Merge branch 'sched/latest' of git://git.kernel.org/pub/scm/linux/kernel/git/ghaskins...
[linux-2.6-block.git] / kernel / sched_rt.c
CommitLineData
bb44e5d1
IM
1/*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
4fd29176 6#ifdef CONFIG_SMP
84de4274 7
637f5085 8static inline int rt_overloaded(struct rq *rq)
4fd29176 9{
637f5085 10 return atomic_read(&rq->rd->rto_count);
4fd29176 11}
84de4274 12
4fd29176
SR
13static inline void rt_set_overload(struct rq *rq)
14{
1f11eb6a
GH
15 if (!rq->online)
16 return;
17
c6c4927b 18 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
19 /*
20 * Make sure the mask is visible before we set
21 * the overload count. That is checked to determine
22 * if we should look at the mask. It would be a shame
23 * if we looked at the mask, but the mask was not
24 * updated yet.
25 */
26 wmb();
637f5085 27 atomic_inc(&rq->rd->rto_count);
4fd29176 28}
84de4274 29
4fd29176
SR
30static inline void rt_clear_overload(struct rq *rq)
31{
1f11eb6a
GH
32 if (!rq->online)
33 return;
34
4fd29176 35 /* the order here really doesn't matter */
637f5085 36 atomic_dec(&rq->rd->rto_count);
c6c4927b 37 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 38}
73fe6aae
GH
39
40static void update_rt_migration(struct rq *rq)
41{
637f5085 42 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
cdc8eb98
GH
43 if (!rq->rt.overloaded) {
44 rt_set_overload(rq);
45 rq->rt.overloaded = 1;
46 }
47 } else if (rq->rt.overloaded) {
73fe6aae 48 rt_clear_overload(rq);
637f5085
GH
49 rq->rt.overloaded = 0;
50 }
73fe6aae 51}
917b627d
GH
52
53static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
54{
55 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
56 plist_node_init(&p->pushable_tasks, p->prio);
57 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
58}
59
60static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
61{
62 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
63}
64
65#else
66
67#define enqueue_pushable_task(rq, p) do { } while (0)
68#define dequeue_pushable_task(rq, p) do { } while (0)
69
4fd29176
SR
70#endif /* CONFIG_SMP */
71
6f505b16 72static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
fa85ae24 73{
6f505b16
PZ
74 return container_of(rt_se, struct task_struct, rt);
75}
76
77static inline int on_rt_rq(struct sched_rt_entity *rt_se)
78{
79 return !list_empty(&rt_se->run_list);
80}
81
052f1dc7 82#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 83
9f0c1e56 84static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
85{
86 if (!rt_rq->tg)
9f0c1e56 87 return RUNTIME_INF;
6f505b16 88
ac086bc2
PZ
89 return rt_rq->rt_runtime;
90}
91
92static inline u64 sched_rt_period(struct rt_rq *rt_rq)
93{
94 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
95}
96
97#define for_each_leaf_rt_rq(rt_rq, rq) \
80f40ee4 98 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
6f505b16
PZ
99
100static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
101{
102 return rt_rq->rq;
103}
104
105static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
106{
107 return rt_se->rt_rq;
108}
109
110#define for_each_sched_rt_entity(rt_se) \
111 for (; rt_se; rt_se = rt_se->parent)
112
113static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
114{
115 return rt_se->my_q;
116}
117
118static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
119static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
120
9f0c1e56 121static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 122{
f6121f4f 123 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
6f505b16
PZ
124 struct sched_rt_entity *rt_se = rt_rq->rt_se;
125
f6121f4f
DF
126 if (rt_rq->rt_nr_running) {
127 if (rt_se && !on_rt_rq(rt_se))
128 enqueue_rt_entity(rt_se);
e864c499 129 if (rt_rq->highest_prio.curr < curr->prio)
1020387f 130 resched_task(curr);
6f505b16
PZ
131 }
132}
133
9f0c1e56 134static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
135{
136 struct sched_rt_entity *rt_se = rt_rq->rt_se;
137
138 if (rt_se && on_rt_rq(rt_se))
139 dequeue_rt_entity(rt_se);
140}
141
23b0fdfc
PZ
142static inline int rt_rq_throttled(struct rt_rq *rt_rq)
143{
144 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
145}
146
147static int rt_se_boosted(struct sched_rt_entity *rt_se)
148{
149 struct rt_rq *rt_rq = group_rt_rq(rt_se);
150 struct task_struct *p;
151
152 if (rt_rq)
153 return !!rt_rq->rt_nr_boosted;
154
155 p = rt_task_of(rt_se);
156 return p->prio != p->normal_prio;
157}
158
d0b27fa7 159#ifdef CONFIG_SMP
c6c4927b 160static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7
PZ
161{
162 return cpu_rq(smp_processor_id())->rd->span;
163}
6f505b16 164#else
c6c4927b 165static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 166{
c6c4927b 167 return cpu_online_mask;
d0b27fa7
PZ
168}
169#endif
6f505b16 170
d0b27fa7
PZ
171static inline
172struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 173{
d0b27fa7
PZ
174 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
175}
9f0c1e56 176
ac086bc2
PZ
177static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
178{
179 return &rt_rq->tg->rt_bandwidth;
180}
181
55e12e5e 182#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
183
184static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
185{
ac086bc2
PZ
186 return rt_rq->rt_runtime;
187}
188
189static inline u64 sched_rt_period(struct rt_rq *rt_rq)
190{
191 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
192}
193
194#define for_each_leaf_rt_rq(rt_rq, rq) \
195 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
196
197static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
198{
199 return container_of(rt_rq, struct rq, rt);
200}
201
202static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
203{
204 struct task_struct *p = rt_task_of(rt_se);
205 struct rq *rq = task_rq(p);
206
207 return &rq->rt;
208}
209
210#define for_each_sched_rt_entity(rt_se) \
211 for (; rt_se; rt_se = NULL)
212
213static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
214{
215 return NULL;
216}
217
9f0c1e56 218static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 219{
f3ade837
JB
220 if (rt_rq->rt_nr_running)
221 resched_task(rq_of_rt_rq(rt_rq)->curr);
6f505b16
PZ
222}
223
9f0c1e56 224static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16
PZ
225{
226}
227
23b0fdfc
PZ
228static inline int rt_rq_throttled(struct rt_rq *rt_rq)
229{
230 return rt_rq->rt_throttled;
231}
d0b27fa7 232
c6c4927b 233static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 234{
c6c4927b 235 return cpu_online_mask;
d0b27fa7
PZ
236}
237
238static inline
239struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
240{
241 return &cpu_rq(cpu)->rt;
242}
243
ac086bc2
PZ
244static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
245{
246 return &def_rt_bandwidth;
247}
248
55e12e5e 249#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 250
ac086bc2 251#ifdef CONFIG_SMP
78333cdd
PZ
252/*
253 * We ran out of runtime, see if we can borrow some from our neighbours.
