sched: rt: fix SMP bandwidth balancing for throttled groups
[linux-block.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
4fd29176 6#ifdef CONFIG_SMP
84de4274 7
637f5085 8static inline int rt_overloaded(struct rq *rq)
4fd29176 9{
637f5085 10 return atomic_read(&rq->rd->rto_count);
4fd29176 11}
84de4274 12
4fd29176
SR
13static inline void rt_set_overload(struct rq *rq)
14{
1f11eb6a
GH
15 if (!rq->online)
16 return;
17
637f5085 18 cpu_set(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
19 /*
20 * Make sure the mask is visible before we set
21 * the overload count. That is checked to determine
22 * if we should look at the mask. It would be a shame
23 * if we looked at the mask, but the mask was not
24 * updated yet.
25 */
26 wmb();
637f5085 27 atomic_inc(&rq->rd->rto_count);
4fd29176 28}
84de4274 29
4fd29176
SR
30static inline void rt_clear_overload(struct rq *rq)
31{
1f11eb6a
GH
32 if (!rq->online)
33 return;
34
4fd29176 35 /* the order here really doesn't matter */
637f5085
GH
36 atomic_dec(&rq->rd->rto_count);
37 cpu_clear(rq->cpu, rq->rd->rto_mask);
4fd29176 38}
73fe6aae
GH
39
40static void update_rt_migration(struct rq *rq)
41{
637f5085 42 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
cdc8eb98
GH
43 if (!rq->rt.overloaded) {
44 rt_set_overload(rq);
45 rq->rt.overloaded = 1;
46 }
47 } else if (rq->rt.overloaded) {
73fe6aae 48 rt_clear_overload(rq);
637f5085
GH
49 rq->rt.overloaded = 0;
50 }
73fe6aae 51}
4fd29176
SR
52#endif /* CONFIG_SMP */
53
6f505b16 54static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
fa85ae24 55{
6f505b16
PZ
56 return container_of(rt_se, struct task_struct, rt);
57}
58
59static inline int on_rt_rq(struct sched_rt_entity *rt_se)
60{
61 return !list_empty(&rt_se->run_list);
62}
63
052f1dc7 64#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 65
9f0c1e56 66static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
67{
68 if (!rt_rq->tg)
9f0c1e56 69 return RUNTIME_INF;
6f505b16 70
ac086bc2
PZ
71 return rt_rq->rt_runtime;
72}
73
74static inline u64 sched_rt_period(struct rt_rq *rt_rq)
75{
76 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
77}
78
79#define for_each_leaf_rt_rq(rt_rq, rq) \
80 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
81
82static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
83{
84 return rt_rq->rq;
85}
86
87static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
88{
89 return rt_se->rt_rq;
90}
91
92#define for_each_sched_rt_entity(rt_se) \
93 for (; rt_se; rt_se = rt_se->parent)
94
95static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
96{
97 return rt_se->my_q;
98}
99
100static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
102
9f0c1e56 103static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16
PZ
104{
105 struct sched_rt_entity *rt_se = rt_rq->rt_se;
106
107 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
1020387f
PZ
108 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
109
6f505b16 110 enqueue_rt_entity(rt_se);
1020387f
PZ
111 if (rt_rq->highest_prio < curr->prio)
112 resched_task(curr);
6f505b16
PZ
113 }
114}
115
9f0c1e56 116static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
117{
118 struct sched_rt_entity *rt_se = rt_rq->rt_se;
119
120 if (rt_se && on_rt_rq(rt_se))
121 dequeue_rt_entity(rt_se);
122}
123
23b0fdfc
PZ
124static inline int rt_rq_throttled(struct rt_rq *rt_rq)
125{
126 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
127}
128
129static int rt_se_boosted(struct sched_rt_entity *rt_se)
130{
131 struct rt_rq *rt_rq = group_rt_rq(rt_se);
132 struct task_struct *p;
133
134 if (rt_rq)
135 return !!rt_rq->rt_nr_boosted;
136
137 p = rt_task_of(rt_se);
138 return p->prio != p->normal_prio;
139}
140
d0b27fa7
PZ
141#ifdef CONFIG_SMP
142static inline cpumask_t sched_rt_period_mask(void)
143{
144 return cpu_rq(smp_processor_id())->rd->span;
145}
6f505b16 146#else
d0b27fa7
PZ
147static inline cpumask_t sched_rt_period_mask(void)
148{
149 return cpu_online_map;
150}
151#endif
6f505b16 152
d0b27fa7
PZ
153static inline
154struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 155{
d0b27fa7
PZ
156 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
157}
9f0c1e56 158
ac086bc2
PZ
159static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
160{
161 return &rt_rq->tg->rt_bandwidth;
162}
163
d0b27fa7
PZ
164#else
165
166static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
167{
ac086bc2
PZ
168 return rt_rq->rt_runtime;
169}
170
171static inline u64 sched_rt_period(struct rt_rq *rt_rq)
172{
173 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
174}
175
176#define for_each_leaf_rt_rq(rt_rq, rq) \
177 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
178
179static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180{
181 return container_of(rt_rq, struct rq, rt);
182}
183
184static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185{
186 struct task_struct *p = rt_task_of(rt_se);
187 struct rq *rq = task_rq(p);
188
189 return &rq->rt;
190}
191
192#define for_each_sched_rt_entity(rt_se) \
193 for (; rt_se; rt_se = NULL)
194
195static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
196{
197 return NULL;
198}
199
9f0c1e56 200static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16
PZ
201{
202}
203
9f0c1e56 204static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
205{
206}
207
23b0fdfc
PZ
