ptrace: copy_process() should disable stepping
[linux-2.6-block.git] / kernel / sys.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
1da177e4
LT
7#include <linux/module.h>
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
1da177e4
LT
11#include <linux/notifier.h>
12#include <linux/reboot.h>
13#include <linux/prctl.h>
1da177e4
LT
14#include <linux/highuid.h>
15#include <linux/fs.h>
cdd6c482 16#include <linux/perf_event.h>
3e88c553 17#include <linux/resource.h>
dc009d92
EB
18#include <linux/kernel.h>
19#include <linux/kexec.h>
1da177e4 20#include <linux/workqueue.h>
c59ede7b 21#include <linux/capability.h>
1da177e4
LT
22#include <linux/device.h>
23#include <linux/key.h>
24#include <linux/times.h>
25#include <linux/posix-timers.h>
26#include <linux/security.h>
27#include <linux/dcookies.h>
28#include <linux/suspend.h>
29#include <linux/tty.h>
7ed20e1a 30#include <linux/signal.h>
9f46080c 31#include <linux/cn_proc.h>
3cfc348b 32#include <linux/getcpu.h>
6eaeeaba 33#include <linux/task_io_accounting_ops.h>
1d9d02fe 34#include <linux/seccomp.h>
4047727e 35#include <linux/cpu.h>
e3d5a27d 36#include <linux/ptrace.h>
5ad4e53b 37#include <linux/fs_struct.h>
1da177e4
LT
38
39#include <linux/compat.h>
40#include <linux/syscalls.h>
00d7c05a 41#include <linux/kprobes.h>
acce292c 42#include <linux/user_namespace.h>
1da177e4
LT
43
44#include <asm/uaccess.h>
45#include <asm/io.h>
46#include <asm/unistd.h>
47
48#ifndef SET_UNALIGN_CTL
49# define SET_UNALIGN_CTL(a,b) (-EINVAL)
50#endif
51#ifndef GET_UNALIGN_CTL
52# define GET_UNALIGN_CTL(a,b) (-EINVAL)
53#endif
54#ifndef SET_FPEMU_CTL
55# define SET_FPEMU_CTL(a,b) (-EINVAL)
56#endif
57#ifndef GET_FPEMU_CTL
58# define GET_FPEMU_CTL(a,b) (-EINVAL)
59#endif
60#ifndef SET_FPEXC_CTL
61# define SET_FPEXC_CTL(a,b) (-EINVAL)
62#endif
63#ifndef GET_FPEXC_CTL
64# define GET_FPEXC_CTL(a,b) (-EINVAL)
65#endif
651d765d
AB
66#ifndef GET_ENDIAN
67# define GET_ENDIAN(a,b) (-EINVAL)
68#endif
69#ifndef SET_ENDIAN
70# define SET_ENDIAN(a,b) (-EINVAL)
71#endif
8fb402bc
EB
72#ifndef GET_TSC_CTL
73# define GET_TSC_CTL(a) (-EINVAL)
74#endif
75#ifndef SET_TSC_CTL
76# define SET_TSC_CTL(a) (-EINVAL)
77#endif
1da177e4
LT
78
79/*
80 * this is where the system-wide overflow UID and GID are defined, for
81 * architectures that now have 32-bit UID/GID but didn't in the past
82 */
83
84int overflowuid = DEFAULT_OVERFLOWUID;
85int overflowgid = DEFAULT_OVERFLOWGID;
86
87#ifdef CONFIG_UID16
88EXPORT_SYMBOL(overflowuid);
89EXPORT_SYMBOL(overflowgid);
90#endif
91
92/*
93 * the same as above, but for filesystems which can only store a 16-bit
94 * UID and GID. as such, this is needed on all architectures
95 */
96
97int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
98int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
99
100EXPORT_SYMBOL(fs_overflowuid);
101EXPORT_SYMBOL(fs_overflowgid);
102
103/*
104 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
105 */
106
107int C_A_D = 1;
9ec52099
CLG
108struct pid *cad_pid;
109EXPORT_SYMBOL(cad_pid);
1da177e4 110
bd804eba
RW
111/*
112 * If set, this is used for preparing the system to power off.
113 */
114
115void (*pm_power_off_prepare)(void);
bd804eba 116
c69e8d9c
DH
117/*
118 * set the priority of a task
119 * - the caller must hold the RCU read lock
120 */
1da177e4
LT
121static int set_one_prio(struct task_struct *p, int niceval, int error)
122{
c69e8d9c 123 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
1da177e4
LT
124 int no_nice;
125
c69e8d9c
DH
126 if (pcred->uid != cred->euid &&
127 pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
1da177e4
LT
128 error = -EPERM;
129 goto out;
130 }
e43379f1 131 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
1da177e4
LT
132 error = -EACCES;
133 goto out;
134 }
135 no_nice = security_task_setnice(p, niceval);
136 if (no_nice) {
137 error = no_nice;
138 goto out;
139 }
140 if (error == -ESRCH)
141 error = 0;
142 set_user_nice(p, niceval);
143out:
144 return error;
145}
146
754fe8d2 147SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
1da177e4
LT
148{
149 struct task_struct *g, *p;
150 struct user_struct *user;
86a264ab 151 const struct cred *cred = current_cred();
1da177e4 152 int error = -EINVAL;
41487c65 153 struct pid *pgrp;
1da177e4 154
3e88c553 155 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
156 goto out;
157
158 /* normalize: avoid signed division (rounding problems) */
159 error = -ESRCH;
160 if (niceval < -20)
161 niceval = -20;
162 if (niceval > 19)
163 niceval = 19;
164
165 read_lock(&tasklist_lock);
166 switch (which) {
167 case PRIO_PROCESS:
41487c65 168 if (who)
228ebcbe 169 p = find_task_by_vpid(who);
41487c65
EB
170 else
171 p = current;
1da177e4
LT
172 if (p)
173 error = set_one_prio(p, niceval, error);
174 break;
175 case PRIO_PGRP:
41487c65 176 if (who)
b488893a 177 pgrp = find_vpid(who);
41487c65
EB
178 else
179 pgrp = task_pgrp(current);
2d70b68d 180 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4 181 error = set_one_prio(p, niceval, error);
2d70b68d 182 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
183 break;
184 case PRIO_USER:
d84f4f99 185 user = (struct user_struct *) cred->user;
1da177e4 186 if (!who)
86a264ab
DH
187 who = cred->uid;
188 else if ((who != cred->uid) &&
189 !(user = find_user(who)))
190 goto out_unlock; /* No processes for this user */
1da177e4 191
dfc6a736 192 do_each_thread(g, p) {
86a264ab 193 if (__task_cred(p)->uid == who)
1da177e4 194 error = set_one_prio(p, niceval, error);
dfc6a736 195 } while_each_thread(g, p);
86a264ab 196 if (who != cred->uid)
1da177e4
LT
197 free_uid(user); /* For find_user() */
198 break;
199 }
200out_unlock:
201 read_unlock(&tasklist_lock);
202out:
203 return error;
204}
205
206/*
207 * Ugh. To avoid negative return values, "getpriority()" will
208 * not return the normal nice-value, but a negated value that
209 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
210 * to stay compatible.
