pgrp;
7b44ab97 198 kuid_t uid;
1da177e4 199
3e88c553 200 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
201 goto out;
202
203 /* normalize: avoid signed division (rounding problems) */
204 error = -ESRCH;
c4a4d2f4
DY
205 if (niceval < MIN_NICE)
206 niceval = MIN_NICE;
207 if (niceval > MAX_NICE)
208 niceval = MAX_NICE;
1da177e4 209
d4581a23 210 rcu_read_lock();
1da177e4
LT
211 read_lock(&tasklist_lock);
212 switch (which) {
ec94fc3d 213 case PRIO_PROCESS:
214 if (who)
215 p = find_task_by_vpid(who);
216 else
217 p = current;
218 if (p)
219 error = set_one_prio(p, niceval, error);
220 break;
221 case PRIO_PGRP:
222 if (who)
223 pgrp = find_vpid(who);
224 else
225 pgrp = task_pgrp(current);
226 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
227 error = set_one_prio(p, niceval, error);
228 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
229 break;
230 case PRIO_USER:
231 uid = make_kuid(cred->user_ns, who);
232 user = cred->user;
233 if (!who)
234 uid = cred->uid;
235 else if (!uid_eq(uid, cred->uid)) {
236 user = find_user(uid);
237 if (!user)
86a264ab 238 goto out_unlock; /* No processes for this user */
ec94fc3d 239 }
240 do_each_thread(g, p) {
8639b461 241 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
ec94fc3d 242 error = set_one_prio(p, niceval, error);
243 } while_each_thread(g, p);
244 if (!uid_eq(uid, cred->uid))
245 free_uid(user); /* For find_user() */
246 break;
1da177e4
LT
247 }
248out_unlock:
249 read_unlock(&tasklist_lock);
d4581a23 250 rcu_read_unlock();
1da177e4
LT
251out:
252 return error;
253}
254
255/*
256 * Ugh. To avoid negative return values, "getpriority()" will
257 * not return the normal nice-value, but a negated value that
258 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
259 * to stay compatible.
260 */
754fe8d2 261SYSCALL_DEFINE2(getpriority, int, which, int, who)
1da177e4
LT
262{
263 struct task_struct *g, *p;
264 struct user_struct *user;
86a264ab 265 const struct cred *cred = current_cred();
1da177e4 266 long niceval, retval = -ESRCH;
41487c65 267 struct pid *pgrp;
7b44ab97 268 kuid_t uid;
1da177e4 269
3e88c553 270 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
271 return -EINVAL;
272
70118837 273 rcu_read_lock();
1da177e4
LT
274 read_lock(&tasklist_lock);
275 switch (which) {
ec94fc3d 276 case PRIO_PROCESS:
277 if (who)
278 p = find_task_by_vpid(who);
279 else
280 p = current;
281 if (p) {
282 niceval = nice_to_rlimit(task_nice(p));
283 if (niceval > retval)
284 retval = niceval;
285 }
286 break;
287 case PRIO_PGRP:
288 if (who)
289 pgrp = find_vpid(who);
290 else
291 pgrp = task_pgrp(current);
292 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
293 niceval = nice_to_rlimit(task_nice(p));
294 if (niceval > retval)
295 retval = niceval;
296 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
297 break;
298 case PRIO_USER:
299 uid = make_kuid(cred->user_ns, who);
300 user = cred->user;
301 if (!who)
302 uid = cred->uid;
303 else if (!uid_eq(uid, cred->uid)) {
304 user = find_user(uid);
305 if (!user)
306 goto out_unlock; /* No processes for this user */
307 }
308 do_each_thread(g, p) {
8639b461 309 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
7aa2c016 310 niceval = nice_to_rlimit(task_nice(p));
1da177e4
LT
311 if (niceval > retval)
312 retval = niceval;
313 }
ec94fc3d 314 } while_each_thread(g, p);
315 if (!uid_eq(uid, cred->uid))
316 free_uid(user); /* for find_user() */
317 break;
1da177e4
LT
318 }
319out_unlock:
320 read_unlock(&tasklist_lock);
70118837 321 rcu_read_unlock();
1da177e4
LT
322
323 return retval;
324}
325
1da177e4
LT
326/*
327 * Unprivileged users may change the real gid to the effective gid
328 * or vice versa. (BSD-style)
329 *
330 * If you set the real gid at all, or set the effective gid to a value not
331 * equal to the real gid, then the saved gid is set to the new effective gid.
332 *
333 * This makes it possible for a setgid program to completely drop its
334 * privileges, which is often a useful assertion to make when you are doing
335 * a security audit over a program.
336 *
337 * The general idea is that a program which uses just setregid() will be
338 * 100% compatible with BSD. A program which uses just setgid() will be
ec94fc3d 339 * 100% compatible with POSIX with saved IDs.
1da177e4
LT
340 *
341 * SMP: There are not races, the GIDs are checked only by filesystem
342 * operations (as far as semantic preservation is concerned).
343 */
2813893f 344#ifdef CONFIG_MULTIUSER
e530dca5 345long __sys_setregid(gid_t rgid, gid_t egid)
1da177e4 346{
a29c33f4 347 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
348 const struct cred *old;
349 struct cred *new;
1da177e4 350 int retval;
a29c33f4
EB
351 kgid_t krgid, kegid;
352
353 krgid = make_kgid(ns, rgid);
354 kegid = make_kgid(ns, egid);
355
356 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
357 return -EINVAL;
358 if ((egid != (gid_t) -1) && !gid_valid(kegid))
359 return -EINVAL;
1da177e4 360
d84f4f99
DH
361 new = prepare_creds();
362 if (!new)
363 return -ENOMEM;
364 old = current_cred();
365
d84f4f99 366 retval = -EPERM;
1da177e4 367 if (rgid != (gid_t) -1) {
a29c33f4
EB
368 if (gid_eq(old->gid, krgid) ||
369 gid_eq(old->egid, krgid) ||
c7b96acf 370 ns_capable(old->user_ns, CAP_SETGID))
a29c33f4 371 new->gid = krgid;
1da177e4 372 else
d84f4f99 373 goto error;
1da177e4
LT
374 }
375 if (egid != (gid_t) -1) {
a29c33f4
EB
376 if (gid_eq(old->gid, kegid) ||
377 gid_eq(old->egid, kegid) ||
378 gid_eq(old->sgid, kegid) ||
c7b96acf 379 ns_capable(old->user_ns, CAP_SETGID))
a29c33f4 380 new->egid = kegid;
756184b7 381 else
d84f4f99 382 goto error;
1da177e4 383 }
d84f4f99 384
1da177e4 385 if (rgid != (gid_t) -1 ||
a29c33f4 386 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
d84f4f99
DH
387 new->sgid = new->egid;
388 new->fsgid = new->egid;
389
390 return commit_creds(new);
391
392error:
393 abort_creds(new);
394 return retval;
1da177e4
LT
395}
396
e530dca5
DB
397SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
398{
399 return __sys_setregid(rgid, egid);
400}
401
1da177e4 402/*
ec94fc3d 403 * setgid() is implemented like SysV w/ SAVED_IDS
1da177e4
LT
404 *
405 * SMP: Same implicit races as above.
406 */
e530dca5 407long __sys_setgid(gid_t gid)
1da177e4 408{
a29c33f4 409 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
410 const struct cred *old;
411 struct cred *new;
1da177e4 412 int retval;
a29c33f4
EB
413 kgid_t kgid;
414
415 kgid = make_kgid(ns, gid);
416 if (!gid_valid(kgid))
417 return -EINVAL;
1da177e4 418
d84f4f99
DH
419 new = prepare_creds();
420 if (!new)
421 return -ENOMEM;
422 old = current_cred();
423
d84f4f99 424 retval = -EPERM;
c7b96acf 425 if (ns_capable(old->user_ns, CAP_SETGID))
a29c33f4
EB
426 new->gid = new->egid = new->sgid = new->fsgid = kgid;
427 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
428 new->egid = new->fsgid = kgid;
1da177e4 429 else
d84f4f99 430 goto error;
1da177e4 431
d84f4f99
DH
432 return commit_creds(new);
433
434error:
435 abort_creds(new);
436 return retval;
1da177e4 437}
54e99124 438
e530dca5
DB
439SYSCALL_DEFINE1(setgid, gid_t, gid)
440{
441 return __sys_setgid(gid);
442}
443
d84f4f99
DH
444/*
445 * change the user struct in a credentials set to match the new UID
446 */
447static int set_user(struct cred *new)
1da177e4
LT
448{
449 struct user_struct *new_user;
450
078de5f7 451 new_user = alloc_uid(new->uid);
1da177e4
LT
452 if (!new_user)
453 return -EAGAIN;
454
72fa5997
VK
455 /*
456 * We don't fail in case of NPROC limit excess here because too many
457 * poorly written programs don't check set*uid() return code, assuming
458 * it never fails if called by root. We may still enforce NPROC limit
459 * for programs doing set*uid()+execve() by harmlessly deferring the
460 * failure to the execve() stage.
461 */
78d7d407 462 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
72fa5997
VK
463 new_user != INIT_USER)
464 current->flags |= PF_NPROC_EXCEEDED;
465 else
466 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 467
d84f4f99
DH
468 free_uid(new->user);
469 new->user = new_user;
1da177e4
LT
470 return 0;
471}
472
473/*
474 * Unprivileged users may change the real uid to the effective uid
475 * or vice versa. (BSD-style)
476 *
477 * If you set the real uid at all, or set the effective uid to a value not
478 * equal to the real uid, then the saved uid is set to the new effective uid.
479 *
480 * This makes it possible for a setuid program to completely drop its
481 * privileges, which is often a useful assertion to make when you are doing
482 * a security audit over a program.
483 *
484 * The general idea is that a program which uses just setreuid() will be
485 * 100% compatible with BSD. A program which uses just setuid() will be
ec94fc3d 486 * 100% compatible with POSIX with saved IDs.
