timers: don't #error on higher HZ values
[linux-block.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
4fd29176 6#ifdef CONFIG_SMP
84de4274 7
637f5085 8static inline int rt_overloaded(struct rq *rq)
4fd29176 9{
637f5085 10 return atomic_read(&rq->rd->rto_count);
4fd29176 11}
84de4274 12
4fd29176
SR
13static inline void rt_set_overload(struct rq *rq)
14{
637f5085 15 cpu_set(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
16 /*
17 * Make sure the mask is visible before we set
18 * the overload count. That is checked to determine
19 * if we should look at the mask. It would be a shame
20 * if we looked at the mask, but the mask was not
21 * updated yet.
22 */
23 wmb();
637f5085 24 atomic_inc(&rq->rd->rto_count);
4fd29176 25}
84de4274 26
4fd29176
SR
27static inline void rt_clear_overload(struct rq *rq)
28{
29 /* the order here really doesn't matter */
637f5085
GH
30 atomic_dec(&rq->rd->rto_count);
31 cpu_clear(rq->cpu, rq->rd->rto_mask);
4fd29176 32}
73fe6aae
GH
33
34static void update_rt_migration(struct rq *rq)
35{
637f5085 36 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
cdc8eb98
GH
37 if (!rq->rt.overloaded) {
38 rt_set_overload(rq);
39 rq->rt.overloaded = 1;
40 }
41 } else if (rq->rt.overloaded) {
73fe6aae 42 rt_clear_overload(rq);
637f5085
GH
43 rq->rt.overloaded = 0;
44 }
73fe6aae 45}
4fd29176
SR
46#endif /* CONFIG_SMP */
47
6f505b16 48static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
fa85ae24 49{
6f505b16
PZ
50 return container_of(rt_se, struct task_struct, rt);
51}
52
53static inline int on_rt_rq(struct sched_rt_entity *rt_se)
54{
55 return !list_empty(&rt_se->run_list);
56}
57
58#ifdef CONFIG_FAIR_GROUP_SCHED
59
60static inline unsigned int sched_rt_ratio(struct rt_rq *rt_rq)
61{
62 if (!rt_rq->tg)
63 return SCHED_RT_FRAC;
64
65 return rt_rq->tg->rt_ratio;
66}
67
68#define for_each_leaf_rt_rq(rt_rq, rq) \
69 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
70
71static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
72{
73 return rt_rq->rq;
74}
75
76static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
77{
78 return rt_se->rt_rq;
79}
80
81#define for_each_sched_rt_entity(rt_se) \
82 for (; rt_se; rt_se = rt_se->parent)
83
84static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
85{
86 return rt_se->my_q;
87}
88
89static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
90static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
91
92static void sched_rt_ratio_enqueue(struct rt_rq *rt_rq)
93{
94 struct sched_rt_entity *rt_se = rt_rq->rt_se;
95
96 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
1020387f
PZ
97 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
98
6f505b16 99 enqueue_rt_entity(rt_se);
1020387f
PZ
100 if (rt_rq->highest_prio < curr->prio)
101 resched_task(curr);
6f505b16
PZ
102 }
103}
104
105static void sched_rt_ratio_dequeue(struct rt_rq *rt_rq)
106{
107 struct sched_rt_entity *rt_se = rt_rq->rt_se;
108
109 if (rt_se && on_rt_rq(rt_se))
110 dequeue_rt_entity(rt_se);
111}
112
113#else
114
115static inline unsigned int sched_rt_ratio(struct rt_rq *rt_rq)
116{
117 return sysctl_sched_rt_ratio;
118}
119
120#define for_each_leaf_rt_rq(rt_rq, rq) \
121 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
122
123static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
124{
125 return container_of(rt_rq, struct rq, rt);
126}
127
128static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
129{
130 struct task_struct *p = rt_task_of(rt_se);
131 struct rq *rq = task_rq(p);
132
133 return &rq->rt;
134}
135
136#define for_each_sched_rt_entity(rt_se) \
137 for (; rt_se; rt_se = NULL)
138
139static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
140{
141 return NULL;
142}
143
144static inline void sched_rt_ratio_enqueue(struct rt_rq *rt_rq)
145{
146}
147
148static inline void sched_rt_ratio_dequeue(struct rt_rq *rt_rq)
149{
150}
151
152#endif
153
154static inline int rt_se_prio(struct sched_rt_entity *rt_se)
155{
156#ifdef CONFIG_FAIR_GROUP_SCHED
157 struct rt_rq *rt_rq = group_rt_rq(rt_se);
158
159 if (rt_rq)
160 return rt_rq->highest_prio;
161#endif
162
163 return rt_task_of(rt_se)->prio;
164}
165
166static int sched_rt_ratio_exceeded(struct rt_rq *rt_rq)
167{
168 unsigned int rt_ratio = sched_rt_ratio(rt_rq);
fa85ae24
PZ
169 u64 period, ratio;
170
6f505b16 171 if (rt_ratio == SCHED_RT_FRAC)
fa85ae24
PZ
172 return 0;
173
174 if (rt_rq->rt_throttled)
175 return 1;
176
177 period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC;
6f505b16 178 ratio = (period * rt_ratio) >> SCHED_RT_FRAC_SHIFT;
fa85ae24
PZ
179
180 if (rt_rq->rt_time > ratio) {
48d5e258
PZ