211 */
754fe8d2 212SYSCALL_DEFINE2(getpriority, int, which, int, who)
1da177e4
LT
213{
214 struct task_struct *g, *p;
215 struct user_struct *user;
86a264ab 216 const struct cred *cred = current_cred();
1da177e4 217 long niceval, retval = -ESRCH;
41487c65 218 struct pid *pgrp;
1da177e4 219
3e88c553 220 if (which > PRIO_USER || which < PRIO_PROCESS)
1da177e4
LT
221 return -EINVAL;
222
223 read_lock(&tasklist_lock);
224 switch (which) {
225 case PRIO_PROCESS:
41487c65 226 if (who)
228ebcbe 227 p = find_task_by_vpid(who);
41487c65
EB
228 else
229 p = current;
1da177e4
LT
230 if (p) {
231 niceval = 20 - task_nice(p);
232 if (niceval > retval)
233 retval = niceval;
234 }
235 break;
236 case PRIO_PGRP:
41487c65 237 if (who)
b488893a 238 pgrp = find_vpid(who);
41487c65
EB
239 else
240 pgrp = task_pgrp(current);
2d70b68d 241 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
1da177e4
LT
242 niceval = 20 - task_nice(p);
243 if (niceval > retval)
244 retval = niceval;
2d70b68d 245 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
1da177e4
LT
246 break;
247 case PRIO_USER:
86a264ab 248 user = (struct user_struct *) cred->user;
1da177e4 249 if (!who)
86a264ab
DH
250 who = cred->uid;
251 else if ((who != cred->uid) &&
252 !(user = find_user(who)))
253 goto out_unlock; /* No processes for this user */
1da177e4 254
dfc6a736 255 do_each_thread(g, p) {
86a264ab 256 if (__task_cred(p)->uid == who) {
1da177e4
LT
257 niceval = 20 - task_nice(p);
258 if (niceval > retval)
259 retval = niceval;
260 }
dfc6a736 261 } while_each_thread(g, p);
86a264ab 262 if (who != cred->uid)
1da177e4
LT
263 free_uid(user); /* for find_user() */
264 break;
265 }
266out_unlock:
267 read_unlock(&tasklist_lock);
268
269 return retval;
270}
271
e4c94330
EB
272/**
273 * emergency_restart - reboot the system
274 *
275 * Without shutting down any hardware or taking any locks
276 * reboot the system. This is called when we know we are in
277 * trouble so this is our best effort to reboot. This is
278 * safe to call in interrupt context.
279 */
7c903473
EB
280void emergency_restart(void)
281{
282 machine_emergency_restart();
283}
284EXPORT_SYMBOL_GPL(emergency_restart);
285
ca195b7f 286void kernel_restart_prepare(char *cmd)
4a00ea1e 287{
e041c683 288 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
4a00ea1e 289 system_state = SYSTEM_RESTART;
4a00ea1e 290 device_shutdown();
58b3b71d 291 sysdev_shutdown();
e4c94330 292}
1e5d5331
RD
293
294/**
295 * kernel_restart - reboot the system
296 * @cmd: pointer to buffer containing command to execute for restart
b8887e6e 297 * or %NULL
1e5d5331
RD
298 *
299 * Shutdown everything and perform a clean reboot.
300 * This is not safe to call in interrupt context.
301 */
e4c94330
EB
302void kernel_restart(char *cmd)
303{
304 kernel_restart_prepare(cmd);
756184b7 305 if (!cmd)
4a00ea1e 306 printk(KERN_EMERG "Restarting system.\n");
756184b7 307 else
4a00ea1e 308 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
4a00ea1e
EB
309 machine_restart(cmd);
310}
311EXPORT_SYMBOL_GPL(kernel_restart);
312
4ef7229f 313static void kernel_shutdown_prepare(enum system_states state)
729b4d4c 314{
e041c683 315 blocking_notifier_call_chain(&reboot_notifier_list,
729b4d4c
AS
316 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
317 system_state = state;
318 device_shutdown();
319}
e4c94330
EB
320/**
321 * kernel_halt - halt the system
322 *
323 * Shutdown everything and perform a clean system halt.
324 */
e4c94330
EB
325void kernel_halt(void)
326{
729b4d4c 327 kernel_shutdown_prepare(SYSTEM_HALT);
58b3b71d 328 sysdev_shutdown();
4a00ea1e
EB
329 printk(KERN_EMERG "System halted.\n");
330 machine_halt();
331}
729b4d4c 332
4a00ea1e
EB
333EXPORT_SYMBOL_GPL(kernel_halt);
334
e4c94330
EB
335/**
336 * kernel_power_off - power_off the system
337 *
338 * Shutdown everything and perform a clean system power_off.
339 */
e4c94330
EB
340void kernel_power_off(void)
341{
729b4d4c 342 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
bd804eba
RW
343 if (pm_power_off_prepare)
344 pm_power_off_prepare();
4047727e 345 disable_nonboot_cpus();
58b3b71d 346 sysdev_shutdown();
4a00ea1e
EB
347 printk(KERN_EMERG "Power down.\n");
348 machine_power_off();
349}
350EXPORT_SYMBOL_GPL(kernel_power_off);
6f15fa50
TG
351
352static DEFINE_MUTEX(reboot_mutex);
353
1da177e4
LT
354/*
355 * Reboot system call: for obvious reasons only root may call it,
356 * and even root needs to set up some magic numbers in the registers
357 * so that some mistake won't make this reboot the whole machine.
358 * You can also set the meaning of the ctrl-alt-del-key here.
359 *
360 * reboot doesn't sync: do that yourself before calling this.
361 */
754fe8d2
HC
362SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
363 void __user *, arg)
1da177e4
LT
364{
365 char buffer[256];
3d26dcf7 366 int ret = 0;
1da177e4
LT
367
368 /* We only trust the superuser with rebooting the system. */
369 if (!capable(CAP_SYS_BOOT))
370 return -EPERM;
371
372 /* For safety, we require "magic" arguments. */
373 if (magic1 != LINUX_REBOOT_MAGIC1 ||
374 (magic2 != LINUX_REBOOT_MAGIC2 &&
375 magic2 != LINUX_REBOOT_MAGIC2A &&
376 magic2 != LINUX_REBOOT_MAGIC2B &&
377 magic2 != LINUX_REBOOT_MAGIC2C))
378 return -EINVAL;
379
5e38291d
EB
380 /* Instead of trying to make the power_off code look like
381 * halt when pm_power_off is not set do it the easy way.
382 */
383 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
384 cmd = LINUX_REBOOT_CMD_HALT;
385
6f15fa50 386 mutex_lock(&reboot_mutex);
1da177e4
LT
387 switch (cmd) {
388 case LINUX_REBOOT_CMD_RESTART:
4a00ea1e 389 kernel_restart(NULL);
1da177e4
LT
390 break;
391
392 case LINUX_REBOOT_CMD_CAD_ON:
393 C_A_D = 1;
394 break;
395
396 case LINUX_REBOOT_CMD_CAD_OFF:
397 C_A_D = 0;
398 break;
399
400 case LINUX_REBOOT_CMD_HALT:
4a00ea1e 401 kernel_halt();
1da177e4 402 do_exit(0);
3d26dcf7 403 panic("cannot halt");
1da177e4
LT
404
405 case LINUX_REBOOT_CMD_POWER_OFF:
4a00ea1e 406 kernel_power_off();
1da177e4
LT
407 do_exit(0);
408 break;
409
410 case LINUX_REBOOT_CMD_RESTART2:
411 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
6f15fa50
TG
412 ret = -EFAULT;
413 break;
1da177e4
LT
414 }
415 buffer[sizeof(buffer) - 1] = '\0';
416
4a00ea1e 417 kernel_restart(buffer);
1da177e4
LT
418 break;
419
3ab83521 420#ifdef CONFIG_KEXEC
dc009d92 421 case LINUX_REBOOT_CMD_KEXEC:
3d26dcf7
AK
422 ret = kernel_kexec();
423 break;
3ab83521 424#endif
4a00ea1e 425
b0cb1a19 426#ifdef CONFIG_HIBERNATION
1da177e4 427 case LINUX_REBOOT_CMD_SW_SUSPEND:
3d26dcf7
AK
428 ret = hibernate();
429 break;
1da177e4
LT
430#endif
431
432 default:
3d26dcf7
AK
433 ret = -EINVAL;
434 break;
1da177e4 435 }
6f15fa50 436 mutex_unlock(&reboot_mutex);
3d26dcf7 437 return ret;
1da177e4
LT
438}
439
65f27f38 440static void deferred_cad(struct work_struct *dummy)
1da177e4 441{
abcd9e51 442 kernel_restart(NULL);
1da177e4
LT
443}
444
445/*
446 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
447 * As it's called within an interrupt, it may NOT sync: the only choice
448 * is whether to reboot at once, or just ignore the ctrl-alt-del.
