sched: fixlet for group load balance
[linux-2.6-block.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
4fd29176 6#ifdef CONFIG_SMP
84de4274 7
637f5085 8static inline int rt_overloaded(struct rq *rq)
4fd29176 9{
637f5085 10 return atomic_read(&rq->rd->rto_count);
4fd29176 11}
84de4274 12
4fd29176
SR
13static inline void rt_set_overload(struct rq *rq)
14{
1f11eb6a
GH
15 if (!rq->online)
16 return;
17
637f5085 18 cpu_set(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
19 /*
20 * Make sure the mask is visible before we set
21 * the overload count. That is checked to determine
22 * if we should look at the mask. It would be a shame
23 * if we looked at the mask, but the mask was not
24 * updated yet.
25 */
26 wmb();
637f5085 27 atomic_inc(&rq->rd->rto_count);
4fd29176 28}
84de4274 29
4fd29176
SR
30static inline void rt_clear_overload(struct rq *rq)
31{
1f11eb6a
GH
32 if (!rq->online)
33 return;
34
4fd29176 35 /* the order here really doesn't matter */
637f5085
GH
36 atomic_dec(&rq->rd->rto_count);
37 cpu_clear(rq->cpu, rq->rd->rto_mask);
4fd29176 38}
73fe6aae
GH
39
40static void update_rt_migration(struct rq *rq)
41{
637f5085 42 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
cdc8eb98
GH
43 if (!rq->rt.overloaded) {
44 rt_set_overload(rq);
45 rq->rt.overloaded = 1;
46 }
47 } else if (rq->rt.overloaded) {
73fe6aae 48 rt_clear_overload(rq);
637f5085
GH
49 rq->rt.overloaded = 0;
50 }
73fe6aae 51}
4fd29176
SR
52#endif /* CONFIG_SMP */
53
6f505b16 54static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
fa85ae24 55{
6f505b16
PZ
56 return container_of(rt_se, struct task_struct, rt);
57}
58
59static inline int on_rt_rq(struct sched_rt_entity *rt_se)
60{
61 return !list_empty(&rt_se->run_list);
62}
63
052f1dc7 64#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 65
9f0c1e56 66static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
67{
68 if (!rt_rq->tg)
9f0c1e56 69 return RUNTIME_INF;
6f505b16 70
ac086bc2
PZ
71 return rt_rq->rt_runtime;
72}
73
74static inline u64 sched_rt_period(struct rt_rq *rt_rq)
75{
76 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
77}
78
79#define for_each_leaf_rt_rq(rt_rq, rq) \
80 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
81
82static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
83{
84 return rt_rq->rq;
85}
86
87static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
88{
89 return rt_se->rt_rq;
90}
91
92#define for_each_sched_rt_entity(rt_se) \
93 for (; rt_se; rt_se = rt_se->parent)
94
95static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
96{
97 return rt_se->my_q;
98}
99
100static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
102
9f0c1e56 103static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16
PZ
104{
105 struct sched_rt_entity *rt_se = rt_rq->rt_se;
106
107 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
1020387f
PZ
108 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
109
6f505b16 110 enqueue_rt_entity(rt_se);
1020387f
PZ
111 if (rt_rq->highest_prio < curr->prio)
112 resched_task(curr);
6f505b16
PZ
113 }
114}
115
9f0c1e56 116static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
117{
118 struct sched_rt_entity *rt_se = rt_rq->rt_se;
119
120 if (rt_se && on_rt_rq(rt_se))
121 dequeue_rt_entity(rt_se);
122}
123
23b0fdfc
PZ
124static inline int rt_rq_throttled(struct rt_rq *rt_rq)
125{
126 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
127}
128
129static int rt_se_boosted(struct sched_rt_entity *rt_se)
130{
131 struct rt_rq *rt_rq = group_rt_rq(rt_se);
132 struct task_struct *p;
133
134 if (rt_rq)
135 return !!rt_rq->rt_nr_boosted;
136
137 p = rt_task_of(rt_se);
138 return p->prio != p->normal_prio;
139}
140
d0b27fa7
PZ
141#ifdef CONFIG_SMP
142static inline cpumask_t sched_rt_period_mask(void)
143{
144 return cpu_rq(smp_processor_id())->rd->span;
145}
6f505b16 146#else
d0b27fa7
PZ
147static inline cpumask_t sched_rt_period_mask(void)
148{
149 return cpu_online_map;
150}
151#endif
6f505b16 152
d0b27fa7
PZ
153static inline
154struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 155{
d0b27fa7
PZ
156 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
157}
9f0c1e56 158
ac086bc2
PZ
159static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
160{
161 return &rt_rq->tg->rt_bandwidth;
162}
163
55e12e5e 164#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
165
166static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
167{
ac086bc2
PZ
168 return rt_rq->rt_runtime;
169}
170
171static inline u64 sched_rt_period(struct rt_rq *rt_rq)
172{
173 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
174}
175
176#define for_each_leaf_rt_rq(rt_rq, rq) \
177 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
178
179static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180{
181 return container_of(rt_rq, struct rq, rt);
182}
183
184static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185{
186 struct task_struct *p = rt_task_of(rt_se);
187 struct rq *rq = task_rq(p);
188
189 return &rq->rt;
190}
191
192#define for_each_sched_rt_entity(rt_se) \
193 for (; rt_se; rt_se = NULL)
194
195static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
196{
197 return NULL;
198}
199
9f0c1e56 200static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 201{
f3ade837
JB
202 if (rt_rq->rt_nr_running)
203 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
204}
205
9f0c1e56 206static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
207{
208}
209
23b0fdfc
PZ
210static inline int rt_rq_throttled(struct rt_rq *rt_rq)
211{
212 return rt_rq->rt_throttled;
213}
d0b27fa7
PZ
214
215static inline cpumask_t sched_rt_period_mask(void)
216{
217 return cpu_online_map;
218}
219
220static inline
221struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
222{
223 return &cpu_rq(cpu)->rt;
224}
225
ac086bc2
PZ
226static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
227{
228 return &def_rt_bandwidth;
229}
230
55e12e5e 231#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 232
ac086bc2 233#ifdef CONFIG_SMP
b79f3833 234static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
235{