181 struct rq *rq = rq_of_rt_rq(rt_rq);
182
183 rq->rt_throttled = 1;
6f505b16 184 rt_rq->rt_throttled = 1;
48d5e258 185
6f505b16 186 sched_rt_ratio_dequeue(rt_rq);
fa85ae24
PZ
187 return 1;
188 }
189
190 return 0;
191}
192
193static void update_sched_rt_period(struct rq *rq)
194{
6f505b16
PZ
195 struct rt_rq *rt_rq;
196 u64 period;
fa85ae24 197
6f505b16 198 while (rq->clock > rq->rt_period_expire) {
fa85ae24 199 period = (u64)sysctl_sched_rt_period * NSEC_PER_MSEC;
fa85ae24 200 rq->rt_period_expire += period;
fa85ae24 201
48d5e258
PZ
202 for_each_leaf_rt_rq(rt_rq, rq) {
203 unsigned long rt_ratio = sched_rt_ratio(rt_rq);
204 u64 ratio = (period * rt_ratio) >> SCHED_RT_FRAC_SHIFT;
205
206 rt_rq->rt_time -= min(rt_rq->rt_time, ratio);
207 if (rt_rq->rt_throttled) {
208 rt_rq->rt_throttled = 0;
209 sched_rt_ratio_enqueue(rt_rq);
210 }
211 }
212
213 rq->rt_throttled = 0;
fa85ae24
PZ
214 }
215}
216
bb44e5d1
IM
217/*
218 * Update the current task's runtime statistics. Skip current tasks that
219 * are not in our scheduling class.
220 */
a9957449 221static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
222{
223 struct task_struct *curr = rq->curr;
6f505b16
PZ
224 struct sched_rt_entity *rt_se = &curr->rt;
225 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
226 u64 delta_exec;
227
228 if (!task_has_rt_policy(curr))
229 return;
230
d281918d 231 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
232 if (unlikely((s64)delta_exec < 0))
233 delta_exec = 0;
6cfb0d5d
IM
234
235 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
236
237 curr->se.sum_exec_runtime += delta_exec;
d281918d 238 curr->se.exec_start = rq->clock;
d842de87 239 cpuacct_charge(curr, delta_exec);
fa85ae24 240
6f505b16
PZ
241 rt_rq->rt_time += delta_exec;
242 /*
243 * might make it a tad more accurate:
244 *
245 * update_sched_rt_period(rq);
246 */
247 if (sched_rt_ratio_exceeded(rt_rq))
fa85ae24 248 resched_task(curr);
bb44e5d1
IM
249}
250
6f505b16
PZ
251static inline
252void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 253{
6f505b16
PZ
254 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
255 rt_rq->rt_nr_running++;
256#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
257 if (rt_se_prio(rt_se) < rt_rq->highest_prio)
258 rt_rq->highest_prio = rt_se_prio(rt_se);
259#endif
764a9d6f 260#ifdef CONFIG_SMP
6f505b16
PZ
261 if (rt_se->nr_cpus_allowed > 1) {
262 struct rq *rq = rq_of_rt_rq(rt_rq);
73fe6aae 263 rq->rt.rt_nr_migratory++;
6f505b16 264 }
73fe6aae 265
6f505b16
PZ
266 update_rt_migration(rq_of_rt_rq(rt_rq));
267#endif
63489e45
SR
268}
269
6f505b16
PZ
270static inline
271void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 272{
6f505b16
PZ
273 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
274 WARN_ON(!rt_rq->rt_nr_running);
275 rt_rq->rt_nr_running--;
276#if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
277 if (rt_rq->rt_nr_running) {
764a9d6f
SR
278 struct rt_prio_array *array;
279
6f505b16
PZ
280 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
281 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
764a9d6f 282 /* recalculate */
6f505b16
PZ
283 array = &rt_rq->active;
284 rt_rq->highest_prio =
764a9d6f
SR
285 sched_find_first_bit(array->bitmap);
286 } /* otherwise leave rq->highest prio alone */
287 } else
6f505b16
PZ
288 rt_rq->highest_prio = MAX_RT_PRIO;
289#endif
290#ifdef CONFIG_SMP
291 if (rt_se->nr_cpus_allowed > 1) {
292 struct rq *rq = rq_of_rt_rq(rt_rq);
73fe6aae 293 rq->rt.rt_nr_migratory--;
6f505b16 294 }
73fe6aae 295
6f505b16 296 update_rt_migration(rq_of_rt_rq(rt_rq));
764a9d6f 297#endif /* CONFIG_SMP */
63489e45
SR
298}
299
6f505b16 300static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
bb44e5d1 301{
6f505b16
PZ
302 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
303 struct rt_prio_array *array = &rt_rq->active;
304 struct rt_rq *group_rq = group_rt_rq(rt_se);
bb44e5d1 305
6f505b16
PZ
306 if (group_rq && group_rq->rt_throttled)
307 return;
63489e45 308
6f505b16
PZ
309 list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
310 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 311
6f505b16
PZ
312 inc_rt_tasks(rt_se, rt_rq);
313}
314
315static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
316{
317 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
318 struct rt_prio_array *array = &rt_rq->active;
319
320 list_del_init(&rt_se->run_list);
321 if (list_empty(array->queue + rt_se_prio(rt_se)))
322 __clear_bit(rt_se_prio(rt_se), array->bitmap);
323
324 dec_rt_tasks(rt_se, rt_rq);
325}
326
327/*
328 * Because the prio of an upper entry depends on the lower
329 * entries, we must remove entries top - down.