208static inline int rt_rq_throttled(struct rt_rq *rt_rq)
209{
210 return rt_rq->rt_throttled;
211}
d0b27fa7
PZ
212
213static inline cpumask_t sched_rt_period_mask(void)
214{
215 return cpu_online_map;
216}
217
218static inline
219struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
220{
221 return &cpu_rq(cpu)->rt;
222}
223
ac086bc2
PZ
224static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
225{
226 return &def_rt_bandwidth;
227}
228
6f505b16
PZ
229#endif
230
b79f3833
PZ
231#ifdef CONFIG_SMP
232static int do_balance_runtime(struct rt_rq *rt_rq);
233
234static int balance_runtime(struct rt_rq *rt_rq)
235{
236 int more = 0;
237
238 if (rt_rq->rt_time > rt_rq->rt_runtime) {
239 spin_unlock(&rt_rq->rt_runtime_lock);
240 more = do_balance_runtime(rt_rq);
241 spin_lock(&rt_rq->rt_runtime_lock);
242 }
243
244 return more;
245}
246#else
247static inline int balance_runtime(struct rt_rq *rt_rq)
248{
249 return 0;
250}
251#endif
252
d0b27fa7
PZ
253static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
254{
255 int i, idle = 1;
256 cpumask_t span;
257
258 if (rt_b->rt_runtime == RUNTIME_INF)
259 return 1;
260
261 span = sched_rt_period_mask();
262 for_each_cpu_mask(i, span) {
263 int enqueue = 0;
264 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
265 struct rq *rq = rq_of_rt_rq(rt_rq);
266
267 spin_lock(&rq->lock);
268 if (rt_rq->rt_time) {
ac086bc2 269 u64 runtime;
d0b27fa7 270
ac086bc2 271 spin_lock(&rt_rq->rt_runtime_lock);
b79f3833
PZ
272 if (rt_rq->rt_throttled)
273 balance_runtime(rt_rq);
ac086bc2 274 runtime = rt_rq->rt_runtime;
d0b27fa7
PZ
275 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
276 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
277 rt_rq->rt_throttled = 0;
278 enqueue = 1;
279 }
280 if (rt_rq->rt_time || rt_rq->rt_nr_running)
281 idle = 0;
ac086bc2 282 spin_unlock(&rt_rq->rt_runtime_lock);
d0b27fa7
PZ
283 }
284
285 if (enqueue)
286 sched_rt_rq_enqueue(rt_rq);
287 spin_unlock(&rq->lock);
288 }
289
290 return idle;
291}
292
ac086bc2 293#ifdef CONFIG_SMP
b79f3833 294static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
295{
296 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
297 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
298 int i, weight, more = 0;
299 u64 rt_period;
300
301 weight = cpus_weight(rd->span);
302
303 spin_lock(&rt_b->rt_runtime_lock);
304 rt_period = ktime_to_ns(rt_b->rt_period);
305 for_each_cpu_mask(i, rd->span) {
306 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
307 s64 diff;
308
309 if (iter == rt_rq)
310 continue;
311
312 spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
313 if (iter->rt_runtime == RUNTIME_INF)
314 goto next;
315
ac086bc2
PZ
316 diff = iter->rt_runtime - iter->rt_time;
317 if (diff > 0) {
318 do_div(diff, weight);
319 if (rt_rq->rt_runtime + diff > rt_period)
320 diff = rt_period - rt_rq->rt_runtime;
321 iter->rt_runtime -= diff;
322 rt_rq->rt_runtime += diff;
323 more = 1;
324 if (rt_rq->rt_runtime == rt_period) {
325 spin_unlock(&iter->rt_runtime_lock);
326 break;
327 }
328 }
7def2be1 329next:
ac086bc2
PZ
330 spin_unlock(&iter->rt_runtime_lock);
331 }
332 spin_unlock(&rt_b->rt_runtime_lock);
333
334 return more;
335}
7def2be1
PZ
336
337static void __disable_runtime(struct rq *rq)
338{
339 struct root_domain *rd = rq->rd;
340 struct rt_rq *rt_rq;
341
342 if (unlikely(!scheduler_running))
343 return;
344
345 for_each_leaf_rt_rq(rt_rq, rq) {
346 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
347 s64 want;
348 int i;
349
350 spin_lock(&rt_b->rt_runtime_lock);
351 spin_lock(&rt_rq->rt_runtime_lock);
352 if (rt_rq->rt_runtime == RUNTIME_INF ||
353 rt_rq->rt_runtime == rt_b->rt_runtime)
354 goto balanced;
355 spin_unlock(&rt_rq->rt_runtime_lock);
356
357 want = rt_b->rt_runtime - rt_rq->rt_runtime;
358
359 for_each_cpu_mask(i, rd->span) {
360 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
361 s64 diff;
362
363 if (iter == rt_rq)
364 continue;
365
366 spin_lock(&iter->rt_runtime_lock);
367 if (want > 0) {
368 diff = min_t(s64, iter->rt_runtime, want);
369 iter->rt_runtime -= diff;
370 want -= diff;
371 } else {
372 iter->rt_runtime -= want;
373 want -= want;
374 }
375 spin_unlock(&iter->rt_runtime_lock);
376
377 if (!want)
378 break;
379 }
380
381 spin_lock(&rt_rq->rt_runtime_lock);
382 BUG_ON(want);
383balanced:
384 rt_rq->rt_runtime = RUNTIME_INF;
385 spin_unlock(&rt_rq->rt_runtime_lock);
386 spin_unlock(&rt_b->rt_runtime_lock);
387 }
388}
389
390static void disable_runtime(struct rq *rq)
391{
392 unsigned long flags;
393
394 spin_lock_irqsave(&rq->lock, flags);
395 __disable_runtime(rq);
396 spin_unlock_irqrestore(&rq->lock, flags);
397}
398
399static void __enable_runtime(struct rq *rq)
400{
401 struct root_domain *rd = rq->rd;
402 struct rt_rq *rt_rq;
403
404 if (unlikely(!scheduler_running))
405 return;
406
407 for_each_leaf_rt_rq(rt_rq, rq) {
408 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
409
410 spin_lock(&rt_b->rt_runtime_lock);
411 spin_lock(&rt_rq->rt_runtime_lock);
412 rt_rq->rt_runtime = rt_b->rt_runtime;
413 rt_rq->rt_time = 0;
414 spin_unlock(&rt_rq->rt_runtime_lock);
415 spin_unlock(&rt_b->rt_runtime_lock);
416 }
417}
418
419static void enable_runtime(struct rq *rq)
420{
421 unsigned long flags;
422
423 spin_lock_irqsave(&rq->lock, flags);
424 __enable_runtime(rq);
425 spin_unlock_irqrestore(&rq->lock, flags);
426}
427
ac086bc2
PZ
428#endif
429
6f505b16
PZ
