Merge branch 'sched/cpuset' into sched/urgent
[linux-2.6-block.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
4fd29176 6#ifdef CONFIG_SMP
84de4274 7
637f5085 8static inline int rt_overloaded(struct rq *rq)
4fd29176 9{
637f5085 10 return atomic_read(&rq->rd->rto_count);
4fd29176 11}
84de4274 12
4fd29176
SR
13static inline void rt_set_overload(struct rq *rq)
14{
1f11eb6a
GH
15 if (!rq->online)
16 return;
17
637f5085 18 cpu_set(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
19 /*
20 * Make sure the mask is visible before we set
21 * the overload count. That is checked to determine
22 * if we should look at the mask. It would be a shame
23 * if we looked at the mask, but the mask was not
24 * updated yet.
25 */
26 wmb();
637f5085 27 atomic_inc(&rq->rd->rto_count);
4fd29176 28}
84de4274 29
4fd29176
SR
30static inline void rt_clear_overload(struct rq *rq)
31{
1f11eb6a
GH
32 if (!rq->online)
33 return;
34
4fd29176 35 /* the order here really doesn't matter */
637f5085
GH
36 atomic_dec(&rq->rd->rto_count);
37 cpu_clear(rq->cpu, rq->rd->rto_mask);
4fd29176 38}
73fe6aae
GH
39
40static void update_rt_migration(struct rq *rq)
41{
637f5085 42 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
cdc8eb98
GH
43 if (!rq->rt.overloaded) {
44 rt_set_overload(rq);
45 rq->rt.overloaded = 1;
46 }
47 } else if (rq->rt.overloaded) {
73fe6aae 48 rt_clear_overload(rq);
637f5085
GH
49 rq->rt.overloaded = 0;
50 }
73fe6aae 51}
4fd29176
SR
52#endif /* CONFIG_SMP */
53
6f505b16 54static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
fa85ae24 55{
6f505b16
PZ
56 return container_of(rt_se, struct task_struct, rt);
57}
58
59static inline int on_rt_rq(struct sched_rt_entity *rt_se)
60{
61 return !list_empty(&rt_se->run_list);
62}
63
052f1dc7 64#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 65
9f0c1e56 66static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
67{
68 if (!rt_rq->tg)
9f0c1e56 69 return RUNTIME_INF;
6f505b16 70
ac086bc2
PZ
71 return rt_rq->rt_runtime;
72}
73
74static inline u64 sched_rt_period(struct rt_rq *rt_rq)
75{
76 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
77}
78
79#define for_each_leaf_rt_rq(rt_rq, rq) \
80 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
81
82static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
83{
84 return rt_rq->rq;
85}
86
87static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
88{
89 return rt_se->rt_rq;
90}
91
92#define for_each_sched_rt_entity(rt_se) \
93 for (; rt_se; rt_se = rt_se->parent)
94
95static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
96{
97 return rt_se->my_q;
98}
99
100static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
102
9f0c1e56 103static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16
PZ
104{
105 struct sched_rt_entity *rt_se = rt_rq->rt_se;
106
107 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
1020387f
PZ
108 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
109
6f505b16 110 enqueue_rt_entity(rt_se);
1020387f
PZ
111 if (rt_rq->highest_prio < curr->prio)
112 resched_task(curr);
6f505b16
PZ
113 }
114}
115
9f0c1e56 116static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
117{
118 struct sched_rt_entity *rt_se = rt_rq->rt_se;
119
120 if (rt_se && on_rt_rq(rt_se))
121 dequeue_rt_entity(rt_se);
122}
123
23b0fdfc
PZ
124static inline int rt_rq_throttled(struct rt_rq *rt_rq)
125{
126 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
127}
128
129static int rt_se_boosted(struct sched_rt_entity *rt_se)
130{
131 struct rt_rq *rt_rq = group_rt_rq(rt_se);
132 struct task_struct *p;
133
134 if (rt_rq)
135 return !!rt_rq->rt_nr_boosted;
136
137 p = rt_task_of(rt_se);
138 return p->prio != p->normal_prio;
139}
140
d0b27fa7
PZ
141#ifdef CONFIG_SMP
142static inline cpumask_t sched_rt_period_mask(void)
143{
144 return cpu_rq(smp_processor_id())->rd->span;
145}
6f505b16 146#else
d0b27fa7
PZ
147static inline cpumask_t sched_rt_period_mask(void)
148{
149 return cpu_online_map;
150}
151#endif
6f505b16 152
d0b27fa7
PZ
153static inline
154struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 155{
d0b27fa7
PZ
156 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
157}
9f0c1e56 158
ac086bc2
PZ
159static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
160{
161 return &rt_rq->tg->rt_bandwidth;
162}
163
55e12e5e 164#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
165
166static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
167{
ac086bc2
PZ
168 return rt_rq->rt_runtime;
169}
170
171static inline u64 sched_rt_period(struct rt_rq *rt_rq)
172{
173 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
174}
175
176#define for_each_leaf_rt_rq(rt_rq, rq) \
177 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
178
179static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
180{
181 return container_of(rt_rq, struct rq, rt);
182}
183
184static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
185{
186 struct task_struct *p = rt_task_of(rt_se);
187 struct rq *rq = task_rq(p);
188
189 return &rq->rt;
190}
191
192#define for_each_sched_rt_entity(rt_se) \
193 for (; rt_se; rt_se = NULL)
194
195static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
196{
197 return NULL;
198}
199
9f0c1e56 200static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 201{
f3ade837
JB
202 if (rt_rq->rt_nr_running)
203 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
204}
205
9f0c1e56 206static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
207{
208}
209
23b0fdfc
PZ
210static inline int rt_rq_throttled(struct rt_rq *rt_rq)
211{
212 return rt_rq->rt_throttled;
213}
d0b27fa7
PZ
214
215static inline cpumask_t sched_rt_period_mask(void)
216{
217 return cpu_online_map;
218}
219
220static inline
221struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
222{
223 return &cpu_rq(cpu)->rt;
224}
225
ac086bc2
PZ
226static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
227{
228 return &def_rt_bandwidth;
229}
230
55e12e5e 231#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 232
ac086bc2 233#ifdef CONFIG_SMP
b79f3833 234static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
