sched: Add exports tracking cfs bandwidth control statistics
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
9745512c 26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
864616ee 29 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 30 *
21805085 31 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
32 * 'timeslice length' - timeslices in CFS are of variable length
33 * and have no persistent notion like in traditional, time-slice
34 * based scheduling concepts.
bf0f6f24 35 *
d274a4ce
IM
36 * (to see the precise effective timeslice length of your workload,
37 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 38 */
21406928
MG
39unsigned int sysctl_sched_latency = 6000000ULL;
40unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 41
1983a922
CE
42/*
43 * The initial- and re-scaling of tunables is configurable
44 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45 *
46 * Options are:
47 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
48 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
49 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 */
51enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 = SCHED_TUNABLESCALING_LOG;
53
2bd8e6d4 54/*
b2be5e96 55 * Minimal preemption granularity for CPU-bound tasks:
864616ee 56 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 57 */
0bf377bb
IM
58unsigned int sysctl_sched_min_granularity = 750000ULL;
59unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
60
61/*
b2be5e96
PZ
62 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 */
0bf377bb 64static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
65
66/*
2bba22c5 67 * After fork, child runs first. If set to 0 (default) then
b2be5e96 68 * parent will (try to) run first.
21805085 69 */
2bba22c5 70unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 71
bf0f6f24
IM
72/*
73 * SCHED_OTHER wake-up granularity.
172e082a 74 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 */
172e082a 80unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 81unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 82
da84d961
IM
83const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
84
a7a4f8a7
PT
85/*
86 * The exponential sliding window over which load is averaged for shares
87 * distribution.
88 * (default: 10msec)
89 */
90unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
91
ec12cb7f
PT
92#ifdef CONFIG_CFS_BANDWIDTH
93/*
94 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
95 * each time a cfs_rq requests quota.
96 *
97 * Note: in the case that the slice exceeds the runtime remaining (either due
98 * to consumption or the quota being specified to be smaller than the slice)
99 * we will always only issue the remaining available time.
100 *
101 * default: 5 msec, units: microseconds
102 */
103unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
104#endif
105
a4c2f00f
PZ
106static const struct sched_class fair_sched_class;
107
bf0f6f24
IM
108/**************************************************************
109 * CFS operations on generic schedulable entities:
110 */
111
62160e3f 112#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 113
62160e3f 114/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
115static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
116{
62160e3f 117 return cfs_rq->rq;
bf0f6f24
IM
118}
119
62160e3f
IM
120/* An entity is a task if it doesn't "own" a runqueue */
121#define entity_is_task(se) (!se->my_q)
bf0f6f24 122
8f48894f
PZ
123static inline struct task_struct *task_of(struct sched_entity *se)
124{
125#ifdef CONFIG_SCHED_DEBUG
126 WARN_ON_ONCE(!entity_is_task(se));
127#endif
128 return container_of(se, struct task_struct, se);
129}
130
b758149c
PZ
131/* Walk up scheduling entities hierarchy */
132#define for_each_sched_entity(se) \
133 for (; se; se = se->parent)
134
135static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
136{
137 return p->se.cfs_rq;
138}
139
140/* runqueue on which this entity is (to be) queued */
141static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
142{
143 return se->cfs_rq;
144}
145
146/* runqueue "owned" by this group */
147static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
148{
149 return grp->my_q;
150}
151
3d4b47b4
PZ
152static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
153{
154 if (!cfs_rq->on_list) {
67e86250
PT
155 /*
156 * Ensure we either appear before our parent (if already
157 * enqueued) or force our parent to appear after us when it is
158 * enqueued. The fact that we always enqueue bottom-up
159 * reduces this to two cases.
160 */
161 if (cfs_rq->tg->parent &&
162 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
163 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
164 &rq_of(cfs_rq)->leaf_cfs_rq_list);
165 } else {
166 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 167 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 168 }
3d4b47b4
PZ
169
170 cfs_rq->on_list = 1;
171 }
172}
173
174static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
175{
176 if (cfs_rq->on_list) {
177 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
178 cfs_rq->on_list = 0;
179 }
180}
181
b758149c
PZ
182/* Iterate thr' all leaf cfs_rq's on a runqueue */
183#define for_each_leaf_cfs_rq(rq, cfs_rq) \
184 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
185
186/* Do the two (enqueued) entities belong to the same group ? */
187static inline int
188is_same_group(struct sched_entity *se, struct sched_entity *pse)
189{
190 if (se->cfs_rq == pse->cfs_rq)
191 return 1;
192
193 return 0;
194}
195
196static inline struct sched_entity *parent_entity(struct sched_entity *se)
197{
198 return se->parent;
199}
200
464b7527
PZ
201/* return depth at which a sched entity is present in the hierarchy */
202static inline int depth_se(struct sched_entity *se)
203{
204 int depth = 0;
205
206 for_each_sched_entity(se)
207 depth++;
208
209 return depth;
210}
211
212static void
213find_matching_se(struct sched_entity **se, struct sched_entity **pse)
214{
215 int se_depth, pse_depth;
216
217 /*
218 * preemption test can be made between sibling entities who are in the
219 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
220 * both tasks until we find their ancestors who are siblings of common
221 * parent.
222 */
223
224 /* First walk up until both entities are at same depth */
225 se_depth = depth_se(*se);
226 pse_depth = depth_se(*pse);
227
228 while (se_depth > pse_depth) {
229 se_depth--;
230 *se = parent_entity(*se);
231 }
232
233 while (pse_depth > se_depth) {
234 pse_depth--;
235 *pse = parent_entity(*pse);
236 }
237
238 while (!is_same_group(*se, *pse)) {
239 *se = parent_entity(*se);
240 *pse = parent_entity(*pse);
241 }
242}
243
8f48894f
PZ
244#else /* !CONFIG_FAIR_GROUP_SCHED */
245
246static inline struct task_struct *task_of(struct sched_entity *se)
247{
248 return container_of(se, struct task_struct, se);
249}
bf0f6f24 250
62160e3f
IM
251static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
252{
253 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
254}
255
256#define entity_is_task(se) 1
257
b758149c
PZ
258#define for_each_sched_entity(se) \
259 for (; se; se = NULL)
bf0f6f24 260
b758149c 261static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 262{
b758149c 263 return &task_rq(p)->cfs;
bf0f6f24
IM
264}
265
b758149c
PZ
266static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
267{
268 struct task_struct *p = task_of(se);
269 struct rq *rq = task_rq(p);
270
271 return &rq->cfs;
272}
273
274/* runqueue "owned" by this group */
275static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
276{
277 return NULL;
278}
279
3d4b47b4
PZ
280static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
281{
282}
283
284static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285{
286}
287
b758149c
PZ
288#define for_each_leaf_cfs_rq(rq, cfs_rq) \
289 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
290
291static inline int
292is_same_group(struct sched_entity *se, struct sched_entity *pse)
293{
294 return 1;
295}
296
297static inline struct sched_entity *parent_entity(struct sched_entity *se)
298{
299 return NULL;
300}
301
464b7527
PZ
302static inline void
303find_matching_se(struct sched_entity **se, struct sched_entity **pse)
304{
305}
306
b758149c
PZ
307#endif /* CONFIG_FAIR_GROUP_SCHED */
308
ec12cb7f
PT
309static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
310 unsigned long delta_exec);
bf0f6f24
IM
311
312/**************************************************************
313 * Scheduling class tree data structure manipulation methods:
314 */
315
0702e3eb 316static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 317{
368059a9
PZ
318 s64 delta = (s64)(vruntime - min_vruntime);
319 if (delta > 0)
02e0431a
PZ
320 min_vruntime = vruntime;
321
322 return min_vruntime;
323}
324
0702e3eb 325static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
326{
327 s64 delta = (s64)(vruntime - min_vruntime);
328 if (delta < 0)
329 min_vruntime = vruntime;
330
331 return min_vruntime;
332}
333
54fdc581
FC
334static inline int entity_before(struct sched_entity *a,
335 struct sched_entity *b)
336{
337 return (s64)(a->vruntime - b->vruntime) < 0;
338}
339
1af5f730
PZ
340static void update_min_vruntime(struct cfs_rq *cfs_rq)
341{
342 u64 vruntime = cfs_rq->min_vruntime;
343
344 if (cfs_rq->curr)
345 vruntime = cfs_rq->curr->vruntime;
346
347 if (cfs_rq->rb_leftmost) {
348 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
349 struct sched_entity,
350 run_node);
351
e17036da 352 if (!cfs_rq->curr)
1af5f730
PZ
353 vruntime = se->vruntime;
354 else
355 vruntime = min_vruntime(vruntime, se->vruntime);
356 }
357
358 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
359#ifndef CONFIG_64BIT
360 smp_wmb();
361 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
362#endif
1af5f730
PZ
363}
364
bf0f6f24
IM
365/*
366 * Enqueue an entity into the rb-tree:
367 */
0702e3eb 368static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
369{
370 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
371 struct rb_node *parent = NULL;
372 struct sched_entity *entry;
bf0f6f24
IM
373 int leftmost = 1;
374
375 /*
376 * Find the right place in the rbtree:
377 */
378 while (*link) {
379 parent = *link;
380 entry = rb_entry(parent, struct sched_entity, run_node);
381 /*
382 * We dont care about collisions. Nodes with
383 * the same key stay together.
384 */
2bd2d6f2 385 if (entity_before(se, entry)) {
bf0f6f24
IM
386 link = &parent->rb_left;
387 } else {
388 link = &parent->rb_right;
389 leftmost = 0;
390 }
391 }
392
393 /*
394 * Maintain a cache of leftmost tree entries (it is frequently
395 * used):
396 */
1af5f730 397 if (leftmost)
57cb499d 398 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
399
400 rb_link_node(&se->run_node, parent, link);
401 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
402}
403
0702e3eb 404static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 405{
3fe69747
PZ
406 if (cfs_rq->rb_leftmost == &se->run_node) {
407 struct rb_node *next_node;
3fe69747
PZ
408
409 next_node = rb_next(&se->run_node);
410 cfs_rq->rb_leftmost = next_node;
3fe69747 411 }
e9acbff6 412
bf0f6f24 413 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
414}
415
ac53db59 416static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 417{
f4b6755f
PZ
418 struct rb_node *left = cfs_rq->rb_leftmost;
419
420 if (!left)
421 return NULL;
422
423 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
424}
425
ac53db59
RR
426static struct sched_entity *__pick_next_entity(struct sched_entity *se)
427{
428 struct rb_node *next = rb_next(&se->run_node);
429
430 if (!next)
431 return NULL;
432
433 return rb_entry(next, struct sched_entity, run_node);
434}
435
436#ifdef CONFIG_SCHED_DEBUG
f4b6755f 437static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 438{
7eee3e67 439 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 440
70eee74b
BS
441 if (!last)
442 return NULL;
7eee3e67
IM
443
444 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
445}
446
bf0f6f24
IM
447/**************************************************************
448 * Scheduling class statistics methods:
449 */
450
acb4a848 451int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 452 void __user *buffer, size_t *lenp,
b2be5e96
PZ
453 loff_t *ppos)
454{
8d65af78 455 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 456 int factor = get_update_sysctl_factor();
b2be5e96
PZ
457
458 if (ret || !write)
459 return ret;
460
461 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
462 sysctl_sched_min_granularity);
463
acb4a848
CE
464#define WRT_SYSCTL(name) \
465 (normalized_sysctl_##name = sysctl_##name / (factor))
466 WRT_SYSCTL(sched_min_granularity);
467 WRT_SYSCTL(sched_latency);
468 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
469#undef WRT_SYSCTL
470
b2be5e96
PZ
471 return 0;
472}
473#endif
647e7cac 474
a7be37ac 475/*
f9c0b095 476 * delta /= w
a7be37ac
PZ
477 */
478static inline unsigned long
479calc_delta_fair(unsigned long delta, struct sched_entity *se)
480{
f9c0b095
PZ
481 if (unlikely(se->load.weight != NICE_0_LOAD))
482 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
483
484 return delta;
485}
486
647e7cac
IM
487/*
488 * The idea is to set a period in which each task runs once.
489 *
490 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
491 * this period because otherwise the slices get too small.
492 *
493 * p = (nr <= nl) ? l : l*nr/nl
494 */
4d78e7b6
PZ
495static u64 __sched_period(unsigned long nr_running)
496{
497 u64 period = sysctl_sched_latency;
b2be5e96 498 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
499
500 if (unlikely(nr_running > nr_latency)) {
4bf0b771 501 period = sysctl_sched_min_granularity;
4d78e7b6 502 period *= nr_running;
4d78e7b6
PZ
503 }
504
505 return period;
506}
507
647e7cac
IM
508/*
509 * We calculate the wall-time slice from the period by taking a part
510 * proportional to the weight.
511 *
f9c0b095 512 * s = p*P[w/rw]
647e7cac 513 */
6d0f0ebd 514static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 515{
0a582440 516 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 517
0a582440 518 for_each_sched_entity(se) {
6272d68c 519 struct load_weight *load;
3104bf03 520 struct load_weight lw;
6272d68c
LM
521
522 cfs_rq = cfs_rq_of(se);
523 load = &cfs_rq->load;
f9c0b095 524
0a582440 525 if (unlikely(!se->on_rq)) {
3104bf03 526 lw = cfs_rq->load;
0a582440
MG
527
528 update_load_add(&lw, se->load.weight);
529 load = &lw;
530 }
531 slice = calc_delta_mine(slice, se->load.weight, load);
532 }
533 return slice;
bf0f6f24
IM
534}
535
647e7cac 536/*
ac884dec 537 * We calculate the vruntime slice of a to be inserted task
647e7cac 538 *
f9c0b095 539 * vs = s/w
647e7cac 540 */
f9c0b095 541static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 542{
f9c0b095 543 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
544}
545
d6b55918 546static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
6d5ab293 547static void update_cfs_shares(struct cfs_rq *cfs_rq);
3b3d190e 548
bf0f6f24
IM
549/*
550 * Update the current task's runtime statistics. Skip current tasks that
551 * are not in our scheduling class.
552 */
553static inline void
8ebc91d9
IM
554__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
555 unsigned long delta_exec)
bf0f6f24 556{
bbdba7c0 557 unsigned long delta_exec_weighted;
bf0f6f24 558
41acab88
LDM
559 schedstat_set(curr->statistics.exec_max,
560 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
561
562 curr->sum_exec_runtime += delta_exec;
7a62eabc 563 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 564 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 565
e9acbff6 566 curr->vruntime += delta_exec_weighted;
1af5f730 567 update_min_vruntime(cfs_rq);
3b3d190e 568
70caf8a6 569#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 570 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 571#endif
bf0f6f24
IM
572}
573
b7cc0896 574static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 575{
429d43bc 576 struct sched_entity *curr = cfs_rq->curr;
305e6835 577 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
578 unsigned long delta_exec;
579
580 if (unlikely(!curr))
581 return;
582
583 /*
584 * Get the amount of time the current task was running
585 * since the last time we changed load (this cannot
586 * overflow on 32 bits):
587 */
8ebc91d9 588 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
589 if (!delta_exec)
590 return;
bf0f6f24 591
8ebc91d9
IM
592 __update_curr(cfs_rq, curr, delta_exec);
593 curr->exec_start = now;
d842de87
SV
594
595 if (entity_is_task(curr)) {
596 struct task_struct *curtask = task_of(curr);
597
f977bb49 598 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 599 cpuacct_charge(curtask, delta_exec);
f06febc9 600 account_group_exec_runtime(curtask, delta_exec);
d842de87 601 }
ec12cb7f
PT
602
603 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
604}
605
606static inline void
5870db5b 607update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 608{
41acab88 609 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
610}
611
bf0f6f24
IM
612/*
613 * Task is being enqueued - update stats:
614 */
d2417e5a 615static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 616{
bf0f6f24
IM
617 /*
618 * Are we enqueueing a waiting task? (for current tasks
619 * a dequeue/enqueue event is a NOP)
620 */
429d43bc 621 if (se != cfs_rq->curr)
5870db5b 622 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
623}
624
bf0f6f24 625static void
9ef0a961 626update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 627{
41acab88
LDM
628 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
629 rq_of(cfs_rq)->clock - se->statistics.wait_start));
630 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
631 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
632 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
633#ifdef CONFIG_SCHEDSTATS
634 if (entity_is_task(se)) {
635 trace_sched_stat_wait(task_of(se),
41acab88 636 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
637 }
638#endif
41acab88 639 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
640}
641
642static inline void
19b6a2e3 643update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 644{
bf0f6f24
IM
645 /*
646 * Mark the end of the wait period if dequeueing a
647 * waiting task:
648 */
429d43bc 649 if (se != cfs_rq->curr)
9ef0a961 650 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
651}
652
653/*
654 * We are picking a new current task - update its stats:
655 */
656static inline void
79303e9e 657update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
658{
659 /*
660 * We are starting a new run period:
661 */
305e6835 662 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
663}
664
bf0f6f24
IM
665/**************************************************
666 * Scheduling class queueing methods:
667 */
668
c09595f6
PZ
669#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
670static void
671add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
672{
673 cfs_rq->task_weight += weight;
674}
675#else
676static inline void
677add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
678{
679}
680#endif
681
30cfdcfc
DA
682static void
683account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
684{
685 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
686 if (!parent_entity(se))
687 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 688 if (entity_is_task(se)) {
c09595f6 689 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
690 list_add(&se->group_node, &cfs_rq->tasks);
691 }
30cfdcfc 692 cfs_rq->nr_running++;
30cfdcfc
DA
693}
694
695static void
696account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
697{
698 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
699 if (!parent_entity(se))
700 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 701 if (entity_is_task(se)) {
c09595f6 702 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
703 list_del_init(&se->group_node);
704 }
30cfdcfc 705 cfs_rq->nr_running--;
30cfdcfc
DA
706}
707
3ff6dcac 708#ifdef CONFIG_FAIR_GROUP_SCHED
64660c86
PT
709/* we need this in update_cfs_load and load-balance functions below */
710static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3ff6dcac 711# ifdef CONFIG_SMP
d6b55918
PT
712static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
713 int global_update)
714{
715 struct task_group *tg = cfs_rq->tg;
716 long load_avg;
717
718 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
719 load_avg -= cfs_rq->load_contribution;
720
721 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
722 atomic_add(load_avg, &tg->load_weight);
723 cfs_rq->load_contribution += load_avg;
724 }
725}
726
727static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 728{
a7a4f8a7 729 u64 period = sysctl_sched_shares_window;
2069dd75 730 u64 now, delta;
e33078ba 731 unsigned long load = cfs_rq->load.weight;
2069dd75 732
64660c86 733 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
2069dd75
PZ
734 return;
735
05ca62c6 736 now = rq_of(cfs_rq)->clock_task;
2069dd75
PZ
737 delta = now - cfs_rq->load_stamp;
738
e33078ba
PT
739 /* truncate load history at 4 idle periods */
740 if (cfs_rq->load_stamp > cfs_rq->load_last &&
741 now - cfs_rq->load_last > 4 * period) {
742 cfs_rq->load_period = 0;
743 cfs_rq->load_avg = 0;
f07333bf 744 delta = period - 1;
e33078ba
PT
745 }
746
2069dd75 747 cfs_rq->load_stamp = now;
3b3d190e 748 cfs_rq->load_unacc_exec_time = 0;
2069dd75 749 cfs_rq->load_period += delta;
e33078ba
PT
750 if (load) {
751 cfs_rq->load_last = now;
752 cfs_rq->load_avg += delta * load;
753 }
2069dd75 754
d6b55918
PT
755 /* consider updating load contribution on each fold or truncate */
756 if (global_update || cfs_rq->load_period > period
757 || !cfs_rq->load_period)
758 update_cfs_rq_load_contribution(cfs_rq, global_update);
759
2069dd75
PZ
760 while (cfs_rq->load_period > period) {
761 /*
762 * Inline assembly required to prevent the compiler
763 * optimising this loop into a divmod call.