254 */
b79f3833 255static int do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
256{
257 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
258 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
259 int i, weight, more = 0;
260 u64 rt_period;
261
c6c4927b 262 weight = cpumask_weight(rd->span);
ac086bc2
PZ
263
264 spin_lock(&rt_b->rt_runtime_lock);
265 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 266 for_each_cpu(i, rd->span) {
ac086bc2
PZ
267 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
268 s64 diff;
269
270 if (iter == rt_rq)
271 continue;
272
273 spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
274 /*
275 * Either all rqs have inf runtime and there's nothing to steal
276 * or __disable_runtime() below sets a specific rq to inf to
277 * indicate its been disabled and disalow stealing.
278 */
7def2be1
PZ
279 if (iter->rt_runtime == RUNTIME_INF)
280 goto next;
281
78333cdd
PZ
282 /*
283 * From runqueues with spare time, take 1/n part of their
284 * spare time, but no more than our period.
285 */
ac086bc2
PZ
286 diff = iter->rt_runtime - iter->rt_time;
287 if (diff > 0) {
58838cf3 288 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
289 if (rt_rq->rt_runtime + diff > rt_period)
290 diff = rt_period - rt_rq->rt_runtime;
291 iter->rt_runtime -= diff;
292 rt_rq->rt_runtime += diff;
293 more = 1;
294 if (rt_rq->rt_runtime == rt_period) {
295 spin_unlock(&iter->rt_runtime_lock);
296 break;
297 }
298 }
7def2be1 299next:
ac086bc2
PZ
300 spin_unlock(&iter->rt_runtime_lock);
301 }
302 spin_unlock(&rt_b->rt_runtime_lock);
303
304 return more;
305}
7def2be1 306
78333cdd
PZ
307/*
308 * Ensure this RQ takes back all the runtime it lend to its neighbours.
309 */
7def2be1
PZ
310static void __disable_runtime(struct rq *rq)
311{
312 struct root_domain *rd = rq->rd;
313 struct rt_rq *rt_rq;
314
315 if (unlikely(!scheduler_running))
316 return;
317
318 for_each_leaf_rt_rq(rt_rq, rq) {
319 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
320 s64 want;
321 int i;
322
323 spin_lock(&rt_b->rt_runtime_lock);
324 spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
325 /*
326 * Either we're all inf and nobody needs to borrow, or we're
327 * already disabled and thus have nothing to do, or we have
328 * exactly the right amount of runtime to take out.
329 */
7def2be1
PZ
330 if (rt_rq->rt_runtime == RUNTIME_INF ||
331 rt_rq->rt_runtime == rt_b->rt_runtime)
332 goto balanced;
333 spin_unlock(&rt_rq->rt_runtime_lock);
334
78333cdd
PZ
335 /*
336 * Calculate the difference between what we started out with
337 * and what we current have, that's the amount of runtime
338 * we lend and now have to reclaim.
339 */
7def2be1
PZ
340 want = rt_b->rt_runtime - rt_rq->rt_runtime;
341
78333cdd
PZ
342 /*
343 * Greedy reclaim, take back as much as we can.
344 */
c6c4927b 345 for_each_cpu(i, rd->span) {
7def2be1
PZ
346 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
347 s64 diff;
348
78333cdd
PZ
349 /*
350 * Can't reclaim from ourselves or disabled runqueues.
351 */
f1679d08 352 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
353 continue;
354
355 spin_lock(&iter->rt_runtime_lock);
356 if (want > 0) {
357 diff = min_t(s64, iter->rt_runtime, want);
358 iter->rt_runtime -= diff;
359 want -= diff;
360 } else {
361 iter->rt_runtime -= want;
362 want -= want;
363 }
364 spin_unlock(&iter->rt_runtime_lock);
365
366 if (!want)
367 break;
368 }
369
370 spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
371 /*
372 * We cannot be left wanting - that would mean some runtime
373 * leaked out of the system.
374 */
7def2be1
PZ
375 BUG_ON(want);
376balanced:
78333cdd
PZ
377 /*
378 * Disable all the borrow logic by pretending we have inf
379 * runtime - in which case borrowing doesn't make sense.
380 */
7def2be1
PZ
381 rt_rq->rt_runtime = RUNTIME_INF;
382 spin_unlock(&rt_rq->rt_runtime_lock);
383 spin_unlock(&rt_b->rt_runtime_lock);
384 }
385}
386
387static void disable_runtime(struct rq *rq)
388{
389 unsigned long flags;
390
391 spin_lock_irqsave(&rq->lock, flags);
392 __disable_runtime(rq);
393 spin_unlock_irqrestore(&rq->lock, flags);
394}
395
396static void __enable_runtime(struct rq *rq)
397{
7def2be1
PZ
398 struct rt_rq *rt_rq;
399
400 if (unlikely(!scheduler_running))
401 return;
402
78333cdd
PZ
403 /*
404 * Reset each runqueue's bandwidth settings
405 */
7def2be1
PZ
406 for_each_leaf_rt_rq(rt_rq, rq) {
407 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
408
409 spin_lock(&rt_b->rt_runtime_lock);
410 spin_lock(&rt_rq->rt_runtime_lock);
411 rt_rq->rt_runtime = rt_b->rt_runtime;
412 rt_rq->rt_time = 0;
baf25731 413 rt_rq->rt_throttled = 0;
7def2be1
PZ
414 spin_unlock(&rt_rq->rt_runtime_lock);
415 spin_unlock(&rt_b->rt_runtime_lock);
416 }
417}
418
419static void enable_runtime(struct rq *rq)
420{
421 unsigned long flags;
422
423 spin_lock_irqsave(&rq->lock, flags);
424 __enable_runtime(rq);
425 spin_unlock_irqrestore(&rq->lock, flags);
426}
427
eff6549b
PZ
428static int balance_runtime(struct rt_rq *rt_rq)
429{
430 int more = 0;
431
432 if (rt_rq->rt_time > rt_rq->rt_runtime) {
433 spin_unlock(&rt_rq->rt_runtime_lock);
434 more = do_balance_runtime(rt_rq);
435 spin_lock(&rt_rq->rt_runtime_lock);
436 }
437
438 return more;
439}
55e12e5e 440#else /* !CONFIG_SMP */
eff6549b
PZ
441static inline int balance_runtime(struct rt_rq *rt_rq)
442{
443 return 0;
444}
55e12e5e 445#endif /* CONFIG_SMP */
ac086bc2 446
eff6549b
PZ
447static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
448{
449 int i, idle = 1;
c6c4927b 450 const struct cpumask *span;
eff6549b 451
0b148fa0 452 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
eff6549b
PZ
453 return 1;
454
455 span = sched_rt_period_mask();
c6c4927b 456 for_each_cpu(i, span) {
eff6549b
PZ
457 int enqueue = 0;
458 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
459 struct rq *rq = rq_of_rt_rq(rt_rq);
460
461 spin_lock(&rq->lock);
462 if (rt_rq->rt_time) {
463 u64 runtime;
464
465 spin_lock(&rt_rq->rt_runtime_lock);
466 if (rt_rq->rt_throttled)
467 balance_runtime(rt_rq);
468 runtime = rt_rq->rt_runtime;
469 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
470 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
471 rt_rq->rt_throttled = 0;
472 enqueue = 1;
473 }
474 if (rt_rq->rt_time || rt_rq->rt_nr_running)
475 idle = 0;
476 spin_unlock(&rt_rq->rt_runtime_lock);
6c3df255
PZ
477 } else if (rt_rq->rt_nr_running)
478 idle = 0;
eff6549b
PZ
479
480 if (enqueue)
481 sched_rt_rq_enqueue(rt_rq);
482 spin_unlock(&rq->lock);
483 }
484
485 return idle;
486}
ac086bc2 487
6f505b16
PZ
488static inline int rt_se_prio(struct sched_rt_entity *rt_se)
489{
052f1dc7 490#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
491 struct rt_rq *rt_rq = group_rt_rq(rt_se);
492
493 if (rt_rq)
e864c499 494 return rt_rq->highest_prio.curr;
6f505b16
PZ
495#endif
496
497 return rt_task_of(rt_se)->prio;
498}
499
9f0c1e56 500static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 501{
9f0c1e56 502 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 503
fa85ae24 504 if (rt_rq->rt_throttled)
23b0fdfc 505 return rt_rq_throttled(rt_rq);
fa85ae24 506
ac086bc2
PZ
507 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
508 return 0;
509
b79f3833
PZ
510 balance_runtime(rt_rq);
511 runtime = sched_rt_runtime(rt_rq);
512 if (runtime == RUNTIME_INF)
513 return 0;
ac086bc2 514
9f0c1e56 515 if (rt_rq->rt_time > runtime) {
6f505b16 516 rt_rq->rt_throttled = 1;
23b0fdfc 517 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 518 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
519 return 1;
520 }
fa85ae24
PZ
521 }
522
523 return 0;
524}
525
bb44e5d1
IM
526/*
527 * Update the current task's runtime statistics. Skip current tasks that
528 * are not in our scheduling class.