430static inline int rt_se_prio(struct sched_rt_entity *rt_se)
431{
052f1dc7 432#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
433 struct rt_rq *rt_rq = group_rt_rq(rt_se);
434
435 if (rt_rq)
436 return rt_rq->highest_prio;
437#endif
438
439 return rt_task_of(rt_se)->prio;
440}
441
9f0c1e56 442static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 443{
9f0c1e56 444 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 445
9f0c1e56 446 if (runtime == RUNTIME_INF)
fa85ae24
PZ
447 return 0;
448
449 if (rt_rq->rt_throttled)
23b0fdfc 450 return rt_rq_throttled(rt_rq);
fa85ae24 451
ac086bc2
PZ
452 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
453 return 0;
454
b79f3833
PZ
455 balance_runtime(rt_rq);
456 runtime = sched_rt_runtime(rt_rq);
457 if (runtime == RUNTIME_INF)
458 return 0;
ac086bc2 459
9f0c1e56 460 if (rt_rq->rt_time > runtime) {
6f505b16 461 rt_rq->rt_throttled = 1;
23b0fdfc 462 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 463 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
464 return 1;
465 }
fa85ae24
PZ
466 }
467
468 return 0;
469}
470
bb44e5d1
IM
471/*
472 * Update the current task's runtime statistics. Skip current tasks that
473 * are not in our scheduling class.
474 */
a9957449 475static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
476{
477 struct task_struct *curr = rq->curr;
6f505b16
PZ
478 struct sched_rt_entity *rt_se = &curr->rt;
479 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
480 u64 delta_exec;
481
482 if (!task_has_rt_policy(curr))
483 return;
484
d281918d 485 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
486 if (unlikely((s64)delta_exec < 0))
487 delta_exec = 0;
6cfb0d5d
IM
488
489 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
490
491 curr->se.sum_exec_runtime += delta_exec;
d281918d 492 curr->se.exec_start = rq->clock;
d842de87 493 cpuacct_charge(curr, delta_exec);
fa85ae24 494
354d60c2
DG
495 for_each_sched_rt_entity(rt_se) {
496 rt_rq = rt_rq_of_se(rt_se);
497
498 spin_lock(&rt_rq->rt_runtime_lock);
499 rt_rq->rt_time += delta_exec;
500 if (sched_rt_runtime_exceeded(rt_rq))
501 resched_task(curr);
502 spin_unlock(&rt_rq->rt_runtime_lock);
503 }
bb44e5d1
IM
504}
505
6f505b16
PZ
506static inline
507void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 508{
6f505b16
PZ
509 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
510 rt_rq->rt_nr_running++;
052f1dc7 511#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6e0534f2
GH
512 if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
513 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 514
1100ac91
IM
515 rt_rq->highest_prio = rt_se_prio(rt_se);
516#ifdef CONFIG_SMP
1f11eb6a
GH
517 if (rq->online)
518 cpupri_set(&rq->rd->cpupri, rq->cpu,
519 rt_se_prio(rt_se));
1100ac91 520#endif
6e0534f2 521 }
6f505b16 522#endif
764a9d6f 523#ifdef CONFIG_SMP
6f505b16
PZ
524 if (rt_se->nr_cpus_allowed > 1) {
525 struct rq *rq = rq_of_rt_rq(rt_rq);
1100ac91 526
73fe6aae 527 rq->rt.rt_nr_migratory++;
6f505b16 528 }
73fe6aae 529
6f505b16
PZ
530 update_rt_migration(rq_of_rt_rq(rt_rq));
531#endif
052f1dc7 532#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
533 if (rt_se_boosted(rt_se))
534 rt_rq->rt_nr_boosted++;
d0b27fa7
PZ
535
536 if (rt_rq->tg)
537 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
538#else
539 start_rt_bandwidth(&def_rt_bandwidth);
23b0fdfc 540#endif
63489e45
SR
541}
542
6f505b16
PZ
543static inline
544void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 545{
6e0534f2
GH
546#ifdef CONFIG_SMP
547 int highest_prio = rt_rq->highest_prio;
548#endif
549
6f505b16
PZ
550 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
551 WARN_ON(!rt_rq->rt_nr_running);
552 rt_rq->rt_nr_running--;
052f1dc7 553#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16 554 if (rt_rq->rt_nr_running) {
764a9d6f
SR
555 struct rt_prio_array *array;
556
6f505b16
PZ
557 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
558 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
764a9d6f 559 /* recalculate */
6f505b16
PZ
560 array = &rt_rq->active;
561 rt_rq->highest_prio =
764a9d6f
SR
562 sched_find_first_bit(array->bitmap);
563 } /* otherwise leave rq->highest prio alone */
564 } else
6f505b16
PZ
565 rt_rq->highest_prio = MAX_RT_PRIO;
566#endif
567#ifdef CONFIG_SMP
568 if (rt_se->nr_cpus_allowed > 1) {
569 struct rq *rq = rq_of_rt_rq(rt_rq);
73fe6aae 570 rq->rt.rt_nr_migratory--;
6f505b16 571 }
73fe6aae 572
6e0534f2
GH
573 if (rt_rq->highest_prio != highest_prio) {
574 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a
GH
575
576 if (rq->online)
577 cpupri_set(&rq->rd->cpupri, rq->cpu,
578 rt_rq->highest_prio);
6e0534f2
GH
579 }
580
6f505b16 581 update_rt_migration(rq_of_rt_rq(rt_rq));
764a9d6f 582#endif /* CONFIG_SMP */
052f1dc7 583#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
584 if (rt_se_boosted(rt_se))
585 rt_rq->rt_nr_boosted--;
586
587 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
588#endif
63489e45
SR
589}
590
ad2a3f13 591static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
bb44e5d1 592{
6f505b16
PZ
593 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
594 struct rt_prio_array *array = &rt_rq->active;
595 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 596 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 597
ad2a3f13
PZ
598 /*
599 * Don't enqueue the group if its throttled, or when empty.
