sched: fix sched_rt_rq_enqueue() resched idle
[linux-block.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
4fd29176 6#ifdef CONFIG_SMP
84de4274 7
637f5085 8static inline int rt_overloaded(struct rq *rq)
4fd29176 9{
637f5085 10 return atomic_read(&rq->rd->rto_count);
4fd29176 11}
84de4274 12
4fd29176
SR
13static inline void rt_set_overload(struct rq *rq)
14{
1f11eb6a
GH
15 if (!rq->online)
16 return;
17
637f5085 18 cpu_set(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
19 /*
20 * Make sure the mask is visible before we set
21 * the overload count. That is checked to determine
22 * if we should look at the mask. It would be a shame
23 * if we looked at the mask, but the mask was not
24 * updated yet.
25 */
26 wmb();
637f5085 27 atomic_inc(&rq->rd->rto_count);
4fd29176 28}
84de4274 29
4fd29176
SR
30static inline void rt_clear_overload(struct rq *rq)
31{
1f11eb6a
GH
32 if (!rq->online)
33 return;
34
4fd29176 35 /* the order here really doesn't matter */
637f5085
GH
36 atomic_dec(&rq->rd->rto_count);
37 cpu_clear(rq->cpu, rq->rd->rto_mask);
4fd29176 38}
73fe6aae
GH
39
40static void update_rt_migration(struct rq *rq)
41{
637f5085 42 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
cdc8eb98
GH
43 if (!rq->rt.overloaded) {
44 rt_set_overload(rq);
45 rq->rt.overloaded = 1;
46 }
47 } else if (rq->rt.overloaded) {
73fe6aae 48 rt_clear_overload(rq);
637f5085
GH
49 rq->rt.overloaded = 0;
50 }
73fe6aae 51}
4fd29176
SR
52#endif /* CONFIG_SMP */
53
6f505b16 54static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
fa85ae24 55{
6f505b16
PZ
56 return container_of(rt_se, struct task_struct, rt);
57}
58
59static inline int on_rt_rq(struct sched_rt_entity *rt_se)
60{
61 return !list_empty(&rt_se->run_list);
62}
63
052f1dc7 64#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 65
9f0c1e56 66static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
67{
68 if (!rt_rq->tg)
9f0c1e56 69 return RUNTIME_INF;
6f505b16 70
ac086bc2
PZ
71 return rt_rq->rt_runtime;
72}
73
74static inline u64 sched_rt_period(struct rt_rq *rt_rq)
75{
76 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
77}
78
79#define for_each_leaf_rt_rq(rt_rq, rq) \
80 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
81
82static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
83{
84 return rt_rq->rq;
85}
86
87static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
88{
89 return rt_se->rt_rq;
90}
91
92#define for_each_sched_rt_entity(rt_se) \
93 for (; rt_se; rt_se = rt_se->parent)
94
95static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
96{
97 return rt_se->my_q;
98}
99
100static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
102
9f0c1e56 103static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16
PZ
104{
105 struct sched_rt_entity *rt_se = rt_rq->rt_se;
106
107 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
1020387f
PZ
108 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
109
6f505b16 110 enqueue_rt_entity(rt_se);
1020387f
PZ
111 if (rt_rq->highest_prio < curr->prio)
112 resched_task(curr);
6f505b16
PZ
113 }
114}
115
9f0c1e56 116static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
117{
118 struct sched_rt_entity *rt_se = rt_rq->rt_se;
119
120 if (rt_se && on_rt_rq(rt_se))
121 dequeue_rt_entity(rt_se);
122}
123
23b0fdfc
PZ
124static inline int rt_rq_throttled(struct rt_rq *rt_rq)
125{
126 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
127}
128
129static int rt_se_boosted(struct sched_rt_entity *rt_se)
130{
131 struct rt_rq *rt_rq = group_rt_rq(rt_se);
132 struct task_struct *p;
133
134 if (rt_rq)
135 return !!rt_rq->rt_nr_boosted;
136
137 p = rt_task_of(rt_se);
138 return p->prio != p->normal_prio;
139}
140
d0b27fa7
PZ
141#ifdef CONFIG_SMP
142static inline cpumask_t sched_rt_period_mask(void)
143{
144 return cpu_rq(smp_processor_id())->rd->span;
145}
6f505b16 146#else
d0b27fa7
PZ
147static inline cpumask_t sched_rt_period_mask(void)
148{
149 return cpu_online_map;
150}
151#endif
6f505b16 152
d0b27fa7
PZ
153static inline
154struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 155{
d0b27fa7
PZ
156 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
157}
9f0c1e56 158
ac086bc2
PZ
159static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
160{
161 return &rt_rq->tg->rt_bandwidth;
162}
163
55e12e5e 164#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
165
166static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
167{
ac086bc2
PZ
168 return rt_rq->rt_runtime;
169}
170
171static inline u64 sched_rt_period(struct rt_rq *rt_rq)
172{
173 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
174}
175
176#define for_each_leaf_rt_rq(rt_rq, rq) \
177 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
178
179static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180{
181 return container_of(rt_rq, struct rq, rt);
182}
183
184static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185{
186 struct task_struct *p = rt_task_of(rt_se);
187 struct rq *rq = task_rq(p);
188
189 return &rq->rt;
190}
191
192#define for_each_sched_rt_entity(rt_se) \
193 for (; rt_se; rt_se = NULL)
194
195static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
196{
197 return NULL;
198}
199
9f0c1e56 200static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 201{
f3ade837
JB
202 if (rt_rq->rt_nr_running)
203 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
204}
205
9f0c1e56 206static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
207{
208}
209
23b0fdfc
PZ
210static inline int rt_rq_throttled(struct rt_rq *rt_rq)
211{
212 return rt_rq->rt_throttled;
213}
d0b27fa7
PZ
214
215static inline cpumask_t sched_rt_period_mask(void)
216{
217 return cpu_online_map;
218}
219
220static inline
221struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
222{
223 return &cpu_rq(cpu)->rt;
224}
225
ac086bc2
PZ
226static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
227{
228 return &def_rt_bandwidth;
229}
230
55e12e5e 231#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 232
ac086bc2 233#ifdef CONFIG_SMP
b79f3833 234static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