236 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
237 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
238 int i, weight, more = 0;
239 u64 rt_period;
240
241 weight = cpus_weight(rd->span);
242
243 spin_lock(&rt_b->rt_runtime_lock);
244 rt_period = ktime_to_ns(rt_b->rt_period);
363ab6f1 245 for_each_cpu_mask_nr(i, rd->span) {
ac086bc2
PZ
246 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
247 s64 diff;
248
249 if (iter == rt_rq)
250 continue;
251
252 spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
253 if (iter->rt_runtime == RUNTIME_INF)
254 goto next;
255
ac086bc2
PZ
256 diff = iter->rt_runtime - iter->rt_time;
257 if (diff > 0) {
58838cf3 258 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
259 if (rt_rq->rt_runtime + diff > rt_period)
260 diff = rt_period - rt_rq->rt_runtime;
261 iter->rt_runtime -= diff;
262 rt_rq->rt_runtime += diff;
263 more = 1;
264 if (rt_rq->rt_runtime == rt_period) {
265 spin_unlock(&iter->rt_runtime_lock);
266 break;
267 }
268 }
7def2be1 269next:
ac086bc2
PZ
270 spin_unlock(&iter->rt_runtime_lock);
271 }
272 spin_unlock(&rt_b->rt_runtime_lock);
273
274 return more;
275}
7def2be1
PZ
276
277static void __disable_runtime(struct rq *rq)
278{
279 struct root_domain *rd = rq->rd;
280 struct rt_rq *rt_rq;
281
282 if (unlikely(!scheduler_running))
283 return;
284
285 for_each_leaf_rt_rq(rt_rq, rq) {
286 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
287 s64 want;
288 int i;
289
290 spin_lock(&rt_b->rt_runtime_lock);
291 spin_lock(&rt_rq->rt_runtime_lock);
292 if (rt_rq->rt_runtime == RUNTIME_INF ||
293 rt_rq->rt_runtime == rt_b->rt_runtime)
294 goto balanced;
295 spin_unlock(&rt_rq->rt_runtime_lock);
296
297 want = rt_b->rt_runtime - rt_rq->rt_runtime;
298
299 for_each_cpu_mask(i, rd->span) {
300 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
301 s64 diff;
302
f1679d08 303 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
304 continue;
305
306 spin_lock(&iter->rt_runtime_lock);
307 if (want > 0) {
308 diff = min_t(s64, iter->rt_runtime, want);
309 iter->rt_runtime -= diff;
310 want -= diff;
311 } else {
312 iter->rt_runtime -= want;
313 want -= want;
314 }
315 spin_unlock(&iter->rt_runtime_lock);
316
317 if (!want)
318 break;
319 }
320
321 spin_lock(&rt_rq->rt_runtime_lock);
322 BUG_ON(want);
323balanced:
324 rt_rq->rt_runtime = RUNTIME_INF;
325 spin_unlock(&rt_rq->rt_runtime_lock);
326 spin_unlock(&rt_b->rt_runtime_lock);
327 }
328}
329
330static void disable_runtime(struct rq *rq)
331{
332 unsigned long flags;
333
334 spin_lock_irqsave(&rq->lock, flags);
335 __disable_runtime(rq);
336 spin_unlock_irqrestore(&rq->lock, flags);
337}
338
339static void __enable_runtime(struct rq *rq)
340{
7def2be1
PZ
341 struct rt_rq *rt_rq;
342
343 if (unlikely(!scheduler_running))
344 return;
345
346 for_each_leaf_rt_rq(rt_rq, rq) {
347 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
348
349 spin_lock(&rt_b->rt_runtime_lock);
350 spin_lock(&rt_rq->rt_runtime_lock);
351 rt_rq->rt_runtime = rt_b->rt_runtime;
352 rt_rq->rt_time = 0;
baf25731 353 rt_rq->rt_throttled = 0;
7def2be1
PZ
354 spin_unlock(&rt_rq->rt_runtime_lock);
355 spin_unlock(&rt_b->rt_runtime_lock);
356 }
357}
358
359static void enable_runtime(struct rq *rq)
360{
361 unsigned long flags;
362
363 spin_lock_irqsave(&rq->lock, flags);
364 __enable_runtime(rq);
365 spin_unlock_irqrestore(&rq->lock, flags);
366}
367
eff6549b
PZ
368static int balance_runtime(struct rt_rq *rt_rq)
369{
370 int more = 0;
371
372 if (rt_rq->rt_time > rt_rq->rt_runtime) {
373 spin_unlock(&rt_rq->rt_runtime_lock);
374 more = do_balance_runtime(rt_rq);
375 spin_lock(&rt_rq->rt_runtime_lock);
376 }
377
378 return more;
379}
55e12e5e 380#else /* !CONFIG_SMP */
eff6549b
PZ
381static inline int balance_runtime(struct rt_rq *rt_rq)
382{
383 return 0;
384}
55e12e5e 385#endif /* CONFIG_SMP */
ac086bc2 386
eff6549b
PZ
387static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
388{
389 int i, idle = 1;
390 cpumask_t span;
391
0b148fa0 392 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
eff6549b
PZ
393 return 1;
394
395 span = sched_rt_period_mask();
396 for_each_cpu_mask(i, span) {
397 int enqueue = 0;
398 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
399 struct rq *rq = rq_of_rt_rq(rt_rq);
400
401 spin_lock(&rq->lock);
402 if (rt_rq->rt_time) {
403 u64 runtime;
404
405 spin_lock(&rt_rq->rt_runtime_lock);
406 if (rt_rq->rt_throttled)
407 balance_runtime(rt_rq);
408 runtime = rt_rq->rt_runtime;
409 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
410 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
411 rt_rq->rt_throttled = 0;
412 enqueue = 1;
413 }
414 if (rt_rq->rt_time || rt_rq->rt_nr_running)
415 idle = 0;
416 spin_unlock(&rt_rq->rt_runtime_lock);
6c3df255
PZ
417 } else if (rt_rq->rt_nr_running)
418 idle = 0;
eff6549b
PZ
419
420 if (enqueue)
421 sched_rt_rq_enqueue(rt_rq);
422 spin_unlock(&rq->lock);
423 }
424
425 return idle;
426}
ac086bc2 427
6f505b16
PZ
428static inline int rt_se_prio(struct sched_rt_entity *rt_se)
429{
052f1dc7 430#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
431 struct rt_rq *rt_rq = group_rt_rq(rt_se);
432
433 if (rt_rq)
434 return rt_rq->highest_prio;
435#endif
436
437 return rt_task_of(rt_se)->prio;
438}
439
9f0c1e56 440static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 441{
9f0c1e56 442 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 443
fa85ae24 444 if (rt_rq->rt_throttled)
23b0fdfc 445 return rt_rq_throttled(rt_rq);
fa85ae24 446
ac086bc2
PZ
447 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
448 return 0;
449
b79f3833
PZ
450 balance_runtime(rt_rq);
451 runtime = sched_rt_runtime(rt_rq);
452 if (runtime == RUNTIME_INF)
453 return 0;
ac086bc2 454
9f0c1e56 455 if (rt_rq->rt_time > runtime) {
6f505b16 456 rt_rq->rt_throttled = 1;
23b0fdfc 457 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 458 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
459 return 1;
460 }
fa85ae24
PZ
461 }
462
463 return 0;
464}
465
bb44e5d1
IM
466/*
467 * Update the current task's runtime statistics. Skip current tasks that
468 * are not in our scheduling class.