1da177e4 487 */
e530dca5 488long __sys_setreuid(uid_t ruid, uid_t euid)
1da177e4 489{
a29c33f4 490 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
491 const struct cred *old;
492 struct cred *new;
1da177e4 493 int retval;
a29c33f4
EB
494 kuid_t kruid, keuid;
495
496 kruid = make_kuid(ns, ruid);
497 keuid = make_kuid(ns, euid);
498
499 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
500 return -EINVAL;
501 if ((euid != (uid_t) -1) && !uid_valid(keuid))
502 return -EINVAL;
1da177e4 503
d84f4f99
DH
504 new = prepare_creds();
505 if (!new)
506 return -ENOMEM;
507 old = current_cred();
508
d84f4f99 509 retval = -EPERM;
1da177e4 510 if (ruid != (uid_t) -1) {
a29c33f4
EB
511 new->uid = kruid;
512 if (!uid_eq(old->uid, kruid) &&
513 !uid_eq(old->euid, kruid) &&
c7b96acf 514 !ns_capable(old->user_ns, CAP_SETUID))
d84f4f99 515 goto error;
1da177e4
LT
516 }
517
518 if (euid != (uid_t) -1) {
a29c33f4
EB
519 new->euid = keuid;
520 if (!uid_eq(old->uid, keuid) &&
521 !uid_eq(old->euid, keuid) &&
522 !uid_eq(old->suid, keuid) &&
c7b96acf 523 !ns_capable(old->user_ns, CAP_SETUID))
d84f4f99 524 goto error;
1da177e4
LT
525 }
526
a29c33f4 527 if (!uid_eq(new->uid, old->uid)) {
54e99124
DG
528 retval = set_user(new);
529 if (retval < 0)
530 goto error;
531 }
1da177e4 532 if (ruid != (uid_t) -1 ||
a29c33f4 533 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
d84f4f99
DH
534 new->suid = new->euid;
535 new->fsuid = new->euid;
1da177e4 536
d84f4f99
DH
537 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
538 if (retval < 0)
539 goto error;
1da177e4 540
d84f4f99 541 return commit_creds(new);
1da177e4 542
d84f4f99
DH
543error:
544 abort_creds(new);
545 return retval;
546}
ec94fc3d 547
e530dca5
DB
548SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
549{
550 return __sys_setreuid(ruid, euid);
551}
552
1da177e4 553/*
ec94fc3d 554 * setuid() is implemented like SysV with SAVED_IDS
555 *
1da177e4 556 * Note that SAVED_ID's is deficient in that a setuid root program
ec94fc3d 557 * like sendmail, for example, cannot set its uid to be a normal
1da177e4
LT
558 * user and then switch back, because if you're root, setuid() sets
559 * the saved uid too. If you don't like this, blame the bright people
560 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
561 * will allow a root program to temporarily drop privileges and be able to
ec94fc3d 562 * regain them by swapping the real and effective uid.
1da177e4 563 */
e530dca5 564long __sys_setuid(uid_t uid)
1da177e4 565{
a29c33f4 566 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
567 const struct cred *old;
568 struct cred *new;
1da177e4 569 int retval;
a29c33f4
EB
570 kuid_t kuid;
571
572 kuid = make_kuid(ns, uid);
573 if (!uid_valid(kuid))
574 return -EINVAL;
1da177e4 575
d84f4f99
DH
576 new = prepare_creds();
577 if (!new)
578 return -ENOMEM;
579 old = current_cred();
580
d84f4f99 581 retval = -EPERM;
c7b96acf 582 if (ns_capable(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
583 new->suid = new->uid = kuid;
584 if (!uid_eq(kuid, old->uid)) {
54e99124
DG
585 retval = set_user(new);
586 if (retval < 0)
587 goto error;
d84f4f99 588 }
a29c33f4 589 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
d84f4f99 590 goto error;
1da177e4 591 }
1da177e4 592
a29c33f4 593 new->fsuid = new->euid = kuid;
d84f4f99
DH
594
595 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
596 if (retval < 0)
597 goto error;
1da177e4 598
d84f4f99 599 return commit_creds(new);
1da177e4 600
d84f4f99
DH
601error:
602 abort_creds(new);
603 return retval;
1da177e4
LT
604}
605
e530dca5
DB
606SYSCALL_DEFINE1(setuid, uid_t, uid)
607{
608 return __sys_setuid(uid);
609}
610
1da177e4
LT
611
612/*
613 * This function implements a generic ability to update ruid, euid,
614 * and suid. This allows you to implement the 4.4 compatible seteuid().
615 */
e530dca5 616long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
1da177e4 617{
a29c33f4 618 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
619 const struct cred *old;
620 struct cred *new;
1da177e4 621 int retval;
a29c33f4
EB
622 kuid_t kruid, keuid, ksuid;
623
624 kruid = make_kuid(ns, ruid);
625 keuid = make_kuid(ns, euid);
626 ksuid = make_kuid(ns, suid);
627
628 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
629 return -EINVAL;
630
631 if ((euid != (uid_t) -1) && !uid_valid(keuid))
632 return -EINVAL;
633
634 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
635 return -EINVAL;
1da177e4 636
d84f4f99
DH
637 new = prepare_creds();
638 if (!new)
639 return -ENOMEM;
640
d84f4f99 641 old = current_cred();
1da177e4 642
d84f4f99 643 retval = -EPERM;
c7b96acf 644 if (!ns_capable(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
645 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
646 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
d84f4f99 647 goto error;
a29c33f4
EB
648 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
649 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
d84f4f99 650 goto error;
a29c33f4
EB
651 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
652 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
d84f4f99 653 goto error;
1da177e4 654 }
d84f4f99 655
1da177e4 656 if (ruid != (uid_t) -1) {
a29c33f4
EB
657 new->uid = kruid;
658 if (!uid_eq(kruid, old->uid)) {
54e99124
DG
659 retval = set_user(new);
660 if (retval < 0)
661 goto error;
662 }
1da177e4 663 }
d84f4f99 664 if (euid != (uid_t) -1)
a29c33f4 665 new->euid = keuid;
1da177e4 666 if (suid != (uid_t) -1)
a29c33f4 667 new->suid = ksuid;
d84f4f99 668 new->fsuid = new->euid;
1da177e4 669
d84f4f99
DH
670 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
671 if (retval < 0)
672 goto error;
1da177e4 673
d84f4f99 674 return commit_creds(new);
1da177e4 675
d84f4f99
DH
676error:
677 abort_creds(new);
678 return retval;
1da177e4
LT
679}
680
e530dca5
DB
681SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
682{
683 return __sys_setresuid(ruid, euid, suid);
684}
685
a29c33f4 686SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
1da177e4 687{
86a264ab 688 const struct cred *cred = current_cred();
1da177e4 689 int retval;
a29c33f4
EB
690 uid_t ruid, euid, suid;
691
692 ruid = from_kuid_munged(cred->user_ns, cred->uid);
693 euid = from_kuid_munged(cred->user_ns, cred->euid);
694 suid = from_kuid_munged(cred->user_ns, cred->suid);
1da177e4 695
ec94fc3d 696 retval = put_user(ruid, ruidp);
697 if (!retval) {
698 retval = put_user(euid, euidp);
699 if (!retval)
700 return put_user(suid, suidp);
701 }
1da177e4
LT
702 return retval;
703}
704
705/*
706 * Same as above, but for rgid, egid, sgid.
707 */
e530dca5 708long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
1da177e4 709{
a29c33f4 710 struct user_namespace *ns = current_user_ns();
d84f4f99
DH
711 const struct cred *old;
712 struct cred *new;
1da177e4 713 int retval;
a29c33f4
EB
714 kgid_t krgid, kegid, ksgid;
715
716 krgid = make_kgid(ns, rgid);
717 kegid = make_kgid(ns, egid);
718 ksgid = make_kgid(ns, sgid);
719
720 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
721 return -EINVAL;
722 if ((egid != (gid_t) -1) && !gid_valid(kegid))
723 return -EINVAL;
724 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
725 return -EINVAL;
1da177e4 726
d84f4f99
DH
727 new = prepare_creds();
728 if (!new)
729 return -ENOMEM;
730 old = current_cred();
731
d84f4f99 732 retval = -EPERM;
c7b96acf 733 if (!ns_capable(old->user_ns, CAP_SETGID)) {
a29c33f4
EB
734 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
735 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
d84f4f99 736 goto error;
a29c33f4
EB
737 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
738 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
d84f4f99 739 goto error;
a29c33f4
EB
740 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
741 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
d84f4f99 742 goto error;
1da177e4 743 }
d84f4f99 744
1da177e4 745 if (rgid != (gid_t) -1)
a29c33f4 746 new->gid = krgid;
d84f4f99 747 if (egid != (gid_t) -1)
a29c33f4 748 new->egid = kegid;
1da177e4 749 if (sgid != (gid_t) -1)
a29c33f4 750 new->sgid = ksgid;
d84f4f99 751 new->fsgid = new->egid;
1da177e4 752
d84f4f99
DH
753 return commit_creds(new);
754
755error:
756 abort_creds(new);
757 return retval;
1da177e4
LT
758}
759
e530dca5
DB
760SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
761{
762 return __sys_setresgid(rgid, egid, sgid);
763}
764
a29c33f4 765SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
1da177e4 766{
86a264ab 767 const struct cred *cred = current_cred();
1da177e4 768 int retval;
a29c33f4
EB
769 gid_t rgid, egid, sgid;
770
771 rgid = from_kgid_munged(cred->user_ns, cred->gid);
772 egid = from_kgid_munged(cred->user_ns, cred->egid);
773 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
1da177e4 774
ec94fc3d 775 retval = put_user(rgid, rgidp);
776 if (!retval) {
777 retval = put_user(egid, egidp);
778 if (!retval)
779 retval = put_user(sgid, sgidp);
780 }
1da177e4
LT
781
782 return retval;
783}
784
785
786/*
787 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
788 * is used for "access()" and for the NFS daemon (letting nfsd stay at
789 * whatever uid it wants to). It normally shadows "euid", except when
790 * explicitly set by setfsuid() or for access..
791 */
e530dca5 792long __sys_setfsuid(uid_t uid)
1da177e4 793{
d84f4f99
DH
794 const struct cred *old;
795 struct cred *new;
796 uid_t old_fsuid;
a29c33f4
EB
797 kuid_t kuid;
798
799 old = current_cred();
800 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
801
802 kuid = make_kuid(old->user_ns, uid);
803 if (!uid_valid(kuid))
804 return old_fsuid;
1da177e4 805
d84f4f99
DH
806 new = prepare_creds();
807 if (!new)
a29c33f4 808 return old_fsuid;
1da177e4 809
a29c33f4
EB
810 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
811 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
c7b96acf 812 ns_capable(old->user_ns, CAP_SETUID)) {
a29c33f4
EB
813 if (!uid_eq(kuid, old->fsuid)) {
814 new->fsuid = kuid;
d84f4f99
DH
815 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
816 goto change_okay;
1da177e4 817 }
1da177e4
LT
818 }
819
d84f4f99
DH
820 abort_creds(new);
821 return old_fsuid;
1da177e4 822
d84f4f99
DH
823change_okay:
824 commit_creds(new);
1da177e4
LT
825 return old_fsuid;
826}
827
e530dca5
DB
828SYSCALL_DEFINE1(setfsuid, uid_t, uid)
829{
830 return __sys_setfsuid(uid);
831}
832
1da177e4 833/*
f42df9e6 834 * Samma på svenska..
