plist: fix PLIST_NODE_INIT to work with debug enabled
[linux-block.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
4fd29176 6#ifdef CONFIG_SMP
84de4274 7
637f5085 8static inline int rt_overloaded(struct rq *rq)
4fd29176 9{
637f5085 10 return atomic_read(&rq->rd->rto_count);
4fd29176 11}
84de4274 12
4fd29176
SR
13static inline void rt_set_overload(struct rq *rq)
14{
1f11eb6a
GH
15 if (!rq->online)
16 return;
17
c6c4927b 18 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
19 /*
20 * Make sure the mask is visible before we set
21 * the overload count. That is checked to determine
22 * if we should look at the mask. It would be a shame
23 * if we looked at the mask, but the mask was not
24 * updated yet.
25 */
26 wmb();
637f5085 27 atomic_inc(&rq->rd->rto_count);
4fd29176 28}
84de4274 29
4fd29176
SR
30static inline void rt_clear_overload(struct rq *rq)
31{
1f11eb6a
GH
32 if (!rq->online)
33 return;
34
4fd29176 35 /* the order here really doesn't matter */
637f5085 36 atomic_dec(&rq->rd->rto_count);
c6c4927b 37 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 38}
73fe6aae
GH
39
40static void update_rt_migration(struct rq *rq)
41{
637f5085 42 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
cdc8eb98
GH
43 if (!rq->rt.overloaded) {
44 rt_set_overload(rq);
45 rq->rt.overloaded = 1;
46 }
47 } else if (rq->rt.overloaded) {
73fe6aae 48 rt_clear_overload(rq);
637f5085
GH
49 rq->rt.overloaded = 0;
50 }
73fe6aae 51}
4fd29176
SR
52#endif /* CONFIG_SMP */
53
6f505b16 54static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
fa85ae24 55{
6f505b16
PZ
56 return container_of(rt_se, struct task_struct, rt);
57}
58
59static inline int on_rt_rq(struct sched_rt_entity *rt_se)
60{
61 return !list_empty(&rt_se->run_list);
62}
63
052f1dc7 64#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 65
9f0c1e56 66static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
67{
68 if (!rt_rq->tg)
9f0c1e56 69 return RUNTIME_INF;
6f505b16 70
ac086bc2
PZ
71 return rt_rq->rt_runtime;
72}
73
74static inline u64 sched_rt_period(struct rt_rq *rt_rq)
75{
76 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
77}
78
79#define for_each_leaf_rt_rq(rt_rq, rq) \
80 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
81
82static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
83{
84 return rt_rq->rq;
85}
86
87static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
88{
89 return rt_se->rt_rq;
90}
91
92#define for_each_sched_rt_entity(rt_se) \
93 for (; rt_se; rt_se = rt_se->parent)
94
95static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
96{
97 return rt_se->my_q;
98}
99
100static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
102
9f0c1e56 103static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 104{
f6121f4f 105 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
6f505b16
PZ
106 struct sched_rt_entity *rt_se = rt_rq->rt_se;
107
f6121f4f
DF
108 if (rt_rq->rt_nr_running) {
109 if (rt_se && !on_rt_rq(rt_se))
110 enqueue_rt_entity(rt_se);
e864c499 111 if (rt_rq->highest_prio.curr < curr->prio)
1020387f 112 resched_task(curr);
6f505b16
PZ
113 }
114}
115
9f0c1e56 116static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
117{
118 struct sched_rt_entity *rt_se = rt_rq->rt_se;
119
120 if (rt_se && on_rt_rq(rt_se))
121 dequeue_rt_entity(rt_se);
122}
123
23b0fdfc
PZ
124static inline int rt_rq_throttled(struct rt_rq *rt_rq)
125{
126 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
127}
128
129static int rt_se_boosted(struct sched_rt_entity *rt_se)
130{
131 struct rt_rq *rt_rq = group_rt_rq(rt_se);
132 struct task_struct *p;
133
134 if (rt_rq)
135 return !!rt_rq->rt_nr_boosted;
136
137 p = rt_task_of(rt_se);
138 return p->prio != p->normal_prio;
139}
140
d0b27fa7 141#ifdef CONFIG_SMP
c6c4927b 142static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7
PZ
143{
144 return cpu_rq(smp_processor_id())->rd->span;
145}
6f505b16 146#else
c6c4927b 147static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 148{
c6c4927b 149 return cpu_online_mask;
d0b27fa7
PZ
150}
151#endif
6f505b16 152
d0b27fa7
PZ
153static inline
154struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 155{
d0b27fa7
PZ
156 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
157}
9f0c1e56 158
ac086bc2
PZ
159static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
160{
161 return &rt_rq->tg->rt_bandwidth;
162}
163
55e12e5e 164#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
165
166static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
167{
ac086bc2
PZ
168 return rt_rq->rt_runtime;
169}
170
171static inline u64 sched_rt_period(struct rt_rq *rt_rq)
172{
173 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
174}
175
176#define for_each_leaf_rt_rq(rt_rq, rq) \
177 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
178
179static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180{
181 return container_of(rt_rq, struct rq, rt);
182}
183
184static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185{
186 struct task_struct *p = rt_task_of(rt_se);
187 struct rq *rq = task_rq(p);
188
189 return &rq->rt;
190}
191
192#define for_each_sched_rt_entity(rt_se) \
193 for (; rt_se; rt_se = NULL)
194
195static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
196{
197 return NULL;
198}
199
9f0c1e56 200static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 201{
f3ade837
JB
202 if (rt_rq->rt_nr_running)
203 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
204}
205
9f0c1e56 206static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
207{
208}
209
23b0fdfc
PZ
210static inline int rt_rq_throttled(struct rt_rq *rt_rq)
211{
212 return rt_rq->rt_throttled;
213}
d0b27fa7 214
c6c4927b 215static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 216{
c6c4927b 217 return cpu_online_mask;
d0b27fa7
PZ
218}
219
220static inline
221struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
222{
223 return &cpu_rq(cpu)->rt;
224}
225
ac086bc2
PZ
226static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
227{
228 return &def_rt_bandwidth;
229}
230
55e12e5e 231#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 232
ac086bc2 233#ifdef CONFIG_SMP
78333cdd
PZ
234/*
235 * We ran out of runtime, see if we can borrow some from our neighbours.