469 */
a9957449 470static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
471{
472 struct task_struct *curr = rq->curr;
6f505b16
PZ
473 struct sched_rt_entity *rt_se = &curr->rt;
474 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
475 u64 delta_exec;
476
477 if (!task_has_rt_policy(curr))
478 return;
479
d281918d 480 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
481 if (unlikely((s64)delta_exec < 0))
482 delta_exec = 0;
6cfb0d5d
IM
483
484 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
485
486 curr->se.sum_exec_runtime += delta_exec;
d281918d 487 curr->se.exec_start = rq->clock;
d842de87 488 cpuacct_charge(curr, delta_exec);
fa85ae24 489
0b148fa0
PZ
490 if (!rt_bandwidth_enabled())
491 return;
492
354d60c2
DG
493 for_each_sched_rt_entity(rt_se) {
494 rt_rq = rt_rq_of_se(rt_se);
495
496 spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
497 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
498 rt_rq->rt_time += delta_exec;
499 if (sched_rt_runtime_exceeded(rt_rq))
500 resched_task(curr);
501 }
354d60c2
DG
502 spin_unlock(&rt_rq->rt_runtime_lock);
503 }
bb44e5d1
IM
504}
505
6f505b16
PZ
506static inline
507void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 508{
6f505b16
PZ
509 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
510 rt_rq->rt_nr_running++;
052f1dc7 511#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6e0534f2 512 if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
577b4a58 513#ifdef CONFIG_SMP
6e0534f2 514 struct rq *rq = rq_of_rt_rq(rt_rq);
577b4a58 515#endif
1f11eb6a 516
6f505b16 517 rt_rq->highest_prio = rt_se_prio(rt_se);
1100ac91 518#ifdef CONFIG_SMP
1f11eb6a
GH
519 if (rq->online)
520 cpupri_set(&rq->rd->cpupri, rq->cpu,
521 rt_se_prio(rt_se));
1100ac91 522#endif
6e0534f2 523 }
6f505b16 524#endif
764a9d6f 525#ifdef CONFIG_SMP
6f505b16
PZ
526 if (rt_se->nr_cpus_allowed > 1) {
527 struct rq *rq = rq_of_rt_rq(rt_rq);
1100ac91 528
73fe6aae 529 rq->rt.rt_nr_migratory++;
6f505b16 530 }
73fe6aae 531
6f505b16
PZ
532 update_rt_migration(rq_of_rt_rq(rt_rq));
533#endif
052f1dc7 534#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
535 if (rt_se_boosted(rt_se))
536 rt_rq->rt_nr_boosted++;
d0b27fa7
PZ
537
538 if (rt_rq->tg)
539 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
540#else
541 start_rt_bandwidth(&def_rt_bandwidth);
23b0fdfc 542#endif
63489e45
SR
543}
544
6f505b16
PZ
545static inline
546void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 547{
6e0534f2
GH
548#ifdef CONFIG_SMP
549 int highest_prio = rt_rq->highest_prio;
550#endif
551
6f505b16
PZ
552 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
553 WARN_ON(!rt_rq->rt_nr_running);
554 rt_rq->rt_nr_running--;
052f1dc7 555#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16 556 if (rt_rq->rt_nr_running) {
764a9d6f
SR
557 struct rt_prio_array *array;
558
6f505b16
PZ
559 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
560 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
764a9d6f 561 /* recalculate */
6f505b16
PZ
562 array = &rt_rq->active;
563 rt_rq->highest_prio =
764a9d6f
SR
564 sched_find_first_bit(array->bitmap);
565 } /* otherwise leave rq->highest prio alone */
566 } else
6f505b16
PZ
567 rt_rq->highest_prio = MAX_RT_PRIO;
568#endif
569#ifdef CONFIG_SMP
570 if (rt_se->nr_cpus_allowed > 1) {
571 struct rq *rq = rq_of_rt_rq(rt_rq);
73fe6aae 572 rq->rt.rt_nr_migratory--;
6f505b16 573 }
73fe6aae 574
6e0534f2
GH
575 if (rt_rq->highest_prio != highest_prio) {
576 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a
GH
577
578 if (rq->online)
579 cpupri_set(&rq->rd->cpupri, rq->cpu,
580 rt_rq->highest_prio);
6e0534f2
GH
581 }
582
6f505b16 583 update_rt_migration(rq_of_rt_rq(rt_rq));
764a9d6f 584#endif /* CONFIG_SMP */
052f1dc7 585#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
586 if (rt_se_boosted(rt_se))
587 rt_rq->rt_nr_boosted--;
588
589 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
590#endif
63489e45
SR
591}
592
ad2a3f13 593static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
bb44e5d1 594{
6f505b16
PZ
595 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
596 struct rt_prio_array *array = &rt_rq->active;
597 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 598 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 599
ad2a3f13
PZ
600 /*
601 * Don't enqueue the group if its throttled, or when empty.