330 *
331 * XXX: O(1/2 h^2) because we can only walk up, not down the chain.
332 * doesn't matter much for now, as h=2 for GROUP_SCHED.
333 */
334static void dequeue_rt_stack(struct task_struct *p)
335{
336 struct sched_rt_entity *rt_se, *top_se;
337
338 /*
339 * dequeue all, top - down.
340 */
341 do {
342 rt_se = &p->rt;
343 top_se = NULL;
344 for_each_sched_rt_entity(rt_se) {
345 if (on_rt_rq(rt_se))
346 top_se = rt_se;
347 }
348 if (top_se)
349 dequeue_rt_entity(top_se);
350 } while (top_se);
bb44e5d1
IM
351}
352
353/*
354 * Adding/removing a task to/from a priority array:
355 */
6f505b16
PZ
356static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
357{
358 struct sched_rt_entity *rt_se = &p->rt;
359
360 if (wakeup)
361 rt_se->timeout = 0;
362
363 dequeue_rt_stack(p);
364
365 /*
366 * enqueue everybody, bottom - up.
367 */
368 for_each_sched_rt_entity(rt_se)
369 enqueue_rt_entity(rt_se);
370
371 inc_cpu_load(rq, p->se.load.weight);
372}
373
f02231e5 374static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1 375{
6f505b16
PZ
376 struct sched_rt_entity *rt_se = &p->rt;
377 struct rt_rq *rt_rq;
bb44e5d1 378
f1e14ef6 379 update_curr_rt(rq);
bb44e5d1 380
6f505b16
PZ
381 dequeue_rt_stack(p);
382
383 /*
384 * re-enqueue all non-empty rt_rq entities.
385 */
386 for_each_sched_rt_entity(rt_se) {
387 rt_rq = group_rt_rq(rt_se);
388 if (rt_rq && rt_rq->rt_nr_running)
389 enqueue_rt_entity(rt_se);
390 }
63489e45 391
6f505b16 392 dec_cpu_load(rq, p->se.load.weight);
bb44e5d1
IM
393}
394
395/*
396 * Put task to the end of the run list without the overhead of dequeue
397 * followed by enqueue.
398 */
6f505b16
PZ
399static
400void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
401{
402 struct rt_prio_array *array = &rt_rq->active;
403
404 list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
405}
406
bb44e5d1
IM
407static void requeue_task_rt(struct rq *rq, struct task_struct *p)
408{
6f505b16
PZ
409 struct sched_rt_entity *rt_se = &p->rt;
410 struct rt_rq *rt_rq;
bb44e5d1 411
6f505b16
PZ
412 for_each_sched_rt_entity(rt_se) {
413 rt_rq = rt_rq_of_se(rt_se);
414 requeue_rt_entity(rt_rq, rt_se);
415 }
bb44e5d1
IM
416}
417
6f505b16 418static void yield_task_rt(struct rq *rq)
bb44e5d1 419{
4530d7ab 420 requeue_task_rt(rq, rq->curr);
bb44e5d1
IM
421}
422
e7693a36 423#ifdef CONFIG_SMP
318e0893
GH
424static int find_lowest_rq(struct task_struct *task);
425
e7693a36
GH
426static int select_task_rq_rt(struct task_struct *p, int sync)
427{
318e0893
GH
428 struct rq *rq = task_rq(p);
429
430 /*
e1f47d89
SR
431 * If the current task is an RT task, then
432 * try to see if we can wake this RT task up on another
433 * runqueue. Otherwise simply start this RT task
434 * on its current runqueue.
435 *
436 * We want to avoid overloading runqueues. Even if
437 * the RT task is of higher priority than the current RT task.
438 * RT tasks behave differently than other tasks. If
439 * one gets preempted, we try to push it off to another queue.
440 * So trying to keep a preempting RT task on the same
441 * cache hot CPU will force the running RT task to
442 * a cold CPU. So we waste all the cache for the lower
443 * RT task in hopes of saving some of a RT task
444 * that is just being woken and probably will have
445 * cold cache anyway.
