sched: fix build error in kernel/sched_rt.c when RT_GROUP_SCHED && !SMP
[linux-block.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
398a153b
GH
6static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
7{
8 return container_of(rt_se, struct task_struct, rt);
9}
10
11#ifdef CONFIG_RT_GROUP_SCHED
12
13static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
14{
15 return rt_rq->rq;
16}
17
18static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
19{
20 return rt_se->rt_rq;
21}
22
23#else /* CONFIG_RT_GROUP_SCHED */
24
25static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
26{
27 return container_of(rt_rq, struct rq, rt);
28}
29
30static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
31{
32 struct task_struct *p = rt_task_of(rt_se);
33 struct rq *rq = task_rq(p);
34
35 return &rq->rt;
36}
37
38#endif /* CONFIG_RT_GROUP_SCHED */
39
4fd29176 40#ifdef CONFIG_SMP
84de4274 41
637f5085 42static inline int rt_overloaded(struct rq *rq)
4fd29176 43{
637f5085 44 return atomic_read(&rq->rd->rto_count);
4fd29176 45}
84de4274 46
4fd29176
SR
47static inline void rt_set_overload(struct rq *rq)
48{
1f11eb6a
GH
49 if (!rq->online)
50 return;
51
c6c4927b 52 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
53 /*
54 * Make sure the mask is visible before we set
55 * the overload count. That is checked to determine
56 * if we should look at the mask. It would be a shame
57 * if we looked at the mask, but the mask was not
58 * updated yet.
59 */
60 wmb();
637f5085 61 atomic_inc(&rq->rd->rto_count);
4fd29176 62}
84de4274 63
4fd29176
SR
64static inline void rt_clear_overload(struct rq *rq)
65{
1f11eb6a
GH
66 if (!rq->online)
67 return;
68
4fd29176 69 /* the order here really doesn't matter */
637f5085 70 atomic_dec(&rq->rd->rto_count);
c6c4927b 71 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 72}
73fe6aae 73
398a153b 74static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 75{
398a153b
GH
76 if (rt_rq->rt_nr_migratory && (rt_rq->rt_nr_running > 1)) {
77 if (!rt_rq->overloaded) {
78 rt_set_overload(rq_of_rt_rq(rt_rq));
79 rt_rq->overloaded = 1;
cdc8eb98 80 }
398a153b
GH
81 } else if (rt_rq->overloaded) {
82 rt_clear_overload(rq_of_rt_rq(rt_rq));
83 rt_rq->overloaded = 0;
637f5085 84 }
73fe6aae 85}
917b627d 86
398a153b
GH
87static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
88{
89 if (rt_se->nr_cpus_allowed > 1)
90 rt_rq->rt_nr_migratory++;
91
92 update_rt_migration(rt_rq);
93}
94
95static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
96{
97 if (rt_se->nr_cpus_allowed > 1)
98 rt_rq->rt_nr_migratory--;
99
100 update_rt_migration(rt_rq);
101}
102
917b627d
GH
103static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
104{
105 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
106 plist_node_init(&p->pushable_tasks, p->prio);
107 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
108}
109
110static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
111{
112 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
113}
114
115#else
116
b07430ac
GH
117static inline
118void enqueue_pushable_task(struct rq *rq, struct task_struct *p) {}
119static inline
120void dequeue_pushable_task(struct rq *rq, struct task_struct *p) {}
398a153b
GH
121static inline
122void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
123static inline
124void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
917b627d 125
4fd29176
SR
126#endif /* CONFIG_SMP */
127
6f505b16
PZ
128static inline int on_rt_rq(struct sched_rt_entity *rt_se)
129{
130 return !list_empty(&rt_se->run_list);
131}
132
052f1dc7 133#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 134
9f0c1e56 135static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
136{
137 if (!rt_rq->tg)
9f0c1e56 138 return RUNTIME_INF;
6f505b16 139
ac086bc2
PZ
140 return rt_rq->rt_runtime;
141}
142
143static inline u64 sched_rt_period(struct rt_rq *rt_rq)
144{
145 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
146}
147
148#define for_each_leaf_rt_rq(rt_rq, rq) \
80f40ee4 149 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
6f505b16 150
6f505b16
PZ
151#define for_each_sched_rt_entity(rt_se) \
152 for (; rt_se; rt_se = rt_se->parent)
153
154static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
155{
156 return rt_se->my_q;
157}
158
159static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
160static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
161
9f0c1e56 162static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 163{
f6121f4f 164 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
6f505b16
PZ
165 struct sched_rt_entity *rt_se = rt_rq->rt_se;
166
f6121f4f
DF
167 if (rt_rq->rt_nr_running) {
168 if (rt_se && !on_rt_rq(rt_se))
169 enqueue_rt_entity(rt_se);
e864c499 170 if (rt_rq->highest_prio.curr < curr->prio)
1020387f 171 resched_task(curr);
6f505b16
PZ
172 }
173}
174
9f0c1e56 175static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
176{
177 struct sched_rt_entity *rt_se = rt_rq->rt_se;
178
179 if (rt_se && on_rt_rq(rt_se))
180 dequeue_rt_entity(rt_se);
181}
182
23b0fdfc
PZ
183static inline int rt_rq_throttled(struct rt_rq *rt_rq)
184{
185 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
186}
187
188static int rt_se_boosted(struct sched_rt_entity *rt_se)
189{
190 struct rt_rq *rt_rq = group_rt_rq(rt_se);
191 struct task_struct *p;
192
193 if (rt_rq)
194 return !!rt_rq->rt_nr_boosted;
195
196 p = rt_task_of(rt_se);
197 return p->prio != p->normal_prio;
198}
199
d0b27fa7 200#ifdef CONFIG_SMP
c6c4927b 201static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7
PZ
202{
203 return cpu_rq(smp_processor_id())->rd->span;
204}
6f505b16 205#else
c6c4927b 206static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 207{
c6c4927b 208 return cpu_online_mask;
d0b27fa7
PZ
209}
210#endif
6f505b16 211
d0b27fa7
PZ
212static inline
213struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 214{
d0b27fa7
PZ
215 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
216}
9f0c1e56 217
ac086bc2
PZ
218static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
219{
220 return &rt_rq->tg->rt_bandwidth;
221}
222
55e12e5e 223#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
224
225static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
226{
ac086bc2
PZ
227 return rt_rq->rt_runtime;
228}
229
230static inline u64 sched_rt_period(struct rt_rq *rt_rq)
231{
232 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
233}
234
235#define for_each_leaf_rt_rq(rt_rq, rq) \
236 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
237
6f505b16
PZ
238#define for_each_sched_rt_entity(rt_se) \
239 for (; rt_se; rt_se = NULL)
240
241static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
242{
243 return NULL;
244}
245
9f0c1e56 246static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 247{
f3ade837
JB
248 if (rt_rq->rt_nr_running)
249 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
250}
251
9f0c1e56 252static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
253{
254}
255
23b0fdfc
PZ
256static inline int rt_rq_throttled(struct rt_rq *rt_rq)
257{
258 return rt_rq->rt_throttled;
259}
d0b27fa7 260
c6c4927b 261static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 262{
c6c4927b 263 return cpu_online_mask;
d0b27fa7
PZ
264}
265
266static inline
267struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
268{
269 return &cpu_rq(cpu)->rt;
270}
271
ac086bc2
PZ
272static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
273{
274 return &def_rt_bandwidth;
275}
276
55e12e5e 277#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 278
ac086bc2 279#ifdef CONFIG_SMP
78333cdd
PZ
280/*
281 * We ran out of runtime, see if we can borrow some from our neighbours.