602 * The latter is a consequence of the former when a child group
603 * get throttled and the current group doesn't have any other
604 * active members.
605 */
606 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 607 return;
63489e45 608
7ebefa8c 609 list_add_tail(&rt_se->run_list, queue);
6f505b16 610 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 611
6f505b16
PZ
612 inc_rt_tasks(rt_se, rt_rq);
613}
614
ad2a3f13 615static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
616{
617 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
618 struct rt_prio_array *array = &rt_rq->active;
619
620 list_del_init(&rt_se->run_list);
621 if (list_empty(array->queue + rt_se_prio(rt_se)))
622 __clear_bit(rt_se_prio(rt_se), array->bitmap);
623
624 dec_rt_tasks(rt_se, rt_rq);
625}
626
627/*
628 * Because the prio of an upper entry depends on the lower
629 * entries, we must remove entries top - down.
6f505b16 630 */
ad2a3f13 631static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 632{
ad2a3f13 633 struct sched_rt_entity *back = NULL;
6f505b16 634
58d6c2d7
PZ
635 for_each_sched_rt_entity(rt_se) {
636 rt_se->back = back;
637 back = rt_se;
638 }
639
640 for (rt_se = back; rt_se; rt_se = rt_se->back) {
641 if (on_rt_rq(rt_se))
ad2a3f13
PZ
642 __dequeue_rt_entity(rt_se);
643 }
644}
645
646static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
647{
648 dequeue_rt_stack(rt_se);
649 for_each_sched_rt_entity(rt_se)
650 __enqueue_rt_entity(rt_se);
651}
652
653static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
654{
655 dequeue_rt_stack(rt_se);
656
657 for_each_sched_rt_entity(rt_se) {
658 struct rt_rq *rt_rq = group_rt_rq(rt_se);
659
660 if (rt_rq && rt_rq->rt_nr_running)
661 __enqueue_rt_entity(rt_se);
58d6c2d7 662 }
bb44e5d1
IM
663}
664
665/*
666 * Adding/removing a task to/from a priority array:
667 */
6f505b16
PZ
668static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
669{
670 struct sched_rt_entity *rt_se = &p->rt;
671
672 if (wakeup)
673 rt_se->timeout = 0;
674
ad2a3f13 675 enqueue_rt_entity(rt_se);
c09595f6
PZ
676
677 inc_cpu_load(rq, p->se.load.weight);
6f505b16
PZ
678}
679
f02231e5 680static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1 681{
6f505b16 682 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 683
f1e14ef6 684 update_curr_rt(rq);
ad2a3f13 685 dequeue_rt_entity(rt_se);
c09595f6
PZ
686
687 dec_cpu_load(rq, p->se.load.weight);
bb44e5d1
IM
688}
689
690/*
691 * Put task to the end of the run list without the overhead of dequeue
692 * followed by enqueue.
693 */
7ebefa8c
DA
694static void
695requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 696{
1cdad715 697 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
698 struct rt_prio_array *array = &rt_rq->active;
699 struct list_head *queue = array->queue + rt_se_prio(rt_se);
700
701 if (head)
702 list_move(&rt_se->run_list, queue);
703 else
704 list_move_tail(&rt_se->run_list, queue);
1cdad715 705 }
6f505b16
PZ
706}
707
7ebefa8c 708static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 709{
6f505b16
PZ
710 struct sched_rt_entity *rt_se = &p->rt;
711 struct rt_rq *rt_rq;
bb44e5d1 712
6f505b16
PZ
713 for_each_sched_rt_entity(rt_se) {
714 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 715 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 716 }
bb44e5d1
IM
717}
718
6f505b16 719static void yield_task_rt(struct rq *rq)
bb44e5d1 720{
7ebefa8c 721 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
722}
723
e7693a36 724#ifdef CONFIG_SMP
318e0893
GH
725static int find_lowest_rq(struct task_struct *task);
726
e7693a36
GH
727static int select_task_rq_rt(struct task_struct *p, int sync)
728{
318e0893
GH
729 struct rq *rq = task_rq(p);
730
731 /*
e1f47d89
SR
732 * If the current task is an RT task, then
733 * try to see if we can wake this RT task up on another
734 * runqueue. Otherwise simply start this RT task
735 * on its current runqueue.
736 *
737 * We want to avoid overloading runqueues. Even if
738 * the RT task is of higher priority than the current RT task.
739 * RT tasks behave differently than other tasks. If
740 * one gets preempted, we try to push it off to another queue.
741 * So trying to keep a preempting RT task on the same
742 * cache hot CPU will force the running RT task to
743 * a cold CPU. So we waste all the cache for the lower
744 * RT task in hopes of saving some of a RT task
745 * that is just being woken and probably will have
746 * cold cache anyway.
318e0893 747 */
17b3279b 748 if (unlikely(rt_task(rq->curr)) &&
6f505b16 749 (p->rt.nr_cpus_allowed > 1)) {
318e0893
GH
750 int cpu = find_lowest_rq(p);
751
752 return (cpu == -1) ? task_cpu(p) : cpu;
753 }
754
755 /*
756 * Otherwise, just let it ride on the affined RQ and the
757 * post-schedule router will push the preempted task away
758 */
e7693a36
GH
759 return task_cpu(p);
760}
7ebefa8c
DA
761
762static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
763{
764 cpumask_t mask;
765
766 if (rq->curr->rt.nr_cpus_allowed == 1)
767 return;
768
769 if (p->rt.nr_cpus_allowed != 1
770 && cpupri_find(&rq->rd->cpupri, p, &mask))
771 return;
772
773 if (!cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
774 return;
775
776 /*
777 * There appears to be other cpus that can accept
778 * current and none to run 'p', so lets reschedule
779 * to try and push current away:
780 */
781 requeue_task_rt(rq, p, 1);
782 resched_task(rq->curr);
783}
784
e7693a36
GH
785#endif /* CONFIG_SMP */
786
bb44e5d1
IM
787/*
788 * Preempt the current task with a newly woken task if needed:
789 */
15afe09b 790static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
bb44e5d1 791{
45c01e82 792 if (p->prio < rq->curr->prio) {
bb44e5d1 793 resched_task(rq->curr);
45c01e82
GH
794 return;
795 }
796
797#ifdef CONFIG_SMP
798 /*
799 * If:
800 *
801 * - the newly woken task is of equal priority to the current task
802 * - the newly woken task is non-migratable while current is migratable
803 * - current will be preempted on the next reschedule
804 *
805 * we should check to see if current can readily move to a different
806 * cpu. If so, we will reschedule to allow the push logic to try
807 * to move current somewhere else, making room for our non-migratable
808 * task.