236 */
b79f3833 237static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
238{
239 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
240 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
241 int i, weight, more = 0;
242 u64 rt_period;
243
c6c4927b 244 weight = cpumask_weight(rd->span);
ac086bc2
PZ
245
246 spin_lock(&rt_b->rt_runtime_lock);
247 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 248 for_each_cpu(i, rd->span) {
ac086bc2
PZ
249 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
250 s64 diff;
251
252 if (iter == rt_rq)
253 continue;
254
255 spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
256 /*
257 * Either all rqs have inf runtime and there's nothing to steal
258 * or __disable_runtime() below sets a specific rq to inf to
259 * indicate its been disabled and disalow stealing.
260 */
7def2be1
PZ
261 if (iter->rt_runtime == RUNTIME_INF)
262 goto next;
263
78333cdd
PZ
264 /*
265 * From runqueues with spare time, take 1/n part of their
266 * spare time, but no more than our period.
267 */
ac086bc2
PZ
268 diff = iter->rt_runtime - iter->rt_time;
269 if (diff > 0) {
58838cf3 270 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
271 if (rt_rq->rt_runtime + diff > rt_period)
272 diff = rt_period - rt_rq->rt_runtime;
273 iter->rt_runtime -= diff;
274 rt_rq->rt_runtime += diff;
275 more = 1;
276 if (rt_rq->rt_runtime == rt_period) {
277 spin_unlock(&iter->rt_runtime_lock);
278 break;
279 }
280 }
7def2be1 281next:
ac086bc2
PZ
282 spin_unlock(&iter->rt_runtime_lock);
283 }
284 spin_unlock(&rt_b->rt_runtime_lock);
285
286 return more;
287}
7def2be1 288
78333cdd
PZ
289/*
290 * Ensure this RQ takes back all the runtime it lend to its neighbours.
291 */
7def2be1
PZ
292static void __disable_runtime(struct rq *rq)
293{
294 struct root_domain *rd = rq->rd;
295 struct rt_rq *rt_rq;
296
297 if (unlikely(!scheduler_running))
298 return;
299
300 for_each_leaf_rt_rq(rt_rq, rq) {
301 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
302 s64 want;
303 int i;
304
305 spin_lock(&rt_b->rt_runtime_lock);
306 spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
307 /*
308 * Either we're all inf and nobody needs to borrow, or we're
309 * already disabled and thus have nothing to do, or we have
310 * exactly the right amount of runtime to take out.
311 */
7def2be1
PZ
312 if (rt_rq->rt_runtime == RUNTIME_INF ||
313 rt_rq->rt_runtime == rt_b->rt_runtime)
314 goto balanced;
315 spin_unlock(&rt_rq->rt_runtime_lock);
316
78333cdd
PZ
317 /*
318 * Calculate the difference between what we started out with
319 * and what we current have, that's the amount of runtime
320 * we lend and now have to reclaim.
321 */
7def2be1
PZ
322 want = rt_b->rt_runtime - rt_rq->rt_runtime;
323
78333cdd
PZ
324 /*
325 * Greedy reclaim, take back as much as we can.
326 */
c6c4927b 327 for_each_cpu(i, rd->span) {
7def2be1
PZ
328 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
329 s64 diff;
330
78333cdd
PZ
331 /*
332 * Can't reclaim from ourselves or disabled runqueues.
333 */
f1679d08 334 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
335 continue;
336
337 spin_lock(&iter->rt_runtime_lock);
338 if (want > 0) {
339 diff = min_t(s64, iter->rt_runtime, want);
340 iter->rt_runtime -= diff;
341 want -= diff;
342 } else {
343 iter->rt_runtime -= want;
344 want -= want;
345 }
346 spin_unlock(&iter->rt_runtime_lock);
347
348 if (!want)
349 break;
350 }
351
352 spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
353 /*
354 * We cannot be left wanting - that would mean some runtime
355 * leaked out of the system.
356 */
7def2be1
PZ
357 BUG_ON(want);
358balanced:
78333cdd
PZ
359 /*
360 * Disable all the borrow logic by pretending we have inf
361 * runtime - in which case borrowing doesn't make sense.
362 */
7def2be1
PZ
363 rt_rq->rt_runtime = RUNTIME_INF;
364 spin_unlock(&rt_rq->rt_runtime_lock);
365 spin_unlock(&rt_b->rt_runtime_lock);
366 }
367}
368
369static void disable_runtime(struct rq *rq)
370{
371 unsigned long flags;
372
373 spin_lock_irqsave(&rq->lock, flags);
374 __disable_runtime(rq);
375 spin_unlock_irqrestore(&rq->lock, flags);
376}
377
378static void __enable_runtime(struct rq *rq)
379{
7def2be1
PZ
380 struct rt_rq *rt_rq;
381
382 if (unlikely(!scheduler_running))
383 return;
384
78333cdd
PZ
385 /*
386 * Reset each runqueue's bandwidth settings
387 */
7def2be1
PZ
388 for_each_leaf_rt_rq(rt_rq, rq) {
389 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
390
391 spin_lock(&rt_b->rt_runtime_lock);
392 spin_lock(&rt_rq->rt_runtime_lock);
393 rt_rq->rt_runtime = rt_b->rt_runtime;
394 rt_rq->rt_time = 0;
baf25731 395 rt_rq->rt_throttled = 0;
7def2be1
PZ
396 spin_unlock(&rt_rq->rt_runtime_lock);
397 spin_unlock(&rt_b->rt_runtime_lock);
398 }
399}
400
401static void enable_runtime(struct rq *rq)
402{
403 unsigned long flags;
404
405 spin_lock_irqsave(&rq->lock, flags);
406 __enable_runtime(rq);
407 spin_unlock_irqrestore(&rq->lock, flags);
408}
409
eff6549b
PZ
410static int balance_runtime(struct rt_rq *rt_rq)
