sched: minor optimizations in wake_affine and select_task_rq_fair
[linux-block.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
4fd29176 6#ifdef CONFIG_SMP
84de4274 7
637f5085 8static inline int rt_overloaded(struct rq *rq)
4fd29176 9{
637f5085 10 return atomic_read(&rq->rd->rto_count);
4fd29176 11}
84de4274 12
4fd29176
SR
13static inline void rt_set_overload(struct rq *rq)
14{
1f11eb6a
GH
15 if (!rq->online)
16 return;
17
637f5085 18 cpu_set(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
19 /*
20 * Make sure the mask is visible before we set
21 * the overload count. That is checked to determine
22 * if we should look at the mask. It would be a shame
23 * if we looked at the mask, but the mask was not
24 * updated yet.
25 */
26 wmb();
637f5085 27 atomic_inc(&rq->rd->rto_count);
4fd29176 28}
84de4274 29
4fd29176
SR
30static inline void rt_clear_overload(struct rq *rq)
31{
1f11eb6a
GH
32 if (!rq->online)
33 return;
34
4fd29176 35 /* the order here really doesn't matter */
637f5085
GH
36 atomic_dec(&rq->rd->rto_count);
37 cpu_clear(rq->cpu, rq->rd->rto_mask);
4fd29176 38}
73fe6aae
GH
39
40static void update_rt_migration(struct rq *rq)
41{
637f5085 42 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
cdc8eb98
GH
43 if (!rq->rt.overloaded) {
44 rt_set_overload(rq);
45 rq->rt.overloaded = 1;
46 }
47 } else if (rq->rt.overloaded) {
73fe6aae 48 rt_clear_overload(rq);
637f5085
GH
49 rq->rt.overloaded = 0;
50 }
73fe6aae 51}
4fd29176
SR
52#endif /* CONFIG_SMP */
53
6f505b16 54static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
fa85ae24 55{
6f505b16
PZ
56 return container_of(rt_se, struct task_struct, rt);
57}
58
59static inline int on_rt_rq(struct sched_rt_entity *rt_se)
60{
61 return !list_empty(&rt_se->run_list);
62}
63
052f1dc7 64#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 65
9f0c1e56 66static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
67{
68 if (!rt_rq->tg)
9f0c1e56 69 return RUNTIME_INF;
6f505b16 70
ac086bc2
PZ
71 return rt_rq->rt_runtime;
72}
73
74static inline u64 sched_rt_period(struct rt_rq *rt_rq)
75{
76 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
77}
78
79#define for_each_leaf_rt_rq(rt_rq, rq) \
80 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
81
82static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
83{
84 return rt_rq->rq;
85}
86
87static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
88{
89 return rt_se->rt_rq;
90}
91
92#define for_each_sched_rt_entity(rt_se) \
93 for (; rt_se; rt_se = rt_se->parent)
94
95static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
96{
97 return rt_se->my_q;
98}
99
100static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
102
9f0c1e56 103static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16
PZ
104{
105 struct sched_rt_entity *rt_se = rt_rq->rt_se;
106
107 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
1020387f
PZ
108 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
109
6f505b16 110 enqueue_rt_entity(rt_se);
1020387f
PZ
111 if (rt_rq->highest_prio < curr->prio)
112 resched_task(curr);
6f505b16
PZ
113 }
114}
115
9f0c1e56 116static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
117{
118 struct sched_rt_entity *rt_se = rt_rq->rt_se;
119
120 if (rt_se && on_rt_rq(rt_se))
121 dequeue_rt_entity(rt_se);
122}
123
23b0fdfc
PZ
124static inline int rt_rq_throttled(struct rt_rq *rt_rq)
125{
126 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
127}
128
129static int rt_se_boosted(struct sched_rt_entity *rt_se)
130{
131 struct rt_rq *rt_rq = group_rt_rq(rt_se);
132 struct task_struct *p;
133
134 if (rt_rq)
135 return !!rt_rq->rt_nr_boosted;
136
137 p = rt_task_of(rt_se);
138 return p->prio != p->normal_prio;
139}
140
d0b27fa7
PZ
141#ifdef CONFIG_SMP
142static inline cpumask_t sched_rt_period_mask(void)
143{
144 return cpu_rq(smp_processor_id())->rd->span;
145}
6f505b16 146#else
d0b27fa7
PZ
147static inline cpumask_t sched_rt_period_mask(void)
148{
149 return cpu_online_map;
150}
151#endif
6f505b16 152
d0b27fa7
PZ
153static inline
154struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 155{
d0b27fa7
PZ
156 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
157}
9f0c1e56 158
ac086bc2
PZ
159static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
160{
161 return &rt_rq->tg->rt_bandwidth;
162}
163
55e12e5e 164#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
165
166static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
167{
ac086bc2
PZ
168 return rt_rq->rt_runtime;
169}
170
171static inline u64 sched_rt_period(struct rt_rq *rt_rq)
172{
173 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
174}
175
176#define for_each_leaf_rt_rq(rt_rq, rq) \
177 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
178
179static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180{
181 return container_of(rt_rq, struct rq, rt);
182}
183
184static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185{
186 struct task_struct *p = rt_task_of(rt_se);
187 struct rq *rq = task_rq(p);
188
189 return &rq->rt;
190}
191
192#define for_each_sched_rt_entity(rt_se) \
193 for (; rt_se; rt_se = NULL)
194
195static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
196{
197 return NULL;
198}
199
9f0c1e56 200static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 201{
f3ade837
JB
202 if (rt_rq->rt_nr_running)
203 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
204}
205
9f0c1e56 206static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
207{
208}
209
23b0fdfc
PZ
210static inline int rt_rq_throttled(struct rt_rq *rt_rq)
211{
212 return rt_rq->rt_throttled;
213}
d0b27fa7
PZ
214
215static inline cpumask_t sched_rt_period_mask(void)
216{
217 return cpu_online_map;
218}
219
220static inline
221struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
222{
223 return &cpu_rq(cpu)->rt;
224}
225
ac086bc2
PZ
226static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
227{
228 return &def_rt_bandwidth;
229}
230
55e12e5e 231#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 232
ac086bc2 233#ifdef CONFIG_SMP
78333cdd
PZ
234/*
235 * We ran out of runtime, see if we can borrow some from our neighbours.