809 */
7ebefa8c
DA
810 if (p->prio == rq->curr->prio && !need_resched())
811 check_preempt_equal_prio(rq, p);
45c01e82 812#endif
bb44e5d1
IM
813}
814
6f505b16
PZ
815static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
816 struct rt_rq *rt_rq)
bb44e5d1 817{
6f505b16
PZ
818 struct rt_prio_array *array = &rt_rq->active;
819 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
820 struct list_head *queue;
821 int idx;
822
823 idx = sched_find_first_bit(array->bitmap);
6f505b16 824 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
825
826 queue = array->queue + idx;
6f505b16 827 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 828
6f505b16
PZ
829 return next;
830}
bb44e5d1 831
6f505b16
PZ
832static struct task_struct *pick_next_task_rt(struct rq *rq)
833{
834 struct sched_rt_entity *rt_se;
835 struct task_struct *p;
836 struct rt_rq *rt_rq;
bb44e5d1 837
6f505b16
PZ
838 rt_rq = &rq->rt;
839
840 if (unlikely(!rt_rq->rt_nr_running))
841 return NULL;
842
23b0fdfc 843 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
844 return NULL;
845
846 do {
847 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 848 BUG_ON(!rt_se);
6f505b16
PZ
849 rt_rq = group_rt_rq(rt_se);
850 } while (rt_rq);
851
852 p = rt_task_of(rt_se);
853 p->se.exec_start = rq->clock;
854 return p;
bb44e5d1
IM
855}
856
31ee529c 857static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 858{
f1e14ef6 859 update_curr_rt(rq);
bb44e5d1
IM
860 p->se.exec_start = 0;
861}
862
681f3e68 863#ifdef CONFIG_SMP
6f505b16 864
e8fa1362
SR
865/* Only try algorithms three times */
866#define RT_MAX_TRIES 3
867
868static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
1b12bbc7
PZ
869static void double_unlock_balance(struct rq *this_rq, struct rq *busiest);
870
e8fa1362
SR
871static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
872
f65eda4f
SR
873static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
874{
875 if (!task_running(rq, p) &&
73fe6aae 876 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
6f505b16 877 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
878 return 1;
879 return 0;
880}
881
e8fa1362 882/* Return the second highest RT task, NULL otherwise */
79064fbf 883static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 884{
6f505b16
PZ
885 struct task_struct *next = NULL;
886 struct sched_rt_entity *rt_se;
887 struct rt_prio_array *array;
888 struct rt_rq *rt_rq;
e8fa1362
SR
889 int idx;
890
6f505b16
PZ
891 for_each_leaf_rt_rq(rt_rq, rq) {
892 array = &rt_rq->active;
893 idx = sched_find_first_bit(array->bitmap);
894 next_idx:
895 if (idx >= MAX_RT_PRIO)
896 continue;
897 if (next && next->prio < idx)
898 continue;
899 list_for_each_entry(rt_se, array->queue + idx, run_list) {
900 struct task_struct *p = rt_task_of(rt_se);
901 if (pick_rt_task(rq, p, cpu)) {
902 next = p;
903 break;
904 }
905 }
906 if (!next) {
907 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
908 goto next_idx;
909 }
f65eda4f
SR
910 }
911
e8fa1362
SR
912 return next;
913}
914
915static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
916
6e1254d2
GH
917static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
918{
919 int first;
920
921 /* "this_cpu" is cheaper to preempt than a remote processor */
922 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
923 return this_cpu;
924
925 first = first_cpu(*mask);
926 if (first != NR_CPUS)
927 return first;
928
929 return -1;
930}
931
932static int find_lowest_rq(struct task_struct *task)
933{
934 struct sched_domain *sd;
935 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
936 int this_cpu = smp_processor_id();
937 int cpu = task_cpu(task);
06f90dbd 938
6e0534f2
GH
939 if (task->rt.nr_cpus_allowed == 1)
940 return -1; /* No other targets possible */
6e1254d2 941
6e0534f2
GH
942 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
943 return -1; /* No targets found */
6e1254d2 944
e761b772
MK
945 /*
946 * Only consider CPUs that are usable for migration.
947 * I guess we might want to change cpupri_find() to ignore those
948 * in the first place.
949 */
950 cpus_and(*lowest_mask, *lowest_mask, cpu_active_map);
951
6e1254d2
GH
952 /*
953 * At this point we have built a mask of cpus representing the
954 * lowest priority tasks in the system. Now we want to elect
955 * the best one based on our affinity and topology.
956 *
957 * We prioritize the last cpu that the task executed on since
958 * it is most likely cache-hot in that location.
959 */
960 if (cpu_isset(cpu, *lowest_mask))
961 return cpu;
962
963 /*
964 * Otherwise, we consult the sched_domains span maps to figure
965 * out which cpu is logically closest to our hot cache data.