411{
412 int more = 0;
413
414 if (rt_rq->rt_time > rt_rq->rt_runtime) {
415 spin_unlock(&rt_rq->rt_runtime_lock);
416 more = do_balance_runtime(rt_rq);
417 spin_lock(&rt_rq->rt_runtime_lock);
418 }
419
420 return more;
421}
55e12e5e 422#else /* !CONFIG_SMP */
eff6549b
PZ
423static inline int balance_runtime(struct rt_rq *rt_rq)
424{
425 return 0;
426}
55e12e5e 427#endif /* CONFIG_SMP */
ac086bc2 428
eff6549b
PZ
429static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
430{
431 int i, idle = 1;
c6c4927b 432 const struct cpumask *span;
eff6549b 433
0b148fa0 434 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
eff6549b
PZ
435 return 1;
436
437 span = sched_rt_period_mask();
c6c4927b 438 for_each_cpu(i, span) {
eff6549b
PZ
439 int enqueue = 0;
440 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
441 struct rq *rq = rq_of_rt_rq(rt_rq);
442
443 spin_lock(&rq->lock);
444 if (rt_rq->rt_time) {
445 u64 runtime;
446
447 spin_lock(&rt_rq->rt_runtime_lock);
448 if (rt_rq->rt_throttled)
449 balance_runtime(rt_rq);
450 runtime = rt_rq->rt_runtime;
451 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
452 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
453 rt_rq->rt_throttled = 0;
454 enqueue = 1;
455 }
456 if (rt_rq->rt_time || rt_rq->rt_nr_running)
457 idle = 0;
458 spin_unlock(&rt_rq->rt_runtime_lock);
6c3df255
PZ
459 } else if (rt_rq->rt_nr_running)
460 idle = 0;
eff6549b
PZ
461
462 if (enqueue)
463 sched_rt_rq_enqueue(rt_rq);
464 spin_unlock(&rq->lock);
465 }
466
467 return idle;
468}
ac086bc2 469
6f505b16
PZ
470static inline int rt_se_prio(struct sched_rt_entity *rt_se)
471{
052f1dc7 472#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
473 struct rt_rq *rt_rq = group_rt_rq(rt_se);
474
475 if (rt_rq)
e864c499 476 return rt_rq->highest_prio.curr;
6f505b16
PZ
477#endif
478
479 return rt_task_of(rt_se)->prio;
480}
481
9f0c1e56 482static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 483{
9f0c1e56 484 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 485
fa85ae24 486 if (rt_rq->rt_throttled)
23b0fdfc 487 return rt_rq_throttled(rt_rq);
fa85ae24 488
ac086bc2
PZ
489 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
490 return 0;
491
b79f3833
PZ
492 balance_runtime(rt_rq);
493 runtime = sched_rt_runtime(rt_rq);
494 if (runtime == RUNTIME_INF)
495 return 0;
ac086bc2 496
9f0c1e56 497 if (rt_rq->rt_time > runtime) {
6f505b16 498 rt_rq->rt_throttled = 1;
23b0fdfc 499 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 500 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
501 return 1;
502 }
fa85ae24
PZ
503 }
504
505 return 0;
506}
507
bb44e5d1
IM
508/*
509 * Update the current task's runtime statistics. Skip current tasks that
510 * are not in our scheduling class.
511 */
a9957449 512static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
513{
514 struct task_struct *curr = rq->curr;
6f505b16
PZ
515 struct sched_rt_entity *rt_se = &curr->rt;
516 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
517 u64 delta_exec;
518
519 if (!task_has_rt_policy(curr))
520 return;
521
d281918d 522 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
523 if (unlikely((s64)delta_exec < 0))
524 delta_exec = 0;
6cfb0d5d
IM
525
526 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
527
528 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
529 account_group_exec_runtime(curr, delta_exec);
530
d281918d 531 curr->se.exec_start = rq->clock;
d842de87 532 cpuacct_charge(curr, delta_exec);
fa85ae24 533
0b148fa0
PZ
534 if (!rt_bandwidth_enabled())
535 return;
536
354d60c2
DG
537 for_each_sched_rt_entity(rt_se) {
538 rt_rq = rt_rq_of_se(rt_se);
539
cc2991cf 540 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
e113a745 541 spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
542 rt_rq->rt_time += delta_exec;
543 if (sched_rt_runtime_exceeded(rt_rq))
544 resched_task(curr);
e113a745 545 spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 546 }
354d60c2 547 }
bb44e5d1
IM
548}
549
e864c499
GH
550#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
551
552static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
553
554static inline int next_prio(struct rq *rq)
555{
556 struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
557
558 if (next && rt_prio(next->prio))
559 return next->prio;
560 else
561 return MAX_RT_PRIO;
562}
563#endif
564
6f505b16
PZ
565static inline
566void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 567{
4d984277 568 int prio = rt_se_prio(rt_se);
577b4a58 569#ifdef CONFIG_SMP
4d984277 570 struct rq *rq = rq_of_rt_rq(rt_rq);
577b4a58 571#endif
1f11eb6a 572
4d984277
GH
573 WARN_ON(!rt_prio(prio));
574 rt_rq->rt_nr_running++;
575#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 576 if (prio < rt_rq->highest_prio.curr) {
4d984277 577
e864c499
GH
578 /*
579 * If the new task is higher in priority than anything on the
580 * run-queue, we have a new high that must be published to
581 * the world. We also know that the previous high becomes
582 * our next-highest.