1da177e4 835 */
e530dca5 836long __sys_setfsgid(gid_t gid)
1da177e4 837{
d84f4f99
DH
838 const struct cred *old;
839 struct cred *new;
840 gid_t old_fsgid;
a29c33f4
EB
841 kgid_t kgid;
842
843 old = current_cred();
844 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
845
846 kgid = make_kgid(old->user_ns, gid);
847 if (!gid_valid(kgid))
848 return old_fsgid;
d84f4f99
DH
849
850 new = prepare_creds();
851 if (!new)
a29c33f4 852 return old_fsgid;
1da177e4 853
a29c33f4
EB
854 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
855 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
c7b96acf 856 ns_capable(old->user_ns, CAP_SETGID)) {
a29c33f4
EB
857 if (!gid_eq(kgid, old->fsgid)) {
858 new->fsgid = kgid;
d84f4f99 859 goto change_okay;
1da177e4 860 }
1da177e4 861 }
d84f4f99 862
d84f4f99
DH
863 abort_creds(new);
864 return old_fsgid;
865
866change_okay:
867 commit_creds(new);
1da177e4
LT
868 return old_fsgid;
869}
e530dca5
DB
870
871SYSCALL_DEFINE1(setfsgid, gid_t, gid)
872{
873 return __sys_setfsgid(gid);
874}
2813893f 875#endif /* CONFIG_MULTIUSER */
1da177e4 876
4a22f166
SR
877/**
878 * sys_getpid - return the thread group id of the current process
879 *
880 * Note, despite the name, this returns the tgid not the pid. The tgid and
881 * the pid are identical unless CLONE_THREAD was specified on clone() in
882 * which case the tgid is the same in all threads of the same group.
883 *
884 * This is SMP safe as current->tgid does not change.
885 */
886SYSCALL_DEFINE0(getpid)
887{
888 return task_tgid_vnr(current);
889}
890
891/* Thread ID - the internal kernel "pid" */
892SYSCALL_DEFINE0(gettid)
893{
894 return task_pid_vnr(current);
895}
896
897/*
898 * Accessing ->real_parent is not SMP-safe, it could
899 * change from under us. However, we can use a stale
900 * value of ->real_parent under rcu_read_lock(), see
901 * release_task()->call_rcu(delayed_put_task_struct).
902 */
903SYSCALL_DEFINE0(getppid)
904{
905 int pid;
906
907 rcu_read_lock();
908 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
909 rcu_read_unlock();
910
911 return pid;
912}
913
914SYSCALL_DEFINE0(getuid)
915{
916 /* Only we change this so SMP safe */
917 return from_kuid_munged(current_user_ns(), current_uid());
918}
919
920SYSCALL_DEFINE0(geteuid)
921{
922 /* Only we change this so SMP safe */
923 return from_kuid_munged(current_user_ns(), current_euid());
924}
925
926SYSCALL_DEFINE0(getgid)
927{
928 /* Only we change this so SMP safe */
929 return from_kgid_munged(current_user_ns(), current_gid());
930}
931
932SYSCALL_DEFINE0(getegid)
933{
934 /* Only we change this so SMP safe */
935 return from_kgid_munged(current_user_ns(), current_egid());
936}
937
ca2406ed 938static void do_sys_times(struct tms *tms)
f06febc9 939{
5613fda9 940 u64 tgutime, tgstime, cutime, cstime;
f06febc9 941
e80d0a1a 942 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
f06febc9
FM
943 cutime = current->signal->cutime;
944 cstime = current->signal->cstime;
5613fda9
FW
945 tms->tms_utime = nsec_to_clock_t(tgutime);
946 tms->tms_stime = nsec_to_clock_t(tgstime);
947 tms->tms_cutime = nsec_to_clock_t(cutime);
948 tms->tms_cstime = nsec_to_clock_t(cstime);
f06febc9
FM
949}
950
58fd3aa2 951SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1da177e4 952{
1da177e4
LT
953 if (tbuf) {
954 struct tms tmp;
f06febc9
FM
955
956 do_sys_times(&tmp);
1da177e4
LT
957 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
958 return -EFAULT;
959 }
e3d5a27d 960 force_successful_syscall_return();
1da177e4
LT
961 return (long) jiffies_64_to_clock_t(get_jiffies_64());
962}
963
ca2406ed
AV
964#ifdef CONFIG_COMPAT
965static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
966{
967 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
968}
969
970COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
971{
972 if (tbuf) {
973 struct tms tms;
974 struct compat_tms tmp;
975
976 do_sys_times(&tms);
977 /* Convert our struct tms to the compat version. */
978 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
979 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
980 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
981 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
982 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
983 return -EFAULT;
984 }
985 force_successful_syscall_return();
986 return compat_jiffies_to_clock_t(jiffies);
987}
988#endif
989
1da177e4
LT
990/*
991 * This needs some heavy checking ...
992 * I just haven't the stomach for it. I also don't fully
993 * understand sessions/pgrp etc. Let somebody who does explain it.
994 *
995 * OK, I think I have the protection semantics right.... this is really
996 * only important on a multi-user system anyway, to make sure one user
997 * can't send a signal to a process owned by another. -TYT, 12/12/91
998 *
98611e4e 999 * !PF_FORKNOEXEC check to conform completely to POSIX.
1da177e4 1000 */
b290ebe2 1001SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1da177e4
LT
1002{
1003 struct task_struct *p;
ee0acf90 1004 struct task_struct *group_leader = current->group_leader;
4e021306
ON
1005 struct pid *pgrp;
1006 int err;
1da177e4
LT
1007
1008 if (!pid)
b488893a 1009 pid = task_pid_vnr(group_leader);
1da177e4
LT
1010 if (!pgid)
1011 pgid = pid;
1012 if (pgid < 0)
1013 return -EINVAL;
950eaaca 1014 rcu_read_lock();
1da177e4
LT
1015
1016 /* From this point forward we keep holding onto the tasklist lock
1017 * so that our parent does not change from under us. -DaveM
1018 */
1019 write_lock_irq(&tasklist_lock);
1020
1021 err = -ESRCH;
4e021306 1022 p = find_task_by_vpid(pid);
1da177e4
LT
1023 if (!p)
1024 goto out;
1025
1026 err = -EINVAL;
1027 if (!thread_group_leader(p))
1028 goto out;
1029
4e021306 1030 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 1031 err = -EPERM;
41487c65 1032 if (task_session(p) != task_session(group_leader))
1da177e4
LT
1033 goto out;
1034 err = -EACCES;
98611e4e 1035 if (!(p->flags & PF_FORKNOEXEC))
1da177e4
LT
1036 goto out;
1037 } else {
1038 err = -ESRCH;
ee0acf90 1039 if (p != group_leader)
1da177e4
LT
1040 goto out;
1041 }
1042
1043 err = -EPERM;
1044 if (p->signal->leader)
1045 goto out;
1046
4e021306 1047 pgrp = task_pid(p);
1da177e4 1048 if (pgid != pid) {
b488893a 1049 struct task_struct *g;
1da177e4 1050
4e021306
ON
1051 pgrp = find_vpid(pgid);
1052 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 1053 if (!g || task_session(g) != task_session(group_leader))
f020bc46 1054 goto out;
1da177e4
LT
1055 }
1056
1da177e4
LT
1057 err = security_task_setpgid(p, pgid);
1058 if (err)
1059 goto out;
1060
1b0f7ffd 1061 if (task_pgrp(p) != pgrp)
83beaf3c 1062 change_pid(p, PIDTYPE_PGID, pgrp);
1da177e4
LT
1063
1064 err = 0;
1065out:
1066 /* All paths lead to here, thus we are safe. -DaveM */
1067 write_unlock_irq(&tasklist_lock);
950eaaca 1068 rcu_read_unlock();
1da177e4
LT
1069 return err;
1070}
1071
192c5807 1072static int do_getpgid(pid_t pid)
1da177e4 1073{
12a3de0a
ON
1074 struct task_struct *p;
1075 struct pid *grp;
1076 int retval;
1077
1078 rcu_read_lock();
756184b7 1079 if (!pid)
12a3de0a 1080 grp = task_pgrp(current);
756184b7 1081 else {
1da177e4 1082 retval = -ESRCH;
12a3de0a
ON
1083 p = find_task_by_vpid(pid);
1084 if (!p)
1085 goto out;
1086 grp = task_pgrp(p);
1087 if (!grp)
1088 goto out;
1089
1090 retval = security_task_getpgid(p);
1091 if (retval)
1092 goto out;
1da177e4 1093 }
12a3de0a
ON
1094 retval = pid_vnr(grp);
1095out:
1096 rcu_read_unlock();
1097 return retval;
1da177e4
LT
1098}
1099
192c5807
DB
1100SYSCALL_DEFINE1(getpgid, pid_t, pid)
1101{
1102 return do_getpgid(pid);
1103}
1104
1da177e4
LT
1105#ifdef __ARCH_WANT_SYS_GETPGRP
1106
dbf040d9 1107SYSCALL_DEFINE0(getpgrp)
1da177e4 1108{
192c5807 1109 return do_getpgid(0);
1da177e4
LT
1110}
1111
1112#endif
1113
dbf040d9 1114SYSCALL_DEFINE1(getsid, pid_t, pid)
1da177e4 1115{
1dd768c0
ON
1116 struct task_struct *p;
1117 struct pid *sid;
1118 int retval;
1119
1120 rcu_read_lock();
756184b7 1121 if (!pid)
1dd768c0 1122 sid = task_session(current);
756184b7 1123 else {
1da177e4 1124 retval = -ESRCH;
1dd768c0
ON
1125 p = find_task_by_vpid(pid);
1126 if (!p)
1127 goto out;
1128 sid = task_session(p);
1129 if (!sid)
1130 goto out;
1131
1132 retval = security_task_getsid(p);
1133 if (retval)
1134 goto out;
1da177e4 1135 }
1dd768c0
ON
1136 retval = pid_vnr(sid);
1137out:
1138 rcu_read_unlock();
1139 return retval;
1da177e4
LT
1140}
1141
81dabb46
ON
1142static void set_special_pids(struct pid *pid)
1143{
1144 struct task_struct *curr = current->group_leader;
1145
1146 if (task_session(curr) != pid)
1147 change_pid(curr, PIDTYPE_SID, pid);
1148
1149 if (task_pgrp(curr) != pid)
1150 change_pid(curr, PIDTYPE_PGID, pid);
1151}
1152
e2aaa9f4 1153int ksys_setsid(void)
1da177e4 1154{
e19f247a 1155 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1156 struct pid *sid = task_pid(group_leader);
1157 pid_t session = pid_vnr(sid);
1da177e4
LT
1158 int err = -EPERM;
1159
1da177e4 1160 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1161 /* Fail if I am already a session leader */
1162 if (group_leader->signal->leader)
1163 goto out;
1164
430c6231
ON
1165 /* Fail if a process group id already exists that equals the
1166 * proposed session id.