318e0893 446 */
17b3279b 447 if (unlikely(rt_task(rq->curr)) &&
6f505b16 448 (p->rt.nr_cpus_allowed > 1)) {
318e0893
GH
449 int cpu = find_lowest_rq(p);
450
451 return (cpu == -1) ? task_cpu(p) : cpu;
452 }
453
454 /*
455 * Otherwise, just let it ride on the affined RQ and the
456 * post-schedule router will push the preempted task away
457 */
e7693a36
GH
458 return task_cpu(p);
459}
460#endif /* CONFIG_SMP */
461
bb44e5d1
IM
462/*
463 * Preempt the current task with a newly woken task if needed:
464 */
465static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
466{
467 if (p->prio < rq->curr->prio)
468 resched_task(rq->curr);
469}
470
6f505b16
PZ
471static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
472 struct rt_rq *rt_rq)
bb44e5d1 473{
6f505b16
PZ
474 struct rt_prio_array *array = &rt_rq->active;
475 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
476 struct list_head *queue;
477 int idx;
478
6f505b16
PZ
479 if (sched_rt_ratio_exceeded(rt_rq))
480 goto out;
fa85ae24 481
bb44e5d1 482 idx = sched_find_first_bit(array->bitmap);
6f505b16 483 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
484
485 queue = array->queue + idx;
6f505b16
PZ
486 next = list_entry(queue->next, struct sched_rt_entity, run_list);
487 out:
488 return next;
489}
bb44e5d1 490
6f505b16
PZ
491static struct task_struct *pick_next_task_rt(struct rq *rq)
492{
493 struct sched_rt_entity *rt_se;
494 struct task_struct *p;
495 struct rt_rq *rt_rq;
bb44e5d1 496
6f505b16
PZ
497 retry:
498 rt_rq = &rq->rt;
499
500 if (unlikely(!rt_rq->rt_nr_running))
501 return NULL;
502
503 if (sched_rt_ratio_exceeded(rt_rq))
504 return NULL;
505
506 do {
507 rt_se = pick_next_rt_entity(rq, rt_rq);
508 if (unlikely(!rt_se))
509 goto retry;
510 rt_rq = group_rt_rq(rt_se);
511 } while (rt_rq);
512
513 p = rt_task_of(rt_se);
514 p->se.exec_start = rq->clock;
515 return p;
bb44e5d1
IM
516}
517
31ee529c 518static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 519{
f1e14ef6 520 update_curr_rt(rq);
bb44e5d1
IM
521 p->se.exec_start = 0;
522}
523
681f3e68 524#ifdef CONFIG_SMP
6f505b16 525
e8fa1362
SR
526/* Only try algorithms three times */
527#define RT_MAX_TRIES 3
528
529static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
530static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
531
f65eda4f
SR
532static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
533{
534 if (!task_running(rq, p) &&
73fe6aae 535 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
6f505b16 536 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
537 return 1;
538 return 0;
539}
540
e8fa1362 541/* Return the second highest RT task, NULL otherwise */
79064fbf 542static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 543{
6f505b16
PZ
544 struct task_struct *next = NULL;
545 struct sched_rt_entity *rt_se;
546 struct rt_prio_array *array;
547 struct rt_rq *rt_rq;
e8fa1362
SR
548 int idx;
549
6f505b16
PZ
550 for_each_leaf_rt_rq(rt_rq, rq) {
551 array = &rt_rq->active;
552 idx = sched_find_first_bit(array->bitmap);
553 next_idx:
554 if (idx >= MAX_RT_PRIO)
555 continue;
556 if (next && next->prio < idx)
557 continue;
558 list_for_each_entry(rt_se, array->queue + idx, run_list) {
559 struct task_struct *p = rt_task_of(rt_se);
560 if (pick_rt_task(rq, p, cpu)) {
561 next = p;
562 break;
563 }
564 }
565 if (!next) {
566 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
567 goto next_idx;
568 }
f65eda4f
SR
569 }
570
e8fa1362
SR
571 return next;
572}
573
574static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
575
6e1254d2 576static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
e8fa1362 577{
6e1254d2 578 int lowest_prio = -1;
610bf056 579 int lowest_cpu = -1;
06f90dbd 580 int count = 0;
610bf056 581 int cpu;
e8fa1362 582
637f5085 583 cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
e8fa1362 584
07b4032c
GH
585 /*
586 * Scan each rq for the lowest prio.
587 */
610bf056 588 for_each_cpu_mask(cpu, *lowest_mask) {
07b4032c 589 struct rq *rq = cpu_rq(cpu);
e8fa1362 590
07b4032c
GH
591 /* We look for lowest RT prio or non-rt CPU */
592 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
610bf056
SR
593 /*
594 * if we already found a low RT queue
595 * and now we found this non-rt queue
596 * clear the mask and set our bit.
597 * Otherwise just return the queue as is
598 * and the count==1 will cause the algorithm
599 * to use the first bit found.