529 */
a9957449 530static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
531{
532 struct task_struct *curr = rq->curr;
6f505b16
PZ
533 struct sched_rt_entity *rt_se = &curr->rt;
534 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
bb44e5d1
IM
535 u64 delta_exec;
536
537 if (!task_has_rt_policy(curr))
538 return;
539
d281918d 540 delta_exec = rq->clock - curr->se.exec_start;
bb44e5d1
IM
541 if (unlikely((s64)delta_exec < 0))
542 delta_exec = 0;
6cfb0d5d
IM
543
544 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
bb44e5d1
IM
545
546 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
547 account_group_exec_runtime(curr, delta_exec);
548
d281918d 549 curr->se.exec_start = rq->clock;
d842de87 550 cpuacct_charge(curr, delta_exec);
fa85ae24 551
0b148fa0
PZ
552 if (!rt_bandwidth_enabled())
553 return;
554
354d60c2
DG
555 for_each_sched_rt_entity(rt_se) {
556 rt_rq = rt_rq_of_se(rt_se);
557
cc2991cf 558 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
e113a745 559 spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
560 rt_rq->rt_time += delta_exec;
561 if (sched_rt_runtime_exceeded(rt_rq))
562 resched_task(curr);
e113a745 563 spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 564 }
354d60c2 565 }
bb44e5d1
IM
566}
567
e864c499
GH
568#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
569
570static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
571
572static inline int next_prio(struct rq *rq)
573{
574 struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
575
576 if (next && rt_prio(next->prio))
577 return next->prio;
578 else
579 return MAX_RT_PRIO;
580}
581#endif
582
6f505b16
PZ
583static inline
584void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 585{
4d984277 586 int prio = rt_se_prio(rt_se);
577b4a58 587#ifdef CONFIG_SMP
4d984277 588 struct rq *rq = rq_of_rt_rq(rt_rq);
577b4a58 589#endif
1f11eb6a 590
4d984277
GH
591 WARN_ON(!rt_prio(prio));
592 rt_rq->rt_nr_running++;
593#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 594 if (prio < rt_rq->highest_prio.curr) {
4d984277 595
e864c499
GH
596 /*
597 * If the new task is higher in priority than anything on the
598 * run-queue, we have a new high that must be published to
599 * the world. We also know that the previous high becomes
600 * our next-highest.
601 */
602 rt_rq->highest_prio.next = rt_rq->highest_prio.curr;
603 rt_rq->highest_prio.curr = prio;
1100ac91 604#ifdef CONFIG_SMP
1f11eb6a 605 if (rq->online)
4d984277 606 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1100ac91 607#endif
e864c499
GH
608 } else if (prio == rt_rq->highest_prio.curr)
609 /*
610 * If the next task is equal in priority to the highest on
611 * the run-queue, then we implicitly know that the next highest
612 * task cannot be any lower than current
613 */
614 rt_rq->highest_prio.next = prio;
615 else if (prio < rt_rq->highest_prio.next)
616 /*
617 * Otherwise, we need to recompute next-highest
618 */
619 rt_rq->highest_prio.next = next_prio(rq);
6f505b16 620#endif
764a9d6f 621#ifdef CONFIG_SMP
4d984277 622 if (rt_se->nr_cpus_allowed > 1)
73fe6aae
GH
623 rq->rt.rt_nr_migratory++;
624
4d984277 625 update_rt_migration(rq);
6f505b16 626#endif
052f1dc7 627#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
628 if (rt_se_boosted(rt_se))
629 rt_rq->rt_nr_boosted++;
d0b27fa7
PZ
630
631 if (rt_rq->tg)
632 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
633#else
634 start_rt_bandwidth(&def_rt_bandwidth);
23b0fdfc 635#endif
63489e45
SR
636}
637
6f505b16
PZ
638static inline
639void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
63489e45 640{
6e0534f2 641#ifdef CONFIG_SMP
4d984277 642 struct rq *rq = rq_of_rt_rq(rt_rq);
e864c499 643 int highest_prio = rt_rq->highest_prio.curr;
6e0534f2
GH
644#endif
645
6f505b16
PZ
646 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
647 WARN_ON(!rt_rq->rt_nr_running);
648 rt_rq->rt_nr_running--;
052f1dc7 649#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16 650 if (rt_rq->rt_nr_running) {
e864c499 651 int prio = rt_se_prio(rt_se);
764a9d6f 652
e864c499 653 WARN_ON(prio < rt_rq->highest_prio.curr);
764a9d6f 654
e864c499
GH
655 /*
656 * This may have been our highest or next-highest priority
657 * task and therefore we may have some recomputation to do
658 */
659 if (prio == rt_rq->highest_prio.curr) {
660 struct rt_prio_array *array = &rt_rq->active;
661
662 rt_rq->highest_prio.curr =
764a9d6f 663 sched_find_first_bit(array->bitmap);
e864c499
GH
664 }
665
666 if (prio <= rt_rq->highest_prio.next)
667 rt_rq->highest_prio.next = next_prio(rq);
764a9d6f 668 } else
e864c499 669 rt_rq->highest_prio.curr = MAX_RT_PRIO;
6f505b16
PZ
670#endif
671#ifdef CONFIG_SMP
4d984277 672 if (rt_se->nr_cpus_allowed > 1)
73fe6aae
GH
673 rq->rt.rt_nr_migratory--;
674
e864c499
GH
675 if (rq->online && rt_rq->highest_prio.curr != highest_prio)
676 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1f11eb6a 677
4d984277 678 update_rt_migration(rq);
764a9d6f 679#endif /* CONFIG_SMP */
052f1dc7 680#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
681 if (rt_se_boosted(rt_se))
682 rt_rq->rt_nr_boosted--;
683
684 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
685#endif
63489e45
SR
686}
687
ad2a3f13 688static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
bb44e5d1 689{
6f505b16
PZ
690 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
691 struct rt_prio_array *array = &rt_rq->active;
692 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 693 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 694
ad2a3f13
PZ
695 /*
696 * Don't enqueue the group if its throttled, or when empty.