449 */
450void ctrl_alt_del(void)
451{
65f27f38 452 static DECLARE_WORK(cad_work, deferred_cad);
1da177e4
LT
453
454 if (C_A_D)
455 schedule_work(&cad_work);
456 else
9ec52099 457 kill_cad_pid(SIGINT, 1);
1da177e4
LT
458}
459
1da177e4
LT
460/*
461 * Unprivileged users may change the real gid to the effective gid
462 * or vice versa. (BSD-style)
463 *
464 * If you set the real gid at all, or set the effective gid to a value not
465 * equal to the real gid, then the saved gid is set to the new effective gid.
466 *
467 * This makes it possible for a setgid program to completely drop its
468 * privileges, which is often a useful assertion to make when you are doing
469 * a security audit over a program.
470 *
471 * The general idea is that a program which uses just setregid() will be
472 * 100% compatible with BSD. A program which uses just setgid() will be
473 * 100% compatible with POSIX with saved IDs.
474 *
475 * SMP: There are not races, the GIDs are checked only by filesystem
476 * operations (as far as semantic preservation is concerned).
477 */
ae1251ab 478SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
1da177e4 479{
d84f4f99
DH
480 const struct cred *old;
481 struct cred *new;
1da177e4
LT
482 int retval;
483
d84f4f99
DH
484 new = prepare_creds();
485 if (!new)
486 return -ENOMEM;
487 old = current_cred();
488
1da177e4
LT
489 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
490 if (retval)
d84f4f99 491 goto error;
1da177e4 492
d84f4f99 493 retval = -EPERM;
1da177e4 494 if (rgid != (gid_t) -1) {
d84f4f99
DH
495 if (old->gid == rgid ||
496 old->egid == rgid ||
1da177e4 497 capable(CAP_SETGID))
d84f4f99 498 new->gid = rgid;
1da177e4 499 else
d84f4f99 500 goto error;
1da177e4
LT
501 }
502 if (egid != (gid_t) -1) {
d84f4f99
DH
503 if (old->gid == egid ||
504 old->egid == egid ||
505 old->sgid == egid ||
1da177e4 506 capable(CAP_SETGID))
d84f4f99 507 new->egid = egid;
756184b7 508 else
d84f4f99 509 goto error;
1da177e4 510 }
d84f4f99 511
1da177e4 512 if (rgid != (gid_t) -1 ||
d84f4f99
DH
513 (egid != (gid_t) -1 && egid != old->gid))
514 new->sgid = new->egid;
515 new->fsgid = new->egid;
516
517 return commit_creds(new);
518
519error:
520 abort_creds(new);
521 return retval;
1da177e4
LT
522}
523
524/*
525 * setgid() is implemented like SysV w/ SAVED_IDS
526 *
527 * SMP: Same implicit races as above.
528 */
ae1251ab 529SYSCALL_DEFINE1(setgid, gid_t, gid)
1da177e4 530{
d84f4f99
DH
531 const struct cred *old;
532 struct cred *new;
1da177e4
LT
533 int retval;
534
d84f4f99
DH
535 new = prepare_creds();
536 if (!new)
537 return -ENOMEM;
538 old = current_cred();
539
1da177e4
LT
540 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
541 if (retval)
d84f4f99 542 goto error;
1da177e4 543
d84f4f99
DH
544 retval = -EPERM;
545 if (capable(CAP_SETGID))
546 new->gid = new->egid = new->sgid = new->fsgid = gid;
547 else if (gid == old->gid || gid == old->sgid)
548 new->egid = new->fsgid = gid;
1da177e4 549 else
d84f4f99 550 goto error;
1da177e4 551
d84f4f99
DH
552 return commit_creds(new);
553
554error:
555 abort_creds(new);
556 return retval;
1da177e4 557}
54e99124 558
d84f4f99
DH
559/*
560 * change the user struct in a credentials set to match the new UID
561 */
562static int set_user(struct cred *new)
1da177e4
LT
563{
564 struct user_struct *new_user;
565
18b6e041 566 new_user = alloc_uid(current_user_ns(), new->uid);
1da177e4
LT
567 if (!new_user)
568 return -EAGAIN;
569
54e99124
DG
570 if (!task_can_switch_user(new_user, current)) {
571 free_uid(new_user);
572 return -EINVAL;
573 }
574
1da177e4
LT
575 if (atomic_read(&new_user->processes) >=
576 current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
18b6e041 577 new_user != INIT_USER) {
1da177e4
LT
578 free_uid(new_user);
579 return -EAGAIN;
580 }
581
d84f4f99
DH
582 free_uid(new->user);
583 new->user = new_user;
1da177e4
LT
584 return 0;
585}
586
587/*
588 * Unprivileged users may change the real uid to the effective uid
589 * or vice versa. (BSD-style)
590 *
591 * If you set the real uid at all, or set the effective uid to a value not
592 * equal to the real uid, then the saved uid is set to the new effective uid.
593 *
594 * This makes it possible for a setuid program to completely drop its
595 * privileges, which is often a useful assertion to make when you are doing
596 * a security audit over a program.
597 *
598 * The general idea is that a program which uses just setreuid() will be
599 * 100% compatible with BSD. A program which uses just setuid() will be
600 * 100% compatible with POSIX with saved IDs.
601 */
ae1251ab 602SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
1da177e4 603{
d84f4f99
DH
604 const struct cred *old;
605 struct cred *new;
1da177e4
LT
606 int retval;
607
d84f4f99
DH
608 new = prepare_creds();
609 if (!new)
610 return -ENOMEM;
611 old = current_cred();
612
1da177e4
LT
613 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
614 if (retval)
d84f4f99 615 goto error;
1da177e4 616
d84f4f99 617 retval = -EPERM;
1da177e4 618 if (ruid != (uid_t) -1) {
d84f4f99
DH
619 new->uid = ruid;
620 if (old->uid != ruid &&
621 old->euid != ruid &&
1da177e4 622 !capable(CAP_SETUID))
d84f4f99 623 goto error;
1da177e4
LT
624 }
625
626 if (euid != (uid_t) -1) {
d84f4f99
DH
627 new->euid = euid;
628 if (old->uid != euid &&
629 old->euid != euid &&
630 old->suid != euid &&
1da177e4 631 !capable(CAP_SETUID))
d84f4f99 632 goto error;
1da177e4
LT
633 }
634
54e99124
DG
635 if (new->uid != old->uid) {
636 retval = set_user(new);
637 if (retval < 0)
638 goto error;
639 }
1da177e4 640 if (ruid != (uid_t) -1 ||
d84f4f99
DH
641 (euid != (uid_t) -1 && euid != old->uid))
642 new->suid = new->euid;
643 new->fsuid = new->euid;
1da177e4 644
d84f4f99
DH
645 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
646 if (retval < 0)
647 goto error;
1da177e4 648
d84f4f99 649 return commit_creds(new);
1da177e4 650
d84f4f99
DH
651error:
652 abort_creds(new);
653 return retval;
654}
1da177e4
LT
655
656/*
657 * setuid() is implemented like SysV with SAVED_IDS
658 *
659 * Note that SAVED_ID's is deficient in that a setuid root program
660 * like sendmail, for example, cannot set its uid to be a normal
661 * user and then switch back, because if you're root, setuid() sets
662 * the saved uid too. If you don't like this, blame the bright people
663 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
664 * will allow a root program to temporarily drop privileges and be able to
665 * regain them by swapping the real and effective uid.