236 */
b79f3833 237static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
238{
239 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
240 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
241 int i, weight, more = 0;
242 u64 rt_period;
243
244 weight = cpus_weight(rd->span);
245
246 spin_lock(&rt_b->rt_runtime_lock);
247 rt_period = ktime_to_ns(rt_b->rt_period);
363ab6f1 248 for_each_cpu_mask_nr(i, rd->span) {
ac086bc2
PZ
249 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
250 s64 diff;
251
252 if (iter == rt_rq)
253 continue;
254
255 spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
256 /*
257 * Either all rqs have inf runtime and there's nothing to steal
258 * or __disable_runtime() below sets a specific rq to inf to
259 * indicate its been disabled and disalow stealing.
260 */
7def2be1
PZ
261 if (iter->rt_runtime == RUNTIME_INF)
262 goto next;
263
78333cdd
PZ
264 /*
265 * From runqueues with spare time, take 1/n part of their
266 * spare time, but no more than our period.
267 */
ac086bc2
PZ
268 diff = iter->rt_runtime - iter->rt_time;
269 if (diff > 0) {
58838cf3 270 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
271 if (rt_rq->rt_runtime + diff > rt_period)
272 diff = rt_period - rt_rq->rt_runtime;
273 iter->rt_runtime -= diff;
274 rt_rq->rt_runtime += diff;
275 more = 1;
276 if (rt_rq->rt_runtime == rt_period) {
277 spin_unlock(&iter->rt_runtime_lock);
278 break;
279 }
280 }
7def2be1 281next:
ac086bc2
PZ
282 spin_unlock(&iter->rt_runtime_lock);
283 }
284 spin_unlock(&rt_b->rt_runtime_lock);
285
286 return more;
287}
7def2be1 288
78333cdd
PZ
289/*
290 * Ensure this RQ takes back all the runtime it lend to its neighbours.
291 */
7def2be1
PZ
292static void __disable_runtime(struct rq *rq)
293{
294 struct root_domain *rd = rq->rd;
295 struct rt_rq *rt_rq;
296
297 if (unlikely(!scheduler_running))
298 return;
299
300 for_each_leaf_rt_rq(rt_rq, rq) {
301 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
302 s64 want;
303 int i;
304
305 spin_lock(&rt_b->rt_runtime_lock);
306 spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
307 /*
308 * Either we're all inf and nobody needs to borrow, or we're
309 * already disabled and thus have nothing to do, or we have
310 * exactly the right amount of runtime to take out.
311 */
7def2be1
PZ
312 if (rt_rq->rt_runtime == RUNTIME_INF ||
313 rt_rq->rt_runtime == rt_b->rt_runtime)
314 goto balanced;
315 spin_unlock(&rt_rq->rt_runtime_lock);
316
78333cdd
PZ
317 /*
318 * Calculate the difference between what we started out with
319 * and what we current have, that's the amount of runtime
320 * we lend and now have to reclaim.
321 */
7def2be1
PZ
322 want = rt_b->rt_runtime - rt_rq->rt_runtime;
323
78333cdd
PZ
324 /*
325 * Greedy reclaim, take back as much as we can.
326 */
7def2be1
PZ
327 for_each_cpu_mask(i, rd->span) {
328 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
329 s64 diff;
330
78333cdd
PZ
331 /*
332 * Can't reclaim from ourselves or disabled runqueues.
333 */
f1679d08 334 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
335 continue;
336
337 spin_lock(&iter->rt_runtime_lock);
338 if (want > 0) {
339 diff = min_t(s64, iter->rt_runtime, want);
340 iter->rt_runtime -= diff;
341 want -= diff;
342 } else {
343 iter->rt_runtime -= want;
344 want -= want;
345 }
346 spin_unlock(&iter->rt_runtime_lock);
347
348 if (!want)
349 break;
350 }
351
352 spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
353 /*
354 * We cannot be left wanting - that would mean some runtime
355 * leaked out of the system.
356 */
7def2be1
PZ
357 BUG_ON(want);
358balanced:
78333cdd
PZ
359 /*
360 * Disable all the borrow logic by pretending we have inf
361 * runtime - in which case borrowing doesn't make sense.
362 */
7def2be1
PZ
363 rt_rq->rt_runtime = RUNTIME_INF;
364 spin_unlock(&rt_rq->rt_runtime_lock);
365 spin_unlock(&rt_b->rt_runtime_lock);
366 }
367}
368
369static void disable_runtime(struct rq *rq)
370{
371 unsigned long flags;
372
373 spin_lock_irqsave(&rq->lock, flags);
374 __disable_runtime(rq);
375 spin_unlock_irqrestore(&rq->lock, flags);
376}
377
378static void __enable_runtime(struct rq *rq)
379{
7def2be1
PZ
380 struct rt_rq *rt_rq;
381
382 if (unlikely(!scheduler_running))
383 return;
384
78333cdd
PZ
385 /*
386 * Reset each runqueue's bandwidth settings
387 */
7def2be1
PZ
388 for_each_leaf_rt_rq(rt_rq, rq) {
389 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
390
391 spin_lock(&rt_b->rt_runtime_lock);
392 spin_lock(&rt_rq->rt_runtime_lock);
393 rt_rq->rt_runtime = rt_b->rt_runtime;
394 rt_rq->rt_time = 0;
baf25731 395 rt_rq->rt_throttled = 0;
7def2be1
PZ
396 spin_unlock(&rt_rq->rt_runtime_lock);
397 spin_unlock(&rt_b->rt_runtime_lock);
398 }
399}
400
401static void enable_runtime(struct rq *rq)
402{
403 unsigned long flags;
404
405 spin_lock_irqsave(&rq->lock, flags);
406 __enable_runtime(rq);
407 spin_unlock_irqrestore(&rq->lock, flags);
408}
409
eff6549b
PZ
410static int balance_runtime(struct rt_rq *rt_rq)
411{
412 int more = 0;
413
414 if (rt_rq->rt_time > rt_rq->rt_runtime) {
415 spin_unlock(&rt_rq->rt_runtime_lock);
416 more = do_balance_runtime(rt_rq);
417 spin_lock(&rt_rq->rt_runtime_lock);
418 }
419
420 return more;
421}
55e12e5e 422#else /* !CONFIG_SMP */
eff6549b
PZ
423static inline int balance_runtime(struct rt_rq *rt_rq)
424{
425 return 0;
426}
55e12e5e 427#endif /* CONFIG_SMP */
ac086bc2 428
eff6549b
PZ
429static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
430{
431 int i, idle = 1;
432 cpumask_t span;
433
0b148fa0 434 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
eff6549b
PZ
435 return 1;
436
437 span = sched_rt_period_mask();
438 for_each_cpu_mask(i, span) {
439 int enqueue = 0;
440 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
441 struct rq *rq = rq_of_rt_rq(rt_rq);
442
443 spin_lock(&rq->lock);
444 if (rt_rq->rt_time) {
445 u64 runtime;
446
447 spin_lock(&rt_rq->rt_runtime_lock);
448 if (rt_rq->rt_throttled)
449 balance_runtime(rt_rq);
450 runtime = rt_rq->rt_runtime;