282 */
b79f3833 283static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
284{
285 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
286 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
287 int i, weight, more = 0;
288 u64 rt_period;
289
c6c4927b 290 weight = cpumask_weight(rd->span);
ac086bc2
PZ
291
292 spin_lock(&rt_b->rt_runtime_lock);
293 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 294 for_each_cpu(i, rd->span) {
ac086bc2
PZ
295 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
296 s64 diff;
297
298 if (iter == rt_rq)
299 continue;
300
301 spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
302 /*
303 * Either all rqs have inf runtime and there's nothing to steal
304 * or __disable_runtime() below sets a specific rq to inf to
305 * indicate its been disabled and disalow stealing.
306 */
7def2be1
PZ
307 if (iter->rt_runtime == RUNTIME_INF)
308 goto next;
309
78333cdd
PZ
310 /*
311 * From runqueues with spare time, take 1/n part of their
312 * spare time, but no more than our period.
313 */
ac086bc2
PZ
314 diff = iter->rt_runtime - iter->rt_time;
315 if (diff > 0) {
58838cf3 316 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
317 if (rt_rq->rt_runtime + diff > rt_period)
318 diff = rt_period - rt_rq->rt_runtime;
319 iter->rt_runtime -= diff;
320 rt_rq->rt_runtime += diff;
321 more = 1;
322 if (rt_rq->rt_runtime == rt_period) {
323 spin_unlock(&iter->rt_runtime_lock);
324 break;
325 }
326 }
7def2be1 327next:
ac086bc2
PZ
328 spin_unlock(&iter->rt_runtime_lock);
329 }
330 spin_unlock(&rt_b->rt_runtime_lock);
331
332 return more;
333}
7def2be1 334
78333cdd
PZ
335/*
336 * Ensure this RQ takes back all the runtime it lend to its neighbours.
337 */
7def2be1
PZ
338static void __disable_runtime(struct rq *rq)
339{
340 struct root_domain *rd = rq->rd;
341 struct rt_rq *rt_rq;
342
343 if (unlikely(!scheduler_running))
344 return;
345
346 for_each_leaf_rt_rq(rt_rq, rq) {
347 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
348 s64 want;
349 int i;
350
351 spin_lock(&rt_b->rt_runtime_lock);
352 spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
353 /*
354 * Either we're all inf and nobody needs to borrow, or we're
355 * already disabled and thus have nothing to do, or we have
356 * exactly the right amount of runtime to take out.
357 */
7def2be1
PZ
358 if (rt_rq->rt_runtime == RUNTIME_INF ||
359 rt_rq->rt_runtime == rt_b->rt_runtime)
360 goto balanced;
361 spin_unlock(&rt_rq->rt_runtime_lock);
362
78333cdd
PZ
363 /*
364 * Calculate the difference between what we started out with
365 * and what we current have, that's the amount of runtime
366 * we lend and now have to reclaim.
367 */
7def2be1
PZ
368 want = rt_b->rt_runtime - rt_rq->rt_runtime;
369
78333cdd
PZ
370 /*
371 * Greedy reclaim, take back as much as we can.
372 */
c6c4927b 373 for_each_cpu(i, rd->span) {
7def2be1
PZ
374 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
375 s64 diff;
376
78333cdd
PZ
377 /*
378 * Can't reclaim from ourselves or disabled runqueues.
379 */
f1679d08 380 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
381 continue;
382
383 spin_lock(&iter->rt_runtime_lock);
384 if (want > 0) {
385 diff = min_t(s64, iter->rt_runtime, want);
386 iter->rt_runtime -= diff;
387 want -= diff;
388 } else {
389 iter->rt_runtime -= want;
390 want -= want;
391 }
392 spin_unlock(&iter->rt_runtime_lock);
393
394 if (!want)
395 break;
396 }
397
398 spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
399 /*
400 * We cannot be left wanting - that would mean some runtime
401 * leaked out of the system.
402 */
7def2be1
PZ
403 BUG_ON(want);
404balanced:
78333cdd
PZ
405 /*
406 * Disable all the borrow logic by pretending we have inf
407 * runtime - in which case borrowing doesn't make sense.
408 */
7def2be1
PZ
409 rt_rq->rt_runtime = RUNTIME_INF;
410 spin_unlock(&rt_rq->rt_runtime_lock);
411 spin_unlock(&rt_b->rt_runtime_lock);
412 }
413}
414
415static void disable_runtime(struct rq *rq)
416{
417 unsigned long flags;
418
419 spin_lock_irqsave(&rq->lock, flags);
420 __disable_runtime(rq);
421 spin_unlock_irqrestore(&rq->lock, flags);
422}
423
424static void __enable_runtime(struct rq *rq)
425{
7def2be1
PZ
426 struct rt_rq *rt_rq;
427
428 if (unlikely(!scheduler_running))
429 return;
430
78333cdd
PZ
431 /*
432 * Reset each runqueue's bandwidth settings
433 */
7def2be1
PZ
434 for_each_leaf_rt_rq(rt_rq, rq) {
435 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
436
437 spin_lock(&rt_b->rt_runtime_lock);
438 spin_lock(&rt_rq->rt_runtime_lock);
439 rt_rq->rt_runtime = rt_b->rt_runtime;
440 rt_rq->rt_time = 0;
baf25731 441 rt_rq->rt_throttled = 0;
7def2be1
PZ
442 spin_unlock(&rt_rq->rt_runtime_lock);
443 spin_unlock(&rt_b->rt_runtime_lock);
444 }
445}
446
447static void enable_runtime(struct rq *rq)
448{
449 unsigned long flags;
450
451 spin_lock_irqsave(&rq->lock, flags);
452 __enable_runtime(rq);
453 spin_unlock_irqrestore(&rq->lock, flags);
454}
455
eff6549b
PZ
456static int balance_runtime(struct rt_rq *rt_rq)
457{
458 int more = 0;
459
460 if (rt_rq->rt_time > rt_rq->rt_runtime) {
461 spin_unlock(&rt_rq->rt_runtime_lock);
462 more = do_balance_runtime(rt_rq);
463 spin_lock(&rt_rq->rt_runtime_lock);
464 }
465
466 return more;
467}
55e12e5e 468#else /* !CONFIG_SMP */
eff6549b
PZ
469static inline int balance_runtime(struct rt_rq *rt_rq)
470{
471 return 0;
472}
55e12e5e 473#endif /* CONFIG_SMP */
ac086bc2 474
eff6549b
PZ
475static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
476{
477 int i, idle = 1;
c6c4927b 478 const struct cpumask *span;
eff6549b 479
0b148fa0 480 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
eff6549b
PZ
481 return 1;
482
483 span = sched_rt_period_mask();
c6c4927b 484 for_each_cpu(i, span) {
eff6549b
PZ
485 int enqueue = 0;
486 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
487 struct rq *rq = rq_of_rt_rq(rt_rq);
488
489 spin_lock(&rq->lock);
490 if (rt_rq->rt_time) {
491 u64 runtime;
492
493 spin_lock(&rt_rq->rt_runtime_lock);
494 if (rt_rq->rt_throttled)
495 balance_runtime(rt_rq);
496 runtime = rt_rq->rt_runtime;
497 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
498 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
499 rt_rq->rt_throttled = 0;
500 enqueue = 1;
501 }
502 if (rt_rq->rt_time || rt_rq->rt_nr_running)
503 idle = 0;
504 spin_unlock(&rt_rq->rt_runtime_lock);
6c3df255
PZ
505 } else if (rt_rq->rt_nr_running)
506 idle = 0;
eff6549b
PZ
507
508 if (enqueue)
509 sched_rt_rq_enqueue(rt_rq);
510 spin_unlock(&rq->lock);
511 }
512
513 return idle;
514}
ac086bc2 515
6f505b16
PZ
516static inline int rt_se_prio(struct sched_rt_entity *rt_se)
517{
052f1dc7 518#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
519 struct rt_rq *rt_rq = group_rt_rq(rt_se);
520
521 if (rt_rq)
e864c499 522 return rt_rq->highest_prio.curr;
6f505b16
PZ
523#endif
524
525 return rt_task_of(rt_se)->prio;
526}
527
9f0c1e56 528static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 529{
9f0c1e56 530 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 531
fa85ae24 532 if (rt_rq->rt_throttled)