764 * See __iter_div_u64_rem() for another example of this.
765 */
766 asm("" : "+rm" (cfs_rq->load_period));
767 cfs_rq->load_period /= 2;
768 cfs_rq->load_avg /= 2;
769 }
3d4b47b4 770
e33078ba
PT
771 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
772 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
773}
774
6d5ab293 775static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
776{
777 long load_weight, load, shares;
778
6d5ab293 779 load = cfs_rq->load.weight;
3ff6dcac
YZ
780
781 load_weight = atomic_read(&tg->load_weight);
3ff6dcac 782 load_weight += load;
6d5ab293 783 load_weight -= cfs_rq->load_contribution;
3ff6dcac
YZ
784
785 shares = (tg->shares * load);
786 if (load_weight)
787 shares /= load_weight;
788
789 if (shares < MIN_SHARES)
790 shares = MIN_SHARES;
791 if (shares > tg->shares)
792 shares = tg->shares;
793
794 return shares;
795}
796
797static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
798{
799 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
800 update_cfs_load(cfs_rq, 0);
6d5ab293 801 update_cfs_shares(cfs_rq);
3ff6dcac
YZ
802 }
803}
804# else /* CONFIG_SMP */
805static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
806{
807}
808
6d5ab293 809static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
810{
811 return tg->shares;
812}
813
814static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
815{
816}
817# endif /* CONFIG_SMP */
2069dd75
PZ
818static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
819 unsigned long weight)
820{
19e5eebb
PT
821 if (se->on_rq) {
822 /* commit outstanding execution time */
823 if (cfs_rq->curr == se)
824 update_curr(cfs_rq);
2069dd75 825 account_entity_dequeue(cfs_rq, se);
19e5eebb 826 }
2069dd75
PZ
827
828 update_load_set(&se->load, weight);
829
830 if (se->on_rq)
831 account_entity_enqueue(cfs_rq, se);
832}
833
6d5ab293 834static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
835{
836 struct task_group *tg;
837 struct sched_entity *se;
3ff6dcac 838 long shares;
2069dd75 839
2069dd75
PZ
840 tg = cfs_rq->tg;
841 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 842 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 843 return;
3ff6dcac
YZ
844#ifndef CONFIG_SMP
845 if (likely(se->load.weight == tg->shares))
846 return;
847#endif
6d5ab293 848 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
849
850 reweight_entity(cfs_rq_of(se), se, shares);
851}
852#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 853static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
854{
855}
856
6d5ab293 857static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
858{
859}
43365bd7
PT
860
861static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
862{
863}
2069dd75
PZ
864#endif /* CONFIG_FAIR_GROUP_SCHED */
865
2396af69 866static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 867{
bf0f6f24 868#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
869 struct task_struct *tsk = NULL;
870
871 if (entity_is_task(se))
872 tsk = task_of(se);
873
41acab88
LDM
874 if (se->statistics.sleep_start) {
875 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
876
877 if ((s64)delta < 0)
878 delta = 0;
879
41acab88
LDM
880 if (unlikely(delta > se->statistics.sleep_max))
881 se->statistics.sleep_max = delta;
bf0f6f24 882
41acab88
LDM
883 se->statistics.sleep_start = 0;
884 se->statistics.sum_sleep_runtime += delta;
9745512c 885
768d0c27 886 if (tsk) {
e414314c 887 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
888 trace_sched_stat_sleep(tsk, delta);
889 }
bf0f6f24 890 }
41acab88
LDM
891 if (se->statistics.block_start) {
892 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
893
894 if ((s64)delta < 0)
895 delta = 0;
896
41acab88
LDM
897 if (unlikely(delta > se->statistics.block_max))
898 se->statistics.block_max = delta;
bf0f6f24 899
41acab88
LDM
900 se->statistics.block_start = 0;
901 se->statistics.sum_sleep_runtime += delta;
30084fbd 902
e414314c 903 if (tsk) {
8f0dfc34 904 if (tsk->in_iowait) {
41acab88
LDM
905 se->statistics.iowait_sum += delta;
906 se->statistics.iowait_count++;
768d0c27 907 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
908 }
909
e414314c
PZ
910 /*
911 * Blocking time is in units of nanosecs, so shift by
912 * 20 to get a milliseconds-range estimation of the
913 * amount of time that the task spent sleeping:
914 */
915 if (unlikely(prof_on == SLEEP_PROFILING)) {
916 profile_hits(SLEEP_PROFILING,
917 (void *)get_wchan(tsk),
918 delta >> 20);
919 }
920 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 921 }
bf0f6f24
IM
922 }
923#endif
924}
925
ddc97297
PZ
926static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
927{
928#ifdef CONFIG_SCHED_DEBUG
929 s64 d = se->vruntime - cfs_rq->min_vruntime;
930
931 if (d < 0)
932 d = -d;
933
934 if (d > 3*sysctl_sched_latency)
935 schedstat_inc(cfs_rq, nr_spread_over);
936#endif
937}
938
aeb73b04
PZ
939static void
940place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
941{
1af5f730 942 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 943
2cb8600e
PZ
944 /*
945 * The 'current' period is already promised to the current tasks,
946 * however the extra weight of the new task will slow them down a
947 * little, place the new task so that it fits in the slot that
948 * stays open at the end.
949 */
94dfb5e7 950 if (initial && sched_feat(START_DEBIT))
f9c0b095 951 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 952
a2e7a7eb 953 /* sleeps up to a single latency don't count. */
5ca9880c 954 if (!initial) {
a2e7a7eb 955 unsigned long thresh = sysctl_sched_latency;
a7be37ac 956
a2e7a7eb
MG
957 /*
958 * Halve their sleep time's effect, to allow
959 * for a gentler effect of sleepers:
960 */
961 if (sched_feat(GENTLE_FAIR_SLEEPERS))
962 thresh >>= 1;
51e0304c 963
a2e7a7eb 964 vruntime -= thresh;
aeb73b04
PZ
965 }
966
b5d9d734
MG
967 /* ensure we never gain time by being placed backwards. */
968 vruntime = max_vruntime(se->vruntime, vruntime);
969
67e9fb2a 970 se->vruntime = vruntime;
aeb73b04
PZ
971}
972
d3d9dc33
PT
973static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
974
bf0f6f24 975static void
88ec22d3 976enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 977{
88ec22d3
PZ
978 /*
979 * Update the normalized vruntime before updating min_vruntime
980 * through callig update_curr().
981 */
371fd7e7 982 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
983 se->vruntime += cfs_rq->min_vruntime;
984
bf0f6f24 985 /*
a2a2d680 986 * Update run-time statistics of the 'current'.
bf0f6f24 987 */
b7cc0896 988 update_curr(cfs_rq);
d6b55918 989 update_cfs_load(cfs_rq, 0);
a992241d 990 account_entity_enqueue(cfs_rq, se);
6d5ab293 991 update_cfs_shares(cfs_rq);
bf0f6f24 992
88ec22d3 993 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 994 place_entity(cfs_rq, se, 0);
2396af69 995 enqueue_sleeper(cfs_rq, se);
e9acbff6 996 }
bf0f6f24 997
d2417e5a 998 update_stats_enqueue(cfs_rq, se);
ddc97297 999 check_spread(cfs_rq, se);
83b699ed
SV
1000 if (se != cfs_rq->curr)
1001 __enqueue_entity(cfs_rq, se);
2069dd75 1002 se->on_rq = 1;
3d4b47b4 1003
d3d9dc33 1004 if (cfs_rq->nr_running == 1) {
3d4b47b4 1005 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1006 check_enqueue_throttle(cfs_rq);
1007 }
bf0f6f24
IM
1008}
1009
2c13c919 1010static void __clear_buddies_last(struct sched_entity *se)
2002c695 1011{
2c13c919
RR
1012 for_each_sched_entity(se) {
1013 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1014 if (cfs_rq->last == se)
1015 cfs_rq->last = NULL;
1016 else
1017 break;
1018 }
1019}
2002c695 1020
2c13c919
RR
1021static void __clear_buddies_next(struct sched_entity *se)
1022{
1023 for_each_sched_entity(se) {
1024 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1025 if (cfs_rq->next == se)
1026 cfs_rq->next = NULL;
1027 else
1028 break;
1029 }
2002c695
PZ
1030}
1031
ac53db59
RR
1032static void __clear_buddies_skip(struct sched_entity *se)
1033{
1034 for_each_sched_entity(se) {
1035 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1036 if (cfs_rq->skip == se)
1037 cfs_rq->skip = NULL;
1038 else
1039 break;
1040 }
1041}
1042
a571bbea
PZ
1043static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1044{
2c13c919
RR
1045 if (cfs_rq->last == se)
1046 __clear_buddies_last(se);
1047
1048 if (cfs_rq->next == se)
1049 __clear_buddies_next(se);
ac53db59
RR
1050
1051 if (cfs_rq->skip == se)
1052 __clear_buddies_skip(se);
a571bbea
PZ
1053}
1054
bf0f6f24 1055static void
371fd7e7 1056dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1057{
a2a2d680
DA
1058 /*
1059 * Update run-time statistics of the 'current'.
1060 */
1061 update_curr(cfs_rq);
1062
19b6a2e3 1063 update_stats_dequeue(cfs_rq, se);
371fd7e7 1064 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1065#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1066 if (entity_is_task(se)) {
1067 struct task_struct *tsk = task_of(se);
1068
1069 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1070 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1071 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1072 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1073 }
db36cc7d 1074#endif
67e9fb2a
PZ
1075 }
1076
2002c695 1077 clear_buddies(cfs_rq, se);
4793241b 1078
83b699ed 1079 if (se != cfs_rq->curr)
30cfdcfc 1080 __dequeue_entity(cfs_rq, se);
2069dd75 1081 se->on_rq = 0;
d6b55918 1082 update_cfs_load(cfs_rq, 0);
30cfdcfc 1083 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1084
1085 /*
1086 * Normalize the entity after updating the min_vruntime because the
1087 * update can refer to the ->curr item and we need to reflect this
1088 * movement in our normalized position.
1089 */
371fd7e7 1090 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1091 se->vruntime -= cfs_rq->min_vruntime;
1e876231
PZ
1092
1093 update_min_vruntime(cfs_rq);
1094 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1095}
1096
1097/*
1098 * Preempt the current task with a newly woken task if needed:
1099 */
7c92e54f 1100static void
2e09bf55 1101check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1102{
11697830
PZ
1103 unsigned long ideal_runtime, delta_exec;
1104
6d0f0ebd 1105 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1106 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1107 if (delta_exec > ideal_runtime) {
bf0f6f24 1108 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1109 /*
1110 * The current task ran long enough, ensure it doesn't get
1111 * re-elected due to buddy favours.
1112 */
1113 clear_buddies(cfs_rq, curr);
f685ceac
MG
1114 return;
1115 }
1116
1117 /*
1118 * Ensure that a task that missed wakeup preemption by a
1119 * narrow margin doesn't have to wait for a full slice.
1120 * This also mitigates buddy induced latencies under load.
1121 */
f685ceac
MG
1122 if (delta_exec < sysctl_sched_min_granularity)
1123 return;
1124
1125 if (cfs_rq->nr_running > 1) {
ac53db59 1126 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac
MG
1127 s64 delta = curr->vruntime - se->vruntime;
1128
d7d82944
MG
1129 if (delta < 0)
1130 return;
1131
f685ceac
MG
1132 if (delta > ideal_runtime)
1133 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5 1134 }
bf0f6f24
IM
1135}
1136
83b699ed 1137static void
8494f412 1138set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1139{
83b699ed
SV
1140 /* 'current' is not kept within the tree. */
1141 if (se->on_rq) {
1142 /*
1143 * Any task has to be enqueued before it get to execute on
1144 * a CPU. So account for the time it spent waiting on the
1145 * runqueue.
1146 */
1147 update_stats_wait_end(cfs_rq, se);
1148 __dequeue_entity(cfs_rq, se);
1149 }
1150
79303e9e 1151 update_stats_curr_start(cfs_rq, se);
429d43bc 1152 cfs_rq->curr = se;
eba1ed4b
IM
1153#ifdef CONFIG_SCHEDSTATS
1154 /*
1155 * Track our maximum slice length, if the CPU's load is at
1156 * least twice that of our own weight (i.e. dont track it
1157 * when there are only lesser-weight tasks around):
1158 */
495eca49 1159 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1160 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1161 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1162 }
1163#endif
4a55b450 1164 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1165}
1166
3f3a4904
PZ
1167static int
1168wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1169
ac53db59
RR
1170/*
1171 * Pick the next process, keeping these things in mind, in this order:
1172 * 1) keep things fair between processes/task groups
1173 * 2) pick the "next" process, since someone really wants that to run
1174 * 3) pick the "last" process, for cache locality
1175 * 4) do not run the "skip" process, if something else is available
1176 */
f4b6755f 1177static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1178{
ac53db59 1179 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1180 struct sched_entity *left = se;
f4b6755f 1181
ac53db59
RR
1182 /*
1183 * Avoid running the skip buddy, if running something else can
1184 * be done without getting too unfair.
1185 */
1186 if (cfs_rq->skip == se) {
1187 struct sched_entity *second = __pick_next_entity(se);
1188 if (second && wakeup_preempt_entity(second, left) < 1)
1189 se = second;
1190 }
aa2ac252 1191
f685ceac
MG
1192 /*
1193 * Prefer last buddy, try to return the CPU to a preempted task.
1194 */
1195 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1196 se = cfs_rq->last;
1197
ac53db59
RR
1198 /*
1199 * Someone really wants this to run. If it's not unfair, run it.
1200 */
1201 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1202 se = cfs_rq->next;
1203
f685ceac 1204 clear_buddies(cfs_rq, se);
4793241b
PZ
1205
1206 return se;
aa2ac252
PZ
1207}
1208
d3d9dc33
PT
1209static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1210
ab6cde26 1211static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1212{
1213 /*
1214 * If still on the runqueue then deactivate_task()
1215 * was not called and update_curr() has to be done:
1216 */
1217 if (prev->on_rq)
b7cc0896 1218 update_curr(cfs_rq);
bf0f6f24 1219
d3d9dc33
PT
1220 /* throttle cfs_rqs exceeding runtime */
1221 check_cfs_rq_runtime(cfs_rq);
1222
ddc97297 1223 check_spread(cfs_rq, prev);
30cfdcfc 1224 if (prev->on_rq) {
5870db5b 1225 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1226 /* Put 'current' back into the tree. */
1227 __enqueue_entity(cfs_rq, prev);
1228 }
429d43bc 1229 cfs_rq->curr = NULL;
bf0f6f24
IM
1230}
1231
8f4d37ec
PZ
1232static void
1233entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1234{
bf0f6f24 1235 /*
30cfdcfc 1236 * Update run-time statistics of the 'current'.
bf0f6f24 1237 */
30cfdcfc 1238 update_curr(cfs_rq);
bf0f6f24 1239
43365bd7
PT
1240 /*
1241 * Update share accounting for long-running entities.
1242 */
1243 update_entity_shares_tick(cfs_rq);
1244
8f4d37ec
PZ
1245#ifdef CONFIG_SCHED_HRTICK
1246 /*
1247 * queued ticks are scheduled to match the slice, so don't bother
1248 * validating it and just reschedule.
1249 */
983ed7a6
HH
1250 if (queued) {
1251 resched_task(rq_of(cfs_rq)->curr);
1252 return;
1253 }
8f4d37ec
PZ
1254 /*
1255 * don't let the period tick interfere with the hrtick preemption
1256 */
1257 if (!sched_feat(DOUBLE_TICK) &&
1258 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1259 return;
1260#endif
1261
2c2efaed 1262 if (cfs_rq->nr_running > 1)
2e09bf55 1263 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1264}
1265
ab84d31e
PT
1266
1267/**************************************************
1268 * CFS bandwidth control machinery
1269 */
1270
1271#ifdef CONFIG_CFS_BANDWIDTH
1272/*
1273 * default period for cfs group bandwidth.
1274 * default: 0.1s, units: nanoseconds
1275 */
1276static inline u64 default_cfs_period(void)
1277{
1278 return 100000000ULL;
1279}
ec12cb7f
PT
1280
1281static inline u64 sched_cfs_bandwidth_slice(void)
1282{
1283 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1284}
1285
a9cf55b2
PT
1286/*
1287 * Replenish runtime according to assigned quota and update expiration time.
1288 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1289 * additional synchronization around rq->lock.
1290 *
1291 * requires cfs_b->lock
1292 */
1293static void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
1294{
1295 u64 now;
1296
1297 if (cfs_b->quota == RUNTIME_INF)
1298 return;
1299
1300 now = sched_clock_cpu(smp_processor_id());
1301 cfs_b->runtime = cfs_b->quota;
1302 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1303}
1304
85dac906
PT
1305/* returns 0 on failure to allocate runtime */
1306static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
1307{
1308 struct task_group *tg = cfs_rq->tg;
1309 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 1310 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
1311
1312 /* note: this is a positive sum as runtime_remaining <= 0 */
1313 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1314
1315 raw_spin_lock(&cfs_b->lock);
1316 if (cfs_b->quota == RUNTIME_INF)
1317 amount = min_amount;
58088ad0 1318 else {
a9cf55b2
PT
1319 /*
1320 * If the bandwidth pool has become inactive, then at least one
1321 * period must have elapsed since the last consumption.
1322 * Refresh the global state and ensure bandwidth timer becomes
1323 * active.
1324 */
1325 if (!cfs_b->timer_active) {
1326 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 1327 __start_cfs_bandwidth(cfs_b);
a9cf55b2 1328 }
58088ad0
PT
1329
1330 if (cfs_b->runtime > 0) {
1331 amount = min(cfs_b->runtime, min_amount);
1332 cfs_b->runtime -= amount;
1333 cfs_b->idle = 0;
1334 }
ec12cb7f 1335 }
a9cf55b2 1336 expires = cfs_b->runtime_expires;
ec12cb7f
PT
1337 raw_spin_unlock(&cfs_b->lock);
1338
1339 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
1340 /*
1341 * we may have advanced our local expiration to account for allowed
1342 * spread between our sched_clock and the one on which runtime was
1343 * issued.
1344 */
1345 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1346 cfs_rq->runtime_expires = expires;
85dac906
PT
1347
1348 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
1349}
1350
a9cf55b2
PT
1351/*
1352 * Note: This depends on the synchronization provided by sched_clock and the
1353 * fact that rq->clock snapshots this value.
1354 */
1355static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 1356{
a9cf55b2
PT
1357 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1358 struct rq *rq = rq_of(cfs_rq);
1359
1360 /* if the deadline is ahead of our clock, nothing to do */
1361 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
1362 return;
1363
a9cf55b2
PT
1364 if (cfs_rq->runtime_remaining < 0)
1365 return;
1366
1367 /*
1368 * If the local deadline has passed we have to consider the
1369 * possibility that our sched_clock is 'fast' and the global deadline
1370 * has not truly expired.
1371 *
1372 * Fortunately we can check determine whether this the case by checking
1373 * whether the global deadline has advanced.