697 * The latter is a consequence of the former when a child group
698 * get throttled and the current group doesn't have any other
699 * active members.
700 */
701 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
6f505b16 702 return;
63489e45 703
7ebefa8c 704 list_add_tail(&rt_se->run_list, queue);
6f505b16 705 __set_bit(rt_se_prio(rt_se), array->bitmap);
78f2c7db 706
6f505b16
PZ
707 inc_rt_tasks(rt_se, rt_rq);
708}
709
ad2a3f13 710static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
6f505b16
PZ
711{
712 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
713 struct rt_prio_array *array = &rt_rq->active;
714
715 list_del_init(&rt_se->run_list);
716 if (list_empty(array->queue + rt_se_prio(rt_se)))
717 __clear_bit(rt_se_prio(rt_se), array->bitmap);
718
719 dec_rt_tasks(rt_se, rt_rq);
720}
721
722/*
723 * Because the prio of an upper entry depends on the lower
724 * entries, we must remove entries top - down.
6f505b16 725 */
ad2a3f13 726static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
6f505b16 727{
ad2a3f13 728 struct sched_rt_entity *back = NULL;
6f505b16 729
58d6c2d7
PZ
730 for_each_sched_rt_entity(rt_se) {
731 rt_se->back = back;
732 back = rt_se;
733 }
734
735 for (rt_se = back; rt_se; rt_se = rt_se->back) {
736 if (on_rt_rq(rt_se))
ad2a3f13
PZ
737 __dequeue_rt_entity(rt_se);
738 }
739}
740
741static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
742{
743 dequeue_rt_stack(rt_se);
744 for_each_sched_rt_entity(rt_se)
745 __enqueue_rt_entity(rt_se);
746}
747
748static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
749{
750 dequeue_rt_stack(rt_se);
751
752 for_each_sched_rt_entity(rt_se) {
753 struct rt_rq *rt_rq = group_rt_rq(rt_se);
754
755 if (rt_rq && rt_rq->rt_nr_running)
756 __enqueue_rt_entity(rt_se);
58d6c2d7 757 }
bb44e5d1
IM
758}
759
760/*
761 * Adding/removing a task to/from a priority array:
762 */
6f505b16
PZ
763static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
764{
765 struct sched_rt_entity *rt_se = &p->rt;
766
767 if (wakeup)
768 rt_se->timeout = 0;
769
ad2a3f13 770 enqueue_rt_entity(rt_se);
c09595f6 771
917b627d
GH
772 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
773 enqueue_pushable_task(rq, p);
774
c09595f6 775 inc_cpu_load(rq, p->se.load.weight);
6f505b16
PZ
776}
777
f02231e5 778static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
bb44e5d1 779{
6f505b16 780 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 781
f1e14ef6 782 update_curr_rt(rq);
ad2a3f13 783 dequeue_rt_entity(rt_se);
c09595f6 784
917b627d
GH
785 dequeue_pushable_task(rq, p);
786
c09595f6 787 dec_cpu_load(rq, p->se.load.weight);
bb44e5d1
IM
788}
789
790/*
791 * Put task to the end of the run list without the overhead of dequeue
792 * followed by enqueue.
793 */
7ebefa8c
DA
794static void
795requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 796{
1cdad715 797 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
798 struct rt_prio_array *array = &rt_rq->active;
799 struct list_head *queue = array->queue + rt_se_prio(rt_se);
800
801 if (head)
802 list_move(&rt_se->run_list, queue);
803 else
804 list_move_tail(&rt_se->run_list, queue);
1cdad715 805 }
6f505b16
PZ
806}
807
7ebefa8c 808static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 809{
6f505b16
PZ
810 struct sched_rt_entity *rt_se = &p->rt;
811 struct rt_rq *rt_rq;
bb44e5d1 812
6f505b16
PZ
813 for_each_sched_rt_entity(rt_se) {
814 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 815 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 816 }
bb44e5d1
IM
817}
818
6f505b16 819static void yield_task_rt(struct rq *rq)
bb44e5d1 820{
7ebefa8c 821 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
822}
823
e7693a36 824#ifdef CONFIG_SMP
318e0893
GH
825static int find_lowest_rq(struct task_struct *task);
826
e7693a36
GH
827static int select_task_rq_rt(struct task_struct *p, int sync)
828{
318e0893
GH
829 struct rq *rq = task_rq(p);
830
831 /*
e1f47d89
SR
832 * If the current task is an RT task, then
833 * try to see if we can wake this RT task up on another
834 * runqueue. Otherwise simply start this RT task
835 * on its current runqueue.
836 *
837 * We want to avoid overloading runqueues. Even if
838 * the RT task is of higher priority than the current RT task.
839 * RT tasks behave differently than other tasks. If
840 * one gets preempted, we try to push it off to another queue.
841 * So trying to keep a preempting RT task on the same
842 * cache hot CPU will force the running RT task to
843 * a cold CPU. So we waste all the cache for the lower
844 * RT task in hopes of saving some of a RT task
845 * that is just being woken and probably will have
846 * cold cache anyway.