966 */
967 if (this_cpu == cpu)
968 this_cpu = -1; /* Skip this_cpu opt if the same */
969
970 for_each_domain(cpu, sd) {
971 if (sd->flags & SD_WAKE_AFFINE) {
972 cpumask_t domain_mask;
973 int best_cpu;
974
975 cpus_and(domain_mask, sd->span, *lowest_mask);
976
977 best_cpu = pick_optimal_cpu(this_cpu,
978 &domain_mask);
979 if (best_cpu != -1)
980 return best_cpu;
981 }
982 }
983
984 /*
985 * And finally, if there were no matches within the domains
986 * just give the caller *something* to work with from the compatible
987 * locations.
988 */
989 return pick_optimal_cpu(this_cpu, lowest_mask);
07b4032c
GH
990}
991
992/* Will lock the rq it finds */
4df64c0b 993static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
994{
995 struct rq *lowest_rq = NULL;
07b4032c 996 int tries;
4df64c0b 997 int cpu;
e8fa1362 998
07b4032c
GH
999 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1000 cpu = find_lowest_rq(task);
1001
2de0b463 1002 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1003 break;
1004
07b4032c
GH
1005 lowest_rq = cpu_rq(cpu);
1006
e8fa1362 1007 /* if the prio of this runqueue changed, try again */
07b4032c 1008 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1009 /*
1010 * We had to unlock the run queue. In
1011 * the mean time, task could have
1012 * migrated already or had its affinity changed.
1013 * Also make sure that it wasn't scheduled on its rq.
1014 */
07b4032c 1015 if (unlikely(task_rq(task) != rq ||
4df64c0b
IM
1016 !cpu_isset(lowest_rq->cpu,
1017 task->cpus_allowed) ||
07b4032c 1018 task_running(rq, task) ||
e8fa1362 1019 !task->se.on_rq)) {
4df64c0b 1020
e8fa1362
SR
1021 spin_unlock(&lowest_rq->lock);
1022 lowest_rq = NULL;
1023 break;
1024 }
1025 }
1026
1027 /* If this rq is still suitable use it. */
1028 if (lowest_rq->rt.highest_prio > task->prio)
1029 break;
1030
1031 /* try again */
1b12bbc7 1032 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1033 lowest_rq = NULL;
1034 }
1035
1036 return lowest_rq;
1037}
1038
1039/*
1040 * If the current CPU has more than one RT task, see if the non
1041 * running task can migrate over to a CPU that is running a task
1042 * of lesser priority.
1043 */
697f0a48 1044static int push_rt_task(struct rq *rq)
e8fa1362
SR
1045{
1046 struct task_struct *next_task;
1047 struct rq *lowest_rq;
1048 int ret = 0;
1049 int paranoid = RT_MAX_TRIES;
1050
a22d7fc1
GH
1051 if (!rq->rt.overloaded)
1052 return 0;
1053
697f0a48 1054 next_task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
1055 if (!next_task)
1056 return 0;
1057
1058 retry:
697f0a48 1059 if (unlikely(next_task == rq->curr)) {
f65eda4f 1060 WARN_ON(1);
e8fa1362 1061 return 0;
f65eda4f 1062 }
e8fa1362
SR
1063
1064 /*
1065 * It's possible that the next_task slipped in of
1066 * higher priority than current. If that's the case
1067 * just reschedule current.
1068 */
697f0a48
GH
1069 if (unlikely(next_task->prio < rq->curr->prio)) {
1070 resched_task(rq->curr);
e8fa1362
SR
1071 return 0;
1072 }
1073
697f0a48 1074 /* We might release rq lock */
e8fa1362
SR
1075 get_task_struct(next_task);
1076
1077 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1078 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1079 if (!lowest_rq) {
1080 struct task_struct *task;
1081 /*
697f0a48 1082 * find lock_lowest_rq releases rq->lock
e8fa1362
SR
1083 * so it is possible that next_task has changed.
1084 * If it has, then try again.
1085 */
697f0a48 1086 task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
1087 if (unlikely(task != next_task) && task && paranoid--) {
1088 put_task_struct(next_task);
1089 next_task = task;
1090 goto retry;
1091 }
1092 goto out;
1093 }
1094
697f0a48 1095 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1096 set_task_cpu(next_task, lowest_rq->cpu);
1097 activate_task(lowest_rq, next_task, 0);
1098
1099 resched_task(lowest_rq->curr);
1100
1b12bbc7 1101 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1102
1103 ret = 1;
1104out:
1105 put_task_struct(next_task);
1106
1107 return ret;
1108}
1109
1110/*
1111 * TODO: Currently we just use the second highest prio task on
1112 * the queue, and stop when it can't migrate (or there's
1113 * no more RT tasks). There may be a case where a lower
1114 * priority RT task has a different affinity than the
1115 * higher RT task. In this case the lower RT task could
1116 * possibly be able to migrate where as the higher priority
1117 * RT task could not. We currently ignore this issue.
1118 * Enhancements are welcome!
1119 */
1120static void push_rt_tasks(struct rq *rq)
1121{
1122 /* push_rt_task will return true if it moved an RT */
1123 while (push_rt_task(rq))
1124 ;
1125}
1126
f65eda4f
SR
1127static int pull_rt_task(struct rq *this_rq)
1128{
80bf3171
IM
1129 int this_cpu = this_rq->cpu, ret = 0, cpu;
1130 struct task_struct *p, *next;
f65eda4f 1131 struct rq *src_rq;
f65eda4f 1132
637f5085 1133 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1134 return 0;
1135
1136 next = pick_next_task_rt(this_rq);
1137
363ab6f1 1138 for_each_cpu_mask_nr(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1139 if (this_cpu == cpu)
1140 continue;
1141
1142 src_rq = cpu_rq(cpu);
f65eda4f
SR
1143 /*
1144 * We can potentially drop this_rq's lock in
1145 * double_lock_balance, and another CPU could
1146 * steal our next task - hence we must cause
1147 * the caller to recalculate the next task
1148 * in that case:
1149 */
1150 if (double_lock_balance(this_rq, src_rq)) {
1151 struct task_struct *old_next = next;
80bf3171 1152
f65eda4f
SR
1153 next = pick_next_task_rt(this_rq);
1154 if (next != old_next)
1155 ret = 1;
1156 }
1157
1158 /*
1159 * Are there still pullable RT tasks?