600 * The latter is a consequence of the former when a child group
601 * get throttled and the current group doesn't have any other
602 * active members.
603 */
604 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 605 return;
63489e45 606
45c01e82 607 if (rt_se->nr_cpus_allowed == 1)
20b6331b 608 list_add(&rt_se->run_list, queue);
45c01e82 609 else
20b6331b 610 list_add_tail(&rt_se->run_list, queue);
45c01e82 611
6f505b16 612 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 613
6f505b16
PZ
614 inc_rt_tasks(rt_se, rt_rq);
615}
616
ad2a3f13 617static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
618{
619 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
620 struct rt_prio_array *array = &rt_rq->active;
621
622 list_del_init(&rt_se->run_list);
20b6331b 623 if (list_empty(array->queue + rt_se_prio(rt_se)))
6f505b16
PZ
624 __clear_bit(rt_se_prio(rt_se), array->bitmap);
625
626 dec_rt_tasks(rt_se, rt_rq);
627}
628
629/*
630 * Because the prio of an upper entry depends on the lower
631 * entries, we must remove entries top - down.
6f505b16 632 */
ad2a3f13 633static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 634{
ad2a3f13 635 struct sched_rt_entity *back = NULL;
6f505b16 636
58d6c2d7
PZ
637 for_each_sched_rt_entity(rt_se) {
638 rt_se->back = back;
639 back = rt_se;
640 }
641
642 for (rt_se = back; rt_se; rt_se = rt_se->back) {
643 if (on_rt_rq(rt_se))
ad2a3f13
PZ
644 __dequeue_rt_entity(rt_se);
645 }
646}
647
648static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
649{
650 dequeue_rt_stack(rt_se);
651 for_each_sched_rt_entity(rt_se)
652 __enqueue_rt_entity(rt_se);
653}
654
655static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
656{
657 dequeue_rt_stack(rt_se);
658
659 for_each_sched_rt_entity(rt_se) {
660 struct rt_rq *rt_rq = group_rt_rq(rt_se);
661
662 if (rt_rq && rt_rq->rt_nr_running)
663 __enqueue_rt_entity(rt_se);
58d6c2d7 664 }
bb44e5d1
IM
665}
666
667/*
668 * Adding/removing a task to/from a priority array:
669 */
6f505b16
PZ
670static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
671{
672 struct sched_rt_entity *rt_se = &p->rt;
673
674 if (wakeup)
675 rt_se->timeout = 0;
676
ad2a3f13 677 enqueue_rt_entity(rt_se);
6f505b16
PZ
678}
679
f02231e5 680static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1 681{
6f505b16 682 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 683
f1e14ef6 684 update_curr_rt(rq);
ad2a3f13 685 dequeue_rt_entity(rt_se);
bb44e5d1
IM
686}
687
688/*
689 * Put task to the end of the run list without the overhead of dequeue
690 * followed by enqueue.
691 */
6f505b16
PZ
692static
693void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
694{
695 struct rt_prio_array *array = &rt_rq->active;
15a8641e 696 struct list_head *queue = array->queue + rt_se_prio(rt_se);
6f505b16 697
1cdad715
IM
698 if (on_rt_rq(rt_se)) {
699 list_del_init(&rt_se->run_list);
700 list_add_tail(&rt_se->run_list,
701 array->queue + rt_se_prio(rt_se));
702 }
6f505b16
PZ
703}
704
bb44e5d1
IM
705static void requeue_task_rt(struct rq *rq, struct task_struct *p)
706{
6f505b16
PZ
707 struct sched_rt_entity *rt_se = &p->rt;
708 struct rt_rq *rt_rq;
bb44e5d1 709
6f505b16
PZ
710 for_each_sched_rt_entity(rt_se) {
711 rt_rq = rt_rq_of_se(rt_se);
712 requeue_rt_entity(rt_rq, rt_se);
713 }
bb44e5d1
IM
714}
715
6f505b16 716static void yield_task_rt(struct rq *rq)
bb44e5d1 717{
4530d7ab 718 requeue_task_rt(rq, rq->curr);
bb44e5d1
IM
719}
720
e7693a36 721#ifdef CONFIG_SMP
318e0893
GH
722static int find_lowest_rq(struct task_struct *task);
723
e7693a36
GH
724static int select_task_rq_rt(struct task_struct *p, int sync)
725{
318e0893
GH
726 struct rq *rq = task_rq(p);
727
728 /*
e1f47d89
SR
729 * If the current task is an RT task, then
730 * try to see if we can wake this RT task up on another
731 * runqueue. Otherwise simply start this RT task
732 * on its current runqueue.
733 *
734 * We want to avoid overloading runqueues. Even if
735 * the RT task is of higher priority than the current RT task.
736 * RT tasks behave differently than other tasks. If
737 * one gets preempted, we try to push it off to another queue.
738 * So trying to keep a preempting RT task on the same
739 * cache hot CPU will force the running RT task to
740 * a cold CPU. So we waste all the cache for the lower
741 * RT task in hopes of saving some of a RT task
742 * that is just being woken and probably will have
743 * cold cache anyway.