318e0893 847 */
17b3279b 848 if (unlikely(rt_task(rq->curr)) &&
6f505b16 849 (p->rt.nr_cpus_allowed > 1)) {
318e0893
GH
850 int cpu = find_lowest_rq(p);
851
852 return (cpu == -1) ? task_cpu(p) : cpu;
853 }
854
855 /*
856 * Otherwise, just let it ride on the affined RQ and the
857 * post-schedule router will push the preempted task away
858 */
e7693a36
GH
859 return task_cpu(p);
860}
7ebefa8c
DA
861
862static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
863{
24600ce8 864 cpumask_var_t mask;
7ebefa8c
DA
865
866 if (rq->curr->rt.nr_cpus_allowed == 1)
867 return;
868
24600ce8 869 if (!alloc_cpumask_var(&mask, GFP_ATOMIC))
7ebefa8c
DA
870 return;
871
24600ce8
RR
872 if (p->rt.nr_cpus_allowed != 1
873 && cpupri_find(&rq->rd->cpupri, p, mask))
874 goto free;
875
876 if (!cpupri_find(&rq->rd->cpupri, rq->curr, mask))
877 goto free;
7ebefa8c
DA
878
879 /*
880 * There appears to be other cpus that can accept
881 * current and none to run 'p', so lets reschedule
882 * to try and push current away:
883 */
884 requeue_task_rt(rq, p, 1);
885 resched_task(rq->curr);
24600ce8
RR
886free:
887 free_cpumask_var(mask);
7ebefa8c
DA
888}
889
e7693a36
GH
890#endif /* CONFIG_SMP */
891
bb44e5d1
IM
892/*
893 * Preempt the current task with a newly woken task if needed:
894 */
15afe09b 895static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
bb44e5d1 896{
45c01e82 897 if (p->prio < rq->curr->prio) {
bb44e5d1 898 resched_task(rq->curr);
45c01e82
GH
899 return;
900 }
901
902#ifdef CONFIG_SMP
903 /*
904 * If:
905 *
906 * - the newly woken task is of equal priority to the current task
907 * - the newly woken task is non-migratable while current is migratable
908 * - current will be preempted on the next reschedule
909 *
910 * we should check to see if current can readily move to a different
911 * cpu. If so, we will reschedule to allow the push logic to try
912 * to move current somewhere else, making room for our non-migratable
913 * task.
914 */
7ebefa8c
DA
915 if (p->prio == rq->curr->prio && !need_resched())
916 check_preempt_equal_prio(rq, p);
45c01e82 917#endif
bb44e5d1
IM
918}
919
6f505b16
PZ
920static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
921 struct rt_rq *rt_rq)
bb44e5d1 922{
6f505b16
PZ
923 struct rt_prio_array *array = &rt_rq->active;
924 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
925 struct list_head *queue;
926 int idx;
927
928 idx = sched_find_first_bit(array->bitmap);
6f505b16 929 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
930
931 queue = array->queue + idx;
6f505b16 932 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 933
6f505b16
PZ
934 return next;
935}
bb44e5d1 936
917b627d 937static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
938{
939 struct sched_rt_entity *rt_se;
940 struct task_struct *p;
941 struct rt_rq *rt_rq;
bb44e5d1 942
6f505b16
PZ
943 rt_rq = &rq->rt;
944
945 if (unlikely(!rt_rq->rt_nr_running))
946 return NULL;
947
23b0fdfc 948 if (rt_rq_throttled(rt_rq))
6f505b16
PZ
949 return NULL;
950
951 do {
952 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 953 BUG_ON(!rt_se);
6f505b16
PZ
954 rt_rq = group_rt_rq(rt_se);
955 } while (rt_rq);
956
957 p = rt_task_of(rt_se);
958 p->se.exec_start = rq->clock;
917b627d
GH
959
960 return p;
961}
962
963static struct task_struct *pick_next_task_rt(struct rq *rq)
964{
965 struct task_struct *p = _pick_next_task_rt(rq);
966
967 /* The running task is never eligible for pushing */
968 if (p)
969 dequeue_pushable_task(rq, p);
970
6f505b16 971 return p;
bb44e5d1
IM
972}
973
31ee529c 974static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 975{
f1e14ef6 976 update_curr_rt(rq);
bb44e5d1 977 p->se.exec_start = 0;
917b627d
GH
978
979 /*
980 * The previous task needs to be made eligible for pushing
981 * if it is still active
982 */
983 if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
984 enqueue_pushable_task(rq, p);
bb44e5d1
IM
985}
986
681f3e68 987#ifdef CONFIG_SMP
6f505b16 988
e8fa1362
SR
989/* Only try algorithms three times */
990#define RT_MAX_TRIES 3
991
e8fa1362
SR
992static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
993
f65eda4f
SR
994static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
995{
996 if (!task_running(rq, p) &&
96f874e2 997 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
6f505b16 998 (p->rt.nr_cpus_allowed > 1))
f65eda4f
SR
999 return 1;
1000 return 0;
1001}
1002
e8fa1362 1003/* Return the second highest RT task, NULL otherwise */
79064fbf 1004static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
e8fa1362 1005{
6f505b16
PZ
1006 struct task_struct *next = NULL;
1007 struct sched_rt_entity *rt_se;
1008 struct rt_prio_array *array;
1009 struct rt_rq *rt_rq;
e8fa1362
SR
1010 int idx;
1011
6f505b16
PZ
1012 for_each_leaf_rt_rq(rt_rq, rq) {
1013 array = &rt_rq->active;
1014 idx = sched_find_first_bit(array->bitmap);
1015 next_idx:
1016 if (idx >= MAX_RT_PRIO)
1017 continue;
1018 if (next && next->prio < idx)
1019 continue;
1020 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1021 struct task_struct *p = rt_task_of(rt_se);
1022 if (pick_rt_task(rq, p, cpu)) {
1023 next = p;
1024 break;
1025 }
1026 }
1027 if (!next) {
1028 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1029 goto next_idx;
1030 }
f65eda4f
SR
1031 }
1032
e8fa1362
SR
1033 return next;
1034}
1035
0e3900e6 1036static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1037
6e1254d2
GH
1038static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
1039{
1040 int first;
1041
1042 /* "this_cpu" is cheaper to preempt than a remote processor */
1043 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
1044 return this_cpu;
1045
1046 first = first_cpu(*mask);
1047 if (first != NR_CPUS)
1048 return first;
1049
1050 return -1;
1051}
1052
1053static int find_lowest_rq(struct task_struct *task)
1054{
1055 struct sched_domain *sd;
96f874e2 1056 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
6e1254d2
GH
1057 int this_cpu = smp_processor_id();
1058 int cpu = task_cpu(task);
06f90dbd 1059
6e0534f2
GH
1060 if (task->rt.nr_cpus_allowed == 1)
1061 return -1; /* No other targets possible */
6e1254d2 1062
6e0534f2
GH
1063 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1064 return -1; /* No targets found */
6e1254d2 1065
e761b772
MK
1066 /*
1067 * Only consider CPUs that are usable for migration.
1068 * I guess we might want to change cpupri_find() to ignore those
1069 * in the first place.
1070 */
96f874e2 1071 cpumask_and(lowest_mask, lowest_mask, cpu_active_mask);
e761b772 1072
6e1254d2
GH
1073 /*
1074 * At this point we have built a mask of cpus representing the
1075 * lowest priority tasks in the system. Now we want to elect
1076 * the best one based on our affinity and topology.
1077 *
1078 * We prioritize the last cpu that the task executed on since
1079 * it is most likely cache-hot in that location.
1080 */
96f874e2 1081 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1082 return cpu;
1083
1084 /*
1085 * Otherwise, we consult the sched_domains span maps to figure
1086 * out which cpu is logically closest to our hot cache data.