666 */
ae1251ab 667SYSCALL_DEFINE1(setuid, uid_t, uid)
1da177e4 668{
d84f4f99
DH
669 const struct cred *old;
670 struct cred *new;
1da177e4
LT
671 int retval;
672
d84f4f99
DH
673 new = prepare_creds();
674 if (!new)
675 return -ENOMEM;
676 old = current_cred();
677
1da177e4
LT
678 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
679 if (retval)
d84f4f99 680 goto error;
1da177e4 681
d84f4f99 682 retval = -EPERM;
1da177e4 683 if (capable(CAP_SETUID)) {
d84f4f99 684 new->suid = new->uid = uid;
54e99124
DG
685 if (uid != old->uid) {
686 retval = set_user(new);
687 if (retval < 0)
688 goto error;
d84f4f99
DH
689 }
690 } else if (uid != old->uid && uid != new->suid) {
691 goto error;
1da177e4 692 }
1da177e4 693
d84f4f99
DH
694 new->fsuid = new->euid = uid;
695
696 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
697 if (retval < 0)
698 goto error;
1da177e4 699
d84f4f99 700 return commit_creds(new);
1da177e4 701
d84f4f99
DH
702error:
703 abort_creds(new);
704 return retval;
1da177e4
LT
705}
706
707
708/*
709 * This function implements a generic ability to update ruid, euid,
710 * and suid. This allows you to implement the 4.4 compatible seteuid().
711 */
ae1251ab 712SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
1da177e4 713{
d84f4f99
DH
714 const struct cred *old;
715 struct cred *new;
1da177e4
LT
716 int retval;
717
d84f4f99
DH
718 new = prepare_creds();
719 if (!new)
720 return -ENOMEM;
721
1da177e4
LT
722 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
723 if (retval)
d84f4f99
DH
724 goto error;
725 old = current_cred();
1da177e4 726
d84f4f99 727 retval = -EPERM;
1da177e4 728 if (!capable(CAP_SETUID)) {
d84f4f99
DH
729 if (ruid != (uid_t) -1 && ruid != old->uid &&
730 ruid != old->euid && ruid != old->suid)
731 goto error;
732 if (euid != (uid_t) -1 && euid != old->uid &&
733 euid != old->euid && euid != old->suid)
734 goto error;
735 if (suid != (uid_t) -1 && suid != old->uid &&
736 suid != old->euid && suid != old->suid)
737 goto error;
1da177e4 738 }
d84f4f99 739
1da177e4 740 if (ruid != (uid_t) -1) {
d84f4f99 741 new->uid = ruid;
54e99124
DG
742 if (ruid != old->uid) {
743 retval = set_user(new);
744 if (retval < 0)
745 goto error;
746 }
1da177e4 747 }
d84f4f99
DH
748 if (euid != (uid_t) -1)
749 new->euid = euid;
1da177e4 750 if (suid != (uid_t) -1)
d84f4f99
DH
751 new->suid = suid;
752 new->fsuid = new->euid;
1da177e4 753
d84f4f99
DH
754 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
755 if (retval < 0)
756 goto error;
1da177e4 757
d84f4f99 758 return commit_creds(new);
1da177e4 759
d84f4f99
DH
760error:
761 abort_creds(new);
762 return retval;
1da177e4
LT
763}
764
dbf040d9 765SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
1da177e4 766{
86a264ab 767 const struct cred *cred = current_cred();
1da177e4
LT
768 int retval;
769
86a264ab
DH
770 if (!(retval = put_user(cred->uid, ruid)) &&
771 !(retval = put_user(cred->euid, euid)))
b6dff3ec 772 retval = put_user(cred->suid, suid);
1da177e4
LT
773
774 return retval;
775}
776
777/*
778 * Same as above, but for rgid, egid, sgid.
779 */
ae1251ab 780SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
1da177e4 781{
d84f4f99
DH
782 const struct cred *old;
783 struct cred *new;
1da177e4
LT
784 int retval;
785
d84f4f99
DH
786 new = prepare_creds();
787 if (!new)
788 return -ENOMEM;
789 old = current_cred();
790
1da177e4
LT
791 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
792 if (retval)
d84f4f99 793 goto error;
1da177e4 794
d84f4f99 795 retval = -EPERM;
1da177e4 796 if (!capable(CAP_SETGID)) {
d84f4f99
DH
797 if (rgid != (gid_t) -1 && rgid != old->gid &&
798 rgid != old->egid && rgid != old->sgid)
799 goto error;
800 if (egid != (gid_t) -1 && egid != old->gid &&
801 egid != old->egid && egid != old->sgid)
802 goto error;
803 if (sgid != (gid_t) -1 && sgid != old->gid &&
804 sgid != old->egid && sgid != old->sgid)
805 goto error;
1da177e4 806 }
d84f4f99 807
1da177e4 808 if (rgid != (gid_t) -1)
d84f4f99
DH
809 new->gid = rgid;
810 if (egid != (gid_t) -1)
811 new->egid = egid;
1da177e4 812 if (sgid != (gid_t) -1)
d84f4f99
DH
813 new->sgid = sgid;
814 new->fsgid = new->egid;
1da177e4 815
d84f4f99
DH
816 return commit_creds(new);
817
818error:
819 abort_creds(new);
820 return retval;
1da177e4
LT
821}
822
dbf040d9 823SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
1da177e4 824{
86a264ab 825 const struct cred *cred = current_cred();
1da177e4
LT
826 int retval;
827
86a264ab
DH
828 if (!(retval = put_user(cred->gid, rgid)) &&
829 !(retval = put_user(cred->egid, egid)))
b6dff3ec 830 retval = put_user(cred->sgid, sgid);
1da177e4
LT
831
832 return retval;
833}
834
835
836/*
837 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
838 * is used for "access()" and for the NFS daemon (letting nfsd stay at
839 * whatever uid it wants to). It normally shadows "euid", except when
840 * explicitly set by setfsuid() or for access..