451 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
452 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
453 rt_rq->rt_throttled = 0;
454 enqueue = 1;
455 }
456 if (rt_rq->rt_time || rt_rq->rt_nr_running)
457 idle = 0;
458 spin_unlock(&rt_rq->rt_runtime_lock);
6c3df255
PZ
459 } else if (rt_rq->rt_nr_running)
460 idle = 0;
eff6549b
PZ
461
462 if (enqueue)
463 sched_rt_rq_enqueue(rt_rq);
464 spin_unlock(&rq->lock);
465 }
466
467 return idle;
468}
ac086bc2 469
6f505b16
PZ
470static inline int rt_se_prio(struct sched_rt_entity *rt_se)
471{
052f1dc7 472#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
473 struct rt_rq *rt_rq = group_rt_rq(rt_se);
474
475 if (rt_rq)
476 return rt_rq->highest_prio;
477#endif
478
479 return rt_task_of(rt_se)->prio;
480}
481
9f0c1e56 482static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 483{
9f0c1e56 484 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 485
fa85ae24 486 if (rt_rq->rt_throttled)
23b0fdfc 487 return rt_rq_throttled(rt_rq);
fa85ae24 488
ac086bc2
PZ
489 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
490 return 0;
491
b79f3833
PZ
492 balance_runtime(rt_rq);
493 runtime = sched_rt_runtime(rt_rq);
494 if (runtime == RUNTIME_INF)
495 return 0;
ac086bc2 496
9f0c1e56 497 if (rt_rq->rt_time > runtime) {
6f505b16 498 rt_rq->rt_throttled = 1;
23b0fdfc 499 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 500 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
501 return 1;
502 }
fa85ae24
PZ
503 }
504
505 return 0;
506}
507
bb44e5d1
IM
508/*
509 * Update the current task's runtime statistics. Skip current tasks that
510 * are not in our scheduling class.
511 */
a9957449 512static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
513{
514 struct task_struct *curr = rq->curr;
6f505b16
PZ
515 struct sched_rt_entity *rt_se = &curr->rt;
516 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
517 u64 delta_exec;
518
519 if (!task_has_rt_policy(curr))
520 return;
521
d281918d 522 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
523 if (unlikely((s64)delta_exec < 0))
524 delta_exec = 0;
6cfb0d5d
IM
525
526 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
527
528 curr->se.sum_exec_runtime += delta_exec;
d281918d 529 curr->se.exec_start = rq->clock;
d842de87 530 cpuacct_charge(curr, delta_exec);
fa85ae24 531
0b148fa0
PZ
532 if (!rt_bandwidth_enabled())
533 return;
534
354d60c2
DG
535 for_each_sched_rt_entity(rt_se) {
536 rt_rq = rt_rq_of_se(rt_se);
537
538 spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
539 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
540 rt_rq->rt_time += delta_exec;
541 if (sched_rt_runtime_exceeded(rt_rq))
542 resched_task(curr);
543 }
354d60c2
DG
544 spin_unlock(&rt_rq->rt_runtime_lock);
545 }
bb44e5d1
IM
546}
547
6f505b16
PZ
548static inline
549void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 550{
6f505b16
PZ
551 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
552 rt_rq->rt_nr_running++;
052f1dc7 553#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6e0534f2 554 if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
577b4a58 555#ifdef CONFIG_SMP
6e0534f2 556 struct rq *rq = rq_of_rt_rq(rt_rq);
577b4a58 557#endif
1f11eb6a 558
6f505b16 559 rt_rq->highest_prio = rt_se_prio(rt_se);
1100ac91 560#ifdef CONFIG_SMP
1f11eb6a
GH
561 if (rq->online)
562 cpupri_set(&rq->rd->cpupri, rq->cpu,
563 rt_se_prio(rt_se));
1100ac91 564#endif
6e0534f2 565 }
6f505b16 566#endif
764a9d6f 567#ifdef CONFIG_SMP
6f505b16
PZ
568 if (rt_se->nr_cpus_allowed > 1) {
569 struct rq *rq = rq_of_rt_rq(rt_rq);
1100ac91 570
73fe6aae 571 rq->rt.rt_nr_migratory++;
6f505b16 572 }
73fe6aae 573
6f505b16
PZ
574 update_rt_migration(rq_of_rt_rq(rt_rq));
575#endif
052f1dc7 576#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
577 if (rt_se_boosted(rt_se))
578 rt_rq->rt_nr_boosted++;
d0b27fa7
PZ
579
580 if (rt_rq->tg)
581 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
582#else
583 start_rt_bandwidth(&def_rt_bandwidth);
23b0fdfc 584#endif
63489e45
SR
585}
586
6f505b16
PZ
587static inline
588void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 589{
6e0534f2
GH
590#ifdef CONFIG_SMP
591 int highest_prio = rt_rq->highest_prio;
592#endif
593
6f505b16
PZ
594 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
595 WARN_ON(!rt_rq->rt_nr_running);
596 rt_rq->rt_nr_running--;
052f1dc7 597#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16 598 if (rt_rq->rt_nr_running) {
764a9d6f
SR
599 struct rt_prio_array *array;
600
6f505b16
PZ
601 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
602 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
764a9d6f 603 /* recalculate */
6f505b16
PZ
604 array = &rt_rq->active;
605 rt_rq->highest_prio =
764a9d6f
SR
606 sched_find_first_bit(array->bitmap);
607 } /* otherwise leave rq->highest prio alone */
608 } else
6f505b16
PZ
609 rt_rq->highest_prio = MAX_RT_PRIO;
610#endif
611#ifdef CONFIG_SMP
612 if (rt_se->nr_cpus_allowed > 1) {
613 struct rq *rq = rq_of_rt_rq(rt_rq);
73fe6aae 614 rq->rt.rt_nr_migratory--;
6f505b16 615 }
73fe6aae 616
6e0534f2
GH
617 if (rt_rq->highest_prio != highest_prio) {
618 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a
GH
619
620 if (rq->online)
621 cpupri_set(&rq->rd->cpupri, rq->cpu,
622 rt_rq->highest_prio);
6e0534f2
GH
623 }
624
6f505b16 625 update_rt_migration(rq_of_rt_rq(rt_rq));
764a9d6f 626#endif /* CONFIG_SMP */
052f1dc7 627#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
628 if (rt_se_boosted(rt_se))
629 rt_rq->rt_nr_boosted--;
630
631 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
632#endif
63489e45
SR
633}
634
ad2a3f13 635static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
bb44e5d1 636{
6f505b16
PZ
637 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
638 struct rt_prio_array *array = &rt_rq->active;
639 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 640 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 641
ad2a3f13
PZ
642 /*
643 * Don't enqueue the group if its throttled, or when empty.
