[PATCH] Make RCU task_struct safe for oprofile
[linux-2.6-block.git] / kernel / signal.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13#include <linux/config.h>
14#include <linux/slab.h>
15#include <linux/module.h>
16#include <linux/smp_lock.h>
17#include <linux/init.h>
18#include <linux/sched.h>
19#include <linux/fs.h>
20#include <linux/tty.h>
21#include <linux/binfmts.h>
22#include <linux/security.h>
23#include <linux/syscalls.h>
24#include <linux/ptrace.h>
25#include <linux/posix-timers.h>
7ed20e1a 26#include <linux/signal.h>
c2f0c7c3 27#include <linux/audit.h>
1da177e4
LT
28#include <asm/param.h>
29#include <asm/uaccess.h>
30#include <asm/unistd.h>
31#include <asm/siginfo.h>
32
33/*
34 * SLAB caches for signal bits.
35 */
36
37static kmem_cache_t *sigqueue_cachep;
38
39/*
40 * In POSIX a signal is sent either to a specific thread (Linux task)
41 * or to the process as a whole (Linux thread group). How the signal
42 * is sent determines whether it's to one thread or the whole group,
43 * which determines which signal mask(s) are involved in blocking it
44 * from being delivered until later. When the signal is delivered,
45 * either it's caught or ignored by a user handler or it has a default
46 * effect that applies to the whole thread group (POSIX process).
47 *
48 * The possible effects an unblocked signal set to SIG_DFL can have are:
49 * ignore - Nothing Happens
50 * terminate - kill the process, i.e. all threads in the group,
51 * similar to exit_group. The group leader (only) reports
52 * WIFSIGNALED status to its parent.
53 * coredump - write a core dump file describing all threads using
54 * the same mm and then kill all those threads
55 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
56 *
57 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
58 * Other signals when not blocked and set to SIG_DFL behaves as follows.
59 * The job control signals also have other special effects.
60 *
61 * +--------------------+------------------+
62 * | POSIX signal | default action |
63 * +--------------------+------------------+
64 * | SIGHUP | terminate |
65 * | SIGINT | terminate |
66 * | SIGQUIT | coredump |
67 * | SIGILL | coredump |
68 * | SIGTRAP | coredump |
69 * | SIGABRT/SIGIOT | coredump |
70 * | SIGBUS | coredump |
71 * | SIGFPE | coredump |
72 * | SIGKILL | terminate(+) |
73 * | SIGUSR1 | terminate |
74 * | SIGSEGV | coredump |
75 * | SIGUSR2 | terminate |
76 * | SIGPIPE | terminate |
77 * | SIGALRM | terminate |
78 * | SIGTERM | terminate |
79 * | SIGCHLD | ignore |
80 * | SIGCONT | ignore(*) |
81 * | SIGSTOP | stop(*)(+) |
82 * | SIGTSTP | stop(*) |
83 * | SIGTTIN | stop(*) |
84 * | SIGTTOU | stop(*) |
85 * | SIGURG | ignore |
86 * | SIGXCPU | coredump |
87 * | SIGXFSZ | coredump |
88 * | SIGVTALRM | terminate |
89 * | SIGPROF | terminate |
90 * | SIGPOLL/SIGIO | terminate |
91 * | SIGSYS/SIGUNUSED | coredump |
92 * | SIGSTKFLT | terminate |
93 * | SIGWINCH | ignore |
94 * | SIGPWR | terminate |
95 * | SIGRTMIN-SIGRTMAX | terminate |
96 * +--------------------+------------------+
97 * | non-POSIX signal | default action |
98 * +--------------------+------------------+
99 * | SIGEMT | coredump |
100 * +--------------------+------------------+
101 *
102 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
103 * (*) Special job control effects:
104 * When SIGCONT is sent, it resumes the process (all threads in the group)
105 * from TASK_STOPPED state and also clears any pending/queued stop signals
106 * (any of those marked with "stop(*)"). This happens regardless of blocking,
107 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
108 * any pending/queued SIGCONT signals; this happens regardless of blocking,
109 * catching, or ignored the stop signal, though (except for SIGSTOP) the
110 * default action of stopping the process may happen later or never.
111 */
112
113#ifdef SIGEMT
114#define M_SIGEMT M(SIGEMT)
115#else
116#define M_SIGEMT 0
117#endif
118
119#if SIGRTMIN > BITS_PER_LONG
120#define M(sig) (1ULL << ((sig)-1))
121#else
122#define M(sig) (1UL << ((sig)-1))
123#endif
124#define T(sig, mask) (M(sig) & (mask))
125
126#define SIG_KERNEL_ONLY_MASK (\
127 M(SIGKILL) | M(SIGSTOP) )
128
129#define SIG_KERNEL_STOP_MASK (\
130 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
131
132#define SIG_KERNEL_COREDUMP_MASK (\
133 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
134 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
135 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
136
137#define SIG_KERNEL_IGNORE_MASK (\
138 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
139
140#define sig_kernel_only(sig) \
141 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
142#define sig_kernel_coredump(sig) \
143 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
144#define sig_kernel_ignore(sig) \
145 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
146#define sig_kernel_stop(sig) \
147 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
148
149#define sig_user_defined(t, signr) \
150 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
151 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
152
153#define sig_fatal(t, signr) \
154 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
155 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
156
157static int sig_ignored(struct task_struct *t, int sig)
158{
159 void __user * handler;
160
161 /*
162 * Tracers always want to know about signals..
163 */
164 if (t->ptrace & PT_PTRACED)
165 return 0;
166
167 /*
168 * Blocked signals are never ignored, since the
169 * signal handler may change by the time it is
170 * unblocked.
171 */
172 if (sigismember(&t->blocked, sig))
173 return 0;
174
175 /* Is it explicitly or implicitly ignored? */
176 handler = t->sighand->action[sig-1].sa.sa_handler;
177 return handler == SIG_IGN ||
178 (handler == SIG_DFL && sig_kernel_ignore(sig));
179}
180
181/*
182 * Re-calculate pending state from the set of locally pending
183 * signals, globally pending signals, and blocked signals.
184 */
185static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
186{
187 unsigned long ready;
188 long i;
189
190 switch (_NSIG_WORDS) {
191 default:
192 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
193 ready |= signal->sig[i] &~ blocked->sig[i];
194 break;
195
196 case 4: ready = signal->sig[3] &~ blocked->sig[3];
197 ready |= signal->sig[2] &~ blocked->sig[2];
198 ready |= signal->sig[1] &~ blocked->sig[1];
199 ready |= signal->sig[0] &~ blocked->sig[0];
200 break;
201
202 case 2: ready = signal->sig[1] &~ blocked->sig[1];
203 ready |= signal->sig[0] &~ blocked->sig[0];
204 break;
205
206 case 1: ready = signal->sig[0] &~ blocked->sig[0];
207 }
208 return ready != 0;
209}
210
211#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
212
213fastcall void recalc_sigpending_tsk(struct task_struct *t)
214{
215 if (t->signal->group_stop_count > 0 ||
3e1d1d28 216 (freezing(t)) ||
1da177e4
LT
217 PENDING(&t->pending, &t->blocked) ||
218 PENDING(&t->signal->shared_pending, &t->blocked))
219 set_tsk_thread_flag(t, TIF_SIGPENDING);
220 else
221 clear_tsk_thread_flag(t, TIF_SIGPENDING);
222}
223
224void recalc_sigpending(void)
225{
226 recalc_sigpending_tsk(current);
227}
228
229/* Given the mask, find the first available signal that should be serviced. */
230
231static int
232next_signal(struct sigpending *pending, sigset_t *mask)
233{
234 unsigned long i, *s, *m, x;
235 int sig = 0;
236
237 s = pending->signal.sig;
238 m = mask->sig;
239 switch (_NSIG_WORDS) {
240 default:
241 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
242 if ((x = *s &~ *m) != 0) {
243 sig = ffz(~x) + i*_NSIG_BPW + 1;
244 break;
245 }
246 break;
247
248 case 2: if ((x = s[0] &~ m[0]) != 0)
249 sig = 1;
250 else if ((x = s[1] &~ m[1]) != 0)
251 sig = _NSIG_BPW + 1;
252 else
253 break;
254 sig += ffz(~x);
255 break;
256
257 case 1: if ((x = *s &~ *m) != 0)
258 sig = ffz(~x) + 1;
259 break;
260 }
261
262 return sig;
263}
264
dd0fc66f 265static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
1da177e4
LT
266 int override_rlimit)
267{
268 struct sigqueue *q = NULL;
269
270 atomic_inc(&t->user->sigpending);
271 if (override_rlimit ||
272 atomic_read(&t->user->sigpending) <=
273 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
274 q = kmem_cache_alloc(sigqueue_cachep, flags);
275 if (unlikely(q == NULL)) {
276 atomic_dec(&t->user->sigpending);
277 } else {
278 INIT_LIST_HEAD(&q->list);
279 q->flags = 0;
1da177e4
LT
280 q->user = get_uid(t->user);
281 }
282 return(q);
283}
284
285static inline void __sigqueue_free(struct sigqueue *q)
286{
287 if (q->flags & SIGQUEUE_PREALLOC)
288 return;
289 atomic_dec(&q->user->sigpending);
290 free_uid(q->user);
291 kmem_cache_free(sigqueue_cachep, q);
292}
293
294static void flush_sigqueue(struct sigpending *queue)
295{
296 struct sigqueue *q;
297
298 sigemptyset(&queue->signal);
299 while (!list_empty(&queue->list)) {
300 q = list_entry(queue->list.next, struct sigqueue , list);
301 list_del_init(&q->list);
302 __sigqueue_free(q);
303 }
304}
305
306/*
307 * Flush all pending signals for a task.
308 */
309
310void
311flush_signals(struct task_struct *t)
312{
313 unsigned long flags;
314
315 spin_lock_irqsave(&t->sighand->siglock, flags);
316 clear_tsk_thread_flag(t,TIF_SIGPENDING);
317 flush_sigqueue(&t->pending);
318 flush_sigqueue(&t->signal->shared_pending);
319 spin_unlock_irqrestore(&t->sighand->siglock, flags);
320}
321
322/*
323 * This function expects the tasklist_lock write-locked.
324 */
325void __exit_sighand(struct task_struct *tsk)
326{
327 struct sighand_struct * sighand = tsk->sighand;
328
329 /* Ok, we're done with the signal handlers */
330 tsk->sighand = NULL;
331 if (atomic_dec_and_test(&sighand->count))
332 kmem_cache_free(sighand_cachep, sighand);
333}
334
335void exit_sighand(struct task_struct *tsk)
336{
337 write_lock_irq(&tasklist_lock);
338 __exit_sighand(tsk);
339 write_unlock_irq(&tasklist_lock);
340}
341
342/*
343 * This function expects the tasklist_lock write-locked.