23b0fdfc 533 return rt_rq_throttled(rt_rq);
fa85ae24 534
ac086bc2
PZ
535 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
536 return 0;
537
b79f3833
PZ
538 balance_runtime(rt_rq);
539 runtime = sched_rt_runtime(rt_rq);
540 if (runtime == RUNTIME_INF)
541 return 0;
ac086bc2 542
9f0c1e56 543 if (rt_rq->rt_time > runtime) {
6f505b16 544 rt_rq->rt_throttled = 1;
23b0fdfc 545 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 546 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
547 return 1;
548 }
fa85ae24
PZ
549 }
550
551 return 0;
552}
553
bb44e5d1
IM
554/*
555 * Update the current task's runtime statistics. Skip current tasks that
556 * are not in our scheduling class.
557 */
a9957449 558static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
559{
560 struct task_struct *curr = rq->curr;
6f505b16
PZ
561 struct sched_rt_entity *rt_se = &curr->rt;
562 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
563 u64 delta_exec;
564
565 if (!task_has_rt_policy(curr))
566 return;
567
d281918d 568 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
569 if (unlikely((s64)delta_exec < 0))
570 delta_exec = 0;
6cfb0d5d
IM
571
572 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
573
574 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
575 account_group_exec_runtime(curr, delta_exec);
576
d281918d 577 curr->se.exec_start = rq->clock;
d842de87 578 cpuacct_charge(curr, delta_exec);
fa85ae24 579
0b148fa0
PZ
580 if (!rt_bandwidth_enabled())
581 return;
582
354d60c2
DG
583 for_each_sched_rt_entity(rt_se) {
584 rt_rq = rt_rq_of_se(rt_se);
585
cc2991cf 586 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
e113a745 587 spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
588 rt_rq->rt_time += delta_exec;
589 if (sched_rt_runtime_exceeded(rt_rq))
590 resched_task(curr);
e113a745 591 spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 592 }
354d60c2 593 }
bb44e5d1
IM
594}
595
398a153b 596#if defined CONFIG_SMP
e864c499
GH
597
598static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
599
600static inline int next_prio(struct rq *rq)
601{
602 struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
603
604 if (next && rt_prio(next->prio))
605 return next->prio;
606 else
607 return MAX_RT_PRIO;
608}
e864c499 609
398a153b
GH
610static void
611inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 612{
4d984277 613 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 614
398a153b 615 if (prio < prev_prio) {
4d984277 616
e864c499
GH
617 /*
618 * If the new task is higher in priority than anything on the
398a153b
GH
619 * run-queue, we know that the previous high becomes our
620 * next-highest.
e864c499 621 */
398a153b
GH
622 rt_rq->highest_prio.next = prev_prio;
623
1f11eb6a 624 if (rq->online)
4d984277 625 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
398a153b 626
e864c499
GH
627 } else if (prio == rt_rq->highest_prio.curr)
628 /*
629 * If the next task is equal in priority to the highest on
630 * the run-queue, then we implicitly know that the next highest
631 * task cannot be any lower than current
632 */
633 rt_rq->highest_prio.next = prio;
634 else if (prio < rt_rq->highest_prio.next)
635 /*
636 * Otherwise, we need to recompute next-highest
637 */
638 rt_rq->highest_prio.next = next_prio(rq);
398a153b 639}
73fe6aae 640
398a153b
GH
641static void
642dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
643{
644 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 645
398a153b
GH
646 if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
647 rt_rq->highest_prio.next = next_prio(rq);
648
649 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
650 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
651}
652
398a153b
GH
653#else /* CONFIG_SMP */
654
6f505b16 655static inline
398a153b
GH
656void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
657static inline
658void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
659
660#endif /* CONFIG_SMP */
6e0534f2 661
052f1dc7 662#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
663static void
664inc_rt_prio(struct rt_rq *rt_rq, int prio)
665{
666 int prev_prio = rt_rq->highest_prio.curr;
667
668 if (prio < prev_prio)
669 rt_rq->highest_prio.curr = prio;
670
671 inc_rt_prio_smp(rt_rq, prio, prev_prio);
672}
673
674static void
675dec_rt_prio(struct rt_rq *rt_rq, int prio)
676{
677 int prev_prio = rt_rq->highest_prio.curr;
678
6f505b16 679 if (rt_rq->rt_nr_running) {
764a9d6f 680
398a153b 681 WARN_ON(prio < prev_prio);
764a9d6f 682
e864c499 683 /*
398a153b
GH
684 * This may have been our highest task, and therefore
685 * we may have some recomputation to do
e864c499 686 */
398a153b 687 if (prio == prev_prio) {
e864c499
GH
688 struct rt_prio_array *array = &rt_rq->active;
689
690 rt_rq->highest_prio.curr =
764a9d6f 691 sched_find_first_bit(array->bitmap);
e864c499
GH
692 }
693
764a9d6f 694 } else
e864c499 695 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 696
398a153b
GH
697 dec_rt_prio_smp(rt_rq, prio, prev_prio);
698}
699
700#else
701
702static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
703static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
704
705#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1f11eb6a 706
052f1dc7 707#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
708
709static void
710inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
711{
712 if (rt_se_boosted(rt_se))
713 rt_rq->rt_nr_boosted++;
714
715 if (rt_rq->tg)
716 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
717}
718
719static void
720dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
721{
23b0fdfc
PZ
722 if (rt_se_boosted(rt_se))
723 rt_rq->rt_nr_boosted--;
724
725 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
726}
727
728#else /* CONFIG_RT_GROUP_SCHED */
729
730static void
731inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
732{
733 start_rt_bandwidth(&def_rt_bandwidth);
734}
735
736static inline
737void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
738
739#endif /* CONFIG_RT_GROUP_SCHED */
740
741static inline
742void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
743{
744 int prio = rt_se_prio(rt_se);
745
746 WARN_ON(!rt_prio(prio));
747 rt_rq->rt_nr_running++;
748
749 inc_rt_prio(rt_rq, prio);
750 inc_rt_migration(rt_se, rt_rq);
751 inc_rt_group(rt_se, rt_rq);
752}
753
754static inline
755void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
756{
757 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
758 WARN_ON(!rt_rq->rt_nr_running);
759 rt_rq->rt_nr_running--;
760
761 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
762 dec_rt_migration(rt_se, rt_rq);
763 dec_rt_group(rt_se, rt_rq);
63489e45
SR
764}
765
ad2a3f13 766static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
bb44e5d1 767{
6f505b16
PZ
768 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
769 struct rt_prio_array *array = &rt_rq->active;
770 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 771 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 772
ad2a3f13
PZ
773 /*
774 * Don't enqueue the group if its throttled, or when empty.
