sched: convert nohz struct to cpumask_var_t, fix
[linux-block.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
4fd29176 6#ifdef CONFIG_SMP
84de4274 7
637f5085 8static inline int rt_overloaded(struct rq *rq)
4fd29176 9{
637f5085 10 return atomic_read(&rq->rd->rto_count);
4fd29176 11}
84de4274 12
4fd29176
SR
13static inline void rt_set_overload(struct rq *rq)
14{
1f11eb6a
GH
15 if (!rq->online)
16 return;
17
c6c4927b 18 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
19 /*
20 * Make sure the mask is visible before we set
21 * the overload count. That is checked to determine
22 * if we should look at the mask. It would be a shame
23 * if we looked at the mask, but the mask was not
24 * updated yet.
25 */
26 wmb();
637f5085 27 atomic_inc(&rq->rd->rto_count);
4fd29176 28}
84de4274 29
4fd29176
SR
30static inline void rt_clear_overload(struct rq *rq)
31{
1f11eb6a
GH
32 if (!rq->online)
33 return;
34
4fd29176 35 /* the order here really doesn't matter */
637f5085 36 atomic_dec(&rq->rd->rto_count);
c6c4927b 37 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 38}
73fe6aae
GH
39
40static void update_rt_migration(struct rq *rq)
41{
637f5085 42 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
cdc8eb98
GH
43 if (!rq->rt.overloaded) {
44 rt_set_overload(rq);
45 rq->rt.overloaded = 1;
46 }
47 } else if (rq->rt.overloaded) {
73fe6aae 48 rt_clear_overload(rq);
637f5085
GH
49 rq->rt.overloaded = 0;
50 }
73fe6aae 51}
4fd29176
SR
52#endif /* CONFIG_SMP */
53
6f505b16 54static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
fa85ae24 55{
6f505b16
PZ
56 return container_of(rt_se, struct task_struct, rt);
57}
58
59static inline int on_rt_rq(struct sched_rt_entity *rt_se)
60{
61 return !list_empty(&rt_se->run_list);
62}
63
052f1dc7 64#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 65
9f0c1e56 66static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
67{
68 if (!rt_rq->tg)
9f0c1e56 69 return RUNTIME_INF;
6f505b16 70
ac086bc2
PZ
71 return rt_rq->rt_runtime;
72}
73
74static inline u64 sched_rt_period(struct rt_rq *rt_rq)
75{
76 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
77}
78
79#define for_each_leaf_rt_rq(rt_rq, rq) \
80 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
81
82static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
83{
84 return rt_rq->rq;
85}
86
87static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
88{
89 return rt_se->rt_rq;
90}
91
92#define for_each_sched_rt_entity(rt_se) \
93 for (; rt_se; rt_se = rt_se->parent)
94
95static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
96{
97 return rt_se->my_q;
98}
99
100static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
102
9f0c1e56 103static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 104{
f6121f4f 105 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
6f505b16
PZ
106 struct sched_rt_entity *rt_se = rt_rq->rt_se;
107
f6121f4f
DF
108 if (rt_rq->rt_nr_running) {
109 if (rt_se && !on_rt_rq(rt_se))
110 enqueue_rt_entity(rt_se);
1020387f
PZ
111 if (rt_rq->highest_prio < curr->prio)
112 resched_task(curr);
6f505b16
PZ
113 }
114}
115
9f0c1e56 116static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
117{
118 struct sched_rt_entity *rt_se = rt_rq->rt_se;
119
120 if (rt_se && on_rt_rq(rt_se))
121 dequeue_rt_entity(rt_se);
122}
123
23b0fdfc
PZ
124static inline int rt_rq_throttled(struct rt_rq *rt_rq)
125{
126 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
127}
128
129static int rt_se_boosted(struct sched_rt_entity *rt_se)
130{
131 struct rt_rq *rt_rq = group_rt_rq(rt_se);
132 struct task_struct *p;
133
134 if (rt_rq)
135 return !!rt_rq->rt_nr_boosted;
136
137 p = rt_task_of(rt_se);
138 return p->prio != p->normal_prio;
139}
140
d0b27fa7 141#ifdef CONFIG_SMP
c6c4927b 142static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7
PZ
143{
144 return cpu_rq(smp_processor_id())->rd->span;
145}
6f505b16 146#else
c6c4927b 147static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 148{
c6c4927b 149 return cpu_online_mask;
d0b27fa7
PZ
150}
151#endif
6f505b16 152
d0b27fa7
PZ
153static inline
154struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 155{
d0b27fa7
PZ
156 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
157}
9f0c1e56 158
ac086bc2
PZ
159static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
160{
161 return &rt_rq->tg->rt_bandwidth;
162}
163
55e12e5e 164#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
165
166static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
167{
ac086bc2
PZ
168 return rt_rq->rt_runtime;
169}
170
171static inline u64 sched_rt_period(struct rt_rq *rt_rq)
172{
173 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
174}
175
176#define for_each_leaf_rt_rq(rt_rq, rq) \
177 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
178
179static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180{
181 return container_of(rt_rq, struct rq, rt);
182}
183
184static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185{
186 struct task_struct *p = rt_task_of(rt_se);
187 struct rq *rq = task_rq(p);
188
189 return &rq->rt;
190}
191
192#define for_each_sched_rt_entity(rt_se) \
193 for (; rt_se; rt_se = NULL)
194
195static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
196{
197 return NULL;
198}
199
9f0c1e56 200static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 201{
f3ade837
JB
202 if (rt_rq->rt_nr_running)
203 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
204}
205
9f0c1e56 206static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
207{
208}
209
23b0fdfc
PZ
210static inline int rt_rq_throttled(struct rt_rq *rt_rq)
211{
212 return rt_rq->rt_throttled;
213}
d0b27fa7 214
c6c4927b 215static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 216{
c6c4927b 217 return cpu_online_mask;
d0b27fa7
PZ
218}
219
220static inline
221struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
222{
223 return &cpu_rq(cpu)->rt;
224}
225
ac086bc2
PZ
226static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
227{
228 return &def_rt_bandwidth;
229}
230
55e12e5e 231#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 232
ac086bc2 233#ifdef CONFIG_SMP
78333cdd
PZ
234/*
235 * We ran out of runtime, see if we can borrow some from our neighbours.