600 */
601 if (lowest_cpu != -1) {
6e1254d2 602 cpus_clear(*lowest_mask);
610bf056
SR
603 cpu_set(rq->cpu, *lowest_mask);
604 }
6e1254d2 605 return 1;
07b4032c
GH
606 }
607
608 /* no locking for now */
6e1254d2
GH
609 if ((rq->rt.highest_prio > task->prio)
610 && (rq->rt.highest_prio >= lowest_prio)) {
611 if (rq->rt.highest_prio > lowest_prio) {
612 /* new low - clear old data */
613 lowest_prio = rq->rt.highest_prio;
610bf056
SR
614 lowest_cpu = cpu;
615 count = 0;
6e1254d2 616 }
06f90dbd 617 count++;
610bf056
SR
618 } else
619 cpu_clear(cpu, *lowest_mask);
620 }
621
622 /*
623 * Clear out all the set bits that represent
624 * runqueues that were of higher prio than
625 * the lowest_prio.
626 */
627 if (lowest_cpu > 0) {
628 /*
629 * Perhaps we could add another cpumask op to
630 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
631 * Then that could be optimized to use memset and such.
632 */
633 for_each_cpu_mask(cpu, *lowest_mask) {
634 if (cpu >= lowest_cpu)
635 break;
636 cpu_clear(cpu, *lowest_mask);
e8fa1362 637 }
07b4032c
GH
638 }
639
06f90dbd 640 return count;
6e1254d2
GH
641}
642
643static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
644{
645 int first;
646
647 /* "this_cpu" is cheaper to preempt than a remote processor */
648 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
649 return this_cpu;
650
651 first = first_cpu(*mask);
652 if (first != NR_CPUS)
653 return first;
654
655 return -1;
656}
657
658static int find_lowest_rq(struct task_struct *task)
659{
660 struct sched_domain *sd;
661 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
662 int this_cpu = smp_processor_id();
663 int cpu = task_cpu(task);
06f90dbd
GH
664 int count = find_lowest_cpus(task, lowest_mask);
665
666 if (!count)
667 return -1; /* No targets found */
6e1254d2 668
06f90dbd
GH
669 /*
670 * There is no sense in performing an optimal search if only one
671 * target is found.
672 */
673 if (count == 1)
674 return first_cpu(*lowest_mask);
6e1254d2
GH
675
676 /*
677 * At this point we have built a mask of cpus representing the
678 * lowest priority tasks in the system. Now we want to elect
679 * the best one based on our affinity and topology.
680 *
681 * We prioritize the last cpu that the task executed on since
682 * it is most likely cache-hot in that location.
683 */
684 if (cpu_isset(cpu, *lowest_mask))
685 return cpu;
686
687 /*
688 * Otherwise, we consult the sched_domains span maps to figure
689 * out which cpu is logically closest to our hot cache data.
690 */
691 if (this_cpu == cpu)
692 this_cpu = -1; /* Skip this_cpu opt if the same */
693
694 for_each_domain(cpu, sd) {
695 if (sd->flags & SD_WAKE_AFFINE) {
696 cpumask_t domain_mask;
697 int best_cpu;
698
699 cpus_and(domain_mask, sd->span, *lowest_mask);
700
701 best_cpu = pick_optimal_cpu(this_cpu,
702 &domain_mask);
703 if (best_cpu != -1)
704 return best_cpu;
705 }
706 }
707
708 /*
709 * And finally, if there were no matches within the domains
710 * just give the caller *something* to work with from the compatible
711 * locations.
712 */
713 return pick_optimal_cpu(this_cpu, lowest_mask);
07b4032c
GH
714}
715
716/* Will lock the rq it finds */
4df64c0b 717static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
718{
719 struct rq *lowest_rq = NULL;
07b4032c 720 int tries;
4df64c0b 721 int cpu;
e8fa1362 722
07b4032c
GH
723 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
724 cpu = find_lowest_rq(task);
725
2de0b463 726 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
727 break;
728
07b4032c
GH
729 lowest_rq = cpu_rq(cpu);
730
e8fa1362 731 /* if the prio of this runqueue changed, try again */
07b4032c 732 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
733 /*
734 * We had to unlock the run queue. In
735 * the mean time, task could have
736 * migrated already or had its affinity changed.
737 * Also make sure that it wasn't scheduled on its rq.
738 */
07b4032c 739 if (unlikely(task_rq(task) != rq ||
4df64c0b
IM
740 !cpu_isset(lowest_rq->cpu,
741 task->cpus_allowed) ||
07b4032c 742 task_running(rq, task) ||
e8fa1362 743 !task->se.on_rq)) {
4df64c0b 744
e8fa1362
SR
745 spin_unlock(&lowest_rq->lock);
746 lowest_rq = NULL;
747 break;
748 }
749 }
750
751 /* If this rq is still suitable use it. */
752 if (lowest_rq->rt.highest_prio > task->prio)
753 break;
754
755 /* try again */
756 spin_unlock(&lowest_rq->lock);
757 lowest_rq = NULL;
758 }
759
760 return lowest_rq;
761}
762
763/*
764 * If the current CPU has more than one RT task, see if the non
765 * running task can migrate over to a CPU that is running a task
766 * of lesser priority.