235{
236 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
237 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
238 int i, weight, more = 0;
239 u64 rt_period;
240
241 weight = cpus_weight(rd->span);
242
243 spin_lock(&rt_b->rt_runtime_lock);
244 rt_period = ktime_to_ns(rt_b->rt_period);
363ab6f1 245 for_each_cpu_mask_nr(i, rd->span) {
ac086bc2
PZ
246 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
247 s64 diff;
248
249 if (iter == rt_rq)
250 continue;
251
252 spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
253 if (iter->rt_runtime == RUNTIME_INF)
254 goto next;
255
ac086bc2
PZ
256 diff = iter->rt_runtime - iter->rt_time;
257 if (diff > 0) {
58838cf3 258 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
259 if (rt_rq->rt_runtime + diff > rt_period)
260 diff = rt_period - rt_rq->rt_runtime;
261 iter->rt_runtime -= diff;
262 rt_rq->rt_runtime += diff;
263 more = 1;
264 if (rt_rq->rt_runtime == rt_period) {
265 spin_unlock(&iter->rt_runtime_lock);
266 break;
267 }
268 }
7def2be1 269next:
ac086bc2
PZ
270 spin_unlock(&iter->rt_runtime_lock);
271 }
272 spin_unlock(&rt_b->rt_runtime_lock);
273
274 return more;
275}
7def2be1
PZ
276
277static void __disable_runtime(struct rq *rq)
278{
279 struct root_domain *rd = rq->rd;
280 struct rt_rq *rt_rq;
281
282 if (unlikely(!scheduler_running))
283 return;
284
285 for_each_leaf_rt_rq(rt_rq, rq) {
286 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
287 s64 want;
288 int i;
289
290 spin_lock(&rt_b->rt_runtime_lock);
291 spin_lock(&rt_rq->rt_runtime_lock);
292 if (rt_rq->rt_runtime == RUNTIME_INF ||
293 rt_rq->rt_runtime == rt_b->rt_runtime)
294 goto balanced;
295 spin_unlock(&rt_rq->rt_runtime_lock);
296
297 want = rt_b->rt_runtime - rt_rq->rt_runtime;
298
299 for_each_cpu_mask(i, rd->span) {
300 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
301 s64 diff;
302
f1679d08 303 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
304 continue;
305
306 spin_lock(&iter->rt_runtime_lock);
307 if (want > 0) {
308 diff = min_t(s64, iter->rt_runtime, want);
309 iter->rt_runtime -= diff;
310 want -= diff;
311 } else {
312 iter->rt_runtime -= want;
313 want -= want;
314 }
315 spin_unlock(&iter->rt_runtime_lock);
316
317 if (!want)
318 break;
319 }
320
321 spin_lock(&rt_rq->rt_runtime_lock);
322 BUG_ON(want);
323balanced:
324 rt_rq->rt_runtime = RUNTIME_INF;
325 spin_unlock(&rt_rq->rt_runtime_lock);
326 spin_unlock(&rt_b->rt_runtime_lock);
327 }
328}
329
330static void disable_runtime(struct rq *rq)
331{
332 unsigned long flags;
333
334 spin_lock_irqsave(&rq->lock, flags);
335 __disable_runtime(rq);
336 spin_unlock_irqrestore(&rq->lock, flags);
337}
338
339static void __enable_runtime(struct rq *rq)
340{
7def2be1
PZ
341 struct rt_rq *rt_rq;
342
343 if (unlikely(!scheduler_running))
344 return;
345
346 for_each_leaf_rt_rq(rt_rq, rq) {
347 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
348
349 spin_lock(&rt_b->rt_runtime_lock);
350 spin_lock(&rt_rq->rt_runtime_lock);
351 rt_rq->rt_runtime = rt_b->rt_runtime;
352 rt_rq->rt_time = 0;
353 spin_unlock(&rt_rq->rt_runtime_lock);
354 spin_unlock(&rt_b->rt_runtime_lock);
355 }
356}
357
358static void enable_runtime(struct rq *rq)
359{
360 unsigned long flags;
361
362 spin_lock_irqsave(&rq->lock, flags);
363 __enable_runtime(rq);
364 spin_unlock_irqrestore(&rq->lock, flags);
365}
366
eff6549b
PZ
367static int balance_runtime(struct rt_rq *rt_rq)
368{
369 int more = 0;
370
371 if (rt_rq->rt_time > rt_rq->rt_runtime) {
372 spin_unlock(&rt_rq->rt_runtime_lock);
373 more = do_balance_runtime(rt_rq);
374 spin_lock(&rt_rq->rt_runtime_lock);
375 }
376
377 return more;
378}
55e12e5e 379#else /* !CONFIG_SMP */
eff6549b
PZ
380static inline int balance_runtime(struct rt_rq *rt_rq)
381{
382 return 0;
383}
55e12e5e 384#endif /* CONFIG_SMP */
ac086bc2 385
eff6549b
PZ
386static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
387{
388 int i, idle = 1;
389 cpumask_t span;
390
391 if (rt_b->rt_runtime == RUNTIME_INF)
392 return 1;
393
394 span = sched_rt_period_mask();
395 for_each_cpu_mask(i, span) {
396 int enqueue = 0;
397 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
398 struct rq *rq = rq_of_rt_rq(rt_rq);
399
400 spin_lock(&rq->lock);
401 if (rt_rq->rt_time) {
402 u64 runtime;
403
404 spin_lock(&rt_rq->rt_runtime_lock);
405 if (rt_rq->rt_throttled)
406 balance_runtime(rt_rq);
407 runtime = rt_rq->rt_runtime;
408 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
409 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
410 rt_rq->rt_throttled = 0;
411 enqueue = 1;
412 }
413 if (rt_rq->rt_time || rt_rq->rt_nr_running)
414 idle = 0;
415 spin_unlock(&rt_rq->rt_runtime_lock);
6c3df255
PZ
416 } else if (rt_rq->rt_nr_running)
417 idle = 0;
eff6549b
PZ
418
419 if (enqueue)
420 sched_rt_rq_enqueue(rt_rq);
421 spin_unlock(&rq->lock);
422 }
423
424 return idle;
425}
ac086bc2 426
6f505b16
PZ
427static inline int rt_se_prio(struct sched_rt_entity *rt_se)
428{
052f1dc7 429#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
430 struct rt_rq *rt_rq = group_rt_rq(rt_se);
431
432 if (rt_rq)
433 return rt_rq->highest_prio;
434#endif
435
436 return rt_task_of(rt_se)->prio;
437}
438
9f0c1e56 439static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 440{
9f0c1e56 441 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 442
9f0c1e56 443 if (runtime == RUNTIME_INF)
fa85ae24
PZ
444 return 0;
445
446 if (rt_rq->rt_throttled)
23b0fdfc 447 return rt_rq_throttled(rt_rq);
fa85ae24 448
ac086bc2
PZ
449 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
450 return 0;
451
b79f3833
PZ
452 balance_runtime(rt_rq);
453 runtime = sched_rt_runtime(rt_rq);
454 if (runtime == RUNTIME_INF)
455 return 0;
ac086bc2 456
9f0c1e56 457 if (rt_rq->rt_time > runtime) {
6f505b16 458 rt_rq->rt_throttled = 1;
23b0fdfc 459 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 460 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
461 return 1;
462 }
fa85ae24
PZ
463 }
464
465 return 0;
466}
467
bb44e5d1
IM
468/*
469 * Update the current task's runtime statistics. Skip current tasks that
470 * are not in our scheduling class.