236 */
b79f3833 237static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
238{
239 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
240 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
241 int i, weight, more = 0;
242 u64 rt_period;
243
c6c4927b 244 weight = cpumask_weight(rd->span);
ac086bc2
PZ
245
246 spin_lock(&rt_b->rt_runtime_lock);
247 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 248 for_each_cpu(i, rd->span) {
ac086bc2
PZ
249 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
250 s64 diff;
251
252 if (iter == rt_rq)
253 continue;
254
255 spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
256 /*
257 * Either all rqs have inf runtime and there's nothing to steal
258 * or __disable_runtime() below sets a specific rq to inf to
259 * indicate its been disabled and disalow stealing.
260 */
7def2be1
PZ
261 if (iter->rt_runtime == RUNTIME_INF)
262 goto next;
263
78333cdd
PZ
264 /*
265 * From runqueues with spare time, take 1/n part of their
266 * spare time, but no more than our period.
267 */
ac086bc2
PZ
268 diff = iter->rt_runtime - iter->rt_time;
269 if (diff > 0) {
58838cf3 270 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
271 if (rt_rq->rt_runtime + diff > rt_period)
272 diff = rt_period - rt_rq->rt_runtime;
273 iter->rt_runtime -= diff;
274 rt_rq->rt_runtime += diff;
275 more = 1;
276 if (rt_rq->rt_runtime == rt_period) {
277 spin_unlock(&iter->rt_runtime_lock);
278 break;
279 }
280 }
7def2be1 281next:
ac086bc2
PZ
282 spin_unlock(&iter->rt_runtime_lock);
283 }
284 spin_unlock(&rt_b->rt_runtime_lock);
285
286 return more;
287}
7def2be1 288
78333cdd
PZ
289/*
290 * Ensure this RQ takes back all the runtime it lend to its neighbours.
291 */
7def2be1
PZ
292static void __disable_runtime(struct rq *rq)
293{
294 struct root_domain *rd = rq->rd;
295 struct rt_rq *rt_rq;
296
297 if (unlikely(!scheduler_running))
298 return;
299
300 for_each_leaf_rt_rq(rt_rq, rq) {
301 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
302 s64 want;
303 int i;
304
305 spin_lock(&rt_b->rt_runtime_lock);
306 spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
307 /*
308 * Either we're all inf and nobody needs to borrow, or we're
309 * already disabled and thus have nothing to do, or we have
310 * exactly the right amount of runtime to take out.
311 */
7def2be1
PZ
312 if (rt_rq->rt_runtime == RUNTIME_INF ||
313 rt_rq->rt_runtime == rt_b->rt_runtime)
314 goto balanced;
315 spin_unlock(&rt_rq->rt_runtime_lock);
316
78333cdd
PZ
317 /*
318 * Calculate the difference between what we started out with
319 * and what we current have, that's the amount of runtime
320 * we lend and now have to reclaim.
321 */
7def2be1
PZ
322 want = rt_b->rt_runtime - rt_rq->rt_runtime;
323
78333cdd
PZ
324 /*
325 * Greedy reclaim, take back as much as we can.
326 */
c6c4927b 327 for_each_cpu(i, rd->span) {
7def2be1
PZ
328 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
329 s64 diff;
330
78333cdd
PZ
331 /*
332 * Can't reclaim from ourselves or disabled runqueues.
333 */
f1679d08 334 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
335 continue;
336
337 spin_lock(&iter->rt_runtime_lock);
338 if (want > 0) {
339 diff = min_t(s64, iter->rt_runtime, want);
340 iter->rt_runtime -= diff;
341 want -= diff;
342 } else {
343 iter->rt_runtime -= want;
344 want -= want;
345 }
346 spin_unlock(&iter->rt_runtime_lock);
347
348 if (!want)
349 break;
350 }
351
352 spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
353 /*
354 * We cannot be left wanting - that would mean some runtime
355 * leaked out of the system.
356 */
7def2be1
PZ
357 BUG_ON(want);
358balanced:
78333cdd
PZ
359 /*
360 * Disable all the borrow logic by pretending we have inf
361 * runtime - in which case borrowing doesn't make sense.
362 */
7def2be1
PZ
363 rt_rq->rt_runtime = RUNTIME_INF;
364 spin_unlock(&rt_rq->rt_runtime_lock);
365 spin_unlock(&rt_b->rt_runtime_lock);
366 }
367}
368
369static void disable_runtime(struct rq *rq)
370{
371 unsigned long flags;
372
373 spin_lock_irqsave(&rq->lock, flags);
374 __disable_runtime(rq);
375 spin_unlock_irqrestore(&rq->lock, flags);
376}
377
378static void __enable_runtime(struct rq *rq)
379{
7def2be1
PZ
380 struct rt_rq *rt_rq;
381
382 if (unlikely(!scheduler_running))
383 return;
384
78333cdd
PZ
385 /*
386 * Reset each runqueue's bandwidth settings
387 */
7def2be1
PZ
388 for_each_leaf_rt_rq(rt_rq, rq) {
389 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
390
391 spin_lock(&rt_b->rt_runtime_lock);
392 spin_lock(&rt_rq->rt_runtime_lock);
393 rt_rq->rt_runtime = rt_b->rt_runtime;
394 rt_rq->rt_time = 0;
baf25731 395 rt_rq->rt_throttled = 0;
7def2be1
PZ
396 spin_unlock(&rt_rq->rt_runtime_lock);
397 spin_unlock(&rt_b->rt_runtime_lock);
398 }
399}
400
401static void enable_runtime(struct rq *rq)
402{
403 unsigned long flags;
404
405 spin_lock_irqsave(&rq->lock, flags);
406 __enable_runtime(rq);
407 spin_unlock_irqrestore(&rq->lock, flags);
408}
409
eff6549b
PZ
410static int balance_runtime(struct rt_rq *rt_rq)
411{
412 int more = 0;
413
414 if (rt_rq->rt_time > rt_rq->rt_runtime) {
415 spin_unlock(&rt_rq->rt_runtime_lock);
416 more = do_balance_runtime(rt_rq);
417 spin_lock(&rt_rq->rt_runtime_lock);
418 }
419
420 return more;
421}
55e12e5e 422#else /* !CONFIG_SMP */
eff6549b
PZ
423static inline int balance_runtime(struct rt_rq *rt_rq)
424{
425 return 0;
426}
55e12e5e 427#endif /* CONFIG_SMP */
ac086bc2 428
eff6549b
PZ
429static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
430{
431 int i, idle = 1;
c6c4927b 432 const struct cpumask *span;
eff6549b 433
0b148fa0 434 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
eff6549b
PZ
435 return 1;
436
437 span = sched_rt_period_mask();
c6c4927b 438 for_each_cpu(i, span) {
eff6549b
PZ
439 int enqueue = 0;
440 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
441 struct rq *rq = rq_of_rt_rq(rt_rq);
442
443 spin_lock(&rq->lock);
444 if (rt_rq->rt_time) {
445 u64 runtime;
446
447 spin_lock(&rt_rq->rt_runtime_lock);
448 if (rt_rq->rt_throttled)
449 balance_runtime(rt_rq);
450 runtime = rt_rq->rt_runtime;