583 */
584 rt_rq->highest_prio.next = rt_rq->highest_prio.curr;
585 rt_rq->highest_prio.curr = prio;
1100ac91 586#ifdef CONFIG_SMP
1f11eb6a 587 if (rq->online)
4d984277 588 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1100ac91 589#endif
e864c499
GH
590 } else if (prio == rt_rq->highest_prio.curr)
591 /*
592 * If the next task is equal in priority to the highest on
593 * the run-queue, then we implicitly know that the next highest
594 * task cannot be any lower than current
595 */
596 rt_rq->highest_prio.next = prio;
597 else if (prio < rt_rq->highest_prio.next)
598 /*
599 * Otherwise, we need to recompute next-highest
600 */
601 rt_rq->highest_prio.next = next_prio(rq);
6f505b16 602#endif
764a9d6f 603#ifdef CONFIG_SMP
4d984277 604 if (rt_se->nr_cpus_allowed > 1)
73fe6aae
GH
605 rq->rt.rt_nr_migratory++;
606
4d984277 607 update_rt_migration(rq);
6f505b16 608#endif
052f1dc7 609#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
610 if (rt_se_boosted(rt_se))
611 rt_rq->rt_nr_boosted++;
d0b27fa7
PZ
612
613 if (rt_rq->tg)
614 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
615#else
616 start_rt_bandwidth(&def_rt_bandwidth);
23b0fdfc 617#endif
63489e45
SR
618}
619
6f505b16
PZ
620static inline
621void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 622{
6e0534f2 623#ifdef CONFIG_SMP
4d984277 624 struct rq *rq = rq_of_rt_rq(rt_rq);
e864c499 625 int highest_prio = rt_rq->highest_prio.curr;
6e0534f2
GH
626#endif
627
6f505b16
PZ
628 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
629 WARN_ON(!rt_rq->rt_nr_running);
630 rt_rq->rt_nr_running--;
052f1dc7 631#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16 632 if (rt_rq->rt_nr_running) {
e864c499
GH
633 int prio = rt_se_prio(rt_se);
634
635 WARN_ON(prio < rt_rq->highest_prio.curr);
764a9d6f 636
e864c499
GH
637 /*
638 * This may have been our highest or next-highest priority
639 * task and therefore we may have some recomputation to do
640 */
641 if (prio == rt_rq->highest_prio.curr) {
642 struct rt_prio_array *array = &rt_rq->active;
643
644 rt_rq->highest_prio.curr =
764a9d6f 645 sched_find_first_bit(array->bitmap);
e864c499
GH
646 }
647
648 if (prio <= rt_rq->highest_prio.next)
649 rt_rq->highest_prio.next = next_prio(rq);
764a9d6f 650 } else
e864c499 651 rt_rq->highest_prio.curr = MAX_RT_PRIO;
6f505b16
PZ
652#endif
653#ifdef CONFIG_SMP
4d984277 654 if (rt_se->nr_cpus_allowed > 1)
73fe6aae
GH
655 rq->rt.rt_nr_migratory--;
656
e864c499
GH
657 if (rq->online && rt_rq->highest_prio.curr != highest_prio)
658 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
6e0534f2 659
4d984277 660 update_rt_migration(rq);
764a9d6f 661#endif /* CONFIG_SMP */
052f1dc7 662#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
663 if (rt_se_boosted(rt_se))
664 rt_rq->rt_nr_boosted--;
665
666 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
667#endif
63489e45
SR
668}
669
ad2a3f13 670static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
bb44e5d1 671{
6f505b16
PZ
672 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
673 struct rt_prio_array *array = &rt_rq->active;
674 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 675 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 676
ad2a3f13
PZ
677 /*
678 * Don't enqueue the group if its throttled, or when empty.
679 * The latter is a consequence of the former when a child group
680 * get throttled and the current group doesn't have any other
681 * active members.
682 */
683 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 684 return;
63489e45 685
7ebefa8c 686 list_add_tail(&rt_se->run_list, queue);
6f505b16 687 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 688
6f505b16
PZ
689 inc_rt_tasks(rt_se, rt_rq);
690}
691
ad2a3f13 692static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
693{
694 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
695 struct rt_prio_array *array = &rt_rq->active;
696
697 list_del_init(&rt_se->run_list);
698 if (list_empty(array->queue + rt_se_prio(rt_se)))
699 __clear_bit(rt_se_prio(rt_se), array->bitmap);
700
701 dec_rt_tasks(rt_se, rt_rq);
702}
703
704/*
705 * Because the prio of an upper entry depends on the lower
706 * entries, we must remove entries top - down.
6f505b16 707 */
ad2a3f13 708static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 709{
ad2a3f13 710 struct sched_rt_entity *back = NULL;
6f505b16 711
58d6c2d7
PZ
712 for_each_sched_rt_entity(rt_se) {
713 rt_se->back = back;
714 back = rt_se;
715 }
716
717 for (rt_se = back; rt_se; rt_se = rt_se->back) {
718 if (on_rt_rq(rt_se))
ad2a3f13
PZ
719 __dequeue_rt_entity(rt_se);
720 }
721}
722
723static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
724{
725 dequeue_rt_stack(rt_se);
726 for_each_sched_rt_entity(rt_se)
727 __enqueue_rt_entity(rt_se);
728}
729
730static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
731{
732 dequeue_rt_stack(rt_se);
733
734 for_each_sched_rt_entity(rt_se) {
735 struct rt_rq *rt_rq = group_rt_rq(rt_se);
736
737 if (rt_rq && rt_rq->rt_nr_running)
738 __enqueue_rt_entity(rt_se);
58d6c2d7 739 }
bb44e5d1
IM
740}
741
742/*
743 * Adding/removing a task to/from a priority array:
744 */
6f505b16
PZ
745static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
746{
747 struct sched_rt_entity *rt_se = &p->rt;
748
749 if (wakeup)
750 rt_se->timeout = 0;
751
ad2a3f13 752 enqueue_rt_entity(rt_se);
c09595f6
PZ
753
754 inc_cpu_load(rq, p->se.load.weight);
6f505b16
PZ
755}
756
f02231e5 757static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1 758{
6f505b16 759 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 760
f1e14ef6 761 update_curr_rt(rq);
ad2a3f13 762 dequeue_rt_entity(rt_se);
c09595f6
PZ
763
764 dec_cpu_load(rq, p->se.load.weight);
bb44e5d1
IM
765}
766
767/*
768 * Put task to the end of the run list without the overhead of dequeue
769 * followed by enqueue.
770 */
7ebefa8c
DA
771static void
772requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 773{
1cdad715 774 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
775 struct rt_prio_array *array = &rt_rq->active;
776 struct list_head *queue = array->queue + rt_se_prio(rt_se);
777
778 if (head)
779 list_move(&rt_se->run_list, queue);
780 else
781 list_move_tail(&rt_se->run_list, queue);
1cdad715 782 }
6f505b16
PZ
783}
784
7ebefa8c 785static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 786{
6f505b16
PZ
787 struct sched_rt_entity *rt_se = &p->rt;
788 struct rt_rq *rt_rq;
bb44e5d1 789
6f505b16
PZ
790 for_each_sched_rt_entity(rt_se) {
791 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 792 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 793 }
bb44e5d1
IM
794}
795
6f505b16 796static void yield_task_rt(struct rq *rq)
bb44e5d1 797{
7ebefa8c 798 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
799}
800
e7693a36 801#ifdef CONFIG_SMP
318e0893
GH
802static int find_lowest_rq(struct task_struct *task);
803
e7693a36
GH
804static int select_task_rq_rt(struct task_struct *p, int sync)
805{
318e0893
GH
806 struct rq *rq = task_rq(p);
807
808 /*
e1f47d89
SR
809 * If the current task is an RT task, then
810 * try to see if we can wake this RT task up on another
811 * runqueue. Otherwise simply start this RT task
812 * on its current runqueue.
813 *
814 * We want to avoid overloading runqueues. Even if
815 * the RT task is of higher priority than the current RT task.
816 * RT tasks behave differently than other tasks. If
817 * one gets preempted, we try to push it off to another queue.
818 * So trying to keep a preempting RT task on the same
819 * cache hot CPU will force the running RT task to
820 * a cold CPU. So we waste all the cache for the lower
821 * RT task in hopes of saving some of a RT task
822 * that is just being woken and probably will have
823 * cold cache anyway.