390e2ff0 1167 */
6806aac6 1168 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1169 goto out;
1170
e19f247a 1171 group_leader->signal->leader = 1;
81dabb46 1172 set_special_pids(sid);
24ec839c 1173
9c9f4ded 1174 proc_clear_tty(group_leader);
24ec839c 1175
e4cc0a9c 1176 err = session;
1da177e4
LT
1177out:
1178 write_unlock_irq(&tasklist_lock);
5091faa4 1179 if (err > 0) {
0d0df599 1180 proc_sid_connector(group_leader);
5091faa4
MG
1181 sched_autogroup_create_attach(group_leader);
1182 }
1da177e4
LT
1183 return err;
1184}
1185
e2aaa9f4
DB
1186SYSCALL_DEFINE0(setsid)
1187{
1188 return ksys_setsid();
1189}
1190
1da177e4
LT
1191DECLARE_RWSEM(uts_sem);
1192
e28cbf22
CH
1193#ifdef COMPAT_UTS_MACHINE
1194#define override_architecture(name) \
46da2766 1195 (personality(current->personality) == PER_LINUX32 && \
e28cbf22
CH
1196 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1197 sizeof(COMPAT_UTS_MACHINE)))
1198#else
1199#define override_architecture(name) 0
1200#endif
1201
be27425d
AK
1202/*
1203 * Work around broken programs that cannot handle "Linux 3.0".
1204 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
39afb5ee 1205 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
be27425d 1206 */
2702b152 1207static int override_release(char __user *release, size_t len)
be27425d
AK
1208{
1209 int ret = 0;
be27425d
AK
1210
1211 if (current->personality & UNAME26) {
2702b152
KC
1212 const char *rest = UTS_RELEASE;
1213 char buf[65] = { 0 };
be27425d
AK
1214 int ndots = 0;
1215 unsigned v;
2702b152 1216 size_t copy;
be27425d
AK
1217
1218 while (*rest) {
1219 if (*rest == '.' && ++ndots >= 3)
1220 break;
1221 if (!isdigit(*rest) && *rest != '.')
1222 break;
1223 rest++;
1224 }
39afb5ee 1225 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
31fd84b9 1226 copy = clamp_t(size_t, len, 1, sizeof(buf));
2702b152
KC
1227 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1228 ret = copy_to_user(release, buf, copy + 1);
be27425d
AK
1229 }
1230 return ret;
1231}
1232
e48fbb69 1233SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1da177e4
LT
1234{
1235 int errno = 0;
1236
1237 down_read(&uts_sem);
e9ff3990 1238 if (copy_to_user(name, utsname(), sizeof *name))
1da177e4
LT
1239 errno = -EFAULT;
1240 up_read(&uts_sem);
e28cbf22 1241
be27425d
AK
1242 if (!errno && override_release(name->release, sizeof(name->release)))
1243 errno = -EFAULT;
e28cbf22
CH
1244 if (!errno && override_architecture(name))
1245 errno = -EFAULT;
1da177e4
LT
1246 return errno;
1247}
1248
5cacdb4a
CH
1249#ifdef __ARCH_WANT_SYS_OLD_UNAME
1250/*
1251 * Old cruft
1252 */
1253SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1254{
1255 int error = 0;
1256
1257 if (!name)
1258 return -EFAULT;
1259
1260 down_read(&uts_sem);
1261 if (copy_to_user(name, utsname(), sizeof(*name)))
1262 error = -EFAULT;
1263 up_read(&uts_sem);
1264
be27425d
AK
1265 if (!error && override_release(name->release, sizeof(name->release)))
1266 error = -EFAULT;
5cacdb4a
CH
1267 if (!error && override_architecture(name))
1268 error = -EFAULT;
1269 return error;
1270}
1271
1272SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1273{
1274 int error;
1275
1276 if (!name)
1277 return -EFAULT;
1278 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1279 return -EFAULT;
1280
1281 down_read(&uts_sem);
1282 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1283 __OLD_UTS_LEN);
1284 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1285 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1286 __OLD_UTS_LEN);
1287 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1288 error |= __copy_to_user(&name->release, &utsname()->release,
1289 __OLD_UTS_LEN);
1290 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1291 error |= __copy_to_user(&name->version, &utsname()->version,
1292 __OLD_UTS_LEN);
1293 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1294 error |= __copy_to_user(&name->machine, &utsname()->machine,
1295 __OLD_UTS_LEN);
1296 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1297 up_read(&uts_sem);
1298
1299 if (!error && override_architecture(name))
1300 error = -EFAULT;
be27425d
AK
1301 if (!error && override_release(name->release, sizeof(name->release)))
1302 error = -EFAULT;
5cacdb4a
CH
1303 return error ? -EFAULT : 0;
1304}
1305#endif
1306
5a8a82b1 1307SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1da177e4
LT
1308{
1309 int errno;
1310 char tmp[__NEW_UTS_LEN];
1311
bb96a6f5 1312 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4 1313 return -EPERM;
fc832ad3 1314
1da177e4
LT
1315 if (len < 0 || len > __NEW_UTS_LEN)
1316 return -EINVAL;
1317 down_write(&uts_sem);
1318 errno = -EFAULT;
1319 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1320 struct new_utsname *u = utsname();
1321
1322 memcpy(u->nodename, tmp, len);
1323 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4 1324 errno = 0;
499eea6b 1325 uts_proc_notify(UTS_PROC_HOSTNAME);
1da177e4
LT
1326 }
1327 up_write(&uts_sem);
1328 return errno;
1329}
1330
1331#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1332
5a8a82b1 1333SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1da177e4
LT
1334{
1335 int i, errno;
9679e4dd 1336 struct new_utsname *u;
1da177e4
LT
1337
1338 if (len < 0)
1339 return -EINVAL;
1340 down_read(&uts_sem);
9679e4dd
AM
1341 u = utsname();
1342 i = 1 + strlen(u->nodename);
1da177e4
LT
1343 if (i > len)
1344 i = len;
1345 errno = 0;
9679e4dd 1346 if (copy_to_user(name, u->nodename, i))
1da177e4
LT
1347 errno = -EFAULT;
1348 up_read(&uts_sem);
1349 return errno;
1350}
1351
1352#endif
1353
1354/*
1355 * Only setdomainname; getdomainname can be implemented by calling
1356 * uname()
1357 */
5a8a82b1 1358SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1da177e4
LT
1359{
1360 int errno;
1361 char tmp[__NEW_UTS_LEN];
1362
fc832ad3 1363 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1da177e4
LT
1364 return -EPERM;
1365 if (len < 0 || len > __NEW_UTS_LEN)
1366 return -EINVAL;
1367
1368 down_write(&uts_sem);
1369 errno = -EFAULT;
1370 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1371 struct new_utsname *u = utsname();
1372
1373 memcpy(u->domainname, tmp, len);
1374 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4 1375 errno = 0;
499eea6b 1376 uts_proc_notify(UTS_PROC_DOMAINNAME);
1da177e4
LT
1377 }
1378 up_write(&uts_sem);
1379 return errno;
1380}
1381
e48fbb69 1382SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4 1383{
b9518345
JS
1384 struct rlimit value;
1385 int ret;
1386
1387 ret = do_prlimit(current, resource, NULL, &value);
1388 if (!ret)
1389 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1390
1391 return ret;
1da177e4
LT
1392}
1393
d9e968cb
AV
1394#ifdef CONFIG_COMPAT
1395
1396COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1397 struct compat_rlimit __user *, rlim)
1398{
1399 struct rlimit r;
1400 struct compat_rlimit r32;
1401
1402 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1403 return -EFAULT;
1404
1405 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1406 r.rlim_cur = RLIM_INFINITY;
1407 else
1408 r.rlim_cur = r32.rlim_cur;
1409 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1410 r.rlim_max = RLIM_INFINITY;
1411 else
1412 r.rlim_max = r32.rlim_max;
1413 return do_prlimit(current, resource, &r, NULL);
1414}
1415
1416COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1417 struct compat_rlimit __user *, rlim)
1418{
1419 struct rlimit r;
1420 int ret;
1421
1422 ret = do_prlimit(current, resource, NULL, &r);
1423 if (!ret) {
58c7ffc0 1424 struct compat_rlimit r32;
d9e968cb
AV
1425 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1426 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1427 else
1428 r32.rlim_cur = r.rlim_cur;
1429 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1430 r32.rlim_max = COMPAT_RLIM_INFINITY;
1431 else
1432 r32.rlim_max = r.rlim_max;
1433
1434 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1435 return -EFAULT;
1436 }
1437 return ret;
1438}
1439
1440#endif
1441
1da177e4
LT
1442#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1443
1444/*
1445 * Back compatibility for getrlimit. Needed for some apps.