235{
236 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
237 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
238 int i, weight, more = 0;
239 u64 rt_period;
240
241 weight = cpus_weight(rd->span);
242
243 spin_lock(&rt_b->rt_runtime_lock);
244 rt_period = ktime_to_ns(rt_b->rt_period);
363ab6f1 245 for_each_cpu_mask_nr(i, rd->span) {
ac086bc2
PZ
246 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
247 s64 diff;
248
249 if (iter == rt_rq)
250 continue;
251
252 spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
253 if (iter->rt_runtime == RUNTIME_INF)
254 goto next;
255
ac086bc2
PZ
256 diff = iter->rt_runtime - iter->rt_time;
257 if (diff > 0) {
58838cf3 258 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
259 if (rt_rq->rt_runtime + diff > rt_period)
260 diff = rt_period - rt_rq->rt_runtime;
261 iter->rt_runtime -= diff;
262 rt_rq->rt_runtime += diff;
263 more = 1;
264 if (rt_rq->rt_runtime == rt_period) {
265 spin_unlock(&iter->rt_runtime_lock);
266 break;
267 }
268 }
7def2be1 269next:
ac086bc2
PZ
270 spin_unlock(&iter->rt_runtime_lock);
271 }
272 spin_unlock(&rt_b->rt_runtime_lock);
273
274 return more;
275}
7def2be1
PZ
276
277static void __disable_runtime(struct rq *rq)
278{
279 struct root_domain *rd = rq->rd;
280 struct rt_rq *rt_rq;
281
282 if (unlikely(!scheduler_running))
283 return;
284
285 for_each_leaf_rt_rq(rt_rq, rq) {
286 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
287 s64 want;
288 int i;
289
290 spin_lock(&rt_b->rt_runtime_lock);
291 spin_lock(&rt_rq->rt_runtime_lock);
292 if (rt_rq->rt_runtime == RUNTIME_INF ||
293 rt_rq->rt_runtime == rt_b->rt_runtime)
294 goto balanced;
295 spin_unlock(&rt_rq->rt_runtime_lock);
296
297 want = rt_b->rt_runtime - rt_rq->rt_runtime;
298
299 for_each_cpu_mask(i, rd->span) {
300 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
301 s64 diff;
302
f1679d08 303 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
304 continue;
305
306 spin_lock(&iter->rt_runtime_lock);
307 if (want > 0) {
308 diff = min_t(s64, iter->rt_runtime, want);
309 iter->rt_runtime -= diff;
310 want -= diff;
311 } else {
312 iter->rt_runtime -= want;
313 want -= want;
314 }
315 spin_unlock(&iter->rt_runtime_lock);
316
317 if (!want)
318 break;
319 }
320
321 spin_lock(&rt_rq->rt_runtime_lock);
322 BUG_ON(want);
323balanced:
324 rt_rq->rt_runtime = RUNTIME_INF;
325 spin_unlock(&rt_rq->rt_runtime_lock);
326 spin_unlock(&rt_b->rt_runtime_lock);
327 }
328}
329
330static void disable_runtime(struct rq *rq)
331{
332 unsigned long flags;
333
334 spin_lock_irqsave(&rq->lock, flags);
335 __disable_runtime(rq);
336 spin_unlock_irqrestore(&rq->lock, flags);
337}
338
339static void __enable_runtime(struct rq *rq)
340{
7def2be1
PZ
341 struct rt_rq *rt_rq;
342
343 if (unlikely(!scheduler_running))
344 return;
345
346 for_each_leaf_rt_rq(rt_rq, rq) {
347 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
348
349 spin_lock(&rt_b->rt_runtime_lock);
350 spin_lock(&rt_rq->rt_runtime_lock);
351 rt_rq->rt_runtime = rt_b->rt_runtime;
352 rt_rq->rt_time = 0;
353 spin_unlock(&rt_rq->rt_runtime_lock);
354 spin_unlock(&rt_b->rt_runtime_lock);
355 }
356}
357
358static void enable_runtime(struct rq *rq)
359{
360 unsigned long flags;
361
362 spin_lock_irqsave(&rq->lock, flags);
363 __enable_runtime(rq);
364 spin_unlock_irqrestore(&rq->lock, flags);
365}
366
eff6549b
PZ
367static int balance_runtime(struct rt_rq *rt_rq)
368{
369 int more = 0;
370
371 if (rt_rq->rt_time > rt_rq->rt_runtime) {
372 spin_unlock(&rt_rq->rt_runtime_lock);
373 more = do_balance_runtime(rt_rq);
374 spin_lock(&rt_rq->rt_runtime_lock);
375 }
376
377 return more;
378}
55e12e5e 379#else /* !CONFIG_SMP */
eff6549b
PZ
380static inline int balance_runtime(struct rt_rq *rt_rq)
381{
382 return 0;
383}
55e12e5e 384#endif /* CONFIG_SMP */
ac086bc2 385
eff6549b
PZ
386static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
387{
388 int i, idle = 1;
389 cpumask_t span;
390
391 if (rt_b->rt_runtime == RUNTIME_INF)
392 return 1;
393
394 span = sched_rt_period_mask();
395 for_each_cpu_mask(i, span) {
396 int enqueue = 0;
397 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
398 struct rq *rq = rq_of_rt_rq(rt_rq);
399
400 spin_lock(&rq->lock);
401 if (rt_rq->rt_time) {
402 u64 runtime;
403
404 spin_lock(&rt_rq->rt_runtime_lock);
405 if (rt_rq->rt_throttled)
406 balance_runtime(rt_rq);
407 runtime = rt_rq->rt_runtime;
408 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
409 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
410 rt_rq->rt_throttled = 0;
411 enqueue = 1;
412 }
413 if (rt_rq->rt_time || rt_rq->rt_nr_running)
414 idle = 0;
415 spin_unlock(&rt_rq->rt_runtime_lock);
6c3df255
PZ
416 } else if (rt_rq->rt_nr_running)
417 idle = 0;
eff6549b
PZ
418
419 if (enqueue)
420 sched_rt_rq_enqueue(rt_rq);
421 spin_unlock(&rq->lock);
422 }
423
424 return idle;
425}
ac086bc2 426
6f505b16
PZ
427static inline int rt_se_prio(struct sched_rt_entity *rt_se)
428{
052f1dc7 429#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
430 struct rt_rq *rt_rq = group_rt_rq(rt_se);
431
432 if (rt_rq)
433 return rt_rq->highest_prio;
434#endif
435
436 return rt_task_of(rt_se)->prio;
437}
438
9f0c1e56 439static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 440{
9f0c1e56 441 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 442
fa85ae24 443 if (rt_rq->rt_throttled)
23b0fdfc 444 return rt_rq_throttled(rt_rq);
fa85ae24 445
ac086bc2
PZ
446 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
447 return 0;
448
b79f3833
PZ
449 balance_runtime(rt_rq);
450 runtime = sched_rt_runtime(rt_rq);
451 if (runtime == RUNTIME_INF)
452 return 0;
ac086bc2 453
9f0c1e56 454 if (rt_rq->rt_time > runtime) {
6f505b16 455 rt_rq->rt_throttled = 1;
23b0fdfc 456 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 457 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
458 return 1;
459 }
fa85ae24
PZ
460 }
461
462 return 0;
463}
464
bb44e5d1
IM
465/*
466 * Update the current task's runtime statistics. Skip current tasks that
467 * are not in our scheduling class.