318e0893 744 */
17b3279b 745 if (unlikely(rt_task(rq->curr)) &&
6f505b16 746 (p->rt.nr_cpus_allowed > 1)) {
318e0893
GH
747 int cpu = find_lowest_rq(p);
748
749 return (cpu == -1) ? task_cpu(p) : cpu;
750 }
751
752 /*
753 * Otherwise, just let it ride on the affined RQ and the
754 * post-schedule router will push the preempted task away
755 */
e7693a36
GH
756 return task_cpu(p);
757}
758#endif /* CONFIG_SMP */
759
bb44e5d1
IM
760/*
761 * Preempt the current task with a newly woken task if needed:
762 */
763static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
764{
45c01e82 765 if (p->prio < rq->curr->prio) {
bb44e5d1 766 resched_task(rq->curr);
45c01e82
GH
767 return;
768 }
769
770#ifdef CONFIG_SMP
771 /*
772 * If:
773 *
774 * - the newly woken task is of equal priority to the current task
775 * - the newly woken task is non-migratable while current is migratable
776 * - current will be preempted on the next reschedule
777 *
778 * we should check to see if current can readily move to a different
779 * cpu. If so, we will reschedule to allow the push logic to try
780 * to move current somewhere else, making room for our non-migratable
781 * task.
782 */
783 if((p->prio == rq->curr->prio)
784 && p->rt.nr_cpus_allowed == 1
20b6331b 785 && rq->curr->rt.nr_cpus_allowed != 1) {
45c01e82
GH
786 cpumask_t mask;
787
788 if (cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
789 /*
790 * There appears to be other cpus that can accept
791 * current, so lets reschedule to try and push it away
792 */
793 resched_task(rq->curr);
794 }
795#endif
bb44e5d1
IM
796}
797
6f505b16
PZ
798static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
799 struct rt_rq *rt_rq)
bb44e5d1 800{
6f505b16
PZ
801 struct rt_prio_array *array = &rt_rq->active;
802 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
803 struct list_head *queue;
804 int idx;
805
806 idx = sched_find_first_bit(array->bitmap);
6f505b16 807 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1 808
20b6331b
DA
809 queue = array->queue + idx;
810 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 811
6f505b16
PZ
812 return next;
813}
bb44e5d1 814
6f505b16
PZ
815static struct task_struct *pick_next_task_rt(struct rq *rq)
816{
817 struct sched_rt_entity *rt_se;
818 struct task_struct *p;
819 struct rt_rq *rt_rq;
bb44e5d1 820
6f505b16
PZ
821 rt_rq = &rq->rt;
822
823 if (unlikely(!rt_rq->rt_nr_running))
824 return NULL;
825
23b0fdfc 826 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
827 return NULL;
828
829 do {
830 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 831 BUG_ON(!rt_se);
6f505b16
PZ
832 rt_rq = group_rt_rq(rt_se);
833 } while (rt_rq);
834
835 p = rt_task_of(rt_se);
836 p->se.exec_start = rq->clock;
837 return p;
bb44e5d1
IM
838}
839
31ee529c 840static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 841{
f1e14ef6 842 update_curr_rt(rq);
bb44e5d1
IM
843 p->se.exec_start = 0;
844}
845
681f3e68 846#ifdef CONFIG_SMP
6f505b16 847
e8fa1362
SR
848/* Only try algorithms three times */
849#define RT_MAX_TRIES 3
850
851static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
852static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
853
f65eda4f
SR
854static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
855{
856 if (!task_running(rq, p) &&
73fe6aae 857 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
6f505b16 858 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
859 return 1;
860 return 0;
861}
862
e8fa1362 863/* Return the second highest RT task, NULL otherwise */
79064fbf 864static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 865{
6f505b16
PZ
866 struct task_struct *next = NULL;
867 struct sched_rt_entity *rt_se;
868 struct rt_prio_array *array;
869 struct rt_rq *rt_rq;
e8fa1362
SR
870 int idx;
871
6f505b16
PZ
872 for_each_leaf_rt_rq(rt_rq, rq) {
873 array = &rt_rq->active;
874 idx = sched_find_first_bit(array->bitmap);
875 next_idx:
876 if (idx >= MAX_RT_PRIO)
877 continue;
878 if (next && next->prio < idx)
879 continue;
20b6331b 880 list_for_each_entry(rt_se, array->queue + idx, run_list) {
6f505b16
PZ
881 struct task_struct *p = rt_task_of(rt_se);
882 if (pick_rt_task(rq, p, cpu)) {
883 next = p;
884 break;
885 }
886 }
887 if (!next) {
888 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
889 goto next_idx;
890 }
f65eda4f
SR
891 }
892
e8fa1362
SR
893 return next;
894}
895
896static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
897
6e1254d2
GH
898static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
899{
900 int first;
901
902 /* "this_cpu" is cheaper to preempt than a remote processor */
903 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
904 return this_cpu;
905
906 first = first_cpu(*mask);
907 if (first != NR_CPUS)
908 return first;
909
910 return -1;
911}
912
913static int find_lowest_rq(struct task_struct *task)
914{
915 struct sched_domain *sd;
916 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
917 int this_cpu = smp_processor_id();
918 int cpu = task_cpu(task);
06f90dbd 919
6e0534f2
GH
920 if (task->rt.nr_cpus_allowed == 1)
921 return -1; /* No other targets possible */
6e1254d2 922
6e0534f2
GH
923 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
924 return -1; /* No targets found */
6e1254d2
GH
925
926 /*
927 * At this point we have built a mask of cpus representing the
928 * lowest priority tasks in the system. Now we want to elect
929 * the best one based on our affinity and topology.
930 *
931 * We prioritize the last cpu that the task executed on since
932 * it is most likely cache-hot in that location.
933 */
934 if (cpu_isset(cpu, *lowest_mask))
935 return cpu;
936
937 /*
938 * Otherwise, we consult the sched_domains span maps to figure
939 * out which cpu is logically closest to our hot cache data.
940 */
941 if (this_cpu == cpu)
942 this_cpu = -1; /* Skip this_cpu opt if the same */
943
944 for_each_domain(cpu, sd) {
945 if (sd->flags & SD_WAKE_AFFINE) {
946 cpumask_t domain_mask;
947 int best_cpu;
948
949 cpus_and(domain_mask, sd->span, *lowest_mask);
950
951 best_cpu = pick_optimal_cpu(this_cpu,
952 &domain_mask);
953 if (best_cpu != -1)
954 return best_cpu;
955 }
956 }
957
958 /*
959 * And finally, if there were no matches within the domains
960 * just give the caller *something* to work with from the compatible
961 * locations.