1446 */
e48fbb69
HC
1447SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1448 struct rlimit __user *, rlim)
1da177e4
LT
1449{
1450 struct rlimit x;
1451 if (resource >= RLIM_NLIMITS)
1452 return -EINVAL;
1453
1454 task_lock(current->group_leader);
1455 x = current->signal->rlim[resource];
1456 task_unlock(current->group_leader);
756184b7 1457 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1458 x.rlim_cur = 0x7FFFFFFF;
756184b7 1459 if (x.rlim_max > 0x7FFFFFFF)
1da177e4 1460 x.rlim_max = 0x7FFFFFFF;
ec94fc3d 1461 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1da177e4
LT
1462}
1463
613763a1
AV
1464#ifdef CONFIG_COMPAT
1465COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1466 struct compat_rlimit __user *, rlim)
1467{
1468 struct rlimit r;
1469
1470 if (resource >= RLIM_NLIMITS)
1471 return -EINVAL;
1472
1473 task_lock(current->group_leader);
1474 r = current->signal->rlim[resource];
1475 task_unlock(current->group_leader);
1476 if (r.rlim_cur > 0x7FFFFFFF)
1477 r.rlim_cur = 0x7FFFFFFF;
1478 if (r.rlim_max > 0x7FFFFFFF)
1479 r.rlim_max = 0x7FFFFFFF;
1480
1481 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1482 put_user(r.rlim_max, &rlim->rlim_max))
1483 return -EFAULT;
1484 return 0;
1485}
1486#endif
1487
1da177e4
LT
1488#endif
1489
c022a0ac
JS
1490static inline bool rlim64_is_infinity(__u64 rlim64)
1491{
1492#if BITS_PER_LONG < 64
1493 return rlim64 >= ULONG_MAX;
1494#else
1495 return rlim64 == RLIM64_INFINITY;
1496#endif
1497}
1498
1499static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1500{
1501 if (rlim->rlim_cur == RLIM_INFINITY)
1502 rlim64->rlim_cur = RLIM64_INFINITY;
1503 else
1504 rlim64->rlim_cur = rlim->rlim_cur;
1505 if (rlim->rlim_max == RLIM_INFINITY)
1506 rlim64->rlim_max = RLIM64_INFINITY;
1507 else
1508 rlim64->rlim_max = rlim->rlim_max;
1509}
1510
1511static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1512{
1513 if (rlim64_is_infinity(rlim64->rlim_cur))
1514 rlim->rlim_cur = RLIM_INFINITY;
1515 else
1516 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1517 if (rlim64_is_infinity(rlim64->rlim_max))
1518 rlim->rlim_max = RLIM_INFINITY;
1519 else
1520 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1521}
1522
1c1e618d 1523/* make sure you are allowed to change @tsk limits before calling this */
5b41535a
JS
1524int do_prlimit(struct task_struct *tsk, unsigned int resource,
1525 struct rlimit *new_rlim, struct rlimit *old_rlim)
1da177e4 1526{
5b41535a 1527 struct rlimit *rlim;
86f162f4 1528 int retval = 0;
1da177e4
LT
1529
1530 if (resource >= RLIM_NLIMITS)
1531 return -EINVAL;
5b41535a
JS
1532 if (new_rlim) {
1533 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1534 return -EINVAL;
1535 if (resource == RLIMIT_NOFILE &&
1536 new_rlim->rlim_max > sysctl_nr_open)
1537 return -EPERM;
1538 }
1da177e4 1539
1c1e618d
JS
1540 /* protect tsk->signal and tsk->sighand from disappearing */
1541 read_lock(&tasklist_lock);
1542 if (!tsk->sighand) {
1543 retval = -ESRCH;
1544 goto out;
1545 }
1546
5b41535a 1547 rlim = tsk->signal->rlim + resource;
86f162f4 1548 task_lock(tsk->group_leader);
5b41535a 1549 if (new_rlim) {
fc832ad3
SH
1550 /* Keep the capable check against init_user_ns until
1551 cgroups can contain all limits */
5b41535a
JS
1552 if (new_rlim->rlim_max > rlim->rlim_max &&
1553 !capable(CAP_SYS_RESOURCE))
1554 retval = -EPERM;
1555 if (!retval)
cad4ea54 1556 retval = security_task_setrlimit(tsk, resource, new_rlim);
5b41535a
JS
1557 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1558 /*
1559 * The caller is asking for an immediate RLIMIT_CPU
1560 * expiry. But we use the zero value to mean "it was
1561 * never set". So let's cheat and make it one second
1562 * instead
1563 */
1564 new_rlim->rlim_cur = 1;
1565 }
1566 }
1567 if (!retval) {
1568 if (old_rlim)
1569 *old_rlim = *rlim;
1570 if (new_rlim)
1571 *rlim = *new_rlim;
9926e4c7 1572 }
7855c35d 1573 task_unlock(tsk->group_leader);
1da177e4 1574
d3561f78
AM
1575 /*
1576 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1577 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1578 * very long-standing error, and fixing it now risks breakage of
1579 * applications, so we live with it
1580 */
5b41535a 1581 if (!retval && new_rlim && resource == RLIMIT_CPU &&
baa73d9e
NP
1582 new_rlim->rlim_cur != RLIM_INFINITY &&
1583 IS_ENABLED(CONFIG_POSIX_TIMERS))
5b41535a 1584 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
ec9e16ba 1585out:
1c1e618d 1586 read_unlock(&tasklist_lock);
2fb9d268 1587 return retval;
1da177e4
LT
1588}
1589
c022a0ac 1590/* rcu lock must be held */
791ec491
SS
1591static int check_prlimit_permission(struct task_struct *task,
1592 unsigned int flags)
c022a0ac
JS
1593{
1594 const struct cred *cred = current_cred(), *tcred;
791ec491 1595 bool id_match;
c022a0ac 1596
fc832ad3
SH
1597 if (current == task)
1598 return 0;
c022a0ac 1599
fc832ad3 1600 tcred = __task_cred(task);
791ec491
SS
1601 id_match = (uid_eq(cred->uid, tcred->euid) &&
1602 uid_eq(cred->uid, tcred->suid) &&
1603 uid_eq(cred->uid, tcred->uid) &&
1604 gid_eq(cred->gid, tcred->egid) &&
1605 gid_eq(cred->gid, tcred->sgid) &&
1606 gid_eq(cred->gid, tcred->gid));
1607 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1608 return -EPERM;
fc832ad3 1609
791ec491 1610 return security_task_prlimit(cred, tcred, flags);
c022a0ac
JS
1611}
1612
1613SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1614 const struct rlimit64 __user *, new_rlim,
1615 struct rlimit64 __user *, old_rlim)
1616{
1617 struct rlimit64 old64, new64;
1618 struct rlimit old, new;
1619 struct task_struct *tsk;
791ec491 1620 unsigned int checkflags = 0;
c022a0ac
JS
1621 int ret;
1622
791ec491
SS
1623 if (old_rlim)
1624 checkflags |= LSM_PRLIMIT_READ;
1625
c022a0ac
JS
1626 if (new_rlim) {
1627 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1628 return -EFAULT;
1629 rlim64_to_rlim(&new64, &new);
791ec491 1630 checkflags |= LSM_PRLIMIT_WRITE;
c022a0ac
JS
1631 }
1632
1633 rcu_read_lock();
1634 tsk = pid ? find_task_by_vpid(pid) : current;
1635 if (!tsk) {
1636 rcu_read_unlock();
1637 return -ESRCH;
1638 }
791ec491 1639 ret = check_prlimit_permission(tsk, checkflags);
c022a0ac
JS
1640 if (ret) {
1641 rcu_read_unlock();
1642 return ret;
1643 }
1644 get_task_struct(tsk);
1645 rcu_read_unlock();
1646
1647 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1648 old_rlim ? &old : NULL);
1649
1650 if (!ret && old_rlim) {
1651 rlim_to_rlim64(&old, &old64);
1652 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1653 ret = -EFAULT;
1654 }
1655
1656 put_task_struct(tsk);
1657 return ret;
1658}
1659
7855c35d
JS
1660SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1661{
1662 struct rlimit new_rlim;
1663
1664 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1665 return -EFAULT;
5b41535a 1666 return do_prlimit(current, resource, &new_rlim, NULL);
7855c35d
JS
1667}
1668
1da177e4
LT
1669/*
1670 * It would make sense to put struct rusage in the task_struct,
1671 * except that would make the task_struct be *really big*. After
1672 * task_struct gets moved into malloc'ed memory, it would
1673 * make sense to do this. It will make moving the rest of the information
1674 * a lot simpler! (Which we're not doing right now because we're not
1675 * measuring them yet).
1676 *
1da177e4
LT
1677 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1678 * races with threads incrementing their own counters. But since word
1679 * reads are atomic, we either get new values or old values and we don't
1680 * care which for the sums. We always take the siglock to protect reading
1681 * the c* fields from p->signal from races with exit.c updating those
1682 * fields when reaping, so a sample either gets all the additions of a
1683 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1684 *
de047c1b
RT
1685 * Locking:
1686 * We need to take the siglock for CHILDEREN, SELF and BOTH
1687 * for the cases current multithreaded, non-current single threaded
1688 * non-current multithreaded. Thread traversal is now safe with
1689 * the siglock held.
1690 * Strictly speaking, we donot need to take the siglock if we are current and
1691 * single threaded, as no one else can take our signal_struct away, no one
1692 * else can reap the children to update signal->c* counters, and no one else
1693 * can race with the signal-> fields. If we do not take any lock, the
1694 * signal-> fields could be read out of order while another thread was just
1695 * exiting. So we should place a read memory barrier when we avoid the lock.