468 */
a9957449 469static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
470{
471 struct task_struct *curr = rq->curr;
6f505b16
PZ
472 struct sched_rt_entity *rt_se = &curr->rt;
473 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
474 u64 delta_exec;
475
476 if (!task_has_rt_policy(curr))
477 return;
478
d281918d 479 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
480 if (unlikely((s64)delta_exec < 0))
481 delta_exec = 0;
6cfb0d5d
IM
482
483 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
484
485 curr->se.sum_exec_runtime += delta_exec;
d281918d 486 curr->se.exec_start = rq->clock;
d842de87 487 cpuacct_charge(curr, delta_exec);
fa85ae24 488
354d60c2
DG
489 for_each_sched_rt_entity(rt_se) {
490 rt_rq = rt_rq_of_se(rt_se);
491
492 spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
493 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
494 rt_rq->rt_time += delta_exec;
495 if (sched_rt_runtime_exceeded(rt_rq))
496 resched_task(curr);
497 }
354d60c2
DG
498 spin_unlock(&rt_rq->rt_runtime_lock);
499 }
bb44e5d1
IM
500}
501
6f505b16
PZ
502static inline
503void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 504{
6f505b16
PZ
505 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
506 rt_rq->rt_nr_running++;
052f1dc7 507#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6e0534f2 508 if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
577b4a58 509#ifdef CONFIG_SMP
6e0534f2 510 struct rq *rq = rq_of_rt_rq(rt_rq);
577b4a58 511#endif
1f11eb6a 512
6f505b16 513 rt_rq->highest_prio = rt_se_prio(rt_se);
1100ac91 514#ifdef CONFIG_SMP
1f11eb6a
GH
515 if (rq->online)
516 cpupri_set(&rq->rd->cpupri, rq->cpu,
517 rt_se_prio(rt_se));
1100ac91 518#endif
6e0534f2 519 }
6f505b16 520#endif
764a9d6f 521#ifdef CONFIG_SMP
6f505b16
PZ
522 if (rt_se->nr_cpus_allowed > 1) {
523 struct rq *rq = rq_of_rt_rq(rt_rq);
1100ac91 524
73fe6aae 525 rq->rt.rt_nr_migratory++;
6f505b16 526 }
73fe6aae 527
6f505b16
PZ
528 update_rt_migration(rq_of_rt_rq(rt_rq));
529#endif
052f1dc7 530#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
531 if (rt_se_boosted(rt_se))
532 rt_rq->rt_nr_boosted++;
d0b27fa7
PZ
533
534 if (rt_rq->tg)
535 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
536#else
537 start_rt_bandwidth(&def_rt_bandwidth);
23b0fdfc 538#endif
63489e45
SR
539}
540
6f505b16
PZ
541static inline
542void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 543{
6e0534f2
GH
544#ifdef CONFIG_SMP
545 int highest_prio = rt_rq->highest_prio;
546#endif
547
6f505b16
PZ
548 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
549 WARN_ON(!rt_rq->rt_nr_running);
550 rt_rq->rt_nr_running--;
052f1dc7 551#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16 552 if (rt_rq->rt_nr_running) {
764a9d6f
SR
553 struct rt_prio_array *array;
554
6f505b16
PZ
555 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
556 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
764a9d6f 557 /* recalculate */
6f505b16
PZ
558 array = &rt_rq->active;
559 rt_rq->highest_prio =
764a9d6f
SR
560 sched_find_first_bit(array->bitmap);
561 } /* otherwise leave rq->highest prio alone */
562 } else
6f505b16
PZ
563 rt_rq->highest_prio = MAX_RT_PRIO;
564#endif
565#ifdef CONFIG_SMP
566 if (rt_se->nr_cpus_allowed > 1) {
567 struct rq *rq = rq_of_rt_rq(rt_rq);
73fe6aae 568 rq->rt.rt_nr_migratory--;
6f505b16 569 }
73fe6aae 570
6e0534f2
GH
571 if (rt_rq->highest_prio != highest_prio) {
572 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a
GH
573
574 if (rq->online)
575 cpupri_set(&rq->rd->cpupri, rq->cpu,
576 rt_rq->highest_prio);
6e0534f2
GH
577 }
578
6f505b16 579 update_rt_migration(rq_of_rt_rq(rt_rq));
764a9d6f 580#endif /* CONFIG_SMP */
052f1dc7 581#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
582 if (rt_se_boosted(rt_se))
583 rt_rq->rt_nr_boosted--;
584
585 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
586#endif
63489e45
SR
587}
588
ad2a3f13 589static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
bb44e5d1 590{
6f505b16
PZ
591 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
592 struct rt_prio_array *array = &rt_rq->active;
593 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 594 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 595
ad2a3f13
PZ
596 /*
597 * Don't enqueue the group if its throttled, or when empty.