962 */
963 return pick_optimal_cpu(this_cpu, lowest_mask);
07b4032c
GH
964}
965
966/* Will lock the rq it finds */
4df64c0b 967static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
968{
969 struct rq *lowest_rq = NULL;
07b4032c 970 int tries;
4df64c0b 971 int cpu;
e8fa1362 972
07b4032c
GH
973 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
974 cpu = find_lowest_rq(task);
975
2de0b463 976 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
977 break;
978
07b4032c
GH
979 lowest_rq = cpu_rq(cpu);
980
e8fa1362 981 /* if the prio of this runqueue changed, try again */
07b4032c 982 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
983 /*
984 * We had to unlock the run queue. In
985 * the mean time, task could have
986 * migrated already or had its affinity changed.
987 * Also make sure that it wasn't scheduled on its rq.
988 */
07b4032c 989 if (unlikely(task_rq(task) != rq ||
4df64c0b
IM
990 !cpu_isset(lowest_rq->cpu,
991 task->cpus_allowed) ||
07b4032c 992 task_running(rq, task) ||
e8fa1362 993 !task->se.on_rq)) {
4df64c0b 994
e8fa1362
SR
995 spin_unlock(&lowest_rq->lock);
996 lowest_rq = NULL;
997 break;
998 }
999 }
1000
1001 /* If this rq is still suitable use it. */
1002 if (lowest_rq->rt.highest_prio > task->prio)
1003 break;
1004
1005 /* try again */
1006 spin_unlock(&lowest_rq->lock);
1007 lowest_rq = NULL;
1008 }
1009
1010 return lowest_rq;
1011}
1012
1013/*
1014 * If the current CPU has more than one RT task, see if the non
1015 * running task can migrate over to a CPU that is running a task
1016 * of lesser priority.
1017 */
697f0a48 1018static int push_rt_task(struct rq *rq)
e8fa1362
SR
1019{
1020 struct task_struct *next_task;
1021 struct rq *lowest_rq;
1022 int ret = 0;
1023 int paranoid = RT_MAX_TRIES;
1024
a22d7fc1
GH
1025 if (!rq->rt.overloaded)
1026 return 0;
1027
697f0a48 1028 next_task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
1029 if (!next_task)
1030 return 0;
1031
1032 retry:
697f0a48 1033 if (unlikely(next_task == rq->curr)) {
f65eda4f 1034 WARN_ON(1);
e8fa1362 1035 return 0;
f65eda4f 1036 }
e8fa1362
SR
1037
1038 /*
1039 * It's possible that the next_task slipped in of
1040 * higher priority than current. If that's the case
1041 * just reschedule current.
1042 */
697f0a48
GH
1043 if (unlikely(next_task->prio < rq->curr->prio)) {
1044 resched_task(rq->curr);
e8fa1362
SR
1045 return 0;
1046 }
1047
697f0a48 1048 /* We might release rq lock */
e8fa1362
SR
1049 get_task_struct(next_task);
1050
1051 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1052 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1053 if (!lowest_rq) {
1054 struct task_struct *task;
1055 /*
697f0a48 1056 * find lock_lowest_rq releases rq->lock
e8fa1362
SR
1057 * so it is possible that next_task has changed.
1058 * If it has, then try again.
1059 */
697f0a48 1060 task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
1061 if (unlikely(task != next_task) && task && paranoid--) {
1062 put_task_struct(next_task);
1063 next_task = task;
1064 goto retry;
1065 }
1066 goto out;
1067 }
1068
697f0a48 1069 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1070 set_task_cpu(next_task, lowest_rq->cpu);
1071 activate_task(lowest_rq, next_task, 0);
1072
1073 resched_task(lowest_rq->curr);
1074
1075 spin_unlock(&lowest_rq->lock);
1076
1077 ret = 1;
1078out:
1079 put_task_struct(next_task);
1080
1081 return ret;
1082}
1083
1084/*
1085 * TODO: Currently we just use the second highest prio task on
1086 * the queue, and stop when it can't migrate (or there's
1087 * no more RT tasks). There may be a case where a lower
1088 * priority RT task has a different affinity than the
1089 * higher RT task. In this case the lower RT task could
1090 * possibly be able to migrate where as the higher priority
1091 * RT task could not. We currently ignore this issue.
1092 * Enhancements are welcome!
1093 */
1094static void push_rt_tasks(struct rq *rq)
1095{
1096 /* push_rt_task will return true if it moved an RT */
1097 while (push_rt_task(rq))
1098 ;
1099}
1100
f65eda4f
SR
1101static int pull_rt_task(struct rq *this_rq)
1102{
80bf3171
IM
1103 int this_cpu = this_rq->cpu, ret = 0, cpu;
1104 struct task_struct *p, *next;
f65eda4f 1105 struct rq *src_rq;
f65eda4f 1106
637f5085 1107 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1108 return 0;
1109
1110 next = pick_next_task_rt(this_rq);
1111
637f5085 1112 for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1113 if (this_cpu == cpu)
1114 continue;
1115
1116 src_rq = cpu_rq(cpu);
f65eda4f
SR
1117 /*
1118 * We can potentially drop this_rq's lock in
1119 * double_lock_balance, and another CPU could
1120 * steal our next task - hence we must cause
1121 * the caller to recalculate the next task
1122 * in that case:
1123 */
1124 if (double_lock_balance(this_rq, src_rq)) {
1125 struct task_struct *old_next = next;
80bf3171 1126
f65eda4f
SR
1127 next = pick_next_task_rt(this_rq);
1128 if (next != old_next)
1129 ret = 1;
1130 }
1131
1132 /*
1133 * Are there still pullable RT tasks?