1374 */
1375
1376 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1377 /* extend local deadline, drift is bounded above by 2 ticks */
1378 cfs_rq->runtime_expires += TICK_NSEC;
1379 } else {
1380 /* global deadline is ahead, expiration has passed */
1381 cfs_rq->runtime_remaining = 0;
1382 }
1383}
1384
1385static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1386 unsigned long delta_exec)
1387{
1388 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 1389 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
1390 expire_cfs_rq_runtime(cfs_rq);
1391
1392 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
1393 return;
1394
85dac906
PT
1395 /*
1396 * if we're unable to extend our runtime we resched so that the active
1397 * hierarchy can be throttled
1398 */
1399 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1400 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
1401}
1402
1403static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1404 unsigned long delta_exec)
1405{
1406 if (!cfs_rq->runtime_enabled)
1407 return;
1408
1409 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1410}
1411
85dac906
PT
1412static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1413{
1414 return cfs_rq->throttled;
1415}
1416
64660c86
PT
1417/* check whether cfs_rq, or any parent, is throttled */
1418static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1419{
1420 return cfs_rq->throttle_count;
1421}
1422
1423/*
1424 * Ensure that neither of the group entities corresponding to src_cpu or
1425 * dest_cpu are members of a throttled hierarchy when performing group
1426 * load-balance operations.
1427 */
1428static inline int throttled_lb_pair(struct task_group *tg,
1429 int src_cpu, int dest_cpu)
1430{
1431 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1432
1433 src_cfs_rq = tg->cfs_rq[src_cpu];
1434 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1435
1436 return throttled_hierarchy(src_cfs_rq) ||
1437 throttled_hierarchy(dest_cfs_rq);
1438}
1439
1440/* updated child weight may affect parent so we have to do this bottom up */
1441static int tg_unthrottle_up(struct task_group *tg, void *data)
1442{
1443 struct rq *rq = data;
1444 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1445
1446 cfs_rq->throttle_count--;
1447#ifdef CONFIG_SMP
1448 if (!cfs_rq->throttle_count) {
1449 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1450
1451 /* leaving throttled state, advance shares averaging windows */
1452 cfs_rq->load_stamp += delta;
1453 cfs_rq->load_last += delta;
1454
1455 /* update entity weight now that we are on_rq again */
1456 update_cfs_shares(cfs_rq);
1457 }
1458#endif
1459
1460 return 0;
1461}
1462
1463static int tg_throttle_down(struct task_group *tg, void *data)
1464{
1465 struct rq *rq = data;
1466 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1467
1468 /* group is entering throttled state, record last load */
1469 if (!cfs_rq->throttle_count)
1470 update_cfs_load(cfs_rq, 0);
1471 cfs_rq->throttle_count++;
1472
1473 return 0;
1474}
1475
d3d9dc33 1476static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
1477{
1478 struct rq *rq = rq_of(cfs_rq);
1479 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1480 struct sched_entity *se;
1481 long task_delta, dequeue = 1;
1482
1483 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1484
1485 /* account load preceding throttle */
64660c86
PT
1486 rcu_read_lock();
1487 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1488 rcu_read_unlock();
85dac906
PT
1489
1490 task_delta = cfs_rq->h_nr_running;
1491 for_each_sched_entity(se) {
1492 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1493 /* throttled entity or throttle-on-deactivate */
1494 if (!se->on_rq)
1495 break;
1496
1497 if (dequeue)
1498 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1499 qcfs_rq->h_nr_running -= task_delta;
1500
1501 if (qcfs_rq->load.weight)
1502 dequeue = 0;
1503 }
1504
1505 if (!se)
1506 rq->nr_running -= task_delta;
1507
1508 cfs_rq->throttled = 1;
e8da1b18 1509 cfs_rq->throttled_timestamp = rq->clock;
85dac906
PT
1510 raw_spin_lock(&cfs_b->lock);
1511 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1512 raw_spin_unlock(&cfs_b->lock);
1513}
1514
671fd9da
PT
1515static void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1516{
1517 struct rq *rq = rq_of(cfs_rq);
1518 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1519 struct sched_entity *se;
1520 int enqueue = 1;
1521 long task_delta;
1522
1523 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1524
1525 cfs_rq->throttled = 0;
1526 raw_spin_lock(&cfs_b->lock);
e8da1b18 1527 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
671fd9da
PT
1528 list_del_rcu(&cfs_rq->throttled_list);
1529 raw_spin_unlock(&cfs_b->lock);
e8da1b18 1530 cfs_rq->throttled_timestamp = 0;
671fd9da 1531
64660c86
PT
1532 update_rq_clock(rq);
1533 /* update hierarchical throttle state */
1534 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1535
671fd9da
PT
1536 if (!cfs_rq->load.weight)
1537 return;
1538
1539 task_delta = cfs_rq->h_nr_running;
1540 for_each_sched_entity(se) {
1541 if (se->on_rq)
1542 enqueue = 0;
1543
1544 cfs_rq = cfs_rq_of(se);
1545 if (enqueue)
1546 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1547 cfs_rq->h_nr_running += task_delta;
1548
1549 if (cfs_rq_throttled(cfs_rq))
1550 break;
1551 }
1552
1553 if (!se)
1554 rq->nr_running += task_delta;
1555
1556 /* determine whether we need to wake up potentially idle cpu */
1557 if (rq->curr == rq->idle && rq->cfs.nr_running)
1558 resched_task(rq->curr);
1559}
1560
1561static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1562 u64 remaining, u64 expires)
1563{
1564 struct cfs_rq *cfs_rq;
1565 u64 runtime = remaining;
1566
1567 rcu_read_lock();
1568 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1569 throttled_list) {
1570 struct rq *rq = rq_of(cfs_rq);
1571
1572 raw_spin_lock(&rq->lock);
1573 if (!cfs_rq_throttled(cfs_rq))
1574 goto next;
1575
1576 runtime = -cfs_rq->runtime_remaining + 1;
1577 if (runtime > remaining)
1578 runtime = remaining;
1579 remaining -= runtime;
1580
1581 cfs_rq->runtime_remaining += runtime;
1582 cfs_rq->runtime_expires = expires;
1583
1584 /* we check whether we're throttled above */
1585 if (cfs_rq->runtime_remaining > 0)
1586 unthrottle_cfs_rq(cfs_rq);
1587
1588next:
1589 raw_spin_unlock(&rq->lock);
1590
1591 if (!remaining)
1592 break;
1593 }
1594 rcu_read_unlock();
1595
1596 return remaining;
1597}
1598
58088ad0
PT
1599/*
1600 * Responsible for refilling a task_group's bandwidth and unthrottling its
1601 * cfs_rqs as appropriate. If there has been no activity within the last
1602 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1603 * used to track this state.
1604 */
1605static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1606{
671fd9da
PT
1607 u64 runtime, runtime_expires;
1608 int idle = 1, throttled;
58088ad0
PT
1609
1610 raw_spin_lock(&cfs_b->lock);
1611 /* no need to continue the timer with no bandwidth constraint */
1612 if (cfs_b->quota == RUNTIME_INF)
1613 goto out_unlock;
1614
671fd9da
PT
1615 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1616 /* idle depends on !throttled (for the case of a large deficit) */
1617 idle = cfs_b->idle && !throttled;
e8da1b18 1618 cfs_b->nr_periods += overrun;
671fd9da 1619
a9cf55b2
PT
1620 /* if we're going inactive then everything else can be deferred */
1621 if (idle)
1622 goto out_unlock;
1623
1624 __refill_cfs_bandwidth_runtime(cfs_b);
1625
671fd9da
PT
1626 if (!throttled) {
1627 /* mark as potentially idle for the upcoming period */
1628 cfs_b->idle = 1;
1629 goto out_unlock;
1630 }
1631
e8da1b18
NR
1632 /* account preceding periods in which throttling occurred */
1633 cfs_b->nr_throttled += overrun;
1634
671fd9da
PT
1635 /*
1636 * There are throttled entities so we must first use the new bandwidth
1637 * to unthrottle them before making it generally available. This
1638 * ensures that all existing debts will be paid before a new cfs_rq is
1639 * allowed to run.
1640 */
1641 runtime = cfs_b->runtime;
1642 runtime_expires = cfs_b->runtime_expires;
1643 cfs_b->runtime = 0;
1644
1645 /*
1646 * This check is repeated as we are holding onto the new bandwidth
1647 * while we unthrottle. This can potentially race with an unthrottled
1648 * group trying to acquire new bandwidth from the global pool.
1649 */
1650 while (throttled && runtime > 0) {
1651 raw_spin_unlock(&cfs_b->lock);
1652 /* we can't nest cfs_b->lock while distributing bandwidth */
1653 runtime = distribute_cfs_runtime(cfs_b, runtime,
1654 runtime_expires);
1655 raw_spin_lock(&cfs_b->lock);
1656
1657 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1658 }
58088ad0 1659
671fd9da
PT
1660 /* return (any) remaining runtime */
1661 cfs_b->runtime = runtime;
1662 /*
1663 * While we are ensured activity in the period following an
1664 * unthrottle, this also covers the case in which the new bandwidth is
1665 * insufficient to cover the existing bandwidth deficit. (Forcing the
1666 * timer to remain active while there are any throttled entities.)
1667 */
1668 cfs_b->idle = 0;
58088ad0
PT
1669out_unlock:
1670 if (idle)
1671 cfs_b->timer_active = 0;
1672 raw_spin_unlock(&cfs_b->lock);
1673
1674 return idle;
1675}
d3d9dc33
PT
1676
1677/*
1678 * When a group wakes up we want to make sure that its quota is not already
1679 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1680 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1681 */
1682static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1683{
1684 /* an active group must be handled by the update_curr()->put() path */
1685 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1686 return;
1687
1688 /* ensure the group is not already throttled */
1689 if (cfs_rq_throttled(cfs_rq))
1690 return;
1691
1692 /* update runtime allocation */
1693 account_cfs_rq_runtime(cfs_rq, 0);
1694 if (cfs_rq->runtime_remaining <= 0)
1695 throttle_cfs_rq(cfs_rq);
1696}
1697
1698/* conditionally throttle active cfs_rq's from put_prev_entity() */
1699static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1700{
1701 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1702 return;
1703
1704 /*
1705 * it's possible for a throttled entity to be forced into a running
1706 * state (e.g. set_curr_task), in this case we're finished.
1707 */
1708 if (cfs_rq_throttled(cfs_rq))
1709 return;
1710
1711 throttle_cfs_rq(cfs_rq);
1712}
ec12cb7f
PT
1713#else
1714static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1715 unsigned long delta_exec) {}
d3d9dc33
PT
1716static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
1717static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
85dac906
PT
1718
1719static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1720{
1721 return 0;
1722}
64660c86
PT
1723
1724static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1725{
1726 return 0;
1727}
1728
1729static inline int throttled_lb_pair(struct task_group *tg,
1730 int src_cpu, int dest_cpu)
1731{
1732 return 0;
1733}
ab84d31e
PT
1734#endif
1735
bf0f6f24
IM
1736/**************************************************
1737 * CFS operations on tasks:
1738 */
1739
8f4d37ec
PZ
1740#ifdef CONFIG_SCHED_HRTICK
1741static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1742{
8f4d37ec
PZ
1743 struct sched_entity *se = &p->se;
1744 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1745
1746 WARN_ON(task_rq(p) != rq);
1747
1748 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1749 u64 slice = sched_slice(cfs_rq, se);
1750 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1751 s64 delta = slice - ran;
1752
1753 if (delta < 0) {
1754 if (rq->curr == p)
1755 resched_task(p);
1756 return;
1757 }
1758
1759 /*
1760 * Don't schedule slices shorter than 10000ns, that just
1761 * doesn't make sense. Rely on vruntime for fairness.
1762 */
31656519 1763 if (rq->curr != p)
157124c1 1764 delta = max_t(s64, 10000LL, delta);
8f4d37ec 1765
31656519 1766 hrtick_start(rq, delta);
8f4d37ec
PZ
1767 }
1768}
a4c2f00f
PZ
1769
1770/*
1771 * called from enqueue/dequeue and updates the hrtick when the
1772 * current task is from our class and nr_running is low enough
1773 * to matter.
1774 */
1775static void hrtick_update(struct rq *rq)
1776{
1777 struct task_struct *curr = rq->curr;
1778
1779 if (curr->sched_class != &fair_sched_class)
1780 return;
1781
1782 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1783 hrtick_start_fair(rq, curr);
1784}
55e12e5e 1785#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1786static inline void
1787hrtick_start_fair(struct rq *rq, struct task_struct *p)
1788{
1789}
a4c2f00f
PZ
1790
1791static inline void hrtick_update(struct rq *rq)
1792{
1793}
8f4d37ec
PZ
1794#endif
1795
bf0f6f24
IM
1796/*
1797 * The enqueue_task method is called before nr_running is
1798 * increased. Here we update the fair scheduling stats and
1799 * then put the task into the rbtree:
1800 */
ea87bb78 1801static void
371fd7e7 1802enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1803{
1804 struct cfs_rq *cfs_rq;
62fb1851 1805 struct sched_entity *se = &p->se;
bf0f6f24
IM
1806
1807 for_each_sched_entity(se) {
62fb1851 1808 if (se->on_rq)
bf0f6f24
IM
1809 break;
1810 cfs_rq = cfs_rq_of(se);
88ec22d3 1811 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
1812
1813 /*
1814 * end evaluation on encountering a throttled cfs_rq
1815 *
1816 * note: in the case of encountering a throttled cfs_rq we will
1817 * post the final h_nr_running increment below.
1818 */
1819 if (cfs_rq_throttled(cfs_rq))
1820 break;
953bfcd1 1821 cfs_rq->h_nr_running++;
85dac906 1822
88ec22d3 1823 flags = ENQUEUE_WAKEUP;
bf0f6f24 1824 }
8f4d37ec 1825
2069dd75 1826 for_each_sched_entity(se) {
0f317143 1827 cfs_rq = cfs_rq_of(se);
953bfcd1 1828 cfs_rq->h_nr_running++;
2069dd75 1829
85dac906
PT
1830 if (cfs_rq_throttled(cfs_rq))
1831 break;
1832
d6b55918 1833 update_cfs_load(cfs_rq, 0);
6d5ab293 1834 update_cfs_shares(cfs_rq);
2069dd75
PZ
1835 }
1836
85dac906
PT
1837 if (!se)
1838 inc_nr_running(rq);
a4c2f00f 1839 hrtick_update(rq);
bf0f6f24
IM
1840}
1841
2f36825b
VP
1842static void set_next_buddy(struct sched_entity *se);
1843
bf0f6f24
IM
1844/*
1845 * The dequeue_task method is called before nr_running is
1846 * decreased. We remove the task from the rbtree and
1847 * update the fair scheduling stats:
1848 */
371fd7e7 1849static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1850{
1851 struct cfs_rq *cfs_rq;
62fb1851 1852 struct sched_entity *se = &p->se;
2f36825b 1853 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
1854
1855 for_each_sched_entity(se) {
1856 cfs_rq = cfs_rq_of(se);
371fd7e7 1857 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
1858
1859 /*
1860 * end evaluation on encountering a throttled cfs_rq
1861 *
1862 * note: in the case of encountering a throttled cfs_rq we will
1863 * post the final h_nr_running decrement below.
1864 */
1865 if (cfs_rq_throttled(cfs_rq))
1866 break;
953bfcd1 1867 cfs_rq->h_nr_running--;
2069dd75 1868
bf0f6f24 1869 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
1870 if (cfs_rq->load.weight) {
1871 /*
1872 * Bias pick_next to pick a task from this cfs_rq, as
1873 * p is sleeping when it is within its sched_slice.
1874 */
1875 if (task_sleep && parent_entity(se))
1876 set_next_buddy(parent_entity(se));
9598c82d
PT
1877
1878 /* avoid re-evaluating load for this entity */
1879 se = parent_entity(se);
bf0f6f24 1880 break;
2f36825b 1881 }
371fd7e7 1882 flags |= DEQUEUE_SLEEP;
bf0f6f24 1883 }
8f4d37ec 1884
2069dd75 1885 for_each_sched_entity(se) {
0f317143 1886 cfs_rq = cfs_rq_of(se);
953bfcd1 1887 cfs_rq->h_nr_running--;
2069dd75 1888
85dac906
PT
1889 if (cfs_rq_throttled(cfs_rq))
1890 break;
1891
d6b55918 1892 update_cfs_load(cfs_rq, 0);
6d5ab293 1893 update_cfs_shares(cfs_rq);
2069dd75
PZ
1894 }
1895
85dac906
PT
1896 if (!se)
1897 dec_nr_running(rq);
a4c2f00f 1898 hrtick_update(rq);
bf0f6f24
IM
1899}
1900
e7693a36 1901#ifdef CONFIG_SMP
098fb9db 1902
74f8e4b2 1903static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
1904{
1905 struct sched_entity *se = &p->se;
1906 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
1907 u64 min_vruntime;
1908
1909#ifndef CONFIG_64BIT
1910 u64 min_vruntime_copy;
88ec22d3 1911
3fe1698b
PZ
1912 do {
1913 min_vruntime_copy = cfs_rq->min_vruntime_copy;
1914 smp_rmb();
1915 min_vruntime = cfs_rq->min_vruntime;
1916 } while (min_vruntime != min_vruntime_copy);
1917#else
1918 min_vruntime = cfs_rq->min_vruntime;
1919#endif
88ec22d3 1920
3fe1698b 1921 se->vruntime -= min_vruntime;
88ec22d3
PZ
1922}
1923
bb3469ac 1924#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1925/*
1926 * effective_load() calculates the load change as seen from the root_task_group
1927 *
1928 * Adding load to a group doesn't make a group heavier, but can cause movement
1929 * of group shares between cpus. Assuming the shares were perfectly aligned one
1930 * can calculate the shift in shares.
f5bfb7d9 1931 */
2069dd75 1932static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 1933{
4be9daaa 1934 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1935
1936 if (!tg->parent)
1937 return wl;
1938
4be9daaa 1939 for_each_sched_entity(se) {
977dda7c 1940 long lw, w;
4be9daaa 1941
977dda7c
PT
1942 tg = se->my_q->tg;
1943 w = se->my_q->load.weight;
bb3469ac 1944
977dda7c
PT
1945 /* use this cpu's instantaneous contribution */
1946 lw = atomic_read(&tg->load_weight);
1947 lw -= se->my_q->load_contribution;
1948 lw += w + wg;
4be9daaa 1949
977dda7c 1950 wl += w;
940959e9 1951
977dda7c
PT
1952 if (lw > 0 && wl < lw)
1953 wl = (wl * tg->shares) / lw;
1954 else
1955 wl = tg->shares;
940959e9 1956
977dda7c
PT
1957 /* zero point is MIN_SHARES */
1958 if (wl < MIN_SHARES)
1959 wl = MIN_SHARES;
1960 wl -= se->load.weight;
4be9daaa 1961 wg = 0;
4be9daaa 1962 }
bb3469ac 1963
4be9daaa 1964 return wl;
bb3469ac
PZ
1965}
1966#else
4be9daaa 1967
83378269
PZ
1968static inline unsigned long effective_load(struct task_group *tg, int cpu,
1969 unsigned long wl, unsigned long wg)
4be9daaa 1970{
83378269 1971 return wl;
bb3469ac 1972}
4be9daaa 1973
bb3469ac
PZ
1974#endif
1975
c88d5910 1976static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1977{
e37b6a7b 1978 s64 this_load, load;
c88d5910 1979 int idx, this_cpu, prev_cpu;
098fb9db 1980 unsigned long tl_per_task;
c88d5910 1981 struct task_group *tg;
83378269 1982 unsigned long weight;
b3137bc8 1983 int balanced;
098fb9db 1984
c88d5910
PZ
1985 idx = sd->wake_idx;
1986 this_cpu = smp_processor_id();
1987 prev_cpu = task_cpu(p);
1988 load = source_load(prev_cpu, idx);
1989 this_load = target_load(this_cpu, idx);
098fb9db 1990
b3137bc8
MG
1991 /*
1992 * If sync wakeup then subtract the (maximum possible)
1993 * effect of the currently running task from the load
1994 * of the current CPU:
1995 */
83378269
PZ
1996 if (sync) {
1997 tg = task_group(current);
1998 weight = current->se.load.weight;
1999
c88d5910 2000 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
2001 load += effective_load(tg, prev_cpu, 0, -weight);
2002 }
b3137bc8 2003
83378269
PZ
2004 tg = task_group(p);
2005 weight = p->se.load.weight;
b3137bc8 2006
71a29aa7
PZ
2007 /*
2008 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
2009 * due to the sync cause above having dropped this_load to 0, we'll
2010 * always have an imbalance, but there's really nothing you can do
2011 * about that, so that's good too.