598 * The latter is a consequence of the former when a child group
599 * get throttled and the current group doesn't have any other
600 * active members.
601 */
602 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 603 return;
63489e45 604
7ebefa8c 605 list_add_tail(&rt_se->run_list, queue);
6f505b16 606 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 607
6f505b16
PZ
608 inc_rt_tasks(rt_se, rt_rq);
609}
610
ad2a3f13 611static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
612{
613 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
614 struct rt_prio_array *array = &rt_rq->active;
615
616 list_del_init(&rt_se->run_list);
617 if (list_empty(array->queue + rt_se_prio(rt_se)))
618 __clear_bit(rt_se_prio(rt_se), array->bitmap);
619
620 dec_rt_tasks(rt_se, rt_rq);
621}
622
623/*
624 * Because the prio of an upper entry depends on the lower
625 * entries, we must remove entries top - down.
6f505b16 626 */
ad2a3f13 627static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 628{
ad2a3f13 629 struct sched_rt_entity *back = NULL;
6f505b16 630
58d6c2d7
PZ
631 for_each_sched_rt_entity(rt_se) {
632 rt_se->back = back;
633 back = rt_se;
634 }
635
636 for (rt_se = back; rt_se; rt_se = rt_se->back) {
637 if (on_rt_rq(rt_se))
ad2a3f13
PZ
638 __dequeue_rt_entity(rt_se);
639 }
640}
641
642static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
643{
644 dequeue_rt_stack(rt_se);
645 for_each_sched_rt_entity(rt_se)
646 __enqueue_rt_entity(rt_se);
647}
648
649static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
650{
651 dequeue_rt_stack(rt_se);
652
653 for_each_sched_rt_entity(rt_se) {
654 struct rt_rq *rt_rq = group_rt_rq(rt_se);
655
656 if (rt_rq && rt_rq->rt_nr_running)
657 __enqueue_rt_entity(rt_se);
58d6c2d7 658 }
bb44e5d1
IM
659}
660
661/*
662 * Adding/removing a task to/from a priority array:
663 */
6f505b16
PZ
664static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
665{
666 struct sched_rt_entity *rt_se = &p->rt;
667
668 if (wakeup)
669 rt_se->timeout = 0;
670
ad2a3f13 671 enqueue_rt_entity(rt_se);
c09595f6
PZ
672
673 inc_cpu_load(rq, p->se.load.weight);
6f505b16
PZ
674}
675
f02231e5 676static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1 677{
6f505b16 678 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 679
f1e14ef6 680 update_curr_rt(rq);
ad2a3f13 681 dequeue_rt_entity(rt_se);
c09595f6
PZ
682
683 dec_cpu_load(rq, p->se.load.weight);
bb44e5d1
IM
684}
685
686/*
687 * Put task to the end of the run list without the overhead of dequeue
688 * followed by enqueue.
689 */
7ebefa8c
DA
690static void
691requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 692{
1cdad715 693 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
694 struct rt_prio_array *array = &rt_rq->active;
695 struct list_head *queue = array->queue + rt_se_prio(rt_se);
696
697 if (head)
698 list_move(&rt_se->run_list, queue);
699 else
700 list_move_tail(&rt_se->run_list, queue);
1cdad715 701 }
6f505b16
PZ
702}
703
7ebefa8c 704static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 705{
6f505b16
PZ
706 struct sched_rt_entity *rt_se = &p->rt;
707 struct rt_rq *rt_rq;
bb44e5d1 708
6f505b16
PZ
709 for_each_sched_rt_entity(rt_se) {
710 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 711 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 712 }
bb44e5d1
IM
713}
714
6f505b16 715static void yield_task_rt(struct rq *rq)
bb44e5d1 716{
7ebefa8c 717 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
718}
719
e7693a36 720#ifdef CONFIG_SMP
318e0893
GH
721static int find_lowest_rq(struct task_struct *task);
722
e7693a36
GH
723static int select_task_rq_rt(struct task_struct *p, int sync)
724{
318e0893
GH
725 struct rq *rq = task_rq(p);
726
727 /*
e1f47d89
SR
728 * If the current task is an RT task, then
729 * try to see if we can wake this RT task up on another
730 * runqueue. Otherwise simply start this RT task
731 * on its current runqueue.
732 *
733 * We want to avoid overloading runqueues. Even if
734 * the RT task is of higher priority than the current RT task.
735 * RT tasks behave differently than other tasks. If
736 * one gets preempted, we try to push it off to another queue.
737 * So trying to keep a preempting RT task on the same
738 * cache hot CPU will force the running RT task to
739 * a cold CPU. So we waste all the cache for the lower
740 * RT task in hopes of saving some of a RT task
741 * that is just being woken and probably will have
742 * cold cache anyway.
318e0893 743 */
17b3279b 744 if (unlikely(rt_task(rq->curr)) &&
6f505b16 745 (p->rt.nr_cpus_allowed > 1)) {
318e0893
GH
746 int cpu = find_lowest_rq(p);
747
748 return (cpu == -1) ? task_cpu(p) : cpu;
749 }
750
751 /*
752 * Otherwise, just let it ride on the affined RQ and the
753 * post-schedule router will push the preempted task away
754 */
e7693a36
GH
755 return task_cpu(p);
756}
7ebefa8c
DA
757
758static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
759{
760 cpumask_t mask;
761
762 if (rq->curr->rt.nr_cpus_allowed == 1)
763 return;
764
765 if (p->rt.nr_cpus_allowed != 1
766 && cpupri_find(&rq->rd->cpupri, p, &mask))
767 return;
768
769 if (!cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
770 return;
771
772 /*
773 * There appears to be other cpus that can accept
774 * current and none to run 'p', so lets reschedule
775 * to try and push current away:
776 */
777 requeue_task_rt(rq, p, 1);
778 resched_task(rq->curr);
779}
780
e7693a36
GH
781#endif /* CONFIG_SMP */
782
bb44e5d1
IM
783/*
784 * Preempt the current task with a newly woken task if needed:
785 */
786static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
787{
45c01e82 788 if (p->prio < rq->curr->prio) {
bb44e5d1 789 resched_task(rq->curr);
45c01e82
GH
790 return;
791 }
792
793#ifdef CONFIG_SMP
794 /*
795 * If:
796 *
797 * - the newly woken task is of equal priority to the current task
798 * - the newly woken task is non-migratable while current is migratable
799 * - current will be preempted on the next reschedule
800 *
801 * we should check to see if current can readily move to a different
802 * cpu. If so, we will reschedule to allow the push logic to try
803 * to move current somewhere else, making room for our non-migratable
804 * task.
