sched: rt-group: fix hierarchy
[linux-2.6-block.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
4fd29176 6#ifdef CONFIG_SMP
84de4274 7
637f5085 8static inline int rt_overloaded(struct rq *rq)
4fd29176 9{
637f5085 10 return atomic_read(&rq->rd->rto_count);
4fd29176 11}
84de4274 12
4fd29176
SR
13static inline void rt_set_overload(struct rq *rq)
14{
637f5085 15 cpu_set(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
16 /*
17 * Make sure the mask is visible before we set
18 * the overload count. That is checked to determine
19 * if we should look at the mask. It would be a shame
20 * if we looked at the mask, but the mask was not
21 * updated yet.
22 */
23 wmb();
637f5085 24 atomic_inc(&rq->rd->rto_count);
4fd29176 25}
84de4274 26
4fd29176
SR
27static inline void rt_clear_overload(struct rq *rq)
28{
29 /* the order here really doesn't matter */
637f5085
GH
30 atomic_dec(&rq->rd->rto_count);
31 cpu_clear(rq->cpu, rq->rd->rto_mask);
4fd29176 32}
73fe6aae
GH
33
34static void update_rt_migration(struct rq *rq)
35{
637f5085 36 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
cdc8eb98
GH
37 if (!rq->rt.overloaded) {
38 rt_set_overload(rq);
39 rq->rt.overloaded = 1;
40 }
41 } else if (rq->rt.overloaded) {
73fe6aae 42 rt_clear_overload(rq);
637f5085
GH
43 rq->rt.overloaded = 0;
44 }
73fe6aae 45}
4fd29176
SR
46#endif /* CONFIG_SMP */
47
6f505b16 48static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
fa85ae24 49{
6f505b16
PZ
50 return container_of(rt_se, struct task_struct, rt);
51}
52
53static inline int on_rt_rq(struct sched_rt_entity *rt_se)
54{
55 return !list_empty(&rt_se->run_list);
56}
57
052f1dc7 58#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 59
9f0c1e56 60static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
61{
62 if (!rt_rq->tg)
9f0c1e56 63 return RUNTIME_INF;
6f505b16 64
ac086bc2
PZ
65 return rt_rq->rt_runtime;
66}
67
68static inline u64 sched_rt_period(struct rt_rq *rt_rq)
69{
70 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
71}
72
73#define for_each_leaf_rt_rq(rt_rq, rq) \
74 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
75
76static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
77{
78 return rt_rq->rq;
79}
80
81static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
82{
83 return rt_se->rt_rq;
84}
85
86#define for_each_sched_rt_entity(rt_se) \
87 for (; rt_se; rt_se = rt_se->parent)
88
89static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
90{
91 return rt_se->my_q;
92}
93
94static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
95static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
96
9f0c1e56 97static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16
PZ
98{
99 struct sched_rt_entity *rt_se = rt_rq->rt_se;
100
101 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
1020387f
PZ
102 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
103
6f505b16 104 enqueue_rt_entity(rt_se);
1020387f
PZ
105 if (rt_rq->highest_prio < curr->prio)
106 resched_task(curr);
6f505b16
PZ
107 }
108}
109
9f0c1e56 110static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
111{
112 struct sched_rt_entity *rt_se = rt_rq->rt_se;
113
114 if (rt_se && on_rt_rq(rt_se))
115 dequeue_rt_entity(rt_se);
116}
117
23b0fdfc
PZ
118static inline int rt_rq_throttled(struct rt_rq *rt_rq)
119{
120 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
121}
122
123static int rt_se_boosted(struct sched_rt_entity *rt_se)
124{
125 struct rt_rq *rt_rq = group_rt_rq(rt_se);
126 struct task_struct *p;
127
128 if (rt_rq)
129 return !!rt_rq->rt_nr_boosted;
130
131 p = rt_task_of(rt_se);
132 return p->prio != p->normal_prio;
133}
134
d0b27fa7
PZ
135#ifdef CONFIG_SMP
136static inline cpumask_t sched_rt_period_mask(void)
137{
138 return cpu_rq(smp_processor_id())->rd->span;
139}
6f505b16 140#else
d0b27fa7
PZ
141static inline cpumask_t sched_rt_period_mask(void)
142{
143 return cpu_online_map;
144}
145#endif
6f505b16 146
d0b27fa7
PZ
147static inline
148struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 149{
d0b27fa7
PZ
150 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
151}
9f0c1e56 152
ac086bc2
PZ
153static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
154{
155 return &rt_rq->tg->rt_bandwidth;
156}
157
d0b27fa7
PZ
158#else
159
160static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
161{
ac086bc2
PZ
162 return rt_rq->rt_runtime;
163}
164
165static inline u64 sched_rt_period(struct rt_rq *rt_rq)
166{
167 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
168}
169
170#define for_each_leaf_rt_rq(rt_rq, rq) \
171 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