471 */
a9957449 472static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
473{
474 struct task_struct *curr = rq->curr;
6f505b16
PZ
475 struct sched_rt_entity *rt_se = &curr->rt;
476 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
477 u64 delta_exec;
478
479 if (!task_has_rt_policy(curr))
480 return;
481
d281918d 482 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
483 if (unlikely((s64)delta_exec < 0))
484 delta_exec = 0;
6cfb0d5d
IM
485
486 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
487
488 curr->se.sum_exec_runtime += delta_exec;
d281918d 489 curr->se.exec_start = rq->clock;
d842de87 490 cpuacct_charge(curr, delta_exec);
fa85ae24 491
354d60c2
DG
492 for_each_sched_rt_entity(rt_se) {
493 rt_rq = rt_rq_of_se(rt_se);
494
495 spin_lock(&rt_rq->rt_runtime_lock);
496 rt_rq->rt_time += delta_exec;
497 if (sched_rt_runtime_exceeded(rt_rq))
498 resched_task(curr);
499 spin_unlock(&rt_rq->rt_runtime_lock);
500 }
bb44e5d1
IM
501}
502
6f505b16
PZ
503static inline
504void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 505{
6f505b16
PZ
506 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
507 rt_rq->rt_nr_running++;
052f1dc7 508#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6e0534f2 509 if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
577b4a58 510#ifdef CONFIG_SMP
6e0534f2 511 struct rq *rq = rq_of_rt_rq(rt_rq);
577b4a58 512#endif
1f11eb6a 513
6f505b16 514 rt_rq->highest_prio = rt_se_prio(rt_se);
1100ac91 515#ifdef CONFIG_SMP
1f11eb6a
GH
516 if (rq->online)
517 cpupri_set(&rq->rd->cpupri, rq->cpu,
518 rt_se_prio(rt_se));
1100ac91 519#endif
6e0534f2 520 }
6f505b16 521#endif
764a9d6f 522#ifdef CONFIG_SMP
6f505b16
PZ
523 if (rt_se->nr_cpus_allowed > 1) {
524 struct rq *rq = rq_of_rt_rq(rt_rq);
1100ac91 525
73fe6aae 526 rq->rt.rt_nr_migratory++;
6f505b16 527 }
73fe6aae 528
6f505b16
PZ
529 update_rt_migration(rq_of_rt_rq(rt_rq));
530#endif
052f1dc7 531#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
532 if (rt_se_boosted(rt_se))
533 rt_rq->rt_nr_boosted++;
d0b27fa7
PZ
534
535 if (rt_rq->tg)
536 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
537#else
538 start_rt_bandwidth(&def_rt_bandwidth);
23b0fdfc 539#endif
63489e45
SR
540}
541
6f505b16
PZ
542static inline
543void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 544{
6e0534f2
GH
545#ifdef CONFIG_SMP
546 int highest_prio = rt_rq->highest_prio;
547#endif
548
6f505b16
PZ
549 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
550 WARN_ON(!rt_rq->rt_nr_running);
551 rt_rq->rt_nr_running--;
052f1dc7 552#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16 553 if (rt_rq->rt_nr_running) {
764a9d6f
SR
554 struct rt_prio_array *array;
555
6f505b16
PZ
556 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
557 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
764a9d6f 558 /* recalculate */
6f505b16
PZ
559 array = &rt_rq->active;
560 rt_rq->highest_prio =
764a9d6f
SR
561 sched_find_first_bit(array->bitmap);
562 } /* otherwise leave rq->highest prio alone */
563 } else
6f505b16
PZ
564 rt_rq->highest_prio = MAX_RT_PRIO;
565#endif
566#ifdef CONFIG_SMP
567 if (rt_se->nr_cpus_allowed > 1) {
568 struct rq *rq = rq_of_rt_rq(rt_rq);
73fe6aae 569 rq->rt.rt_nr_migratory--;
6f505b16 570 }
73fe6aae 571
6e0534f2
GH
572 if (rt_rq->highest_prio != highest_prio) {
573 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a
GH
574
575 if (rq->online)
576 cpupri_set(&rq->rd->cpupri, rq->cpu,
577 rt_rq->highest_prio);
6e0534f2
GH
578 }
579
6f505b16 580 update_rt_migration(rq_of_rt_rq(rt_rq));
764a9d6f 581#endif /* CONFIG_SMP */
052f1dc7 582#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
583 if (rt_se_boosted(rt_se))
584 rt_rq->rt_nr_boosted--;
585
586 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
587#endif
63489e45
SR
588}
589
ad2a3f13 590static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
bb44e5d1 591{
6f505b16
PZ
592 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
593 struct rt_prio_array *array = &rt_rq->active;
594 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 595 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 596
ad2a3f13
PZ
597 /*
598 * Don't enqueue the group if its throttled, or when empty.