805 */
7ebefa8c
DA
806 if (p->prio == rq->curr->prio && !need_resched())
807 check_preempt_equal_prio(rq, p);
45c01e82 808#endif
bb44e5d1
IM
809}
810
6f505b16
PZ
811static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
812 struct rt_rq *rt_rq)
bb44e5d1 813{
6f505b16
PZ
814 struct rt_prio_array *array = &rt_rq->active;
815 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
816 struct list_head *queue;
817 int idx;
818
819 idx = sched_find_first_bit(array->bitmap);
6f505b16 820 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
821
822 queue = array->queue + idx;
6f505b16 823 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 824
6f505b16
PZ
825 return next;
826}
bb44e5d1 827
6f505b16
PZ
828static struct task_struct *pick_next_task_rt(struct rq *rq)
829{
830 struct sched_rt_entity *rt_se;
831 struct task_struct *p;
832 struct rt_rq *rt_rq;
bb44e5d1 833
6f505b16
PZ
834 rt_rq = &rq->rt;
835
836 if (unlikely(!rt_rq->rt_nr_running))
837 return NULL;
838
23b0fdfc 839 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
840 return NULL;
841
842 do {
843 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 844 BUG_ON(!rt_se);
6f505b16
PZ
845 rt_rq = group_rt_rq(rt_se);
846 } while (rt_rq);
847
848 p = rt_task_of(rt_se);
849 p->se.exec_start = rq->clock;
850 return p;
bb44e5d1
IM
851}
852
31ee529c 853static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 854{
f1e14ef6 855 update_curr_rt(rq);
bb44e5d1
IM
856 p->se.exec_start = 0;
857}
858
681f3e68 859#ifdef CONFIG_SMP
6f505b16 860
e8fa1362
SR
861/* Only try algorithms three times */
862#define RT_MAX_TRIES 3
863
864static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
1b12bbc7
PZ
865static void double_unlock_balance(struct rq *this_rq, struct rq *busiest);
866
e8fa1362
SR
867static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
868
f65eda4f
SR
869static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
870{
871 if (!task_running(rq, p) &&
73fe6aae 872 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
6f505b16 873 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
874 return 1;
875 return 0;
876}
877
e8fa1362 878/* Return the second highest RT task, NULL otherwise */
79064fbf 879static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 880{
6f505b16
PZ
881 struct task_struct *next = NULL;
882 struct sched_rt_entity *rt_se;
883 struct rt_prio_array *array;
884 struct rt_rq *rt_rq;
e8fa1362
SR
885 int idx;
886
6f505b16
PZ
887 for_each_leaf_rt_rq(rt_rq, rq) {
888 array = &rt_rq->active;
889 idx = sched_find_first_bit(array->bitmap);
890 next_idx:
891 if (idx >= MAX_RT_PRIO)
892 continue;
893 if (next && next->prio < idx)
894 continue;
895 list_for_each_entry(rt_se, array->queue + idx, run_list) {
896 struct task_struct *p = rt_task_of(rt_se);
897 if (pick_rt_task(rq, p, cpu)) {
898 next = p;
899 break;
900 }
901 }
902 if (!next) {
903 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
904 goto next_idx;
905 }
f65eda4f
SR
906 }
907
e8fa1362
SR
908 return next;
909}
910
911static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
912
6e1254d2
GH
913static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
914{
915 int first;
916
917 /* "this_cpu" is cheaper to preempt than a remote processor */
918 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
919 return this_cpu;
920
921 first = first_cpu(*mask);
922 if (first != NR_CPUS)
923 return first;
924
925 return -1;
926}
927
928static int find_lowest_rq(struct task_struct *task)
929{
930 struct sched_domain *sd;
931 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
932 int this_cpu = smp_processor_id();
933 int cpu = task_cpu(task);
06f90dbd 934
6e0534f2
GH
935 if (task->rt.nr_cpus_allowed == 1)
936 return -1; /* No other targets possible */
6e1254d2 937
6e0534f2
GH
938 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
939 return -1; /* No targets found */
6e1254d2 940
e761b772
MK
941 /*
942 * Only consider CPUs that are usable for migration.
943 * I guess we might want to change cpupri_find() to ignore those
944 * in the first place.
945 */
946 cpus_and(*lowest_mask, *lowest_mask, cpu_active_map);
947
6e1254d2
GH
948 /*
949 * At this point we have built a mask of cpus representing the
950 * lowest priority tasks in the system. Now we want to elect
951 * the best one based on our affinity and topology.
952 *
953 * We prioritize the last cpu that the task executed on since
954 * it is most likely cache-hot in that location.
955 */
956 if (cpu_isset(cpu, *lowest_mask))
957 return cpu;
958
959 /*
960 * Otherwise, we consult the sched_domains span maps to figure
961 * out which cpu is logically closest to our hot cache data.
962 */
963 if (this_cpu == cpu)
964 this_cpu = -1; /* Skip this_cpu opt if the same */
965
966 for_each_domain(cpu, sd) {
967 if (sd->flags & SD_WAKE_AFFINE) {
968 cpumask_t domain_mask;
969 int best_cpu;
970
971 cpus_and(domain_mask, sd->span, *lowest_mask);
972
973 best_cpu = pick_optimal_cpu(this_cpu,
974 &domain_mask);
975 if (best_cpu != -1)
976 return best_cpu;
977 }
978 }
979
980 /*
981 * And finally, if there were no matches within the domains
982 * just give the caller *something* to work with from the compatible
983 * locations.