318e0893 824 */
17b3279b 825 if (unlikely(rt_task(rq->curr)) &&
6f505b16 826 (p->rt.nr_cpus_allowed > 1)) {
318e0893
GH
827 int cpu = find_lowest_rq(p);
828
829 return (cpu == -1) ? task_cpu(p) : cpu;
830 }
831
832 /*
833 * Otherwise, just let it ride on the affined RQ and the
834 * post-schedule router will push the preempted task away
835 */
e7693a36
GH
836 return task_cpu(p);
837}
7ebefa8c
DA
838
839static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
840{
24600ce8 841 cpumask_var_t mask;
7ebefa8c
DA
842
843 if (rq->curr->rt.nr_cpus_allowed == 1)
844 return;
845
24600ce8 846 if (!alloc_cpumask_var(&mask, GFP_ATOMIC))
7ebefa8c
DA
847 return;
848
24600ce8
RR
849 if (p->rt.nr_cpus_allowed != 1
850 && cpupri_find(&rq->rd->cpupri, p, mask))
851 goto free;
852
853 if (!cpupri_find(&rq->rd->cpupri, rq->curr, mask))
854 goto free;
7ebefa8c
DA
855
856 /*
857 * There appears to be other cpus that can accept
858 * current and none to run 'p', so lets reschedule
859 * to try and push current away:
860 */
861 requeue_task_rt(rq, p, 1);
862 resched_task(rq->curr);
24600ce8
RR
863free:
864 free_cpumask_var(mask);
7ebefa8c
DA
865}
866
e7693a36
GH
867#endif /* CONFIG_SMP */
868
bb44e5d1
IM
869/*
870 * Preempt the current task with a newly woken task if needed:
871 */
15afe09b 872static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
bb44e5d1 873{
45c01e82 874 if (p->prio < rq->curr->prio) {
bb44e5d1 875 resched_task(rq->curr);
45c01e82
GH
876 return;
877 }
878
879#ifdef CONFIG_SMP
880 /*
881 * If:
882 *
883 * - the newly woken task is of equal priority to the current task
884 * - the newly woken task is non-migratable while current is migratable
885 * - current will be preempted on the next reschedule
886 *
887 * we should check to see if current can readily move to a different
888 * cpu. If so, we will reschedule to allow the push logic to try
889 * to move current somewhere else, making room for our non-migratable
890 * task.
891 */
7ebefa8c
DA
892 if (p->prio == rq->curr->prio && !need_resched())
893 check_preempt_equal_prio(rq, p);
45c01e82 894#endif
bb44e5d1
IM
895}
896
6f505b16
PZ
897static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
898 struct rt_rq *rt_rq)
bb44e5d1 899{
6f505b16
PZ
900 struct rt_prio_array *array = &rt_rq->active;
901 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
902 struct list_head *queue;
903 int idx;
904
905 idx = sched_find_first_bit(array->bitmap);
6f505b16 906 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
907
908 queue = array->queue + idx;
6f505b16 909 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 910
6f505b16
PZ
911 return next;
912}
bb44e5d1 913
6f505b16
PZ
914static struct task_struct *pick_next_task_rt(struct rq *rq)
915{
916 struct sched_rt_entity *rt_se;
917 struct task_struct *p;
918 struct rt_rq *rt_rq;
bb44e5d1 919
6f505b16
PZ
920 rt_rq = &rq->rt;
921
922 if (unlikely(!rt_rq->rt_nr_running))
923 return NULL;
924
23b0fdfc 925 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
926 return NULL;
927
928 do {
929 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 930 BUG_ON(!rt_se);
6f505b16
PZ
931 rt_rq = group_rt_rq(rt_se);
932 } while (rt_rq);
933
934 p = rt_task_of(rt_se);
935 p->se.exec_start = rq->clock;
936 return p;
bb44e5d1
IM
937}
938
31ee529c 939static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 940{
f1e14ef6 941 update_curr_rt(rq);
bb44e5d1
IM
942 p->se.exec_start = 0;
943}
944
681f3e68 945#ifdef CONFIG_SMP
6f505b16 946
e8fa1362
SR
947/* Only try algorithms three times */
948#define RT_MAX_TRIES 3
949
e8fa1362
SR
950static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
951
f65eda4f
SR
952static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
953{
954 if (!task_running(rq, p) &&
96f874e2 955 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
6f505b16 956 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
957 return 1;
958 return 0;
959}
960
e8fa1362 961/* Return the second highest RT task, NULL otherwise */
79064fbf 962static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 963{
6f505b16
PZ
964 struct task_struct *next = NULL;
965 struct sched_rt_entity *rt_se;
966 struct rt_prio_array *array;
967 struct rt_rq *rt_rq;
e8fa1362
SR
968 int idx;
969
6f505b16
PZ
970 for_each_leaf_rt_rq(rt_rq, rq) {
971 array = &rt_rq->active;
972 idx = sched_find_first_bit(array->bitmap);
973 next_idx:
974 if (idx >= MAX_RT_PRIO)
975 continue;
976 if (next && next->prio < idx)
977 continue;
978 list_for_each_entry(rt_se, array->queue + idx, run_list) {
979 struct task_struct *p = rt_task_of(rt_se);
980 if (pick_rt_task(rq, p, cpu)) {
981 next = p;
982 break;
983 }
984 }
985 if (!next) {
986 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
987 goto next_idx;
988 }
f65eda4f
SR
989 }
990
e8fa1362
SR
991 return next;
992}
993
0e3900e6 994static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 995
6e1254d2
GH
996static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
997{
998 int first;
999
1000 /* "this_cpu" is cheaper to preempt than a remote processor */
1001 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
1002 return this_cpu;
1003
1004 first = first_cpu(*mask);
1005 if (first != NR_CPUS)
1006 return first;
1007
1008 return -1;
1009}
1010
1011static int find_lowest_rq(struct task_struct *task)
1012{
1013 struct sched_domain *sd;
96f874e2 1014 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
6e1254d2
GH
1015 int this_cpu = smp_processor_id();
1016 int cpu = task_cpu(task);
06f90dbd 1017
6e0534f2
GH
1018 if (task->rt.nr_cpus_allowed == 1)
1019 return -1; /* No other targets possible */
6e1254d2 1020
6e0534f2
GH
1021 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1022 return -1; /* No targets found */
6e1254d2 1023
e761b772
MK
1024 /*
1025 * Only consider CPUs that are usable for migration.