775 * The latter is a consequence of the former when a child group
776 * get throttled and the current group doesn't have any other
777 * active members.
778 */
779 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 780 return;
63489e45 781
7ebefa8c 782 list_add_tail(&rt_se->run_list, queue);
6f505b16 783 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 784
6f505b16
PZ
785 inc_rt_tasks(rt_se, rt_rq);
786}
787
ad2a3f13 788static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
789{
790 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
791 struct rt_prio_array *array = &rt_rq->active;
792
793 list_del_init(&rt_se->run_list);
794 if (list_empty(array->queue + rt_se_prio(rt_se)))
795 __clear_bit(rt_se_prio(rt_se), array->bitmap);
796
797 dec_rt_tasks(rt_se, rt_rq);
798}
799
800/*
801 * Because the prio of an upper entry depends on the lower
802 * entries, we must remove entries top - down.
6f505b16 803 */
ad2a3f13 804static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 805{
ad2a3f13 806 struct sched_rt_entity *back = NULL;
6f505b16 807
58d6c2d7
PZ
808 for_each_sched_rt_entity(rt_se) {
809 rt_se->back = back;
810 back = rt_se;
811 }
812
813 for (rt_se = back; rt_se; rt_se = rt_se->back) {
814 if (on_rt_rq(rt_se))
ad2a3f13
PZ
815 __dequeue_rt_entity(rt_se);
816 }
817}
818
819static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
820{
821 dequeue_rt_stack(rt_se);
822 for_each_sched_rt_entity(rt_se)
823 __enqueue_rt_entity(rt_se);
824}
825
826static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
827{
828 dequeue_rt_stack(rt_se);
829
830 for_each_sched_rt_entity(rt_se) {
831 struct rt_rq *rt_rq = group_rt_rq(rt_se);
832
833 if (rt_rq && rt_rq->rt_nr_running)
834 __enqueue_rt_entity(rt_se);
58d6c2d7 835 }
bb44e5d1
IM
836}
837
838/*
839 * Adding/removing a task to/from a priority array:
840 */
6f505b16
PZ
841static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
842{
843 struct sched_rt_entity *rt_se = &p->rt;
844
845 if (wakeup)
846 rt_se->timeout = 0;
847
ad2a3f13 848 enqueue_rt_entity(rt_se);
c09595f6 849
917b627d
GH
850 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
851 enqueue_pushable_task(rq, p);
852
c09595f6 853 inc_cpu_load(rq, p->se.load.weight);
6f505b16
PZ
854}
855
f02231e5 856static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1 857{
6f505b16 858 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 859
f1e14ef6 860 update_curr_rt(rq);
ad2a3f13 861 dequeue_rt_entity(rt_se);
c09595f6 862
917b627d
GH
863 dequeue_pushable_task(rq, p);
864
c09595f6 865 dec_cpu_load(rq, p->se.load.weight);
bb44e5d1
IM
866}
867
868/*
869 * Put task to the end of the run list without the overhead of dequeue
870 * followed by enqueue.
871 */
7ebefa8c
DA
872static void
873requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 874{
1cdad715 875 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
876 struct rt_prio_array *array = &rt_rq->active;
877 struct list_head *queue = array->queue + rt_se_prio(rt_se);
878
879 if (head)
880 list_move(&rt_se->run_list, queue);
881 else
882 list_move_tail(&rt_se->run_list, queue);
1cdad715 883 }
6f505b16
PZ
884}
885
7ebefa8c 886static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 887{
6f505b16
PZ
888 struct sched_rt_entity *rt_se = &p->rt;
889 struct rt_rq *rt_rq;
bb44e5d1 890
6f505b16
PZ
891 for_each_sched_rt_entity(rt_se) {
892 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 893 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 894 }
bb44e5d1
IM
895}
896
6f505b16 897static void yield_task_rt(struct rq *rq)
bb44e5d1 898{
7ebefa8c 899 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
900}
901
e7693a36 902#ifdef CONFIG_SMP
318e0893
GH
903static int find_lowest_rq(struct task_struct *task);
904
e7693a36
GH
905static int select_task_rq_rt(struct task_struct *p, int sync)
906{
318e0893
GH
907 struct rq *rq = task_rq(p);
908
909 /*
e1f47d89
SR
910 * If the current task is an RT task, then
911 * try to see if we can wake this RT task up on another
912 * runqueue. Otherwise simply start this RT task
913 * on its current runqueue.
914 *
915 * We want to avoid overloading runqueues. Even if
916 * the RT task is of higher priority than the current RT task.
917 * RT tasks behave differently than other tasks. If
918 * one gets preempted, we try to push it off to another queue.
919 * So trying to keep a preempting RT task on the same
920 * cache hot CPU will force the running RT task to
921 * a cold CPU. So we waste all the cache for the lower
922 * RT task in hopes of saving some of a RT task
923 * that is just being woken and probably will have
924 * cold cache anyway.