767 */
697f0a48 768static int push_rt_task(struct rq *rq)
e8fa1362
SR
769{
770 struct task_struct *next_task;
771 struct rq *lowest_rq;
772 int ret = 0;
773 int paranoid = RT_MAX_TRIES;
774
a22d7fc1
GH
775 if (!rq->rt.overloaded)
776 return 0;
777
697f0a48 778 next_task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
779 if (!next_task)
780 return 0;
781
782 retry:
697f0a48 783 if (unlikely(next_task == rq->curr)) {
f65eda4f 784 WARN_ON(1);
e8fa1362 785 return 0;
f65eda4f 786 }
e8fa1362
SR
787
788 /*
789 * It's possible that the next_task slipped in of
790 * higher priority than current. If that's the case
791 * just reschedule current.
792 */
697f0a48
GH
793 if (unlikely(next_task->prio < rq->curr->prio)) {
794 resched_task(rq->curr);
e8fa1362
SR
795 return 0;
796 }
797
697f0a48 798 /* We might release rq lock */
e8fa1362
SR
799 get_task_struct(next_task);
800
801 /* find_lock_lowest_rq locks the rq if found */
697f0a48 802 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
803 if (!lowest_rq) {
804 struct task_struct *task;
805 /*
697f0a48 806 * find lock_lowest_rq releases rq->lock
e8fa1362
SR
807 * so it is possible that next_task has changed.
808 * If it has, then try again.
809 */
697f0a48 810 task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
811 if (unlikely(task != next_task) && task && paranoid--) {
812 put_task_struct(next_task);
813 next_task = task;
814 goto retry;
815 }
816 goto out;
817 }
818
697f0a48 819 deactivate_task(rq, next_task, 0);
e8fa1362
SR
820 set_task_cpu(next_task, lowest_rq->cpu);
821 activate_task(lowest_rq, next_task, 0);
822
823 resched_task(lowest_rq->curr);
824
825 spin_unlock(&lowest_rq->lock);
826
827 ret = 1;
828out:
829 put_task_struct(next_task);
830
831 return ret;
832}
833
834/*
835 * TODO: Currently we just use the second highest prio task on
836 * the queue, and stop when it can't migrate (or there's
837 * no more RT tasks). There may be a case where a lower
838 * priority RT task has a different affinity than the
839 * higher RT task. In this case the lower RT task could
840 * possibly be able to migrate where as the higher priority
841 * RT task could not. We currently ignore this issue.
842 * Enhancements are welcome!
843 */
844static void push_rt_tasks(struct rq *rq)
845{
846 /* push_rt_task will return true if it moved an RT */
847 while (push_rt_task(rq))
848 ;
849}
850
f65eda4f
SR
851static int pull_rt_task(struct rq *this_rq)
852{
80bf3171
IM
853 int this_cpu = this_rq->cpu, ret = 0, cpu;
854 struct task_struct *p, *next;
f65eda4f 855 struct rq *src_rq;
f65eda4f 856
637f5085 857 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
858 return 0;
859
860 next = pick_next_task_rt(this_rq);
861
637f5085 862 for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
863 if (this_cpu == cpu)
864 continue;
865
866 src_rq = cpu_rq(cpu);
f65eda4f
SR
867 /*
868 * We can potentially drop this_rq's lock in
869 * double_lock_balance, and another CPU could
870 * steal our next task - hence we must cause
871 * the caller to recalculate the next task
872 * in that case:
873 */
874 if (double_lock_balance(this_rq, src_rq)) {
875 struct task_struct *old_next = next;
80bf3171 876
f65eda4f
SR
877 next = pick_next_task_rt(this_rq);
878 if (next != old_next)
879 ret = 1;
880 }
881
882 /*
883 * Are there still pullable RT tasks?
884 */
614ee1f6
MG
885 if (src_rq->rt.rt_nr_running <= 1)
886 goto skip;
f65eda4f 887
f65eda4f
SR
888 p = pick_next_highest_task_rt(src_rq, this_cpu);
889
890 /*
891 * Do we have an RT task that preempts
892 * the to-be-scheduled task?
893 */
894 if (p && (!next || (p->prio < next->prio))) {
895 WARN_ON(p == src_rq->curr);
896 WARN_ON(!p->se.on_rq);
897
898 /*
899 * There's a chance that p is higher in priority
900 * than what's currently running on its cpu.
901 * This is just that p is wakeing up and hasn't
902 * had a chance to schedule. We only pull
903 * p if it is lower in priority than the
904 * current task on the run queue or
905 * this_rq next task is lower in prio than
906 * the current task on that rq.