644 * The latter is a consequence of the former when a child group
645 * get throttled and the current group doesn't have any other
646 * active members.
647 */
648 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 649 return;
63489e45 650
7ebefa8c 651 list_add_tail(&rt_se->run_list, queue);
6f505b16 652 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 653
6f505b16
PZ
654 inc_rt_tasks(rt_se, rt_rq);
655}
656
ad2a3f13 657static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
658{
659 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
660 struct rt_prio_array *array = &rt_rq->active;
661
662 list_del_init(&rt_se->run_list);
663 if (list_empty(array->queue + rt_se_prio(rt_se)))
664 __clear_bit(rt_se_prio(rt_se), array->bitmap);
665
666 dec_rt_tasks(rt_se, rt_rq);
667}
668
669/*
670 * Because the prio of an upper entry depends on the lower
671 * entries, we must remove entries top - down.
6f505b16 672 */
ad2a3f13 673static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 674{
ad2a3f13 675 struct sched_rt_entity *back = NULL;
6f505b16 676
58d6c2d7
PZ
677 for_each_sched_rt_entity(rt_se) {
678 rt_se->back = back;
679 back = rt_se;
680 }
681
682 for (rt_se = back; rt_se; rt_se = rt_se->back) {
683 if (on_rt_rq(rt_se))
ad2a3f13
PZ
684 __dequeue_rt_entity(rt_se);
685 }
686}
687
688static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
689{
690 dequeue_rt_stack(rt_se);
691 for_each_sched_rt_entity(rt_se)
692 __enqueue_rt_entity(rt_se);
693}
694
695static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
696{
697 dequeue_rt_stack(rt_se);
698
699 for_each_sched_rt_entity(rt_se) {
700 struct rt_rq *rt_rq = group_rt_rq(rt_se);
701
702 if (rt_rq && rt_rq->rt_nr_running)
703 __enqueue_rt_entity(rt_se);
58d6c2d7 704 }
bb44e5d1
IM
705}
706
707/*
708 * Adding/removing a task to/from a priority array:
709 */
6f505b16
PZ
710static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
711{
712 struct sched_rt_entity *rt_se = &p->rt;
713
714 if (wakeup)
715 rt_se->timeout = 0;
716
ad2a3f13 717 enqueue_rt_entity(rt_se);
c09595f6
PZ
718
719 inc_cpu_load(rq, p->se.load.weight);
6f505b16
PZ
720}
721
f02231e5 722static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1 723{
6f505b16 724 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 725
f1e14ef6 726 update_curr_rt(rq);
ad2a3f13 727 dequeue_rt_entity(rt_se);
c09595f6
PZ
728
729 dec_cpu_load(rq, p->se.load.weight);
bb44e5d1
IM
730}
731
732/*
733 * Put task to the end of the run list without the overhead of dequeue
734 * followed by enqueue.
735 */
7ebefa8c
DA
736static void
737requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 738{
1cdad715 739 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
740 struct rt_prio_array *array = &rt_rq->active;
741 struct list_head *queue = array->queue + rt_se_prio(rt_se);
742
743 if (head)
744 list_move(&rt_se->run_list, queue);
745 else
746 list_move_tail(&rt_se->run_list, queue);
1cdad715 747 }
6f505b16
PZ
748}
749
7ebefa8c 750static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 751{
6f505b16
PZ
752 struct sched_rt_entity *rt_se = &p->rt;
753 struct rt_rq *rt_rq;
bb44e5d1 754
6f505b16
PZ
755 for_each_sched_rt_entity(rt_se) {
756 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 757 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 758 }
bb44e5d1
IM
759}
760
6f505b16 761static void yield_task_rt(struct rq *rq)
bb44e5d1 762{
7ebefa8c 763 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
764}
765
e7693a36 766#ifdef CONFIG_SMP
318e0893
GH
767static int find_lowest_rq(struct task_struct *task);
768
e7693a36
GH
769static int select_task_rq_rt(struct task_struct *p, int sync)
770{
318e0893
GH
771 struct rq *rq = task_rq(p);
772
773 /*
e1f47d89
SR
774 * If the current task is an RT task, then
775 * try to see if we can wake this RT task up on another
776 * runqueue. Otherwise simply start this RT task
777 * on its current runqueue.
778 *
779 * We want to avoid overloading runqueues. Even if
780 * the RT task is of higher priority than the current RT task.
781 * RT tasks behave differently than other tasks. If
782 * one gets preempted, we try to push it off to another queue.
783 * So trying to keep a preempting RT task on the same
784 * cache hot CPU will force the running RT task to
785 * a cold CPU. So we waste all the cache for the lower
786 * RT task in hopes of saving some of a RT task
787 * that is just being woken and probably will have
788 * cold cache anyway.