451 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
452 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
453 rt_rq->rt_throttled = 0;
454 enqueue = 1;
455 }
456 if (rt_rq->rt_time || rt_rq->rt_nr_running)
457 idle = 0;
458 spin_unlock(&rt_rq->rt_runtime_lock);
6c3df255
PZ
459 } else if (rt_rq->rt_nr_running)
460 idle = 0;
eff6549b
PZ
461
462 if (enqueue)
463 sched_rt_rq_enqueue(rt_rq);
464 spin_unlock(&rq->lock);
465 }
466
467 return idle;
468}
ac086bc2 469
6f505b16
PZ
470static inline int rt_se_prio(struct sched_rt_entity *rt_se)
471{
052f1dc7 472#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
473 struct rt_rq *rt_rq = group_rt_rq(rt_se);
474
475 if (rt_rq)
476 return rt_rq->highest_prio;
477#endif
478
479 return rt_task_of(rt_se)->prio;
480}
481
9f0c1e56 482static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 483{
9f0c1e56 484 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 485
fa85ae24 486 if (rt_rq->rt_throttled)
23b0fdfc 487 return rt_rq_throttled(rt_rq);
fa85ae24 488
ac086bc2
PZ
489 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
490 return 0;
491
b79f3833
PZ
492 balance_runtime(rt_rq);
493 runtime = sched_rt_runtime(rt_rq);
494 if (runtime == RUNTIME_INF)
495 return 0;
ac086bc2 496
9f0c1e56 497 if (rt_rq->rt_time > runtime) {
6f505b16 498 rt_rq->rt_throttled = 1;
23b0fdfc 499 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 500 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
501 return 1;
502 }
fa85ae24
PZ
503 }
504
505 return 0;
506}
507
bb44e5d1
IM
508/*
509 * Update the current task's runtime statistics. Skip current tasks that
510 * are not in our scheduling class.
511 */
a9957449 512static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
513{
514 struct task_struct *curr = rq->curr;
6f505b16
PZ
515 struct sched_rt_entity *rt_se = &curr->rt;
516 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
517 u64 delta_exec;
518
519 if (!task_has_rt_policy(curr))
520 return;
521
d281918d 522 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
523 if (unlikely((s64)delta_exec < 0))
524 delta_exec = 0;
6cfb0d5d
IM
525
526 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
527
528 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
529 account_group_exec_runtime(curr, delta_exec);
530
d281918d 531 curr->se.exec_start = rq->clock;
d842de87 532 cpuacct_charge(curr, delta_exec);
fa85ae24 533
0b148fa0
PZ
534 if (!rt_bandwidth_enabled())
535 return;
536
354d60c2
DG
537 for_each_sched_rt_entity(rt_se) {
538 rt_rq = rt_rq_of_se(rt_se);
539
cc2991cf 540 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
e113a745 541 spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
542 rt_rq->rt_time += delta_exec;
543 if (sched_rt_runtime_exceeded(rt_rq))
544 resched_task(curr);
e113a745 545 spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 546 }
354d60c2 547 }
bb44e5d1
IM
548}
549
6f505b16
PZ
550static inline
551void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 552{
6f505b16
PZ
553 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
554 rt_rq->rt_nr_running++;
052f1dc7 555#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6e0534f2 556 if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
577b4a58 557#ifdef CONFIG_SMP
6e0534f2 558 struct rq *rq = rq_of_rt_rq(rt_rq);
577b4a58 559#endif
1f11eb6a 560
6f505b16 561 rt_rq->highest_prio = rt_se_prio(rt_se);
1100ac91 562#ifdef CONFIG_SMP
1f11eb6a
GH
563 if (rq->online)
564 cpupri_set(&rq->rd->cpupri, rq->cpu,
565 rt_se_prio(rt_se));
1100ac91 566#endif
6e0534f2 567 }
6f505b16 568#endif
764a9d6f 569#ifdef CONFIG_SMP
6f505b16
PZ
570 if (rt_se->nr_cpus_allowed > 1) {
571 struct rq *rq = rq_of_rt_rq(rt_rq);
1100ac91 572
73fe6aae 573 rq->rt.rt_nr_migratory++;
6f505b16 574 }
73fe6aae 575
6f505b16
PZ
576 update_rt_migration(rq_of_rt_rq(rt_rq));
577#endif
052f1dc7 578#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
579 if (rt_se_boosted(rt_se))
580 rt_rq->rt_nr_boosted++;
d0b27fa7
PZ
581
582 if (rt_rq->tg)
583 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
584#else
585 start_rt_bandwidth(&def_rt_bandwidth);
23b0fdfc 586#endif
63489e45
SR
587}
588
6f505b16
PZ
589static inline
590void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 591{
6e0534f2
GH
592#ifdef CONFIG_SMP
593 int highest_prio = rt_rq->highest_prio;
594#endif
595
6f505b16
PZ
596 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
597 WARN_ON(!rt_rq->rt_nr_running);
598 rt_rq->rt_nr_running--;
052f1dc7 599#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16 600 if (rt_rq->rt_nr_running) {
764a9d6f
SR
601 struct rt_prio_array *array;
602
6f505b16
PZ
603 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
604 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
764a9d6f 605 /* recalculate */
6f505b16
PZ
606 array = &rt_rq->active;
607 rt_rq->highest_prio =
764a9d6f
SR
608 sched_find_first_bit(array->bitmap);
609 } /* otherwise leave rq->highest prio alone */
610 } else
6f505b16
PZ
611 rt_rq->highest_prio = MAX_RT_PRIO;
612#endif
613#ifdef CONFIG_SMP
614 if (rt_se->nr_cpus_allowed > 1) {
615 struct rq *rq = rq_of_rt_rq(rt_rq);
73fe6aae 616 rq->rt.rt_nr_migratory--;
6f505b16 617 }
73fe6aae 618
6e0534f2
GH
619 if (rt_rq->highest_prio != highest_prio) {
620 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a
GH
621
622 if (rq->online)
623 cpupri_set(&rq->rd->cpupri, rq->cpu,
624 rt_rq->highest_prio);
6e0534f2
GH
625 }
626
6f505b16 627 update_rt_migration(rq_of_rt_rq(rt_rq));
764a9d6f 628#endif /* CONFIG_SMP */
052f1dc7 629#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
630 if (rt_se_boosted(rt_se))
631 rt_rq->rt_nr_boosted--;
632
633 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
634#endif
63489e45
SR
635}
636
ad2a3f13 637static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
bb44e5d1 638{
6f505b16
PZ
639 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
640 struct rt_prio_array *array = &rt_rq->active;
641 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 642 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 643
ad2a3f13
PZ
644 /*
645 * Don't enqueue the group if its throttled, or when empty.