1087 */
1088 if (this_cpu == cpu)
1089 this_cpu = -1; /* Skip this_cpu opt if the same */
1090
1091 for_each_domain(cpu, sd) {
1092 if (sd->flags & SD_WAKE_AFFINE) {
1093 cpumask_t domain_mask;
1094 int best_cpu;
1095
758b2cdc
RR
1096 cpumask_and(&domain_mask, sched_domain_span(sd),
1097 lowest_mask);
6e1254d2
GH
1098
1099 best_cpu = pick_optimal_cpu(this_cpu,
1100 &domain_mask);
1101 if (best_cpu != -1)
1102 return best_cpu;
1103 }
1104 }
1105
1106 /*
1107 * And finally, if there were no matches within the domains
1108 * just give the caller *something* to work with from the compatible
1109 * locations.
1110 */
1111 return pick_optimal_cpu(this_cpu, lowest_mask);
07b4032c
GH
1112}
1113
1114/* Will lock the rq it finds */
4df64c0b 1115static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1116{
1117 struct rq *lowest_rq = NULL;
07b4032c 1118 int tries;
4df64c0b 1119 int cpu;
e8fa1362 1120
07b4032c
GH
1121 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1122 cpu = find_lowest_rq(task);
1123
2de0b463 1124 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1125 break;
1126
07b4032c
GH
1127 lowest_rq = cpu_rq(cpu);
1128
e8fa1362 1129 /* if the prio of this runqueue changed, try again */
07b4032c 1130 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1131 /*
1132 * We had to unlock the run queue. In
1133 * the mean time, task could have
1134 * migrated already or had its affinity changed.
1135 * Also make sure that it wasn't scheduled on its rq.
1136 */
07b4032c 1137 if (unlikely(task_rq(task) != rq ||
96f874e2
RR
1138 !cpumask_test_cpu(lowest_rq->cpu,
1139 &task->cpus_allowed) ||
07b4032c 1140 task_running(rq, task) ||
e8fa1362 1141 !task->se.on_rq)) {
4df64c0b 1142
e8fa1362
SR
1143 spin_unlock(&lowest_rq->lock);
1144 lowest_rq = NULL;
1145 break;
1146 }
1147 }
1148
1149 /* If this rq is still suitable use it. */
e864c499 1150 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1151 break;
1152
1153 /* try again */
1b12bbc7 1154 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1155 lowest_rq = NULL;
1156 }
1157
1158 return lowest_rq;
1159}
1160
917b627d
GH
1161static inline int has_pushable_tasks(struct rq *rq)
1162{
1163 return !plist_head_empty(&rq->rt.pushable_tasks);
1164}
1165
1166static struct task_struct *pick_next_pushable_task(struct rq *rq)
1167{
1168 struct task_struct *p;
1169
1170 if (!has_pushable_tasks(rq))
1171 return NULL;
1172
1173 p = plist_first_entry(&rq->rt.pushable_tasks,
1174 struct task_struct, pushable_tasks);
1175
1176 BUG_ON(rq->cpu != task_cpu(p));
1177 BUG_ON(task_current(rq, p));
1178 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1179
1180 BUG_ON(!p->se.on_rq);
1181 BUG_ON(!rt_task(p));
1182
1183 return p;
1184}
1185
e8fa1362
SR
1186/*
1187 * If the current CPU has more than one RT task, see if the non
1188 * running task can migrate over to a CPU that is running a task
1189 * of lesser priority.
1190 */
697f0a48 1191static int push_rt_task(struct rq *rq)
e8fa1362
SR
1192{
1193 struct task_struct *next_task;
1194 struct rq *lowest_rq;
e8fa1362 1195
a22d7fc1
GH
1196 if (!rq->rt.overloaded)
1197 return 0;
1198
917b627d 1199 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1200 if (!next_task)
1201 return 0;
1202
1203 retry:
697f0a48 1204 if (unlikely(next_task == rq->curr)) {
f65eda4f 1205 WARN_ON(1);
e8fa1362 1206 return 0;
f65eda4f 1207 }
e8fa1362
SR
1208
1209 /*
1210 * It's possible that the next_task slipped in of
1211 * higher priority than current. If that's the case
1212 * just reschedule current.
1213 */
697f0a48
GH
1214 if (unlikely(next_task->prio < rq->curr->prio)) {
1215 resched_task(rq->curr);
e8fa1362
SR
1216 return 0;
1217 }
1218
697f0a48 1219 /* We might release rq lock */
e8fa1362
SR
1220 get_task_struct(next_task);
1221
1222 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1223 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1224 if (!lowest_rq) {
1225 struct task_struct *task;
1226 /*
697f0a48 1227 * find lock_lowest_rq releases rq->lock
1563513d
GH
1228 * so it is possible that next_task has migrated.
1229 *
1230 * We need to make sure that the task is still on the same
1231 * run-queue and is also still the next task eligible for
1232 * pushing.
e8fa1362 1233 */
917b627d 1234 task = pick_next_pushable_task(rq);
1563513d
GH
1235 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1236 /*
1237 * If we get here, the task hasnt moved at all, but
1238 * it has failed to push. We will not try again,
1239 * since the other cpus will pull from us when they
1240 * are ready.
1241 */
1242 dequeue_pushable_task(rq, next_task);
1243 goto out;
e8fa1362 1244 }
917b627d 1245
1563513d
GH
1246 if (!task)
1247 /* No more tasks, just exit */
1248 goto out;
1249
917b627d 1250 /*
1563513d 1251 * Something has shifted, try again.
917b627d 1252 */
1563513d
GH
1253 put_task_struct(next_task);
1254 next_task = task;
1255 goto retry;
e8fa1362
SR
1256 }
1257
697f0a48 1258 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1259 set_task_cpu(next_task, lowest_rq->cpu);
1260 activate_task(lowest_rq, next_task, 0);
1261
1262 resched_task(lowest_rq->curr);
1263
1b12bbc7 1264 double_unlock_balance(rq, lowest_rq);
e8fa1362 1265
e8fa1362
SR
1266out:
1267 put_task_struct(next_task);
1268
917b627d 1269 return 1;
e8fa1362
SR
1270}
1271
e8fa1362
SR
1272static void push_rt_tasks(struct rq *rq)
1273{
1274 /* push_rt_task will return true if it moved an RT */
1275 while (push_rt_task(rq))
1276 ;
1277}
1278
f65eda4f
SR
1279static int pull_rt_task(struct rq *this_rq)
1280{
80bf3171 1281 int this_cpu = this_rq->cpu, ret = 0, cpu;
a8728944 1282 struct task_struct *p;
f65eda4f 1283 struct rq *src_rq;
f65eda4f 1284
637f5085 1285 if (likely(!rt_overloaded(this_rq)))
f65eda4f
SR
1286 return 0;
1287
c6c4927b 1288 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
1289 if (this_cpu == cpu)
1290 continue;
1291
1292 src_rq = cpu_rq(cpu);
74ab8e4f
GH
1293
1294 /*
1295 * Don't bother taking the src_rq->lock if the next highest
1296 * task is known to be lower-priority than our current task.