344 */
345void __exit_signal(struct task_struct *tsk)
346{
347 struct signal_struct * sig = tsk->signal;
348 struct sighand_struct * sighand = tsk->sighand;
349
350 if (!sig)
351 BUG();
352 if (!atomic_read(&sig->count))
353 BUG();
354 spin_lock(&sighand->siglock);
355 posix_cpu_timers_exit(tsk);
356 if (atomic_dec_and_test(&sig->count)) {
357 posix_cpu_timers_exit_group(tsk);
358 if (tsk == sig->curr_target)
359 sig->curr_target = next_thread(tsk);
360 tsk->signal = NULL;
361 spin_unlock(&sighand->siglock);
362 flush_sigqueue(&sig->shared_pending);
363 } else {
364 /*
365 * If there is any task waiting for the group exit
366 * then notify it:
367 */
368 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
369 wake_up_process(sig->group_exit_task);
370 sig->group_exit_task = NULL;
371 }
372 if (tsk == sig->curr_target)
373 sig->curr_target = next_thread(tsk);
374 tsk->signal = NULL;
375 /*
376 * Accumulate here the counters for all threads but the
377 * group leader as they die, so they can be added into
378 * the process-wide totals when those are taken.
379 * The group leader stays around as a zombie as long
380 * as there are other threads. When it gets reaped,
381 * the exit.c code will add its counts into these totals.
382 * We won't ever get here for the group leader, since it
383 * will have been the last reference on the signal_struct.
384 */
385 sig->utime = cputime_add(sig->utime, tsk->utime);
386 sig->stime = cputime_add(sig->stime, tsk->stime);
387 sig->min_flt += tsk->min_flt;
388 sig->maj_flt += tsk->maj_flt;
389 sig->nvcsw += tsk->nvcsw;
390 sig->nivcsw += tsk->nivcsw;
391 sig->sched_time += tsk->sched_time;
392 spin_unlock(&sighand->siglock);
393 sig = NULL; /* Marker for below. */
394 }
395 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
396 flush_sigqueue(&tsk->pending);
397 if (sig) {
398 /*
25f407f0 399 * We are cleaning up the signal_struct here.
1da177e4 400 */
1da177e4
LT
401 exit_thread_group_keys(sig);
402 kmem_cache_free(signal_cachep, sig);
403 }
404}
405
406void exit_signal(struct task_struct *tsk)
407{
8d027de5
ON
408 atomic_dec(&tsk->signal->live);
409
1da177e4
LT
410 write_lock_irq(&tasklist_lock);
411 __exit_signal(tsk);
412 write_unlock_irq(&tasklist_lock);
413}
414
415/*
416 * Flush all handlers for a task.
417 */
418
419void
420flush_signal_handlers(struct task_struct *t, int force_default)
421{
422 int i;
423 struct k_sigaction *ka = &t->sighand->action[0];
424 for (i = _NSIG ; i != 0 ; i--) {
425 if (force_default || ka->sa.sa_handler != SIG_IGN)
426 ka->sa.sa_handler = SIG_DFL;
427 ka->sa.sa_flags = 0;
428 sigemptyset(&ka->sa.sa_mask);
429 ka++;
430 }
431}
432
433
434/* Notify the system that a driver wants to block all signals for this
435 * process, and wants to be notified if any signals at all were to be
436 * sent/acted upon. If the notifier routine returns non-zero, then the
437 * signal will be acted upon after all. If the notifier routine returns 0,
438 * then then signal will be blocked. Only one block per process is
439 * allowed. priv is a pointer to private data that the notifier routine
440 * can use to determine if the signal should be blocked or not. */
441
442void
443block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
444{
445 unsigned long flags;
446
447 spin_lock_irqsave(&current->sighand->siglock, flags);
448 current->notifier_mask = mask;
449 current->notifier_data = priv;
450 current->notifier = notifier;
451 spin_unlock_irqrestore(&current->sighand->siglock, flags);
452}
453
454/* Notify the system that blocking has ended. */
455
456void
457unblock_all_signals(void)
458{
459 unsigned long flags;
460
461 spin_lock_irqsave(&current->sighand->siglock, flags);
462 current->notifier = NULL;
463 current->notifier_data = NULL;
464 recalc_sigpending();
465 spin_unlock_irqrestore(&current->sighand->siglock, flags);
466}
467
468static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
469{
470 struct sigqueue *q, *first = NULL;
471 int still_pending = 0;
472
473 if (unlikely(!sigismember(&list->signal, sig)))
474 return 0;
475
476 /*
477 * Collect the siginfo appropriate to this signal. Check if
478 * there is another siginfo for the same signal.
479 */
480 list_for_each_entry(q, &list->list, list) {
481 if (q->info.si_signo == sig) {
482 if (first) {
483 still_pending = 1;
484 break;
485 }
486 first = q;
487 }
488 }
489 if (first) {
490 list_del_init(&first->list);
491 copy_siginfo(info, &first->info);
492 __sigqueue_free(first);
493 if (!still_pending)
494 sigdelset(&list->signal, sig);
495 } else {
496
497 /* Ok, it wasn't in the queue. This must be
498 a fast-pathed signal or we must have been
499 out of queue space. So zero out the info.
500 */
501 sigdelset(&list->signal, sig);
502 info->si_signo = sig;
503 info->si_errno = 0;
504 info->si_code = 0;
505 info->si_pid = 0;
506 info->si_uid = 0;
507 }
508 return 1;
509}
510
511static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
512 siginfo_t *info)
513{
514 int sig = 0;
515
b17b0421 516 sig = next_signal(pending, mask);
1da177e4
LT
517 if (sig) {
518 if (current->notifier) {
519 if (sigismember(current->notifier_mask, sig)) {
520 if (!(current->notifier)(current->notifier_data)) {
521 clear_thread_flag(TIF_SIGPENDING);
522 return 0;
523 }
524 }
525 }
526
527 if (!collect_signal(sig, pending, info))
528 sig = 0;
529
530 }
531 recalc_sigpending();
532
533 return sig;
534}
535
536/*
537 * Dequeue a signal and return the element to the caller, which is
538 * expected to free it.
539 *
540 * All callers have to hold the siglock.
541 */
542int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
543{
544 int signr = __dequeue_signal(&tsk->pending, mask, info);
545 if (!signr)
546 signr = __dequeue_signal(&tsk->signal->shared_pending,
547 mask, info);
548 if (signr && unlikely(sig_kernel_stop(signr))) {
549 /*
550 * Set a marker that we have dequeued a stop signal. Our
551 * caller might release the siglock and then the pending
552 * stop signal it is about to process is no longer in the
553 * pending bitmasks, but must still be cleared by a SIGCONT
554 * (and overruled by a SIGKILL). So those cases clear this
555 * shared flag after we've set it. Note that this flag may
556 * remain set after the signal we return is ignored or
557 * handled. That doesn't matter because its only purpose
558 * is to alert stop-signal processing code when another
559 * processor has come along and cleared the flag.
560 */
788e05a6
ON
561 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
562 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
1da177e4
LT
563 }
564 if ( signr &&
565 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
566 info->si_sys_private){
567 /*
568 * Release the siglock to ensure proper locking order
569 * of timer locks outside of siglocks. Note, we leave
570 * irqs disabled here, since the posix-timers code is
571 * about to disable them again anyway.
572 */
573 spin_unlock(&tsk->sighand->siglock);
574 do_schedule_next_timer(info);
575 spin_lock(&tsk->sighand->siglock);
576 }
577 return signr;
578}
579
580/*
581 * Tell a process that it has a new active signal..
582 *
583 * NOTE! we rely on the previous spin_lock to
584 * lock interrupts for us! We can only be called with
585 * "siglock" held, and the local interrupt must
586 * have been disabled when that got acquired!
587 *
588 * No need to set need_resched since signal event passing
589 * goes through ->blocked
590 */
591void signal_wake_up(struct task_struct *t, int resume)
592{
593 unsigned int mask;
594
595 set_tsk_thread_flag(t, TIF_SIGPENDING);
596
597 /*
598 * For SIGKILL, we want to wake it up in the stopped/traced case.
599 * We don't check t->state here because there is a race with it
600 * executing another processor and just now entering stopped state.
601 * By using wake_up_state, we ensure the process will wake up and
602 * handle its death signal.
603 */
604 mask = TASK_INTERRUPTIBLE;
605 if (resume)
606 mask |= TASK_STOPPED | TASK_TRACED;
607 if (!wake_up_state(t, mask))
608 kick_process(t);
609}
610
611/*
612 * Remove signals in mask from the pending set and queue.
613 * Returns 1 if any signals were found.
614 *
615 * All callers must be holding the siglock.
616 */
617static int rm_from_queue(unsigned long mask, struct sigpending *s)
618{
619 struct sigqueue *q, *n;
620
621 if (!sigtestsetmask(&s->signal, mask))
622 return 0;
623
624 sigdelsetmask(&s->signal, mask);
625 list_for_each_entry_safe(q, n, &s->list, list) {
626 if (q->info.si_signo < SIGRTMIN &&
627 (mask & sigmask(q->info.si_signo))) {
628 list_del_init(&q->list);
629 __sigqueue_free(q);
630 }
631 }
632 return 1;
633}
634
635/*
636 * Bad permissions for sending the signal
637 */
638static int check_kill_permission(int sig, struct siginfo *info,
639 struct task_struct *t)
640{
641 int error = -EINVAL;
7ed20e1a 642 if (!valid_signal(sig))
1da177e4
LT
643 return error;
644 error = -EPERM;
621d3121 645 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1da177e4
LT
646 && ((sig != SIGCONT) ||
647 (current->signal->session != t->signal->session))
648 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
649 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
650 && !capable(CAP_KILL))
651 return error;
c2f0c7c3
SG
652
653 error = security_task_kill(t, info, sig);
654 if (!error)
655 audit_signal_info(sig, t); /* Let audit system see the signal */
656 return error;
1da177e4
LT
657}
658
659/* forward decl */
660static void do_notify_parent_cldstop(struct task_struct *tsk,
bc505a47 661 int to_self,
1da177e4
LT
662 int why);
663
664/*
665 * Handle magic process-wide effects of stop/continue signals.