599 * The latter is a consequence of the former when a child group
600 * get throttled and the current group doesn't have any other
601 * active members.
602 */
603 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 604 return;
63489e45 605
7ebefa8c 606 list_add_tail(&rt_se->run_list, queue);
6f505b16 607 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 608
6f505b16
PZ
609 inc_rt_tasks(rt_se, rt_rq);
610}
611
ad2a3f13 612static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
613{
614 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
615 struct rt_prio_array *array = &rt_rq->active;
616
617 list_del_init(&rt_se->run_list);
618 if (list_empty(array->queue + rt_se_prio(rt_se)))
619 __clear_bit(rt_se_prio(rt_se), array->bitmap);
620
621 dec_rt_tasks(rt_se, rt_rq);
622}
623
624/*
625 * Because the prio of an upper entry depends on the lower
626 * entries, we must remove entries top - down.
6f505b16 627 */
ad2a3f13 628static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 629{
ad2a3f13 630 struct sched_rt_entity *back = NULL;
6f505b16 631
58d6c2d7
PZ
632 for_each_sched_rt_entity(rt_se) {
633 rt_se->back = back;
634 back = rt_se;
635 }
636
637 for (rt_se = back; rt_se; rt_se = rt_se->back) {
638 if (on_rt_rq(rt_se))
ad2a3f13
PZ
639 __dequeue_rt_entity(rt_se);
640 }
641}
642
643static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
644{
645 dequeue_rt_stack(rt_se);
646 for_each_sched_rt_entity(rt_se)
647 __enqueue_rt_entity(rt_se);
648}
649
650static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
651{
652 dequeue_rt_stack(rt_se);
653
654 for_each_sched_rt_entity(rt_se) {
655 struct rt_rq *rt_rq = group_rt_rq(rt_se);
656
657 if (rt_rq && rt_rq->rt_nr_running)
658 __enqueue_rt_entity(rt_se);
58d6c2d7 659 }
bb44e5d1
IM
660}
661
662/*
663 * Adding/removing a task to/from a priority array:
664 */
6f505b16
PZ
665static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
666{
667 struct sched_rt_entity *rt_se = &p->rt;
668
669 if (wakeup)
670 rt_se->timeout = 0;
671
ad2a3f13 672 enqueue_rt_entity(rt_se);
c09595f6
PZ
673
674 inc_cpu_load(rq, p->se.load.weight);
6f505b16
PZ
675}
676
f02231e5 677static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1 678{
6f505b16 679 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 680
f1e14ef6 681 update_curr_rt(rq);
ad2a3f13 682 dequeue_rt_entity(rt_se);
c09595f6
PZ
683
684 dec_cpu_load(rq, p->se.load.weight);
bb44e5d1
IM
685}
686
687/*
688 * Put task to the end of the run list without the overhead of dequeue
689 * followed by enqueue.
690 */
7ebefa8c
DA
691static void
692requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 693{
1cdad715 694 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
695 struct rt_prio_array *array = &rt_rq->active;
696 struct list_head *queue = array->queue + rt_se_prio(rt_se);
697
698 if (head)
699 list_move(&rt_se->run_list, queue);
700 else
701 list_move_tail(&rt_se->run_list, queue);
1cdad715 702 }
6f505b16
PZ
703}
704
7ebefa8c 705static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 706{
6f505b16
PZ
707 struct sched_rt_entity *rt_se = &p->rt;
708 struct rt_rq *rt_rq;
bb44e5d1 709
6f505b16
PZ
710 for_each_sched_rt_entity(rt_se) {
711 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 712 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 713 }
bb44e5d1
IM
714}
715
6f505b16 716static void yield_task_rt(struct rq *rq)
bb44e5d1 717{
7ebefa8c 718 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
719}
720
e7693a36 721#ifdef CONFIG_SMP
318e0893
GH
722static int find_lowest_rq(struct task_struct *task);
723
e7693a36
GH
724static int select_task_rq_rt(struct task_struct *p, int sync)
725{
318e0893
GH
726 struct rq *rq = task_rq(p);
727
728 /*
e1f47d89
SR
729 * If the current task is an RT task, then
730 * try to see if we can wake this RT task up on another
731 * runqueue. Otherwise simply start this RT task
732 * on its current runqueue.
733 *
734 * We want to avoid overloading runqueues. Even if
735 * the RT task is of higher priority than the current RT task.
736 * RT tasks behave differently than other tasks. If
737 * one gets preempted, we try to push it off to another queue.
738 * So trying to keep a preempting RT task on the same
739 * cache hot CPU will force the running RT task to
740 * a cold CPU. So we waste all the cache for the lower
741 * RT task in hopes of saving some of a RT task
742 * that is just being woken and probably will have
743 * cold cache anyway.
318e0893 744 */
17b3279b 745 if (unlikely(rt_task(rq->curr)) &&
6f505b16 746 (p->rt.nr_cpus_allowed > 1)) {
318e0893
GH
747 int cpu = find_lowest_rq(p);
748
749 return (cpu == -1) ? task_cpu(p) : cpu;
750 }
751
752 /*
753 * Otherwise, just let it ride on the affined RQ and the
754 * post-schedule router will push the preempted task away
755 */
e7693a36
GH
756 return task_cpu(p);
757}
7ebefa8c
DA
758
759static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
760{
761 cpumask_t mask;
762
763 if (rq->curr->rt.nr_cpus_allowed == 1)
764 return;
765
766 if (p->rt.nr_cpus_allowed != 1
767 && cpupri_find(&rq->rd->cpupri, p, &mask))
768 return;
769
770 if (!cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
771 return;
772
773 /*
774 * There appears to be other cpus that can accept
775 * current and none to run 'p', so lets reschedule
776 * to try and push current away:
777 */
778 requeue_task_rt(rq, p, 1);
779 resched_task(rq->curr);
780}
781
e7693a36
GH
782#endif /* CONFIG_SMP */
783
bb44e5d1
IM
784/*
785 * Preempt the current task with a newly woken task if needed:
786 */
787static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
788{
45c01e82 789 if (p->prio < rq->curr->prio) {
bb44e5d1 790 resched_task(rq->curr);
45c01e82
GH
791 return;
792 }
793
794#ifdef CONFIG_SMP
795 /*
796 * If:
797 *
798 * - the newly woken task is of equal priority to the current task
799 * - the newly woken task is non-migratable while current is migratable
800 * - current will be preempted on the next reschedule
801 *
802 * we should check to see if current can readily move to a different
803 * cpu. If so, we will reschedule to allow the push logic to try
804 * to move current somewhere else, making room for our non-migratable
805 * task.