1026 * I guess we might want to change cpupri_find() to ignore those
1027 * in the first place.
1028 */
96f874e2 1029 cpumask_and(lowest_mask, lowest_mask, cpu_active_mask);
e761b772 1030
6e1254d2
GH
1031 /*
1032 * At this point we have built a mask of cpus representing the
1033 * lowest priority tasks in the system. Now we want to elect
1034 * the best one based on our affinity and topology.
1035 *
1036 * We prioritize the last cpu that the task executed on since
1037 * it is most likely cache-hot in that location.
1038 */
96f874e2 1039 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1040 return cpu;
1041
1042 /*
1043 * Otherwise, we consult the sched_domains span maps to figure
1044 * out which cpu is logically closest to our hot cache data.
1045 */
1046 if (this_cpu == cpu)
1047 this_cpu = -1; /* Skip this_cpu opt if the same */
1048
1049 for_each_domain(cpu, sd) {
1050 if (sd->flags & SD_WAKE_AFFINE) {
1051 cpumask_t domain_mask;
1052 int best_cpu;
1053
758b2cdc
RR
1054 cpumask_and(&domain_mask, sched_domain_span(sd),
1055 lowest_mask);
6e1254d2
GH
1056
1057 best_cpu = pick_optimal_cpu(this_cpu,
1058 &domain_mask);
1059 if (best_cpu != -1)
1060 return best_cpu;
1061 }
1062 }
1063
1064 /*
1065 * And finally, if there were no matches within the domains
1066 * just give the caller *something* to work with from the compatible
1067 * locations.
1068 */
1069 return pick_optimal_cpu(this_cpu, lowest_mask);
07b4032c
GH
1070}
1071
1072/* Will lock the rq it finds */
4df64c0b 1073static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1074{
1075 struct rq *lowest_rq = NULL;
07b4032c 1076 int tries;
4df64c0b 1077 int cpu;
e8fa1362 1078
07b4032c
GH
1079 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1080 cpu = find_lowest_rq(task);
1081
2de0b463 1082 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1083 break;
1084
07b4032c
GH
1085 lowest_rq = cpu_rq(cpu);
1086
e8fa1362 1087 /* if the prio of this runqueue changed, try again */
07b4032c 1088 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1089 /*
1090 * We had to unlock the run queue. In
1091 * the mean time, task could have
1092 * migrated already or had its affinity changed.
1093 * Also make sure that it wasn't scheduled on its rq.
1094 */
07b4032c 1095 if (unlikely(task_rq(task) != rq ||
96f874e2
RR
1096 !cpumask_test_cpu(lowest_rq->cpu,
1097 &task->cpus_allowed) ||
07b4032c 1098 task_running(rq, task) ||
e8fa1362 1099 !task->se.on_rq)) {
4df64c0b 1100
e8fa1362
SR
1101 spin_unlock(&lowest_rq->lock);
1102 lowest_rq = NULL;
1103 break;
1104 }
1105 }
1106
1107 /* If this rq is still suitable use it. */
e864c499 1108 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1109 break;
1110
1111 /* try again */
1b12bbc7 1112 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1113 lowest_rq = NULL;
1114 }
1115
1116 return lowest_rq;
1117}
1118
1119/*
1120 * If the current CPU has more than one RT task, see if the non
1121 * running task can migrate over to a CPU that is running a task
1122 * of lesser priority.
1123 */
697f0a48 1124static int push_rt_task(struct rq *rq)
e8fa1362
SR
1125{
1126 struct task_struct *next_task;
1127 struct rq *lowest_rq;
1128 int ret = 0;
1129 int paranoid = RT_MAX_TRIES;
1130
a22d7fc1
GH
1131 if (!rq->rt.overloaded)
1132 return 0;
1133
697f0a48 1134 next_task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
1135 if (!next_task)
1136 return 0;
1137
1138 retry:
697f0a48 1139 if (unlikely(next_task == rq->curr)) {
f65eda4f 1140 WARN_ON(1);
e8fa1362 1141 return 0;
f65eda4f 1142 }
e8fa1362
SR
1143
1144 /*
1145 * It's possible that the next_task slipped in of
1146 * higher priority than current. If that's the case
1147 * just reschedule current.
1148 */
697f0a48
GH
1149 if (unlikely(next_task->prio < rq->curr->prio)) {
1150 resched_task(rq->curr);
e8fa1362
SR
1151 return 0;
1152 }
1153
697f0a48 1154 /* We might release rq lock */
e8fa1362
SR
1155 get_task_struct(next_task);
1156
1157 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1158 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1159 if (!lowest_rq) {
1160 struct task_struct *task;
1161 /*
697f0a48 1162 * find lock_lowest_rq releases rq->lock
e8fa1362
SR
1163 * so it is possible that next_task has changed.
1164 * If it has, then try again.
1165 */
697f0a48 1166 task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
1167 if (unlikely(task != next_task) && task && paranoid--) {
1168 put_task_struct(next_task);
1169 next_task = task;
1170 goto retry;
1171 }
1172 goto out;
1173 }
1174
697f0a48 1175 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1176 set_task_cpu(next_task, lowest_rq->cpu);
1177 activate_task(lowest_rq, next_task, 0);
1178
1179 resched_task(lowest_rq->curr);
1180
1b12bbc7 1181 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1182
1183 ret = 1;
1184out:
1185 put_task_struct(next_task);
1186
1187 return ret;
1188}
1189
1190/*
1191 * TODO: Currently we just use the second highest prio task on
1192 * the queue, and stop when it can't migrate (or there's
1193 * no more RT tasks). There may be a case where a lower
1194 * priority RT task has a different affinity than the
1195 * higher RT task. In this case the lower RT task could
1196 * possibly be able to migrate where as the higher priority
1197 * RT task could not. We currently ignore this issue.
1198 * Enhancements are welcome!
1199 */
1200static void push_rt_tasks(struct rq *rq)
1201{
1202 /* push_rt_task will return true if it moved an RT */
1203 while (push_rt_task(rq))
1204 ;
1205}
1206
f65eda4f
SR
1207static int pull_rt_task(struct rq *this_rq)
1208{
80bf3171 1209 int this_cpu = this_rq->cpu, ret = 0, cpu;
a8728944 1210 struct task_struct *p;
f65eda4f 1211 struct rq *src_rq;
f65eda4f 1212
637f5085 1213 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1214 return 0;
1215
c6c4927b 1216 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1217 if (this_cpu == cpu)
1218 continue;
1219
1220 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1221
1222 /*
1223 * Don't bother taking the src_rq->lock if the next highest
1224 * task is known to be lower-priority than our current task.