1297 * This may look racy, but if this value is about to go
1298 * logically higher, the src_rq will push this task away.
1299 * And if its going logically lower, we do not care
1300 */
1301 if (src_rq->rt.highest_prio.next >=
1302 this_rq->rt.highest_prio.curr)
1303 continue;
1304
f65eda4f
SR
1305 /*
1306 * We can potentially drop this_rq's lock in
1307 * double_lock_balance, and another CPU could
a8728944 1308 * alter this_rq
f65eda4f 1309 */
a8728944 1310 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
1311
1312 /*
1313 * Are there still pullable RT tasks?
1314 */
614ee1f6
MG
1315 if (src_rq->rt.rt_nr_running <= 1)
1316 goto skip;
f65eda4f 1317
f65eda4f
SR
1318 p = pick_next_highest_task_rt(src_rq, this_cpu);
1319
1320 /*
1321 * Do we have an RT task that preempts
1322 * the to-be-scheduled task?
1323 */
a8728944 1324 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f
SR
1325 WARN_ON(p == src_rq->curr);
1326 WARN_ON(!p->se.on_rq);
1327
1328 /*
1329 * There's a chance that p is higher in priority
1330 * than what's currently running on its cpu.
1331 * This is just that p is wakeing up and hasn't
1332 * had a chance to schedule. We only pull
1333 * p if it is lower in priority than the
a8728944 1334 * current task on the run queue
f65eda4f 1335 */
a8728944 1336 if (p->prio < src_rq->curr->prio)
614ee1f6 1337 goto skip;
f65eda4f
SR
1338
1339 ret = 1;
1340
1341 deactivate_task(src_rq, p, 0);
1342 set_task_cpu(p, this_cpu);
1343 activate_task(this_rq, p, 0);
1344 /*
1345 * We continue with the search, just in
1346 * case there's an even higher prio task
1347 * in another runqueue. (low likelyhood
1348 * but possible)
f65eda4f 1349 */
f65eda4f 1350 }
614ee1f6 1351 skip:
1b12bbc7 1352 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
1353 }
1354
1355 return ret;
1356}
1357
9a897c5a 1358static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
f65eda4f
SR
1359{
1360 /* Try to pull RT tasks here if we lower this rq's prio */
e864c499 1361 if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
f65eda4f
SR
1362 pull_rt_task(rq);
1363}
1364
967fc046
GH
1365/*
1366 * assumes rq->lock is held
1367 */
1368static int needs_post_schedule_rt(struct rq *rq)
1369{
917b627d 1370 return has_pushable_tasks(rq);
967fc046
GH
1371}
1372
9a897c5a 1373static void post_schedule_rt(struct rq *rq)
e8fa1362
SR
1374{
1375 /*
967fc046
GH
1376 * This is only called if needs_post_schedule_rt() indicates that
1377 * we need to push tasks away
e8fa1362 1378 */
967fc046
GH
1379 spin_lock_irq(&rq->lock);
1380 push_rt_tasks(rq);
1381 spin_unlock_irq(&rq->lock);
e8fa1362
SR
1382}
1383
8ae121ac
GH
1384/*
1385 * If we are not running and we are not going to reschedule soon, we should
1386 * try to push tasks away now
1387 */
9a897c5a 1388static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
4642dafd 1389{
9a897c5a 1390 if (!task_running(rq, p) &&
8ae121ac 1391 !test_tsk_need_resched(rq->curr) &&
917b627d 1392 has_pushable_tasks(rq) &&
777c2f38 1393 p->rt.nr_cpus_allowed > 1)
4642dafd
SR
1394 push_rt_tasks(rq);
1395}
1396
43010659 1397static unsigned long
bb44e5d1 1398load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f
PW
1399 unsigned long max_load_move,
1400 struct sched_domain *sd, enum cpu_idle_type idle,
1401 int *all_pinned, int *this_best_prio)
bb44e5d1 1402{
c7a1e46a
SR
1403 /* don't touch RT tasks */
1404 return 0;
e1d1484f
PW
1405}
1406
1407static int
1408move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 struct sched_domain *sd, enum cpu_idle_type idle)
1410{
c7a1e46a
SR
1411 /* don't touch RT tasks */
1412 return 0;
bb44e5d1 1413}
deeeccd4 1414
cd8ba7cd 1415static void set_cpus_allowed_rt(struct task_struct *p,
96f874e2 1416 const struct cpumask *new_mask)
73fe6aae 1417{
96f874e2 1418 int weight = cpumask_weight(new_mask);
73fe6aae
GH
1419
1420 BUG_ON(!rt_task(p));
1421
1422 /*
1423 * Update the migration status of the RQ if we have an RT task
1424 * which is running AND changing its weight value.
1425 */
6f505b16 1426 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
73fe6aae
GH
1427 struct rq *rq = task_rq(p);
1428
917b627d
GH
1429 if (!task_current(rq, p)) {
1430 /*
1431 * Make sure we dequeue this task from the pushable list
1432 * before going further. It will either remain off of
1433 * the list because we are no longer pushable, or it
1434 * will be requeued.
1435 */
1436 if (p->rt.nr_cpus_allowed > 1)
1437 dequeue_pushable_task(rq, p);
1438
1439 /*
1440 * Requeue if our weight is changing and still > 1
1441 */
1442 if (weight > 1)
1443 enqueue_pushable_task(rq, p);
1444
1445 }
1446
6f505b16 1447 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
73fe6aae 1448 rq->rt.rt_nr_migratory++;
6f505b16 1449 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
73fe6aae
GH
1450 BUG_ON(!rq->rt.rt_nr_migratory);
1451 rq->rt.rt_nr_migratory--;
1452 }
1453
1454 update_rt_migration(rq);
1455 }
1456
96f874e2 1457 cpumask_copy(&p->cpus_allowed, new_mask);
6f505b16 1458 p->rt.nr_cpus_allowed = weight;
73fe6aae 1459}
deeeccd4 1460
bdd7c81b 1461/* Assumes rq->lock is held */
1f11eb6a 1462static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
1463{
1464 if (rq->rt.overloaded)
1465 rt_set_overload(rq);
6e0534f2 1466
7def2be1
PZ
1467 __enable_runtime(rq);
1468
e864c499 1469 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
1470}
1471
1472/* Assumes rq->lock is held */
1f11eb6a 1473static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
1474{
1475 if (rq->rt.overloaded)
1476 rt_clear_overload(rq);
6e0534f2 1477
7def2be1
PZ
1478 __disable_runtime(rq);
1479
6e0534f2 1480 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 1481}
cb469845
SR
1482
1483/*
1484 * When switch from the rt queue, we bring ourselves to a position
1485 * that we might want to pull RT tasks from other runqueues.