984 */
985 return pick_optimal_cpu(this_cpu, lowest_mask);
07b4032c
GH
986}
987
988/* Will lock the rq it finds */
4df64c0b 989static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
990{
991 struct rq *lowest_rq = NULL;
07b4032c 992 int tries;
4df64c0b 993 int cpu;
e8fa1362 994
07b4032c
GH
995 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
996 cpu = find_lowest_rq(task);
997
2de0b463 998 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
999 break;
1000
07b4032c
GH
1001 lowest_rq = cpu_rq(cpu);
1002
e8fa1362 1003 /* if the prio of this runqueue changed, try again */
07b4032c 1004 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1005 /*
1006 * We had to unlock the run queue. In
1007 * the mean time, task could have
1008 * migrated already or had its affinity changed.
1009 * Also make sure that it wasn't scheduled on its rq.
1010 */
07b4032c 1011 if (unlikely(task_rq(task) != rq ||
4df64c0b
IM
1012 !cpu_isset(lowest_rq->cpu,
1013 task->cpus_allowed) ||
07b4032c 1014 task_running(rq, task) ||
e8fa1362 1015 !task->se.on_rq)) {
4df64c0b 1016
e8fa1362
SR
1017 spin_unlock(&lowest_rq->lock);
1018 lowest_rq = NULL;
1019 break;
1020 }
1021 }
1022
1023 /* If this rq is still suitable use it. */
1024 if (lowest_rq->rt.highest_prio > task->prio)
1025 break;
1026
1027 /* try again */
1b12bbc7 1028 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1029 lowest_rq = NULL;
1030 }
1031
1032 return lowest_rq;
1033}
1034
1035/*
1036 * If the current CPU has more than one RT task, see if the non
1037 * running task can migrate over to a CPU that is running a task
1038 * of lesser priority.
1039 */
697f0a48 1040static int push_rt_task(struct rq *rq)
e8fa1362
SR
1041{
1042 struct task_struct *next_task;
1043 struct rq *lowest_rq;
1044 int ret = 0;
1045 int paranoid = RT_MAX_TRIES;
1046
a22d7fc1
GH
1047 if (!rq->rt.overloaded)
1048 return 0;
1049
697f0a48 1050 next_task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
1051 if (!next_task)
1052 return 0;
1053
1054 retry:
697f0a48 1055 if (unlikely(next_task == rq->curr)) {
f65eda4f 1056 WARN_ON(1);
e8fa1362 1057 return 0;
f65eda4f 1058 }
e8fa1362
SR
1059
1060 /*
1061 * It's possible that the next_task slipped in of
1062 * higher priority than current. If that's the case
1063 * just reschedule current.
1064 */
697f0a48
GH
1065 if (unlikely(next_task->prio < rq->curr->prio)) {
1066 resched_task(rq->curr);
e8fa1362
SR
1067 return 0;
1068 }
1069
697f0a48 1070 /* We might release rq lock */
e8fa1362
SR
1071 get_task_struct(next_task);
1072
1073 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1074 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1075 if (!lowest_rq) {
1076 struct task_struct *task;
1077 /*
697f0a48 1078 * find lock_lowest_rq releases rq->lock
e8fa1362
SR
1079 * so it is possible that next_task has changed.
1080 * If it has, then try again.
1081 */
697f0a48 1082 task = pick_next_highest_task_rt(rq, -1);
e8fa1362
SR
1083 if (unlikely(task != next_task) && task && paranoid--) {
1084 put_task_struct(next_task);
1085 next_task = task;
1086 goto retry;
1087 }
1088 goto out;
1089 }
1090
697f0a48 1091 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1092 set_task_cpu(next_task, lowest_rq->cpu);
1093 activate_task(lowest_rq, next_task, 0);
1094
1095 resched_task(lowest_rq->curr);
1096
1b12bbc7 1097 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1098
1099 ret = 1;
1100out:
1101 put_task_struct(next_task);
1102
1103 return ret;
1104}
1105
1106/*
1107 * TODO: Currently we just use the second highest prio task on
1108 * the queue, and stop when it can't migrate (or there's
1109 * no more RT tasks). There may be a case where a lower
1110 * priority RT task has a different affinity than the
1111 * higher RT task. In this case the lower RT task could
1112 * possibly be able to migrate where as the higher priority
1113 * RT task could not. We currently ignore this issue.
1114 * Enhancements are welcome!
1115 */
1116static void push_rt_tasks(struct rq *rq)
1117{
1118 /* push_rt_task will return true if it moved an RT */
1119 while (push_rt_task(rq))
1120 ;
1121}
1122
f65eda4f
SR
1123static int pull_rt_task(struct rq *this_rq)
1124{
80bf3171
IM
1125 int this_cpu = this_rq->cpu, ret = 0, cpu;
1126 struct task_struct *p, *next;
f65eda4f 1127 struct rq *src_rq;
f65eda4f 1128
637f5085 1129 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1130 return 0;
1131
1132 next = pick_next_task_rt(this_rq);
1133
363ab6f1 1134 for_each_cpu_mask_nr(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1135 if (this_cpu == cpu)
1136 continue;
1137
1138 src_rq = cpu_rq(cpu);
f65eda4f
SR
1139 /*
1140 * We can potentially drop this_rq's lock in
1141 * double_lock_balance, and another CPU could
1142 * steal our next task - hence we must cause
1143 * the caller to recalculate the next task
1144 * in that case:
1145 */
1146 if (double_lock_balance(this_rq, src_rq)) {
1147 struct task_struct *old_next = next;
80bf3171 1148
f65eda4f
SR
1149 next = pick_next_task_rt(this_rq);
1150 if (next != old_next)
1151 ret = 1;
1152 }
1153
1154 /*
1155 * Are there still pullable RT tasks?