1225 * This may look racy, but if this value is about to go
1226 * logically higher, the src_rq will push this task away.
1227 * And if its going logically lower, we do not care
1228 */
1229 if (src_rq->rt.highest_prio.next >=
1230 this_rq->rt.highest_prio.curr)
1231 continue;
1232
f65eda4f
SR
1233 /*
1234 * We can potentially drop this_rq's lock in
1235 * double_lock_balance, and another CPU could
a8728944 1236 * alter this_rq
f65eda4f 1237 */
a8728944 1238 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
1239
1240 /*
1241 * Are there still pullable RT tasks?
1242 */
614ee1f6
MG
1243 if (src_rq->rt.rt_nr_running <= 1)
1244 goto skip;
f65eda4f 1245
f65eda4f
SR
1246 p = pick_next_highest_task_rt(src_rq, this_cpu);
1247
1248 /*
1249 * Do we have an RT task that preempts
1250 * the to-be-scheduled task?
1251 */
a8728944 1252 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f
SR
1253 WARN_ON(p == src_rq->curr);
1254 WARN_ON(!p->se.on_rq);
1255
1256 /*
1257 * There's a chance that p is higher in priority
1258 * than what's currently running on its cpu.
1259 * This is just that p is wakeing up and hasn't
1260 * had a chance to schedule. We only pull
1261 * p if it is lower in priority than the
a8728944 1262 * current task on the run queue
f65eda4f 1263 */
a8728944 1264 if (p->prio < src_rq->curr->prio)
614ee1f6 1265 goto skip;
f65eda4f
SR
1266
1267 ret = 1;
1268
1269 deactivate_task(src_rq, p, 0);
1270 set_task_cpu(p, this_cpu);
1271 activate_task(this_rq, p, 0);
1272 /*
1273 * We continue with the search, just in
1274 * case there's an even higher prio task
1275 * in another runqueue. (low likelyhood
1276 * but possible)
f65eda4f 1277 */
f65eda4f 1278 }
614ee1f6 1279 skip:
1b12bbc7 1280 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1281 }
1282
1283 return ret;
1284}
1285
9a897c5a 1286static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1287{
1288 /* Try to pull RT tasks here if we lower this rq's prio */
e864c499 1289 if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
f65eda4f
SR
1290 pull_rt_task(rq);
1291}
1292
967fc046
GH
1293/*
1294 * assumes rq->lock is held
1295 */
1296static int needs_post_schedule_rt(struct rq *rq)
1297{
1298 return rq->rt.overloaded ? 1 : 0;
1299}
1300
9a897c5a 1301static void post_schedule_rt(struct rq *rq)
e8fa1362
SR
1302{
1303 /*
967fc046
GH
1304 * This is only called if needs_post_schedule_rt() indicates that
1305 * we need to push tasks away
e8fa1362 1306 */
967fc046
GH
1307 spin_lock_irq(&rq->lock);
1308 push_rt_tasks(rq);
1309 spin_unlock_irq(&rq->lock);
e8fa1362
SR
1310}
1311
8ae121ac
GH
1312/*
1313 * If we are not running and we are not going to reschedule soon, we should
1314 * try to push tasks away now
1315 */
9a897c5a 1316static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
4642dafd 1317{
9a897c5a 1318 if (!task_running(rq, p) &&
8ae121ac 1319 !test_tsk_need_resched(rq->curr) &&
777c2f38
GH
1320 rq->rt.overloaded &&
1321 p->rt.nr_cpus_allowed > 1)
4642dafd
SR
1322 push_rt_tasks(rq);
1323}
1324
43010659 1325static unsigned long
bb44e5d1 1326load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
1327 unsigned long max_load_move,
1328 struct sched_domain *sd, enum cpu_idle_type idle,
1329 int *all_pinned, int *this_best_prio)
bb44e5d1 1330{
c7a1e46a
SR
1331 /* don't touch RT tasks */
1332 return 0;
e1d1484f
PW
1333}
1334
1335static int
1336move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1337 struct sched_domain *sd, enum cpu_idle_type idle)
1338{
c7a1e46a
SR
1339 /* don't touch RT tasks */
1340 return 0;
bb44e5d1 1341}
deeeccd4 1342
cd8ba7cd 1343static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 1344 const struct cpumask *new_mask)
73fe6aae 1345{
96f874e2 1346 int weight = cpumask_weight(new_mask);
73fe6aae
GH
1347
1348 BUG_ON(!rt_task(p));
1349
1350 /*
1351 * Update the migration status of the RQ if we have an RT task
1352 * which is running AND changing its weight value.
1353 */
6f505b16 1354 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1355 struct rq *rq = task_rq(p);
1356
6f505b16 1357 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1358 rq->rt.rt_nr_migratory++;
6f505b16 1359 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1360 BUG_ON(!rq->rt.rt_nr_migratory);
1361 rq->rt.rt_nr_migratory--;
1362 }
1363
1364 update_rt_migration(rq);
1365 }
1366
96f874e2 1367 cpumask_copy(&p->cpus_allowed, new_mask);
6f505b16 1368 p->rt.nr_cpus_allowed = weight;
73fe6aae 1369}
deeeccd4 1370
bdd7c81b 1371/* Assumes rq->lock is held */
1f11eb6a 1372static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1373{
1374 if (rq->rt.overloaded)
1375 rt_set_overload(rq);
6e0534f2 1376
7def2be1
PZ
1377 __enable_runtime(rq);
1378
e864c499 1379 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
1380}
1381
1382/* Assumes rq->lock is held */
1f11eb6a 1383static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1384{
1385 if (rq->rt.overloaded)
1386 rt_clear_overload(rq);
6e0534f2 1387
7def2be1
PZ
1388 __disable_runtime(rq);
1389
6e0534f2 1390 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1391}
cb469845
SR
1392
1393/*
1394 * When switch from the rt queue, we bring ourselves to a position
1395 * that we might want to pull RT tasks from other runqueues.
1396 */
1397static void switched_from_rt(struct rq *rq, struct task_struct *p,
1398 int running)
1399{
1400 /*
1401 * If there are other RT tasks then we will reschedule
1402 * and the scheduling of the other RT tasks will handle
1403 * the balancing. But if we are the last RT task
1404 * we may need to handle the pulling of RT tasks
1405 * now.