1696 * On the writer side, write memory barrier is implied in __exit_signal
1697 * as __exit_signal releases the siglock spinlock after updating the signal->
1698 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1699 *
1da177e4
LT
1700 */
1701
f06febc9 1702static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1703{
679c9cd4
SK
1704 r->ru_nvcsw += t->nvcsw;
1705 r->ru_nivcsw += t->nivcsw;
1706 r->ru_minflt += t->min_flt;
1707 r->ru_majflt += t->maj_flt;
1708 r->ru_inblock += task_io_get_inblock(t);
1709 r->ru_oublock += task_io_get_oublock(t);
1710}
1711
ce72a16f 1712void getrusage(struct task_struct *p, int who, struct rusage *r)
1da177e4
LT
1713{
1714 struct task_struct *t;
1715 unsigned long flags;
5613fda9 1716 u64 tgutime, tgstime, utime, stime;
1f10206c 1717 unsigned long maxrss = 0;
1da177e4 1718
ec94fc3d 1719 memset((char *)r, 0, sizeof (*r));
64861634 1720 utime = stime = 0;
1da177e4 1721
679c9cd4 1722 if (who == RUSAGE_THREAD) {
e80d0a1a 1723 task_cputime_adjusted(current, &utime, &stime);
f06febc9 1724 accumulate_thread_rusage(p, r);
1f10206c 1725 maxrss = p->signal->maxrss;
679c9cd4
SK
1726 goto out;
1727 }
1728
d6cf723a 1729 if (!lock_task_sighand(p, &flags))
de047c1b 1730 return;
0f59cc4a 1731
1da177e4 1732 switch (who) {
ec94fc3d 1733 case RUSAGE_BOTH:
1734 case RUSAGE_CHILDREN:
1735 utime = p->signal->cutime;
1736 stime = p->signal->cstime;
1737 r->ru_nvcsw = p->signal->cnvcsw;
1738 r->ru_nivcsw = p->signal->cnivcsw;
1739 r->ru_minflt = p->signal->cmin_flt;
1740 r->ru_majflt = p->signal->cmaj_flt;
1741 r->ru_inblock = p->signal->cinblock;
1742 r->ru_oublock = p->signal->coublock;
1743 maxrss = p->signal->cmaxrss;
1744
1745 if (who == RUSAGE_CHILDREN)
1da177e4 1746 break;
0f59cc4a 1747
ec94fc3d 1748 case RUSAGE_SELF:
1749 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1750 utime += tgutime;
1751 stime += tgstime;
1752 r->ru_nvcsw += p->signal->nvcsw;
1753 r->ru_nivcsw += p->signal->nivcsw;
1754 r->ru_minflt += p->signal->min_flt;
1755 r->ru_majflt += p->signal->maj_flt;
1756 r->ru_inblock += p->signal->inblock;
1757 r->ru_oublock += p->signal->oublock;
1758 if (maxrss < p->signal->maxrss)
1759 maxrss = p->signal->maxrss;
1760 t = p;
1761 do {
1762 accumulate_thread_rusage(t, r);
1763 } while_each_thread(p, t);
1764 break;
1765
1766 default:
1767 BUG();
1da177e4 1768 }
de047c1b 1769 unlock_task_sighand(p, &flags);
de047c1b 1770
679c9cd4 1771out:
5613fda9
FW
1772 r->ru_utime = ns_to_timeval(utime);
1773 r->ru_stime = ns_to_timeval(stime);
1f10206c
JP
1774
1775 if (who != RUSAGE_CHILDREN) {
1776 struct mm_struct *mm = get_task_mm(p);
ec94fc3d 1777
1f10206c
JP
1778 if (mm) {
1779 setmax_mm_hiwater_rss(&maxrss, mm);
1780 mmput(mm);
1781 }
1782 }
1783 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1da177e4
LT
1784}
1785
ce72a16f 1786SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1da177e4
LT
1787{
1788 struct rusage r;
ec94fc3d 1789
679c9cd4
SK
1790 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1791 who != RUSAGE_THREAD)
1da177e4 1792 return -EINVAL;
ce72a16f
AV
1793
1794 getrusage(current, who, &r);
1795 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1da177e4
LT
1796}
1797
8d2d5c4a
AV
1798#ifdef CONFIG_COMPAT
1799COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1800{
1801 struct rusage r;
1802
1803 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1804 who != RUSAGE_THREAD)
1805 return -EINVAL;
1806
ce72a16f 1807 getrusage(current, who, &r);
8d2d5c4a
AV
1808 return put_compat_rusage(&r, ru);
1809}
1810#endif
1811
e48fbb69 1812SYSCALL_DEFINE1(umask, int, mask)
1da177e4
LT
1813{
1814 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1815 return mask;
1816}
3b7391de 1817
6e399cd1 1818static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
b32dfe37 1819{
2903ff01 1820 struct fd exe;
6e399cd1 1821 struct file *old_exe, *exe_file;
496ad9aa 1822 struct inode *inode;
2903ff01 1823 int err;
b32dfe37 1824
2903ff01
AV
1825 exe = fdget(fd);
1826 if (!exe.file)
b32dfe37
CG
1827 return -EBADF;
1828
496ad9aa 1829 inode = file_inode(exe.file);
b32dfe37
CG
1830
1831 /*
1832 * Because the original mm->exe_file points to executable file, make
1833 * sure that this one is executable as well, to avoid breaking an
1834 * overall picture.
1835 */
1836 err = -EACCES;
90f8572b 1837 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
b32dfe37
CG
1838 goto exit;
1839
496ad9aa 1840 err = inode_permission(inode, MAY_EXEC);
b32dfe37
CG
1841 if (err)
1842 goto exit;
1843
bafb282d 1844 /*
4229fb1d 1845 * Forbid mm->exe_file change if old file still mapped.
bafb282d 1846 */
6e399cd1 1847 exe_file = get_mm_exe_file(mm);
bafb282d 1848 err = -EBUSY;
6e399cd1 1849 if (exe_file) {
4229fb1d
KK
1850 struct vm_area_struct *vma;
1851
6e399cd1
DB
1852 down_read(&mm->mmap_sem);
1853 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1854 if (!vma->vm_file)
1855 continue;
1856 if (path_equal(&vma->vm_file->f_path,
1857 &exe_file->f_path))
1858 goto exit_err;
1859 }
1860
1861 up_read(&mm->mmap_sem);
1862 fput(exe_file);
bafb282d
KK
1863 }
1864
4229fb1d 1865 err = 0;
6e399cd1
DB
1866 /* set the new file, lockless */
1867 get_file(exe.file);
1868 old_exe = xchg(&mm->exe_file, exe.file);
1869 if (old_exe)
1870 fput(old_exe);
b32dfe37 1871exit:
2903ff01 1872 fdput(exe);
b32dfe37 1873 return err;
6e399cd1
DB
1874exit_err:
1875 up_read(&mm->mmap_sem);
1876 fput(exe_file);
1877 goto exit;
b32dfe37
CG
1878}
1879
f606b77f
CG
1880/*
1881 * WARNING: we don't require any capability here so be very careful
1882 * in what is allowed for modification from userspace.
1883 */
1884static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1885{
1886 unsigned long mmap_max_addr = TASK_SIZE;
1887 struct mm_struct *mm = current->mm;
1888 int error = -EINVAL, i;
1889
1890 static const unsigned char offsets[] = {
1891 offsetof(struct prctl_mm_map, start_code),
1892 offsetof(struct prctl_mm_map, end_code),
1893 offsetof(struct prctl_mm_map, start_data),
1894 offsetof(struct prctl_mm_map, end_data),
1895 offsetof(struct prctl_mm_map, start_brk),
1896 offsetof(struct prctl_mm_map, brk),
1897 offsetof(struct prctl_mm_map, start_stack),
1898 offsetof(struct prctl_mm_map, arg_start),
1899 offsetof(struct prctl_mm_map, arg_end),
1900 offsetof(struct prctl_mm_map, env_start),
1901 offsetof(struct prctl_mm_map, env_end),
1902 };
1903
1904 /*
1905 * Make sure the members are not somewhere outside
1906 * of allowed address space.
1907 */
1908 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1909 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1910
1911 if ((unsigned long)val >= mmap_max_addr ||
1912 (unsigned long)val < mmap_min_addr)
1913 goto out;
1914 }
1915
1916 /*
1917 * Make sure the pairs are ordered.
1918 */
1919#define __prctl_check_order(__m1, __op, __m2) \
1920 ((unsigned long)prctl_map->__m1 __op \
1921 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1922 error = __prctl_check_order(start_code, <, end_code);
1923 error |= __prctl_check_order(start_data, <, end_data);
1924 error |= __prctl_check_order(start_brk, <=, brk);
1925 error |= __prctl_check_order(arg_start, <=, arg_end);
1926 error |= __prctl_check_order(env_start, <=, env_end);
1927 if (error)
1928 goto out;
1929#undef __prctl_check_order
1930
1931 error = -EINVAL;
1932
1933 /*
1934 * @brk should be after @end_data in traditional maps.
1935 */
1936 if (prctl_map->start_brk <= prctl_map->end_data ||
1937 prctl_map->brk <= prctl_map->end_data)
1938 goto out;
1939
1940 /*
1941 * Neither we should allow to override limits if they set.
1942 */
1943 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1944 prctl_map->start_brk, prctl_map->end_data,
1945 prctl_map->start_data))
1946 goto out;
1947
1948 /*
1949 * Someone is trying to cheat the auxv vector.
1950 */
1951 if (prctl_map->auxv_size) {
1952 if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1953 goto out;
1954 }
1955
1956 /*
1957 * Finally, make sure the caller has the rights to
4d28df61 1958 * change /proc/pid/exe link: only local sys admin should
f606b77f
CG
1959 * be allowed to.
1960 */
1961 if (prctl_map->exe_fd != (u32)-1) {
4d28df61 1962 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN))
f606b77f
CG
1963 goto out;
1964 }
1965
1966 error = 0;
1967out:
1968 return error;
1969}
1970
4a00e9df 1971#ifdef CONFIG_CHECKPOINT_RESTORE
f606b77f
CG
1972static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1973{
1974 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1975 unsigned long user_auxv[AT_VECTOR_SIZE];
1976 struct mm_struct *mm = current->mm;
1977 int error;
1978
1979 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1980 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1981
1982 if (opt == PR_SET_MM_MAP_SIZE)
1983 return put_user((unsigned int)sizeof(prctl_map),
1984 (unsigned int __user *)addr);
1985
1986 if (data_size != sizeof(prctl_map))
1987 return -EINVAL;
1988
1989 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1990 return -EFAULT;
1991
1992 error = validate_prctl_map(&prctl_map);
1993 if (error)
1994 return error;
1995
1996 if (prctl_map.auxv_size) {
1997 memset(user_auxv, 0, sizeof(user_auxv));
1998 if (copy_from_user(user_auxv,
1999 (const void __user *)prctl_map.auxv,
2000 prctl_map.auxv_size))
2001 return -EFAULT;
2002
2003 /* Last entry must be AT_NULL as specification requires */
2004 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2005 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2006 }
2007
ddf1d398 2008 if (prctl_map.exe_fd != (u32)-1) {
6e399cd1 2009 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
ddf1d398
MG
2010 if (error)
2011 return error;
2012 }
2013
2014 down_write(&mm->mmap_sem);
f606b77f
CG
2015
2016 /*
2017 * We don't validate if these members are pointing to
2018 * real present VMAs because application may have correspond
2019 * VMAs already unmapped and kernel uses these members for statistics
2020 * output in procfs mostly, except
2021 *
2022 * - @start_brk/@brk which are used in do_brk but kernel lookups
2023 * for VMAs when updating these memvers so anything wrong written
2024 * here cause kernel to swear at userspace program but won't lead
2025 * to any problem in kernel itself
2026 */
2027
2028 mm->start_code = prctl_map.start_code;
2029 mm->end_code = prctl_map.end_code;
2030 mm->start_data = prctl_map.start_data;
2031 mm->end_data = prctl_map.end_data;
2032 mm->start_brk = prctl_map.start_brk;
2033 mm->brk = prctl_map.brk;
2034 mm->start_stack = prctl_map.start_stack;
2035 mm->arg_start = prctl_map.arg_start;
2036 mm->arg_end = prctl_map.arg_end;
2037 mm->env_start = prctl_map.env_start;
2038 mm->env_end = prctl_map.env_end;
2039
2040 /*
2041 * Note this update of @saved_auxv is lockless thus
2042 * if someone reads this member in procfs while we're
2043 * updating -- it may get partly updated results. It's
2044 * known and acceptable trade off: we leave it as is to
2045 * not introduce additional locks here making the kernel
2046 * more complex.