318e0893 789 */
17b3279b 790 if (unlikely(rt_task(rq->curr)) &&
6f505b16 791 (p->rt.nr_cpus_allowed > 1)) {
318e0893
GH
792 int cpu = find_lowest_rq(p);
793
794 return (cpu == -1) ? task_cpu(p) : cpu;
795 }
796
797 /*
798 * Otherwise, just let it ride on the affined RQ and the
799 * post-schedule router will push the preempted task away
800 */
e7693a36
GH
801 return task_cpu(p);
802}
7ebefa8c
DA
803
804static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
805{
806 cpumask_t mask;
807
808 if (rq->curr->rt.nr_cpus_allowed == 1)
809 return;
810
811 if (p->rt.nr_cpus_allowed != 1
812 && cpupri_find(&rq->rd->cpupri, p, &mask))
813 return;
814
815 if (!cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
816 return;
817
818 /*
819 * There appears to be other cpus that can accept
820 * current and none to run 'p', so lets reschedule
821 * to try and push current away:
822 */
823 requeue_task_rt(rq, p, 1);
824 resched_task(rq->curr);
825}
826
e7693a36
GH
827#endif /* CONFIG_SMP */
828
bb44e5d1
IM
829/*
830 * Preempt the current task with a newly woken task if needed:
831 */
15afe09b 832static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
bb44e5d1 833{
45c01e82 834 if (p->prio < rq->curr->prio) {
bb44e5d1 835 resched_task(rq->curr);
45c01e82
GH
836 return;
837 }
838
839#ifdef CONFIG_SMP
840 /*
841 * If:
842 *
843 * - the newly woken task is of equal priority to the current task
844 * - the newly woken task is non-migratable while current is migratable
845 * - current will be preempted on the next reschedule
846 *
847 * we should check to see if current can readily move to a different
848 * cpu. If so, we will reschedule to allow the push logic to try
849 * to move current somewhere else, making room for our non-migratable
850 * task.
851 */
7ebefa8c
DA
852 if (p->prio == rq->curr->prio && !need_resched())
853 check_preempt_equal_prio(rq, p);
45c01e82 854#endif
bb44e5d1
IM
855}
856
6f505b16
PZ
857static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
858 struct rt_rq *rt_rq)
bb44e5d1 859{
6f505b16
PZ
860 struct rt_prio_array *array = &rt_rq->active;
861 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
862 struct list_head *queue;
863 int idx;
864
865 idx = sched_find_first_bit(array->bitmap);
6f505b16 866 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
867
868 queue = array->queue + idx;
6f505b16 869 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 870
6f505b16
PZ
871 return next;
872}
bb44e5d1 873
6f505b16
PZ
874static struct task_struct *pick_next_task_rt(struct rq *rq)
875{
876 struct sched_rt_entity *rt_se;
877 struct task_struct *p;
878 struct rt_rq *rt_rq;
bb44e5d1 879
6f505b16
PZ
880 rt_rq = &rq->rt;
881
882 if (unlikely(!rt_rq->rt_nr_running))
883 return NULL;
884
23b0fdfc 885 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
886 return NULL;
887
888 do {
889 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 890 BUG_ON(!rt_se);
6f505b16
PZ
891 rt_rq = group_rt_rq(rt_se);
892 } while (rt_rq);
893
894 p = rt_task_of(rt_se);
895 p->se.exec_start = rq->clock;
896 return p;
bb44e5d1
IM
897}
898
31ee529c 899static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 900{
f1e14ef6 901 update_curr_rt(rq);
bb44e5d1
IM
902 p->se.exec_start = 0;
903}
904
681f3e68 905#ifdef CONFIG_SMP
6f505b16 906
e8fa1362
SR
907/* Only try algorithms three times */
908#define RT_MAX_TRIES 3
909
910static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
1b12bbc7
PZ
911static void double_unlock_balance(struct rq *this_rq, struct rq *busiest);
912
e8fa1362
SR
913static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
914
f65eda4f
SR
915static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
916{
917 if (!task_running(rq, p) &&
73fe6aae 918 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
6f505b16 919 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
920 return 1;
921 return 0;
922}
923
e8fa1362 924/* Return the second highest RT task, NULL otherwise */
79064fbf 925static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 926{
6f505b16
PZ
927 struct task_struct *next = NULL;
928 struct sched_rt_entity *rt_se;
929 struct rt_prio_array *array;
930 struct rt_rq *rt_rq;
e8fa1362
SR
931 int idx;
932
6f505b16
PZ
933 for_each_leaf_rt_rq(rt_rq, rq) {
934 array = &rt_rq->active;
935 idx = sched_find_first_bit(array->bitmap);
936 next_idx:
937 if (idx >= MAX_RT_PRIO)
938 continue;
939 if (next && next->prio < idx)
940 continue;
941 list_for_each_entry(rt_se, array->queue + idx, run_list) {
942 struct task_struct *p = rt_task_of(rt_se);
943 if (pick_rt_task(rq, p, cpu)) {
944 next = p;
945 break;
946 }
947 }
948 if (!next) {
949 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
950 goto next_idx;
951 }
f65eda4f
SR
952 }
953
e8fa1362
SR
954 return next;
955}
956
957static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
958
6e1254d2
GH
959static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
960{
961 int first;
962
963 /* "this_cpu" is cheaper to preempt than a remote processor */
964 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
965 return this_cpu;
966
967 first = first_cpu(*mask);
968 if (first != NR_CPUS)
969 return first;
970
971 return -1;
972}
973
974static int find_lowest_rq(struct task_struct *task)
975{
976 struct sched_domain *sd;
977 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
978 int this_cpu = smp_processor_id();
979 int cpu = task_cpu(task);
06f90dbd 980
6e0534f2
GH
981 if (task->rt.nr_cpus_allowed == 1)
982 return -1; /* No other targets possible */
6e1254d2 983
6e0534f2
GH
984 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
985 return -1; /* No targets found */
6e1254d2 986
e761b772
MK
987 /*
988 * Only consider CPUs that are usable for migration.
989 * I guess we might want to change cpupri_find() to ignore those
990 * in the first place.
991 */
992 cpus_and(*lowest_mask, *lowest_mask, cpu_active_map);
993
6e1254d2
GH
994 /*
995 * At this point we have built a mask of cpus representing the
996 * lowest priority tasks in the system. Now we want to elect
997 * the best one based on our affinity and topology.
998 *
999 * We prioritize the last cpu that the task executed on since
1000 * it is most likely cache-hot in that location.