1406 */
1407 if (!rq->rt.rt_nr_running)
1408 pull_rt_task(rq);
1409}
3d8cbdf8
RR
1410
1411static inline void init_sched_rt_class(void)
1412{
1413 unsigned int i;
1414
1415 for_each_possible_cpu(i)
1416 alloc_cpumask_var(&per_cpu(local_cpu_mask, i), GFP_KERNEL);
1417}
cb469845
SR
1418#endif /* CONFIG_SMP */
1419
1420/*
1421 * When switching a task to RT, we may overload the runqueue
1422 * with RT tasks. In this case we try to push them off to
1423 * other runqueues.
1424 */
1425static void switched_to_rt(struct rq *rq, struct task_struct *p,
1426 int running)
1427{
1428 int check_resched = 1;
1429
1430 /*
1431 * If we are already running, then there's nothing
1432 * that needs to be done. But if we are not running
1433 * we may need to preempt the current running task.
1434 * If that current running task is also an RT task
1435 * then see if we can move to another run queue.
1436 */
1437 if (!running) {
1438#ifdef CONFIG_SMP
1439 if (rq->rt.overloaded && push_rt_task(rq) &&
1440 /* Don't resched if we changed runqueues */
1441 rq != task_rq(p))
1442 check_resched = 0;
1443#endif /* CONFIG_SMP */
1444 if (check_resched && p->prio < rq->curr->prio)
1445 resched_task(rq->curr);
1446 }
1447}
1448
1449/*
1450 * Priority of the task has changed. This may cause
1451 * us to initiate a push or pull.
1452 */
1453static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1454 int oldprio, int running)
1455{
1456 if (running) {
1457#ifdef CONFIG_SMP
1458 /*
1459 * If our priority decreases while running, we
1460 * may need to pull tasks to this runqueue.
1461 */
1462 if (oldprio < p->prio)
1463 pull_rt_task(rq);
1464 /*
1465 * If there's a higher priority task waiting to run
6fa46fa5
SR
1466 * then reschedule. Note, the above pull_rt_task
1467 * can release the rq lock and p could migrate.
1468 * Only reschedule if p is still on the same runqueue.
cb469845 1469 */
e864c499 1470 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
cb469845
SR
1471 resched_task(p);
1472#else
1473 /* For UP simply resched on drop of prio */
1474 if (oldprio < p->prio)
1475 resched_task(p);
e8fa1362 1476#endif /* CONFIG_SMP */
cb469845
SR
1477 } else {
1478 /*
1479 * This task is not running, but if it is
1480 * greater than the current running task
1481 * then reschedule.
1482 */
1483 if (p->prio < rq->curr->prio)
1484 resched_task(rq->curr);
1485 }
1486}
1487
78f2c7db
PZ
1488static void watchdog(struct rq *rq, struct task_struct *p)
1489{
1490 unsigned long soft, hard;
1491
1492 if (!p->signal)
1493 return;
1494
1495 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1496 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1497
1498 if (soft != RLIM_INFINITY) {
1499 unsigned long next;
1500
1501 p->rt.timeout++;
1502 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1503 if (p->rt.timeout > next)
f06febc9 1504 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
1505 }
1506}
bb44e5d1 1507
8f4d37ec 1508static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1509{
67e2be02
PZ
1510 update_curr_rt(rq);
1511
78f2c7db
PZ
1512 watchdog(rq, p);
1513
bb44e5d1
IM
1514 /*
1515 * RR tasks need a special form of timeslice management.
1516 * FIFO tasks have no timeslices.
1517 */
1518 if (p->policy != SCHED_RR)
1519 return;
1520
fa717060 1521 if (--p->rt.time_slice)
bb44e5d1
IM
1522 return;
1523
fa717060 1524 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1525
98fbc798
DA
1526 /*
1527 * Requeue to the end of queue if we are not the only element
1528 * on the queue:
1529 */
fa717060 1530 if (p->rt.run_list.prev != p->rt.run_list.next) {
7ebefa8c 1531 requeue_task_rt(rq, p, 0);
98fbc798
DA
1532 set_tsk_need_resched(p);
1533 }
bb44e5d1
IM
1534}
1535
83b699ed
SV
1536static void set_curr_task_rt(struct rq *rq)
1537{
1538 struct task_struct *p = rq->curr;
1539
1540 p->se.exec_start = rq->clock;
1541}
1542
2abdad0a 1543static const struct sched_class rt_sched_class = {
5522d5d5 1544 .next = &fair_sched_class,
bb44e5d1
IM
1545 .enqueue_task = enqueue_task_rt,
1546 .dequeue_task = dequeue_task_rt,
1547 .yield_task = yield_task_rt,
1548
1549 .check_preempt_curr = check_preempt_curr_rt,
1550
1551 .pick_next_task = pick_next_task_rt,
1552 .put_prev_task = put_prev_task_rt,
1553
681f3e68 1554#ifdef CONFIG_SMP
4ce72a2c
LZ
1555 .select_task_rq = select_task_rq_rt,
1556
bb44e5d1 1557 .load_balance = load_balance_rt,
e1d1484f 1558 .move_one_task = move_one_task_rt,
73fe6aae 1559 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1560 .rq_online = rq_online_rt,
1561 .rq_offline = rq_offline_rt,
9a897c5a 1562 .pre_schedule = pre_schedule_rt,
967fc046 1563 .needs_post_schedule = needs_post_schedule_rt,
9a897c5a
SR
1564 .post_schedule = post_schedule_rt,
1565 .task_wake_up = task_wake_up_rt,
cb469845 1566 .switched_from = switched_from_rt,
681f3e68 1567#endif
bb44e5d1 1568
83b699ed 1569 .set_curr_task = set_curr_task_rt,
bb44e5d1 1570 .task_tick = task_tick_rt,
cb469845
SR
1571
1572 .prio_changed = prio_changed_rt,
1573 .switched_to = switched_to_rt,
bb44e5d1 1574};
ada18de2
PZ
1575
1576#ifdef CONFIG_SCHED_DEBUG
1577extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1578
1579static void print_rt_stats(struct seq_file *m, int cpu)
1580{
1581 struct rt_rq *rt_rq;
1582
1583 rcu_read_lock();
1584 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1585 print_rt_rq(m, cpu, rt_rq);
1586 rcu_read_unlock();
1587}
55e12e5e 1588#endif /* CONFIG_SCHED_DEBUG */
0e3900e6 1589