907 */
908 if (p->prio < src_rq->curr->prio ||
909 (next && next->prio < src_rq->curr->prio))
614ee1f6 910 goto skip;
f65eda4f
SR
911
912 ret = 1;
913
914 deactivate_task(src_rq, p, 0);
915 set_task_cpu(p, this_cpu);
916 activate_task(this_rq, p, 0);
917 /*
918 * We continue with the search, just in
919 * case there's an even higher prio task
920 * in another runqueue. (low likelyhood
921 * but possible)
80bf3171 922 *
f65eda4f
SR
923 * Update next so that we won't pick a task
924 * on another cpu with a priority lower (or equal)
925 * than the one we just picked.
926 */
927 next = p;
928
929 }
614ee1f6 930 skip:
f65eda4f
SR
931 spin_unlock(&src_rq->lock);
932 }
933
934 return ret;
935}
936
9a897c5a 937static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
938{
939 /* Try to pull RT tasks here if we lower this rq's prio */
7f51f298 940 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
f65eda4f
SR
941 pull_rt_task(rq);
942}
943
9a897c5a 944static void post_schedule_rt(struct rq *rq)
e8fa1362
SR
945{
946 /*
947 * If we have more than one rt_task queued, then
948 * see if we can push the other rt_tasks off to other CPUS.
949 * Note we may release the rq lock, and since
950 * the lock was owned by prev, we need to release it
951 * first via finish_lock_switch and then reaquire it here.
952 */
a22d7fc1 953 if (unlikely(rq->rt.overloaded)) {
e8fa1362
SR
954 spin_lock_irq(&rq->lock);
955 push_rt_tasks(rq);
956 spin_unlock_irq(&rq->lock);
957 }
958}
959
4642dafd 960
9a897c5a 961static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
4642dafd 962{
9a897c5a 963 if (!task_running(rq, p) &&
a22d7fc1
GH
964 (p->prio >= rq->rt.highest_prio) &&
965 rq->rt.overloaded)
4642dafd
SR
966 push_rt_tasks(rq);
967}
968
43010659 969static unsigned long
bb44e5d1 970load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
971 unsigned long max_load_move,
972 struct sched_domain *sd, enum cpu_idle_type idle,
973 int *all_pinned, int *this_best_prio)
bb44e5d1 974{
c7a1e46a
SR
975 /* don't touch RT tasks */
976 return 0;
e1d1484f
PW
977}
978
979static int
980move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
981 struct sched_domain *sd, enum cpu_idle_type idle)
982{
c7a1e46a
SR
983 /* don't touch RT tasks */
984 return 0;
bb44e5d1 985}
deeeccd4 986
73fe6aae
GH
987static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
988{
989 int weight = cpus_weight(*new_mask);
990
991 BUG_ON(!rt_task(p));
992
993 /*
994 * Update the migration status of the RQ if we have an RT task
995 * which is running AND changing its weight value.
996 */
6f505b16 997 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
998 struct rq *rq = task_rq(p);
999
6f505b16 1000 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1001 rq->rt.rt_nr_migratory++;
6f505b16 1002 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1003 BUG_ON(!rq->rt.rt_nr_migratory);
1004 rq->rt.rt_nr_migratory--;
1005 }
1006
1007 update_rt_migration(rq);
1008 }
1009
1010 p->cpus_allowed = *new_mask;
6f505b16 1011 p->rt.nr_cpus_allowed = weight;
73fe6aae 1012}
deeeccd4 1013
bdd7c81b
IM
1014/* Assumes rq->lock is held */
1015static void join_domain_rt(struct rq *rq)
1016{
1017 if (rq->rt.overloaded)
1018 rt_set_overload(rq);
1019}
1020
1021/* Assumes rq->lock is held */
1022static void leave_domain_rt(struct rq *rq)
1023{
1024 if (rq->rt.overloaded)
1025 rt_clear_overload(rq);
1026}
cb469845
SR
1027
1028/*
1029 * When switch from the rt queue, we bring ourselves to a position
1030 * that we might want to pull RT tasks from other runqueues.
1031 */
1032static void switched_from_rt(struct rq *rq, struct task_struct *p,
1033 int running)
1034{
1035 /*
1036 * If there are other RT tasks then we will reschedule
1037 * and the scheduling of the other RT tasks will handle
1038 * the balancing. But if we are the last RT task
1039 * we may need to handle the pulling of RT tasks
1040 * now.
1041 */
1042 if (!rq->rt.rt_nr_running)
1043 pull_rt_task(rq);
1044}
1045#endif /* CONFIG_SMP */
1046
1047/*
1048 * When switching a task to RT, we may overload the runqueue
1049 * with RT tasks. In this case we try to push them off to
1050 * other runqueues.
1051 */
1052static void switched_to_rt(struct rq *rq, struct task_struct *p,
1053 int running)
1054{
1055 int check_resched = 1;
1056
1057 /*
1058 * If we are already running, then there's nothing
1059 * that needs to be done. But if we are not running
1060 * we may need to preempt the current running task.