71a29aa7
PZ
2012 *
2013 * Otherwise check if either cpus are near enough in load to allow this
2014 * task to be woken on this_cpu.
2015 */
e37b6a7b
PT
2016 if (this_load > 0) {
2017 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
2018
2019 this_eff_load = 100;
2020 this_eff_load *= power_of(prev_cpu);
2021 this_eff_load *= this_load +
2022 effective_load(tg, this_cpu, weight, weight);
2023
2024 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2025 prev_eff_load *= power_of(this_cpu);
2026 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2027
2028 balanced = this_eff_load <= prev_eff_load;
2029 } else
2030 balanced = true;
b3137bc8 2031
098fb9db 2032 /*
4ae7d5ce
IM
2033 * If the currently running task will sleep within
2034 * a reasonable amount of time then attract this newly
2035 * woken task:
098fb9db 2036 */
2fb7635c
PZ
2037 if (sync && balanced)
2038 return 1;
098fb9db 2039
41acab88 2040 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
2041 tl_per_task = cpu_avg_load_per_task(this_cpu);
2042
c88d5910
PZ
2043 if (balanced ||
2044 (this_load <= load &&
2045 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
2046 /*
2047 * This domain has SD_WAKE_AFFINE and
2048 * p is cache cold in this domain, and
2049 * there is no bad imbalance.
2050 */
c88d5910 2051 schedstat_inc(sd, ttwu_move_affine);
41acab88 2052 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
2053
2054 return 1;
2055 }
2056 return 0;
2057}
2058
aaee1203
PZ
2059/*
2060 * find_idlest_group finds and returns the least busy CPU group within the
2061 * domain.
2062 */
2063static struct sched_group *
78e7ed53 2064find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 2065 int this_cpu, int load_idx)
e7693a36 2066{
b3bd3de6 2067 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 2068 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 2069 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 2070
aaee1203
PZ
2071 do {
2072 unsigned long load, avg_load;
2073 int local_group;
2074 int i;
e7693a36 2075
aaee1203
PZ
2076 /* Skip over this group if it has no CPUs allowed */
2077 if (!cpumask_intersects(sched_group_cpus(group),
2078 &p->cpus_allowed))
2079 continue;
2080
2081 local_group = cpumask_test_cpu(this_cpu,
2082 sched_group_cpus(group));
2083
2084 /* Tally up the load of all CPUs in the group */
2085 avg_load = 0;
2086
2087 for_each_cpu(i, sched_group_cpus(group)) {
2088 /* Bias balancing toward cpus of our domain */
2089 if (local_group)
2090 load = source_load(i, load_idx);
2091 else
2092 load = target_load(i, load_idx);
2093
2094 avg_load += load;
2095 }
2096
2097 /* Adjust by relative CPU power of the group */
9c3f75cb 2098 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
2099
2100 if (local_group) {
2101 this_load = avg_load;
aaee1203
PZ
2102 } else if (avg_load < min_load) {
2103 min_load = avg_load;
2104 idlest = group;
2105 }
2106 } while (group = group->next, group != sd->groups);
2107
2108 if (!idlest || 100*this_load < imbalance*min_load)
2109 return NULL;
2110 return idlest;
2111}
2112
2113/*
2114 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2115 */
2116static int
2117find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2118{
2119 unsigned long load, min_load = ULONG_MAX;
2120 int idlest = -1;
2121 int i;
2122
2123 /* Traverse only the allowed CPUs */
2124 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2125 load = weighted_cpuload(i);
2126
2127 if (load < min_load || (load == min_load && i == this_cpu)) {
2128 min_load = load;
2129 idlest = i;
e7693a36
GH
2130 }
2131 }
2132
aaee1203
PZ
2133 return idlest;
2134}
e7693a36 2135
a50bde51
PZ
2136/*
2137 * Try and locate an idle CPU in the sched_domain.
2138 */
99bd5e2f 2139static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
2140{
2141 int cpu = smp_processor_id();
2142 int prev_cpu = task_cpu(p);
99bd5e2f 2143 struct sched_domain *sd;
a50bde51
PZ
2144 int i;
2145
2146 /*
99bd5e2f
SS
2147 * If the task is going to be woken-up on this cpu and if it is
2148 * already idle, then it is the right target.
a50bde51 2149 */
99bd5e2f
SS
2150 if (target == cpu && idle_cpu(cpu))
2151 return cpu;
2152
2153 /*
2154 * If the task is going to be woken-up on the cpu where it previously
2155 * ran and if it is currently idle, then it the right target.
2156 */
2157 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 2158 return prev_cpu;
a50bde51
PZ
2159
2160 /*
99bd5e2f 2161 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 2162 */
dce840a0 2163 rcu_read_lock();
99bd5e2f
SS
2164 for_each_domain(target, sd) {
2165 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
fe3bcfe1 2166 break;
99bd5e2f
SS
2167
2168 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
2169 if (idle_cpu(i)) {
2170 target = i;
2171 break;
2172 }
a50bde51 2173 }
99bd5e2f
SS
2174
2175 /*
2176 * Lets stop looking for an idle sibling when we reached
2177 * the domain that spans the current cpu and prev_cpu.
2178 */
2179 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
2180 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
2181 break;
a50bde51 2182 }
dce840a0 2183 rcu_read_unlock();
a50bde51
PZ
2184
2185 return target;
2186}
2187
aaee1203
PZ
2188/*
2189 * sched_balance_self: balance the current task (running on cpu) in domains
2190 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2191 * SD_BALANCE_EXEC.
2192 *
2193 * Balance, ie. select the least loaded group.
2194 *
2195 * Returns the target CPU number, or the same CPU if no balancing is needed.
2196 *
2197 * preempt must be disabled.
2198 */
0017d735 2199static int
7608dec2 2200select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 2201{
29cd8bae 2202 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
2203 int cpu = smp_processor_id();
2204 int prev_cpu = task_cpu(p);
2205 int new_cpu = cpu;
99bd5e2f 2206 int want_affine = 0;
29cd8bae 2207 int want_sd = 1;
5158f4e4 2208 int sync = wake_flags & WF_SYNC;
c88d5910 2209
0763a660 2210 if (sd_flag & SD_BALANCE_WAKE) {
beac4c7e 2211 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
c88d5910
PZ
2212 want_affine = 1;
2213 new_cpu = prev_cpu;
2214 }
aaee1203 2215
dce840a0 2216 rcu_read_lock();
aaee1203 2217 for_each_domain(cpu, tmp) {
e4f42888
PZ
2218 if (!(tmp->flags & SD_LOAD_BALANCE))
2219 continue;
2220
aaee1203 2221 /*
ae154be1
PZ
2222 * If power savings logic is enabled for a domain, see if we
2223 * are not overloaded, if so, don't balance wider.
aaee1203 2224 */
59abf026 2225 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
2226 unsigned long power = 0;
2227 unsigned long nr_running = 0;
2228 unsigned long capacity;
2229 int i;
2230
2231 for_each_cpu(i, sched_domain_span(tmp)) {
2232 power += power_of(i);
2233 nr_running += cpu_rq(i)->cfs.nr_running;
2234 }
2235
1399fa78 2236 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
ae154be1 2237
59abf026
PZ
2238 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2239 nr_running /= 2;
2240
2241 if (nr_running < capacity)
29cd8bae 2242 want_sd = 0;
ae154be1 2243 }
aaee1203 2244
fe3bcfe1 2245 /*
99bd5e2f
SS
2246 * If both cpu and prev_cpu are part of this domain,
2247 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 2248 */
99bd5e2f
SS
2249 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2250 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2251 affine_sd = tmp;
2252 want_affine = 0;
c88d5910
PZ
2253 }
2254
29cd8bae
PZ
2255 if (!want_sd && !want_affine)
2256 break;
2257
0763a660 2258 if (!(tmp->flags & sd_flag))
c88d5910
PZ
2259 continue;
2260
29cd8bae
PZ
2261 if (want_sd)
2262 sd = tmp;
2263 }
2264
8b911acd 2265 if (affine_sd) {
99bd5e2f 2266 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
dce840a0
PZ
2267 prev_cpu = cpu;
2268
2269 new_cpu = select_idle_sibling(p, prev_cpu);
2270 goto unlock;
8b911acd 2271 }
e7693a36 2272
aaee1203 2273 while (sd) {
5158f4e4 2274 int load_idx = sd->forkexec_idx;
aaee1203 2275 struct sched_group *group;
c88d5910 2276 int weight;
098fb9db 2277
0763a660 2278 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
2279 sd = sd->child;
2280 continue;
2281 }
098fb9db 2282
5158f4e4
PZ
2283 if (sd_flag & SD_BALANCE_WAKE)
2284 load_idx = sd->wake_idx;
098fb9db 2285
5158f4e4 2286 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
2287 if (!group) {
2288 sd = sd->child;
2289 continue;
2290 }
4ae7d5ce 2291
d7c33c49 2292 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
2293 if (new_cpu == -1 || new_cpu == cpu) {
2294 /* Now try balancing at a lower domain level of cpu */
2295 sd = sd->child;
2296 continue;
e7693a36 2297 }
aaee1203
PZ
2298
2299 /* Now try balancing at a lower domain level of new_cpu */
2300 cpu = new_cpu;
669c55e9 2301 weight = sd->span_weight;
aaee1203
PZ
2302 sd = NULL;
2303 for_each_domain(cpu, tmp) {
669c55e9 2304 if (weight <= tmp->span_weight)
aaee1203 2305 break;
0763a660 2306 if (tmp->flags & sd_flag)
aaee1203
PZ
2307 sd = tmp;
2308 }
2309 /* while loop will break here if sd == NULL */
e7693a36 2310 }
dce840a0
PZ
2311unlock:
2312 rcu_read_unlock();
e7693a36 2313
c88d5910 2314 return new_cpu;
e7693a36
GH
2315}
2316#endif /* CONFIG_SMP */
2317
e52fb7c0
PZ
2318static unsigned long
2319wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
2320{
2321 unsigned long gran = sysctl_sched_wakeup_granularity;
2322
2323 /*
e52fb7c0
PZ
2324 * Since its curr running now, convert the gran from real-time
2325 * to virtual-time in his units.
13814d42
MG
2326 *
2327 * By using 'se' instead of 'curr' we penalize light tasks, so
2328 * they get preempted easier. That is, if 'se' < 'curr' then
2329 * the resulting gran will be larger, therefore penalizing the
2330 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2331 * be smaller, again penalizing the lighter task.
2332 *
2333 * This is especially important for buddies when the leftmost
2334 * task is higher priority than the buddy.
0bbd3336 2335 */
f4ad9bd2 2336 return calc_delta_fair(gran, se);
0bbd3336
PZ
2337}
2338
464b7527
PZ
2339/*
2340 * Should 'se' preempt 'curr'.
2341 *
2342 * |s1
2343 * |s2
2344 * |s3
2345 * g
2346 * |<--->|c
2347 *
2348 * w(c, s1) = -1
2349 * w(c, s2) = 0
2350 * w(c, s3) = 1
2351 *
2352 */
2353static int
2354wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2355{
2356 s64 gran, vdiff = curr->vruntime - se->vruntime;
2357
2358 if (vdiff <= 0)
2359 return -1;
2360
e52fb7c0 2361 gran = wakeup_gran(curr, se);
464b7527
PZ
2362 if (vdiff > gran)
2363 return 1;
2364
2365 return 0;
2366}
2367
02479099
PZ
2368static void set_last_buddy(struct sched_entity *se)
2369{
69c80f3e
VP
2370 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2371 return;
2372
2373 for_each_sched_entity(se)
2374 cfs_rq_of(se)->last = se;
02479099
PZ
2375}
2376
2377static void set_next_buddy(struct sched_entity *se)
2378{
69c80f3e
VP
2379 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2380 return;
2381
2382 for_each_sched_entity(se)
2383 cfs_rq_of(se)->next = se;
02479099
PZ
2384}
2385
ac53db59
RR
2386static void set_skip_buddy(struct sched_entity *se)
2387{
69c80f3e
VP
2388 for_each_sched_entity(se)
2389 cfs_rq_of(se)->skip = se;
ac53db59
RR
2390}
2391
bf0f6f24
IM
2392/*
2393 * Preempt the current task with a newly woken task if needed:
2394 */
5a9b86f6 2395static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
2396{
2397 struct task_struct *curr = rq->curr;
8651a86c 2398 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 2399 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 2400 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 2401 int next_buddy_marked = 0;
bf0f6f24 2402
4ae7d5ce
IM
2403 if (unlikely(se == pse))
2404 return;
2405
5238cdd3
PT
2406 /*
2407 * This is possible from callers such as pull_task(), in which we
2408 * unconditionally check_prempt_curr() after an enqueue (which may have
2409 * lead to a throttle). This both saves work and prevents false
2410 * next-buddy nomination below.
2411 */
2412 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2413 return;
2414
2f36825b 2415 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 2416 set_next_buddy(pse);
2f36825b
VP
2417 next_buddy_marked = 1;
2418 }
57fdc26d 2419
aec0a514
BR
2420 /*
2421 * We can come here with TIF_NEED_RESCHED already set from new task
2422 * wake up path.
5238cdd3
PT
2423 *
2424 * Note: this also catches the edge-case of curr being in a throttled
2425 * group (e.g. via set_curr_task), since update_curr() (in the
2426 * enqueue of curr) will have resulted in resched being set. This
2427 * prevents us from potentially nominating it as a false LAST_BUDDY
2428 * below.
aec0a514
BR
2429 */
2430 if (test_tsk_need_resched(curr))
2431 return;
2432
a2f5c9ab
DH
2433 /* Idle tasks are by definition preempted by non-idle tasks. */
2434 if (unlikely(curr->policy == SCHED_IDLE) &&
2435 likely(p->policy != SCHED_IDLE))
2436 goto preempt;
2437
91c234b4 2438 /*
a2f5c9ab
DH
2439 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2440 * is driven by the tick):
91c234b4 2441 */
6bc912b7 2442 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 2443 return;
bf0f6f24 2444
464b7527 2445 find_matching_se(&se, &pse);
9bbd7374 2446 update_curr(cfs_rq_of(se));
002f128b 2447 BUG_ON(!pse);
2f36825b
VP
2448 if (wakeup_preempt_entity(se, pse) == 1) {
2449 /*
2450 * Bias pick_next to pick the sched entity that is
2451 * triggering this preemption.
2452 */
2453 if (!next_buddy_marked)
2454 set_next_buddy(pse);
3a7e73a2 2455 goto preempt;
2f36825b 2456 }
464b7527 2457
3a7e73a2 2458 return;
a65ac745 2459
3a7e73a2
PZ
2460preempt:
2461 resched_task(curr);
2462 /*
2463 * Only set the backward buddy when the current task is still
2464 * on the rq. This can happen when a wakeup gets interleaved
2465 * with schedule on the ->pre_schedule() or idle_balance()
2466 * point, either of which can * drop the rq lock.
2467 *
2468 * Also, during early boot the idle thread is in the fair class,
2469 * for obvious reasons its a bad idea to schedule back to it.
2470 */
2471 if (unlikely(!se->on_rq || curr == rq->idle))
2472 return;
2473
2474 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2475 set_last_buddy(se);
bf0f6f24
IM
2476}
2477
fb8d4724 2478static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 2479{
8f4d37ec 2480 struct task_struct *p;
bf0f6f24
IM
2481 struct cfs_rq *cfs_rq = &rq->cfs;
2482 struct sched_entity *se;
2483
36ace27e 2484 if (!cfs_rq->nr_running)
bf0f6f24
IM
2485 return NULL;
2486
2487 do {
9948f4b2 2488 se = pick_next_entity(cfs_rq);
f4b6755f 2489 set_next_entity(cfs_rq, se);
bf0f6f24
IM
2490 cfs_rq = group_cfs_rq(se);
2491 } while (cfs_rq);
2492
8f4d37ec
PZ
2493 p = task_of(se);
2494 hrtick_start_fair(rq, p);
2495
2496 return p;
bf0f6f24
IM
2497}
2498
2499/*
2500 * Account for a descheduled task:
2501 */
31ee529c 2502static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
2503{
2504 struct sched_entity *se = &prev->se;
2505 struct cfs_rq *cfs_rq;
2506
2507 for_each_sched_entity(se) {
2508 cfs_rq = cfs_rq_of(se);
ab6cde26 2509 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
2510 }
2511}
2512
ac53db59
RR
2513/*
2514 * sched_yield() is very simple
2515 *
2516 * The magic of dealing with the ->skip buddy is in pick_next_entity.
2517 */
2518static void yield_task_fair(struct rq *rq)
2519{
2520 struct task_struct *curr = rq->curr;
2521 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2522 struct sched_entity *se = &curr->se;
2523
2524 /*
2525 * Are we the only task in the tree?
2526 */
2527 if (unlikely(rq->nr_running == 1))
2528 return;
2529
2530 clear_buddies(cfs_rq, se);
2531
2532 if (curr->policy != SCHED_BATCH) {
2533 update_rq_clock(rq);
2534 /*
2535 * Update run-time statistics of the 'current'.
2536 */
2537 update_curr(cfs_rq);
2538 }
2539
2540 set_skip_buddy(se);
2541}
2542
d95f4122
MG
2543static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
2544{
2545 struct sched_entity *se = &p->se;
2546
5238cdd3
PT
2547 /* throttled hierarchies are not runnable */
2548 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
2549 return false;
2550
2551 /* Tell the scheduler that we'd really like pse to run next. */
2552 set_next_buddy(se);
2553
d95f4122
MG
2554 yield_task_fair(rq);
2555
2556 return true;
2557}
2558
681f3e68 2559#ifdef CONFIG_SMP
bf0f6f24
IM
2560/**************************************************
2561 * Fair scheduling class load-balancing methods:
2562 */
2563
1e3c88bd
PZ
2564/*
2565 * pull_task - move a task from a remote runqueue to the local runqueue.
2566 * Both runqueues must be locked.