806 */
7ebefa8c
DA
807 if (p->prio == rq->curr->prio && !need_resched())
808 check_preempt_equal_prio(rq, p);
45c01e82 809#endif
bb44e5d1
IM
810}
811
6f505b16
PZ
812static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
813 struct rt_rq *rt_rq)
bb44e5d1 814{
6f505b16
PZ
815 struct rt_prio_array *array = &rt_rq->active;
816 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
817 struct list_head *queue;
818 int idx;
819
820 idx = sched_find_first_bit(array->bitmap);
6f505b16 821 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
822
823 queue = array->queue + idx;
6f505b16 824 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 825
6f505b16
PZ
826 return next;
827}
bb44e5d1 828
6f505b16
PZ
829static struct task_struct *pick_next_task_rt(struct rq *rq)
830{
831 struct sched_rt_entity *rt_se;
832 struct task_struct *p;
833 struct rt_rq *rt_rq;
bb44e5d1 834
6f505b16
PZ
835 rt_rq = &rq->rt;
836
837 if (unlikely(!rt_rq->rt_nr_running))
838 return NULL;
839
23b0fdfc 840 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
841 return NULL;
842
843 do {
844 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 845 BUG_ON(!rt_se);
6f505b16
PZ
846 rt_rq = group_rt_rq(rt_se);
847 } while (rt_rq);
848
849 p = rt_task_of(rt_se);
850 p->se.exec_start = rq->clock;
851 return p;
bb44e5d1
IM
852}
853
31ee529c 854static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 855{
f1e14ef6 856 update_curr_rt(rq);
bb44e5d1
IM
857 p->se.exec_start = 0;
858}
859
681f3e68 860#ifdef CONFIG_SMP
6f505b16 861
e8fa1362
SR
862/* Only try algorithms three times */
863#define RT_MAX_TRIES 3
864
865static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
1b12bbc7
PZ
866static void double_unlock_balance(struct rq *this_rq, struct rq *busiest);
867
e8fa1362
SR
868static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
869
f65eda4f
SR
870static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
871{
872 if (!task_running(rq, p) &&
73fe6aae 873 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
6f505b16 874 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
875 return 1;
876 return 0;
877}
878
e8fa1362 879/* Return the second highest RT task, NULL otherwise */
79064fbf 880static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 881{
6f505b16
PZ
882 struct task_struct *next = NULL;
883 struct sched_rt_entity *rt_se;
884 struct rt_prio_array *array;
885 struct rt_rq *rt_rq;
e8fa1362
SR
886 int idx;
887
6f505b16
PZ
888 for_each_leaf_rt_rq(rt_rq, rq) {
889 array = &rt_rq->active;
890 idx = sched_find_first_bit(array->bitmap);
891 next_idx:
892 if (idx >= MAX_RT_PRIO)
893 continue;
894 if (next && next->prio < idx)
895 continue;
896 list_for_each_entry(rt_se, array->queue + idx, run_list) {
897 struct task_struct *p = rt_task_of(rt_se);
898 if (pick_rt_task(rq, p, cpu)) {
899 next = p;
900 break;
901 }
902 }
903 if (!next) {
904 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
905 goto next_idx;
906 }
f65eda4f
SR
907 }
908
e8fa1362
SR
909 return next;
910}
911
912static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
913
6e1254d2
GH
914static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
915{
916 int first;
917
918 /* "this_cpu" is cheaper to preempt than a remote processor */
919 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
920 return this_cpu;
921
922 first = first_cpu(*mask);
923 if (first != NR_CPUS)
924 return first;
925
926 return -1;
927}
928
929static int find_lowest_rq(struct task_struct *task)
930{
931 struct sched_domain *sd;
932 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
933 int this_cpu = smp_processor_id();
934 int cpu = task_cpu(task);
06f90dbd 935
6e0534f2
GH
936 if (task->rt.nr_cpus_allowed == 1)
937 return -1; /* No other targets possible */
6e1254d2 938
6e0534f2
GH
939 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
940 return -1; /* No targets found */
6e1254d2 941
e761b772
MK
942 /*
943 * Only consider CPUs that are usable for migration.
944 * I guess we might want to change cpupri_find() to ignore those
945 * in the first place.
946 */
947 cpus_and(*lowest_mask, *lowest_mask, cpu_active_map);
948
6e1254d2
GH
949 /*
950 * At this point we have built a mask of cpus representing the
951 * lowest priority tasks in the system. Now we want to elect
952 * the best one based on our affinity and topology.
953 *
954 * We prioritize the last cpu that the task executed on since
955 * it is most likely cache-hot in that location.
956 */
957 if (cpu_isset(cpu, *lowest_mask))
958 return cpu;
959
960 /*
961 * Otherwise, we consult the sched_domains span maps to figure
962 * out which cpu is logically closest to our hot cache data.
963 */
964 if (this_cpu == cpu)
965 this_cpu = -1; /* Skip this_cpu opt if the same */
966
967 for_each_domain(cpu, sd) {
968 if (sd->flags & SD_WAKE_AFFINE) {
969 cpumask_t domain_mask;
970 int best_cpu;
971
972 cpus_and(domain_mask, sd->span, *lowest_mask);
973
974 best_cpu = pick_optimal_cpu(this_cpu,
975 &domain_mask);
976 if (best_cpu != -1)
977 return best_cpu;
978 }
979 }
980
981 /*
982 * And finally, if there were no matches within the domains
983 * just give the caller *something* to work with from the compatible
984 * locations.