2047 */
2048 if (prctl_map.auxv_size)
2049 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2050
ddf1d398
MG
2051 up_write(&mm->mmap_sem);
2052 return 0;
f606b77f
CG
2053}
2054#endif /* CONFIG_CHECKPOINT_RESTORE */
2055
4a00e9df
AD
2056static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2057 unsigned long len)
2058{
2059 /*
2060 * This doesn't move the auxiliary vector itself since it's pinned to
2061 * mm_struct, but it permits filling the vector with new values. It's
2062 * up to the caller to provide sane values here, otherwise userspace
2063 * tools which use this vector might be unhappy.
2064 */
2065 unsigned long user_auxv[AT_VECTOR_SIZE];
2066
2067 if (len > sizeof(user_auxv))
2068 return -EINVAL;
2069
2070 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2071 return -EFAULT;
2072
2073 /* Make sure the last entry is always AT_NULL */
2074 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2075 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2076
2077 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2078
2079 task_lock(current);
2080 memcpy(mm->saved_auxv, user_auxv, len);
2081 task_unlock(current);
2082
2083 return 0;
2084}
2085
028ee4be
CG
2086static int prctl_set_mm(int opt, unsigned long addr,
2087 unsigned long arg4, unsigned long arg5)
2088{
028ee4be 2089 struct mm_struct *mm = current->mm;
4a00e9df 2090 struct prctl_mm_map prctl_map;
fe8c7f5c
CG
2091 struct vm_area_struct *vma;
2092 int error;
028ee4be 2093
f606b77f
CG
2094 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2095 opt != PR_SET_MM_MAP &&
2096 opt != PR_SET_MM_MAP_SIZE)))
028ee4be
CG
2097 return -EINVAL;
2098
f606b77f
CG
2099#ifdef CONFIG_CHECKPOINT_RESTORE
2100 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2101 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2102#endif
2103
79f0713d 2104 if (!capable(CAP_SYS_RESOURCE))
028ee4be
CG
2105 return -EPERM;
2106
6e399cd1
DB
2107 if (opt == PR_SET_MM_EXE_FILE)
2108 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
b32dfe37 2109
4a00e9df
AD
2110 if (opt == PR_SET_MM_AUXV)
2111 return prctl_set_auxv(mm, addr, arg4);
2112
1ad75b9e 2113 if (addr >= TASK_SIZE || addr < mmap_min_addr)
028ee4be
CG
2114 return -EINVAL;
2115
fe8c7f5c
CG
2116 error = -EINVAL;
2117
ddf1d398 2118 down_write(&mm->mmap_sem);
028ee4be
CG
2119 vma = find_vma(mm, addr);
2120
4a00e9df
AD
2121 prctl_map.start_code = mm->start_code;
2122 prctl_map.end_code = mm->end_code;
2123 prctl_map.start_data = mm->start_data;
2124 prctl_map.end_data = mm->end_data;
2125 prctl_map.start_brk = mm->start_brk;
2126 prctl_map.brk = mm->brk;
2127 prctl_map.start_stack = mm->start_stack;
2128 prctl_map.arg_start = mm->arg_start;
2129 prctl_map.arg_end = mm->arg_end;
2130 prctl_map.env_start = mm->env_start;
2131 prctl_map.env_end = mm->env_end;
2132 prctl_map.auxv = NULL;
2133 prctl_map.auxv_size = 0;
2134 prctl_map.exe_fd = -1;
2135
028ee4be
CG
2136 switch (opt) {
2137 case PR_SET_MM_START_CODE:
4a00e9df 2138 prctl_map.start_code = addr;
fe8c7f5c 2139 break;
028ee4be 2140 case PR_SET_MM_END_CODE:
4a00e9df 2141 prctl_map.end_code = addr;
028ee4be 2142 break;
028ee4be 2143 case PR_SET_MM_START_DATA:
4a00e9df 2144 prctl_map.start_data = addr;
028ee4be 2145 break;
fe8c7f5c 2146 case PR_SET_MM_END_DATA:
4a00e9df
AD
2147 prctl_map.end_data = addr;
2148 break;
2149 case PR_SET_MM_START_STACK:
2150 prctl_map.start_stack = addr;
028ee4be 2151 break;
028ee4be 2152 case PR_SET_MM_START_BRK:
4a00e9df 2153 prctl_map.start_brk = addr;
028ee4be 2154 break;
028ee4be 2155 case PR_SET_MM_BRK:
4a00e9df 2156 prctl_map.brk = addr;
028ee4be 2157 break;
4a00e9df
AD
2158 case PR_SET_MM_ARG_START:
2159 prctl_map.arg_start = addr;
2160 break;
2161 case PR_SET_MM_ARG_END:
2162 prctl_map.arg_end = addr;
2163 break;
2164 case PR_SET_MM_ENV_START:
2165 prctl_map.env_start = addr;
2166 break;
2167 case PR_SET_MM_ENV_END:
2168 prctl_map.env_end = addr;
2169 break;
2170 default:
2171 goto out;
2172 }
2173
2174 error = validate_prctl_map(&prctl_map);
2175 if (error)
2176 goto out;
028ee4be 2177
4a00e9df 2178 switch (opt) {
fe8c7f5c
CG
2179 /*
2180 * If command line arguments and environment
2181 * are placed somewhere else on stack, we can
2182 * set them up here, ARG_START/END to setup
2183 * command line argumets and ENV_START/END
2184 * for environment.
2185 */
2186 case PR_SET_MM_START_STACK:
2187 case PR_SET_MM_ARG_START:
2188 case PR_SET_MM_ARG_END:
2189 case PR_SET_MM_ENV_START:
2190 case PR_SET_MM_ENV_END:
2191 if (!vma) {
2192 error = -EFAULT;
2193 goto out;
2194 }
028ee4be
CG
2195 }
2196
4a00e9df
AD
2197 mm->start_code = prctl_map.start_code;
2198 mm->end_code = prctl_map.end_code;
2199 mm->start_data = prctl_map.start_data;
2200 mm->end_data = prctl_map.end_data;
2201 mm->start_brk = prctl_map.start_brk;
2202 mm->brk = prctl_map.brk;
2203 mm->start_stack = prctl_map.start_stack;
2204 mm->arg_start = prctl_map.arg_start;
2205 mm->arg_end = prctl_map.arg_end;
2206 mm->env_start = prctl_map.env_start;
2207 mm->env_end = prctl_map.env_end;
2208
028ee4be 2209 error = 0;
028ee4be 2210out:
ddf1d398 2211 up_write(&mm->mmap_sem);
028ee4be
CG
2212 return error;
2213}
300f786b 2214
52b36941 2215#ifdef CONFIG_CHECKPOINT_RESTORE
300f786b
CG
2216static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2217{
2218 return put_user(me->clear_child_tid, tid_addr);
2219}
52b36941 2220#else
300f786b
CG
2221static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2222{
2223 return -EINVAL;
2224}
028ee4be
CG
2225#endif
2226
749860ce
PT
2227static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2228{
2229 /*
2230 * If task has has_child_subreaper - all its decendants
2231 * already have these flag too and new decendants will
2232 * inherit it on fork, skip them.
2233 *
2234 * If we've found child_reaper - skip descendants in
2235 * it's subtree as they will never get out pidns.
2236 */
2237 if (p->signal->has_child_subreaper ||
2238 is_child_reaper(task_pid(p)))
2239 return 0;
2240
2241 p->signal->has_child_subreaper = 1;
2242 return 1;
2243}
2244
c4ea37c2
HC
2245SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2246 unsigned long, arg4, unsigned long, arg5)
1da177e4 2247{
b6dff3ec
DH
2248 struct task_struct *me = current;
2249 unsigned char comm[sizeof(me->comm)];
2250 long error;
1da177e4 2251
d84f4f99
DH
2252 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2253 if (error != -ENOSYS)
1da177e4
LT
2254 return error;
2255
d84f4f99 2256 error = 0;
1da177e4 2257 switch (option) {
f3cbd435
AM
2258 case PR_SET_PDEATHSIG:
2259 if (!valid_signal(arg2)) {
2260 error = -EINVAL;
1da177e4 2261 break;
f3cbd435
AM
2262 }
2263 me->pdeath_signal = arg2;
2264 break;
2265 case PR_GET_PDEATHSIG:
2266 error = put_user(me->pdeath_signal, (int __user *)arg2);
2267 break;
2268 case PR_GET_DUMPABLE:
2269 error = get_dumpable(me->mm);
2270 break;
2271 case PR_SET_DUMPABLE:
2272 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2273 error = -EINVAL;
1da177e4 2274 break;
f3cbd435
AM
2275 }
2276 set_dumpable(me->mm, arg2);
2277 break;
1da177e4 2278
f3cbd435
AM
2279 case PR_SET_UNALIGN:
2280 error = SET_UNALIGN_CTL(me, arg2);
2281 break;
2282 case PR_GET_UNALIGN:
2283 error = GET_UNALIGN_CTL(me, arg2);
2284 break;
2285 case PR_SET_FPEMU:
2286 error = SET_FPEMU_CTL(me, arg2);
2287 break;
2288 case PR_GET_FPEMU:
2289 error = GET_FPEMU_CTL(me, arg2);
2290 break;
2291 case PR_SET_FPEXC:
2292 error = SET_FPEXC_CTL(me, arg2);
2293 break;
2294 case PR_GET_FPEXC:
2295 error = GET_FPEXC_CTL(me, arg2);
2296 break;
2297 case PR_GET_TIMING:
2298 error = PR_TIMING_STATISTICAL;
2299 break;
2300 case PR_SET_TIMING:
2301 if (arg2 != PR_TIMING_STATISTICAL)
2302 error = -EINVAL;
2303 break;
2304 case PR_SET_NAME:
2305 comm[sizeof(me->comm) - 1] = 0;
2306 if (strncpy_from_user(comm, (char __user *)arg2,
2307 sizeof(me->comm) - 1) < 0)
2308 return -EFAULT;
2309 set_task_comm(me, comm);
2310 proc_comm_connector(me);
2311 break;
2312 case PR_GET_NAME:
2313 get_task_comm(comm, me);
2314 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2315 return -EFAULT;
2316 break;
2317 case PR_GET_ENDIAN:
2318 error = GET_ENDIAN(me, arg2);
2319 break;
2320 case PR_SET_ENDIAN:
2321 error = SET_ENDIAN(me, arg2);
2322 break;
2323 case PR_GET_SECCOMP:
2324 error = prctl_get_seccomp();
2325 break;
2326 case PR_SET_SECCOMP:
2327 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2328 break;
2329 case PR_GET_TSC:
2330 error = GET_TSC_CTL(arg2);
2331 break;
2332 case PR_SET_TSC:
2333 error = SET_TSC_CTL(arg2);
2334 break;
2335 case PR_TASK_PERF_EVENTS_DISABLE:
2336 error = perf_event_task_disable();
2337 break;
2338 case PR_TASK_PERF_EVENTS_ENABLE:
2339 error = perf_event_task_enable();
2340 break;
2341 case PR_GET_TIMERSLACK:
da8b44d5
JS
2342 if (current->timer_slack_ns > ULONG_MAX)
2343 error = ULONG_MAX;
2344 else
2345 error = current->timer_slack_ns;
f3cbd435
AM
2346 break;
2347 case PR_SET_TIMERSLACK:
2348 if (arg2 <= 0)
2349 current->timer_slack_ns =
6976675d 2350 current->default_timer_slack_ns;
f3cbd435
AM
2351 else
2352 current->timer_slack_ns = arg2;
2353 break;
2354 case PR_MCE_KILL:
2355 if (arg4 | arg5)
2356 return -EINVAL;
2357 switch (arg2) {
2358 case PR_MCE_KILL_CLEAR:
2359 if (arg3 != 0)
4db96cf0 2360 return -EINVAL;
f3cbd435 2361 current->flags &= ~PF_MCE_PROCESS;
4db96cf0 2362 break;
f3cbd435
AM
2363 case PR_MCE_KILL_SET:
2364 current->flags |= PF_MCE_PROCESS;
2365 if (arg3 == PR_MCE_KILL_EARLY)
2366 current->flags |= PF_MCE_EARLY;
2367 else if (arg3 == PR_MCE_KILL_LATE)
2368 current->flags &= ~PF_MCE_EARLY;
2369 else if (arg3 == PR_MCE_KILL_DEFAULT)
2370 current->flags &=
2371 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1087e9b4 2372 else
259e5e6c 2373 return -EINVAL;
259e5e6c 2374 break;
1da177e4 2375 default:
f3cbd435
AM
2376 return -EINVAL;
2377 }
2378 break;
2379 case PR_MCE_KILL_GET:
2380 if (arg2 | arg3 | arg4 | arg5)
2381 return -EINVAL;
2382 if (current->flags & PF_MCE_PROCESS)
2383 error = (current->flags & PF_MCE_EARLY) ?