666 * Unlike the signal actions, these happen immediately at signal-generation
667 * time regardless of blocking, ignoring, or handling. This does the
668 * actual continuing for SIGCONT, but not the actual stopping for stop
669 * signals. The process stop is done as a signal action for SIG_DFL.
670 */
671static void handle_stop_signal(int sig, struct task_struct *p)
672{
673 struct task_struct *t;
674
dd12f48d 675 if (p->signal->flags & SIGNAL_GROUP_EXIT)
1da177e4
LT
676 /*
677 * The process is in the middle of dying already.
678 */
679 return;
680
681 if (sig_kernel_stop(sig)) {
682 /*
683 * This is a stop signal. Remove SIGCONT from all queues.
684 */
685 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
686 t = p;
687 do {
688 rm_from_queue(sigmask(SIGCONT), &t->pending);
689 t = next_thread(t);
690 } while (t != p);
691 } else if (sig == SIGCONT) {
692 /*
693 * Remove all stop signals from all queues,
694 * and wake all threads.
695 */
696 if (unlikely(p->signal->group_stop_count > 0)) {
697 /*
698 * There was a group stop in progress. We'll
699 * pretend it finished before we got here. We are
700 * obliged to report it to the parent: if the
701 * SIGSTOP happened "after" this SIGCONT, then it
702 * would have cleared this pending SIGCONT. If it
703 * happened "before" this SIGCONT, then the parent
704 * got the SIGCHLD about the stop finishing before
705 * the continue happened. We do the notification
706 * now, and it's as if the stop had finished and
707 * the SIGCHLD was pending on entry to this kill.
708 */
709 p->signal->group_stop_count = 0;
710 p->signal->flags = SIGNAL_STOP_CONTINUED;
711 spin_unlock(&p->sighand->siglock);
bc505a47 712 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_STOPPED);
1da177e4
LT
713 spin_lock(&p->sighand->siglock);
714 }
715 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
716 t = p;
717 do {
718 unsigned int state;
719 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
720
721 /*
722 * If there is a handler for SIGCONT, we must make
723 * sure that no thread returns to user mode before
724 * we post the signal, in case it was the only
725 * thread eligible to run the signal handler--then
726 * it must not do anything between resuming and
727 * running the handler. With the TIF_SIGPENDING
728 * flag set, the thread will pause and acquire the
729 * siglock that we hold now and until we've queued
730 * the pending signal.
731 *
732 * Wake up the stopped thread _after_ setting
733 * TIF_SIGPENDING
734 */
735 state = TASK_STOPPED;
736 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
737 set_tsk_thread_flag(t, TIF_SIGPENDING);
738 state |= TASK_INTERRUPTIBLE;
739 }
740 wake_up_state(t, state);
741
742 t = next_thread(t);
743 } while (t != p);
744
745 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
746 /*
747 * We were in fact stopped, and are now continued.
748 * Notify the parent with CLD_CONTINUED.
749 */
750 p->signal->flags = SIGNAL_STOP_CONTINUED;
751 p->signal->group_exit_code = 0;
752 spin_unlock(&p->sighand->siglock);
bc505a47 753 do_notify_parent_cldstop(p, (p->ptrace & PT_PTRACED), CLD_CONTINUED);
1da177e4
LT
754 spin_lock(&p->sighand->siglock);
755 } else {
756 /*
757 * We are not stopped, but there could be a stop
758 * signal in the middle of being processed after
759 * being removed from the queue. Clear that too.
760 */
761 p->signal->flags = 0;
762 }
763 } else if (sig == SIGKILL) {
764 /*
765 * Make sure that any pending stop signal already dequeued
766 * is undone by the wakeup for SIGKILL.
767 */
768 p->signal->flags = 0;
769 }
770}
771
772static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
773 struct sigpending *signals)
774{
775 struct sigqueue * q = NULL;
776 int ret = 0;
777
778 /*
779 * fast-pathed signals for kernel-internal things like SIGSTOP
780 * or SIGKILL.
781 */
b67a1b9e 782 if (info == SEND_SIG_FORCED)
1da177e4
LT
783 goto out_set;
784
785 /* Real-time signals must be queued if sent by sigqueue, or
786 some other real-time mechanism. It is implementation
787 defined whether kill() does so. We attempt to do so, on
788 the principle of least surprise, but since kill is not
789 allowed to fail with EAGAIN when low on memory we just
790 make sure at least one signal gets delivered and don't
791 pass on the info struct. */
792
793 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
621d3121 794 (is_si_special(info) ||
1da177e4
LT
795 info->si_code >= 0)));
796 if (q) {
797 list_add_tail(&q->list, &signals->list);
798 switch ((unsigned long) info) {
b67a1b9e 799 case (unsigned long) SEND_SIG_NOINFO:
1da177e4
LT
800 q->info.si_signo = sig;
801 q->info.si_errno = 0;
802 q->info.si_code = SI_USER;
803 q->info.si_pid = current->pid;
804 q->info.si_uid = current->uid;
805 break;
b67a1b9e 806 case (unsigned long) SEND_SIG_PRIV:
1da177e4
LT
807 q->info.si_signo = sig;
808 q->info.si_errno = 0;
809 q->info.si_code = SI_KERNEL;
810 q->info.si_pid = 0;
811 q->info.si_uid = 0;
812 break;
813 default:
814 copy_siginfo(&q->info, info);
815 break;
816 }
621d3121
ON
817 } else if (!is_si_special(info)) {
818 if (sig >= SIGRTMIN && info->si_code != SI_USER)
1da177e4
LT
819 /*
820 * Queue overflow, abort. We may abort if the signal was rt
821 * and sent by user using something other than kill().
822 */
823 return -EAGAIN;
1da177e4
LT
824 }
825
826out_set:
827 sigaddset(&signals->signal, sig);
828 return ret;
829}
830
831#define LEGACY_QUEUE(sigptr, sig) \
832 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
833
834
835static int
836specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
837{
838 int ret = 0;
839
840 if (!irqs_disabled())
841 BUG();
842 assert_spin_locked(&t->sighand->siglock);
843
1da177e4
LT
844 /* Short-circuit ignored signals. */
845 if (sig_ignored(t, sig))
846 goto out;
847
848 /* Support queueing exactly one non-rt signal, so that we
849 can get more detailed information about the cause of
850 the signal. */
851 if (LEGACY_QUEUE(&t->pending, sig))
852 goto out;
853
854 ret = send_signal(sig, info, t, &t->pending);
855 if (!ret && !sigismember(&t->blocked, sig))
856 signal_wake_up(t, sig == SIGKILL);
857out:
858 return ret;
859}
860
861/*
862 * Force a signal that the process can't ignore: if necessary
863 * we unblock the signal and change any SIG_IGN to SIG_DFL.
864 */
865
866int
867force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
868{
869 unsigned long int flags;
870 int ret;
871
872 spin_lock_irqsave(&t->sighand->siglock, flags);
b0423a0d 873 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
1da177e4 874 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
b0423a0d
PM
875 }
876 if (sigismember(&t->blocked, sig)) {
1da177e4 877 sigdelset(&t->blocked, sig);
1da177e4 878 }
b0423a0d 879 recalc_sigpending_tsk(t);
1da177e4
LT
880 ret = specific_send_sig_info(sig, info, t);
881 spin_unlock_irqrestore(&t->sighand->siglock, flags);
882
883 return ret;
884}
885
886void
887force_sig_specific(int sig, struct task_struct *t)
888{
b0423a0d 889 force_sig_info(sig, SEND_SIG_FORCED, t);
1da177e4
LT
890}
891
892/*
893 * Test if P wants to take SIG. After we've checked all threads with this,
894 * it's equivalent to finding no threads not blocking SIG. Any threads not
895 * blocking SIG were ruled out because they are not running and already
896 * have pending signals. Such threads will dequeue from the shared queue
897 * as soon as they're available, so putting the signal on the shared queue
898 * will be equivalent to sending it to one such thread.
899 */
188a1eaf
LT
900static inline int wants_signal(int sig, struct task_struct *p)
901{
902 if (sigismember(&p->blocked, sig))
903 return 0;
904 if (p->flags & PF_EXITING)
905 return 0;
906 if (sig == SIGKILL)
907 return 1;
908 if (p->state & (TASK_STOPPED | TASK_TRACED))
909 return 0;
910 return task_curr(p) || !signal_pending(p);
911}
1da177e4
LT
912
913static void
914__group_complete_signal(int sig, struct task_struct *p)
915{
1da177e4
LT
916 struct task_struct *t;
917
1da177e4
LT
918 /*
919 * Now find a thread we can wake up to take the signal off the queue.
920 *
921 * If the main thread wants the signal, it gets first crack.
922 * Probably the least surprising to the average bear.
923 */
188a1eaf 924 if (wants_signal(sig, p))
1da177e4
LT
925 t = p;
926 else if (thread_group_empty(p))
927 /*
928 * There is just one thread and it does not need to be woken.
929 * It will dequeue unblocked signals before it runs again.
930 */
931 return;
932 else {
933 /*
934 * Otherwise try to find a suitable thread.
935 */
936 t = p->signal->curr_target;
937 if (t == NULL)
938 /* restart balancing at this thread */
939 t = p->signal->curr_target = p;
940 BUG_ON(t->tgid != p->tgid);
941
188a1eaf 942 while (!wants_signal(sig, t)) {
1da177e4
LT
943 t = next_thread(t);
944 if (t == p->signal->curr_target)
945 /*
946 * No thread needs to be woken.
947 * Any eligible threads will see
948 * the signal in the queue soon.
949 */
950 return;
951 }
952 p->signal->curr_target = t;
953 }
954
955 /*
956 * Found a killable thread. If the signal will be fatal,
957 * then start taking the whole group down immediately.
958 */
959 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
960 !sigismember(&t->real_blocked, sig) &&
961 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
962 /*
963 * This signal will be fatal to the whole group.
964 */
965 if (!sig_kernel_coredump(sig)) {
966 /*
967 * Start a group exit and wake everybody up.
968 * This way we don't have other threads
969 * running and doing things after a slower
970 * thread has the fatal signal pending.
971 */
972 p->signal->flags = SIGNAL_GROUP_EXIT;
973 p->signal->group_exit_code = sig;
974 p->signal->group_stop_count = 0;
975 t = p;
976 do {
977 sigaddset(&t->pending.signal, SIGKILL);
978 signal_wake_up(t, 1);
979 t = next_thread(t);
980 } while (t != p);
981 return;
982 }
983
984 /*
985 * There will be a core dump. We make all threads other
986 * than the chosen one go into a group stop so that nothing
987 * happens until it gets scheduled, takes the signal off
988 * the shared queue, and does the core dump. This is a
989 * little more complicated than strictly necessary, but it
990 * keeps the signal state that winds up in the core dump
991 * unchanged from the death state, e.g. which thread had
992 * the core-dump signal unblocked.