985 */
986 return pick_optimal_cpu(this_cpu, lowest_mask);
07b4032c
GH
987}
988
989/* Will lock the rq it finds */
4df64c0b 990static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
991{
992 struct rq *lowest_rq = NULL;
07b4032c 993 int tries;
4df64c0b 994 int cpu;
e8fa1362 995
07b4032c
GH
996 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
997 cpu = find_lowest_rq(task);
998
2de0b463 999 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1000 break;
1001
07b4032c
GH
1002 lowest_rq = cpu_rq(cpu);
1003
e8fa1362 1004 /* if the prio of this runqueue changed, try again */
07b4032c 1005 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1006 /*
1007 * We had to unlock the run queue. In
1008 * the mean time, task could have
1009 * migrated already or had its affinity changed.
1010 * Also make sure that it wasn't scheduled on its rq.
1011 */
07b4032c 1012 if (unlikely(task_rq(task) != rq ||
4df64c0b
IM
1013 !cpu_isset(lowest_rq->cpu,
1014 task->cpus_allowed) ||
07b4032c 1015 task_running(rq, task) ||
e8fa1362 1016 !task->se.on_rq)) {
4df64c0b 1017
e8fa1362
SR
1018 spin_unlock(&lowest_rq->lock);
1019 lowest_rq = NULL;
1020 break;
1021 }
1022 }
1023
1024 /* If this rq is still suitable use it. */
1025 if (lowest_rq->rt.highest_prio > task->prio)
1026 break;
1027
1028 /* try again */
1b12bbc7 1029 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1030 lowest_rq = NULL;
1031 }
1032
1033 return lowest_rq;
1034}
1035
1036/*
1037 * If the current CPU has more than one RT task, see if the non
1038 * running task can migrate over to a CPU that is running a task
1039 * of lesser priority.
1040 */
697f0a48 1041static int push_rt_task(struct rq *rq)
e8fa1362
SR
1042{
1043 struct task_struct *next_task;
1044 struct rq *lowest_rq;
1045 int ret = 0;
1046 int paranoid = RT_MAX_TRIES;
1047
a22d7fc1
GH
1048 if (!rq->rt.overloaded)
1049 return 0;
1050
697f0a48 1051 next_task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
1052 if (!next_task)
1053 return 0;
1054
1055 retry:
697f0a48 1056 if (unlikely(next_task == rq->curr)) {
f65eda4f 1057 WARN_ON(1);
e8fa1362 1058 return 0;
f65eda4f 1059 }
e8fa1362
SR
1060
1061 /*
1062 * It's possible that the next_task slipped in of
1063 * higher priority than current. If that's the case
1064 * just reschedule current.
1065 */
697f0a48
GH
1066 if (unlikely(next_task->prio < rq->curr->prio)) {
1067 resched_task(rq->curr);
e8fa1362
SR
1068 return 0;
1069 }
1070
697f0a48 1071 /* We might release rq lock */
e8fa1362
SR
1072 get_task_struct(next_task);
1073
1074 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1075 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1076 if (!lowest_rq) {
1077 struct task_struct *task;
1078 /*
697f0a48 1079 * find lock_lowest_rq releases rq->lock
e8fa1362
SR
1080 * so it is possible that next_task has changed.
1081 * If it has, then try again.
1082 */
697f0a48 1083 task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
1084 if (unlikely(task != next_task) && task && paranoid--) {
1085 put_task_struct(next_task);
1086 next_task = task;
1087 goto retry;
1088 }
1089 goto out;
1090 }
1091
697f0a48 1092 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1093 set_task_cpu(next_task, lowest_rq->cpu);
1094 activate_task(lowest_rq, next_task, 0);
1095
1096 resched_task(lowest_rq->curr);
1097
1b12bbc7 1098 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1099
1100 ret = 1;
1101out:
1102 put_task_struct(next_task);
1103
1104 return ret;
1105}
1106
1107/*
1108 * TODO: Currently we just use the second highest prio task on
1109 * the queue, and stop when it can't migrate (or there's
1110 * no more RT tasks). There may be a case where a lower
1111 * priority RT task has a different affinity than the
1112 * higher RT task. In this case the lower RT task could
1113 * possibly be able to migrate where as the higher priority
1114 * RT task could not. We currently ignore this issue.
1115 * Enhancements are welcome!
1116 */
1117static void push_rt_tasks(struct rq *rq)
1118{
1119 /* push_rt_task will return true if it moved an RT */
1120 while (push_rt_task(rq))
1121 ;
1122}
1123
f65eda4f
SR
1124static int pull_rt_task(struct rq *this_rq)
1125{
80bf3171
IM
1126 int this_cpu = this_rq->cpu, ret = 0, cpu;
1127 struct task_struct *p, *next;
f65eda4f 1128 struct rq *src_rq;
f65eda4f 1129
637f5085 1130 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1131 return 0;
1132
1133 next = pick_next_task_rt(this_rq);
1134
363ab6f1 1135 for_each_cpu_mask_nr(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1136 if (this_cpu == cpu)
1137 continue;
1138
1139 src_rq = cpu_rq(cpu);
f65eda4f
SR
1140 /*
1141 * We can potentially drop this_rq's lock in
1142 * double_lock_balance, and another CPU could
1143 * steal our next task - hence we must cause
1144 * the caller to recalculate the next task
1145 * in that case:
1146 */
1147 if (double_lock_balance(this_rq, src_rq)) {
1148 struct task_struct *old_next = next;
80bf3171 1149
f65eda4f
SR
1150 next = pick_next_task_rt(this_rq);
1151 if (next != old_next)
1152 ret = 1;
1153 }
1154
1155 /*
1156 * Are there still pullable RT tasks?