646 * The latter is a consequence of the former when a child group
647 * get throttled and the current group doesn't have any other
648 * active members.
649 */
650 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 651 return;
63489e45 652
7ebefa8c 653 list_add_tail(&rt_se->run_list, queue);
6f505b16 654 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 655
6f505b16
PZ
656 inc_rt_tasks(rt_se, rt_rq);
657}
658
ad2a3f13 659static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
660{
661 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
662 struct rt_prio_array *array = &rt_rq->active;
663
664 list_del_init(&rt_se->run_list);
665 if (list_empty(array->queue + rt_se_prio(rt_se)))
666 __clear_bit(rt_se_prio(rt_se), array->bitmap);
667
668 dec_rt_tasks(rt_se, rt_rq);
669}
670
671/*
672 * Because the prio of an upper entry depends on the lower
673 * entries, we must remove entries top - down.
6f505b16 674 */
ad2a3f13 675static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 676{
ad2a3f13 677 struct sched_rt_entity *back = NULL;
6f505b16 678
58d6c2d7
PZ
679 for_each_sched_rt_entity(rt_se) {
680 rt_se->back = back;
681 back = rt_se;
682 }
683
684 for (rt_se = back; rt_se; rt_se = rt_se->back) {
685 if (on_rt_rq(rt_se))
ad2a3f13
PZ
686 __dequeue_rt_entity(rt_se);
687 }
688}
689
690static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
691{
692 dequeue_rt_stack(rt_se);
693 for_each_sched_rt_entity(rt_se)
694 __enqueue_rt_entity(rt_se);
695}
696
697static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
698{
699 dequeue_rt_stack(rt_se);
700
701 for_each_sched_rt_entity(rt_se) {
702 struct rt_rq *rt_rq = group_rt_rq(rt_se);
703
704 if (rt_rq && rt_rq->rt_nr_running)
705 __enqueue_rt_entity(rt_se);
58d6c2d7 706 }
bb44e5d1
IM
707}
708
709/*
710 * Adding/removing a task to/from a priority array:
711 */
6f505b16
PZ
712static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
713{
714 struct sched_rt_entity *rt_se = &p->rt;
715
716 if (wakeup)
717 rt_se->timeout = 0;
718
ad2a3f13 719 enqueue_rt_entity(rt_se);
c09595f6
PZ
720
721 inc_cpu_load(rq, p->se.load.weight);
6f505b16
PZ
722}
723
f02231e5 724static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1 725{
6f505b16 726 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 727
f1e14ef6 728 update_curr_rt(rq);
ad2a3f13 729 dequeue_rt_entity(rt_se);
c09595f6
PZ
730
731 dec_cpu_load(rq, p->se.load.weight);
bb44e5d1
IM
732}
733
734/*
735 * Put task to the end of the run list without the overhead of dequeue
736 * followed by enqueue.
737 */
7ebefa8c
DA
738static void
739requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 740{
1cdad715 741 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
742 struct rt_prio_array *array = &rt_rq->active;
743 struct list_head *queue = array->queue + rt_se_prio(rt_se);
744
745 if (head)
746 list_move(&rt_se->run_list, queue);
747 else
748 list_move_tail(&rt_se->run_list, queue);
1cdad715 749 }
6f505b16
PZ
750}
751
7ebefa8c 752static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 753{
6f505b16
PZ
754 struct sched_rt_entity *rt_se = &p->rt;
755 struct rt_rq *rt_rq;
bb44e5d1 756
6f505b16
PZ
757 for_each_sched_rt_entity(rt_se) {
758 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 759 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 760 }
bb44e5d1
IM
761}
762
6f505b16 763static void yield_task_rt(struct rq *rq)
bb44e5d1 764{
7ebefa8c 765 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
766}
767
e7693a36 768#ifdef CONFIG_SMP
318e0893
GH
769static int find_lowest_rq(struct task_struct *task);
770
e7693a36
GH
771static int select_task_rq_rt(struct task_struct *p, int sync)
772{
318e0893
GH
773 struct rq *rq = task_rq(p);
774
775 /*
e1f47d89
SR
776 * If the current task is an RT task, then
777 * try to see if we can wake this RT task up on another
778 * runqueue. Otherwise simply start this RT task
779 * on its current runqueue.
780 *
781 * We want to avoid overloading runqueues. Even if
782 * the RT task is of higher priority than the current RT task.
783 * RT tasks behave differently than other tasks. If
784 * one gets preempted, we try to push it off to another queue.
785 * So trying to keep a preempting RT task on the same
786 * cache hot CPU will force the running RT task to
787 * a cold CPU. So we waste all the cache for the lower
788 * RT task in hopes of saving some of a RT task
789 * that is just being woken and probably will have
790 * cold cache anyway.