841 */
ae1251ab 842SYSCALL_DEFINE1(setfsuid, uid_t, uid)
1da177e4 843{
d84f4f99
DH
844 const struct cred *old;
845 struct cred *new;
846 uid_t old_fsuid;
1da177e4 847
d84f4f99
DH
848 new = prepare_creds();
849 if (!new)
850 return current_fsuid();
851 old = current_cred();
852 old_fsuid = old->fsuid;
1da177e4 853
d84f4f99
DH
854 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS) < 0)
855 goto error;
1da177e4 856
d84f4f99
DH
857 if (uid == old->uid || uid == old->euid ||
858 uid == old->suid || uid == old->fsuid ||
756184b7
CP
859 capable(CAP_SETUID)) {
860 if (uid != old_fsuid) {
d84f4f99
DH
861 new->fsuid = uid;
862 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
863 goto change_okay;
1da177e4 864 }
1da177e4
LT
865 }
866
d84f4f99
DH
867error:
868 abort_creds(new);
869 return old_fsuid;
1da177e4 870
d84f4f99
DH
871change_okay:
872 commit_creds(new);
1da177e4
LT
873 return old_fsuid;
874}
875
876/*
f42df9e6 877 * Samma på svenska..
1da177e4 878 */
ae1251ab 879SYSCALL_DEFINE1(setfsgid, gid_t, gid)
1da177e4 880{
d84f4f99
DH
881 const struct cred *old;
882 struct cred *new;
883 gid_t old_fsgid;
884
885 new = prepare_creds();
886 if (!new)
887 return current_fsgid();
888 old = current_cred();
889 old_fsgid = old->fsgid;
1da177e4 890
1da177e4 891 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
d84f4f99 892 goto error;
1da177e4 893
d84f4f99
DH
894 if (gid == old->gid || gid == old->egid ||
895 gid == old->sgid || gid == old->fsgid ||
756184b7
CP
896 capable(CAP_SETGID)) {
897 if (gid != old_fsgid) {
d84f4f99
DH
898 new->fsgid = gid;
899 goto change_okay;
1da177e4 900 }
1da177e4 901 }
d84f4f99
DH
902
903error:
904 abort_creds(new);
905 return old_fsgid;
906
907change_okay:
908 commit_creds(new);
1da177e4
LT
909 return old_fsgid;
910}
911
f06febc9
FM
912void do_sys_times(struct tms *tms)
913{
0cf55e1e 914 cputime_t tgutime, tgstime, cutime, cstime;
f06febc9 915
2b5fe6de 916 spin_lock_irq(&current->sighand->siglock);
0cf55e1e 917 thread_group_times(current, &tgutime, &tgstime);
f06febc9
FM
918 cutime = current->signal->cutime;
919 cstime = current->signal->cstime;
920 spin_unlock_irq(&current->sighand->siglock);
0cf55e1e
HS
921 tms->tms_utime = cputime_to_clock_t(tgutime);
922 tms->tms_stime = cputime_to_clock_t(tgstime);
f06febc9
FM
923 tms->tms_cutime = cputime_to_clock_t(cutime);
924 tms->tms_cstime = cputime_to_clock_t(cstime);
925}
926
58fd3aa2 927SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1da177e4 928{
1da177e4
LT
929 if (tbuf) {
930 struct tms tmp;
f06febc9
FM
931
932 do_sys_times(&tmp);
1da177e4
LT
933 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
934 return -EFAULT;
935 }
e3d5a27d 936 force_successful_syscall_return();
1da177e4
LT
937 return (long) jiffies_64_to_clock_t(get_jiffies_64());
938}
939
940/*
941 * This needs some heavy checking ...
942 * I just haven't the stomach for it. I also don't fully
943 * understand sessions/pgrp etc. Let somebody who does explain it.
944 *
945 * OK, I think I have the protection semantics right.... this is really
946 * only important on a multi-user system anyway, to make sure one user
947 * can't send a signal to a process owned by another. -TYT, 12/12/91
948 *
949 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
950 * LBT 04.03.94
951 */
b290ebe2 952SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1da177e4
LT
953{
954 struct task_struct *p;
ee0acf90 955 struct task_struct *group_leader = current->group_leader;
4e021306
ON
956 struct pid *pgrp;
957 int err;
1da177e4
LT
958
959 if (!pid)
b488893a 960 pid = task_pid_vnr(group_leader);
1da177e4
LT
961 if (!pgid)
962 pgid = pid;
963 if (pgid < 0)
964 return -EINVAL;
965
966 /* From this point forward we keep holding onto the tasklist lock
967 * so that our parent does not change from under us. -DaveM
968 */
969 write_lock_irq(&tasklist_lock);
970
971 err = -ESRCH;
4e021306 972 p = find_task_by_vpid(pid);
1da177e4
LT
973 if (!p)
974 goto out;
975
976 err = -EINVAL;
977 if (!thread_group_leader(p))
978 goto out;
979
4e021306 980 if (same_thread_group(p->real_parent, group_leader)) {
1da177e4 981 err = -EPERM;
41487c65 982 if (task_session(p) != task_session(group_leader))
1da177e4
LT
983 goto out;
984 err = -EACCES;
985 if (p->did_exec)
986 goto out;
987 } else {
988 err = -ESRCH;
ee0acf90 989 if (p != group_leader)
1da177e4
LT
990 goto out;
991 }
992
993 err = -EPERM;
994 if (p->signal->leader)
995 goto out;
996
4e021306 997 pgrp = task_pid(p);
1da177e4 998 if (pgid != pid) {
b488893a 999 struct task_struct *g;
1da177e4 1000
4e021306
ON
1001 pgrp = find_vpid(pgid);
1002 g = pid_task(pgrp, PIDTYPE_PGID);
41487c65 1003 if (!g || task_session(g) != task_session(group_leader))
f020bc46 1004 goto out;
1da177e4
LT
1005 }
1006
1da177e4
LT
1007 err = security_task_setpgid(p, pgid);
1008 if (err)
1009 goto out;
1010
1b0f7ffd 1011 if (task_pgrp(p) != pgrp)
83beaf3c 1012 change_pid(p, PIDTYPE_PGID, pgrp);
1da177e4
LT
1013
1014 err = 0;
1015out:
1016 /* All paths lead to here, thus we are safe. -DaveM */
1017 write_unlock_irq(&tasklist_lock);
1018 return err;
1019}
1020
dbf040d9 1021SYSCALL_DEFINE1(getpgid, pid_t, pid)
1da177e4 1022{
12a3de0a
ON
1023 struct task_struct *p;
1024 struct pid *grp;
1025 int retval;
1026
1027 rcu_read_lock();
756184b7 1028 if (!pid)
12a3de0a 1029 grp = task_pgrp(current);
756184b7 1030 else {
1da177e4 1031 retval = -ESRCH;
12a3de0a
ON
1032 p = find_task_by_vpid(pid);
1033 if (!p)
1034 goto out;
1035 grp = task_pgrp(p);
1036 if (!grp)
1037 goto out;
1038
1039 retval = security_task_getpgid(p);
1040 if (retval)
1041 goto out;
1da177e4 1042 }
12a3de0a
ON
1043 retval = pid_vnr(grp);
1044out:
1045 rcu_read_unlock();
1046 return retval;
1da177e4
LT
1047}
1048
1049#ifdef __ARCH_WANT_SYS_GETPGRP
1050
dbf040d9 1051SYSCALL_DEFINE0(getpgrp)
1da177e4 1052{
12a3de0a 1053 return sys_getpgid(0);
1da177e4
LT
1054}
1055
1056#endif
1057
dbf040d9 1058SYSCALL_DEFINE1(getsid, pid_t, pid)
1da177e4 1059{
1dd768c0
ON
1060 struct task_struct *p;
1061 struct pid *sid;
1062 int retval;
1063
1064 rcu_read_lock();
756184b7 1065 if (!pid)
1dd768c0 1066 sid = task_session(current);
756184b7 1067 else {
1da177e4 1068 retval = -ESRCH;
1dd768c0
ON
1069 p = find_task_by_vpid(pid);
1070 if (!p)
1071 goto out;
1072 sid = task_session(p);
1073 if (!sid)
1074 goto out;
1075
1076 retval = security_task_getsid(p);
1077 if (retval)
1078 goto out;
1da177e4 1079 }
1dd768c0
ON
1080 retval = pid_vnr(sid);
1081out:
1082 rcu_read_unlock();
1083 return retval;
1da177e4
LT
1084}
1085
b290ebe2 1086SYSCALL_DEFINE0(setsid)
1da177e4 1087{
e19f247a 1088 struct task_struct *group_leader = current->group_leader;
e4cc0a9c
ON
1089 struct pid *sid = task_pid(group_leader);
1090 pid_t session = pid_vnr(sid);
1da177e4
LT
1091 int err = -EPERM;
1092
1da177e4 1093 write_lock_irq(&tasklist_lock);
390e2ff0
EB
1094 /* Fail if I am already a session leader */
1095 if (group_leader->signal->leader)
1096 goto out;
1097
430c6231
ON
1098 /* Fail if a process group id already exists that equals the
1099 * proposed session id.