318e0893 925 */
17b3279b 926 if (unlikely(rt_task(rq->curr)) &&
6f505b16 927 (p->rt.nr_cpus_allowed > 1)) {
318e0893
GH
928 int cpu = find_lowest_rq(p);
929
930 return (cpu == -1) ? task_cpu(p) : cpu;
931 }
932
933 /*
934 * Otherwise, just let it ride on the affined RQ and the
935 * post-schedule router will push the preempted task away
936 */
e7693a36
GH
937 return task_cpu(p);
938}
7ebefa8c
DA
939
940static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
941{
24600ce8 942 cpumask_var_t mask;
7ebefa8c
DA
943
944 if (rq->curr->rt.nr_cpus_allowed == 1)
945 return;
946
24600ce8 947 if (!alloc_cpumask_var(&mask, GFP_ATOMIC))
7ebefa8c
DA
948 return;
949
24600ce8
RR
950 if (p->rt.nr_cpus_allowed != 1
951 && cpupri_find(&rq->rd->cpupri, p, mask))
952 goto free;
953
954 if (!cpupri_find(&rq->rd->cpupri, rq->curr, mask))
955 goto free;
7ebefa8c
DA
956
957 /*
958 * There appears to be other cpus that can accept
959 * current and none to run 'p', so lets reschedule
960 * to try and push current away:
961 */
962 requeue_task_rt(rq, p, 1);
963 resched_task(rq->curr);
24600ce8
RR
964free:
965 free_cpumask_var(mask);
7ebefa8c
DA
966}
967
e7693a36
GH
968#endif /* CONFIG_SMP */
969
bb44e5d1
IM
970/*
971 * Preempt the current task with a newly woken task if needed:
972 */
15afe09b 973static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
bb44e5d1 974{
45c01e82 975 if (p->prio < rq->curr->prio) {
bb44e5d1 976 resched_task(rq->curr);
45c01e82
GH
977 return;
978 }
979
980#ifdef CONFIG_SMP
981 /*
982 * If:
983 *
984 * - the newly woken task is of equal priority to the current task
985 * - the newly woken task is non-migratable while current is migratable
986 * - current will be preempted on the next reschedule
987 *
988 * we should check to see if current can readily move to a different
989 * cpu. If so, we will reschedule to allow the push logic to try
990 * to move current somewhere else, making room for our non-migratable
991 * task.
992 */
7ebefa8c
DA
993 if (p->prio == rq->curr->prio && !need_resched())
994 check_preempt_equal_prio(rq, p);
45c01e82 995#endif
bb44e5d1
IM
996}
997
6f505b16
PZ
998static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
999 struct rt_rq *rt_rq)
bb44e5d1 1000{
6f505b16
PZ
1001 struct rt_prio_array *array = &rt_rq->active;
1002 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1003 struct list_head *queue;
1004 int idx;
1005
1006 idx = sched_find_first_bit(array->bitmap);
6f505b16 1007 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1008
1009 queue = array->queue + idx;
6f505b16 1010 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1011
6f505b16
PZ
1012 return next;
1013}
bb44e5d1 1014
917b627d 1015static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1016{
1017 struct sched_rt_entity *rt_se;
1018 struct task_struct *p;
1019 struct rt_rq *rt_rq;
bb44e5d1 1020
6f505b16
PZ
1021 rt_rq = &rq->rt;
1022
1023 if (unlikely(!rt_rq->rt_nr_running))
1024 return NULL;
1025
23b0fdfc 1026 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
1027 return NULL;
1028
1029 do {
1030 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1031 BUG_ON(!rt_se);
6f505b16
PZ
1032 rt_rq = group_rt_rq(rt_se);
1033 } while (rt_rq);
1034
1035 p = rt_task_of(rt_se);
1036 p->se.exec_start = rq->clock;
917b627d
GH
1037
1038 return p;
1039}
1040
1041static struct task_struct *pick_next_task_rt(struct rq *rq)
1042{
1043 struct task_struct *p = _pick_next_task_rt(rq);
1044
1045 /* The running task is never eligible for pushing */
1046 if (p)
1047 dequeue_pushable_task(rq, p);
1048
6f505b16 1049 return p;
bb44e5d1
IM
1050}
1051
31ee529c 1052static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1053{
f1e14ef6 1054 update_curr_rt(rq);
bb44e5d1 1055 p->se.exec_start = 0;
917b627d
GH
1056
1057 /*
1058 * The previous task needs to be made eligible for pushing
1059 * if it is still active
1060 */
1061 if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
1062 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1063}
1064
681f3e68 1065#ifdef CONFIG_SMP
6f505b16 1066
e8fa1362
SR
1067/* Only try algorithms three times */
1068#define RT_MAX_TRIES 3
1069
e8fa1362
SR
1070static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1071
f65eda4f
SR
1072static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1073{
1074 if (!task_running(rq, p) &&
96f874e2 1075 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
6f505b16 1076 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
1077 return 1;
1078 return 0;
1079}
1080
e8fa1362 1081/* Return the second highest RT task, NULL otherwise */
79064fbf 1082static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 1083{
6f505b16
PZ
1084 struct task_struct *next = NULL;
1085 struct sched_rt_entity *rt_se;
1086 struct rt_prio_array *array;
1087 struct rt_rq *rt_rq;
e8fa1362
SR
1088 int idx;
1089
6f505b16
PZ
1090 for_each_leaf_rt_rq(rt_rq, rq) {
1091 array = &rt_rq->active;
1092 idx = sched_find_first_bit(array->bitmap);
1093 next_idx:
1094 if (idx >= MAX_RT_PRIO)
1095 continue;
1096 if (next && next->prio < idx)
1097 continue;
1098 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1099 struct task_struct *p = rt_task_of(rt_se);
1100 if (pick_rt_task(rq, p, cpu)) {
1101 next = p;
1102 break;
1103 }
1104 }
1105 if (!next) {
1106 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1107 goto next_idx;
1108 }
f65eda4f
SR
1109 }
1110
e8fa1362
SR
1111 return next;
1112}
1113
0e3900e6 1114static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1115
6e1254d2
GH
1116static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
1117{
1118 int first;
1119
1120 /* "this_cpu" is cheaper to preempt than a remote processor */
1121 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
1122 return this_cpu;
1123
1124 first = first_cpu(*mask);
1125 if (first != NR_CPUS)
1126 return first;
1127
1128 return -1;
1129}
1130
1131static int find_lowest_rq(struct task_struct *task)
1132{
1133 struct sched_domain *sd;
96f874e2 1134 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
6e1254d2
GH
1135 int this_cpu = smp_processor_id();
1136 int cpu = task_cpu(task);
06f90dbd 1137
6e0534f2
GH
1138 if (task->rt.nr_cpus_allowed == 1)
1139 return -1; /* No other targets possible */
6e1254d2 1140
6e0534f2
GH
1141 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1142 return -1; /* No targets found */
6e1254d2 1143
e761b772
MK
1144 /*
1145 * Only consider CPUs that are usable for migration.
1146 * I guess we might want to change cpupri_find() to ignore those
1147 * in the first place.
1148 */
96f874e2 1149 cpumask_and(lowest_mask, lowest_mask, cpu_active_mask);
e761b772 1150
6e1254d2
GH
1151 /*
1152 * At this point we have built a mask of cpus representing the
1153 * lowest priority tasks in the system. Now we want to elect
1154 * the best one based on our affinity and topology.