993 */
994 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
995 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
996 p->signal->group_stop_count = 0;
997 p->signal->group_exit_task = t;
998 t = p;
999 do {
1000 p->signal->group_stop_count++;
1001 signal_wake_up(t, 0);
1002 t = next_thread(t);
1003 } while (t != p);
1004 wake_up_process(p->signal->group_exit_task);
1005 return;
1006 }
1007
1008 /*
1009 * The signal is already in the shared-pending queue.
1010 * Tell the chosen thread to wake up and dequeue it.
1011 */
1012 signal_wake_up(t, sig == SIGKILL);
1013 return;
1014}
1015
1016int
1017__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1018{
1019 int ret = 0;
1020
1021 assert_spin_locked(&p->sighand->siglock);
1022 handle_stop_signal(sig, p);
1023
1da177e4
LT
1024 /* Short-circuit ignored signals. */
1025 if (sig_ignored(p, sig))
1026 return ret;
1027
1028 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1029 /* This is a non-RT signal and we already have one queued. */
1030 return ret;
1031
1032 /*
1033 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1034 * We always use the shared queue for process-wide signals,
1035 * to avoid several races.
1036 */
1037 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1038 if (unlikely(ret))
1039 return ret;
1040
1041 __group_complete_signal(sig, p);
1042 return 0;
1043}
1044
1045/*
1046 * Nuke all other threads in the group.
1047 */
1048void zap_other_threads(struct task_struct *p)
1049{
1050 struct task_struct *t;
1051
1052 p->signal->flags = SIGNAL_GROUP_EXIT;
1053 p->signal->group_stop_count = 0;
1054
1055 if (thread_group_empty(p))
1056 return;
1057
1058 for (t = next_thread(p); t != p; t = next_thread(t)) {
1059 /*
1060 * Don't bother with already dead threads
1061 */
1062 if (t->exit_state)
1063 continue;
1064
1065 /*
1066 * We don't want to notify the parent, since we are
1067 * killed as part of a thread group due to another
1068 * thread doing an execve() or similar. So set the
1069 * exit signal to -1 to allow immediate reaping of
1070 * the process. But don't detach the thread group
1071 * leader.
1072 */
1073 if (t != p->group_leader)
1074 t->exit_signal = -1;
1075
30e0fca6 1076 /* SIGKILL will be handled before any pending SIGSTOP */
1da177e4 1077 sigaddset(&t->pending.signal, SIGKILL);
1da177e4
LT
1078 signal_wake_up(t, 1);
1079 }
1080}
1081
1082/*
1083 * Must be called with the tasklist_lock held for reading!
1084 */
1085int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1086{
1087 unsigned long flags;
1088 int ret;
1089
1090 ret = check_kill_permission(sig, info, p);
1091 if (!ret && sig && p->sighand) {
1092 spin_lock_irqsave(&p->sighand->siglock, flags);
1093 ret = __group_send_sig_info(sig, info, p);
1094 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1095 }
1096
1097 return ret;
1098}
1099
1100/*
1101 * kill_pg_info() sends a signal to a process group: this is what the tty
1102 * control characters do (^C, ^Z etc)
1103 */
1104
1105int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1106{
1107 struct task_struct *p = NULL;
1108 int retval, success;
1109
1110 if (pgrp <= 0)
1111 return -EINVAL;
1112
1113 success = 0;
1114 retval = -ESRCH;
1115 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1116 int err = group_send_sig_info(sig, info, p);
1117 success |= !err;
1118 retval = err;
1119 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1120 return success ? 0 : retval;
1121}
1122
1123int
1124kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1125{
1126 int retval;
1127
1128 read_lock(&tasklist_lock);
1129 retval = __kill_pg_info(sig, info, pgrp);
1130 read_unlock(&tasklist_lock);
1131
1132 return retval;
1133}
1134
1135int
1136kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1137{
1138 int error;
1139 struct task_struct *p;
1140
1141 read_lock(&tasklist_lock);
1142 p = find_task_by_pid(pid);
1143 error = -ESRCH;
1144 if (p)
1145 error = group_send_sig_info(sig, info, p);
1146 read_unlock(&tasklist_lock);
1147 return error;
1148}
1149
46113830
HW
1150/* like kill_proc_info(), but doesn't use uid/euid of "current" */
1151int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1152 uid_t uid, uid_t euid)
1153{
1154 int ret = -EINVAL;
1155 struct task_struct *p;
1156
1157 if (!valid_signal(sig))
1158 return ret;
1159
1160 read_lock(&tasklist_lock);
1161 p = find_task_by_pid(pid);
1162 if (!p) {
1163 ret = -ESRCH;
1164 goto out_unlock;
1165 }
1166 if ((!info || ((unsigned long)info != 1 &&
1167 (unsigned long)info != 2 && SI_FROMUSER(info)))
1168 && (euid != p->suid) && (euid != p->uid)
1169 && (uid != p->suid) && (uid != p->uid)) {
1170 ret = -EPERM;
1171 goto out_unlock;
1172 }
1173 if (sig && p->sighand) {
1174 unsigned long flags;
1175 spin_lock_irqsave(&p->sighand->siglock, flags);
1176 ret = __group_send_sig_info(sig, info, p);
1177 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1178 }
1179out_unlock:
1180 read_unlock(&tasklist_lock);
1181 return ret;
1182}
1183EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1da177e4
LT
1184
1185/*
1186 * kill_something_info() interprets pid in interesting ways just like kill(2).
1187 *
1188 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1189 * is probably wrong. Should make it like BSD or SYSV.
1190 */
1191
1192static int kill_something_info(int sig, struct siginfo *info, int pid)
1193{
1194 if (!pid) {
1195 return kill_pg_info(sig, info, process_group(current));
1196 } else if (pid == -1) {
1197 int retval = 0, count = 0;
1198 struct task_struct * p;
1199
1200 read_lock(&tasklist_lock);
1201 for_each_process(p) {
1202 if (p->pid > 1 && p->tgid != current->tgid) {
1203 int err = group_send_sig_info(sig, info, p);
1204 ++count;
1205 if (err != -EPERM)
1206 retval = err;
1207 }
1208 }
1209 read_unlock(&tasklist_lock);
1210 return count ? retval : -ESRCH;
1211 } else if (pid < 0) {
1212 return kill_pg_info(sig, info, -pid);
1213 } else {
1214 return kill_proc_info(sig, info, pid);
1215 }
1216}
1217
1218/*
1219 * These are for backward compatibility with the rest of the kernel source.
1220 */
1221
1222/*
1223 * These two are the most common entry points. They send a signal
1224 * just to the specific thread.
1225 */
1226int
1227send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1228{
1229 int ret;
1230 unsigned long flags;
1231
1232 /*
1233 * Make sure legacy kernel users don't send in bad values
1234 * (normal paths check this in check_kill_permission).
1235 */
7ed20e1a 1236 if (!valid_signal(sig))
1da177e4
LT
1237 return -EINVAL;
1238
1239 /*
1240 * We need the tasklist lock even for the specific
1241 * thread case (when we don't need to follow the group
1242 * lists) in order to avoid races with "p->sighand"
1243 * going away or changing from under us.
1244 */
1245 read_lock(&tasklist_lock);
1246 spin_lock_irqsave(&p->sighand->siglock, flags);
1247 ret = specific_send_sig_info(sig, info, p);
1248 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1249 read_unlock(&tasklist_lock);
1250 return ret;
1251}
1252
b67a1b9e
ON
1253#define __si_special(priv) \
1254 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1255
1da177e4
LT
1256int
1257send_sig(int sig, struct task_struct *p, int priv)
1258{
b67a1b9e 1259 return send_sig_info(sig, __si_special(priv), p);
1da177e4
LT
1260}
1261
1262/*
1263 * This is the entry point for "process-wide" signals.
1264 * They will go to an appropriate thread in the thread group.
1265 */
1266int
1267send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1268{
1269 int ret;
1270 read_lock(&tasklist_lock);
1271 ret = group_send_sig_info(sig, info, p);
1272 read_unlock(&tasklist_lock);
1273 return ret;
1274}
1275
1276void
1277force_sig(int sig, struct task_struct *p)
1278{
b67a1b9e 1279 force_sig_info(sig, SEND_SIG_PRIV, p);
1da177e4
LT
1280}
1281
1282/*
1283 * When things go south during signal handling, we
1284 * will force a SIGSEGV. And if the signal that caused
1285 * the problem was already a SIGSEGV, we'll want to
1286 * make sure we don't even try to deliver the signal..
1287 */
1288int
1289force_sigsegv(int sig, struct task_struct *p)
1290{
1291 if (sig == SIGSEGV) {
1292 unsigned long flags;
1293 spin_lock_irqsave(&p->sighand->siglock, flags);
1294 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1295 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1296 }
1297 force_sig(SIGSEGV, p);
1298 return 0;
1299}
1300
1301int
1302kill_pg(pid_t pgrp, int sig, int priv)
1303{
b67a1b9e 1304 return kill_pg_info(sig, __si_special(priv), pgrp);
1da177e4
LT
1305}
1306
1307int
1308kill_proc(pid_t pid, int sig, int priv)
1309{
b67a1b9e 1310 return kill_proc_info(sig, __si_special(priv), pid);
1da177e4
LT
1311}
1312
1313/*
1314 * These functions support sending signals using preallocated sigqueue
1315 * structures. This is needed "because realtime applications cannot
1316 * afford to lose notifications of asynchronous events, like timer
1317 * expirations or I/O completions". In the case of Posix Timers
1318 * we allocate the sigqueue structure from the timer_create. If this
1319 * allocation fails we are able to report the failure to the application
1320 * with an EAGAIN error.
1321 */
1322
1323struct sigqueue *sigqueue_alloc(void)
1324{
1325 struct sigqueue *q;
1326
1327 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1328 q->flags |= SIGQUEUE_PREALLOC;
1329 return(q);
1330}
1331
1332void sigqueue_free(struct sigqueue *q)
1333{
1334 unsigned long flags;
1335 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1336 /*
1337 * If the signal is still pending remove it from the
1338 * pending queue.