1061 * If that current running task is also an RT task
1062 * then see if we can move to another run queue.
1063 */
1064 if (!running) {
1065#ifdef CONFIG_SMP
1066 if (rq->rt.overloaded && push_rt_task(rq) &&
1067 /* Don't resched if we changed runqueues */
1068 rq != task_rq(p))
1069 check_resched = 0;
1070#endif /* CONFIG_SMP */
1071 if (check_resched && p->prio < rq->curr->prio)
1072 resched_task(rq->curr);
1073 }
1074}
1075
1076/*
1077 * Priority of the task has changed. This may cause
1078 * us to initiate a push or pull.
1079 */
1080static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1081 int oldprio, int running)
1082{
1083 if (running) {
1084#ifdef CONFIG_SMP
1085 /*
1086 * If our priority decreases while running, we
1087 * may need to pull tasks to this runqueue.
1088 */
1089 if (oldprio < p->prio)
1090 pull_rt_task(rq);
1091 /*
1092 * If there's a higher priority task waiting to run
1093 * then reschedule.
1094 */
1095 if (p->prio > rq->rt.highest_prio)
1096 resched_task(p);
1097#else
1098 /* For UP simply resched on drop of prio */
1099 if (oldprio < p->prio)
1100 resched_task(p);
e8fa1362 1101#endif /* CONFIG_SMP */
cb469845
SR
1102 } else {
1103 /*
1104 * This task is not running, but if it is
1105 * greater than the current running task
1106 * then reschedule.
1107 */
1108 if (p->prio < rq->curr->prio)
1109 resched_task(rq->curr);
1110 }
1111}
1112
78f2c7db
PZ
1113static void watchdog(struct rq *rq, struct task_struct *p)
1114{
1115 unsigned long soft, hard;
1116
1117 if (!p->signal)
1118 return;
1119
1120 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1121 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1122
1123 if (soft != RLIM_INFINITY) {
1124 unsigned long next;
1125
1126 p->rt.timeout++;
1127 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1128 if (p->rt.timeout > next)
78f2c7db
PZ
1129 p->it_sched_expires = p->se.sum_exec_runtime;
1130 }
1131}
bb44e5d1 1132
8f4d37ec 1133static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1134{
67e2be02
PZ
1135 update_curr_rt(rq);
1136
78f2c7db
PZ
1137 watchdog(rq, p);
1138
bb44e5d1
IM
1139 /*
1140 * RR tasks need a special form of timeslice management.
1141 * FIFO tasks have no timeslices.
1142 */
1143 if (p->policy != SCHED_RR)
1144 return;
1145
fa717060 1146 if (--p->rt.time_slice)
bb44e5d1
IM
1147 return;
1148
fa717060 1149 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1150
98fbc798
DA
1151 /*
1152 * Requeue to the end of queue if we are not the only element
1153 * on the queue:
1154 */
fa717060 1155 if (p->rt.run_list.prev != p->rt.run_list.next) {
98fbc798
DA
1156 requeue_task_rt(rq, p);
1157 set_tsk_need_resched(p);
1158 }
bb44e5d1
IM
1159}
1160
83b699ed
SV
1161static void set_curr_task_rt(struct rq *rq)
1162{
1163 struct task_struct *p = rq->curr;
1164
1165 p->se.exec_start = rq->clock;
1166}
1167
5522d5d5
IM
1168const struct sched_class rt_sched_class = {
1169 .next = &fair_sched_class,
bb44e5d1
IM
1170 .enqueue_task = enqueue_task_rt,
1171 .dequeue_task = dequeue_task_rt,
1172 .yield_task = yield_task_rt,
e7693a36
GH
1173#ifdef CONFIG_SMP
1174 .select_task_rq = select_task_rq_rt,
1175#endif /* CONFIG_SMP */
bb44e5d1
IM
1176
1177 .check_preempt_curr = check_preempt_curr_rt,
1178
1179 .pick_next_task = pick_next_task_rt,
1180 .put_prev_task = put_prev_task_rt,
1181
681f3e68 1182#ifdef CONFIG_SMP
bb44e5d1 1183 .load_balance = load_balance_rt,
e1d1484f 1184 .move_one_task = move_one_task_rt,
73fe6aae 1185 .set_cpus_allowed = set_cpus_allowed_rt,
bdd7c81b
IM
1186 .join_domain = join_domain_rt,
1187 .leave_domain = leave_domain_rt,
9a897c5a
SR
1188 .pre_schedule = pre_schedule_rt,
1189 .post_schedule = post_schedule_rt,
1190 .task_wake_up = task_wake_up_rt,
cb469845 1191 .switched_from = switched_from_rt,
681f3e68 1192#endif
bb44e5d1 1193
83b699ed 1194 .set_curr_task = set_curr_task_rt,
bb44e5d1 1195 .task_tick = task_tick_rt,
cb469845
SR
1196
1197 .prio_changed = prio_changed_rt,
1198 .switched_to = switched_to_rt,
bb44e5d1 1199};