172
173static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
174{
175 return container_of(rt_rq, struct rq, rt);
176}
177
178static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
179{
180 struct task_struct *p = rt_task_of(rt_se);
181 struct rq *rq = task_rq(p);
182
183 return &rq->rt;
184}
185
186#define for_each_sched_rt_entity(rt_se) \
187 for (; rt_se; rt_se = NULL)
188
189static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
190{
191 return NULL;
192}
193
9f0c1e56 194static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16
PZ
195{
196}
197
9f0c1e56 198static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
199{
200}
201
23b0fdfc
PZ
202static inline int rt_rq_throttled(struct rt_rq *rt_rq)
203{
204 return rt_rq->rt_throttled;
205}
d0b27fa7
PZ
206
207static inline cpumask_t sched_rt_period_mask(void)
208{
209 return cpu_online_map;
210}
211
212static inline
213struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
214{
215 return &cpu_rq(cpu)->rt;
216}
217
ac086bc2
PZ
218static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
219{
220 return &def_rt_bandwidth;
221}
222
6f505b16
PZ
223#endif
224
d0b27fa7
PZ
225static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
226{
227 int i, idle = 1;
228 cpumask_t span;
229
230 if (rt_b->rt_runtime == RUNTIME_INF)
231 return 1;
232
233 span = sched_rt_period_mask();
234 for_each_cpu_mask(i, span) {
235 int enqueue = 0;
236 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
237 struct rq *rq = rq_of_rt_rq(rt_rq);
238
239 spin_lock(&rq->lock);
240 if (rt_rq->rt_time) {
ac086bc2 241 u64 runtime;
d0b27fa7 242
ac086bc2
PZ
243 spin_lock(&rt_rq->rt_runtime_lock);
244 runtime = rt_rq->rt_runtime;
d0b27fa7
PZ
245 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
246 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
247 rt_rq->rt_throttled = 0;
248 enqueue = 1;
249 }
250 if (rt_rq->rt_time || rt_rq->rt_nr_running)
251 idle = 0;
ac086bc2 252 spin_unlock(&rt_rq->rt_runtime_lock);
d0b27fa7
PZ
253 }
254
255 if (enqueue)
256 sched_rt_rq_enqueue(rt_rq);
257 spin_unlock(&rq->lock);
258 }
259
260 return idle;
261}
262
ac086bc2
PZ
263#ifdef CONFIG_SMP
264static int balance_runtime(struct rt_rq *rt_rq)
265{
266 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
267 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
268 int i, weight, more = 0;
269 u64 rt_period;
270
271 weight = cpus_weight(rd->span);
272
273 spin_lock(&rt_b->rt_runtime_lock);
274 rt_period = ktime_to_ns(rt_b->rt_period);
275 for_each_cpu_mask(i, rd->span) {
276 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
277 s64 diff;
278
279 if (iter == rt_rq)
280 continue;
281
282 spin_lock(&iter->rt_runtime_lock);
283 diff = iter->rt_runtime - iter->rt_time;
284 if (diff > 0) {
285 do_div(diff, weight);
286 if (rt_rq->rt_runtime + diff > rt_period)
287 diff = rt_period - rt_rq->rt_runtime;
288 iter->rt_runtime -= diff;
289 rt_rq->rt_runtime += diff;
290 more = 1;
291 if (rt_rq->rt_runtime == rt_period) {
292 spin_unlock(&iter->rt_runtime_lock);
293 break;
294 }
295 }
296 spin_unlock(&iter->rt_runtime_lock);
297 }
298 spin_unlock(&rt_b->rt_runtime_lock);
299
300 return more;
301}
302#endif
303
6f505b16
PZ
304static inline int rt_se_prio(struct sched_rt_entity *rt_se)
305{
052f1dc7 306#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
307 struct rt_rq *rt_rq = group_rt_rq(rt_se);
308
309 if (rt_rq)
310 return rt_rq->highest_prio;
311#endif
312
313 return rt_task_of(rt_se)->prio;
314}
315
9f0c1e56 316static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 317{
9f0c1e56 318 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 319
9f0c1e56 320 if (runtime == RUNTIME_INF)
fa85ae24
PZ
321 return 0;
322
323 if (rt_rq->rt_throttled)
23b0fdfc 324 return rt_rq_throttled(rt_rq);
fa85ae24 325
ac086bc2
PZ
326 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
327 return 0;
328
329#ifdef CONFIG_SMP
330 if (rt_rq->rt_time > runtime) {
331 int more;
332
333 spin_unlock(&rt_rq->rt_runtime_lock);
334 more = balance_runtime(rt_rq);
335 spin_lock(&rt_rq->rt_runtime_lock);
336
337 if (more)
338 runtime = sched_rt_runtime(rt_rq);
339 }
340#endif
341
9f0c1e56 342 if (rt_rq->rt_time > runtime) {
6f505b16 343 rt_rq->rt_throttled = 1;
23b0fdfc 344 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 345 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
346 return 1;
347 }
fa85ae24
PZ
348 }
349
350 return 0;
351}
352
bb44e5d1
IM
353/*
354 * Update the current task's runtime statistics. Skip current tasks that
355 * are not in our scheduling class.