1339 */
1340 if (unlikely(!list_empty(&q->list))) {
19a4fcb5
ON
1341 spinlock_t *lock = &current->sighand->siglock;
1342 read_lock(&tasklist_lock);
1343 spin_lock_irqsave(lock, flags);
1da177e4
LT
1344 if (!list_empty(&q->list))
1345 list_del_init(&q->list);
19a4fcb5 1346 spin_unlock_irqrestore(lock, flags);
1da177e4
LT
1347 read_unlock(&tasklist_lock);
1348 }
1349 q->flags &= ~SIGQUEUE_PREALLOC;
1350 __sigqueue_free(q);
1351}
1352
1353int
1354send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1355{
1356 unsigned long flags;
1357 int ret = 0;
1358
1da177e4 1359 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
e752dd6c
ON
1360 read_lock(&tasklist_lock);
1361
1362 if (unlikely(p->flags & PF_EXITING)) {
1363 ret = -1;
1364 goto out_err;
1365 }
1366
1da177e4 1367 spin_lock_irqsave(&p->sighand->siglock, flags);
e752dd6c 1368
1da177e4
LT
1369 if (unlikely(!list_empty(&q->list))) {
1370 /*
1371 * If an SI_TIMER entry is already queue just increment
1372 * the overrun count.
1373 */
1374 if (q->info.si_code != SI_TIMER)
1375 BUG();
1376 q->info.si_overrun++;
1377 goto out;
e752dd6c 1378 }
1da177e4
LT
1379 /* Short-circuit ignored signals. */
1380 if (sig_ignored(p, sig)) {
1381 ret = 1;
1382 goto out;
1383 }
1384
1da177e4
LT
1385 list_add_tail(&q->list, &p->pending.list);
1386 sigaddset(&p->pending.signal, sig);
1387 if (!sigismember(&p->blocked, sig))
1388 signal_wake_up(p, sig == SIGKILL);
1389
1390out:
1391 spin_unlock_irqrestore(&p->sighand->siglock, flags);
e752dd6c 1392out_err:
1da177e4 1393 read_unlock(&tasklist_lock);
e752dd6c
ON
1394
1395 return ret;
1da177e4
LT
1396}
1397
1398int
1399send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1400{
1401 unsigned long flags;
1402 int ret = 0;
1403
1404 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1405 read_lock(&tasklist_lock);
1406 spin_lock_irqsave(&p->sighand->siglock, flags);
1407 handle_stop_signal(sig, p);
1408
1409 /* Short-circuit ignored signals. */
1410 if (sig_ignored(p, sig)) {
1411 ret = 1;
1412 goto out;
1413 }
1414
1415 if (unlikely(!list_empty(&q->list))) {
1416 /*
1417 * If an SI_TIMER entry is already queue just increment
1418 * the overrun count. Other uses should not try to
1419 * send the signal multiple times.
1420 */
1421 if (q->info.si_code != SI_TIMER)
1422 BUG();
1423 q->info.si_overrun++;
1424 goto out;
1425 }
1426
1427 /*
1428 * Put this signal on the shared-pending queue.
1429 * We always use the shared queue for process-wide signals,
1430 * to avoid several races.
1431 */
1da177e4
LT
1432 list_add_tail(&q->list, &p->signal->shared_pending.list);
1433 sigaddset(&p->signal->shared_pending.signal, sig);
1434
1435 __group_complete_signal(sig, p);
1436out:
1437 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1438 read_unlock(&tasklist_lock);
1439 return(ret);
1440}
1441
1442/*
1443 * Wake up any threads in the parent blocked in wait* syscalls.
1444 */
1445static inline void __wake_up_parent(struct task_struct *p,
1446 struct task_struct *parent)
1447{
1448 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1449}
1450
1451/*
1452 * Let a parent know about the death of a child.
1453 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1454 */
1455
1456void do_notify_parent(struct task_struct *tsk, int sig)
1457{
1458 struct siginfo info;
1459 unsigned long flags;
1460 struct sighand_struct *psig;
1461
1462 BUG_ON(sig == -1);
1463
1464 /* do_notify_parent_cldstop should have been called instead. */
1465 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1466
1467 BUG_ON(!tsk->ptrace &&
1468 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1469
1470 info.si_signo = sig;
1471 info.si_errno = 0;
1472 info.si_pid = tsk->pid;
1473 info.si_uid = tsk->uid;
1474
1475 /* FIXME: find out whether or not this is supposed to be c*time. */
1476 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1477 tsk->signal->utime));
1478 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1479 tsk->signal->stime));
1480
1481 info.si_status = tsk->exit_code & 0x7f;
1482 if (tsk->exit_code & 0x80)
1483 info.si_code = CLD_DUMPED;
1484 else if (tsk->exit_code & 0x7f)
1485 info.si_code = CLD_KILLED;
1486 else {
1487 info.si_code = CLD_EXITED;
1488 info.si_status = tsk->exit_code >> 8;
1489 }
1490
1491 psig = tsk->parent->sighand;
1492 spin_lock_irqsave(&psig->siglock, flags);
7ed0175a 1493 if (!tsk->ptrace && sig == SIGCHLD &&
1da177e4
LT
1494 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1495 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1496 /*
1497 * We are exiting and our parent doesn't care. POSIX.1
1498 * defines special semantics for setting SIGCHLD to SIG_IGN
1499 * or setting the SA_NOCLDWAIT flag: we should be reaped
1500 * automatically and not left for our parent's wait4 call.
1501 * Rather than having the parent do it as a magic kind of
1502 * signal handler, we just set this to tell do_exit that we
1503 * can be cleaned up without becoming a zombie. Note that
1504 * we still call __wake_up_parent in this case, because a
1505 * blocked sys_wait4 might now return -ECHILD.
1506 *
1507 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1508 * is implementation-defined: we do (if you don't want
1509 * it, just use SIG_IGN instead).
1510 */
1511 tsk->exit_signal = -1;
1512 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1513 sig = 0;
1514 }
7ed20e1a 1515 if (valid_signal(sig) && sig > 0)
1da177e4
LT
1516 __group_send_sig_info(sig, &info, tsk->parent);
1517 __wake_up_parent(tsk, tsk->parent);
1518 spin_unlock_irqrestore(&psig->siglock, flags);
1519}
1520
bc505a47 1521static void do_notify_parent_cldstop(struct task_struct *tsk, int to_self, int why)
1da177e4
LT
1522{
1523 struct siginfo info;
1524 unsigned long flags;
bc505a47 1525 struct task_struct *parent;
1da177e4
LT
1526 struct sighand_struct *sighand;
1527
bc505a47
ON
1528 if (to_self)
1529 parent = tsk->parent;
1530 else {
1531 tsk = tsk->group_leader;
1532 parent = tsk->real_parent;
1533 }
1534
1da177e4
LT
1535 info.si_signo = SIGCHLD;
1536 info.si_errno = 0;
1537 info.si_pid = tsk->pid;
1538 info.si_uid = tsk->uid;
1539
1540 /* FIXME: find out whether or not this is supposed to be c*time. */
1541 info.si_utime = cputime_to_jiffies(tsk->utime);
1542 info.si_stime = cputime_to_jiffies(tsk->stime);
1543
1544 info.si_code = why;
1545 switch (why) {
1546 case CLD_CONTINUED:
1547 info.si_status = SIGCONT;
1548 break;
1549 case CLD_STOPPED:
1550 info.si_status = tsk->signal->group_exit_code & 0x7f;
1551 break;
1552 case CLD_TRAPPED:
1553 info.si_status = tsk->exit_code & 0x7f;
1554 break;
1555 default:
1556 BUG();
1557 }
1558
1559 sighand = parent->sighand;
1560 spin_lock_irqsave(&sighand->siglock, flags);
1561 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1562 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1563 __group_send_sig_info(SIGCHLD, &info, parent);
1564 /*
1565 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1566 */
1567 __wake_up_parent(tsk, parent);
1568 spin_unlock_irqrestore(&sighand->siglock, flags);
1569}
1570
1571/*
1572 * This must be called with current->sighand->siglock held.
1573 *
1574 * This should be the path for all ptrace stops.
1575 * We always set current->last_siginfo while stopped here.
1576 * That makes it a way to test a stopped process for
1577 * being ptrace-stopped vs being job-control-stopped.
1578 *
1579 * If we actually decide not to stop at all because the tracer is gone,
1580 * we leave nostop_code in current->exit_code.
1581 */
1582static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1583{
1584 /*
1585 * If there is a group stop in progress,
1586 * we must participate in the bookkeeping.
1587 */
1588 if (current->signal->group_stop_count > 0)
1589 --current->signal->group_stop_count;
1590
1591 current->last_siginfo = info;
1592 current->exit_code = exit_code;
1593
1594 /* Let the debugger run. */
1595 set_current_state(TASK_TRACED);
1596 spin_unlock_irq(&current->sighand->siglock);
1597 read_lock(&tasklist_lock);
1598 if (likely(current->ptrace & PT_PTRACED) &&
1599 likely(current->parent != current->real_parent ||
1600 !(current->ptrace & PT_ATTACHED)) &&
1601 (likely(current->parent->signal != current->signal) ||
1602 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
bc505a47 1603 do_notify_parent_cldstop(current, 1, CLD_TRAPPED);
1da177e4
LT
1604 read_unlock(&tasklist_lock);
1605 schedule();
1606 } else {
1607 /*
1608 * By the time we got the lock, our tracer went away.
1609 * Don't stop here.
1610 */
1611 read_unlock(&tasklist_lock);
1612 set_current_state(TASK_RUNNING);
1613 current->exit_code = nostop_code;
1614 }
1615
1616 /*
1617 * We are back. Now reacquire the siglock before touching
1618 * last_siginfo, so that we are sure to have synchronized with
1619 * any signal-sending on another CPU that wants to examine it.
1620 */
1621 spin_lock_irq(&current->sighand->siglock);
1622 current->last_siginfo = NULL;
1623
1624 /*
1625 * Queued signals ignored us while we were stopped for tracing.
1626 * So check for any that we should take before resuming user mode.
1627 */
1628 recalc_sigpending();
1629}
1630
1631void ptrace_notify(int exit_code)
1632{
1633 siginfo_t info;
1634
1635 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1636
1637 memset(&info, 0, sizeof info);
1638 info.si_signo = SIGTRAP;
1639 info.si_code = exit_code;
1640 info.si_pid = current->pid;
1641 info.si_uid = current->uid;
1642
1643 /* Let the debugger run. */
1644 spin_lock_irq(&current->sighand->siglock);
1645 ptrace_stop(exit_code, 0, &info);
1646 spin_unlock_irq(&current->sighand->siglock);
1647}
1648
1da177e4
LT
1649static void
1650finish_stop(int stop_count)
1651{
bc505a47
ON
1652 int to_self;
1653
1da177e4
LT
1654 /*
1655 * If there are no other threads in the group, or if there is
1656 * a group stop in progress and we are the last to stop,
1657 * report to the parent. When ptraced, every thread reports itself.