1001 */
1002 if (cpu_isset(cpu, *lowest_mask))
1003 return cpu;
1004
1005 /*
1006 * Otherwise, we consult the sched_domains span maps to figure
1007 * out which cpu is logically closest to our hot cache data.
1008 */
1009 if (this_cpu == cpu)
1010 this_cpu = -1; /* Skip this_cpu opt if the same */
1011
1012 for_each_domain(cpu, sd) {
1013 if (sd->flags & SD_WAKE_AFFINE) {
1014 cpumask_t domain_mask;
1015 int best_cpu;
1016
1017 cpus_and(domain_mask, sd->span, *lowest_mask);
1018
1019 best_cpu = pick_optimal_cpu(this_cpu,
1020 &domain_mask);
1021 if (best_cpu != -1)
1022 return best_cpu;
1023 }
1024 }
1025
1026 /*
1027 * And finally, if there were no matches within the domains
1028 * just give the caller *something* to work with from the compatible
1029 * locations.
1030 */
1031 return pick_optimal_cpu(this_cpu, lowest_mask);
07b4032c
GH
1032}
1033
1034/* Will lock the rq it finds */
4df64c0b 1035static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1036{
1037 struct rq *lowest_rq = NULL;
07b4032c 1038 int tries;
4df64c0b 1039 int cpu;
e8fa1362 1040
07b4032c
GH
1041 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1042 cpu = find_lowest_rq(task);
1043
2de0b463 1044 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1045 break;
1046
07b4032c
GH
1047 lowest_rq = cpu_rq(cpu);
1048
e8fa1362 1049 /* if the prio of this runqueue changed, try again */
07b4032c 1050 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1051 /*
1052 * We had to unlock the run queue. In
1053 * the mean time, task could have
1054 * migrated already or had its affinity changed.
1055 * Also make sure that it wasn't scheduled on its rq.
1056 */
07b4032c 1057 if (unlikely(task_rq(task) != rq ||
4df64c0b
IM
1058 !cpu_isset(lowest_rq->cpu,
1059 task->cpus_allowed) ||
07b4032c 1060 task_running(rq, task) ||
e8fa1362 1061 !task->se.on_rq)) {
4df64c0b 1062
e8fa1362
SR
1063 spin_unlock(&lowest_rq->lock);
1064 lowest_rq = NULL;
1065 break;
1066 }
1067 }
1068
1069 /* If this rq is still suitable use it. */
1070 if (lowest_rq->rt.highest_prio > task->prio)
1071 break;
1072
1073 /* try again */
1b12bbc7 1074 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1075 lowest_rq = NULL;
1076 }
1077
1078 return lowest_rq;
1079}
1080
1081/*
1082 * If the current CPU has more than one RT task, see if the non
1083 * running task can migrate over to a CPU that is running a task
1084 * of lesser priority.
1085 */
697f0a48 1086static int push_rt_task(struct rq *rq)
e8fa1362
SR
1087{
1088 struct task_struct *next_task;
1089 struct rq *lowest_rq;
1090 int ret = 0;
1091 int paranoid = RT_MAX_TRIES;
1092
a22d7fc1
GH
1093 if (!rq->rt.overloaded)
1094 return 0;
1095
697f0a48 1096 next_task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
1097 if (!next_task)
1098 return 0;
1099
1100 retry:
697f0a48 1101 if (unlikely(next_task == rq->curr)) {
f65eda4f 1102 WARN_ON(1);
e8fa1362 1103 return 0;
f65eda4f 1104 }
e8fa1362
SR
1105
1106 /*
1107 * It's possible that the next_task slipped in of
1108 * higher priority than current. If that's the case
1109 * just reschedule current.
1110 */
697f0a48
GH
1111 if (unlikely(next_task->prio < rq->curr->prio)) {
1112 resched_task(rq->curr);
e8fa1362
SR
1113 return 0;
1114 }
1115
697f0a48 1116 /* We might release rq lock */
e8fa1362
SR
1117 get_task_struct(next_task);
1118
1119 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1120 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1121 if (!lowest_rq) {
1122 struct task_struct *task;
1123 /*
697f0a48 1124 * find lock_lowest_rq releases rq->lock
e8fa1362
SR
1125 * so it is possible that next_task has changed.
1126 * If it has, then try again.
1127 */
697f0a48 1128 task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
1129 if (unlikely(task != next_task) && task && paranoid--) {
1130 put_task_struct(next_task);
1131 next_task = task;
1132 goto retry;
1133 }
1134 goto out;
1135 }
1136
697f0a48 1137 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1138 set_task_cpu(next_task, lowest_rq->cpu);
1139 activate_task(lowest_rq, next_task, 0);
1140
1141 resched_task(lowest_rq->curr);
1142
1b12bbc7 1143 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1144
1145 ret = 1;
1146out:
1147 put_task_struct(next_task);
1148
1149 return ret;
1150}
1151
1152/*
1153 * TODO: Currently we just use the second highest prio task on
1154 * the queue, and stop when it can't migrate (or there's
1155 * no more RT tasks). There may be a case where a lower
1156 * priority RT task has a different affinity than the
1157 * higher RT task. In this case the lower RT task could
1158 * possibly be able to migrate where as the higher priority
1159 * RT task could not. We currently ignore this issue.
1160 * Enhancements are welcome!
1161 */
1162static void push_rt_tasks(struct rq *rq)
1163{
1164 /* push_rt_task will return true if it moved an RT */
1165 while (push_rt_task(rq))
1166 ;
1167}
1168
f65eda4f
SR
1169static int pull_rt_task(struct rq *this_rq)
1170{
80bf3171
IM
1171 int this_cpu = this_rq->cpu, ret = 0, cpu;
1172 struct task_struct *p, *next;
f65eda4f 1173 struct rq *src_rq;
f65eda4f 1174
637f5085 1175 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1176 return 0;
1177
1178 next = pick_next_task_rt(this_rq);
1179
363ab6f1 1180 for_each_cpu_mask_nr(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1181 if (this_cpu == cpu)
1182 continue;
1183
1184 src_rq = cpu_rq(cpu);
f65eda4f
SR
1185 /*
1186 * We can potentially drop this_rq's lock in
1187 * double_lock_balance, and another CPU could
1188 * steal our next task - hence we must cause
1189 * the caller to recalculate the next task
1190 * in that case:
1191 */
1192 if (double_lock_balance(this_rq, src_rq)) {
1193 struct task_struct *old_next = next;
80bf3171 1194
f65eda4f
SR
1195 next = pick_next_task_rt(this_rq);
1196 if (next != old_next)
1197 ret = 1;
1198 }
1199
1200 /*
1201 * Are there still pullable RT tasks?