356 */
a9957449 357static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
358{
359 struct task_struct *curr = rq->curr;
6f505b16
PZ
360 struct sched_rt_entity *rt_se = &curr->rt;
361 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
362 u64 delta_exec;
363
364 if (!task_has_rt_policy(curr))
365 return;
366
d281918d 367 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
368 if (unlikely((s64)delta_exec < 0))
369 delta_exec = 0;
6cfb0d5d
IM
370
371 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
372
373 curr->se.sum_exec_runtime += delta_exec;
d281918d 374 curr->se.exec_start = rq->clock;
d842de87 375 cpuacct_charge(curr, delta_exec);
fa85ae24 376
354d60c2
DG
377 for_each_sched_rt_entity(rt_se) {
378 rt_rq = rt_rq_of_se(rt_se);
379
380 spin_lock(&rt_rq->rt_runtime_lock);
381 rt_rq->rt_time += delta_exec;
382 if (sched_rt_runtime_exceeded(rt_rq))
383 resched_task(curr);
384 spin_unlock(&rt_rq->rt_runtime_lock);
385 }
bb44e5d1
IM
386}
387
6f505b16
PZ
388static inline
389void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 390{
6f505b16
PZ
391 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
392 rt_rq->rt_nr_running++;
052f1dc7 393#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
394 if (rt_se_prio(rt_se) < rt_rq->highest_prio)
395 rt_rq->highest_prio = rt_se_prio(rt_se);
396#endif
764a9d6f 397#ifdef CONFIG_SMP
6f505b16
PZ
398 if (rt_se->nr_cpus_allowed > 1) {
399 struct rq *rq = rq_of_rt_rq(rt_rq);
73fe6aae 400 rq->rt.rt_nr_migratory++;
6f505b16 401 }
73fe6aae 402
6f505b16
PZ
403 update_rt_migration(rq_of_rt_rq(rt_rq));
404#endif
052f1dc7 405#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
406 if (rt_se_boosted(rt_se))
407 rt_rq->rt_nr_boosted++;
d0b27fa7
PZ
408
409 if (rt_rq->tg)
410 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
411#else
412 start_rt_bandwidth(&def_rt_bandwidth);
23b0fdfc 413#endif
63489e45
SR
414}
415
6f505b16
PZ
416static inline
417void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 418{
6f505b16
PZ
419 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
420 WARN_ON(!rt_rq->rt_nr_running);
421 rt_rq->rt_nr_running--;
052f1dc7 422#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16 423 if (rt_rq->rt_nr_running) {
764a9d6f
SR
424 struct rt_prio_array *array;
425
6f505b16
PZ
426 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
427 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
764a9d6f 428 /* recalculate */
6f505b16
PZ
429 array = &rt_rq->active;
430 rt_rq->highest_prio =
764a9d6f
SR
431 sched_find_first_bit(array->bitmap);
432 } /* otherwise leave rq->highest prio alone */
433 } else
6f505b16
PZ
434 rt_rq->highest_prio = MAX_RT_PRIO;
435#endif
436#ifdef CONFIG_SMP
437 if (rt_se->nr_cpus_allowed > 1) {
438 struct rq *rq = rq_of_rt_rq(rt_rq);
73fe6aae 439 rq->rt.rt_nr_migratory--;
6f505b16 440 }
73fe6aae 441
6f505b16 442 update_rt_migration(rq_of_rt_rq(rt_rq));
764a9d6f 443#endif /* CONFIG_SMP */
052f1dc7 444#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
445 if (rt_se_boosted(rt_se))
446 rt_rq->rt_nr_boosted--;
447
448 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
449#endif
63489e45
SR
450}
451
6f505b16 452static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
bb44e5d1 453{
6f505b16
PZ
454 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
455 struct rt_prio_array *array = &rt_rq->active;
456 struct rt_rq *group_rq = group_rt_rq(rt_se);
bb44e5d1 457
23b0fdfc 458 if (group_rq && rt_rq_throttled(group_rq))
6f505b16 459 return;
63489e45 460
6f505b16
PZ
461 list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
462 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 463
6f505b16
PZ
464 inc_rt_tasks(rt_se, rt_rq);
465}
466
467static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
468{
469 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
470 struct rt_prio_array *array = &rt_rq->active;
471
472 list_del_init(&rt_se->run_list);
473 if (list_empty(array->queue + rt_se_prio(rt_se)))
474 __clear_bit(rt_se_prio(rt_se), array->bitmap);
475
476 dec_rt_tasks(rt_se, rt_rq);
477}
478
479/*
480 * Because the prio of an upper entry depends on the lower
481 * entries, we must remove entries top - down.
6f505b16
PZ
482 */
483static void dequeue_rt_stack(struct task_struct *p)
484{
58d6c2d7 485 struct sched_rt_entity *rt_se, *back = NULL;
6f505b16 486
58d6c2d7
PZ
487 rt_se = &p->rt;
488 for_each_sched_rt_entity(rt_se) {
489 rt_se->back = back;
490 back = rt_se;
491 }
492
493 for (rt_se = back; rt_se; rt_se = rt_se->back) {
494 if (on_rt_rq(rt_se))
495 dequeue_rt_entity(rt_se);
496 }
bb44e5d1
IM
497}
498
499/*
500 * Adding/removing a task to/from a priority array:
501 */
6f505b16
PZ
502static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
503{
504 struct sched_rt_entity *rt_se = &p->rt;
505
506 if (wakeup)
507 rt_se->timeout = 0;
508
509 dequeue_rt_stack(p);
510
511 /*
512 * enqueue everybody, bottom - up.
513 */
514 for_each_sched_rt_entity(rt_se)
515 enqueue_rt_entity(rt_se);
6f505b16
PZ
516}
517
f02231e5 518static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1 519{
6f505b16
PZ
520 struct sched_rt_entity *rt_se = &p->rt;
521 struct rt_rq *rt_rq;
bb44e5d1 522
f1e14ef6 523 update_curr_rt(rq);
bb44e5d1 524
6f505b16
PZ
525 dequeue_rt_stack(p);
526
527 /*
528 * re-enqueue all non-empty rt_rq entities.