318e0893 791 */
17b3279b 792 if (unlikely(rt_task(rq->curr)) &&
6f505b16 793 (p->rt.nr_cpus_allowed > 1)) {
318e0893
GH
794 int cpu = find_lowest_rq(p);
795
796 return (cpu == -1) ? task_cpu(p) : cpu;
797 }
798
799 /*
800 * Otherwise, just let it ride on the affined RQ and the
801 * post-schedule router will push the preempted task away
802 */
e7693a36
GH
803 return task_cpu(p);
804}
7ebefa8c
DA
805
806static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
807{
24600ce8 808 cpumask_var_t mask;
7ebefa8c
DA
809
810 if (rq->curr->rt.nr_cpus_allowed == 1)
811 return;
812
24600ce8 813 if (!alloc_cpumask_var(&mask, GFP_ATOMIC))
7ebefa8c
DA
814 return;
815
24600ce8
RR
816 if (p->rt.nr_cpus_allowed != 1
817 && cpupri_find(&rq->rd->cpupri, p, mask))
818 goto free;
819
820 if (!cpupri_find(&rq->rd->cpupri, rq->curr, mask))
821 goto free;
7ebefa8c
DA
822
823 /*
824 * There appears to be other cpus that can accept
825 * current and none to run 'p', so lets reschedule
826 * to try and push current away:
827 */
828 requeue_task_rt(rq, p, 1);
829 resched_task(rq->curr);
24600ce8
RR
830free:
831 free_cpumask_var(mask);
7ebefa8c
DA
832}
833
e7693a36
GH
834#endif /* CONFIG_SMP */
835
bb44e5d1
IM
836/*
837 * Preempt the current task with a newly woken task if needed:
838 */
15afe09b 839static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
bb44e5d1 840{
45c01e82 841 if (p->prio < rq->curr->prio) {
bb44e5d1 842 resched_task(rq->curr);
45c01e82
GH
843 return;
844 }
845
846#ifdef CONFIG_SMP
847 /*
848 * If:
849 *
850 * - the newly woken task is of equal priority to the current task
851 * - the newly woken task is non-migratable while current is migratable
852 * - current will be preempted on the next reschedule
853 *
854 * we should check to see if current can readily move to a different
855 * cpu. If so, we will reschedule to allow the push logic to try
856 * to move current somewhere else, making room for our non-migratable
857 * task.
858 */
7ebefa8c
DA
859 if (p->prio == rq->curr->prio && !need_resched())
860 check_preempt_equal_prio(rq, p);
45c01e82 861#endif
bb44e5d1
IM
862}
863
6f505b16
PZ
864static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
865 struct rt_rq *rt_rq)
bb44e5d1 866{
6f505b16
PZ
867 struct rt_prio_array *array = &rt_rq->active;
868 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
869 struct list_head *queue;
870 int idx;
871
872 idx = sched_find_first_bit(array->bitmap);
6f505b16 873 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
874
875 queue = array->queue + idx;
6f505b16 876 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 877
6f505b16
PZ
878 return next;
879}
bb44e5d1 880
6f505b16
PZ
881static struct task_struct *pick_next_task_rt(struct rq *rq)
882{
883 struct sched_rt_entity *rt_se;
884 struct task_struct *p;
885 struct rt_rq *rt_rq;
bb44e5d1 886
6f505b16
PZ
887 rt_rq = &rq->rt;
888
889 if (unlikely(!rt_rq->rt_nr_running))
890 return NULL;
891
23b0fdfc 892 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
893 return NULL;
894
895 do {
896 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 897 BUG_ON(!rt_se);
6f505b16
PZ
898 rt_rq = group_rt_rq(rt_se);
899 } while (rt_rq);
900
901 p = rt_task_of(rt_se);
902 p->se.exec_start = rq->clock;
903 return p;
bb44e5d1
IM
904}
905
31ee529c 906static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 907{
f1e14ef6 908 update_curr_rt(rq);
bb44e5d1
IM
909 p->se.exec_start = 0;
910}
911
681f3e68 912#ifdef CONFIG_SMP
6f505b16 913
e8fa1362
SR
914/* Only try algorithms three times */
915#define RT_MAX_TRIES 3
916
917static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
cf7f8690
SK
918static inline void double_unlock_balance(struct rq *this_rq,
919 struct rq *busiest);
1b12bbc7 920
e8fa1362
SR
921static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
922
f65eda4f
SR
923static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
924{
925 if (!task_running(rq, p) &&
96f874e2 926 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
6f505b16 927 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
928 return 1;
929 return 0;
930}
931
e8fa1362 932/* Return the second highest RT task, NULL otherwise */
79064fbf 933static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 934{
6f505b16
PZ
935 struct task_struct *next = NULL;
936 struct sched_rt_entity *rt_se;
937 struct rt_prio_array *array;
938 struct rt_rq *rt_rq;
e8fa1362
SR
939 int idx;
940
6f505b16
PZ
941 for_each_leaf_rt_rq(rt_rq, rq) {
942 array = &rt_rq->active;
943 idx = sched_find_first_bit(array->bitmap);
944 next_idx:
945 if (idx >= MAX_RT_PRIO)
946 continue;
947 if (next && next->prio < idx)
948 continue;
949 list_for_each_entry(rt_se, array->queue + idx, run_list) {
950 struct task_struct *p = rt_task_of(rt_se);
951 if (pick_rt_task(rq, p, cpu)) {
952 next = p;
953 break;
954 }
955 }
956 if (!next) {
957 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
958 goto next_idx;
959 }
f65eda4f
SR
960 }
961
e8fa1362
SR
962 return next;
963}
964
0e3900e6 965static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 966
6e1254d2
GH
967static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
968{
969 int first;
970
971 /* "this_cpu" is cheaper to preempt than a remote processor */
972 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
973 return this_cpu;
974
975 first = first_cpu(*mask);
976 if (first != NR_CPUS)
977 return first;
978
979 return -1;
980}
981
982static int find_lowest_rq(struct task_struct *task)
983{
984 struct sched_domain *sd;
96f874e2 985 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
6e1254d2
GH
986 int this_cpu = smp_processor_id();
987 int cpu = task_cpu(task);
06f90dbd 988
6e0534f2
GH
989 if (task->rt.nr_cpus_allowed == 1)
990 return -1; /* No other targets possible */
6e1254d2 991
6e0534f2
GH
992 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
993 return -1; /* No targets found */
6e1254d2 994
e761b772
MK
995 /*
996 * Only consider CPUs that are usable for migration.
997 * I guess we might want to change cpupri_find() to ignore those
998 * in the first place.
999 */
96f874e2 1000 cpumask_and(lowest_mask, lowest_mask, cpu_active_mask);
e761b772 1001
6e1254d2
GH
1002 /*
1003 * At this point we have built a mask of cpus representing the
1004 * lowest priority tasks in the system. Now we want to elect
1005 * the best one based on our affinity and topology.