1155 *
1156 * We prioritize the last cpu that the task executed on since
1157 * it is most likely cache-hot in that location.
1158 */
96f874e2 1159 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1160 return cpu;
1161
1162 /*
1163 * Otherwise, we consult the sched_domains span maps to figure
1164 * out which cpu is logically closest to our hot cache data.
1165 */
1166 if (this_cpu == cpu)
1167 this_cpu = -1; /* Skip this_cpu opt if the same */
1168
1169 for_each_domain(cpu, sd) {
1170 if (sd->flags & SD_WAKE_AFFINE) {
1171 cpumask_t domain_mask;
1172 int best_cpu;
1173
758b2cdc
RR
1174 cpumask_and(&domain_mask, sched_domain_span(sd),
1175 lowest_mask);
6e1254d2
GH
1176
1177 best_cpu = pick_optimal_cpu(this_cpu,
1178 &domain_mask);
1179 if (best_cpu != -1)
1180 return best_cpu;
1181 }
1182 }
1183
1184 /*
1185 * And finally, if there were no matches within the domains
1186 * just give the caller *something* to work with from the compatible
1187 * locations.
1188 */
1189 return pick_optimal_cpu(this_cpu, lowest_mask);
07b4032c
GH
1190}
1191
1192/* Will lock the rq it finds */
4df64c0b 1193static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1194{
1195 struct rq *lowest_rq = NULL;
07b4032c 1196 int tries;
4df64c0b 1197 int cpu;
e8fa1362 1198
07b4032c
GH
1199 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1200 cpu = find_lowest_rq(task);
1201
2de0b463 1202 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1203 break;
1204
07b4032c
GH
1205 lowest_rq = cpu_rq(cpu);
1206
e8fa1362 1207 /* if the prio of this runqueue changed, try again */
07b4032c 1208 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1209 /*
1210 * We had to unlock the run queue. In
1211 * the mean time, task could have
1212 * migrated already or had its affinity changed.
1213 * Also make sure that it wasn't scheduled on its rq.
1214 */
07b4032c 1215 if (unlikely(task_rq(task) != rq ||
96f874e2
RR
1216 !cpumask_test_cpu(lowest_rq->cpu,
1217 &task->cpus_allowed) ||
07b4032c 1218 task_running(rq, task) ||
e8fa1362 1219 !task->se.on_rq)) {
4df64c0b 1220
e8fa1362
SR
1221 spin_unlock(&lowest_rq->lock);
1222 lowest_rq = NULL;
1223 break;
1224 }
1225 }
1226
1227 /* If this rq is still suitable use it. */
e864c499 1228 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1229 break;
1230
1231 /* try again */
1b12bbc7 1232 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1233 lowest_rq = NULL;
1234 }
1235
1236 return lowest_rq;
1237}
1238
917b627d
GH
1239static inline int has_pushable_tasks(struct rq *rq)
1240{
1241 return !plist_head_empty(&rq->rt.pushable_tasks);
1242}
1243
1244static struct task_struct *pick_next_pushable_task(struct rq *rq)
1245{
1246 struct task_struct *p;
1247
1248 if (!has_pushable_tasks(rq))
1249 return NULL;
1250
1251 p = plist_first_entry(&rq->rt.pushable_tasks,
1252 struct task_struct, pushable_tasks);
1253
1254 BUG_ON(rq->cpu != task_cpu(p));
1255 BUG_ON(task_current(rq, p));
1256 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1257
1258 BUG_ON(!p->se.on_rq);
1259 BUG_ON(!rt_task(p));
1260
1261 return p;
1262}
1263
e8fa1362
SR
1264/*
1265 * If the current CPU has more than one RT task, see if the non
1266 * running task can migrate over to a CPU that is running a task
1267 * of lesser priority.
1268 */
697f0a48 1269static int push_rt_task(struct rq *rq)
e8fa1362
SR
1270{
1271 struct task_struct *next_task;
1272 struct rq *lowest_rq;
e8fa1362 1273
a22d7fc1
GH
1274 if (!rq->rt.overloaded)
1275 return 0;
1276
917b627d 1277 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1278 if (!next_task)
1279 return 0;
1280
1281 retry:
697f0a48 1282 if (unlikely(next_task == rq->curr)) {
f65eda4f 1283 WARN_ON(1);
e8fa1362 1284 return 0;
f65eda4f 1285 }
e8fa1362
SR
1286
1287 /*
1288 * It's possible that the next_task slipped in of
1289 * higher priority than current. If that's the case
1290 * just reschedule current.
1291 */
697f0a48
GH
1292 if (unlikely(next_task->prio < rq->curr->prio)) {
1293 resched_task(rq->curr);
e8fa1362
SR
1294 return 0;
1295 }
1296
697f0a48 1297 /* We might release rq lock */
e8fa1362
SR
1298 get_task_struct(next_task);
1299
1300 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1301 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1302 if (!lowest_rq) {
1303 struct task_struct *task;
1304 /*
697f0a48 1305 * find lock_lowest_rq releases rq->lock
1563513d
GH
1306 * so it is possible that next_task has migrated.
1307 *
1308 * We need to make sure that the task is still on the same
1309 * run-queue and is also still the next task eligible for
1310 * pushing.
e8fa1362 1311 */
917b627d 1312 task = pick_next_pushable_task(rq);
1563513d
GH
1313 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1314 /*
1315 * If we get here, the task hasnt moved at all, but
1316 * it has failed to push. We will not try again,
1317 * since the other cpus will pull from us when they
1318 * are ready.
1319 */
1320 dequeue_pushable_task(rq, next_task);
1321 goto out;
e8fa1362 1322 }
917b627d 1323
1563513d
GH
1324 if (!task)
1325 /* No more tasks, just exit */
1326 goto out;
1327
917b627d 1328 /*
1563513d 1329 * Something has shifted, try again.
917b627d 1330 */
1563513d
GH
1331 put_task_struct(next_task);
1332 next_task = task;
1333 goto retry;
e8fa1362
SR
1334 }
1335
697f0a48 1336 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1337 set_task_cpu(next_task, lowest_rq->cpu);
1338 activate_task(lowest_rq, next_task, 0);
1339
1340 resched_task(lowest_rq->curr);
1341
1b12bbc7 1342 double_unlock_balance(rq, lowest_rq);
e8fa1362 1343
e8fa1362
SR
1344out:
1345 put_task_struct(next_task);
1346
917b627d 1347 return 1;
e8fa1362
SR
1348}
1349
e8fa1362
SR
1350static void push_rt_tasks(struct rq *rq)
1351{
1352 /* push_rt_task will return true if it moved an RT */
1353 while (push_rt_task(rq))
1354 ;
1355}
1356
f65eda4f
SR
1357static int pull_rt_task(struct rq *this_rq)
1358{
80bf3171 1359 int this_cpu = this_rq->cpu, ret = 0, cpu;
a8728944 1360 struct task_struct *p;
f65eda4f 1361 struct rq *src_rq;
f65eda4f 1362
637f5085 1363 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1364 return 0;
1365
c6c4927b 1366 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1367 if (this_cpu == cpu)
1368 continue;
1369
1370 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1371
1372 /*
1373 * Don't bother taking the src_rq->lock if the next highest
1374 * task is known to be lower-priority than our current task.