2567 */
2568static void pull_task(struct rq *src_rq, struct task_struct *p,
2569 struct rq *this_rq, int this_cpu)
2570{
2571 deactivate_task(src_rq, p, 0);
2572 set_task_cpu(p, this_cpu);
2573 activate_task(this_rq, p, 0);
2574 check_preempt_curr(this_rq, p, 0);
2575}
2576
2577/*
2578 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2579 */
2580static
2581int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2582 struct sched_domain *sd, enum cpu_idle_type idle,
2583 int *all_pinned)
2584{
2585 int tsk_cache_hot = 0;
2586 /*
2587 * We do not migrate tasks that are:
2588 * 1) running (obviously), or
2589 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2590 * 3) are cache-hot on their current CPU.
2591 */
2592 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
41acab88 2593 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
2594 return 0;
2595 }
2596 *all_pinned = 0;
2597
2598 if (task_running(rq, p)) {
41acab88 2599 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
2600 return 0;
2601 }
2602
2603 /*
2604 * Aggressive migration if:
2605 * 1) task is cache cold, or
2606 * 2) too many balance attempts have failed.
2607 */
2608
305e6835 2609 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1e3c88bd
PZ
2610 if (!tsk_cache_hot ||
2611 sd->nr_balance_failed > sd->cache_nice_tries) {
2612#ifdef CONFIG_SCHEDSTATS
2613 if (tsk_cache_hot) {
2614 schedstat_inc(sd, lb_hot_gained[idle]);
41acab88 2615 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
2616 }
2617#endif
2618 return 1;
2619 }
2620
2621 if (tsk_cache_hot) {
41acab88 2622 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
2623 return 0;
2624 }
2625 return 1;
2626}
2627
897c395f
PZ
2628/*
2629 * move_one_task tries to move exactly one task from busiest to this_rq, as
2630 * part of active balancing operations within "domain".
2631 * Returns 1 if successful and 0 otherwise.
2632 *
2633 * Called with both runqueues locked.
2634 */
2635static int
2636move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2637 struct sched_domain *sd, enum cpu_idle_type idle)
2638{
2639 struct task_struct *p, *n;
2640 struct cfs_rq *cfs_rq;
2641 int pinned = 0;
2642
2643 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2644 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
64660c86
PT
2645 if (throttled_lb_pair(task_group(p),
2646 busiest->cpu, this_cpu))
2647 break;
897c395f
PZ
2648
2649 if (!can_migrate_task(p, busiest, this_cpu,
2650 sd, idle, &pinned))
2651 continue;
2652
2653 pull_task(busiest, p, this_rq, this_cpu);
2654 /*
2655 * Right now, this is only the second place pull_task()
2656 * is called, so we can safely collect pull_task()
2657 * stats here rather than inside pull_task().
2658 */
2659 schedstat_inc(sd, lb_gained[idle]);
2660 return 1;
2661 }
2662 }
2663
2664 return 0;
2665}
2666
1e3c88bd
PZ
2667static unsigned long
2668balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2669 unsigned long max_load_move, struct sched_domain *sd,
2670 enum cpu_idle_type idle, int *all_pinned,
931aeeda 2671 struct cfs_rq *busiest_cfs_rq)
1e3c88bd 2672{
b30aef17 2673 int loops = 0, pulled = 0;
1e3c88bd 2674 long rem_load_move = max_load_move;
ee00e66f 2675 struct task_struct *p, *n;
1e3c88bd
PZ
2676
2677 if (max_load_move == 0)
2678 goto out;
2679
ee00e66f
PZ
2680 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2681 if (loops++ > sysctl_sched_nr_migrate)
2682 break;
1e3c88bd 2683
ee00e66f 2684 if ((p->se.load.weight >> 1) > rem_load_move ||
b30aef17
KC
2685 !can_migrate_task(p, busiest, this_cpu, sd, idle,
2686 all_pinned))
ee00e66f 2687 continue;
1e3c88bd 2688
ee00e66f
PZ
2689 pull_task(busiest, p, this_rq, this_cpu);
2690 pulled++;
2691 rem_load_move -= p->se.load.weight;
1e3c88bd
PZ
2692
2693#ifdef CONFIG_PREEMPT
ee00e66f
PZ
2694 /*
2695 * NEWIDLE balancing is a source of latency, so preemptible
2696 * kernels will stop after the first task is pulled to minimize
2697 * the critical section.
2698 */
2699 if (idle == CPU_NEWLY_IDLE)
2700 break;
1e3c88bd
PZ
2701#endif
2702
ee00e66f
PZ
2703 /*
2704 * We only want to steal up to the prescribed amount of
2705 * weighted load.
2706 */
2707 if (rem_load_move <= 0)
2708 break;
1e3c88bd
PZ
2709 }
2710out:
2711 /*
2712 * Right now, this is one of only two places pull_task() is called,
2713 * so we can safely collect pull_task() stats here rather than
2714 * inside pull_task().
2715 */
2716 schedstat_add(sd, lb_gained[idle], pulled);
2717
1e3c88bd
PZ
2718 return max_load_move - rem_load_move;
2719}
2720
230059de 2721#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
2722/*
2723 * update tg->load_weight by folding this cpu's load_avg
2724 */
67e86250 2725static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
2726{
2727 struct cfs_rq *cfs_rq;
2728 unsigned long flags;
2729 struct rq *rq;
9e3081ca
PZ
2730
2731 if (!tg->se[cpu])
2732 return 0;
2733
2734 rq = cpu_rq(cpu);
2735 cfs_rq = tg->cfs_rq[cpu];
2736
2737 raw_spin_lock_irqsave(&rq->lock, flags);
2738
2739 update_rq_clock(rq);
d6b55918 2740 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
2741
2742 /*
2743 * We need to update shares after updating tg->load_weight in
2744 * order to adjust the weight of groups with long running tasks.
2745 */
6d5ab293 2746 update_cfs_shares(cfs_rq);
9e3081ca
PZ
2747
2748 raw_spin_unlock_irqrestore(&rq->lock, flags);
2749
2750 return 0;
2751}
2752
2753static void update_shares(int cpu)
2754{
2755 struct cfs_rq *cfs_rq;
2756 struct rq *rq = cpu_rq(cpu);
2757
2758 rcu_read_lock();
9763b67f
PZ
2759 /*
2760 * Iterates the task_group tree in a bottom up fashion, see
2761 * list_add_leaf_cfs_rq() for details.
2762 */
64660c86
PT
2763 for_each_leaf_cfs_rq(rq, cfs_rq) {
2764 /* throttled entities do not contribute to load */
2765 if (throttled_hierarchy(cfs_rq))
2766 continue;
2767
67e86250 2768 update_shares_cpu(cfs_rq->tg, cpu);
64660c86 2769 }
9e3081ca
PZ
2770 rcu_read_unlock();
2771}
2772
9763b67f
PZ
2773/*
2774 * Compute the cpu's hierarchical load factor for each task group.
2775 * This needs to be done in a top-down fashion because the load of a child
2776 * group is a fraction of its parents load.
2777 */
2778static int tg_load_down(struct task_group *tg, void *data)
2779{
2780 unsigned long load;
2781 long cpu = (long)data;
2782
2783 if (!tg->parent) {
2784 load = cpu_rq(cpu)->load.weight;
2785 } else {
2786 load = tg->parent->cfs_rq[cpu]->h_load;
2787 load *= tg->se[cpu]->load.weight;
2788 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
2789 }
2790
2791 tg->cfs_rq[cpu]->h_load = load;
2792
2793 return 0;
2794}
2795
2796static void update_h_load(long cpu)
2797{
2798 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
2799}
2800
230059de
PZ
2801static unsigned long
2802load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2803 unsigned long max_load_move,
2804 struct sched_domain *sd, enum cpu_idle_type idle,
931aeeda 2805 int *all_pinned)
230059de
PZ
2806{
2807 long rem_load_move = max_load_move;
9763b67f 2808 struct cfs_rq *busiest_cfs_rq;
230059de
PZ
2809
2810 rcu_read_lock();
9763b67f 2811 update_h_load(cpu_of(busiest));
230059de 2812
9763b67f 2813 for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
230059de
PZ
2814 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2815 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2816 u64 rem_load, moved_load;
2817
2818 /*
64660c86 2819 * empty group or part of a throttled hierarchy
230059de 2820 */
64660c86
PT
2821 if (!busiest_cfs_rq->task_weight ||
2822 throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
230059de
PZ
2823 continue;
2824
2825 rem_load = (u64)rem_load_move * busiest_weight;
2826 rem_load = div_u64(rem_load, busiest_h_load + 1);
2827
2828 moved_load = balance_tasks(this_rq, this_cpu, busiest,
931aeeda 2829 rem_load, sd, idle, all_pinned,
230059de
PZ
2830 busiest_cfs_rq);
2831
2832 if (!moved_load)
2833 continue;
2834
2835 moved_load *= busiest_h_load;
2836 moved_load = div_u64(moved_load, busiest_weight + 1);
2837
2838 rem_load_move -= moved_load;
2839 if (rem_load_move < 0)
2840 break;
2841 }
2842 rcu_read_unlock();
2843
2844 return max_load_move - rem_load_move;
2845}
2846#else
9e3081ca
PZ
2847static inline void update_shares(int cpu)
2848{
2849}
2850
230059de
PZ
2851static unsigned long
2852load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2853 unsigned long max_load_move,
2854 struct sched_domain *sd, enum cpu_idle_type idle,
931aeeda 2855 int *all_pinned)
230059de
PZ
2856{
2857 return balance_tasks(this_rq, this_cpu, busiest,
2858 max_load_move, sd, idle, all_pinned,
931aeeda 2859 &busiest->cfs);
230059de
PZ
2860}
2861#endif
2862
1e3c88bd
PZ
2863/*
2864 * move_tasks tries to move up to max_load_move weighted load from busiest to
2865 * this_rq, as part of a balancing operation within domain "sd".
2866 * Returns 1 if successful and 0 otherwise.
2867 *
2868 * Called with both runqueues locked.
2869 */
2870static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2871 unsigned long max_load_move,
2872 struct sched_domain *sd, enum cpu_idle_type idle,
2873 int *all_pinned)
2874{
3d45fd80 2875 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
2876
2877 do {
3d45fd80 2878 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd 2879 max_load_move - total_load_moved,
931aeeda 2880 sd, idle, all_pinned);
3d45fd80
PZ
2881
2882 total_load_moved += load_moved;
1e3c88bd
PZ
2883
2884#ifdef CONFIG_PREEMPT
2885 /*
2886 * NEWIDLE balancing is a source of latency, so preemptible
2887 * kernels will stop after the first task is pulled to minimize
2888 * the critical section.
2889 */
2890 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2891 break;
baa8c110
PZ
2892
2893 if (raw_spin_is_contended(&this_rq->lock) ||
2894 raw_spin_is_contended(&busiest->lock))
2895 break;
1e3c88bd 2896#endif
3d45fd80 2897 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
2898
2899 return total_load_moved > 0;
2900}
2901
1e3c88bd
PZ
2902/********** Helpers for find_busiest_group ************************/
2903/*
2904 * sd_lb_stats - Structure to store the statistics of a sched_domain
2905 * during load balancing.
2906 */
2907struct sd_lb_stats {
2908 struct sched_group *busiest; /* Busiest group in this sd */
2909 struct sched_group *this; /* Local group in this sd */
2910 unsigned long total_load; /* Total load of all groups in sd */
2911 unsigned long total_pwr; /* Total power of all groups in sd */
2912 unsigned long avg_load; /* Average load across all groups in sd */
2913
2914 /** Statistics of this group */
2915 unsigned long this_load;
2916 unsigned long this_load_per_task;
2917 unsigned long this_nr_running;
fab47622 2918 unsigned long this_has_capacity;
aae6d3dd 2919 unsigned int this_idle_cpus;
1e3c88bd
PZ
2920
2921 /* Statistics of the busiest group */
aae6d3dd 2922 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
2923 unsigned long max_load;
2924 unsigned long busiest_load_per_task;
2925 unsigned long busiest_nr_running;
dd5feea1 2926 unsigned long busiest_group_capacity;
fab47622 2927 unsigned long busiest_has_capacity;
aae6d3dd 2928 unsigned int busiest_group_weight;
1e3c88bd
PZ
2929
2930 int group_imb; /* Is there imbalance in this sd */
2931#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2932 int power_savings_balance; /* Is powersave balance needed for this sd */
2933 struct sched_group *group_min; /* Least loaded group in sd */
2934 struct sched_group *group_leader; /* Group which relieves group_min */
2935 unsigned long min_load_per_task; /* load_per_task in group_min */
2936 unsigned long leader_nr_running; /* Nr running of group_leader */
2937 unsigned long min_nr_running; /* Nr running of group_min */
2938#endif
2939};
2940
2941/*
2942 * sg_lb_stats - stats of a sched_group required for load_balancing
2943 */
2944struct sg_lb_stats {
2945 unsigned long avg_load; /*Avg load across the CPUs of the group */
2946 unsigned long group_load; /* Total load over the CPUs of the group */
2947 unsigned long sum_nr_running; /* Nr tasks running in the group */
2948 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2949 unsigned long group_capacity;
aae6d3dd
SS
2950 unsigned long idle_cpus;
2951 unsigned long group_weight;
1e3c88bd 2952 int group_imb; /* Is there an imbalance in the group ? */
fab47622 2953 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
2954};
2955
2956/**
2957 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2958 * @group: The group whose first cpu is to be returned.
2959 */
2960static inline unsigned int group_first_cpu(struct sched_group *group)
2961{
2962 return cpumask_first(sched_group_cpus(group));
2963}
2964
2965/**
2966 * get_sd_load_idx - Obtain the load index for a given sched domain.
2967 * @sd: The sched_domain whose load_idx is to be obtained.
2968 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2969 */
2970static inline int get_sd_load_idx(struct sched_domain *sd,
2971 enum cpu_idle_type idle)
2972{
2973 int load_idx;
2974
2975 switch (idle) {
2976 case CPU_NOT_IDLE:
2977 load_idx = sd->busy_idx;
2978 break;
2979
2980 case CPU_NEWLY_IDLE:
2981 load_idx = sd->newidle_idx;
2982 break;
2983 default:
2984 load_idx = sd->idle_idx;
2985 break;
2986 }
2987
2988 return load_idx;
2989}
2990
2991
2992#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2993/**
2994 * init_sd_power_savings_stats - Initialize power savings statistics for
2995 * the given sched_domain, during load balancing.
2996 *
2997 * @sd: Sched domain whose power-savings statistics are to be initialized.
2998 * @sds: Variable containing the statistics for sd.
2999 * @idle: Idle status of the CPU at which we're performing load-balancing.
3000 */
3001static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3002 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3003{
3004 /*
3005 * Busy processors will not participate in power savings
3006 * balance.
3007 */
3008 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3009 sds->power_savings_balance = 0;
3010 else {
3011 sds->power_savings_balance = 1;
3012 sds->min_nr_running = ULONG_MAX;
3013 sds->leader_nr_running = 0;
3014 }
3015}
3016
3017/**
3018 * update_sd_power_savings_stats - Update the power saving stats for a
3019 * sched_domain while performing load balancing.
3020 *
3021 * @group: sched_group belonging to the sched_domain under consideration.
3022 * @sds: Variable containing the statistics of the sched_domain
3023 * @local_group: Does group contain the CPU for which we're performing
3024 * load balancing ?
3025 * @sgs: Variable containing the statistics of the group.
3026 */
3027static inline void update_sd_power_savings_stats(struct sched_group *group,
3028 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3029{
3030
3031 if (!sds->power_savings_balance)
3032 return;
3033
3034 /*
3035 * If the local group is idle or completely loaded
3036 * no need to do power savings balance at this domain
3037 */
3038 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3039 !sds->this_nr_running))
3040 sds->power_savings_balance = 0;
3041
3042 /*
3043 * If a group is already running at full capacity or idle,
3044 * don't include that group in power savings calculations
3045 */
3046 if (!sds->power_savings_balance ||
3047 sgs->sum_nr_running >= sgs->group_capacity ||
3048 !sgs->sum_nr_running)
3049 return;
3050
3051 /*
3052 * Calculate the group which has the least non-idle load.
3053 * This is the group from where we need to pick up the load
3054 * for saving power
3055 */
3056 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3057 (sgs->sum_nr_running == sds->min_nr_running &&
3058 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3059 sds->group_min = group;
3060 sds->min_nr_running = sgs->sum_nr_running;
3061 sds->min_load_per_task = sgs->sum_weighted_load /
3062 sgs->sum_nr_running;
3063 }
3064
3065 /*
3066 * Calculate the group which is almost near its
3067 * capacity but still has some space to pick up some load
3068 * from other group and save more power
3069 */
3070 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3071 return;
3072
3073 if (sgs->sum_nr_running > sds->leader_nr_running ||
3074 (sgs->sum_nr_running == sds->leader_nr_running &&
3075 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3076 sds->group_leader = group;
3077 sds->leader_nr_running = sgs->sum_nr_running;
3078 }
3079}
3080
3081/**
3082 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3083 * @sds: Variable containing the statistics of the sched_domain
3084 * under consideration.
3085 * @this_cpu: Cpu at which we're currently performing load-balancing.
3086 * @imbalance: Variable to store the imbalance.
3087 *
3088 * Description:
3089 * Check if we have potential to perform some power-savings balance.
3090 * If yes, set the busiest group to be the least loaded group in the
3091 * sched_domain, so that it's CPUs can be put to idle.
3092 *
3093 * Returns 1 if there is potential to perform power-savings balance.
3094 * Else returns 0.
3095 */
3096static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3097 int this_cpu, unsigned long *imbalance)
3098{
3099 if (!sds->power_savings_balance)
3100 return 0;
3101
3102 if (sds->this != sds->group_leader ||
3103 sds->group_leader == sds->group_min)
3104 return 0;
3105
3106 *imbalance = sds->min_load_per_task;
3107 sds->busiest = sds->group_min;
3108
3109 return 1;
3110
3111}
3112#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3113static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3114 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3115{
3116 return;
3117}
3118
3119static inline void update_sd_power_savings_stats(struct sched_group *group,
3120 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3121{
3122 return;
3123}
3124
3125static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3126 int this_cpu, unsigned long *imbalance)
3127{
3128 return 0;
3129}
3130#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3131
3132
3133unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3134{
1399fa78 3135 return SCHED_POWER_SCALE;
1e3c88bd
PZ
3136}
3137
3138unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3139{
3140 return default_scale_freq_power(sd, cpu);
3141}
3142
3143unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3144{
669c55e9 3145 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
3146 unsigned long smt_gain = sd->smt_gain;
3147
3148 smt_gain /= weight;
3149
3150 return smt_gain;
3151}
3152
3153unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3154{
3155 return default_scale_smt_power(sd, cpu);
3156}
3157
3158unsigned long scale_rt_power(int cpu)
3159{
3160 struct rq *rq = cpu_rq(cpu);
3161 u64 total, available;
3162
1e3c88bd 3163 total = sched_avg_period() + (rq->clock - rq->age_stamp);
aa483808
VP
3164
3165 if (unlikely(total < rq->rt_avg)) {
3166 /* Ensures that power won't end up being negative */
3167 available = 0;
3168 } else {
3169 available = total - rq->rt_avg;
3170 }
1e3c88bd 3171
1399fa78
NR
3172 if (unlikely((s64)total < SCHED_POWER_SCALE))
3173 total = SCHED_POWER_SCALE;
1e3c88bd 3174
1399fa78 3175 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3176
3177 return div_u64(available, total);
3178}
3179
3180static void update_cpu_power(struct sched_domain *sd, int cpu)
3181{
669c55e9 3182 unsigned long weight = sd->span_weight;
1399fa78 3183 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
3184 struct sched_group *sdg = sd->groups;
3185
1e3c88bd
PZ
3186 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3187 if (sched_feat(ARCH_POWER))
3188 power *= arch_scale_smt_power(sd, cpu);
3189 else
3190 power *= default_scale_smt_power(sd, cpu);
3191
1399fa78 3192 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3193 }
3194
9c3f75cb 3195 sdg->sgp->power_orig = power;
9d5efe05
SV
3196
3197 if (sched_feat(ARCH_POWER))
3198 power *= arch_scale_freq_power(sd, cpu);
3199 else
3200 power *= default_scale_freq_power(sd, cpu);
3201
1399fa78 3202 power >>= SCHED_POWER_SHIFT;
9d5efe05 3203
1e3c88bd 3204 power *= scale_rt_power(cpu);
1399fa78 3205 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3206
3207 if (!power)
3208 power = 1;
3209
e51fd5e2 3210 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 3211 sdg->sgp->power = power;
1e3c88bd
PZ
3212}
3213
3214static void update_group_power(struct sched_domain *sd, int cpu)
3215{
3216 struct sched_domain *child = sd->child;
3217 struct sched_group *group, *sdg = sd->groups;
3218 unsigned long power;
3219
3220 if (!child) {
3221 update_cpu_power(sd, cpu);
3222 return;
3223 }
3224
3225 power = 0;
3226
3227 group = child->groups;
3228 do {
9c3f75cb 3229 power += group->sgp->power;
1e3c88bd
PZ
3230 group = group->next;
3231 } while (group != child->groups);
3232
9c3f75cb 3233 sdg->sgp->power = power;
1e3c88bd
PZ
3234}
3235
9d5efe05
SV
3236/*
3237 * Try and fix up capacity for tiny siblings, this is needed when
3238 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3239 * which on its own isn't powerful enough.