1006 *
1007 * We prioritize the last cpu that the task executed on since
1008 * it is most likely cache-hot in that location.
1009 */
96f874e2 1010 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1011 return cpu;
1012
1013 /*
1014 * Otherwise, we consult the sched_domains span maps to figure
1015 * out which cpu is logically closest to our hot cache data.
1016 */
1017 if (this_cpu == cpu)
1018 this_cpu = -1; /* Skip this_cpu opt if the same */
1019
1020 for_each_domain(cpu, sd) {
1021 if (sd->flags & SD_WAKE_AFFINE) {
1022 cpumask_t domain_mask;
1023 int best_cpu;
1024
758b2cdc
RR
1025 cpumask_and(&domain_mask, sched_domain_span(sd),
1026 lowest_mask);
6e1254d2
GH
1027
1028 best_cpu = pick_optimal_cpu(this_cpu,
1029 &domain_mask);
1030 if (best_cpu != -1)
1031 return best_cpu;
1032 }
1033 }
1034
1035 /*
1036 * And finally, if there were no matches within the domains
1037 * just give the caller *something* to work with from the compatible
1038 * locations.
1039 */
1040 return pick_optimal_cpu(this_cpu, lowest_mask);
07b4032c
GH
1041}
1042
1043/* Will lock the rq it finds */
4df64c0b 1044static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1045{
1046 struct rq *lowest_rq = NULL;
07b4032c 1047 int tries;
4df64c0b 1048 int cpu;
e8fa1362 1049
07b4032c
GH
1050 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1051 cpu = find_lowest_rq(task);
1052
2de0b463 1053 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1054 break;
1055
07b4032c
GH
1056 lowest_rq = cpu_rq(cpu);
1057
e8fa1362 1058 /* if the prio of this runqueue changed, try again */
07b4032c 1059 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1060 /*
1061 * We had to unlock the run queue. In
1062 * the mean time, task could have
1063 * migrated already or had its affinity changed.
1064 * Also make sure that it wasn't scheduled on its rq.
1065 */
07b4032c 1066 if (unlikely(task_rq(task) != rq ||
96f874e2
RR
1067 !cpumask_test_cpu(lowest_rq->cpu,
1068 &task->cpus_allowed) ||
07b4032c 1069 task_running(rq, task) ||
e8fa1362 1070 !task->se.on_rq)) {
4df64c0b 1071
e8fa1362
SR
1072 spin_unlock(&lowest_rq->lock);
1073 lowest_rq = NULL;
1074 break;
1075 }
1076 }
1077
1078 /* If this rq is still suitable use it. */
1079 if (lowest_rq->rt.highest_prio > task->prio)
1080 break;
1081
1082 /* try again */
1b12bbc7 1083 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1084 lowest_rq = NULL;
1085 }
1086
1087 return lowest_rq;
1088}
1089
1090/*
1091 * If the current CPU has more than one RT task, see if the non
1092 * running task can migrate over to a CPU that is running a task
1093 * of lesser priority.
1094 */
697f0a48 1095static int push_rt_task(struct rq *rq)
e8fa1362
SR
1096{
1097 struct task_struct *next_task;
1098 struct rq *lowest_rq;
1099 int ret = 0;
1100 int paranoid = RT_MAX_TRIES;
1101
a22d7fc1
GH
1102 if (!rq->rt.overloaded)
1103 return 0;
1104
697f0a48 1105 next_task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
1106 if (!next_task)
1107 return 0;
1108
1109 retry:
697f0a48 1110 if (unlikely(next_task == rq->curr)) {
f65eda4f 1111 WARN_ON(1);
e8fa1362 1112 return 0;
f65eda4f 1113 }
e8fa1362
SR
1114
1115 /*
1116 * It's possible that the next_task slipped in of
1117 * higher priority than current. If that's the case
1118 * just reschedule current.
1119 */
697f0a48
GH
1120 if (unlikely(next_task->prio < rq->curr->prio)) {
1121 resched_task(rq->curr);
e8fa1362
SR
1122 return 0;
1123 }
1124
697f0a48 1125 /* We might release rq lock */
e8fa1362
SR
1126 get_task_struct(next_task);
1127
1128 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1129 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1130 if (!lowest_rq) {
1131 struct task_struct *task;
1132 /*
697f0a48 1133 * find lock_lowest_rq releases rq->lock
e8fa1362
SR
1134 * so it is possible that next_task has changed.
1135 * If it has, then try again.
1136 */
697f0a48 1137 task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
1138 if (unlikely(task != next_task) && task && paranoid--) {
1139 put_task_struct(next_task);
1140 next_task = task;
1141 goto retry;
1142 }
1143 goto out;
1144 }
1145
697f0a48 1146 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1147 set_task_cpu(next_task, lowest_rq->cpu);
1148 activate_task(lowest_rq, next_task, 0);
1149
1150 resched_task(lowest_rq->curr);
1151
1b12bbc7 1152 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1153
1154 ret = 1;
1155out:
1156 put_task_struct(next_task);
1157
1158 return ret;
1159}
1160
1161/*
1162 * TODO: Currently we just use the second highest prio task on
1163 * the queue, and stop when it can't migrate (or there's
1164 * no more RT tasks). There may be a case where a lower
1165 * priority RT task has a different affinity than the
1166 * higher RT task. In this case the lower RT task could
1167 * possibly be able to migrate where as the higher priority
1168 * RT task could not. We currently ignore this issue.
1169 * Enhancements are welcome!
1170 */
1171static void push_rt_tasks(struct rq *rq)
1172{
1173 /* push_rt_task will return true if it moved an RT */
1174 while (push_rt_task(rq))
1175 ;
1176}
1177
f65eda4f
SR
1178static int pull_rt_task(struct rq *this_rq)
1179{
80bf3171
IM
1180 int this_cpu = this_rq->cpu, ret = 0, cpu;
1181 struct task_struct *p, *next;
f65eda4f 1182 struct rq *src_rq;
f65eda4f 1183
637f5085 1184 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1185 return 0;
1186
1187 next = pick_next_task_rt(this_rq);
1188
c6c4927b 1189 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1190 if (this_cpu == cpu)
1191 continue;
1192
1193 src_rq = cpu_rq(cpu);
f65eda4f
SR
1194 /*
1195 * We can potentially drop this_rq's lock in
1196 * double_lock_balance, and another CPU could
1197 * steal our next task - hence we must cause
1198 * the caller to recalculate the next task
1199 * in that case:
1200 */
1201 if (double_lock_balance(this_rq, src_rq)) {
1202 struct task_struct *old_next = next;
80bf3171 1203
f65eda4f
SR
1204 next = pick_next_task_rt(this_rq);
1205 if (next != old_next)
1206 ret = 1;
1207 }
1208
1209 /*
1210 * Are there still pullable RT tasks?