1658 */
bc505a47
ON
1659 if (stop_count < 0 || (current->ptrace & PT_PTRACED))
1660 to_self = 1;
1661 else if (stop_count == 0)
1662 to_self = 0;
1663 else
1664 goto out;
1da177e4 1665
bc505a47
ON
1666 read_lock(&tasklist_lock);
1667 do_notify_parent_cldstop(current, to_self, CLD_STOPPED);
1668 read_unlock(&tasklist_lock);
1669
1670out:
1da177e4
LT
1671 schedule();
1672 /*
1673 * Now we don't run again until continued.
1674 */
1675 current->exit_code = 0;
1676}
1677
1678/*
1679 * This performs the stopping for SIGSTOP and other stop signals.
1680 * We have to stop all threads in the thread group.
1681 * Returns nonzero if we've actually stopped and released the siglock.
1682 * Returns zero if we didn't stop and still hold the siglock.
1683 */
1684static int
1685do_signal_stop(int signr)
1686{
1687 struct signal_struct *sig = current->signal;
1688 struct sighand_struct *sighand = current->sighand;
1689 int stop_count = -1;
1690
1691 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1692 return 0;
1693
1694 if (sig->group_stop_count > 0) {
1695 /*
1696 * There is a group stop in progress. We don't need to
1697 * start another one.
1698 */
1699 signr = sig->group_exit_code;
1700 stop_count = --sig->group_stop_count;
1701 current->exit_code = signr;
1702 set_current_state(TASK_STOPPED);
1703 if (stop_count == 0)
1704 sig->flags = SIGNAL_STOP_STOPPED;
1705 spin_unlock_irq(&sighand->siglock);
1706 }
1707 else if (thread_group_empty(current)) {
1708 /*
1709 * Lock must be held through transition to stopped state.
1710 */
1711 current->exit_code = current->signal->group_exit_code = signr;
1712 set_current_state(TASK_STOPPED);
1713 sig->flags = SIGNAL_STOP_STOPPED;
1714 spin_unlock_irq(&sighand->siglock);
1715 }
1716 else {
1717 /*
1718 * There is no group stop already in progress.
1719 * We must initiate one now, but that requires
1720 * dropping siglock to get both the tasklist lock
1721 * and siglock again in the proper order. Note that
1722 * this allows an intervening SIGCONT to be posted.
1723 * We need to check for that and bail out if necessary.
1724 */
1725 struct task_struct *t;
1726
1727 spin_unlock_irq(&sighand->siglock);
1728
1729 /* signals can be posted during this window */
1730
1731 read_lock(&tasklist_lock);
1732 spin_lock_irq(&sighand->siglock);
1733
1734 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1735 /*
1736 * Another stop or continue happened while we
1737 * didn't have the lock. We can just swallow this
1738 * signal now. If we raced with a SIGCONT, that
1739 * should have just cleared it now. If we raced
1740 * with another processor delivering a stop signal,
1741 * then the SIGCONT that wakes us up should clear it.
1742 */
1743 read_unlock(&tasklist_lock);
1744 return 0;
1745 }
1746
1747 if (sig->group_stop_count == 0) {
1748 sig->group_exit_code = signr;
1749 stop_count = 0;
1750 for (t = next_thread(current); t != current;
1751 t = next_thread(t))
1752 /*
1753 * Setting state to TASK_STOPPED for a group
1754 * stop is always done with the siglock held,
1755 * so this check has no races.
1756 */
5acbc5cb
RM
1757 if (!t->exit_state &&
1758 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1da177e4
LT
1759 stop_count++;
1760 signal_wake_up(t, 0);
1761 }
1762 sig->group_stop_count = stop_count;
1763 }
1764 else {
1765 /* A race with another thread while unlocked. */
1766 signr = sig->group_exit_code;
1767 stop_count = --sig->group_stop_count;
1768 }
1769
1770 current->exit_code = signr;
1771 set_current_state(TASK_STOPPED);
1772 if (stop_count == 0)
1773 sig->flags = SIGNAL_STOP_STOPPED;
1774
1775 spin_unlock_irq(&sighand->siglock);
1776 read_unlock(&tasklist_lock);
1777 }
1778
1779 finish_stop(stop_count);
1780 return 1;
1781}
1782
1783/*
1784 * Do appropriate magic when group_stop_count > 0.
1785 * We return nonzero if we stopped, after releasing the siglock.
1786 * We return zero if we still hold the siglock and should look
1787 * for another signal without checking group_stop_count again.
1788 */
1789static inline int handle_group_stop(void)
1790{
1791 int stop_count;
1792
1793 if (current->signal->group_exit_task == current) {
1794 /*
1795 * Group stop is so we can do a core dump,
1796 * We are the initiating thread, so get on with it.
1797 */
1798 current->signal->group_exit_task = NULL;
1799 return 0;
1800 }
1801
1802 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1803 /*
1804 * Group stop is so another thread can do a core dump,
1805 * or else we are racing against a death signal.
1806 * Just punt the stop so we can get the next signal.
1807 */
1808 return 0;
1809
1810 /*
1811 * There is a group stop in progress. We stop
1812 * without any associated signal being in our queue.
1813 */
1814 stop_count = --current->signal->group_stop_count;
1815 if (stop_count == 0)
1816 current->signal->flags = SIGNAL_STOP_STOPPED;
1817 current->exit_code = current->signal->group_exit_code;
1818 set_current_state(TASK_STOPPED);
1819 spin_unlock_irq(&current->sighand->siglock);
1820 finish_stop(stop_count);
1821 return 1;
1822}
1823
1824int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1825 struct pt_regs *regs, void *cookie)
1826{
1827 sigset_t *mask = &current->blocked;
1828 int signr = 0;
1829
1830relock:
1831 spin_lock_irq(&current->sighand->siglock);
1832 for (;;) {
1833 struct k_sigaction *ka;
1834
1835 if (unlikely(current->signal->group_stop_count > 0) &&
1836 handle_group_stop())
1837 goto relock;
1838
1839 signr = dequeue_signal(current, mask, info);
1840
1841 if (!signr)
1842 break; /* will return 0 */
1843
1844 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1845 ptrace_signal_deliver(regs, cookie);
1846
1847 /* Let the debugger run. */
1848 ptrace_stop(signr, signr, info);
1849
30e0fca6 1850 /* We're back. Did the debugger cancel the sig or group_exit? */
1da177e4 1851 signr = current->exit_code;
30e0fca6 1852 if (signr == 0 || current->signal->flags & SIGNAL_GROUP_EXIT)
1da177e4
LT
1853 continue;
1854
1855 current->exit_code = 0;
1856
1857 /* Update the siginfo structure if the signal has
1858 changed. If the debugger wanted something
1859 specific in the siginfo structure then it should
1860 have updated *info via PTRACE_SETSIGINFO. */
1861 if (signr != info->si_signo) {
1862 info->si_signo = signr;
1863 info->si_errno = 0;
1864 info->si_code = SI_USER;
1865 info->si_pid = current->parent->pid;
1866 info->si_uid = current->parent->uid;
1867 }
1868
1869 /* If the (new) signal is now blocked, requeue it. */
1870 if (sigismember(&current->blocked, signr)) {
1871 specific_send_sig_info(signr, info, current);
1872 continue;
1873 }
1874 }
1875
1876 ka = &current->sighand->action[signr-1];
1877 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1878 continue;
1879 if (ka->sa.sa_handler != SIG_DFL) {
1880 /* Run the handler. */
1881 *return_ka = *ka;
1882
1883 if (ka->sa.sa_flags & SA_ONESHOT)
1884 ka->sa.sa_handler = SIG_DFL;
1885
1886 break; /* will return non-zero "signr" value */
1887 }
1888
1889 /*
1890 * Now we are doing the default action for this signal.
1891 */
1892 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1893 continue;
1894
1895 /* Init gets no signals it doesn't want. */
1896 if (current->pid == 1)
1897 continue;
1898
1899 if (sig_kernel_stop(signr)) {
1900 /*
1901 * The default action is to stop all threads in
1902 * the thread group. The job control signals
1903 * do nothing in an orphaned pgrp, but SIGSTOP
1904 * always works. Note that siglock needs to be
1905 * dropped during the call to is_orphaned_pgrp()
1906 * because of lock ordering with tasklist_lock.
1907 * This allows an intervening SIGCONT to be posted.
1908 * We need to check for that and bail out if necessary.
1909 */
1910 if (signr != SIGSTOP) {
1911 spin_unlock_irq(&current->sighand->siglock);
1912
1913 /* signals can be posted during this window */
1914
1915 if (is_orphaned_pgrp(process_group(current)))
1916 goto relock;
1917
1918 spin_lock_irq(&current->sighand->siglock);
1919 }
1920
1921 if (likely(do_signal_stop(signr))) {
1922 /* It released the siglock. */
1923 goto relock;
1924 }
1925
1926 /*
1927 * We didn't actually stop, due to a race
1928 * with SIGCONT or something like that.
1929 */
1930 continue;
1931 }
1932
1933 spin_unlock_irq(&current->sighand->siglock);
1934
1935 /*
1936 * Anything else is fatal, maybe with a core dump.
1937 */
1938 current->flags |= PF_SIGNALED;
1939 if (sig_kernel_coredump(signr)) {
1940 /*
1941 * If it was able to dump core, this kills all
1942 * other threads in the group and synchronizes with
1943 * their demise. If we lost the race with another
1944 * thread getting here, it set group_exit_code
1945 * first and our do_group_exit call below will use
1946 * that value and ignore the one we pass it.
1947 */
1948 do_coredump((long)signr, signr, regs);
1949 }
1950
1951 /*
1952 * Death signals, no core dump.
1953 */
1954 do_group_exit(signr);
1955 /* NOTREACHED */
1956 }
1957 spin_unlock_irq(&current->sighand->siglock);
1958 return signr;
1959}
1960
1da177e4
LT
1961EXPORT_SYMBOL(recalc_sigpending);
1962EXPORT_SYMBOL_GPL(dequeue_signal);
1963EXPORT_SYMBOL(flush_signals);
1964EXPORT_SYMBOL(force_sig);
1965EXPORT_SYMBOL(kill_pg);
1966EXPORT_SYMBOL(kill_proc);
1967EXPORT_SYMBOL(ptrace_notify);
1968EXPORT_SYMBOL(send_sig);
1969EXPORT_SYMBOL(send_sig_info);
1970EXPORT_SYMBOL(sigprocmask);
1971EXPORT_SYMBOL(block_all_signals);
1972EXPORT_SYMBOL(unblock_all_signals);
1973
1974
1975/*
1976 * System call entry points.