1134 */
614ee1f6
MG
1135 if (src_rq->rt.rt_nr_running <= 1)
1136 goto skip;
f65eda4f 1137
f65eda4f
SR
1138 p = pick_next_highest_task_rt(src_rq, this_cpu);
1139
1140 /*
1141 * Do we have an RT task that preempts
1142 * the to-be-scheduled task?
1143 */
1144 if (p && (!next || (p->prio < next->prio))) {
1145 WARN_ON(p == src_rq->curr);
1146 WARN_ON(!p->se.on_rq);
1147
1148 /*
1149 * There's a chance that p is higher in priority
1150 * than what's currently running on its cpu.
1151 * This is just that p is wakeing up and hasn't
1152 * had a chance to schedule. We only pull
1153 * p if it is lower in priority than the
1154 * current task on the run queue or
1155 * this_rq next task is lower in prio than
1156 * the current task on that rq.
1157 */
1158 if (p->prio < src_rq->curr->prio ||
1159 (next && next->prio < src_rq->curr->prio))
614ee1f6 1160 goto skip;
f65eda4f
SR
1161
1162 ret = 1;
1163
1164 deactivate_task(src_rq, p, 0);
1165 set_task_cpu(p, this_cpu);
1166 activate_task(this_rq, p, 0);
1167 /*
1168 * We continue with the search, just in
1169 * case there's an even higher prio task
1170 * in another runqueue. (low likelyhood
1171 * but possible)
80bf3171 1172 *
f65eda4f
SR
1173 * Update next so that we won't pick a task
1174 * on another cpu with a priority lower (or equal)
1175 * than the one we just picked.
1176 */
1177 next = p;
1178
1179 }
614ee1f6 1180 skip:
f65eda4f
SR
1181 spin_unlock(&src_rq->lock);
1182 }
1183
1184 return ret;
1185}
1186
9a897c5a 1187static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1188{
1189 /* Try to pull RT tasks here if we lower this rq's prio */
7f51f298 1190 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
f65eda4f
SR
1191 pull_rt_task(rq);
1192}
1193
9a897c5a 1194static void post_schedule_rt(struct rq *rq)
e8fa1362
SR
1195{
1196 /*
1197 * If we have more than one rt_task queued, then
1198 * see if we can push the other rt_tasks off to other CPUS.
1199 * Note we may release the rq lock, and since
1200 * the lock was owned by prev, we need to release it
1201 * first via finish_lock_switch and then reaquire it here.
1202 */
a22d7fc1 1203 if (unlikely(rq->rt.overloaded)) {
e8fa1362
SR
1204 spin_lock_irq(&rq->lock);
1205 push_rt_tasks(rq);
1206 spin_unlock_irq(&rq->lock);
1207 }
1208}
1209
8ae121ac
GH
1210/*
1211 * If we are not running and we are not going to reschedule soon, we should
1212 * try to push tasks away now
1213 */
9a897c5a 1214static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
4642dafd 1215{
9a897c5a 1216 if (!task_running(rq, p) &&
8ae121ac 1217 !test_tsk_need_resched(rq->curr) &&
a22d7fc1 1218 rq->rt.overloaded)
4642dafd
SR
1219 push_rt_tasks(rq);
1220}
1221
43010659 1222static unsigned long
bb44e5d1 1223load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
1224 unsigned long max_load_move,
1225 struct sched_domain *sd, enum cpu_idle_type idle,
1226 int *all_pinned, int *this_best_prio)
bb44e5d1 1227{
c7a1e46a
SR
1228 /* don't touch RT tasks */
1229 return 0;
e1d1484f
PW
1230}
1231
1232static int
1233move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1234 struct sched_domain *sd, enum cpu_idle_type idle)
1235{
c7a1e46a
SR
1236 /* don't touch RT tasks */
1237 return 0;
bb44e5d1 1238}
deeeccd4 1239
cd8ba7cd
MT
1240static void set_cpus_allowed_rt(struct task_struct *p,
1241 const cpumask_t *new_mask)
73fe6aae
GH
1242{
1243 int weight = cpus_weight(*new_mask);
1244
1245 BUG_ON(!rt_task(p));
1246
1247 /*
1248 * Update the migration status of the RQ if we have an RT task
1249 * which is running AND changing its weight value.
1250 */
6f505b16 1251 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1252 struct rq *rq = task_rq(p);
1253
6f505b16 1254 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1255 rq->rt.rt_nr_migratory++;
6f505b16 1256 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1257 BUG_ON(!rq->rt.rt_nr_migratory);
1258 rq->rt.rt_nr_migratory--;
1259 }
1260
1261 update_rt_migration(rq);
1262 }
1263
1264 p->cpus_allowed = *new_mask;
6f505b16 1265 p->rt.nr_cpus_allowed = weight;
73fe6aae 1266}
deeeccd4 1267
bdd7c81b 1268/* Assumes rq->lock is held */
1f11eb6a 1269static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1270{
1271 if (rq->rt.overloaded)
1272 rt_set_overload(rq);
6e0534f2 1273
7def2be1
PZ
1274 __enable_runtime(rq);
1275
6e0534f2 1276 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
bdd7c81b
IM
1277}
1278
1279/* Assumes rq->lock is held */
1f11eb6a 1280static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1281{
1282 if (rq->rt.overloaded)
1283 rt_clear_overload(rq);
6e0534f2 1284
7def2be1
PZ
1285 __disable_runtime(rq);
1286
6e0534f2 1287 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1288}
cb469845
SR
1289
1290/*
1291 * When switch from the rt queue, we bring ourselves to a position
1292 * that we might want to pull RT tasks from other runqueues.
1293 */
1294static void switched_from_rt(struct rq *rq, struct task_struct *p,
1295 int running)
1296{
1297 /*
1298 * If there are other RT tasks then we will reschedule
1299 * and the scheduling of the other RT tasks will handle
1300 * the balancing. But if we are the last RT task
1301 * we may need to handle the pulling of RT tasks
1302 * now.
1303 */
1304 if (!rq->rt.rt_nr_running)
1305 pull_rt_task(rq);
1306}
1307#endif /* CONFIG_SMP */
1308
1309/*
1310 * When switching a task to RT, we may overload the runqueue
1311 * with RT tasks. In this case we try to push them off to
1312 * other runqueues.