529 */
530 for_each_sched_rt_entity(rt_se) {
531 rt_rq = group_rt_rq(rt_se);
532 if (rt_rq && rt_rq->rt_nr_running)
533 enqueue_rt_entity(rt_se);
534 }
bb44e5d1
IM
535}
536
537/*
538 * Put task to the end of the run list without the overhead of dequeue
539 * followed by enqueue.
540 */
6f505b16
PZ
541static
542void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
543{
544 struct rt_prio_array *array = &rt_rq->active;
545
546 list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
547}
548
bb44e5d1
IM
549static void requeue_task_rt(struct rq *rq, struct task_struct *p)
550{
6f505b16
PZ
551 struct sched_rt_entity *rt_se = &p->rt;
552 struct rt_rq *rt_rq;
bb44e5d1 553
6f505b16
PZ
554 for_each_sched_rt_entity(rt_se) {
555 rt_rq = rt_rq_of_se(rt_se);
556 requeue_rt_entity(rt_rq, rt_se);
557 }
bb44e5d1
IM
558}
559
6f505b16 560static void yield_task_rt(struct rq *rq)
bb44e5d1 561{
4530d7ab 562 requeue_task_rt(rq, rq->curr);
bb44e5d1
IM
563}
564
e7693a36 565#ifdef CONFIG_SMP
318e0893
GH
566static int find_lowest_rq(struct task_struct *task);
567
e7693a36
GH
568static int select_task_rq_rt(struct task_struct *p, int sync)
569{
318e0893
GH
570 struct rq *rq = task_rq(p);
571
572 /*
e1f47d89
SR
573 * If the current task is an RT task, then
574 * try to see if we can wake this RT task up on another
575 * runqueue. Otherwise simply start this RT task
576 * on its current runqueue.
577 *
578 * We want to avoid overloading runqueues. Even if
579 * the RT task is of higher priority than the current RT task.
580 * RT tasks behave differently than other tasks. If
581 * one gets preempted, we try to push it off to another queue.
582 * So trying to keep a preempting RT task on the same
583 * cache hot CPU will force the running RT task to
584 * a cold CPU. So we waste all the cache for the lower
585 * RT task in hopes of saving some of a RT task
586 * that is just being woken and probably will have
587 * cold cache anyway.
318e0893 588 */
17b3279b 589 if (unlikely(rt_task(rq->curr)) &&
6f505b16 590 (p->rt.nr_cpus_allowed > 1)) {
318e0893
GH
591 int cpu = find_lowest_rq(p);
592
593 return (cpu == -1) ? task_cpu(p) : cpu;
594 }
595
596 /*
597 * Otherwise, just let it ride on the affined RQ and the
598 * post-schedule router will push the preempted task away
599 */
e7693a36
GH
600 return task_cpu(p);
601}
602#endif /* CONFIG_SMP */
603
bb44e5d1
IM
604/*
605 * Preempt the current task with a newly woken task if needed:
606 */
607static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
608{
609 if (p->prio < rq->curr->prio)
610 resched_task(rq->curr);
611}
612
6f505b16
PZ
613static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
614 struct rt_rq *rt_rq)
bb44e5d1 615{
6f505b16
PZ
616 struct rt_prio_array *array = &rt_rq->active;
617 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
618 struct list_head *queue;
619 int idx;
620
621 idx = sched_find_first_bit(array->bitmap);
6f505b16 622 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
623
624 queue = array->queue + idx;
6f505b16 625 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 626
6f505b16
PZ
627 return next;
628}
bb44e5d1 629
6f505b16
PZ
630static struct task_struct *pick_next_task_rt(struct rq *rq)
631{
632 struct sched_rt_entity *rt_se;
633 struct task_struct *p;
634 struct rt_rq *rt_rq;
bb44e5d1 635
6f505b16
PZ
636 rt_rq = &rq->rt;
637
638 if (unlikely(!rt_rq->rt_nr_running))
639 return NULL;
640
23b0fdfc 641 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
642 return NULL;
643
644 do {
645 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 646 BUG_ON(!rt_se);
6f505b16
PZ
647 rt_rq = group_rt_rq(rt_se);
648 } while (rt_rq);
649
650 p = rt_task_of(rt_se);
651 p->se.exec_start = rq->clock;
652 return p;
bb44e5d1
IM
653}
654
31ee529c 655static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 656{
f1e14ef6 657 update_curr_rt(rq);
bb44e5d1
IM
658 p->se.exec_start = 0;
659}
660
681f3e68 661#ifdef CONFIG_SMP
6f505b16 662
e8fa1362
SR
663/* Only try algorithms three times */
664#define RT_MAX_TRIES 3
665
666static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
667static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
668
f65eda4f
SR
669static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
670{
671 if (!task_running(rq, p) &&
73fe6aae 672 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
6f505b16 673 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
674 return 1;
675 return 0;
676}
677
e8fa1362 678/* Return the second highest RT task, NULL otherwise */
79064fbf 679static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 680{
6f505b16
PZ
681 struct task_struct *next = NULL;
682 struct sched_rt_entity *rt_se;
683 struct rt_prio_array *array;
684 struct rt_rq *rt_rq;
e8fa1362
SR
685 int idx;
686
6f505b16
PZ
687 for_each_leaf_rt_rq(rt_rq, rq) {
688 array = &rt_rq->active;
689 idx = sched_find_first_bit(array->bitmap);
690 next_idx:
691 if (idx >= MAX_RT_PRIO)
692 continue;
693 if (next && next->prio < idx)
694 continue;
695 list_for_each_entry(rt_se, array->queue + idx, run_list) {
696 struct task_struct *p = rt_task_of(rt_se);
697 if (pick_rt_task(rq, p, cpu)) {
698 next = p;
699 break;
700 }
701 }
702 if (!next) {
703 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
704 goto next_idx;
705 }
f65eda4f
SR
706 }
707
e8fa1362
SR
708 return next;
709}
710
711static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
712
6e1254d2 713static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
e8fa1362 714{
6e1254d2 715 int lowest_prio = -1;
610bf056 716 int lowest_cpu = -1;
06f90dbd 717 int count = 0;
610bf056 718 int cpu;
e8fa1362 719
637f5085 720 cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
e8fa1362 721
07b4032c
GH
722 /*
723 * Scan each rq for the lowest prio.