1977 */
1978
1979asmlinkage long sys_restart_syscall(void)
1980{
1981 struct restart_block *restart = &current_thread_info()->restart_block;
1982 return restart->fn(restart);
1983}
1984
1985long do_no_restart_syscall(struct restart_block *param)
1986{
1987 return -EINTR;
1988}
1989
1990/*
1991 * We don't need to get the kernel lock - this is all local to this
1992 * particular thread.. (and that's good, because this is _heavily_
1993 * used by various programs)
1994 */
1995
1996/*
1997 * This is also useful for kernel threads that want to temporarily
1998 * (or permanently) block certain signals.
1999 *
2000 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2001 * interface happily blocks "unblockable" signals like SIGKILL
2002 * and friends.
2003 */
2004int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2005{
2006 int error;
2007 sigset_t old_block;
2008
2009 spin_lock_irq(&current->sighand->siglock);
2010 old_block = current->blocked;
2011 error = 0;
2012 switch (how) {
2013 case SIG_BLOCK:
2014 sigorsets(&current->blocked, &current->blocked, set);
2015 break;
2016 case SIG_UNBLOCK:
2017 signandsets(&current->blocked, &current->blocked, set);
2018 break;
2019 case SIG_SETMASK:
2020 current->blocked = *set;
2021 break;
2022 default:
2023 error = -EINVAL;
2024 }
2025 recalc_sigpending();
2026 spin_unlock_irq(&current->sighand->siglock);
2027 if (oldset)
2028 *oldset = old_block;
2029 return error;
2030}
2031
2032asmlinkage long
2033sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2034{
2035 int error = -EINVAL;
2036 sigset_t old_set, new_set;
2037
2038 /* XXX: Don't preclude handling different sized sigset_t's. */
2039 if (sigsetsize != sizeof(sigset_t))
2040 goto out;
2041
2042 if (set) {
2043 error = -EFAULT;
2044 if (copy_from_user(&new_set, set, sizeof(*set)))
2045 goto out;
2046 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2047
2048 error = sigprocmask(how, &new_set, &old_set);
2049 if (error)
2050 goto out;
2051 if (oset)
2052 goto set_old;
2053 } else if (oset) {
2054 spin_lock_irq(&current->sighand->siglock);
2055 old_set = current->blocked;
2056 spin_unlock_irq(&current->sighand->siglock);
2057
2058 set_old:
2059 error = -EFAULT;
2060 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2061 goto out;
2062 }
2063 error = 0;
2064out:
2065 return error;
2066}
2067
2068long do_sigpending(void __user *set, unsigned long sigsetsize)
2069{
2070 long error = -EINVAL;
2071 sigset_t pending;
2072
2073 if (sigsetsize > sizeof(sigset_t))
2074 goto out;
2075
2076 spin_lock_irq(&current->sighand->siglock);
2077 sigorsets(&pending, &current->pending.signal,
2078 &current->signal->shared_pending.signal);
2079 spin_unlock_irq(&current->sighand->siglock);
2080
2081 /* Outside the lock because only this thread touches it. */
2082 sigandsets(&pending, &current->blocked, &pending);
2083
2084 error = -EFAULT;
2085 if (!copy_to_user(set, &pending, sigsetsize))
2086 error = 0;
2087
2088out:
2089 return error;
2090}
2091
2092asmlinkage long
2093sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2094{
2095 return do_sigpending(set, sigsetsize);
2096}
2097
2098#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2099
2100int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2101{
2102 int err;
2103
2104 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2105 return -EFAULT;
2106 if (from->si_code < 0)
2107 return __copy_to_user(to, from, sizeof(siginfo_t))
2108 ? -EFAULT : 0;
2109 /*
2110 * If you change siginfo_t structure, please be sure
2111 * this code is fixed accordingly.
2112 * It should never copy any pad contained in the structure
2113 * to avoid security leaks, but must copy the generic
2114 * 3 ints plus the relevant union member.
2115 */
2116 err = __put_user(from->si_signo, &to->si_signo);
2117 err |= __put_user(from->si_errno, &to->si_errno);
2118 err |= __put_user((short)from->si_code, &to->si_code);
2119 switch (from->si_code & __SI_MASK) {
2120 case __SI_KILL:
2121 err |= __put_user(from->si_pid, &to->si_pid);
2122 err |= __put_user(from->si_uid, &to->si_uid);
2123 break;
2124 case __SI_TIMER:
2125 err |= __put_user(from->si_tid, &to->si_tid);
2126 err |= __put_user(from->si_overrun, &to->si_overrun);
2127 err |= __put_user(from->si_ptr, &to->si_ptr);
2128 break;
2129 case __SI_POLL:
2130 err |= __put_user(from->si_band, &to->si_band);
2131 err |= __put_user(from->si_fd, &to->si_fd);
2132 break;
2133 case __SI_FAULT:
2134 err |= __put_user(from->si_addr, &to->si_addr);
2135#ifdef __ARCH_SI_TRAPNO
2136 err |= __put_user(from->si_trapno, &to->si_trapno);
2137#endif
2138 break;
2139 case __SI_CHLD:
2140 err |= __put_user(from->si_pid, &to->si_pid);
2141 err |= __put_user(from->si_uid, &to->si_uid);
2142 err |= __put_user(from->si_status, &to->si_status);
2143 err |= __put_user(from->si_utime, &to->si_utime);
2144 err |= __put_user(from->si_stime, &to->si_stime);
2145 break;
2146 case __SI_RT: /* This is not generated by the kernel as of now. */
2147 case __SI_MESGQ: /* But this is */
2148 err |= __put_user(from->si_pid, &to->si_pid);
2149 err |= __put_user(from->si_uid, &to->si_uid);
2150 err |= __put_user(from->si_ptr, &to->si_ptr);
2151 break;
2152 default: /* this is just in case for now ... */
2153 err |= __put_user(from->si_pid, &to->si_pid);
2154 err |= __put_user(from->si_uid, &to->si_uid);
2155 break;
2156 }
2157 return err;
2158}
2159
2160#endif
2161
2162asmlinkage long
2163sys_rt_sigtimedwait(const sigset_t __user *uthese,
2164 siginfo_t __user *uinfo,
2165 const struct timespec __user *uts,
2166 size_t sigsetsize)
2167{
2168 int ret, sig;
2169 sigset_t these;
2170 struct timespec ts;
2171 siginfo_t info;
2172 long timeout = 0;
2173
2174 /* XXX: Don't preclude handling different sized sigset_t's. */
2175 if (sigsetsize != sizeof(sigset_t))
2176 return -EINVAL;
2177
2178 if (copy_from_user(&these, uthese, sizeof(these)))
2179 return -EFAULT;
2180
2181 /*
2182 * Invert the set of allowed signals to get those we
2183 * want to block.
2184 */
2185 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2186 signotset(&these);
2187
2188 if (uts) {
2189 if (copy_from_user(&ts, uts, sizeof(ts)))
2190 return -EFAULT;
2191 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2192 || ts.tv_sec < 0)
2193 return -EINVAL;
2194 }
2195
2196 spin_lock_irq(&current->sighand->siglock);
2197 sig = dequeue_signal(current, &these, &info);
2198 if (!sig) {
2199 timeout = MAX_SCHEDULE_TIMEOUT;
2200 if (uts)
2201 timeout = (timespec_to_jiffies(&ts)
2202 + (ts.tv_sec || ts.tv_nsec));
2203
2204 if (timeout) {
2205 /* None ready -- temporarily unblock those we're
2206 * interested while we are sleeping in so that we'll
2207 * be awakened when they arrive. */
2208 current->real_blocked = current->blocked;
2209 sigandsets(&current->blocked, &current->blocked, &these);
2210 recalc_sigpending();
2211 spin_unlock_irq(&current->sighand->siglock);
2212
75bcc8c5 2213 timeout = schedule_timeout_interruptible(timeout);
1da177e4 2214
3e1d1d28 2215 try_to_freeze();
1da177e4
LT
2216 spin_lock_irq(&current->sighand->siglock);
2217 sig = dequeue_signal(current, &these, &info);
2218 current->blocked = current->real_blocked;
2219 siginitset(&current->real_blocked, 0);
2220 recalc_sigpending();
2221 }
2222 }
2223 spin_unlock_irq(&current->sighand->siglock);
2224
2225 if (sig) {
2226 ret = sig;
2227 if (uinfo) {
2228 if (copy_siginfo_to_user(uinfo, &info))
2229 ret = -EFAULT;
2230 }
2231 } else {
2232 ret = -EAGAIN;
2233 if (timeout)
2234 ret = -EINTR;
2235 }
2236
2237 return ret;
2238}
2239
2240asmlinkage long
2241sys_kill(int pid, int sig)
2242{
2243 struct siginfo info;
2244
2245 info.si_signo = sig;
2246 info.si_errno = 0;
2247 info.si_code = SI_USER;
2248 info.si_pid = current->tgid;
2249 info.si_uid = current->uid;
2250
2251 return kill_something_info(sig, &info, pid);
2252}
2253
6dd69f10 2254static int do_tkill(int tgid, int pid, int sig)
1da177e4 2255{
1da177e4 2256 int error;
6dd69f10 2257 struct siginfo info;
1da177e4
LT
2258 struct task_struct *p;
2259
6dd69f10 2260 error = -ESRCH;
1da177e4
LT
2261 info.si_signo = sig;
2262 info.si_errno = 0;
2263 info.si_code = SI_TKILL;
2264 info.si_pid = current->tgid;
2265 info.si_uid = current->uid;
2266
2267 read_lock(&tasklist_lock);
2268 p = find_task_by_pid(pid);
6dd69f10 2269 if (p && (tgid <= 0 || p->tgid == tgid)) {
1da177e4
LT
2270 error = check_kill_permission(sig, &info, p);
2271 /*
2272 * The null signal is a permissions and process existence
2273 * probe. No signal is actually delivered.