3240 *
3241 * See update_sd_pick_busiest() and check_asym_packing().
3242 */
3243static inline int
3244fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3245{
3246 /*
1399fa78 3247 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 3248 */
a6c75f2f 3249 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
3250 return 0;
3251
3252 /*
3253 * If ~90% of the cpu_power is still there, we're good.
3254 */
9c3f75cb 3255 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
3256 return 1;
3257
3258 return 0;
3259}
3260
1e3c88bd
PZ
3261/**
3262 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3263 * @sd: The sched_domain whose statistics are to be updated.
3264 * @group: sched_group whose statistics are to be updated.
3265 * @this_cpu: Cpu for which load balance is currently performed.
3266 * @idle: Idle status of this_cpu
3267 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd
PZ
3268 * @local_group: Does group contain this_cpu.
3269 * @cpus: Set of cpus considered for load balancing.
3270 * @balance: Should we balance.
3271 * @sgs: variable to hold the statistics for this group.
3272 */
3273static inline void update_sg_lb_stats(struct sched_domain *sd,
3274 struct sched_group *group, int this_cpu,
46e49b38 3275 enum cpu_idle_type idle, int load_idx,
1e3c88bd
PZ
3276 int local_group, const struct cpumask *cpus,
3277 int *balance, struct sg_lb_stats *sgs)
3278{
2582f0eb 3279 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
1e3c88bd
PZ
3280 int i;
3281 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 3282 unsigned long avg_load_per_task = 0;
1e3c88bd 3283
871e35bc 3284 if (local_group)
1e3c88bd 3285 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
3286
3287 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
3288 max_cpu_load = 0;
3289 min_cpu_load = ~0UL;
2582f0eb 3290 max_nr_running = 0;
1e3c88bd
PZ
3291
3292 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3293 struct rq *rq = cpu_rq(i);
3294
1e3c88bd
PZ
3295 /* Bias balancing toward cpus of our domain */
3296 if (local_group) {
3297 if (idle_cpu(i) && !first_idle_cpu) {
3298 first_idle_cpu = 1;
3299 balance_cpu = i;
3300 }
3301
3302 load = target_load(i, load_idx);
3303 } else {
3304 load = source_load(i, load_idx);
2582f0eb 3305 if (load > max_cpu_load) {
1e3c88bd 3306 max_cpu_load = load;
2582f0eb
NR
3307 max_nr_running = rq->nr_running;
3308 }
1e3c88bd
PZ
3309 if (min_cpu_load > load)
3310 min_cpu_load = load;
3311 }
3312
3313 sgs->group_load += load;
3314 sgs->sum_nr_running += rq->nr_running;
3315 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
3316 if (idle_cpu(i))
3317 sgs->idle_cpus++;
1e3c88bd
PZ
3318 }
3319
3320 /*
3321 * First idle cpu or the first cpu(busiest) in this sched group
3322 * is eligible for doing load balancing at this and above
3323 * domains. In the newly idle case, we will allow all the cpu's
3324 * to do the newly idle load balance.
3325 */
bbc8cb5b
PZ
3326 if (idle != CPU_NEWLY_IDLE && local_group) {
3327 if (balance_cpu != this_cpu) {
3328 *balance = 0;
3329 return;
3330 }
3331 update_group_power(sd, this_cpu);
1e3c88bd
PZ
3332 }
3333
3334 /* Adjust by relative CPU power of the group */
9c3f75cb 3335 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 3336
1e3c88bd
PZ
3337 /*
3338 * Consider the group unbalanced when the imbalance is larger
866ab43e 3339 * than the average weight of a task.
1e3c88bd
PZ
3340 *
3341 * APZ: with cgroup the avg task weight can vary wildly and
3342 * might not be a suitable number - should we keep a
3343 * normalized nr_running number somewhere that negates
3344 * the hierarchy?
3345 */
dd5feea1
SS
3346 if (sgs->sum_nr_running)
3347 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 3348
866ab43e 3349 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
1e3c88bd
PZ
3350 sgs->group_imb = 1;
3351
9c3f75cb 3352 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 3353 SCHED_POWER_SCALE);
9d5efe05
SV
3354 if (!sgs->group_capacity)
3355 sgs->group_capacity = fix_small_capacity(sd, group);
aae6d3dd 3356 sgs->group_weight = group->group_weight;
fab47622
NR
3357
3358 if (sgs->group_capacity > sgs->sum_nr_running)
3359 sgs->group_has_capacity = 1;
1e3c88bd
PZ
3360}
3361
532cb4c4
MN
3362/**
3363 * update_sd_pick_busiest - return 1 on busiest group
3364 * @sd: sched_domain whose statistics are to be checked
3365 * @sds: sched_domain statistics
3366 * @sg: sched_group candidate to be checked for being the busiest
b6b12294
MN
3367 * @sgs: sched_group statistics
3368 * @this_cpu: the current cpu
532cb4c4
MN
3369 *
3370 * Determine if @sg is a busier group than the previously selected
3371 * busiest group.
3372 */
3373static bool update_sd_pick_busiest(struct sched_domain *sd,
3374 struct sd_lb_stats *sds,
3375 struct sched_group *sg,
3376 struct sg_lb_stats *sgs,
3377 int this_cpu)
3378{
3379 if (sgs->avg_load <= sds->max_load)
3380 return false;
3381
3382 if (sgs->sum_nr_running > sgs->group_capacity)
3383 return true;
3384
3385 if (sgs->group_imb)
3386 return true;
3387
3388 /*
3389 * ASYM_PACKING needs to move all the work to the lowest
3390 * numbered CPUs in the group, therefore mark all groups
3391 * higher than ourself as busy.
3392 */
3393 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3394 this_cpu < group_first_cpu(sg)) {
3395 if (!sds->busiest)
3396 return true;
3397
3398 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3399 return true;
3400 }
3401
3402 return false;
3403}
3404
1e3c88bd
PZ
3405/**
3406 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3407 * @sd: sched_domain whose statistics are to be updated.
3408 * @this_cpu: Cpu for which load balance is currently performed.
3409 * @idle: Idle status of this_cpu
1e3c88bd
PZ
3410 * @cpus: Set of cpus considered for load balancing.
3411 * @balance: Should we balance.
3412 * @sds: variable to hold the statistics for this sched_domain.
3413 */
3414static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
46e49b38
VP
3415 enum cpu_idle_type idle, const struct cpumask *cpus,
3416 int *balance, struct sd_lb_stats *sds)
1e3c88bd
PZ
3417{
3418 struct sched_domain *child = sd->child;
532cb4c4 3419 struct sched_group *sg = sd->groups;
1e3c88bd
PZ
3420 struct sg_lb_stats sgs;
3421 int load_idx, prefer_sibling = 0;
3422
3423 if (child && child->flags & SD_PREFER_SIBLING)
3424 prefer_sibling = 1;
3425
3426 init_sd_power_savings_stats(sd, sds, idle);
3427 load_idx = get_sd_load_idx(sd, idle);
3428
3429 do {
3430 int local_group;
3431
532cb4c4 3432 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
1e3c88bd 3433 memset(&sgs, 0, sizeof(sgs));
46e49b38 3434 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
1e3c88bd
PZ
3435 local_group, cpus, balance, &sgs);
3436
8f190fb3 3437 if (local_group && !(*balance))
1e3c88bd
PZ
3438 return;
3439
3440 sds->total_load += sgs.group_load;
9c3f75cb 3441 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
3442
3443 /*
3444 * In case the child domain prefers tasks go to siblings
532cb4c4 3445 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
3446 * and move all the excess tasks away. We lower the capacity
3447 * of a group only if the local group has the capacity to fit
3448 * these excess tasks, i.e. nr_running < group_capacity. The
3449 * extra check prevents the case where you always pull from the
3450 * heaviest group when it is already under-utilized (possible
3451 * with a large weight task outweighs the tasks on the system).
1e3c88bd 3452 */
75dd321d 3453 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
3454 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3455
3456 if (local_group) {
3457 sds->this_load = sgs.avg_load;
532cb4c4 3458 sds->this = sg;
1e3c88bd
PZ
3459 sds->this_nr_running = sgs.sum_nr_running;
3460 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 3461 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 3462 sds->this_idle_cpus = sgs.idle_cpus;
532cb4c4 3463 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
1e3c88bd 3464 sds->max_load = sgs.avg_load;
532cb4c4 3465 sds->busiest = sg;
1e3c88bd 3466 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 3467 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 3468 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 3469 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 3470 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 3471 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
3472 sds->group_imb = sgs.group_imb;
3473 }
3474
532cb4c4
MN
3475 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
3476 sg = sg->next;
3477 } while (sg != sd->groups);
3478}
3479
2ec57d44 3480int __weak arch_sd_sibling_asym_packing(void)
532cb4c4
MN
3481{
3482 return 0*SD_ASYM_PACKING;
3483}
3484
3485/**
3486 * check_asym_packing - Check to see if the group is packed into the
3487 * sched doman.
3488 *
3489 * This is primarily intended to used at the sibling level. Some
3490 * cores like POWER7 prefer to use lower numbered SMT threads. In the
3491 * case of POWER7, it can move to lower SMT modes only when higher
3492 * threads are idle. When in lower SMT modes, the threads will
3493 * perform better since they share less core resources. Hence when we
3494 * have idle threads, we want them to be the higher ones.
3495 *
3496 * This packing function is run on idle threads. It checks to see if
3497 * the busiest CPU in this domain (core in the P7 case) has a higher
3498 * CPU number than the packing function is being run on. Here we are
3499 * assuming lower CPU number will be equivalent to lower a SMT thread
3500 * number.
3501 *
b6b12294
MN
3502 * Returns 1 when packing is required and a task should be moved to
3503 * this CPU. The amount of the imbalance is returned in *imbalance.
3504 *
532cb4c4
MN
3505 * @sd: The sched_domain whose packing is to be checked.
3506 * @sds: Statistics of the sched_domain which is to be packed
3507 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3508 * @imbalance: returns amount of imbalanced due to packing.
532cb4c4
MN
3509 */
3510static int check_asym_packing(struct sched_domain *sd,
3511 struct sd_lb_stats *sds,
3512 int this_cpu, unsigned long *imbalance)
3513{
3514 int busiest_cpu;
3515
3516 if (!(sd->flags & SD_ASYM_PACKING))
3517 return 0;
3518
3519 if (!sds->busiest)
3520 return 0;
3521
3522 busiest_cpu = group_first_cpu(sds->busiest);
3523 if (this_cpu > busiest_cpu)
3524 return 0;
3525
9c3f75cb 3526 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
1399fa78 3527 SCHED_POWER_SCALE);
532cb4c4 3528 return 1;
1e3c88bd
PZ
3529}
3530
3531/**
3532 * fix_small_imbalance - Calculate the minor imbalance that exists
3533 * amongst the groups of a sched_domain, during
3534 * load balancing.
3535 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3536 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3537 * @imbalance: Variable to store the imbalance.
3538 */
3539static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3540 int this_cpu, unsigned long *imbalance)
3541{
3542 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3543 unsigned int imbn = 2;
dd5feea1 3544 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
3545
3546 if (sds->this_nr_running) {
3547 sds->this_load_per_task /= sds->this_nr_running;
3548 if (sds->busiest_load_per_task >
3549 sds->this_load_per_task)
3550 imbn = 1;
3551 } else
3552 sds->this_load_per_task =
3553 cpu_avg_load_per_task(this_cpu);
3554
dd5feea1 3555 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 3556 * SCHED_POWER_SCALE;
9c3f75cb 3557 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
3558
3559 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
3560 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
3561 *imbalance = sds->busiest_load_per_task;
3562 return;
3563 }
3564
3565 /*
3566 * OK, we don't have enough imbalance to justify moving tasks,
3567 * however we may be able to increase total CPU power used by
3568 * moving them.
3569 */
3570
9c3f75cb 3571 pwr_now += sds->busiest->sgp->power *
1e3c88bd 3572 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 3573 pwr_now += sds->this->sgp->power *
1e3c88bd 3574 min(sds->this_load_per_task, sds->this_load);
1399fa78 3575 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
3576
3577 /* Amount of load we'd subtract */
1399fa78 3578 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 3579 sds->busiest->sgp->power;
1e3c88bd 3580 if (sds->max_load > tmp)
9c3f75cb 3581 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
3582 min(sds->busiest_load_per_task, sds->max_load - tmp);
3583
3584 /* Amount of load we'd add */
9c3f75cb 3585 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 3586 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
3587 tmp = (sds->max_load * sds->busiest->sgp->power) /
3588 sds->this->sgp->power;
1e3c88bd 3589 else
1399fa78 3590 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
3591 sds->this->sgp->power;
3592 pwr_move += sds->this->sgp->power *
1e3c88bd 3593 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 3594 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
3595
3596 /* Move if we gain throughput */
3597 if (pwr_move > pwr_now)
3598 *imbalance = sds->busiest_load_per_task;
3599}
3600
3601/**
3602 * calculate_imbalance - Calculate the amount of imbalance present within the
3603 * groups of a given sched_domain during load balance.
3604 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3605 * @this_cpu: Cpu for which currently load balance is being performed.
3606 * @imbalance: The variable to store the imbalance.
3607 */
3608static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3609 unsigned long *imbalance)
3610{
dd5feea1
SS
3611 unsigned long max_pull, load_above_capacity = ~0UL;
3612
3613 sds->busiest_load_per_task /= sds->busiest_nr_running;
3614 if (sds->group_imb) {
3615 sds->busiest_load_per_task =
3616 min(sds->busiest_load_per_task, sds->avg_load);
3617 }
3618
1e3c88bd
PZ
3619 /*
3620 * In the presence of smp nice balancing, certain scenarios can have
3621 * max load less than avg load(as we skip the groups at or below
3622 * its cpu_power, while calculating max_load..)
3623 */
3624 if (sds->max_load < sds->avg_load) {
3625 *imbalance = 0;
3626 return fix_small_imbalance(sds, this_cpu, imbalance);
3627 }
3628
dd5feea1
SS
3629 if (!sds->group_imb) {
3630 /*
3631 * Don't want to pull so many tasks that a group would go idle.
3632 */
3633 load_above_capacity = (sds->busiest_nr_running -
3634 sds->busiest_group_capacity);
3635
1399fa78 3636 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 3637
9c3f75cb 3638 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
3639 }
3640
3641 /*
3642 * We're trying to get all the cpus to the average_load, so we don't
3643 * want to push ourselves above the average load, nor do we wish to
3644 * reduce the max loaded cpu below the average load. At the same time,
3645 * we also don't want to reduce the group load below the group capacity
3646 * (so that we can implement power-savings policies etc). Thus we look
3647 * for the minimum possible imbalance.
3648 * Be careful of negative numbers as they'll appear as very large values
3649 * with unsigned longs.
3650 */
3651 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
3652
3653 /* How much load to actually move to equalise the imbalance */
9c3f75cb
PZ
3654 *imbalance = min(max_pull * sds->busiest->sgp->power,
3655 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 3656 / SCHED_POWER_SCALE;
1e3c88bd
PZ
3657
3658 /*
3659 * if *imbalance is less than the average load per runnable task
25985edc 3660 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
3661 * a think about bumping its value to force at least one task to be
3662 * moved
3663 */
3664 if (*imbalance < sds->busiest_load_per_task)
3665 return fix_small_imbalance(sds, this_cpu, imbalance);
3666
3667}
fab47622 3668
1e3c88bd
PZ
3669/******* find_busiest_group() helpers end here *********************/
3670
3671/**
3672 * find_busiest_group - Returns the busiest group within the sched_domain
3673 * if there is an imbalance. If there isn't an imbalance, and
3674 * the user has opted for power-savings, it returns a group whose
3675 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3676 * such a group exists.
3677 *
3678 * Also calculates the amount of weighted load which should be moved
3679 * to restore balance.
3680 *
3681 * @sd: The sched_domain whose busiest group is to be returned.
3682 * @this_cpu: The cpu for which load balancing is currently being performed.
3683 * @imbalance: Variable which stores amount of weighted load which should
3684 * be moved to restore balance/put a group to idle.
3685 * @idle: The idle status of this_cpu.
1e3c88bd
PZ
3686 * @cpus: The set of CPUs under consideration for load-balancing.
3687 * @balance: Pointer to a variable indicating if this_cpu
3688 * is the appropriate cpu to perform load balancing at this_level.
3689 *
3690 * Returns: - the busiest group if imbalance exists.
3691 * - If no imbalance and user has opted for power-savings balance,
3692 * return the least loaded group whose CPUs can be
3693 * put to idle by rebalancing its tasks onto our group.
3694 */
3695static struct sched_group *
3696find_busiest_group(struct sched_domain *sd, int this_cpu,
3697 unsigned long *imbalance, enum cpu_idle_type idle,
46e49b38 3698 const struct cpumask *cpus, int *balance)
1e3c88bd
PZ
3699{
3700 struct sd_lb_stats sds;
3701
3702 memset(&sds, 0, sizeof(sds));
3703
3704 /*
3705 * Compute the various statistics relavent for load balancing at
3706 * this level.
3707 */
46e49b38 3708 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
1e3c88bd 3709
cc57aa8f
PZ
3710 /*
3711 * this_cpu is not the appropriate cpu to perform load balancing at
3712 * this level.
1e3c88bd 3713 */
8f190fb3 3714 if (!(*balance))
1e3c88bd
PZ
3715 goto ret;
3716
532cb4c4
MN
3717 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3718 check_asym_packing(sd, &sds, this_cpu, imbalance))
3719 return sds.busiest;
3720
cc57aa8f 3721 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
3722 if (!sds.busiest || sds.busiest_nr_running == 0)
3723 goto out_balanced;
3724
1399fa78 3725 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 3726
866ab43e
PZ
3727 /*
3728 * If the busiest group is imbalanced the below checks don't
3729 * work because they assumes all things are equal, which typically
3730 * isn't true due to cpus_allowed constraints and the like.