1313 */
1314static void switched_to_rt(struct rq *rq, struct task_struct *p,
1315 int running)
1316{
1317 int check_resched = 1;
1318
1319 /*
1320 * If we are already running, then there's nothing
1321 * that needs to be done. But if we are not running
1322 * we may need to preempt the current running task.
1323 * If that current running task is also an RT task
1324 * then see if we can move to another run queue.
1325 */
1326 if (!running) {
1327#ifdef CONFIG_SMP
1328 if (rq->rt.overloaded && push_rt_task(rq) &&
1329 /* Don't resched if we changed runqueues */
1330 rq != task_rq(p))
1331 check_resched = 0;
1332#endif /* CONFIG_SMP */
1333 if (check_resched && p->prio < rq->curr->prio)
1334 resched_task(rq->curr);
1335 }
1336}
1337
1338/*
1339 * Priority of the task has changed. This may cause
1340 * us to initiate a push or pull.
1341 */
1342static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1343 int oldprio, int running)
1344{
1345 if (running) {
1346#ifdef CONFIG_SMP
1347 /*
1348 * If our priority decreases while running, we
1349 * may need to pull tasks to this runqueue.
1350 */
1351 if (oldprio < p->prio)
1352 pull_rt_task(rq);
1353 /*
1354 * If there's a higher priority task waiting to run
6fa46fa5
SR
1355 * then reschedule. Note, the above pull_rt_task
1356 * can release the rq lock and p could migrate.
1357 * Only reschedule if p is still on the same runqueue.
cb469845 1358 */
6fa46fa5 1359 if (p->prio > rq->rt.highest_prio && rq->curr == p)
cb469845
SR
1360 resched_task(p);
1361#else
1362 /* For UP simply resched on drop of prio */
1363 if (oldprio < p->prio)
1364 resched_task(p);
e8fa1362 1365#endif /* CONFIG_SMP */
cb469845
SR
1366 } else {
1367 /*
1368 * This task is not running, but if it is
1369 * greater than the current running task
1370 * then reschedule.
1371 */
1372 if (p->prio < rq->curr->prio)
1373 resched_task(rq->curr);
1374 }
1375}
1376
78f2c7db
PZ
1377static void watchdog(struct rq *rq, struct task_struct *p)
1378{
1379 unsigned long soft, hard;
1380
1381 if (!p->signal)
1382 return;
1383
1384 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1385 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1386
1387 if (soft != RLIM_INFINITY) {
1388 unsigned long next;
1389
1390 p->rt.timeout++;
1391 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1392 if (p->rt.timeout > next)
78f2c7db
PZ
1393 p->it_sched_expires = p->se.sum_exec_runtime;
1394 }
1395}
bb44e5d1 1396
8f4d37ec 1397static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1398{
67e2be02
PZ
1399 update_curr_rt(rq);
1400
78f2c7db
PZ
1401 watchdog(rq, p);
1402
bb44e5d1
IM
1403 /*
1404 * RR tasks need a special form of timeslice management.
1405 * FIFO tasks have no timeslices.
1406 */
1407 if (p->policy != SCHED_RR)
1408 return;
1409
fa717060 1410 if (--p->rt.time_slice)
bb44e5d1
IM
1411 return;
1412
fa717060 1413 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1414
98fbc798
DA
1415 /*
1416 * Requeue to the end of queue if we are not the only element
1417 * on the queue:
1418 */
fa717060 1419 if (p->rt.run_list.prev != p->rt.run_list.next) {
98fbc798
DA
1420 requeue_task_rt(rq, p);
1421 set_tsk_need_resched(p);
1422 }
bb44e5d1
IM
1423}
1424
83b699ed
SV
1425static void set_curr_task_rt(struct rq *rq)
1426{
1427 struct task_struct *p = rq->curr;
1428
1429 p->se.exec_start = rq->clock;
1430}
1431
2abdad0a 1432static const struct sched_class rt_sched_class = {
5522d5d5 1433 .next = &fair_sched_class,
bb44e5d1
IM
1434 .enqueue_task = enqueue_task_rt,
1435 .dequeue_task = dequeue_task_rt,
1436 .yield_task = yield_task_rt,
e7693a36
GH
1437#ifdef CONFIG_SMP
1438 .select_task_rq = select_task_rq_rt,
1439#endif /* CONFIG_SMP */
bb44e5d1
IM
1440
1441 .check_preempt_curr = check_preempt_curr_rt,
1442
1443 .pick_next_task = pick_next_task_rt,
1444 .put_prev_task = put_prev_task_rt,
1445
681f3e68 1446#ifdef CONFIG_SMP
bb44e5d1 1447 .load_balance = load_balance_rt,
e1d1484f 1448 .move_one_task = move_one_task_rt,
73fe6aae 1449 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1450 .rq_online = rq_online_rt,
1451 .rq_offline = rq_offline_rt,
9a897c5a
SR
1452 .pre_schedule = pre_schedule_rt,
1453 .post_schedule = post_schedule_rt,
1454 .task_wake_up = task_wake_up_rt,
cb469845 1455 .switched_from = switched_from_rt,
681f3e68 1456#endif
bb44e5d1 1457
83b699ed 1458 .set_curr_task = set_curr_task_rt,
bb44e5d1 1459 .task_tick = task_tick_rt,
cb469845
SR
1460
1461 .prio_changed = prio_changed_rt,
1462 .switched_to = switched_to_rt,
bb44e5d1 1463};
ada18de2
PZ
1464
1465#ifdef CONFIG_SCHED_DEBUG
1466extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1467
1468static void print_rt_stats(struct seq_file *m, int cpu)
1469{
1470 struct rt_rq *rt_rq;
1471
1472 rcu_read_lock();
1473 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1474 print_rt_rq(m, cpu, rt_rq);
1475 rcu_read_unlock();
1476}
1477#endif