724 */
610bf056 725 for_each_cpu_mask(cpu, *lowest_mask) {
07b4032c 726 struct rq *rq = cpu_rq(cpu);
e8fa1362 727
07b4032c
GH
728 /* We look for lowest RT prio or non-rt CPU */
729 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
610bf056
SR
730 /*
731 * if we already found a low RT queue
732 * and now we found this non-rt queue
733 * clear the mask and set our bit.
734 * Otherwise just return the queue as is
735 * and the count==1 will cause the algorithm
736 * to use the first bit found.
737 */
738 if (lowest_cpu != -1) {
6e1254d2 739 cpus_clear(*lowest_mask);
610bf056
SR
740 cpu_set(rq->cpu, *lowest_mask);
741 }
6e1254d2 742 return 1;
07b4032c
GH
743 }
744
745 /* no locking for now */
6e1254d2
GH
746 if ((rq->rt.highest_prio > task->prio)
747 && (rq->rt.highest_prio >= lowest_prio)) {
748 if (rq->rt.highest_prio > lowest_prio) {
749 /* new low - clear old data */
750 lowest_prio = rq->rt.highest_prio;
610bf056
SR
751 lowest_cpu = cpu;
752 count = 0;
6e1254d2 753 }
06f90dbd 754 count++;
610bf056
SR
755 } else
756 cpu_clear(cpu, *lowest_mask);
757 }
758
759 /*
760 * Clear out all the set bits that represent
761 * runqueues that were of higher prio than
762 * the lowest_prio.
763 */
764 if (lowest_cpu > 0) {
765 /*
766 * Perhaps we could add another cpumask op to
767 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
768 * Then that could be optimized to use memset and such.
769 */
770 for_each_cpu_mask(cpu, *lowest_mask) {
771 if (cpu >= lowest_cpu)
772 break;
773 cpu_clear(cpu, *lowest_mask);
e8fa1362 774 }
07b4032c
GH
775 }
776
06f90dbd 777 return count;
6e1254d2
GH
778}
779
780static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
781{
782 int first;
783
784 /* "this_cpu" is cheaper to preempt than a remote processor */
785 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
786 return this_cpu;
787
788 first = first_cpu(*mask);
789 if (first != NR_CPUS)
790 return first;
791
792 return -1;
793}
794
795static int find_lowest_rq(struct task_struct *task)
796{
797 struct sched_domain *sd;
798 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
799 int this_cpu = smp_processor_id();
800 int cpu = task_cpu(task);
06f90dbd
GH
801 int count = find_lowest_cpus(task, lowest_mask);
802
803 if (!count)
804 return -1; /* No targets found */
6e1254d2 805
06f90dbd
GH
806 /*
807 * There is no sense in performing an optimal search if only one
808 * target is found.
809 */
810 if (count == 1)
811 return first_cpu(*lowest_mask);
6e1254d2
GH
812
813 /*
814 * At this point we have built a mask of cpus representing the
815 * lowest priority tasks in the system. Now we want to elect
816 * the best one based on our affinity and topology.
817 *
818 * We prioritize the last cpu that the task executed on since
819 * it is most likely cache-hot in that location.
820 */
821 if (cpu_isset(cpu, *lowest_mask))
822 return cpu;
823
824 /*
825 * Otherwise, we consult the sched_domains span maps to figure
826 * out which cpu is logically closest to our hot cache data.
827 */
828 if (this_cpu == cpu)
829 this_cpu = -1; /* Skip this_cpu opt if the same */
830
831 for_each_domain(cpu, sd) {
832 if (sd->flags & SD_WAKE_AFFINE) {
833 cpumask_t domain_mask;
834 int best_cpu;
835
836 cpus_and(domain_mask, sd->span, *lowest_mask);
837
838 best_cpu = pick_optimal_cpu(this_cpu,
839 &domain_mask);
840 if (best_cpu != -1)
841 return best_cpu;
842 }
843 }
844
845 /*
846 * And finally, if there were no matches within the domains
847 * just give the caller *something* to work with from the compatible
848 * locations.
849 */
850 return pick_optimal_cpu(this_cpu, lowest_mask);
07b4032c
GH
851}
852
853/* Will lock the rq it finds */
4df64c0b 854static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
855{
856 struct rq *lowest_rq = NULL;
07b4032c 857 int tries;
4df64c0b 858 int cpu;
e8fa1362 859
07b4032c
GH
860 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
861 cpu = find_lowest_rq(task);
862
2de0b463 863 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
864 break;
865
07b4032c
GH
866 lowest_rq = cpu_rq(cpu);
867
e8fa1362 868 /* if the prio of this runqueue changed, try again */
07b4032c 869 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
870 /*
871 * We had to unlock the run queue. In
872 * the mean time, task could have
873 * migrated already or had its affinity changed.