1211 */
614ee1f6
MG
1212 if (src_rq->rt.rt_nr_running <= 1)
1213 goto skip;
f65eda4f 1214
f65eda4f
SR
1215 p = pick_next_highest_task_rt(src_rq, this_cpu);
1216
1217 /*
1218 * Do we have an RT task that preempts
1219 * the to-be-scheduled task?
1220 */
1221 if (p && (!next || (p->prio < next->prio))) {
1222 WARN_ON(p == src_rq->curr);
1223 WARN_ON(!p->se.on_rq);
1224
1225 /*
1226 * There's a chance that p is higher in priority
1227 * than what's currently running on its cpu.
1228 * This is just that p is wakeing up and hasn't
1229 * had a chance to schedule. We only pull
1230 * p if it is lower in priority than the
1231 * current task on the run queue or
1232 * this_rq next task is lower in prio than
1233 * the current task on that rq.
1234 */
1235 if (p->prio < src_rq->curr->prio ||
1236 (next && next->prio < src_rq->curr->prio))
614ee1f6 1237 goto skip;
f65eda4f
SR
1238
1239 ret = 1;
1240
1241 deactivate_task(src_rq, p, 0);
1242 set_task_cpu(p, this_cpu);
1243 activate_task(this_rq, p, 0);
1244 /*
1245 * We continue with the search, just in
1246 * case there's an even higher prio task
1247 * in another runqueue. (low likelyhood
1248 * but possible)
80bf3171 1249 *
f65eda4f
SR
1250 * Update next so that we won't pick a task
1251 * on another cpu with a priority lower (or equal)
1252 * than the one we just picked.
1253 */
1254 next = p;
1255
1256 }
614ee1f6 1257 skip:
1b12bbc7 1258 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1259 }
1260
1261 return ret;
1262}
1263
9a897c5a 1264static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1265{
1266 /* Try to pull RT tasks here if we lower this rq's prio */
7f51f298 1267 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
f65eda4f
SR
1268 pull_rt_task(rq);
1269}
1270
9a897c5a 1271static void post_schedule_rt(struct rq *rq)
e8fa1362
SR
1272{
1273 /*
1274 * If we have more than one rt_task queued, then
1275 * see if we can push the other rt_tasks off to other CPUS.
1276 * Note we may release the rq lock, and since
1277 * the lock was owned by prev, we need to release it
1278 * first via finish_lock_switch and then reaquire it here.
1279 */
a22d7fc1 1280 if (unlikely(rq->rt.overloaded)) {
e8fa1362
SR
1281 spin_lock_irq(&rq->lock);
1282 push_rt_tasks(rq);
1283 spin_unlock_irq(&rq->lock);
1284 }
1285}
1286
8ae121ac
GH
1287/*
1288 * If we are not running and we are not going to reschedule soon, we should
1289 * try to push tasks away now
1290 */
9a897c5a 1291static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
4642dafd 1292{
9a897c5a 1293 if (!task_running(rq, p) &&
8ae121ac 1294 !test_tsk_need_resched(rq->curr) &&
a22d7fc1 1295 rq->rt.overloaded)
4642dafd
SR
1296 push_rt_tasks(rq);
1297}
1298
43010659 1299static unsigned long
bb44e5d1 1300load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
1301 unsigned long max_load_move,
1302 struct sched_domain *sd, enum cpu_idle_type idle,
1303 int *all_pinned, int *this_best_prio)
bb44e5d1 1304{
c7a1e46a
SR
1305 /* don't touch RT tasks */
1306 return 0;
e1d1484f
PW
1307}
1308
1309static int
1310move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1311 struct sched_domain *sd, enum cpu_idle_type idle)
1312{
c7a1e46a
SR
1313 /* don't touch RT tasks */
1314 return 0;
bb44e5d1 1315}
deeeccd4 1316
cd8ba7cd 1317static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 1318 const struct cpumask *new_mask)
73fe6aae 1319{
96f874e2 1320 int weight = cpumask_weight(new_mask);
73fe6aae
GH
1321
1322 BUG_ON(!rt_task(p));
1323
1324 /*
1325 * Update the migration status of the RQ if we have an RT task
1326 * which is running AND changing its weight value.
1327 */
6f505b16 1328 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1329 struct rq *rq = task_rq(p);
1330
6f505b16 1331 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1332 rq->rt.rt_nr_migratory++;
6f505b16 1333 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1334 BUG_ON(!rq->rt.rt_nr_migratory);
1335 rq->rt.rt_nr_migratory--;
1336 }
1337
1338 update_rt_migration(rq);
1339 }
1340
96f874e2 1341 cpumask_copy(&p->cpus_allowed, new_mask);
6f505b16 1342 p->rt.nr_cpus_allowed = weight;
73fe6aae 1343}
deeeccd4 1344
bdd7c81b 1345/* Assumes rq->lock is held */
1f11eb6a 1346static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1347{
1348 if (rq->rt.overloaded)
1349 rt_set_overload(rq);
6e0534f2 1350
7def2be1
PZ
1351 __enable_runtime(rq);
1352
6e0534f2 1353 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
bdd7c81b
IM
1354}
1355
1356/* Assumes rq->lock is held */
1f11eb6a 1357static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1358{
1359 if (rq->rt.overloaded)
1360 rt_clear_overload(rq);
6e0534f2 1361
7def2be1
PZ
1362 __disable_runtime(rq);
1363
6e0534f2 1364 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1365}
cb469845
SR
1366
1367/*
1368 * When switch from the rt queue, we bring ourselves to a position
1369 * that we might want to pull RT tasks from other runqueues.
1370 */
1371static void switched_from_rt(struct rq *rq, struct task_struct *p,
1372 int running)
1373{
1374 /*
1375 * If there are other RT tasks then we will reschedule
1376 * and the scheduling of the other RT tasks will handle
1377 * the balancing. But if we are the last RT task
1378 * we may need to handle the pulling of RT tasks
1379 * now.