390e2ff0 1100 */
6806aac6 1101 if (pid_task(sid, PIDTYPE_PGID))
1da177e4
LT
1102 goto out;
1103
e19f247a 1104 group_leader->signal->leader = 1;
8520d7c7 1105 __set_special_pids(sid);
24ec839c 1106
9c9f4ded 1107 proc_clear_tty(group_leader);
24ec839c 1108
e4cc0a9c 1109 err = session;
1da177e4
LT
1110out:
1111 write_unlock_irq(&tasklist_lock);
0d0df599
CB
1112 if (err > 0)
1113 proc_sid_connector(group_leader);
1da177e4
LT
1114 return err;
1115}
1116
1da177e4
LT
1117DECLARE_RWSEM(uts_sem);
1118
e48fbb69 1119SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1da177e4
LT
1120{
1121 int errno = 0;
1122
1123 down_read(&uts_sem);
e9ff3990 1124 if (copy_to_user(name, utsname(), sizeof *name))
1da177e4
LT
1125 errno = -EFAULT;
1126 up_read(&uts_sem);
1127 return errno;
1128}
1129
5a8a82b1 1130SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1da177e4
LT
1131{
1132 int errno;
1133 char tmp[__NEW_UTS_LEN];
1134
1135 if (!capable(CAP_SYS_ADMIN))
1136 return -EPERM;
1137 if (len < 0 || len > __NEW_UTS_LEN)
1138 return -EINVAL;
1139 down_write(&uts_sem);
1140 errno = -EFAULT;
1141 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1142 struct new_utsname *u = utsname();
1143
1144 memcpy(u->nodename, tmp, len);
1145 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1da177e4
LT
1146 errno = 0;
1147 }
1148 up_write(&uts_sem);
1149 return errno;
1150}
1151
1152#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1153
5a8a82b1 1154SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1da177e4
LT
1155{
1156 int i, errno;
9679e4dd 1157 struct new_utsname *u;
1da177e4
LT
1158
1159 if (len < 0)
1160 return -EINVAL;
1161 down_read(&uts_sem);
9679e4dd
AM
1162 u = utsname();
1163 i = 1 + strlen(u->nodename);
1da177e4
LT
1164 if (i > len)
1165 i = len;
1166 errno = 0;
9679e4dd 1167 if (copy_to_user(name, u->nodename, i))
1da177e4
LT
1168 errno = -EFAULT;
1169 up_read(&uts_sem);
1170 return errno;
1171}
1172
1173#endif
1174
1175/*
1176 * Only setdomainname; getdomainname can be implemented by calling
1177 * uname()
1178 */
5a8a82b1 1179SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1da177e4
LT
1180{
1181 int errno;
1182 char tmp[__NEW_UTS_LEN];
1183
1184 if (!capable(CAP_SYS_ADMIN))
1185 return -EPERM;
1186 if (len < 0 || len > __NEW_UTS_LEN)
1187 return -EINVAL;
1188
1189 down_write(&uts_sem);
1190 errno = -EFAULT;
1191 if (!copy_from_user(tmp, name, len)) {
9679e4dd
AM
1192 struct new_utsname *u = utsname();
1193
1194 memcpy(u->domainname, tmp, len);
1195 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1da177e4
LT
1196 errno = 0;
1197 }
1198 up_write(&uts_sem);
1199 return errno;
1200}
1201
e48fbb69 1202SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4
LT
1203{
1204 if (resource >= RLIM_NLIMITS)
1205 return -EINVAL;
1206 else {
1207 struct rlimit value;
1208 task_lock(current->group_leader);
1209 value = current->signal->rlim[resource];
1210 task_unlock(current->group_leader);
1211 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1212 }
1213}
1214
1215#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1216
1217/*
1218 * Back compatibility for getrlimit. Needed for some apps.
1219 */
1220
e48fbb69
HC
1221SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1222 struct rlimit __user *, rlim)
1da177e4
LT
1223{
1224 struct rlimit x;
1225 if (resource >= RLIM_NLIMITS)
1226 return -EINVAL;
1227
1228 task_lock(current->group_leader);
1229 x = current->signal->rlim[resource];
1230 task_unlock(current->group_leader);
756184b7 1231 if (x.rlim_cur > 0x7FFFFFFF)
1da177e4 1232 x.rlim_cur = 0x7FFFFFFF;
756184b7 1233 if (x.rlim_max > 0x7FFFFFFF)
1da177e4
LT
1234 x.rlim_max = 0x7FFFFFFF;
1235 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1236}
1237
1238#endif
1239
e48fbb69 1240SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1da177e4
LT
1241{
1242 struct rlimit new_rlim, *old_rlim;
1243 int retval;
1244
1245 if (resource >= RLIM_NLIMITS)
1246 return -EINVAL;
ec9e16ba 1247 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1da177e4 1248 return -EFAULT;
60fd760f
AM
1249 if (new_rlim.rlim_cur > new_rlim.rlim_max)
1250 return -EINVAL;
1da177e4
LT
1251 old_rlim = current->signal->rlim + resource;
1252 if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1253 !capable(CAP_SYS_RESOURCE))
1254 return -EPERM;
60fd760f
AM
1255 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > sysctl_nr_open)
1256 return -EPERM;
1da177e4
LT
1257
1258 retval = security_task_setrlimit(resource, &new_rlim);
1259 if (retval)
1260 return retval;
1261
9926e4c7
TA
1262 if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1263 /*
1264 * The caller is asking for an immediate RLIMIT_CPU
1265 * expiry. But we use the zero value to mean "it was
1266 * never set". So let's cheat and make it one second
1267 * instead
1268 */
1269 new_rlim.rlim_cur = 1;
1270 }
1271
1da177e4
LT
1272 task_lock(current->group_leader);
1273 *old_rlim = new_rlim;
1274 task_unlock(current->group_leader);
1275
ec9e16ba
AM
1276 if (resource != RLIMIT_CPU)
1277 goto out;
d3561f78
AM
1278
1279 /*
1280 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1281 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1282 * very long-standing error, and fixing it now risks breakage of
1283 * applications, so we live with it
1284 */
ec9e16ba
AM
1285 if (new_rlim.rlim_cur == RLIM_INFINITY)
1286 goto out;
1287
f06febc9 1288 update_rlimit_cpu(new_rlim.rlim_cur);
ec9e16ba 1289out:
1da177e4
LT
1290 return 0;
1291}
1292
1293/*
1294 * It would make sense to put struct rusage in the task_struct,
1295 * except that would make the task_struct be *really big*. After
1296 * task_struct gets moved into malloc'ed memory, it would
1297 * make sense to do this. It will make moving the rest of the information
1298 * a lot simpler! (Which we're not doing right now because we're not
1299 * measuring them yet).