1375 * This may look racy, but if this value is about to go
1376 * logically higher, the src_rq will push this task away.
1377 * And if its going logically lower, we do not care
1378 */
1379 if (src_rq->rt.highest_prio.next >=
1380 this_rq->rt.highest_prio.curr)
1381 continue;
1382
f65eda4f
SR
1383 /*
1384 * We can potentially drop this_rq's lock in
1385 * double_lock_balance, and another CPU could
a8728944 1386 * alter this_rq
f65eda4f 1387 */
a8728944 1388 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
1389
1390 /*
1391 * Are there still pullable RT tasks?
1392 */
614ee1f6
MG
1393 if (src_rq->rt.rt_nr_running <= 1)
1394 goto skip;
f65eda4f 1395
f65eda4f
SR
1396 p = pick_next_highest_task_rt(src_rq, this_cpu);
1397
1398 /*
1399 * Do we have an RT task that preempts
1400 * the to-be-scheduled task?
1401 */
a8728944 1402 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f
SR
1403 WARN_ON(p == src_rq->curr);
1404 WARN_ON(!p->se.on_rq);
1405
1406 /*
1407 * There's a chance that p is higher in priority
1408 * than what's currently running on its cpu.
1409 * This is just that p is wakeing up and hasn't
1410 * had a chance to schedule. We only pull
1411 * p if it is lower in priority than the
a8728944 1412 * current task on the run queue
f65eda4f 1413 */
a8728944 1414 if (p->prio < src_rq->curr->prio)
614ee1f6 1415 goto skip;
f65eda4f
SR
1416
1417 ret = 1;
1418
1419 deactivate_task(src_rq, p, 0);
1420 set_task_cpu(p, this_cpu);
1421 activate_task(this_rq, p, 0);
1422 /*
1423 * We continue with the search, just in
1424 * case there's an even higher prio task
1425 * in another runqueue. (low likelyhood
1426 * but possible)
f65eda4f 1427 */
f65eda4f 1428 }
614ee1f6 1429 skip:
1b12bbc7 1430 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1431 }
1432
1433 return ret;
1434}
1435
9a897c5a 1436static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1437{
1438 /* Try to pull RT tasks here if we lower this rq's prio */
e864c499 1439 if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
f65eda4f
SR
1440 pull_rt_task(rq);
1441}
1442
967fc046
GH
1443/*
1444 * assumes rq->lock is held
1445 */
1446static int needs_post_schedule_rt(struct rq *rq)
1447{
917b627d 1448 return has_pushable_tasks(rq);
967fc046
GH
1449}
1450
9a897c5a 1451static void post_schedule_rt(struct rq *rq)
e8fa1362
SR
1452{
1453 /*
967fc046
GH
1454 * This is only called if needs_post_schedule_rt() indicates that
1455 * we need to push tasks away
e8fa1362 1456 */
967fc046
GH
1457 spin_lock_irq(&rq->lock);
1458 push_rt_tasks(rq);
1459 spin_unlock_irq(&rq->lock);
e8fa1362
SR
1460}
1461
8ae121ac
GH
1462/*
1463 * If we are not running and we are not going to reschedule soon, we should
1464 * try to push tasks away now
1465 */
9a897c5a 1466static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
4642dafd 1467{
9a897c5a 1468 if (!task_running(rq, p) &&
8ae121ac 1469 !test_tsk_need_resched(rq->curr) &&
917b627d 1470 has_pushable_tasks(rq) &&
777c2f38 1471 p->rt.nr_cpus_allowed > 1)
4642dafd
SR
1472 push_rt_tasks(rq);
1473}
1474
43010659 1475static unsigned long
bb44e5d1 1476load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
1477 unsigned long max_load_move,
1478 struct sched_domain *sd, enum cpu_idle_type idle,
1479 int *all_pinned, int *this_best_prio)
bb44e5d1 1480{
c7a1e46a
SR
1481 /* don't touch RT tasks */
1482 return 0;
e1d1484f
PW
1483}
1484
1485static int
1486move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1487 struct sched_domain *sd, enum cpu_idle_type idle)
1488{
c7a1e46a
SR
1489 /* don't touch RT tasks */
1490 return 0;
bb44e5d1 1491}
deeeccd4 1492
cd8ba7cd 1493static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 1494 const struct cpumask *new_mask)
73fe6aae 1495{
96f874e2 1496 int weight = cpumask_weight(new_mask);
73fe6aae
GH
1497
1498 BUG_ON(!rt_task(p));
1499
1500 /*
1501 * Update the migration status of the RQ if we have an RT task
1502 * which is running AND changing its weight value.
1503 */
6f505b16 1504 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1505 struct rq *rq = task_rq(p);
1506
917b627d
GH
1507 if (!task_current(rq, p)) {
1508 /*
1509 * Make sure we dequeue this task from the pushable list
1510 * before going further. It will either remain off of
1511 * the list because we are no longer pushable, or it
1512 * will be requeued.
1513 */
1514 if (p->rt.nr_cpus_allowed > 1)
1515 dequeue_pushable_task(rq, p);
1516
1517 /*
1518 * Requeue if our weight is changing and still > 1
1519 */
1520 if (weight > 1)
1521 enqueue_pushable_task(rq, p);
1522
1523 }
1524
6f505b16 1525 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1526 rq->rt.rt_nr_migratory++;
6f505b16 1527 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1528 BUG_ON(!rq->rt.rt_nr_migratory);
1529 rq->rt.rt_nr_migratory--;
1530 }
1531
398a153b 1532 update_rt_migration(&rq->rt);
73fe6aae
GH
1533 }
1534
96f874e2 1535 cpumask_copy(&p->cpus_allowed, new_mask);
6f505b16 1536 p->rt.nr_cpus_allowed = weight;
73fe6aae 1537}
deeeccd4 1538
bdd7c81b 1539/* Assumes rq->lock is held */
1f11eb6a 1540static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1541{
1542 if (rq->rt.overloaded)
1543 rt_set_overload(rq);
6e0534f2 1544
7def2be1
PZ
1545 __enable_runtime(rq);
1546
e864c499 1547 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
1548}
1549
1550/* Assumes rq->lock is held */
1f11eb6a 1551static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1552{
1553 if (rq->rt.overloaded)
1554 rt_clear_overload(rq);
6e0534f2 1555
7def2be1
PZ
1556 __disable_runtime(rq);
1557
6e0534f2 1558 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1559}
cb469845
SR
1560
1561/*
1562 * When switch from the rt queue, we bring ourselves to a position
1563 * that we might want to pull RT tasks from other runqueues.