1202 */
614ee1f6
MG
1203 if (src_rq->rt.rt_nr_running <= 1)
1204 goto skip;
f65eda4f 1205
f65eda4f
SR
1206 p = pick_next_highest_task_rt(src_rq, this_cpu);
1207
1208 /*
1209 * Do we have an RT task that preempts
1210 * the to-be-scheduled task?
1211 */
1212 if (p && (!next || (p->prio < next->prio))) {
1213 WARN_ON(p == src_rq->curr);
1214 WARN_ON(!p->se.on_rq);
1215
1216 /*
1217 * There's a chance that p is higher in priority
1218 * than what's currently running on its cpu.
1219 * This is just that p is wakeing up and hasn't
1220 * had a chance to schedule. We only pull
1221 * p if it is lower in priority than the
1222 * current task on the run queue or
1223 * this_rq next task is lower in prio than
1224 * the current task on that rq.
1225 */
1226 if (p->prio < src_rq->curr->prio ||
1227 (next && next->prio < src_rq->curr->prio))
614ee1f6 1228 goto skip;
f65eda4f
SR
1229
1230 ret = 1;
1231
1232 deactivate_task(src_rq, p, 0);
1233 set_task_cpu(p, this_cpu);
1234 activate_task(this_rq, p, 0);
1235 /*
1236 * We continue with the search, just in
1237 * case there's an even higher prio task
1238 * in another runqueue. (low likelyhood
1239 * but possible)
80bf3171 1240 *
f65eda4f
SR
1241 * Update next so that we won't pick a task
1242 * on another cpu with a priority lower (or equal)
1243 * than the one we just picked.
1244 */
1245 next = p;
1246
1247 }
614ee1f6 1248 skip:
1b12bbc7 1249 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1250 }
1251
1252 return ret;
1253}
1254
9a897c5a 1255static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1256{
1257 /* Try to pull RT tasks here if we lower this rq's prio */
7f51f298 1258 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
f65eda4f
SR
1259 pull_rt_task(rq);
1260}
1261
9a897c5a 1262static void post_schedule_rt(struct rq *rq)
e8fa1362
SR
1263{
1264 /*
1265 * If we have more than one rt_task queued, then
1266 * see if we can push the other rt_tasks off to other CPUS.
1267 * Note we may release the rq lock, and since
1268 * the lock was owned by prev, we need to release it
1269 * first via finish_lock_switch and then reaquire it here.
1270 */
a22d7fc1 1271 if (unlikely(rq->rt.overloaded)) {
e8fa1362
SR
1272 spin_lock_irq(&rq->lock);
1273 push_rt_tasks(rq);
1274 spin_unlock_irq(&rq->lock);
1275 }
1276}
1277
8ae121ac
GH
1278/*
1279 * If we are not running and we are not going to reschedule soon, we should
1280 * try to push tasks away now
1281 */
9a897c5a 1282static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
4642dafd 1283{
9a897c5a 1284 if (!task_running(rq, p) &&
8ae121ac 1285 !test_tsk_need_resched(rq->curr) &&
a22d7fc1 1286 rq->rt.overloaded)
4642dafd
SR
1287 push_rt_tasks(rq);
1288}
1289
43010659 1290static unsigned long
bb44e5d1 1291load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
1292 unsigned long max_load_move,
1293 struct sched_domain *sd, enum cpu_idle_type idle,
1294 int *all_pinned, int *this_best_prio)
bb44e5d1 1295{
c7a1e46a
SR
1296 /* don't touch RT tasks */
1297 return 0;
e1d1484f
PW
1298}
1299
1300static int
1301move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1302 struct sched_domain *sd, enum cpu_idle_type idle)
1303{
c7a1e46a
SR
1304 /* don't touch RT tasks */
1305 return 0;
bb44e5d1 1306}
deeeccd4 1307
cd8ba7cd
MT
1308static void set_cpus_allowed_rt(struct task_struct *p,
1309 const cpumask_t *new_mask)
73fe6aae
GH
1310{
1311 int weight = cpus_weight(*new_mask);
1312
1313 BUG_ON(!rt_task(p));
1314
1315 /*
1316 * Update the migration status of the RQ if we have an RT task
1317 * which is running AND changing its weight value.
1318 */
6f505b16 1319 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1320 struct rq *rq = task_rq(p);
1321
6f505b16 1322 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1323 rq->rt.rt_nr_migratory++;
6f505b16 1324 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1325 BUG_ON(!rq->rt.rt_nr_migratory);
1326 rq->rt.rt_nr_migratory--;
1327 }
1328
1329 update_rt_migration(rq);
1330 }
1331
1332 p->cpus_allowed = *new_mask;
6f505b16 1333 p->rt.nr_cpus_allowed = weight;
73fe6aae 1334}
deeeccd4 1335
bdd7c81b 1336/* Assumes rq->lock is held */
1f11eb6a 1337static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1338{
1339 if (rq->rt.overloaded)
1340 rt_set_overload(rq);
6e0534f2 1341
7def2be1
PZ
1342 __enable_runtime(rq);
1343
6e0534f2 1344 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
bdd7c81b
IM
1345}
1346
1347/* Assumes rq->lock is held */
1f11eb6a 1348static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1349{
1350 if (rq->rt.overloaded)
1351 rt_clear_overload(rq);
6e0534f2 1352
7def2be1
PZ
1353 __disable_runtime(rq);
1354
6e0534f2 1355 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1356}
cb469845
SR
1357
1358/*
1359 * When switch from the rt queue, we bring ourselves to a position
1360 * that we might want to pull RT tasks from other runqueues.
1361 */
1362static void switched_from_rt(struct rq *rq, struct task_struct *p,
1363 int running)
1364{
1365 /*
1366 * If there are other RT tasks then we will reschedule
1367 * and the scheduling of the other RT tasks will handle
1368 * the balancing. But if we are the last RT task
1369 * we may need to handle the pulling of RT tasks
1370 * now.