3731 */
3732 if (sds.group_imb)
3733 goto force_balance;
3734
cc57aa8f 3735 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
fab47622
NR
3736 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3737 !sds.busiest_has_capacity)
3738 goto force_balance;
3739
cc57aa8f
PZ
3740 /*
3741 * If the local group is more busy than the selected busiest group
3742 * don't try and pull any tasks.
3743 */
1e3c88bd
PZ
3744 if (sds.this_load >= sds.max_load)
3745 goto out_balanced;
3746
cc57aa8f
PZ
3747 /*
3748 * Don't pull any tasks if this group is already above the domain
3749 * average load.
3750 */
1e3c88bd
PZ
3751 if (sds.this_load >= sds.avg_load)
3752 goto out_balanced;
3753
c186fafe 3754 if (idle == CPU_IDLE) {
aae6d3dd
SS
3755 /*
3756 * This cpu is idle. If the busiest group load doesn't
3757 * have more tasks than the number of available cpu's and
3758 * there is no imbalance between this and busiest group
3759 * wrt to idle cpu's, it is balanced.
3760 */
c186fafe 3761 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
3762 sds.busiest_nr_running <= sds.busiest_group_weight)
3763 goto out_balanced;
c186fafe
PZ
3764 } else {
3765 /*
3766 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3767 * imbalance_pct to be conservative.
3768 */
3769 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3770 goto out_balanced;
aae6d3dd 3771 }
1e3c88bd 3772
fab47622 3773force_balance:
1e3c88bd
PZ
3774 /* Looks like there is an imbalance. Compute it */
3775 calculate_imbalance(&sds, this_cpu, imbalance);
3776 return sds.busiest;
3777
3778out_balanced:
3779 /*
3780 * There is no obvious imbalance. But check if we can do some balancing
3781 * to save power.
3782 */
3783 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3784 return sds.busiest;
3785ret:
3786 *imbalance = 0;
3787 return NULL;
3788}
3789
3790/*
3791 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3792 */
3793static struct rq *
9d5efe05
SV
3794find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3795 enum cpu_idle_type idle, unsigned long imbalance,
3796 const struct cpumask *cpus)
1e3c88bd
PZ
3797{
3798 struct rq *busiest = NULL, *rq;
3799 unsigned long max_load = 0;
3800 int i;
3801
3802 for_each_cpu(i, sched_group_cpus(group)) {
3803 unsigned long power = power_of(i);
1399fa78
NR
3804 unsigned long capacity = DIV_ROUND_CLOSEST(power,
3805 SCHED_POWER_SCALE);
1e3c88bd
PZ
3806 unsigned long wl;
3807
9d5efe05
SV
3808 if (!capacity)
3809 capacity = fix_small_capacity(sd, group);
3810
1e3c88bd
PZ
3811 if (!cpumask_test_cpu(i, cpus))
3812 continue;
3813
3814 rq = cpu_rq(i);
6e40f5bb 3815 wl = weighted_cpuload(i);
1e3c88bd 3816
6e40f5bb
TG
3817 /*
3818 * When comparing with imbalance, use weighted_cpuload()
3819 * which is not scaled with the cpu power.
3820 */
1e3c88bd
PZ
3821 if (capacity && rq->nr_running == 1 && wl > imbalance)
3822 continue;
3823
6e40f5bb
TG
3824 /*
3825 * For the load comparisons with the other cpu's, consider
3826 * the weighted_cpuload() scaled with the cpu power, so that
3827 * the load can be moved away from the cpu that is potentially
3828 * running at a lower capacity.
3829 */
1399fa78 3830 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 3831
1e3c88bd
PZ
3832 if (wl > max_load) {
3833 max_load = wl;
3834 busiest = rq;
3835 }
3836 }
3837
3838 return busiest;
3839}
3840
3841/*
3842 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3843 * so long as it is large enough.
3844 */
3845#define MAX_PINNED_INTERVAL 512
3846
3847/* Working cpumask for load_balance and load_balance_newidle. */
3848static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3849
46e49b38 3850static int need_active_balance(struct sched_domain *sd, int idle,
532cb4c4 3851 int busiest_cpu, int this_cpu)
1af3ed3d
PZ
3852{
3853 if (idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
3854
3855 /*
3856 * ASYM_PACKING needs to force migrate tasks from busy but
3857 * higher numbered CPUs in order to pack all tasks in the
3858 * lowest numbered CPUs.
3859 */
3860 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3861 return 1;
3862
1af3ed3d
PZ
3863 /*
3864 * The only task running in a non-idle cpu can be moved to this
3865 * cpu in an attempt to completely freeup the other CPU
3866 * package.
3867 *
3868 * The package power saving logic comes from
3869 * find_busiest_group(). If there are no imbalance, then
3870 * f_b_g() will return NULL. However when sched_mc={1,2} then
3871 * f_b_g() will select a group from which a running task may be
3872 * pulled to this cpu in order to make the other package idle.
3873 * If there is no opportunity to make a package idle and if
3874 * there are no imbalance, then f_b_g() will return NULL and no
3875 * action will be taken in load_balance_newidle().
3876 *
3877 * Under normal task pull operation due to imbalance, there
3878 * will be more than one task in the source run queue and
3879 * move_tasks() will succeed. ld_moved will be true and this
3880 * active balance code will not be triggered.
3881 */
1af3ed3d
PZ
3882 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3883 return 0;
3884 }
3885
3886 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3887}
3888
969c7921
TH
3889static int active_load_balance_cpu_stop(void *data);
3890
1e3c88bd
PZ
3891/*
3892 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3893 * tasks if there is an imbalance.
3894 */
3895static int load_balance(int this_cpu, struct rq *this_rq,
3896 struct sched_domain *sd, enum cpu_idle_type idle,
3897 int *balance)
3898{
46e49b38 3899 int ld_moved, all_pinned = 0, active_balance = 0;
1e3c88bd
PZ
3900 struct sched_group *group;
3901 unsigned long imbalance;
3902 struct rq *busiest;
3903 unsigned long flags;
3904 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3905
3906 cpumask_copy(cpus, cpu_active_mask);
3907
1e3c88bd
PZ
3908 schedstat_inc(sd, lb_count[idle]);
3909
3910redo:
46e49b38 3911 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
1e3c88bd
PZ
3912 cpus, balance);
3913
3914 if (*balance == 0)
3915 goto out_balanced;
3916
3917 if (!group) {
3918 schedstat_inc(sd, lb_nobusyg[idle]);
3919 goto out_balanced;
3920 }
3921
9d5efe05 3922 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
1e3c88bd
PZ
3923 if (!busiest) {
3924 schedstat_inc(sd, lb_nobusyq[idle]);
3925 goto out_balanced;
3926 }
3927
3928 BUG_ON(busiest == this_rq);
3929
3930 schedstat_add(sd, lb_imbalance[idle], imbalance);
3931
3932 ld_moved = 0;
3933 if (busiest->nr_running > 1) {
3934 /*
3935 * Attempt to move tasks. If find_busiest_group has found
3936 * an imbalance but busiest->nr_running <= 1, the group is
3937 * still unbalanced. ld_moved simply stays zero, so it is
3938 * correctly treated as an imbalance.
3939 */
b30aef17 3940 all_pinned = 1;
1e3c88bd
PZ
3941 local_irq_save(flags);
3942 double_rq_lock(this_rq, busiest);
3943 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3944 imbalance, sd, idle, &all_pinned);
3945 double_rq_unlock(this_rq, busiest);
3946 local_irq_restore(flags);
3947
3948 /*
3949 * some other cpu did the load balance for us.
3950 */
3951 if (ld_moved && this_cpu != smp_processor_id())
3952 resched_cpu(this_cpu);
3953
3954 /* All tasks on this runqueue were pinned by CPU affinity */
3955 if (unlikely(all_pinned)) {
3956 cpumask_clear_cpu(cpu_of(busiest), cpus);
3957 if (!cpumask_empty(cpus))
3958 goto redo;
3959 goto out_balanced;
3960 }
3961 }
3962
3963 if (!ld_moved) {
3964 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
3965 /*
3966 * Increment the failure counter only on periodic balance.
3967 * We do not want newidle balance, which can be very
3968 * frequent, pollute the failure counter causing
3969 * excessive cache_hot migrations and active balances.
3970 */
3971 if (idle != CPU_NEWLY_IDLE)
3972 sd->nr_balance_failed++;
1e3c88bd 3973
46e49b38 3974 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
1e3c88bd
PZ
3975 raw_spin_lock_irqsave(&busiest->lock, flags);
3976
969c7921
TH
3977 /* don't kick the active_load_balance_cpu_stop,
3978 * if the curr task on busiest cpu can't be
3979 * moved to this_cpu
1e3c88bd
PZ
3980 */
3981 if (!cpumask_test_cpu(this_cpu,
3982 &busiest->curr->cpus_allowed)) {
3983 raw_spin_unlock_irqrestore(&busiest->lock,
3984 flags);
3985 all_pinned = 1;
3986 goto out_one_pinned;
3987 }
3988
969c7921
TH
3989 /*
3990 * ->active_balance synchronizes accesses to
3991 * ->active_balance_work. Once set, it's cleared
3992 * only after active load balance is finished.
3993 */
1e3c88bd
PZ
3994 if (!busiest->active_balance) {
3995 busiest->active_balance = 1;
3996 busiest->push_cpu = this_cpu;
3997 active_balance = 1;
3998 }
3999 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 4000
1e3c88bd 4001 if (active_balance)
969c7921
TH
4002 stop_one_cpu_nowait(cpu_of(busiest),
4003 active_load_balance_cpu_stop, busiest,
4004 &busiest->active_balance_work);
1e3c88bd
PZ
4005
4006 /*
4007 * We've kicked active balancing, reset the failure
4008 * counter.
4009 */
4010 sd->nr_balance_failed = sd->cache_nice_tries+1;
4011 }
4012 } else
4013 sd->nr_balance_failed = 0;
4014
4015 if (likely(!active_balance)) {
4016 /* We were unbalanced, so reset the balancing interval */
4017 sd->balance_interval = sd->min_interval;
4018 } else {
4019 /*
4020 * If we've begun active balancing, start to back off. This
4021 * case may not be covered by the all_pinned logic if there
4022 * is only 1 task on the busy runqueue (because we don't call
4023 * move_tasks).
4024 */
4025 if (sd->balance_interval < sd->max_interval)
4026 sd->balance_interval *= 2;
4027 }
4028
1e3c88bd
PZ
4029 goto out;
4030
4031out_balanced:
4032 schedstat_inc(sd, lb_balanced[idle]);
4033
4034 sd->nr_balance_failed = 0;
4035
4036out_one_pinned:
4037 /* tune up the balancing interval */
4038 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4039 (sd->balance_interval < sd->max_interval))
4040 sd->balance_interval *= 2;
4041
46e49b38 4042 ld_moved = 0;
1e3c88bd 4043out:
1e3c88bd
PZ
4044 return ld_moved;
4045}
4046
1e3c88bd
PZ
4047/*
4048 * idle_balance is called by schedule() if this_cpu is about to become
4049 * idle. Attempts to pull tasks from other CPUs.
4050 */
4051static void idle_balance(int this_cpu, struct rq *this_rq)
4052{
4053 struct sched_domain *sd;
4054 int pulled_task = 0;
4055 unsigned long next_balance = jiffies + HZ;
4056
4057 this_rq->idle_stamp = this_rq->clock;
4058
4059 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4060 return;
4061
f492e12e
PZ
4062 /*
4063 * Drop the rq->lock, but keep IRQ/preempt disabled.
4064 */
4065 raw_spin_unlock(&this_rq->lock);
4066
c66eaf61 4067 update_shares(this_cpu);
dce840a0 4068 rcu_read_lock();
1e3c88bd
PZ
4069 for_each_domain(this_cpu, sd) {
4070 unsigned long interval;
f492e12e 4071 int balance = 1;
1e3c88bd
PZ
4072
4073 if (!(sd->flags & SD_LOAD_BALANCE))
4074 continue;
4075
f492e12e 4076 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 4077 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
4078 pulled_task = load_balance(this_cpu, this_rq,
4079 sd, CPU_NEWLY_IDLE, &balance);
4080 }
1e3c88bd
PZ
4081
4082 interval = msecs_to_jiffies(sd->balance_interval);
4083 if (time_after(next_balance, sd->last_balance + interval))
4084 next_balance = sd->last_balance + interval;
d5ad140b
NR
4085 if (pulled_task) {
4086 this_rq->idle_stamp = 0;
1e3c88bd 4087 break;
d5ad140b 4088 }
1e3c88bd 4089 }
dce840a0 4090 rcu_read_unlock();
f492e12e
PZ
4091
4092 raw_spin_lock(&this_rq->lock);
4093
1e3c88bd
PZ
4094 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4095 /*
4096 * We are going idle. next_balance may be set based on
4097 * a busy processor. So reset next_balance.
4098 */
4099 this_rq->next_balance = next_balance;
4100 }
4101}
4102
4103/*
969c7921
TH
4104 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4105 * running tasks off the busiest CPU onto idle CPUs. It requires at
4106 * least 1 task to be running on each physical CPU where possible, and
4107 * avoids physical / logical imbalances.
1e3c88bd 4108 */
969c7921 4109static int active_load_balance_cpu_stop(void *data)
1e3c88bd 4110{
969c7921
TH
4111 struct rq *busiest_rq = data;
4112 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 4113 int target_cpu = busiest_rq->push_cpu;
969c7921 4114 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 4115 struct sched_domain *sd;
969c7921
TH
4116
4117 raw_spin_lock_irq(&busiest_rq->lock);
4118
4119 /* make sure the requested cpu hasn't gone down in the meantime */
4120 if (unlikely(busiest_cpu != smp_processor_id() ||
4121 !busiest_rq->active_balance))
4122 goto out_unlock;
1e3c88bd
PZ
4123
4124 /* Is there any task to move? */
4125 if (busiest_rq->nr_running <= 1)
969c7921 4126 goto out_unlock;
1e3c88bd
PZ
4127
4128 /*
4129 * This condition is "impossible", if it occurs
4130 * we need to fix it. Originally reported by
4131 * Bjorn Helgaas on a 128-cpu setup.
4132 */
4133 BUG_ON(busiest_rq == target_rq);
4134
4135 /* move a task from busiest_rq to target_rq */
4136 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
4137
4138 /* Search for an sd spanning us and the target CPU. */
dce840a0 4139 rcu_read_lock();
1e3c88bd
PZ
4140 for_each_domain(target_cpu, sd) {
4141 if ((sd->flags & SD_LOAD_BALANCE) &&
4142 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4143 break;
4144 }
4145
4146 if (likely(sd)) {
4147 schedstat_inc(sd, alb_count);
4148
4149 if (move_one_task(target_rq, target_cpu, busiest_rq,
4150 sd, CPU_IDLE))
4151 schedstat_inc(sd, alb_pushed);
4152 else
4153 schedstat_inc(sd, alb_failed);
4154 }
dce840a0 4155 rcu_read_unlock();
1e3c88bd 4156 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
4157out_unlock:
4158 busiest_rq->active_balance = 0;
4159 raw_spin_unlock_irq(&busiest_rq->lock);
4160 return 0;
1e3c88bd
PZ
4161}
4162
4163#ifdef CONFIG_NO_HZ
83cd4fe2
VP
4164
4165static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
4166
4167static void trigger_sched_softirq(void *data)
4168{
4169 raise_softirq_irqoff(SCHED_SOFTIRQ);
4170}
4171
4172static inline void init_sched_softirq_csd(struct call_single_data *csd)
4173{
4174 csd->func = trigger_sched_softirq;
4175 csd->info = NULL;
4176 csd->flags = 0;
4177 csd->priv = 0;
4178}
4179
4180/*
4181 * idle load balancing details
4182 * - One of the idle CPUs nominates itself as idle load_balancer, while
4183 * entering idle.
4184 * - This idle load balancer CPU will also go into tickless mode when
4185 * it is idle, just like all other idle CPUs
4186 * - When one of the busy CPUs notice that there may be an idle rebalancing
4187 * needed, they will kick the idle load balancer, which then does idle
4188 * load balancing for all the idle CPUs.
4189 */
1e3c88bd
PZ
4190static struct {
4191 atomic_t load_balancer;
83cd4fe2
VP
4192 atomic_t first_pick_cpu;
4193 atomic_t second_pick_cpu;
4194 cpumask_var_t idle_cpus_mask;
4195 cpumask_var_t grp_idle_mask;
4196 unsigned long next_balance; /* in jiffy units */
4197} nohz ____cacheline_aligned;
1e3c88bd
PZ
4198
4199int get_nohz_load_balancer(void)
4200{
4201 return atomic_read(&nohz.load_balancer);
4202}
4203
4204#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4205/**
4206 * lowest_flag_domain - Return lowest sched_domain containing flag.
4207 * @cpu: The cpu whose lowest level of sched domain is to
4208 * be returned.
4209 * @flag: The flag to check for the lowest sched_domain
4210 * for the given cpu.
4211 *
4212 * Returns the lowest sched_domain of a cpu which contains the given flag.
4213 */
4214static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4215{
4216 struct sched_domain *sd;
4217
4218 for_each_domain(cpu, sd)
08354716 4219 if (sd->flags & flag)
1e3c88bd
PZ
4220 break;
4221
4222 return sd;
4223}
4224
4225/**
4226 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4227 * @cpu: The cpu whose domains we're iterating over.
4228 * @sd: variable holding the value of the power_savings_sd
4229 * for cpu.
4230 * @flag: The flag to filter the sched_domains to be iterated.
4231 *
4232 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4233 * set, starting from the lowest sched_domain to the highest.
4234 */
4235#define for_each_flag_domain(cpu, sd, flag) \
4236 for (sd = lowest_flag_domain(cpu, flag); \
4237 (sd && (sd->flags & flag)); sd = sd->parent)
4238
4239/**
4240 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4241 * @ilb_group: group to be checked for semi-idleness
4242 *
4243 * Returns: 1 if the group is semi-idle. 0 otherwise.
4244 *
4245 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4246 * and atleast one non-idle CPU. This helper function checks if the given
4247 * sched_group is semi-idle or not.
4248 */
4249static inline int is_semi_idle_group(struct sched_group *ilb_group)
4250{
83cd4fe2 4251 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
1e3c88bd
PZ
4252 sched_group_cpus(ilb_group));
4253
4254 /*
4255 * A sched_group is semi-idle when it has atleast one busy cpu
4256 * and atleast one idle cpu.
4257 */
83cd4fe2 4258 if (cpumask_empty(nohz.grp_idle_mask))
1e3c88bd
PZ
4259 return 0;
4260
83cd4fe2 4261 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
1e3c88bd
PZ
4262 return 0;
4263
4264 return 1;
4265}
4266/**
4267 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4268 * @cpu: The cpu which is nominating a new idle_load_balancer.
4269 *
4270 * Returns: Returns the id of the idle load balancer if it exists,
4271 * Else, returns >= nr_cpu_ids.
4272 *
4273 * This algorithm picks the idle load balancer such that it belongs to a
4274 * semi-idle powersavings sched_domain. The idea is to try and avoid
4275 * completely idle packages/cores just for the purpose of idle load balancing
4276 * when there are other idle cpu's which are better suited for that job.