874 * Also make sure that it wasn't scheduled on its rq.
875 */
07b4032c 876 if (unlikely(task_rq(task) != rq ||
4df64c0b
IM
877 !cpu_isset(lowest_rq->cpu,
878 task->cpus_allowed) ||
07b4032c 879 task_running(rq, task) ||
e8fa1362 880 !task->se.on_rq)) {
4df64c0b 881
e8fa1362
SR
882 spin_unlock(&lowest_rq->lock);
883 lowest_rq = NULL;
884 break;
885 }
886 }
887
888 /* If this rq is still suitable use it. */
889 if (lowest_rq->rt.highest_prio > task->prio)
890 break;
891
892 /* try again */
893 spin_unlock(&lowest_rq->lock);
894 lowest_rq = NULL;
895 }
896
897 return lowest_rq;
898}
899
900/*
901 * If the current CPU has more than one RT task, see if the non
902 * running task can migrate over to a CPU that is running a task
903 * of lesser priority.
904 */
697f0a48 905static int push_rt_task(struct rq *rq)
e8fa1362
SR
906{
907 struct task_struct *next_task;
908 struct rq *lowest_rq;
909 int ret = 0;
910 int paranoid = RT_MAX_TRIES;
911
a22d7fc1
GH
912 if (!rq->rt.overloaded)
913 return 0;
914
697f0a48 915 next_task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
916 if (!next_task)
917 return 0;
918
919 retry:
697f0a48 920 if (unlikely(next_task == rq->curr)) {
f65eda4f 921 WARN_ON(1);
e8fa1362 922 return 0;
f65eda4f 923 }
e8fa1362
SR
924
925 /*
926 * It's possible that the next_task slipped in of
927 * higher priority than current. If that's the case
928 * just reschedule current.
929 */
697f0a48
GH
930 if (unlikely(next_task->prio < rq->curr->prio)) {
931 resched_task(rq->curr);
e8fa1362
SR
932 return 0;
933 }
934
697f0a48 935 /* We might release rq lock */
e8fa1362
SR
936 get_task_struct(next_task);
937
938 /* find_lock_lowest_rq locks the rq if found */
697f0a48 939 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
940 if (!lowest_rq) {
941 struct task_struct *task;
942 /*
697f0a48 943 * find lock_lowest_rq releases rq->lock
e8fa1362
SR
944 * so it is possible that next_task has changed.
945 * If it has, then try again.
946 */
697f0a48 947 task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
948 if (unlikely(task != next_task) && task && paranoid--) {
949 put_task_struct(next_task);
950 next_task = task;
951 goto retry;
952 }
953 goto out;
954 }
955
697f0a48 956 deactivate_task(rq, next_task, 0);
e8fa1362
SR
957 set_task_cpu(next_task, lowest_rq->cpu);
958 activate_task(lowest_rq, next_task, 0);
959
960 resched_task(lowest_rq->curr);
961
962 spin_unlock(&lowest_rq->lock);
963
964 ret = 1;
965out:
966 put_task_struct(next_task);
967
968 return ret;
969}
970
971/*
972 * TODO: Currently we just use the second highest prio task on
973 * the queue, and stop when it can't migrate (or there's
974 * no more RT tasks). There may be a case where a lower
975 * priority RT task has a different affinity than the
976 * higher RT task. In this case the lower RT task could
977 * possibly be able to migrate where as the higher priority
978 * RT task could not. We currently ignore this issue.
979 * Enhancements are welcome!
980 */
981static void push_rt_tasks(struct rq *rq)
982{
983 /* push_rt_task will return true if it moved an RT */
984 while (push_rt_task(rq))
985 ;
986}
987
f65eda4f
SR
988static int pull_rt_task(struct rq *this_rq)
989{
80bf3171
IM
990 int this_cpu = this_rq->cpu, ret = 0, cpu;
991 struct task_struct *p, *next;
f65eda4f 992 struct rq *src_rq;
f65eda4f 993
637f5085 994 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
995 return 0;
996
997 next = pick_next_task_rt(this_rq);
998
637f5085 999 for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1000 if (this_cpu == cpu)
1001 continue;
1002
1003 src_rq = cpu_rq(cpu);
f65eda4f
SR
1004 /*
1005 * We can potentially drop this_rq's lock in
1006 * double_lock_balance, and another CPU could
1007 * steal our next task - hence we must cause
1008 * the caller to recalculate the next task
1009 * in that case:
1010 */
1011 if (double_lock_balance(this_rq, src_rq)) {
1012 struct task_struct *old_next = next;
80bf3171 1013
f65eda4f
SR
1014 next = pick_next_task_rt(this_rq);
1015 if (next != old_next)
1016 ret = 1;
1017 }
1018
1019 /*
1020 * Are there still pullable RT tasks?
1021 */
614ee1f6
MG
1022 if (src_rq->rt.rt_nr_running <= 1)
1023 goto skip;
f65eda4f 1024
f65eda4f
SR
1025 p = pick_next_highest_task_rt(src_rq, this_cpu);
1026
1027 /*
1028 * Do we have an RT task that preempts
1029 * the to-be-scheduled task?
1030 */
1031 if (p && (!next || (p->prio < next->prio))) {
1032 WARN_ON(p == src_rq->curr);
1033 WARN_ON(!p->se.on_rq);
1034
1035 /*
1036 * There's a chance that p is higher in priority
1037 * than what's currently running on its cpu.