1156 */
614ee1f6
MG
1157 if (src_rq->rt.rt_nr_running <= 1)
1158 goto skip;
f65eda4f 1159
f65eda4f
SR
1160 p = pick_next_highest_task_rt(src_rq, this_cpu);
1161
1162 /*
1163 * Do we have an RT task that preempts
1164 * the to-be-scheduled task?
1165 */
1166 if (p && (!next || (p->prio < next->prio))) {
1167 WARN_ON(p == src_rq->curr);
1168 WARN_ON(!p->se.on_rq);
1169
1170 /*
1171 * There's a chance that p is higher in priority
1172 * than what's currently running on its cpu.
1173 * This is just that p is wakeing up and hasn't
1174 * had a chance to schedule. We only pull
1175 * p if it is lower in priority than the
1176 * current task on the run queue or
1177 * this_rq next task is lower in prio than
1178 * the current task on that rq.
1179 */
1180 if (p->prio < src_rq->curr->prio ||
1181 (next && next->prio < src_rq->curr->prio))
614ee1f6 1182 goto skip;
f65eda4f
SR
1183
1184 ret = 1;
1185
1186 deactivate_task(src_rq, p, 0);
1187 set_task_cpu(p, this_cpu);
1188 activate_task(this_rq, p, 0);
1189 /*
1190 * We continue with the search, just in
1191 * case there's an even higher prio task
1192 * in another runqueue. (low likelyhood
1193 * but possible)
80bf3171 1194 *
f65eda4f
SR
1195 * Update next so that we won't pick a task
1196 * on another cpu with a priority lower (or equal)
1197 * than the one we just picked.
1198 */
1199 next = p;
1200
1201 }
614ee1f6 1202 skip:
1b12bbc7 1203 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1204 }
1205
1206 return ret;
1207}
1208
9a897c5a 1209static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1210{
1211 /* Try to pull RT tasks here if we lower this rq's prio */
7f51f298 1212 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
f65eda4f
SR
1213 pull_rt_task(rq);
1214}
1215
9a897c5a 1216static void post_schedule_rt(struct rq *rq)
e8fa1362
SR
1217{
1218 /*
1219 * If we have more than one rt_task queued, then
1220 * see if we can push the other rt_tasks off to other CPUS.
1221 * Note we may release the rq lock, and since
1222 * the lock was owned by prev, we need to release it
1223 * first via finish_lock_switch and then reaquire it here.
1224 */
a22d7fc1 1225 if (unlikely(rq->rt.overloaded)) {
e8fa1362
SR
1226 spin_lock_irq(&rq->lock);
1227 push_rt_tasks(rq);
1228 spin_unlock_irq(&rq->lock);
1229 }
1230}
1231
8ae121ac
GH
1232/*
1233 * If we are not running and we are not going to reschedule soon, we should
1234 * try to push tasks away now
1235 */
9a897c5a 1236static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
4642dafd 1237{
9a897c5a 1238 if (!task_running(rq, p) &&
8ae121ac 1239 !test_tsk_need_resched(rq->curr) &&
a22d7fc1 1240 rq->rt.overloaded)
4642dafd
SR
1241 push_rt_tasks(rq);
1242}
1243
43010659 1244static unsigned long
bb44e5d1 1245load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
1246 unsigned long max_load_move,
1247 struct sched_domain *sd, enum cpu_idle_type idle,
1248 int *all_pinned, int *this_best_prio)
bb44e5d1 1249{
c7a1e46a
SR
1250 /* don't touch RT tasks */
1251 return 0;
e1d1484f
PW
1252}
1253
1254static int
1255move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1256 struct sched_domain *sd, enum cpu_idle_type idle)
1257{
c7a1e46a
SR
1258 /* don't touch RT tasks */
1259 return 0;
bb44e5d1 1260}
deeeccd4 1261
cd8ba7cd
MT
1262static void set_cpus_allowed_rt(struct task_struct *p,
1263 const cpumask_t *new_mask)
73fe6aae
GH
1264{
1265 int weight = cpus_weight(*new_mask);
1266
1267 BUG_ON(!rt_task(p));
1268
1269 /*
1270 * Update the migration status of the RQ if we have an RT task
1271 * which is running AND changing its weight value.
1272 */
6f505b16 1273 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1274 struct rq *rq = task_rq(p);
1275
6f505b16 1276 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1277 rq->rt.rt_nr_migratory++;
6f505b16 1278 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1279 BUG_ON(!rq->rt.rt_nr_migratory);
1280 rq->rt.rt_nr_migratory--;
1281 }
1282
1283 update_rt_migration(rq);
1284 }
1285
1286 p->cpus_allowed = *new_mask;
6f505b16 1287 p->rt.nr_cpus_allowed = weight;
73fe6aae 1288}
deeeccd4 1289
bdd7c81b 1290/* Assumes rq->lock is held */
1f11eb6a 1291static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1292{
1293 if (rq->rt.overloaded)
1294 rt_set_overload(rq);
6e0534f2 1295
7def2be1
PZ
1296 __enable_runtime(rq);
1297
6e0534f2 1298 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
bdd7c81b
IM
1299}
1300
1301/* Assumes rq->lock is held */
1f11eb6a 1302static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1303{
1304 if (rq->rt.overloaded)
1305 rt_clear_overload(rq);
6e0534f2 1306
7def2be1
PZ
1307 __disable_runtime(rq);
1308
6e0534f2 1309 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1310}
cb469845
SR
1311
1312/*
1313 * When switch from the rt queue, we bring ourselves to a position
1314 * that we might want to pull RT tasks from other runqueues.
1315 */
1316static void switched_from_rt(struct rq *rq, struct task_struct *p,
1317 int running)
1318{
1319 /*
1320 * If there are other RT tasks then we will reschedule
1321 * and the scheduling of the other RT tasks will handle
1322 * the balancing. But if we are the last RT task
1323 * we may need to handle the pulling of RT tasks
1324 * now.
1325 */
1326 if (!rq->rt.rt_nr_running)
1327 pull_rt_task(rq);
1328}
1329#endif /* CONFIG_SMP */
1330
1331/*
1332 * When switching a task to RT, we may overload the runqueue
1333 * with RT tasks. In this case we try to push them off to
1334 * other runqueues.