1157 */
614ee1f6
MG
1158 if (src_rq->rt.rt_nr_running <= 1)
1159 goto skip;
f65eda4f 1160
f65eda4f
SR
1161 p = pick_next_highest_task_rt(src_rq, this_cpu);
1162
1163 /*
1164 * Do we have an RT task that preempts
1165 * the to-be-scheduled task?
1166 */
1167 if (p && (!next || (p->prio < next->prio))) {
1168 WARN_ON(p == src_rq->curr);
1169 WARN_ON(!p->se.on_rq);
1170
1171 /*
1172 * There's a chance that p is higher in priority
1173 * than what's currently running on its cpu.
1174 * This is just that p is wakeing up and hasn't
1175 * had a chance to schedule. We only pull
1176 * p if it is lower in priority than the
1177 * current task on the run queue or
1178 * this_rq next task is lower in prio than
1179 * the current task on that rq.
1180 */
1181 if (p->prio < src_rq->curr->prio ||
1182 (next && next->prio < src_rq->curr->prio))
614ee1f6 1183 goto skip;
f65eda4f
SR
1184
1185 ret = 1;
1186
1187 deactivate_task(src_rq, p, 0);
1188 set_task_cpu(p, this_cpu);
1189 activate_task(this_rq, p, 0);
1190 /*
1191 * We continue with the search, just in
1192 * case there's an even higher prio task
1193 * in another runqueue. (low likelyhood
1194 * but possible)
80bf3171 1195 *
f65eda4f
SR
1196 * Update next so that we won't pick a task
1197 * on another cpu with a priority lower (or equal)
1198 * than the one we just picked.
1199 */
1200 next = p;
1201
1202 }
614ee1f6 1203 skip:
1b12bbc7 1204 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1205 }
1206
1207 return ret;
1208}
1209
9a897c5a 1210static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1211{
1212 /* Try to pull RT tasks here if we lower this rq's prio */
7f51f298 1213 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
f65eda4f
SR
1214 pull_rt_task(rq);
1215}
1216
9a897c5a 1217static void post_schedule_rt(struct rq *rq)
e8fa1362
SR
1218{
1219 /*
1220 * If we have more than one rt_task queued, then
1221 * see if we can push the other rt_tasks off to other CPUS.
1222 * Note we may release the rq lock, and since
1223 * the lock was owned by prev, we need to release it
1224 * first via finish_lock_switch and then reaquire it here.
1225 */
a22d7fc1 1226 if (unlikely(rq->rt.overloaded)) {
e8fa1362
SR
1227 spin_lock_irq(&rq->lock);
1228 push_rt_tasks(rq);
1229 spin_unlock_irq(&rq->lock);
1230 }
1231}
1232
8ae121ac
GH
1233/*
1234 * If we are not running and we are not going to reschedule soon, we should
1235 * try to push tasks away now
1236 */
9a897c5a 1237static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
4642dafd 1238{
9a897c5a 1239 if (!task_running(rq, p) &&
8ae121ac 1240 !test_tsk_need_resched(rq->curr) &&
a22d7fc1 1241 rq->rt.overloaded)
4642dafd
SR
1242 push_rt_tasks(rq);
1243}
1244
43010659 1245static unsigned long
bb44e5d1 1246load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
1247 unsigned long max_load_move,
1248 struct sched_domain *sd, enum cpu_idle_type idle,
1249 int *all_pinned, int *this_best_prio)
bb44e5d1 1250{
c7a1e46a
SR
1251 /* don't touch RT tasks */
1252 return 0;
e1d1484f
PW
1253}
1254
1255static int
1256move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1257 struct sched_domain *sd, enum cpu_idle_type idle)
1258{
c7a1e46a
SR
1259 /* don't touch RT tasks */
1260 return 0;
bb44e5d1 1261}
deeeccd4 1262
cd8ba7cd
MT
1263static void set_cpus_allowed_rt(struct task_struct *p,
1264 const cpumask_t *new_mask)
73fe6aae
GH
1265{
1266 int weight = cpus_weight(*new_mask);
1267
1268 BUG_ON(!rt_task(p));
1269
1270 /*
1271 * Update the migration status of the RQ if we have an RT task
1272 * which is running AND changing its weight value.
1273 */
6f505b16 1274 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1275 struct rq *rq = task_rq(p);
1276
6f505b16 1277 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1278 rq->rt.rt_nr_migratory++;
6f505b16 1279 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1280 BUG_ON(!rq->rt.rt_nr_migratory);
1281 rq->rt.rt_nr_migratory--;
1282 }
1283
1284 update_rt_migration(rq);
1285 }
1286
1287 p->cpus_allowed = *new_mask;
6f505b16 1288 p->rt.nr_cpus_allowed = weight;
73fe6aae 1289}
deeeccd4 1290
bdd7c81b 1291/* Assumes rq->lock is held */
1f11eb6a 1292static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1293{
1294 if (rq->rt.overloaded)
1295 rt_set_overload(rq);
6e0534f2 1296
7def2be1
PZ
1297 __enable_runtime(rq);
1298
6e0534f2 1299 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
bdd7c81b
IM
1300}
1301
1302/* Assumes rq->lock is held */
1f11eb6a 1303static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1304{
1305 if (rq->rt.overloaded)
1306 rt_clear_overload(rq);
6e0534f2 1307
7def2be1
PZ
1308 __disable_runtime(rq);
1309
6e0534f2 1310 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1311}
cb469845
SR
1312
1313/*
1314 * When switch from the rt queue, we bring ourselves to a position
1315 * that we might want to pull RT tasks from other runqueues.
1316 */
1317static void switched_from_rt(struct rq *rq, struct task_struct *p,
1318 int running)
1319{
1320 /*
1321 * If there are other RT tasks then we will reschedule
1322 * and the scheduling of the other RT tasks will handle
1323 * the balancing. But if we are the last RT task
1324 * we may need to handle the pulling of RT tasks
1325 * now.
1326 */
1327 if (!rq->rt.rt_nr_running)
1328 pull_rt_task(rq);
1329}
1330#endif /* CONFIG_SMP */
1331
1332/*
1333 * When switching a task to RT, we may overload the runqueue
1334 * with RT tasks. In this case we try to push them off to
1335 * other runqueues.