1380 */
1381 if (!rq->rt.rt_nr_running)
1382 pull_rt_task(rq);
1383}
1384#endif /* CONFIG_SMP */
1385
1386/*
1387 * When switching a task to RT, we may overload the runqueue
1388 * with RT tasks. In this case we try to push them off to
1389 * other runqueues.
1390 */
1391static void switched_to_rt(struct rq *rq, struct task_struct *p,
1392 int running)
1393{
1394 int check_resched = 1;
1395
1396 /*
1397 * If we are already running, then there's nothing
1398 * that needs to be done. But if we are not running
1399 * we may need to preempt the current running task.
1400 * If that current running task is also an RT task
1401 * then see if we can move to another run queue.
1402 */
1403 if (!running) {
1404#ifdef CONFIG_SMP
1405 if (rq->rt.overloaded && push_rt_task(rq) &&
1406 /* Don't resched if we changed runqueues */
1407 rq != task_rq(p))
1408 check_resched = 0;
1409#endif /* CONFIG_SMP */
1410 if (check_resched && p->prio < rq->curr->prio)
1411 resched_task(rq->curr);
1412 }
1413}
1414
1415/*
1416 * Priority of the task has changed. This may cause
1417 * us to initiate a push or pull.
1418 */
1419static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1420 int oldprio, int running)
1421{
1422 if (running) {
1423#ifdef CONFIG_SMP
1424 /*
1425 * If our priority decreases while running, we
1426 * may need to pull tasks to this runqueue.
1427 */
1428 if (oldprio < p->prio)
1429 pull_rt_task(rq);
1430 /*
1431 * If there's a higher priority task waiting to run
6fa46fa5
SR
1432 * then reschedule. Note, the above pull_rt_task
1433 * can release the rq lock and p could migrate.
1434 * Only reschedule if p is still on the same runqueue.
cb469845 1435 */
6fa46fa5 1436 if (p->prio > rq->rt.highest_prio && rq->curr == p)
cb469845
SR
1437 resched_task(p);
1438#else
1439 /* For UP simply resched on drop of prio */
1440 if (oldprio < p->prio)
1441 resched_task(p);
e8fa1362 1442#endif /* CONFIG_SMP */
cb469845
SR
1443 } else {
1444 /*
1445 * This task is not running, but if it is
1446 * greater than the current running task
1447 * then reschedule.
1448 */
1449 if (p->prio < rq->curr->prio)
1450 resched_task(rq->curr);
1451 }
1452}
1453
78f2c7db
PZ
1454static void watchdog(struct rq *rq, struct task_struct *p)
1455{
1456 unsigned long soft, hard;
1457
1458 if (!p->signal)
1459 return;
1460
1461 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1462 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1463
1464 if (soft != RLIM_INFINITY) {
1465 unsigned long next;
1466
1467 p->rt.timeout++;
1468 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1469 if (p->rt.timeout > next)
f06febc9 1470 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
1471 }
1472}
bb44e5d1 1473
8f4d37ec 1474static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1475{
67e2be02
PZ
1476 update_curr_rt(rq);
1477
78f2c7db
PZ
1478 watchdog(rq, p);
1479
bb44e5d1
IM
1480 /*
1481 * RR tasks need a special form of timeslice management.
1482 * FIFO tasks have no timeslices.
1483 */
1484 if (p->policy != SCHED_RR)
1485 return;
1486
fa717060 1487 if (--p->rt.time_slice)
bb44e5d1
IM
1488 return;
1489
fa717060 1490 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1491
98fbc798
DA
1492 /*
1493 * Requeue to the end of queue if we are not the only element
1494 * on the queue:
1495 */
fa717060 1496 if (p->rt.run_list.prev != p->rt.run_list.next) {
7ebefa8c 1497 requeue_task_rt(rq, p, 0);
98fbc798
DA
1498 set_tsk_need_resched(p);
1499 }
bb44e5d1
IM
1500}
1501
83b699ed
SV
1502static void set_curr_task_rt(struct rq *rq)
1503{
1504 struct task_struct *p = rq->curr;
1505
1506 p->se.exec_start = rq->clock;
1507}
1508
2abdad0a 1509static const struct sched_class rt_sched_class = {
5522d5d5 1510 .next = &fair_sched_class,
bb44e5d1
IM
1511 .enqueue_task = enqueue_task_rt,
1512 .dequeue_task = dequeue_task_rt,
1513 .yield_task = yield_task_rt,
1514
1515 .check_preempt_curr = check_preempt_curr_rt,
1516
1517 .pick_next_task = pick_next_task_rt,
1518 .put_prev_task = put_prev_task_rt,
1519
681f3e68 1520#ifdef CONFIG_SMP
4ce72a2c
LZ
1521 .select_task_rq = select_task_rq_rt,
1522
bb44e5d1 1523 .load_balance = load_balance_rt,
e1d1484f 1524 .move_one_task = move_one_task_rt,
73fe6aae 1525 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1526 .rq_online = rq_online_rt,
1527 .rq_offline = rq_offline_rt,
9a897c5a
SR
1528 .pre_schedule = pre_schedule_rt,
1529 .post_schedule = post_schedule_rt,
1530 .task_wake_up = task_wake_up_rt,
cb469845 1531 .switched_from = switched_from_rt,
681f3e68 1532#endif
bb44e5d1 1533
83b699ed 1534 .set_curr_task = set_curr_task_rt,
bb44e5d1 1535 .task_tick = task_tick_rt,
cb469845
SR
1536
1537 .prio_changed = prio_changed_rt,
1538 .switched_to = switched_to_rt,
bb44e5d1 1539};
ada18de2
PZ
1540
1541#ifdef CONFIG_SCHED_DEBUG
1542extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1543
1544static void print_rt_stats(struct seq_file *m, int cpu)
1545{
1546 struct rt_rq *rt_rq;
1547
1548 rcu_read_lock();
1549 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1550 print_rt_rq(m, cpu, rt_rq);
1551 rcu_read_unlock();
1552}
55e12e5e 1553#endif /* CONFIG_SCHED_DEBUG */
0e3900e6
RR
1554
1555/* Note that this is never called for !SMP, but that's OK. */
1556static inline void init_sched_rt_class(void)
1557{
1558 unsigned int i;
1559
1560 for_each_possible_cpu(i)
1561 alloc_cpumask_var(&per_cpu(local_cpu_mask, i), GFP_KERNEL);
1562}