1371 */
1372 if (!rq->rt.rt_nr_running)
1373 pull_rt_task(rq);
1374}
1375#endif /* CONFIG_SMP */
1376
1377/*
1378 * When switching a task to RT, we may overload the runqueue
1379 * with RT tasks. In this case we try to push them off to
1380 * other runqueues.
1381 */
1382static void switched_to_rt(struct rq *rq, struct task_struct *p,
1383 int running)
1384{
1385 int check_resched = 1;
1386
1387 /*
1388 * If we are already running, then there's nothing
1389 * that needs to be done. But if we are not running
1390 * we may need to preempt the current running task.
1391 * If that current running task is also an RT task
1392 * then see if we can move to another run queue.
1393 */
1394 if (!running) {
1395#ifdef CONFIG_SMP
1396 if (rq->rt.overloaded && push_rt_task(rq) &&
1397 /* Don't resched if we changed runqueues */
1398 rq != task_rq(p))
1399 check_resched = 0;
1400#endif /* CONFIG_SMP */
1401 if (check_resched && p->prio < rq->curr->prio)
1402 resched_task(rq->curr);
1403 }
1404}
1405
1406/*
1407 * Priority of the task has changed. This may cause
1408 * us to initiate a push or pull.
1409 */
1410static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1411 int oldprio, int running)
1412{
1413 if (running) {
1414#ifdef CONFIG_SMP
1415 /*
1416 * If our priority decreases while running, we
1417 * may need to pull tasks to this runqueue.
1418 */
1419 if (oldprio < p->prio)
1420 pull_rt_task(rq);
1421 /*
1422 * If there's a higher priority task waiting to run
6fa46fa5
SR
1423 * then reschedule. Note, the above pull_rt_task
1424 * can release the rq lock and p could migrate.
1425 * Only reschedule if p is still on the same runqueue.
cb469845 1426 */
6fa46fa5 1427 if (p->prio > rq->rt.highest_prio && rq->curr == p)
cb469845
SR
1428 resched_task(p);
1429#else
1430 /* For UP simply resched on drop of prio */
1431 if (oldprio < p->prio)
1432 resched_task(p);
e8fa1362 1433#endif /* CONFIG_SMP */
cb469845
SR
1434 } else {
1435 /*
1436 * This task is not running, but if it is
1437 * greater than the current running task
1438 * then reschedule.
1439 */
1440 if (p->prio < rq->curr->prio)
1441 resched_task(rq->curr);
1442 }
1443}
1444
78f2c7db
PZ
1445static void watchdog(struct rq *rq, struct task_struct *p)
1446{
1447 unsigned long soft, hard;
1448
1449 if (!p->signal)
1450 return;
1451
1452 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1453 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1454
1455 if (soft != RLIM_INFINITY) {
1456 unsigned long next;
1457
1458 p->rt.timeout++;
1459 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1460 if (p->rt.timeout > next)
78f2c7db
PZ
1461 p->it_sched_expires = p->se.sum_exec_runtime;
1462 }
1463}
bb44e5d1 1464
8f4d37ec 1465static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1466{
67e2be02
PZ
1467 update_curr_rt(rq);
1468
78f2c7db
PZ
1469 watchdog(rq, p);
1470
bb44e5d1
IM
1471 /*
1472 * RR tasks need a special form of timeslice management.
1473 * FIFO tasks have no timeslices.
1474 */
1475 if (p->policy != SCHED_RR)
1476 return;
1477
fa717060 1478 if (--p->rt.time_slice)
bb44e5d1
IM
1479 return;
1480
fa717060 1481 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1482
98fbc798
DA
1483 /*
1484 * Requeue to the end of queue if we are not the only element
1485 * on the queue:
1486 */
fa717060 1487 if (p->rt.run_list.prev != p->rt.run_list.next) {
7ebefa8c 1488 requeue_task_rt(rq, p, 0);
98fbc798
DA
1489 set_tsk_need_resched(p);
1490 }
bb44e5d1
IM
1491}
1492
83b699ed
SV
1493static void set_curr_task_rt(struct rq *rq)
1494{
1495 struct task_struct *p = rq->curr;
1496
1497 p->se.exec_start = rq->clock;
1498}
1499
2abdad0a 1500static const struct sched_class rt_sched_class = {
5522d5d5 1501 .next = &fair_sched_class,
bb44e5d1
IM
1502 .enqueue_task = enqueue_task_rt,
1503 .dequeue_task = dequeue_task_rt,
1504 .yield_task = yield_task_rt,
e7693a36
GH
1505#ifdef CONFIG_SMP
1506 .select_task_rq = select_task_rq_rt,
1507#endif /* CONFIG_SMP */
bb44e5d1
IM
1508
1509 .check_preempt_curr = check_preempt_curr_rt,
1510
1511 .pick_next_task = pick_next_task_rt,
1512 .put_prev_task = put_prev_task_rt,
1513
681f3e68 1514#ifdef CONFIG_SMP
bb44e5d1 1515 .load_balance = load_balance_rt,
e1d1484f 1516 .move_one_task = move_one_task_rt,
73fe6aae 1517 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1518 .rq_online = rq_online_rt,
1519 .rq_offline = rq_offline_rt,
9a897c5a
SR
1520 .pre_schedule = pre_schedule_rt,
1521 .post_schedule = post_schedule_rt,
1522 .task_wake_up = task_wake_up_rt,
cb469845 1523 .switched_from = switched_from_rt,
681f3e68 1524#endif
bb44e5d1 1525
83b699ed 1526 .set_curr_task = set_curr_task_rt,
bb44e5d1 1527 .task_tick = task_tick_rt,
cb469845
SR
1528
1529 .prio_changed = prio_changed_rt,
1530 .switched_to = switched_to_rt,
bb44e5d1 1531};
ada18de2
PZ
1532
1533#ifdef CONFIG_SCHED_DEBUG
1534extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1535
1536static void print_rt_stats(struct seq_file *m, int cpu)
1537{
1538 struct rt_rq *rt_rq;
1539
1540 rcu_read_lock();
1541 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1542 print_rt_rq(m, cpu, rt_rq);
1543 rcu_read_unlock();
1544}
55e12e5e 1545#endif /* CONFIG_SCHED_DEBUG */