1160 */
614ee1f6
MG
1161 if (src_rq->rt.rt_nr_running <= 1)
1162 goto skip;
f65eda4f 1163
f65eda4f
SR
1164 p = pick_next_highest_task_rt(src_rq, this_cpu);
1165
1166 /*
1167 * Do we have an RT task that preempts
1168 * the to-be-scheduled task?
1169 */
1170 if (p && (!next || (p->prio < next->prio))) {
1171 WARN_ON(p == src_rq->curr);
1172 WARN_ON(!p->se.on_rq);
1173
1174 /*
1175 * There's a chance that p is higher in priority
1176 * than what's currently running on its cpu.
1177 * This is just that p is wakeing up and hasn't
1178 * had a chance to schedule. We only pull
1179 * p if it is lower in priority than the
1180 * current task on the run queue or
1181 * this_rq next task is lower in prio than
1182 * the current task on that rq.
1183 */
1184 if (p->prio < src_rq->curr->prio ||
1185 (next && next->prio < src_rq->curr->prio))
614ee1f6 1186 goto skip;
f65eda4f
SR
1187
1188 ret = 1;
1189
1190 deactivate_task(src_rq, p, 0);
1191 set_task_cpu(p, this_cpu);
1192 activate_task(this_rq, p, 0);
1193 /*
1194 * We continue with the search, just in
1195 * case there's an even higher prio task
1196 * in another runqueue. (low likelyhood
1197 * but possible)
80bf3171 1198 *
f65eda4f
SR
1199 * Update next so that we won't pick a task
1200 * on another cpu with a priority lower (or equal)
1201 * than the one we just picked.
1202 */
1203 next = p;
1204
1205 }
614ee1f6 1206 skip:
1b12bbc7 1207 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1208 }
1209
1210 return ret;
1211}
1212
9a897c5a 1213static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1214{
1215 /* Try to pull RT tasks here if we lower this rq's prio */
7f51f298 1216 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
f65eda4f
SR
1217 pull_rt_task(rq);
1218}
1219
9a897c5a 1220static void post_schedule_rt(struct rq *rq)
e8fa1362
SR
1221{
1222 /*
1223 * If we have more than one rt_task queued, then
1224 * see if we can push the other rt_tasks off to other CPUS.
1225 * Note we may release the rq lock, and since
1226 * the lock was owned by prev, we need to release it
1227 * first via finish_lock_switch and then reaquire it here.
1228 */
a22d7fc1 1229 if (unlikely(rq->rt.overloaded)) {
e8fa1362
SR
1230 spin_lock_irq(&rq->lock);
1231 push_rt_tasks(rq);
1232 spin_unlock_irq(&rq->lock);
1233 }
1234}
1235
8ae121ac
GH
1236/*
1237 * If we are not running and we are not going to reschedule soon, we should
1238 * try to push tasks away now
1239 */
9a897c5a 1240static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
4642dafd 1241{
9a897c5a 1242 if (!task_running(rq, p) &&
8ae121ac 1243 !test_tsk_need_resched(rq->curr) &&
a22d7fc1 1244 rq->rt.overloaded)
4642dafd
SR
1245 push_rt_tasks(rq);
1246}
1247
43010659 1248static unsigned long
bb44e5d1 1249load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
1250 unsigned long max_load_move,
1251 struct sched_domain *sd, enum cpu_idle_type idle,
1252 int *all_pinned, int *this_best_prio)
bb44e5d1 1253{
c7a1e46a
SR
1254 /* don't touch RT tasks */
1255 return 0;
e1d1484f
PW
1256}
1257
1258static int
1259move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1260 struct sched_domain *sd, enum cpu_idle_type idle)
1261{
c7a1e46a
SR
1262 /* don't touch RT tasks */
1263 return 0;
bb44e5d1 1264}
deeeccd4 1265
cd8ba7cd
MT
1266static void set_cpus_allowed_rt(struct task_struct *p,
1267 const cpumask_t *new_mask)
73fe6aae
GH
1268{
1269 int weight = cpus_weight(*new_mask);
1270
1271 BUG_ON(!rt_task(p));
1272
1273 /*
1274 * Update the migration status of the RQ if we have an RT task
1275 * which is running AND changing its weight value.
1276 */
6f505b16 1277 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1278 struct rq *rq = task_rq(p);
1279
6f505b16 1280 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1281 rq->rt.rt_nr_migratory++;
6f505b16 1282 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1283 BUG_ON(!rq->rt.rt_nr_migratory);
1284 rq->rt.rt_nr_migratory--;
1285 }
1286
1287 update_rt_migration(rq);
1288 }
1289
1290 p->cpus_allowed = *new_mask;
6f505b16 1291 p->rt.nr_cpus_allowed = weight;
73fe6aae 1292}
deeeccd4 1293
bdd7c81b 1294/* Assumes rq->lock is held */
1f11eb6a 1295static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1296{
1297 if (rq->rt.overloaded)
1298 rt_set_overload(rq);
6e0534f2 1299
7def2be1
PZ
1300 __enable_runtime(rq);
1301
6e0534f2 1302 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
bdd7c81b
IM
1303}
1304
1305/* Assumes rq->lock is held */
1f11eb6a 1306static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1307{
1308 if (rq->rt.overloaded)
1309 rt_clear_overload(rq);
6e0534f2 1310
7def2be1
PZ
1311 __disable_runtime(rq);
1312
6e0534f2 1313 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1314}
cb469845
SR
1315
1316/*
1317 * When switch from the rt queue, we bring ourselves to a position
1318 * that we might want to pull RT tasks from other runqueues.
1319 */
1320static void switched_from_rt(struct rq *rq, struct task_struct *p,
1321 int running)
1322{
1323 /*
1324 * If there are other RT tasks then we will reschedule
1325 * and the scheduling of the other RT tasks will handle
1326 * the balancing. But if we are the last RT task
1327 * we may need to handle the pulling of RT tasks
1328 * now.
1329 */
1330 if (!rq->rt.rt_nr_running)
1331 pull_rt_task(rq);
1332}
1333#endif /* CONFIG_SMP */
1334
1335/*
1336 * When switching a task to RT, we may overload the runqueue
1337 * with RT tasks. In this case we try to push them off to
1338 * other runqueues.