2274 */
2275 if (!error && sig && p->sighand) {
2276 spin_lock_irq(&p->sighand->siglock);
2277 handle_stop_signal(sig, p);
2278 error = specific_send_sig_info(sig, &info, p);
2279 spin_unlock_irq(&p->sighand->siglock);
2280 }
2281 }
2282 read_unlock(&tasklist_lock);
6dd69f10 2283
1da177e4
LT
2284 return error;
2285}
2286
6dd69f10
VL
2287/**
2288 * sys_tgkill - send signal to one specific thread
2289 * @tgid: the thread group ID of the thread
2290 * @pid: the PID of the thread
2291 * @sig: signal to be sent
2292 *
2293 * This syscall also checks the tgid and returns -ESRCH even if the PID
2294 * exists but it's not belonging to the target process anymore. This
2295 * method solves the problem of threads exiting and PIDs getting reused.
2296 */
2297asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2298{
2299 /* This is only valid for single tasks */
2300 if (pid <= 0 || tgid <= 0)
2301 return -EINVAL;
2302
2303 return do_tkill(tgid, pid, sig);
2304}
2305
1da177e4
LT
2306/*
2307 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2308 */
2309asmlinkage long
2310sys_tkill(int pid, int sig)
2311{
1da177e4
LT
2312 /* This is only valid for single tasks */
2313 if (pid <= 0)
2314 return -EINVAL;
2315
6dd69f10 2316 return do_tkill(0, pid, sig);
1da177e4
LT
2317}
2318
2319asmlinkage long
2320sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2321{
2322 siginfo_t info;
2323
2324 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2325 return -EFAULT;
2326
2327 /* Not even root can pretend to send signals from the kernel.
2328 Nor can they impersonate a kill(), which adds source info. */
2329 if (info.si_code >= 0)
2330 return -EPERM;
2331 info.si_signo = sig;
2332
2333 /* POSIX.1b doesn't mention process groups. */
2334 return kill_proc_info(sig, &info, pid);
2335}
2336
2337int
2338do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2339{
2340 struct k_sigaction *k;
2341
7ed20e1a 2342 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
1da177e4
LT
2343 return -EINVAL;
2344
2345 k = &current->sighand->action[sig-1];
2346
2347 spin_lock_irq(&current->sighand->siglock);
2348 if (signal_pending(current)) {
2349 /*
2350 * If there might be a fatal signal pending on multiple
2351 * threads, make sure we take it before changing the action.
2352 */
2353 spin_unlock_irq(&current->sighand->siglock);
2354 return -ERESTARTNOINTR;
2355 }
2356
2357 if (oact)
2358 *oact = *k;
2359
2360 if (act) {
2361 /*
2362 * POSIX 3.3.1.3:
2363 * "Setting a signal action to SIG_IGN for a signal that is
2364 * pending shall cause the pending signal to be discarded,
2365 * whether or not it is blocked."
2366 *
2367 * "Setting a signal action to SIG_DFL for a signal that is
2368 * pending and whose default action is to ignore the signal
2369 * (for example, SIGCHLD), shall cause the pending signal to
2370 * be discarded, whether or not it is blocked"
2371 */
2372 if (act->sa.sa_handler == SIG_IGN ||
2373 (act->sa.sa_handler == SIG_DFL &&
2374 sig_kernel_ignore(sig))) {
2375 /*
2376 * This is a fairly rare case, so we only take the
2377 * tasklist_lock once we're sure we'll need it.
2378 * Now we must do this little unlock and relock
2379 * dance to maintain the lock hierarchy.
2380 */
2381 struct task_struct *t = current;
2382 spin_unlock_irq(&t->sighand->siglock);
2383 read_lock(&tasklist_lock);
2384 spin_lock_irq(&t->sighand->siglock);
2385 *k = *act;
2386 sigdelsetmask(&k->sa.sa_mask,
2387 sigmask(SIGKILL) | sigmask(SIGSTOP));
2388 rm_from_queue(sigmask(sig), &t->signal->shared_pending);
2389 do {
2390 rm_from_queue(sigmask(sig), &t->pending);
2391 recalc_sigpending_tsk(t);
2392 t = next_thread(t);
2393 } while (t != current);
2394 spin_unlock_irq(&current->sighand->siglock);
2395 read_unlock(&tasklist_lock);
2396 return 0;
2397 }
2398
2399 *k = *act;
2400 sigdelsetmask(&k->sa.sa_mask,
2401 sigmask(SIGKILL) | sigmask(SIGSTOP));
2402 }
2403
2404 spin_unlock_irq(&current->sighand->siglock);
2405 return 0;
2406}
2407
2408int
2409do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2410{
2411 stack_t oss;
2412 int error;
2413
2414 if (uoss) {
2415 oss.ss_sp = (void __user *) current->sas_ss_sp;
2416 oss.ss_size = current->sas_ss_size;
2417 oss.ss_flags = sas_ss_flags(sp);
2418 }
2419
2420 if (uss) {
2421 void __user *ss_sp;
2422 size_t ss_size;
2423 int ss_flags;
2424
2425 error = -EFAULT;
2426 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2427 || __get_user(ss_sp, &uss->ss_sp)
2428 || __get_user(ss_flags, &uss->ss_flags)
2429 || __get_user(ss_size, &uss->ss_size))
2430 goto out;
2431
2432 error = -EPERM;
2433 if (on_sig_stack(sp))
2434 goto out;
2435
2436 error = -EINVAL;
2437 /*
2438 *
2439 * Note - this code used to test ss_flags incorrectly
2440 * old code may have been written using ss_flags==0
2441 * to mean ss_flags==SS_ONSTACK (as this was the only
2442 * way that worked) - this fix preserves that older
2443 * mechanism
2444 */
2445 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2446 goto out;
2447
2448 if (ss_flags == SS_DISABLE) {
2449 ss_size = 0;
2450 ss_sp = NULL;
2451 } else {
2452 error = -ENOMEM;
2453 if (ss_size < MINSIGSTKSZ)
2454 goto out;
2455 }
2456
2457 current->sas_ss_sp = (unsigned long) ss_sp;
2458 current->sas_ss_size = ss_size;
2459 }
2460
2461 if (uoss) {
2462 error = -EFAULT;
2463 if (copy_to_user(uoss, &oss, sizeof(oss)))
2464 goto out;
2465 }
2466
2467 error = 0;
2468out:
2469 return error;
2470}
2471
2472#ifdef __ARCH_WANT_SYS_SIGPENDING
2473
2474asmlinkage long
2475sys_sigpending(old_sigset_t __user *set)
2476{
2477 return do_sigpending(set, sizeof(*set));
2478}
2479
2480#endif
2481
2482#ifdef __ARCH_WANT_SYS_SIGPROCMASK
2483/* Some platforms have their own version with special arguments others
2484 support only sys_rt_sigprocmask. */
2485
2486asmlinkage long
2487sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2488{
2489 int error;
2490 old_sigset_t old_set, new_set;
2491
2492 if (set) {
2493 error = -EFAULT;
2494 if (copy_from_user(&new_set, set, sizeof(*set)))
2495 goto out;
2496 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2497
2498 spin_lock_irq(&current->sighand->siglock);
2499 old_set = current->blocked.sig[0];
2500
2501 error = 0;
2502 switch (how) {
2503 default:
2504 error = -EINVAL;
2505 break;
2506 case SIG_BLOCK:
2507 sigaddsetmask(&current->blocked, new_set);
2508 break;
2509 case SIG_UNBLOCK:
2510 sigdelsetmask(&current->blocked, new_set);
2511 break;
2512 case SIG_SETMASK:
2513 current->blocked.sig[0] = new_set;
2514 break;
2515 }
2516
2517 recalc_sigpending();
2518 spin_unlock_irq(&current->sighand->siglock);
2519 if (error)
2520 goto out;
2521 if (oset)
2522 goto set_old;
2523 } else if (oset) {
2524 old_set = current->blocked.sig[0];
2525 set_old:
2526 error = -EFAULT;
2527 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2528 goto out;
2529 }
2530 error = 0;
2531out:
2532 return error;
2533}
2534#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2535
2536#ifdef __ARCH_WANT_SYS_RT_SIGACTION
2537asmlinkage long
2538sys_rt_sigaction(int sig,
2539 const struct sigaction __user *act,
2540 struct sigaction __user *oact,
2541 size_t sigsetsize)
2542{
2543 struct k_sigaction new_sa, old_sa;
2544 int ret = -EINVAL;
2545
2546 /* XXX: Don't preclude handling different sized sigset_t's. */
2547 if (sigsetsize != sizeof(sigset_t))
2548 goto out;
2549
2550 if (act) {
2551 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2552 return -EFAULT;
2553 }
2554
2555 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2556
2557 if (!ret && oact) {
2558 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2559 return -EFAULT;
2560 }
2561out:
2562 return ret;
2563}
2564#endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2565
2566#ifdef __ARCH_WANT_SYS_SGETMASK
2567
2568/*
2569 * For backwards compatibility. Functionality superseded by sigprocmask.
2570 */
2571asmlinkage long
2572sys_sgetmask(void)
2573{
2574 /* SMP safe */
2575 return current->blocked.sig[0];
2576}
2577
2578asmlinkage long
2579sys_ssetmask(int newmask)
2580{
2581 int old;
2582
2583 spin_lock_irq(&current->sighand->siglock);
2584 old = current->blocked.sig[0];
2585
2586 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2587 sigmask(SIGSTOP)));
2588 recalc_sigpending();
2589 spin_unlock_irq(&current->sighand->siglock);
2590
2591 return old;
2592}
2593#endif /* __ARCH_WANT_SGETMASK */
2594
2595#ifdef __ARCH_WANT_SYS_SIGNAL
2596/*
2597 * For backwards compatibility. Functionality superseded by sigaction.
2598 */
2599asmlinkage unsigned long
2600sys_signal(int sig, __sighandler_t handler)
2601{
2602 struct k_sigaction new_sa, old_sa;
2603 int ret;
2604
2605 new_sa.sa.sa_handler = handler;
2606 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2607
2608 ret = do_sigaction(sig, &new_sa, &old_sa);
2609
2610 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2611}
2612#endif /* __ARCH_WANT_SYS_SIGNAL */
2613
2614#ifdef __ARCH_WANT_SYS_PAUSE
2615
2616asmlinkage long
2617sys_pause(void)
2618{
2619 current->state = TASK_INTERRUPTIBLE;
2620 schedule();
2621 return -ERESTARTNOHAND;
2622}
2623
2624#endif
2625
2626void __init signals_init(void)
2627{
2628 sigqueue_cachep =
2629 kmem_cache_create("sigqueue",
2630 sizeof(struct sigqueue),
2631 __alignof__(struct sigqueue),
2632 SLAB_PANIC, NULL, NULL);
2633}