2384 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2385 else
2386 error = PR_MCE_KILL_DEFAULT;
2387 break;
2388 case PR_SET_MM:
2389 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2390 break;
2391 case PR_GET_TID_ADDRESS:
2392 error = prctl_get_tid_address(me, (int __user **)arg2);
2393 break;
2394 case PR_SET_CHILD_SUBREAPER:
2395 me->signal->is_child_subreaper = !!arg2;
749860ce
PT
2396 if (!arg2)
2397 break;
2398
2399 walk_process_tree(me, propagate_has_child_subreaper, NULL);
f3cbd435
AM
2400 break;
2401 case PR_GET_CHILD_SUBREAPER:
2402 error = put_user(me->signal->is_child_subreaper,
2403 (int __user *)arg2);
2404 break;
2405 case PR_SET_NO_NEW_PRIVS:
2406 if (arg2 != 1 || arg3 || arg4 || arg5)
2407 return -EINVAL;
2408
1d4457f9 2409 task_set_no_new_privs(current);
f3cbd435
AM
2410 break;
2411 case PR_GET_NO_NEW_PRIVS:
2412 if (arg2 || arg3 || arg4 || arg5)
2413 return -EINVAL;
1d4457f9 2414 return task_no_new_privs(current) ? 1 : 0;
a0715cc2
AT
2415 case PR_GET_THP_DISABLE:
2416 if (arg2 || arg3 || arg4 || arg5)
2417 return -EINVAL;
18600332 2418 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
a0715cc2
AT
2419 break;
2420 case PR_SET_THP_DISABLE:
2421 if (arg3 || arg4 || arg5)
2422 return -EINVAL;
17b0573d
MH
2423 if (down_write_killable(&me->mm->mmap_sem))
2424 return -EINTR;
a0715cc2 2425 if (arg2)
18600332 2426 set_bit(MMF_DISABLE_THP, &me->mm->flags);
a0715cc2 2427 else
18600332 2428 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
a0715cc2
AT
2429 up_write(&me->mm->mmap_sem);
2430 break;
fe3d197f 2431 case PR_MPX_ENABLE_MANAGEMENT:
e9d1b4f3
DH
2432 if (arg2 || arg3 || arg4 || arg5)
2433 return -EINVAL;
46a6e0cf 2434 error = MPX_ENABLE_MANAGEMENT();
fe3d197f
DH
2435 break;
2436 case PR_MPX_DISABLE_MANAGEMENT:
e9d1b4f3
DH
2437 if (arg2 || arg3 || arg4 || arg5)
2438 return -EINVAL;
46a6e0cf 2439 error = MPX_DISABLE_MANAGEMENT();
fe3d197f 2440 break;
9791554b
PB
2441 case PR_SET_FP_MODE:
2442 error = SET_FP_MODE(me, arg2);
2443 break;
2444 case PR_GET_FP_MODE:
2445 error = GET_FP_MODE(me);
2446 break;
2d2123bc
DM
2447 case PR_SVE_SET_VL:
2448 error = SVE_SET_VL(arg2);
2449 break;
2450 case PR_SVE_GET_VL:
2451 error = SVE_GET_VL();
2452 break;
f3cbd435
AM
2453 default:
2454 error = -EINVAL;
2455 break;
1da177e4
LT
2456 }
2457 return error;
2458}
3cfc348b 2459
836f92ad
HC
2460SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2461 struct getcpu_cache __user *, unused)
3cfc348b
AK
2462{
2463 int err = 0;
2464 int cpu = raw_smp_processor_id();
ec94fc3d 2465
3cfc348b
AK
2466 if (cpup)
2467 err |= put_user(cpu, cpup);
2468 if (nodep)
2469 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
2470 return err ? -EFAULT : 0;
2471}
10a0a8d4 2472
4a22f166
SR
2473/**
2474 * do_sysinfo - fill in sysinfo struct
2475 * @info: pointer to buffer to fill
2476 */
2477static int do_sysinfo(struct sysinfo *info)
2478{
2479 unsigned long mem_total, sav_total;
2480 unsigned int mem_unit, bitcount;
2481 struct timespec tp;
2482
2483 memset(info, 0, sizeof(struct sysinfo));
2484
45c64940 2485 get_monotonic_boottime(&tp);
4a22f166
SR
2486 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2487
2488 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2489
2490 info->procs = nr_threads;
2491
2492 si_meminfo(info);
2493 si_swapinfo(info);
2494
2495 /*
2496 * If the sum of all the available memory (i.e. ram + swap)
2497 * is less than can be stored in a 32 bit unsigned long then
2498 * we can be binary compatible with 2.2.x kernels. If not,
2499 * well, in that case 2.2.x was broken anyways...
2500 *
2501 * -Erik Andersen <andersee@debian.org>
2502 */
2503
2504 mem_total = info->totalram + info->totalswap;
2505 if (mem_total < info->totalram || mem_total < info->totalswap)
2506 goto out;
2507 bitcount = 0;
2508 mem_unit = info->mem_unit;
2509 while (mem_unit > 1) {
2510 bitcount++;
2511 mem_unit >>= 1;
2512 sav_total = mem_total;
2513 mem_total <<= 1;
2514 if (mem_total < sav_total)
2515 goto out;
2516 }
2517
2518 /*
2519 * If mem_total did not overflow, multiply all memory values by
2520 * info->mem_unit and set it to 1. This leaves things compatible
2521 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2522 * kernels...
2523 */
2524
2525 info->mem_unit = 1;
2526 info->totalram <<= bitcount;
2527 info->freeram <<= bitcount;
2528 info->sharedram <<= bitcount;
2529 info->bufferram <<= bitcount;
2530 info->totalswap <<= bitcount;
2531 info->freeswap <<= bitcount;
2532 info->totalhigh <<= bitcount;
2533 info->freehigh <<= bitcount;
2534
2535out:
2536 return 0;
2537}
2538
2539SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2540{
2541 struct sysinfo val;
2542
2543 do_sysinfo(&val);
2544
2545 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2546 return -EFAULT;
2547
2548 return 0;
2549}
2550
2551#ifdef CONFIG_COMPAT
2552struct compat_sysinfo {
2553 s32 uptime;
2554 u32 loads[3];
2555 u32 totalram;
2556 u32 freeram;
2557 u32 sharedram;
2558 u32 bufferram;
2559 u32 totalswap;
2560 u32 freeswap;
2561 u16 procs;
2562 u16 pad;
2563 u32 totalhigh;
2564 u32 freehigh;
2565 u32 mem_unit;
2566 char _f[20-2*sizeof(u32)-sizeof(int)];
2567};
2568
2569COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2570{
2571 struct sysinfo s;
2572
2573 do_sysinfo(&s);
2574
2575 /* Check to see if any memory value is too large for 32-bit and scale
2576 * down if needed
2577 */
0baae41e 2578 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
4a22f166
SR
2579 int bitcount = 0;
2580
2581 while (s.mem_unit < PAGE_SIZE) {
2582 s.mem_unit <<= 1;
2583 bitcount++;
2584 }
2585
2586 s.totalram >>= bitcount;
2587 s.freeram >>= bitcount;
2588 s.sharedram >>= bitcount;
2589 s.bufferram >>= bitcount;
2590 s.totalswap >>= bitcount;
2591 s.freeswap >>= bitcount;
2592 s.totalhigh >>= bitcount;
2593 s.freehigh >>= bitcount;
2594 }
2595
2596 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2597 __put_user(s.uptime, &info->uptime) ||
2598 __put_user(s.loads[0], &info->loads[0]) ||
2599 __put_user(s.loads[1], &info->loads[1]) ||
2600 __put_user(s.loads[2], &info->loads[2]) ||
2601 __put_user(s.totalram, &info->totalram) ||
2602 __put_user(s.freeram, &info->freeram) ||
2603 __put_user(s.sharedram, &info->sharedram) ||
2604 __put_user(s.bufferram, &info->bufferram) ||
2605 __put_user(s.totalswap, &info->totalswap) ||
2606 __put_user(s.freeswap, &info->freeswap) ||
2607 __put_user(s.procs, &info->procs) ||
2608 __put_user(s.totalhigh, &info->totalhigh) ||
2609 __put_user(s.freehigh, &info->freehigh) ||
2610 __put_user(s.mem_unit, &info->mem_unit))
2611 return -EFAULT;
2612
2613 return 0;
2614}
2615#endif /* CONFIG_COMPAT */