1038 * This is just that p is wakeing up and hasn't
1039 * had a chance to schedule. We only pull
1040 * p if it is lower in priority than the
1041 * current task on the run queue or
1042 * this_rq next task is lower in prio than
1043 * the current task on that rq.
1044 */
1045 if (p->prio < src_rq->curr->prio ||
1046 (next && next->prio < src_rq->curr->prio))
614ee1f6 1047 goto skip;
f65eda4f
SR
1048
1049 ret = 1;
1050
1051 deactivate_task(src_rq, p, 0);
1052 set_task_cpu(p, this_cpu);
1053 activate_task(this_rq, p, 0);
1054 /*
1055 * We continue with the search, just in
1056 * case there's an even higher prio task
1057 * in another runqueue. (low likelyhood
1058 * but possible)
80bf3171 1059 *
f65eda4f
SR
1060 * Update next so that we won't pick a task
1061 * on another cpu with a priority lower (or equal)
1062 * than the one we just picked.
1063 */
1064 next = p;
1065
1066 }
614ee1f6 1067 skip:
f65eda4f
SR
1068 spin_unlock(&src_rq->lock);
1069 }
1070
1071 return ret;
1072}
1073
9a897c5a 1074static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1075{
1076 /* Try to pull RT tasks here if we lower this rq's prio */
7f51f298 1077 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
f65eda4f
SR
1078 pull_rt_task(rq);
1079}
1080
9a897c5a 1081static void post_schedule_rt(struct rq *rq)
e8fa1362
SR
1082{
1083 /*
1084 * If we have more than one rt_task queued, then
1085 * see if we can push the other rt_tasks off to other CPUS.
1086 * Note we may release the rq lock, and since
1087 * the lock was owned by prev, we need to release it
1088 * first via finish_lock_switch and then reaquire it here.
1089 */
a22d7fc1 1090 if (unlikely(rq->rt.overloaded)) {
e8fa1362
SR
1091 spin_lock_irq(&rq->lock);
1092 push_rt_tasks(rq);
1093 spin_unlock_irq(&rq->lock);
1094 }
1095}
1096
8ae121ac
GH
1097/*
1098 * If we are not running and we are not going to reschedule soon, we should
1099 * try to push tasks away now
1100 */
9a897c5a 1101static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
4642dafd 1102{
9a897c5a 1103 if (!task_running(rq, p) &&
8ae121ac 1104 !test_tsk_need_resched(rq->curr) &&
a22d7fc1 1105 rq->rt.overloaded)
4642dafd
SR
1106 push_rt_tasks(rq);
1107}
1108
43010659 1109static unsigned long
bb44e5d1 1110load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
1111 unsigned long max_load_move,
1112 struct sched_domain *sd, enum cpu_idle_type idle,
1113 int *all_pinned, int *this_best_prio)
bb44e5d1 1114{
c7a1e46a
SR
1115 /* don't touch RT tasks */
1116 return 0;
e1d1484f
PW
1117}
1118
1119static int
1120move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1121 struct sched_domain *sd, enum cpu_idle_type idle)
1122{
c7a1e46a
SR
1123 /* don't touch RT tasks */
1124 return 0;
bb44e5d1 1125}
deeeccd4 1126
cd8ba7cd
MT
1127static void set_cpus_allowed_rt(struct task_struct *p,
1128 const cpumask_t *new_mask)
73fe6aae
GH
1129{
1130 int weight = cpus_weight(*new_mask);
1131
1132 BUG_ON(!rt_task(p));
1133
1134 /*
1135 * Update the migration status of the RQ if we have an RT task
1136 * which is running AND changing its weight value.
1137 */
6f505b16 1138 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1139 struct rq *rq = task_rq(p);
1140
6f505b16 1141 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1142 rq->rt.rt_nr_migratory++;
6f505b16 1143 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1144 BUG_ON(!rq->rt.rt_nr_migratory);
1145 rq->rt.rt_nr_migratory--;
1146 }
1147
1148 update_rt_migration(rq);
1149 }
1150
1151 p->cpus_allowed = *new_mask;
6f505b16 1152 p->rt.nr_cpus_allowed = weight;
73fe6aae 1153}
deeeccd4 1154
bdd7c81b
IM
1155/* Assumes rq->lock is held */
1156static void join_domain_rt(struct rq *rq)
1157{
1158 if (rq->rt.overloaded)
1159 rt_set_overload(rq);
1160}
1161
1162/* Assumes rq->lock is held */
1163static void leave_domain_rt(struct rq *rq)
1164{
1165 if (rq->rt.overloaded)
1166 rt_clear_overload(rq);
1167}
cb469845
SR
1168
1169/*
1170 * When switch from the rt queue, we bring ourselves to a position
1171 * that we might want to pull RT tasks from other runqueues.
1172 */
1173static void switched_from_rt(struct rq *rq, struct task_struct *p,
1174 int running)
1175{
1176 /*
1177 * If there are other RT tasks then we will reschedule
1178 * and the scheduling of the other RT tasks will handle
1179 * the balancing. But if we are the last RT task
1180 * we may need to handle the pulling of RT tasks
1181 * now.
1182 */
1183 if (!rq->rt.rt_nr_running)
1184 pull_rt_task(rq);
1185}
1186#endif /* CONFIG_SMP */
1187
1188/*
1189 * When switching a task to RT, we may overload the runqueue
1190 * with RT tasks. In this case we try to push them off to
1191 * other runqueues.