1564 */
1565static void switched_from_rt(struct rq *rq, struct task_struct *p,
1566 int running)
1567{
1568 /*
1569 * If there are other RT tasks then we will reschedule
1570 * and the scheduling of the other RT tasks will handle
1571 * the balancing. But if we are the last RT task
1572 * we may need to handle the pulling of RT tasks
1573 * now.
1574 */
1575 if (!rq->rt.rt_nr_running)
1576 pull_rt_task(rq);
1577}
3d8cbdf8
RR
1578
1579static inline void init_sched_rt_class(void)
1580{
1581 unsigned int i;
1582
1583 for_each_possible_cpu(i)
6ca09dfc
MT
1584 alloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1585 GFP_KERNEL, cpu_to_node(i));
3d8cbdf8 1586}
cb469845
SR
1587#endif /* CONFIG_SMP */
1588
1589/*
1590 * When switching a task to RT, we may overload the runqueue
1591 * with RT tasks. In this case we try to push them off to
1592 * other runqueues.
1593 */
1594static void switched_to_rt(struct rq *rq, struct task_struct *p,
1595 int running)
1596{
1597 int check_resched = 1;
1598
1599 /*
1600 * If we are already running, then there's nothing
1601 * that needs to be done. But if we are not running
1602 * we may need to preempt the current running task.
1603 * If that current running task is also an RT task
1604 * then see if we can move to another run queue.
1605 */
1606 if (!running) {
1607#ifdef CONFIG_SMP
1608 if (rq->rt.overloaded && push_rt_task(rq) &&
1609 /* Don't resched if we changed runqueues */
1610 rq != task_rq(p))
1611 check_resched = 0;
1612#endif /* CONFIG_SMP */
1613 if (check_resched && p->prio < rq->curr->prio)
1614 resched_task(rq->curr);
1615 }
1616}
1617
1618/*
1619 * Priority of the task has changed. This may cause
1620 * us to initiate a push or pull.
1621 */
1622static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1623 int oldprio, int running)
1624{
1625 if (running) {
1626#ifdef CONFIG_SMP
1627 /*
1628 * If our priority decreases while running, we
1629 * may need to pull tasks to this runqueue.
1630 */
1631 if (oldprio < p->prio)
1632 pull_rt_task(rq);
1633 /*
1634 * If there's a higher priority task waiting to run
6fa46fa5
SR
1635 * then reschedule. Note, the above pull_rt_task
1636 * can release the rq lock and p could migrate.
1637 * Only reschedule if p is still on the same runqueue.
cb469845 1638 */
e864c499 1639 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
cb469845
SR
1640 resched_task(p);
1641#else
1642 /* For UP simply resched on drop of prio */
1643 if (oldprio < p->prio)
1644 resched_task(p);
e8fa1362 1645#endif /* CONFIG_SMP */
cb469845
SR
1646 } else {
1647 /*
1648 * This task is not running, but if it is
1649 * greater than the current running task
1650 * then reschedule.
1651 */
1652 if (p->prio < rq->curr->prio)
1653 resched_task(rq->curr);
1654 }
1655}
1656
78f2c7db
PZ
1657static void watchdog(struct rq *rq, struct task_struct *p)
1658{
1659 unsigned long soft, hard;
1660
1661 if (!p->signal)
1662 return;
1663
1664 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1665 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1666
1667 if (soft != RLIM_INFINITY) {
1668 unsigned long next;
1669
1670 p->rt.timeout++;
1671 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1672 if (p->rt.timeout > next)
f06febc9 1673 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
1674 }
1675}
bb44e5d1 1676
8f4d37ec 1677static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1678{
67e2be02
PZ
1679 update_curr_rt(rq);
1680
78f2c7db
PZ
1681 watchdog(rq, p);
1682
bb44e5d1
IM
1683 /*
1684 * RR tasks need a special form of timeslice management.
1685 * FIFO tasks have no timeslices.
1686 */
1687 if (p->policy != SCHED_RR)
1688 return;
1689
fa717060 1690 if (--p->rt.time_slice)
bb44e5d1
IM
1691 return;
1692
fa717060 1693 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1694
98fbc798
DA
1695 /*
1696 * Requeue to the end of queue if we are not the only element
1697 * on the queue:
1698 */
fa717060 1699 if (p->rt.run_list.prev != p->rt.run_list.next) {
7ebefa8c 1700 requeue_task_rt(rq, p, 0);
98fbc798
DA
1701 set_tsk_need_resched(p);
1702 }
bb44e5d1
IM
1703}
1704
83b699ed
SV
1705static void set_curr_task_rt(struct rq *rq)
1706{
1707 struct task_struct *p = rq->curr;
1708
1709 p->se.exec_start = rq->clock;
917b627d
GH
1710
1711 /* The running task is never eligible for pushing */
1712 dequeue_pushable_task(rq, p);
83b699ed
SV
1713}
1714
2abdad0a 1715static const struct sched_class rt_sched_class = {
5522d5d5 1716 .next = &fair_sched_class,
bb44e5d1
IM
1717 .enqueue_task = enqueue_task_rt,
1718 .dequeue_task = dequeue_task_rt,
1719 .yield_task = yield_task_rt,
1720
1721 .check_preempt_curr = check_preempt_curr_rt,
1722
1723 .pick_next_task = pick_next_task_rt,
1724 .put_prev_task = put_prev_task_rt,
1725
681f3e68 1726#ifdef CONFIG_SMP
4ce72a2c
LZ
1727 .select_task_rq = select_task_rq_rt,
1728
bb44e5d1 1729 .load_balance = load_balance_rt,
e1d1484f 1730 .move_one_task = move_one_task_rt,
73fe6aae 1731 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1732 .rq_online = rq_online_rt,
1733 .rq_offline = rq_offline_rt,
9a897c5a 1734 .pre_schedule = pre_schedule_rt,
967fc046 1735 .needs_post_schedule = needs_post_schedule_rt,
9a897c5a
SR
1736 .post_schedule = post_schedule_rt,
1737 .task_wake_up = task_wake_up_rt,
cb469845 1738 .switched_from = switched_from_rt,
681f3e68 1739#endif
bb44e5d1 1740
83b699ed 1741 .set_curr_task = set_curr_task_rt,
bb44e5d1 1742 .task_tick = task_tick_rt,
cb469845
SR
1743
1744 .prio_changed = prio_changed_rt,
1745 .switched_to = switched_to_rt,
bb44e5d1 1746};
ada18de2
PZ
1747
1748#ifdef CONFIG_SCHED_DEBUG
1749extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1750
1751static void print_rt_stats(struct seq_file *m, int cpu)
1752{
1753 struct rt_rq *rt_rq;
1754
1755 rcu_read_lock();
1756 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1757 print_rt_rq(m, cpu, rt_rq);
1758 rcu_read_unlock();
1759}
55e12e5e 1760#endif /* CONFIG_SCHED_DEBUG */
0e3900e6 1761