1486 */
1487static void switched_from_rt(struct rq *rq, struct task_struct *p,
1488 int running)
1489{
1490 /*
1491 * If there are other RT tasks then we will reschedule
1492 * and the scheduling of the other RT tasks will handle
1493 * the balancing. But if we are the last RT task
1494 * we may need to handle the pulling of RT tasks
1495 * now.
1496 */
1497 if (!rq->rt.rt_nr_running)
1498 pull_rt_task(rq);
1499}
3d8cbdf8
RR
1500
1501static inline void init_sched_rt_class(void)
1502{
1503 unsigned int i;
1504
1505 for_each_possible_cpu(i)
6ca09dfc
MT
1506 alloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1507 GFP_KERNEL, cpu_to_node(i));
3d8cbdf8 1508}
cb469845
SR
1509#endif /* CONFIG_SMP */
1510
1511/*
1512 * When switching a task to RT, we may overload the runqueue
1513 * with RT tasks. In this case we try to push them off to
1514 * other runqueues.
1515 */
1516static void switched_to_rt(struct rq *rq, struct task_struct *p,
1517 int running)
1518{
1519 int check_resched = 1;
1520
1521 /*
1522 * If we are already running, then there's nothing
1523 * that needs to be done. But if we are not running
1524 * we may need to preempt the current running task.
1525 * If that current running task is also an RT task
1526 * then see if we can move to another run queue.
1527 */
1528 if (!running) {
1529#ifdef CONFIG_SMP
1530 if (rq->rt.overloaded && push_rt_task(rq) &&
1531 /* Don't resched if we changed runqueues */
1532 rq != task_rq(p))
1533 check_resched = 0;
1534#endif /* CONFIG_SMP */
1535 if (check_resched && p->prio < rq->curr->prio)
1536 resched_task(rq->curr);
1537 }
1538}
1539
1540/*
1541 * Priority of the task has changed. This may cause
1542 * us to initiate a push or pull.
1543 */
1544static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1545 int oldprio, int running)
1546{
1547 if (running) {
1548#ifdef CONFIG_SMP
1549 /*
1550 * If our priority decreases while running, we
1551 * may need to pull tasks to this runqueue.
1552 */
1553 if (oldprio < p->prio)
1554 pull_rt_task(rq);
1555 /*
1556 * If there's a higher priority task waiting to run
6fa46fa5
SR
1557 * then reschedule. Note, the above pull_rt_task
1558 * can release the rq lock and p could migrate.
1559 * Only reschedule if p is still on the same runqueue.
cb469845 1560 */
e864c499 1561 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
cb469845
SR
1562 resched_task(p);
1563#else
1564 /* For UP simply resched on drop of prio */
1565 if (oldprio < p->prio)
1566 resched_task(p);
e8fa1362 1567#endif /* CONFIG_SMP */
cb469845
SR
1568 } else {
1569 /*
1570 * This task is not running, but if it is
1571 * greater than the current running task
1572 * then reschedule.
1573 */
1574 if (p->prio < rq->curr->prio)
1575 resched_task(rq->curr);
1576 }
1577}
1578
78f2c7db
PZ
1579static void watchdog(struct rq *rq, struct task_struct *p)
1580{
1581 unsigned long soft, hard;
1582
1583 if (!p->signal)
1584 return;
1585
1586 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1587 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1588
1589 if (soft != RLIM_INFINITY) {
1590 unsigned long next;
1591
1592 p->rt.timeout++;
1593 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 1594 if (p->rt.timeout > next)
f06febc9 1595 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
1596 }
1597}
bb44e5d1 1598
8f4d37ec 1599static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 1600{
67e2be02
PZ
1601 update_curr_rt(rq);
1602
78f2c7db
PZ
1603 watchdog(rq, p);
1604
bb44e5d1
IM
1605 /*
1606 * RR tasks need a special form of timeslice management.
1607 * FIFO tasks have no timeslices.
1608 */
1609 if (p->policy != SCHED_RR)
1610 return;
1611
fa717060 1612 if (--p->rt.time_slice)
bb44e5d1
IM
1613 return;
1614
fa717060 1615 p->rt.time_slice = DEF_TIMESLICE;
bb44e5d1 1616
98fbc798
DA
1617 /*
1618 * Requeue to the end of queue if we are not the only element
1619 * on the queue:
1620 */
fa717060 1621 if (p->rt.run_list.prev != p->rt.run_list.next) {
7ebefa8c 1622 requeue_task_rt(rq, p, 0);
98fbc798
DA
1623 set_tsk_need_resched(p);
1624 }
bb44e5d1
IM
1625}
1626
83b699ed
SV
1627static void set_curr_task_rt(struct rq *rq)
1628{
1629 struct task_struct *p = rq->curr;
1630
1631 p->se.exec_start = rq->clock;
917b627d
GH
1632
1633 /* The running task is never eligible for pushing */
1634 dequeue_pushable_task(rq, p);
83b699ed
SV
1635}
1636
2abdad0a 1637static const struct sched_class rt_sched_class = {
5522d5d5 1638 .next = &fair_sched_class,
bb44e5d1
IM
1639 .enqueue_task = enqueue_task_rt,
1640 .dequeue_task = dequeue_task_rt,
1641 .yield_task = yield_task_rt,
1642
1643 .check_preempt_curr = check_preempt_curr_rt,
1644
1645 .pick_next_task = pick_next_task_rt,
1646 .put_prev_task = put_prev_task_rt,
1647
681f3e68 1648#ifdef CONFIG_SMP
4ce72a2c
LZ
1649 .select_task_rq = select_task_rq_rt,
1650
bb44e5d1 1651 .load_balance = load_balance_rt,
e1d1484f 1652 .move_one_task = move_one_task_rt,
73fe6aae 1653 .set_cpus_allowed = set_cpus_allowed_rt,
1f11eb6a
GH
1654 .rq_online = rq_online_rt,
1655 .rq_offline = rq_offline_rt,
9a897c5a 1656 .pre_schedule = pre_schedule_rt,
967fc046 1657 .needs_post_schedule = needs_post_schedule_rt,
9a897c5a
SR
1658 .post_schedule = post_schedule_rt,
1659 .task_wake_up = task_wake_up_rt,
cb469845 1660 .switched_from = switched_from_rt,
681f3e68 1661#endif
bb44e5d1 1662
83b699ed 1663 .set_curr_task = set_curr_task_rt,
bb44e5d1 1664 .task_tick = task_tick_rt,
cb469845
SR
1665
1666 .prio_changed = prio_changed_rt,
1667 .switched_to = switched_to_rt,
bb44e5d1 1668};
ada18de2
PZ
1669
1670#ifdef CONFIG_SCHED_DEBUG
1671extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1672
1673static void print_rt_stats(struct seq_file *m, int cpu)
1674{
1675 struct rt_rq *rt_rq;
1676
1677 rcu_read_lock();
1678 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1679 print_rt_rq(m, cpu, rt_rq);
1680 rcu_read_unlock();
1681}
55e12e5e 1682#endif /* CONFIG_SCHED_DEBUG */
0e3900e6 1683