1336 */
1337static void switched_to_rt(struct rq *rq, struct task_struct *p,
1338 int running)
1339{
1340 int check_resched = 1;
1341
1342 /*
1343 * If we are already running, then there's nothing
1344 * that needs to be done. But if we are not running
1345 * we may need to preempt the current running task.
1346 * If that current running task is also an RT task
1347 * then see if we can move to another run queue.
1348 */
1349 if (!running) {
1350#ifdef CONFIG_SMP
1351 if (rq->rt.overloaded && push_rt_task(rq) &&
1352 /* Don't resched if we changed runqueues */
1353 rq != task_rq(p))
1354 check_resched = 0;
1355#endif /* CONFIG_SMP */
1356 if (check_resched && p->prio < rq->curr->prio)
1357 resched_task(rq->curr);
1358 }
1359}
1360
1361/*
1362 * Priority of the task has changed. This may cause
1363 * us to initiate a push or pull.
1364 */
1365static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1366 int oldprio, int running)
1367{
1368 if (running) {
1369#ifdef CONFIG_SMP
1370 /*
1371 * If our priority decreases while running, we
1372 * may need to pull tasks to this runqueue.
1373 */
1374 if (oldprio < p->prio)
1375 pull_rt_task(rq);
1376 /*
1377 * If there's a higher priority task waiting to run
6fa46fa5
SR
1378 * then reschedule. Note, the above pull_rt_task
1379 * can release the rq lock and p could migrate.
1380 * Only reschedule if p is still on the same runqueue.
cb469845 1381 */
6fa46fa5 1382 if (p->prio > rq->rt.highest_prio && rq->curr == p)
cb469845
SR
1383 resched_task(p);
1384#else
1385 /* For UP simply resched on drop of prio */
1386 if (oldprio < p->prio)
1387 resched_task(p);
e8fa1362 1388#endif /* CONFIG_SMP */
cb469845
SR
1389 } else {
1390 /*
1391 * This task is not running, but if it is
1392 * greater than the current running task
1393 * then reschedule.
1394 */
1395 if (p->prio < rq->curr->prio)
1396 resched_task(rq->curr);
1397 }
1398}
1399
78f2c7db
PZ
1400static void watchdog(struct rq *rq, struct task_struct *p)
1401{
1402 unsigned long soft, hard;
1403
1404 if (!p->signal)
1405 return;
1406
1407 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1408 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1409
1410 if (soft != RLIM_INFINITY) {
1411 unsigned long next;
1412
1413 p->rt.timeout++;
1414 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1415 if (p->rt.timeout > next)
78f2c7db
PZ
1416 p->it_sched_expires = p->se.sum_exec_runtime;
1417 }
1418}
bb44e5d1 1419
8f4d37ec 1420static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1421{
67e2be02
PZ
1422 update_curr_rt(rq);
1423
78f2c7db
PZ
1424 watchdog(rq, p);
1425
bb44e5d1
IM
1426 /*
1427 * RR tasks need a special form of timeslice management.
1428 * FIFO tasks have no timeslices.
1429 */
1430 if (p->policy != SCHED_RR)
1431 return;
1432
fa717060 1433 if (--p->rt.time_slice)
bb44e5d1
IM
1434 return;
1435
fa717060 1436 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1437
98fbc798
DA
1438 /*
1439 * Requeue to the end of queue if we are not the only element
1440 * on the queue:
1441 */
fa717060 1442 if (p->rt.run_list.prev != p->rt.run_list.next) {
7ebefa8c 1443 requeue_task_rt(rq, p, 0);
98fbc798
DA
1444 set_tsk_need_resched(p);
1445 }
bb44e5d1
IM
1446}
1447
83b699ed
SV
1448static void set_curr_task_rt(struct rq *rq)
1449{
1450 struct task_struct *p = rq->curr;
1451
1452 p->se.exec_start = rq->clock;
1453}
1454
2abdad0a 1455static const struct sched_class rt_sched_class = {
5522d5d5 1456 .next = &fair_sched_class,
bb44e5d1
IM
1457 .enqueue_task = enqueue_task_rt,
1458 .dequeue_task = dequeue_task_rt,
1459 .yield_task = yield_task_rt,
e7693a36
GH
1460#ifdef CONFIG_SMP
1461 .select_task_rq = select_task_rq_rt,
1462#endif /* CONFIG_SMP */
bb44e5d1
IM
1463
1464 .check_preempt_curr = check_preempt_curr_rt,
1465
1466 .pick_next_task = pick_next_task_rt,
1467 .put_prev_task = put_prev_task_rt,
1468
681f3e68 1469#ifdef CONFIG_SMP
bb44e5d1 1470 .load_balance = load_balance_rt,
e1d1484f 1471 .move_one_task = move_one_task_rt,
73fe6aae 1472 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1473 .rq_online = rq_online_rt,
1474 .rq_offline = rq_offline_rt,
9a897c5a
SR
1475 .pre_schedule = pre_schedule_rt,
1476 .post_schedule = post_schedule_rt,
1477 .task_wake_up = task_wake_up_rt,
cb469845 1478 .switched_from = switched_from_rt,
681f3e68 1479#endif
bb44e5d1 1480
83b699ed 1481 .set_curr_task = set_curr_task_rt,
bb44e5d1 1482 .task_tick = task_tick_rt,
cb469845
SR
1483
1484 .prio_changed = prio_changed_rt,
1485 .switched_to = switched_to_rt,
bb44e5d1 1486};
ada18de2
PZ
1487
1488#ifdef CONFIG_SCHED_DEBUG
1489extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1490
1491static void print_rt_stats(struct seq_file *m, int cpu)
1492{
1493 struct rt_rq *rt_rq;
1494
1495 rcu_read_lock();
1496 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1497 print_rt_rq(m, cpu, rt_rq);
1498 rcu_read_unlock();
1499}
55e12e5e 1500#endif /* CONFIG_SCHED_DEBUG */