1192 */
1193static void switched_to_rt(struct rq *rq, struct task_struct *p,
1194 int running)
1195{
1196 int check_resched = 1;
1197
1198 /*
1199 * If we are already running, then there's nothing
1200 * that needs to be done. But if we are not running
1201 * we may need to preempt the current running task.
1202 * If that current running task is also an RT task
1203 * then see if we can move to another run queue.
1204 */
1205 if (!running) {
1206#ifdef CONFIG_SMP
1207 if (rq->rt.overloaded && push_rt_task(rq) &&
1208 /* Don't resched if we changed runqueues */
1209 rq != task_rq(p))
1210 check_resched = 0;
1211#endif /* CONFIG_SMP */
1212 if (check_resched && p->prio < rq->curr->prio)
1213 resched_task(rq->curr);
1214 }
1215}
1216
1217/*
1218 * Priority of the task has changed. This may cause
1219 * us to initiate a push or pull.
1220 */
1221static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1222 int oldprio, int running)
1223{
1224 if (running) {
1225#ifdef CONFIG_SMP
1226 /*
1227 * If our priority decreases while running, we
1228 * may need to pull tasks to this runqueue.
1229 */
1230 if (oldprio < p->prio)
1231 pull_rt_task(rq);
1232 /*
1233 * If there's a higher priority task waiting to run
6fa46fa5
SR
1234 * then reschedule. Note, the above pull_rt_task
1235 * can release the rq lock and p could migrate.
1236 * Only reschedule if p is still on the same runqueue.
cb469845 1237 */
6fa46fa5 1238 if (p->prio > rq->rt.highest_prio && rq->curr == p)
cb469845
SR
1239 resched_task(p);
1240#else
1241 /* For UP simply resched on drop of prio */
1242 if (oldprio < p->prio)
1243 resched_task(p);
e8fa1362 1244#endif /* CONFIG_SMP */
cb469845
SR
1245 } else {
1246 /*
1247 * This task is not running, but if it is
1248 * greater than the current running task
1249 * then reschedule.
1250 */
1251 if (p->prio < rq->curr->prio)
1252 resched_task(rq->curr);
1253 }
1254}
1255
78f2c7db
PZ
1256static void watchdog(struct rq *rq, struct task_struct *p)
1257{
1258 unsigned long soft, hard;
1259
1260 if (!p->signal)
1261 return;
1262
1263 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1264 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1265
1266 if (soft != RLIM_INFINITY) {
1267 unsigned long next;
1268
1269 p->rt.timeout++;
1270 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1271 if (p->rt.timeout > next)
78f2c7db
PZ
1272 p->it_sched_expires = p->se.sum_exec_runtime;
1273 }
1274}
bb44e5d1 1275
8f4d37ec 1276static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1277{
67e2be02
PZ
1278 update_curr_rt(rq);
1279
78f2c7db
PZ
1280 watchdog(rq, p);
1281
bb44e5d1
IM
1282 /*
1283 * RR tasks need a special form of timeslice management.
1284 * FIFO tasks have no timeslices.
1285 */
1286 if (p->policy != SCHED_RR)
1287 return;
1288
fa717060 1289 if (--p->rt.time_slice)
bb44e5d1
IM
1290 return;
1291
fa717060 1292 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1293
98fbc798
DA
1294 /*
1295 * Requeue to the end of queue if we are not the only element
1296 * on the queue:
1297 */
fa717060 1298 if (p->rt.run_list.prev != p->rt.run_list.next) {
98fbc798
DA
1299 requeue_task_rt(rq, p);
1300 set_tsk_need_resched(p);
1301 }
bb44e5d1
IM
1302}
1303
83b699ed
SV
1304static void set_curr_task_rt(struct rq *rq)
1305{
1306 struct task_struct *p = rq->curr;
1307
1308 p->se.exec_start = rq->clock;
1309}
1310
2abdad0a 1311static const struct sched_class rt_sched_class = {
5522d5d5 1312 .next = &fair_sched_class,
bb44e5d1
IM
1313 .enqueue_task = enqueue_task_rt,
1314 .dequeue_task = dequeue_task_rt,
1315 .yield_task = yield_task_rt,
e7693a36
GH
1316#ifdef CONFIG_SMP
1317 .select_task_rq = select_task_rq_rt,
1318#endif /* CONFIG_SMP */
bb44e5d1
IM
1319
1320 .check_preempt_curr = check_preempt_curr_rt,
1321
1322 .pick_next_task = pick_next_task_rt,
1323 .put_prev_task = put_prev_task_rt,
1324
681f3e68 1325#ifdef CONFIG_SMP
bb44e5d1 1326 .load_balance = load_balance_rt,
e1d1484f 1327 .move_one_task = move_one_task_rt,
73fe6aae 1328 .set_cpus_allowed = set_cpus_allowed_rt,
bdd7c81b
IM
1329 .join_domain = join_domain_rt,
1330 .leave_domain = leave_domain_rt,
9a897c5a
SR
1331 .pre_schedule = pre_schedule_rt,
1332 .post_schedule = post_schedule_rt,
1333 .task_wake_up = task_wake_up_rt,
cb469845 1334 .switched_from = switched_from_rt,
681f3e68 1335#endif
bb44e5d1 1336
83b699ed 1337 .set_curr_task = set_curr_task_rt,
bb44e5d1 1338 .task_tick = task_tick_rt,
cb469845
SR
1339
1340 .prio_changed = prio_changed_rt,
1341 .switched_to = switched_to_rt,
bb44e5d1 1342};