1339 */
1340static void switched_to_rt(struct rq *rq, struct task_struct *p,
1341 int running)
1342{
1343 int check_resched = 1;
1344
1345 /*
1346 * If we are already running, then there's nothing
1347 * that needs to be done. But if we are not running
1348 * we may need to preempt the current running task.
1349 * If that current running task is also an RT task
1350 * then see if we can move to another run queue.
1351 */
1352 if (!running) {
1353#ifdef CONFIG_SMP
1354 if (rq->rt.overloaded && push_rt_task(rq) &&
1355 /* Don't resched if we changed runqueues */
1356 rq != task_rq(p))
1357 check_resched = 0;
1358#endif /* CONFIG_SMP */
1359 if (check_resched && p->prio < rq->curr->prio)
1360 resched_task(rq->curr);
1361 }
1362}
1363
1364/*
1365 * Priority of the task has changed. This may cause
1366 * us to initiate a push or pull.
1367 */
1368static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1369 int oldprio, int running)
1370{
1371 if (running) {
1372#ifdef CONFIG_SMP
1373 /*
1374 * If our priority decreases while running, we
1375 * may need to pull tasks to this runqueue.
1376 */
1377 if (oldprio < p->prio)
1378 pull_rt_task(rq);
1379 /*
1380 * If there's a higher priority task waiting to run
6fa46fa5
SR
1381 * then reschedule. Note, the above pull_rt_task
1382 * can release the rq lock and p could migrate.
1383 * Only reschedule if p is still on the same runqueue.
cb469845 1384 */
6fa46fa5 1385 if (p->prio > rq->rt.highest_prio && rq->curr == p)
cb469845
SR
1386 resched_task(p);
1387#else
1388 /* For UP simply resched on drop of prio */
1389 if (oldprio < p->prio)
1390 resched_task(p);
e8fa1362 1391#endif /* CONFIG_SMP */
cb469845
SR
1392 } else {
1393 /*
1394 * This task is not running, but if it is
1395 * greater than the current running task
1396 * then reschedule.
1397 */
1398 if (p->prio < rq->curr->prio)
1399 resched_task(rq->curr);
1400 }
1401}
1402
78f2c7db
PZ
1403static void watchdog(struct rq *rq, struct task_struct *p)
1404{
1405 unsigned long soft, hard;
1406
1407 if (!p->signal)
1408 return;
1409
1410 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1411 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1412
1413 if (soft != RLIM_INFINITY) {
1414 unsigned long next;
1415
1416 p->rt.timeout++;
1417 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1418 if (p->rt.timeout > next)
78f2c7db
PZ
1419 p->it_sched_expires = p->se.sum_exec_runtime;
1420 }
1421}
bb44e5d1 1422
8f4d37ec 1423static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1424{
67e2be02
PZ
1425 update_curr_rt(rq);
1426
78f2c7db
PZ
1427 watchdog(rq, p);
1428
bb44e5d1
IM
1429 /*
1430 * RR tasks need a special form of timeslice management.
1431 * FIFO tasks have no timeslices.
1432 */
1433 if (p->policy != SCHED_RR)
1434 return;
1435
fa717060 1436 if (--p->rt.time_slice)
bb44e5d1
IM
1437 return;
1438
fa717060 1439 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1440
98fbc798
DA
1441 /*
1442 * Requeue to the end of queue if we are not the only element
1443 * on the queue:
1444 */
fa717060 1445 if (p->rt.run_list.prev != p->rt.run_list.next) {
7ebefa8c 1446 requeue_task_rt(rq, p, 0);
98fbc798
DA
1447 set_tsk_need_resched(p);
1448 }
bb44e5d1
IM
1449}
1450
83b699ed
SV
1451static void set_curr_task_rt(struct rq *rq)
1452{
1453 struct task_struct *p = rq->curr;
1454
1455 p->se.exec_start = rq->clock;
1456}
1457
2abdad0a 1458static const struct sched_class rt_sched_class = {
5522d5d5 1459 .next = &fair_sched_class,
bb44e5d1
IM
1460 .enqueue_task = enqueue_task_rt,
1461 .dequeue_task = dequeue_task_rt,
1462 .yield_task = yield_task_rt,
e7693a36
GH
1463#ifdef CONFIG_SMP
1464 .select_task_rq = select_task_rq_rt,
1465#endif /* CONFIG_SMP */
bb44e5d1
IM
1466
1467 .check_preempt_curr = check_preempt_curr_rt,
1468
1469 .pick_next_task = pick_next_task_rt,
1470 .put_prev_task = put_prev_task_rt,
1471
681f3e68 1472#ifdef CONFIG_SMP
bb44e5d1 1473 .load_balance = load_balance_rt,
e1d1484f 1474 .move_one_task = move_one_task_rt,
73fe6aae 1475 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1476 .rq_online = rq_online_rt,
1477 .rq_offline = rq_offline_rt,
9a897c5a
SR
1478 .pre_schedule = pre_schedule_rt,
1479 .post_schedule = post_schedule_rt,
1480 .task_wake_up = task_wake_up_rt,
cb469845 1481 .switched_from = switched_from_rt,
681f3e68 1482#endif
bb44e5d1 1483
83b699ed 1484 .set_curr_task = set_curr_task_rt,
bb44e5d1 1485 .task_tick = task_tick_rt,
cb469845
SR
1486
1487 .prio_changed = prio_changed_rt,
1488 .switched_to = switched_to_rt,
bb44e5d1 1489};
ada18de2
PZ
1490
1491#ifdef CONFIG_SCHED_DEBUG
1492extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1493
1494static void print_rt_stats(struct seq_file *m, int cpu)
1495{
1496 struct rt_rq *rt_rq;
1497
1498 rcu_read_lock();
1499 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1500 print_rt_rq(m, cpu, rt_rq);
1501 rcu_read_unlock();
1502}
55e12e5e 1503#endif /* CONFIG_SCHED_DEBUG */