1335 */
1336static void switched_to_rt(struct rq *rq, struct task_struct *p,
1337 int running)
1338{
1339 int check_resched = 1;
1340
1341 /*
1342 * If we are already running, then there's nothing
1343 * that needs to be done. But if we are not running
1344 * we may need to preempt the current running task.
1345 * If that current running task is also an RT task
1346 * then see if we can move to another run queue.
1347 */
1348 if (!running) {
1349#ifdef CONFIG_SMP
1350 if (rq->rt.overloaded && push_rt_task(rq) &&
1351 /* Don't resched if we changed runqueues */
1352 rq != task_rq(p))
1353 check_resched = 0;
1354#endif /* CONFIG_SMP */
1355 if (check_resched && p->prio < rq->curr->prio)
1356 resched_task(rq->curr);
1357 }
1358}
1359
1360/*
1361 * Priority of the task has changed. This may cause
1362 * us to initiate a push or pull.
1363 */
1364static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1365 int oldprio, int running)
1366{
1367 if (running) {
1368#ifdef CONFIG_SMP
1369 /*
1370 * If our priority decreases while running, we
1371 * may need to pull tasks to this runqueue.
1372 */
1373 if (oldprio < p->prio)
1374 pull_rt_task(rq);
1375 /*
1376 * If there's a higher priority task waiting to run
6fa46fa5
SR
1377 * then reschedule. Note, the above pull_rt_task
1378 * can release the rq lock and p could migrate.
1379 * Only reschedule if p is still on the same runqueue.
cb469845 1380 */
6fa46fa5 1381 if (p->prio > rq->rt.highest_prio && rq->curr == p)
cb469845
SR
1382 resched_task(p);
1383#else
1384 /* For UP simply resched on drop of prio */
1385 if (oldprio < p->prio)
1386 resched_task(p);
e8fa1362 1387#endif /* CONFIG_SMP */
cb469845
SR
1388 } else {
1389 /*
1390 * This task is not running, but if it is
1391 * greater than the current running task
1392 * then reschedule.
1393 */
1394 if (p->prio < rq->curr->prio)
1395 resched_task(rq->curr);
1396 }
1397}
1398
78f2c7db
PZ
1399static void watchdog(struct rq *rq, struct task_struct *p)
1400{
1401 unsigned long soft, hard;
1402
1403 if (!p->signal)
1404 return;
1405
1406 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1407 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1408
1409 if (soft != RLIM_INFINITY) {
1410 unsigned long next;
1411
1412 p->rt.timeout++;
1413 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1414 if (p->rt.timeout > next)
78f2c7db
PZ
1415 p->it_sched_expires = p->se.sum_exec_runtime;
1416 }
1417}
bb44e5d1 1418
8f4d37ec 1419static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1420{
67e2be02
PZ
1421 update_curr_rt(rq);
1422
78f2c7db
PZ
1423 watchdog(rq, p);
1424
bb44e5d1
IM
1425 /*
1426 * RR tasks need a special form of timeslice management.
1427 * FIFO tasks have no timeslices.
1428 */
1429 if (p->policy != SCHED_RR)
1430 return;
1431
fa717060 1432 if (--p->rt.time_slice)
bb44e5d1
IM
1433 return;
1434
fa717060 1435 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1436
98fbc798
DA
1437 /*
1438 * Requeue to the end of queue if we are not the only element
1439 * on the queue:
1440 */
fa717060 1441 if (p->rt.run_list.prev != p->rt.run_list.next) {
7ebefa8c 1442 requeue_task_rt(rq, p, 0);
98fbc798
DA
1443 set_tsk_need_resched(p);
1444 }
bb44e5d1
IM
1445}
1446
83b699ed
SV
1447static void set_curr_task_rt(struct rq *rq)
1448{
1449 struct task_struct *p = rq->curr;
1450
1451 p->se.exec_start = rq->clock;
1452}
1453
2abdad0a 1454static const struct sched_class rt_sched_class = {
5522d5d5 1455 .next = &fair_sched_class,
bb44e5d1
IM
1456 .enqueue_task = enqueue_task_rt,
1457 .dequeue_task = dequeue_task_rt,
1458 .yield_task = yield_task_rt,
e7693a36
GH
1459#ifdef CONFIG_SMP
1460 .select_task_rq = select_task_rq_rt,
1461#endif /* CONFIG_SMP */
bb44e5d1
IM
1462
1463 .check_preempt_curr = check_preempt_curr_rt,
1464
1465 .pick_next_task = pick_next_task_rt,
1466 .put_prev_task = put_prev_task_rt,
1467
681f3e68 1468#ifdef CONFIG_SMP
bb44e5d1 1469 .load_balance = load_balance_rt,
e1d1484f 1470 .move_one_task = move_one_task_rt,
73fe6aae 1471 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1472 .rq_online = rq_online_rt,
1473 .rq_offline = rq_offline_rt,
9a897c5a
SR
1474 .pre_schedule = pre_schedule_rt,
1475 .post_schedule = post_schedule_rt,
1476 .task_wake_up = task_wake_up_rt,
cb469845 1477 .switched_from = switched_from_rt,
681f3e68 1478#endif
bb44e5d1 1479
83b699ed 1480 .set_curr_task = set_curr_task_rt,
bb44e5d1 1481 .task_tick = task_tick_rt,
cb469845
SR
1482
1483 .prio_changed = prio_changed_rt,
1484 .switched_to = switched_to_rt,
bb44e5d1 1485};
ada18de2
PZ
1486
1487#ifdef CONFIG_SCHED_DEBUG
1488extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1489
1490static void print_rt_stats(struct seq_file *m, int cpu)
1491{
1492 struct rt_rq *rt_rq;
1493
1494 rcu_read_lock();
1495 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1496 print_rt_rq(m, cpu, rt_rq);
1497 rcu_read_unlock();
1498}
55e12e5e 1499#endif /* CONFIG_SCHED_DEBUG */