1300 *
1da177e4
LT
1301 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1302 * races with threads incrementing their own counters. But since word
1303 * reads are atomic, we either get new values or old values and we don't
1304 * care which for the sums. We always take the siglock to protect reading
1305 * the c* fields from p->signal from races with exit.c updating those
1306 * fields when reaping, so a sample either gets all the additions of a
1307 * given child after it's reaped, or none so this sample is before reaping.
2dd0ebcd 1308 *
de047c1b
RT
1309 * Locking:
1310 * We need to take the siglock for CHILDEREN, SELF and BOTH
1311 * for the cases current multithreaded, non-current single threaded
1312 * non-current multithreaded. Thread traversal is now safe with
1313 * the siglock held.
1314 * Strictly speaking, we donot need to take the siglock if we are current and
1315 * single threaded, as no one else can take our signal_struct away, no one
1316 * else can reap the children to update signal->c* counters, and no one else
1317 * can race with the signal-> fields. If we do not take any lock, the
1318 * signal-> fields could be read out of order while another thread was just
1319 * exiting. So we should place a read memory barrier when we avoid the lock.
1320 * On the writer side, write memory barrier is implied in __exit_signal
1321 * as __exit_signal releases the siglock spinlock after updating the signal->
1322 * fields. But we don't do this yet to keep things simple.
2dd0ebcd 1323 *
1da177e4
LT
1324 */
1325
f06febc9 1326static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
679c9cd4 1327{
679c9cd4
SK
1328 r->ru_nvcsw += t->nvcsw;
1329 r->ru_nivcsw += t->nivcsw;
1330 r->ru_minflt += t->min_flt;
1331 r->ru_majflt += t->maj_flt;
1332 r->ru_inblock += task_io_get_inblock(t);
1333 r->ru_oublock += task_io_get_oublock(t);
1334}
1335
1da177e4
LT
1336static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1337{
1338 struct task_struct *t;
1339 unsigned long flags;
0cf55e1e 1340 cputime_t tgutime, tgstime, utime, stime;
1f10206c 1341 unsigned long maxrss = 0;
1da177e4
LT
1342
1343 memset((char *) r, 0, sizeof *r);
2dd0ebcd 1344 utime = stime = cputime_zero;
1da177e4 1345
679c9cd4 1346 if (who == RUSAGE_THREAD) {
d180c5bc 1347 task_times(current, &utime, &stime);
f06febc9 1348 accumulate_thread_rusage(p, r);
1f10206c 1349 maxrss = p->signal->maxrss;
679c9cd4
SK
1350 goto out;
1351 }
1352
d6cf723a 1353 if (!lock_task_sighand(p, &flags))
de047c1b 1354 return;
0f59cc4a 1355
1da177e4 1356 switch (who) {
0f59cc4a 1357 case RUSAGE_BOTH:
1da177e4 1358 case RUSAGE_CHILDREN:
1da177e4
LT
1359 utime = p->signal->cutime;
1360 stime = p->signal->cstime;
1361 r->ru_nvcsw = p->signal->cnvcsw;
1362 r->ru_nivcsw = p->signal->cnivcsw;
1363 r->ru_minflt = p->signal->cmin_flt;
1364 r->ru_majflt = p->signal->cmaj_flt;
6eaeeaba
ED
1365 r->ru_inblock = p->signal->cinblock;
1366 r->ru_oublock = p->signal->coublock;
1f10206c 1367 maxrss = p->signal->cmaxrss;
0f59cc4a
ON
1368
1369 if (who == RUSAGE_CHILDREN)
1370 break;
1371
1da177e4 1372 case RUSAGE_SELF:
0cf55e1e
HS
1373 thread_group_times(p, &tgutime, &tgstime);
1374 utime = cputime_add(utime, tgutime);
1375 stime = cputime_add(stime, tgstime);
1da177e4
LT
1376 r->ru_nvcsw += p->signal->nvcsw;
1377 r->ru_nivcsw += p->signal->nivcsw;
1378 r->ru_minflt += p->signal->min_flt;
1379 r->ru_majflt += p->signal->maj_flt;
6eaeeaba
ED
1380 r->ru_inblock += p->signal->inblock;
1381 r->ru_oublock += p->signal->oublock;
1f10206c
JP
1382 if (maxrss < p->signal->maxrss)
1383 maxrss = p->signal->maxrss;
1da177e4
LT
1384 t = p;
1385 do {
f06febc9 1386 accumulate_thread_rusage(t, r);
1da177e4
LT
1387 t = next_thread(t);
1388 } while (t != p);
1da177e4 1389 break;
0f59cc4a 1390
1da177e4
LT
1391 default:
1392 BUG();
1393 }
de047c1b 1394 unlock_task_sighand(p, &flags);
de047c1b 1395
679c9cd4 1396out:
0f59cc4a
ON
1397 cputime_to_timeval(utime, &r->ru_utime);
1398 cputime_to_timeval(stime, &r->ru_stime);
1f10206c
JP
1399
1400 if (who != RUSAGE_CHILDREN) {
1401 struct mm_struct *mm = get_task_mm(p);
1402 if (mm) {
1403 setmax_mm_hiwater_rss(&maxrss, mm);
1404 mmput(mm);
1405 }
1406 }
1407 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1da177e4
LT
1408}
1409
1410int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1411{
1412 struct rusage r;
1da177e4 1413 k_getrusage(p, who, &r);
1da177e4
LT
1414 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1415}
1416
e48fbb69 1417SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1da177e4 1418{
679c9cd4
SK
1419 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1420 who != RUSAGE_THREAD)
1da177e4
LT
1421 return -EINVAL;
1422 return getrusage(current, who, ru);
1423}
1424
e48fbb69 1425SYSCALL_DEFINE1(umask, int, mask)
1da177e4
LT
1426{
1427 mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1428 return mask;
1429}
3b7391de 1430
c4ea37c2
HC
1431SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1432 unsigned long, arg4, unsigned long, arg5)
1da177e4 1433{
b6dff3ec
DH
1434 struct task_struct *me = current;
1435 unsigned char comm[sizeof(me->comm)];
1436 long error;
1da177e4 1437
d84f4f99
DH
1438 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1439 if (error != -ENOSYS)
1da177e4
LT
1440 return error;
1441
d84f4f99 1442 error = 0;
1da177e4
LT
1443 switch (option) {
1444 case PR_SET_PDEATHSIG:
0730ded5 1445 if (!valid_signal(arg2)) {
1da177e4
LT
1446 error = -EINVAL;
1447 break;
1448 }
b6dff3ec
DH
1449 me->pdeath_signal = arg2;
1450 error = 0;
1da177e4
LT
1451 break;
1452 case PR_GET_PDEATHSIG:
b6dff3ec 1453 error = put_user(me->pdeath_signal, (int __user *)arg2);
1da177e4
LT
1454 break;
1455 case PR_GET_DUMPABLE:
b6dff3ec 1456 error = get_dumpable(me->mm);
1da177e4
LT
1457 break;
1458 case PR_SET_DUMPABLE:
abf75a50 1459 if (arg2 < 0 || arg2 > 1) {
1da177e4
LT
1460 error = -EINVAL;
1461 break;
1462 }
b6dff3ec
DH
1463 set_dumpable(me->mm, arg2);
1464 error = 0;
1da177e4
LT
1465 break;
1466
1467 case PR_SET_UNALIGN:
b6dff3ec 1468 error = SET_UNALIGN_CTL(me, arg2);
1da177e4
LT
1469 break;
1470 case PR_GET_UNALIGN:
b6dff3ec 1471 error = GET_UNALIGN_CTL(me, arg2);
1da177e4
LT
1472 break;
1473 case PR_SET_FPEMU:
b6dff3ec 1474 error = SET_FPEMU_CTL(me, arg2);
1da177e4
LT
1475 break;
1476 case PR_GET_FPEMU:
b6dff3ec 1477 error = GET_FPEMU_CTL(me, arg2);
1da177e4
LT
1478 break;
1479 case PR_SET_FPEXC:
b6dff3ec 1480 error = SET_FPEXC_CTL(me, arg2);
1da177e4
LT
1481 break;
1482 case PR_GET_FPEXC:
b6dff3ec 1483 error = GET_FPEXC_CTL(me, arg2);
1da177e4
LT
1484 break;
1485 case PR_GET_TIMING:
1486 error = PR_TIMING_STATISTICAL;
1487 break;
1488 case PR_SET_TIMING:
7b26655f 1489 if (arg2 != PR_TIMING_STATISTICAL)
1da177e4 1490 error = -EINVAL;
b6dff3ec
DH
1491 else
1492 error = 0;
1da177e4
LT
1493 break;
1494
b6dff3ec
DH
1495 case PR_SET_NAME:
1496 comm[sizeof(me->comm)-1] = 0;
1497 if (strncpy_from_user(comm, (char __user *)arg2,
1498 sizeof(me->comm) - 1) < 0)
1da177e4 1499 return -EFAULT;
b6dff3ec 1500 set_task_comm(me, comm);
1da177e4 1501 return 0;
b6dff3ec
DH
1502 case PR_GET_NAME:
1503 get_task_comm(comm, me);
1504 if (copy_to_user((char __user *)arg2, comm,
1505 sizeof(comm)))
1da177e4
LT
1506 return -EFAULT;
1507 return 0;
651d765d 1508 case PR_GET_ENDIAN:
b6dff3ec 1509 error = GET_ENDIAN(me, arg2);
651d765d
AB
1510 break;
1511 case PR_SET_ENDIAN:
b6dff3ec 1512 error = SET_ENDIAN(me, arg2);
651d765d
AB
1513 break;
1514
1d9d02fe
AA
1515 case PR_GET_SECCOMP:
1516 error = prctl_get_seccomp();
1517 break;
1518 case PR_SET_SECCOMP:
1519 error = prctl_set_seccomp(arg2);
1520 break;
8fb402bc
EB
1521 case PR_GET_TSC:
1522 error = GET_TSC_CTL(arg2);
1523 break;
1524 case PR_SET_TSC:
1525 error = SET_TSC_CTL(arg2);
1526 break;
cdd6c482
IM
1527 case PR_TASK_PERF_EVENTS_DISABLE:
1528 error = perf_event_task_disable();
1d1c7ddb 1529 break;
cdd6c482
IM
1530 case PR_TASK_PERF_EVENTS_ENABLE:
1531 error = perf_event_task_enable();
1d1c7ddb 1532 break;
6976675d
AV
1533 case PR_GET_TIMERSLACK:
1534 error = current->timer_slack_ns;
1535 break;
1536 case PR_SET_TIMERSLACK:
1537 if (arg2 <= 0)
1538 current->timer_slack_ns =
1539 current->default_timer_slack_ns;
1540 else
1541 current->timer_slack_ns = arg2;
b6dff3ec 1542 error = 0;
6976675d 1543 break;
4db96cf0
AK
1544 case PR_MCE_KILL:
1545 if (arg4 | arg5)
1546 return -EINVAL;
1547 switch (arg2) {
1087e9b4 1548 case PR_MCE_KILL_CLEAR:
4db96cf0
AK
1549 if (arg3 != 0)
1550 return -EINVAL;
1551 current->flags &= ~PF_MCE_PROCESS;
1552 break;
1087e9b4 1553 case PR_MCE_KILL_SET:
4db96cf0 1554 current->flags |= PF_MCE_PROCESS;
1087e9b4 1555 if (arg3 == PR_MCE_KILL_EARLY)
4db96cf0 1556 current->flags |= PF_MCE_EARLY;
1087e9b4 1557 else if (arg3 == PR_MCE_KILL_LATE)
4db96cf0 1558 current->flags &= ~PF_MCE_EARLY;
1087e9b4
AK
1559 else if (arg3 == PR_MCE_KILL_DEFAULT)
1560 current->flags &=
1561 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1562 else
1563 return -EINVAL;
4db96cf0
AK
1564 break;
1565 default:
1566 return -EINVAL;
1567 }
1568 error = 0;
1569 break;
1087e9b4
AK
1570 case PR_MCE_KILL_GET:
1571 if (arg2 | arg3 | arg4 | arg5)
1572 return -EINVAL;
1573 if (current->flags & PF_MCE_PROCESS)
1574 error = (current->flags & PF_MCE_EARLY) ?
1575 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1576 else
1577 error = PR_MCE_KILL_DEFAULT;
1578 break;
1da177e4
LT
1579 default:
1580 error = -EINVAL;
1581 break;
1582 }
1583 return error;
1584}
3cfc348b 1585
836f92ad
HC
1586SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1587 struct getcpu_cache __user *, unused)
3cfc348b
AK
1588{
1589 int err = 0;
1590 int cpu = raw_smp_processor_id();
1591 if (cpup)
1592 err |= put_user(cpu, cpup);
1593 if (nodep)
1594 err |= put_user(cpu_to_node(cpu), nodep);
3cfc348b
AK
1595 return err ? -EFAULT : 0;
1596}
10a0a8d4
JF
1597
1598char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1599
1600static void argv_cleanup(char **argv, char **envp)
1601{
1602 argv_free(argv);
1603}
1604
1605/**
1606 * orderly_poweroff - Trigger an orderly system poweroff
1607 * @force: force poweroff if command execution fails
1608 *
1609 * This may be called from any context to trigger a system shutdown.
1610 * If the orderly shutdown fails, it will force an immediate shutdown.
1611 */
1612int orderly_poweroff(bool force)
1613{
1614 int argc;
1615 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1616 static char *envp[] = {
1617 "HOME=/",
1618 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1619 NULL
1620 };
1621 int ret = -ENOMEM;
1622 struct subprocess_info *info;
1623
1624 if (argv == NULL) {
1625 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1626 __func__, poweroff_cmd);
1627 goto out;
1628 }
1629
ac331d15 1630 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
10a0a8d4
JF
1631 if (info == NULL) {
1632 argv_free(argv);
1633 goto out;
1634 }
1635
1636 call_usermodehelper_setcleanup(info, argv_cleanup);
1637
86313c48 1638 ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
10a0a8d4
JF
1639
1640 out:
1641 if (ret && force) {
1642 printk(KERN_WARNING "Failed to start orderly shutdown: "
1643 "forcing the issue\n");
1644
1645 /* I guess this should try to kick off some daemon to
1646 sync and poweroff asap. Or not even bother syncing
1647 if we're doing an emergency shutdown? */
1648 emergency_sync();
1649 kernel_power_off();
1650 }
1651
1652 return ret;
1653}
1654EXPORT_SYMBOL_GPL(orderly_poweroff);