4277 */
4278static int find_new_ilb(int cpu)
4279{
4280 struct sched_domain *sd;
4281 struct sched_group *ilb_group;
dce840a0 4282 int ilb = nr_cpu_ids;
1e3c88bd
PZ
4283
4284 /*
4285 * Have idle load balancer selection from semi-idle packages only
4286 * when power-aware load balancing is enabled
4287 */
4288 if (!(sched_smt_power_savings || sched_mc_power_savings))
4289 goto out_done;
4290
4291 /*
4292 * Optimize for the case when we have no idle CPUs or only one
4293 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4294 */
83cd4fe2 4295 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
1e3c88bd
PZ
4296 goto out_done;
4297
dce840a0 4298 rcu_read_lock();
1e3c88bd
PZ
4299 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4300 ilb_group = sd->groups;
4301
4302 do {
dce840a0
PZ
4303 if (is_semi_idle_group(ilb_group)) {
4304 ilb = cpumask_first(nohz.grp_idle_mask);
4305 goto unlock;
4306 }
1e3c88bd
PZ
4307
4308 ilb_group = ilb_group->next;
4309
4310 } while (ilb_group != sd->groups);
4311 }
dce840a0
PZ
4312unlock:
4313 rcu_read_unlock();
1e3c88bd
PZ
4314
4315out_done:
dce840a0 4316 return ilb;
1e3c88bd
PZ
4317}
4318#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4319static inline int find_new_ilb(int call_cpu)
4320{
83cd4fe2 4321 return nr_cpu_ids;
1e3c88bd
PZ
4322}
4323#endif
4324
83cd4fe2
VP
4325/*
4326 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4327 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4328 * CPU (if there is one).
4329 */
4330static void nohz_balancer_kick(int cpu)
4331{
4332 int ilb_cpu;
4333
4334 nohz.next_balance++;
4335
4336 ilb_cpu = get_nohz_load_balancer();
4337
4338 if (ilb_cpu >= nr_cpu_ids) {
4339 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
4340 if (ilb_cpu >= nr_cpu_ids)
4341 return;
4342 }
4343
4344 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
4345 struct call_single_data *cp;
4346
4347 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
4348 cp = &per_cpu(remote_sched_softirq_cb, cpu);
4349 __smp_call_function_single(ilb_cpu, cp, 0);
4350 }
4351 return;
4352}
4353
1e3c88bd
PZ
4354/*
4355 * This routine will try to nominate the ilb (idle load balancing)
4356 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
83cd4fe2 4357 * load balancing on behalf of all those cpus.
1e3c88bd 4358 *
83cd4fe2
VP
4359 * When the ilb owner becomes busy, we will not have new ilb owner until some
4360 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
4361 * idle load balancing by kicking one of the idle CPUs.
1e3c88bd 4362 *
83cd4fe2
VP
4363 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
4364 * ilb owner CPU in future (when there is a need for idle load balancing on
4365 * behalf of all idle CPUs).
1e3c88bd 4366 */
83cd4fe2 4367void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
4368{
4369 int cpu = smp_processor_id();
4370
4371 if (stop_tick) {
1e3c88bd
PZ
4372 if (!cpu_active(cpu)) {
4373 if (atomic_read(&nohz.load_balancer) != cpu)
83cd4fe2 4374 return;
1e3c88bd
PZ
4375
4376 /*
4377 * If we are going offline and still the leader,
4378 * give up!
4379 */
83cd4fe2
VP
4380 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
4381 nr_cpu_ids) != cpu)
1e3c88bd
PZ
4382 BUG();
4383
83cd4fe2 4384 return;
1e3c88bd
PZ
4385 }
4386
83cd4fe2 4387 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd 4388
83cd4fe2
VP
4389 if (atomic_read(&nohz.first_pick_cpu) == cpu)
4390 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
4391 if (atomic_read(&nohz.second_pick_cpu) == cpu)
4392 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
1e3c88bd 4393
83cd4fe2 4394 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
1e3c88bd
PZ
4395 int new_ilb;
4396
83cd4fe2
VP
4397 /* make me the ilb owner */
4398 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
4399 cpu) != nr_cpu_ids)
4400 return;
4401
1e3c88bd
PZ
4402 /*
4403 * Check to see if there is a more power-efficient
4404 * ilb.
4405 */
4406 new_ilb = find_new_ilb(cpu);
4407 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
83cd4fe2 4408 atomic_set(&nohz.load_balancer, nr_cpu_ids);
1e3c88bd 4409 resched_cpu(new_ilb);
83cd4fe2 4410 return;
1e3c88bd 4411 }
83cd4fe2 4412 return;
1e3c88bd
PZ
4413 }
4414 } else {
83cd4fe2
VP
4415 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
4416 return;
1e3c88bd 4417
83cd4fe2 4418 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd
PZ
4419
4420 if (atomic_read(&nohz.load_balancer) == cpu)
83cd4fe2
VP
4421 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
4422 nr_cpu_ids) != cpu)
1e3c88bd
PZ
4423 BUG();
4424 }
83cd4fe2 4425 return;
1e3c88bd
PZ
4426}
4427#endif
4428
4429static DEFINE_SPINLOCK(balancing);
4430
49c022e6
PZ
4431static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4432
4433/*
4434 * Scale the max load_balance interval with the number of CPUs in the system.
4435 * This trades load-balance latency on larger machines for less cross talk.
4436 */
4437static void update_max_interval(void)
4438{
4439 max_load_balance_interval = HZ*num_online_cpus()/10;
4440}
4441
1e3c88bd
PZ
4442/*
4443 * It checks each scheduling domain to see if it is due to be balanced,
4444 * and initiates a balancing operation if so.
4445 *
4446 * Balancing parameters are set up in arch_init_sched_domains.
4447 */
4448static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4449{
4450 int balance = 1;
4451 struct rq *rq = cpu_rq(cpu);
4452 unsigned long interval;
4453 struct sched_domain *sd;
4454 /* Earliest time when we have to do rebalance again */
4455 unsigned long next_balance = jiffies + 60*HZ;
4456 int update_next_balance = 0;
4457 int need_serialize;
4458
2069dd75
PZ
4459 update_shares(cpu);
4460
dce840a0 4461 rcu_read_lock();
1e3c88bd
PZ
4462 for_each_domain(cpu, sd) {
4463 if (!(sd->flags & SD_LOAD_BALANCE))
4464 continue;
4465
4466 interval = sd->balance_interval;
4467 if (idle != CPU_IDLE)
4468 interval *= sd->busy_factor;
4469
4470 /* scale ms to jiffies */
4471 interval = msecs_to_jiffies(interval);
49c022e6 4472 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
4473
4474 need_serialize = sd->flags & SD_SERIALIZE;
4475
4476 if (need_serialize) {
4477 if (!spin_trylock(&balancing))
4478 goto out;
4479 }
4480
4481 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4482 if (load_balance(cpu, rq, sd, idle, &balance)) {
4483 /*
4484 * We've pulled tasks over so either we're no
c186fafe 4485 * longer idle.
1e3c88bd
PZ
4486 */
4487 idle = CPU_NOT_IDLE;
4488 }
4489 sd->last_balance = jiffies;
4490 }
4491 if (need_serialize)
4492 spin_unlock(&balancing);
4493out:
4494 if (time_after(next_balance, sd->last_balance + interval)) {
4495 next_balance = sd->last_balance + interval;
4496 update_next_balance = 1;
4497 }
4498
4499 /*
4500 * Stop the load balance at this level. There is another
4501 * CPU in our sched group which is doing load balancing more
4502 * actively.
4503 */
4504 if (!balance)
4505 break;
4506 }
dce840a0 4507 rcu_read_unlock();
1e3c88bd
PZ
4508
4509 /*
4510 * next_balance will be updated only when there is a need.
4511 * When the cpu is attached to null domain for ex, it will not be
4512 * updated.
4513 */
4514 if (likely(update_next_balance))
4515 rq->next_balance = next_balance;
4516}
4517
83cd4fe2 4518#ifdef CONFIG_NO_HZ
1e3c88bd 4519/*
83cd4fe2 4520 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
4521 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4522 */
83cd4fe2
VP
4523static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
4524{
4525 struct rq *this_rq = cpu_rq(this_cpu);
4526 struct rq *rq;
4527 int balance_cpu;
4528
4529 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
4530 return;
4531
4532 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
4533 if (balance_cpu == this_cpu)
4534 continue;
4535
4536 /*
4537 * If this cpu gets work to do, stop the load balancing
4538 * work being done for other cpus. Next load
4539 * balancing owner will pick it up.
4540 */
4541 if (need_resched()) {
4542 this_rq->nohz_balance_kick = 0;
4543 break;
4544 }
4545
4546 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 4547 update_rq_clock(this_rq);
83cd4fe2
VP
4548 update_cpu_load(this_rq);
4549 raw_spin_unlock_irq(&this_rq->lock);
4550
4551 rebalance_domains(balance_cpu, CPU_IDLE);
4552
4553 rq = cpu_rq(balance_cpu);
4554 if (time_after(this_rq->next_balance, rq->next_balance))
4555 this_rq->next_balance = rq->next_balance;
4556 }
4557 nohz.next_balance = this_rq->next_balance;
4558 this_rq->nohz_balance_kick = 0;
4559}
4560
4561/*
4562 * Current heuristic for kicking the idle load balancer
4563 * - first_pick_cpu is the one of the busy CPUs. It will kick
4564 * idle load balancer when it has more than one process active. This
4565 * eliminates the need for idle load balancing altogether when we have
4566 * only one running process in the system (common case).
4567 * - If there are more than one busy CPU, idle load balancer may have
4568 * to run for active_load_balance to happen (i.e., two busy CPUs are
4569 * SMT or core siblings and can run better if they move to different
4570 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
4571 * which will kick idle load balancer as soon as it has any load.
4572 */
4573static inline int nohz_kick_needed(struct rq *rq, int cpu)
4574{
4575 unsigned long now = jiffies;
4576 int ret;
4577 int first_pick_cpu, second_pick_cpu;
4578
4579 if (time_before(now, nohz.next_balance))
4580 return 0;
4581
f6c3f168 4582 if (rq->idle_at_tick)
83cd4fe2
VP
4583 return 0;
4584
4585 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
4586 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
4587
4588 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
4589 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
4590 return 0;
4591
4592 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
4593 if (ret == nr_cpu_ids || ret == cpu) {
4594 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
4595 if (rq->nr_running > 1)
4596 return 1;
4597 } else {
4598 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
4599 if (ret == nr_cpu_ids || ret == cpu) {
4600 if (rq->nr_running)
4601 return 1;
4602 }
4603 }
4604 return 0;
4605}
4606#else
4607static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
4608#endif
4609
4610/*
4611 * run_rebalance_domains is triggered when needed from the scheduler tick.
4612 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4613 */
1e3c88bd
PZ
4614static void run_rebalance_domains(struct softirq_action *h)
4615{
4616 int this_cpu = smp_processor_id();
4617 struct rq *this_rq = cpu_rq(this_cpu);
4618 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4619 CPU_IDLE : CPU_NOT_IDLE;
4620
4621 rebalance_domains(this_cpu, idle);
4622
1e3c88bd 4623 /*
83cd4fe2 4624 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
4625 * balancing on behalf of the other idle cpus whose ticks are
4626 * stopped.
4627 */
83cd4fe2 4628 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
4629}
4630
4631static inline int on_null_domain(int cpu)
4632{
90a6501f 4633 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
4634}
4635
4636/*
4637 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd
PZ
4638 */
4639static inline void trigger_load_balance(struct rq *rq, int cpu)
4640{
1e3c88bd
PZ
4641 /* Don't need to rebalance while attached to NULL domain */
4642 if (time_after_eq(jiffies, rq->next_balance) &&
4643 likely(!on_null_domain(cpu)))
4644 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2
VP
4645#ifdef CONFIG_NO_HZ
4646 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4647 nohz_balancer_kick(cpu);
4648#endif
1e3c88bd
PZ
4649}
4650
0bcdcf28
CE
4651static void rq_online_fair(struct rq *rq)
4652{
4653 update_sysctl();
4654}
4655
4656static void rq_offline_fair(struct rq *rq)
4657{
4658 update_sysctl();
4659}
4660
1e3c88bd
PZ
4661#else /* CONFIG_SMP */
4662
4663/*
4664 * on UP we do not need to balance between CPUs:
4665 */
4666static inline void idle_balance(int cpu, struct rq *rq)
4667{
4668}
4669
55e12e5e 4670#endif /* CONFIG_SMP */
e1d1484f 4671
bf0f6f24
IM
4672/*
4673 * scheduler tick hitting a task of our scheduling class:
4674 */
8f4d37ec 4675static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
4676{
4677 struct cfs_rq *cfs_rq;
4678 struct sched_entity *se = &curr->se;
4679
4680 for_each_sched_entity(se) {
4681 cfs_rq = cfs_rq_of(se);
8f4d37ec 4682 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
4683 }
4684}
4685
4686/*
cd29fe6f
PZ
4687 * called on fork with the child task as argument from the parent's context
4688 * - child not yet on the tasklist
4689 * - preemption disabled
bf0f6f24 4690 */
cd29fe6f 4691static void task_fork_fair(struct task_struct *p)
bf0f6f24 4692{
cd29fe6f 4693 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 4694 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 4695 int this_cpu = smp_processor_id();
cd29fe6f
PZ
4696 struct rq *rq = this_rq();
4697 unsigned long flags;
4698
05fa785c 4699 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 4700
861d034e
PZ
4701 update_rq_clock(rq);
4702
b0a0f667
PM
4703 if (unlikely(task_cpu(p) != this_cpu)) {
4704 rcu_read_lock();
cd29fe6f 4705 __set_task_cpu(p, this_cpu);
b0a0f667
PM
4706 rcu_read_unlock();
4707 }
bf0f6f24 4708
7109c442 4709 update_curr(cfs_rq);
cd29fe6f 4710
b5d9d734
MG
4711 if (curr)
4712 se->vruntime = curr->vruntime;
aeb73b04 4713 place_entity(cfs_rq, se, 1);
4d78e7b6 4714
cd29fe6f 4715 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 4716 /*
edcb60a3
IM
4717 * Upon rescheduling, sched_class::put_prev_task() will place
4718 * 'current' within the tree based on its new key value.
4719 */
4d78e7b6 4720 swap(curr->vruntime, se->vruntime);
aec0a514 4721 resched_task(rq->curr);
4d78e7b6 4722 }
bf0f6f24 4723
88ec22d3
PZ
4724 se->vruntime -= cfs_rq->min_vruntime;
4725
05fa785c 4726 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
4727}
4728
cb469845
SR
4729/*
4730 * Priority of the task has changed. Check to see if we preempt
4731 * the current task.
4732 */
da7a735e
PZ
4733static void
4734prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 4735{
da7a735e
PZ
4736 if (!p->se.on_rq)
4737 return;
4738
cb469845
SR
4739 /*
4740 * Reschedule if we are currently running on this runqueue and
4741 * our priority decreased, or if we are not currently running on
4742 * this runqueue and our priority is higher than the current's
4743 */
da7a735e 4744 if (rq->curr == p) {
cb469845
SR
4745 if (p->prio > oldprio)
4746 resched_task(rq->curr);
4747 } else
15afe09b 4748 check_preempt_curr(rq, p, 0);
cb469845
SR
4749}
4750
da7a735e
PZ
4751static void switched_from_fair(struct rq *rq, struct task_struct *p)
4752{
4753 struct sched_entity *se = &p->se;
4754 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4755
4756 /*
4757 * Ensure the task's vruntime is normalized, so that when its
4758 * switched back to the fair class the enqueue_entity(.flags=0) will
4759 * do the right thing.
4760 *
4761 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4762 * have normalized the vruntime, if it was !on_rq, then only when
4763 * the task is sleeping will it still have non-normalized vruntime.
4764 */
4765 if (!se->on_rq && p->state != TASK_RUNNING) {
4766 /*
4767 * Fix up our vruntime so that the current sleep doesn't
4768 * cause 'unlimited' sleep bonus.
4769 */
4770 place_entity(cfs_rq, se, 0);
4771 se->vruntime -= cfs_rq->min_vruntime;
4772 }
4773}
4774
cb469845
SR
4775/*
4776 * We switched to the sched_fair class.
4777 */
da7a735e 4778static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 4779{
da7a735e
PZ
4780 if (!p->se.on_rq)
4781 return;
4782
cb469845
SR
4783 /*
4784 * We were most likely switched from sched_rt, so
4785 * kick off the schedule if running, otherwise just see
4786 * if we can still preempt the current task.
4787 */
da7a735e 4788 if (rq->curr == p)
cb469845
SR
4789 resched_task(rq->curr);
4790 else
15afe09b 4791 check_preempt_curr(rq, p, 0);
cb469845
SR
4792}
4793
83b699ed
SV
4794/* Account for a task changing its policy or group.
4795 *
4796 * This routine is mostly called to set cfs_rq->curr field when a task
4797 * migrates between groups/classes.
4798 */
4799static void set_curr_task_fair(struct rq *rq)
4800{
4801 struct sched_entity *se = &rq->curr->se;
4802
ec12cb7f
PT
4803 for_each_sched_entity(se) {
4804 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4805
4806 set_next_entity(cfs_rq, se);
4807 /* ensure bandwidth has been allocated on our new cfs_rq */
4808 account_cfs_rq_runtime(cfs_rq, 0);
4809 }
83b699ed
SV
4810}
4811
810b3817 4812#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4813static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 4814{
b2b5ce02
PZ
4815 /*
4816 * If the task was not on the rq at the time of this cgroup movement
4817 * it must have been asleep, sleeping tasks keep their ->vruntime
4818 * absolute on their old rq until wakeup (needed for the fair sleeper
4819 * bonus in place_entity()).
4820 *
4821 * If it was on the rq, we've just 'preempted' it, which does convert
4822 * ->vruntime to a relative base.
4823 *
4824 * Make sure both cases convert their relative position when migrating
4825 * to another cgroup's rq. This does somewhat interfere with the
4826 * fair sleeper stuff for the first placement, but who cares.
4827 */
4828 if (!on_rq)
4829 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4830 set_task_rq(p, task_cpu(p));
88ec22d3 4831 if (!on_rq)
b2b5ce02 4832 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817
PZ
4833}
4834#endif
4835
6d686f45 4836static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
4837{
4838 struct sched_entity *se = &task->se;
0d721cea
PW
4839 unsigned int rr_interval = 0;
4840
4841 /*
4842 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4843 * idle runqueue:
4844 */
0d721cea
PW
4845 if (rq->cfs.load.weight)
4846 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
4847
4848 return rr_interval;
4849}
4850
bf0f6f24
IM
4851/*
4852 * All the scheduling class methods:
4853 */
5522d5d5
IM
4854static const struct sched_class fair_sched_class = {
4855 .next = &idle_sched_class,
bf0f6f24
IM
4856 .enqueue_task = enqueue_task_fair,
4857 .dequeue_task = dequeue_task_fair,
4858 .yield_task = yield_task_fair,
d95f4122 4859 .yield_to_task = yield_to_task_fair,
bf0f6f24 4860
2e09bf55 4861 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
4862
4863 .pick_next_task = pick_next_task_fair,
4864 .put_prev_task = put_prev_task_fair,
4865
681f3e68 4866#ifdef CONFIG_SMP
4ce72a2c
LZ
4867 .select_task_rq = select_task_rq_fair,
4868
0bcdcf28
CE
4869 .rq_online = rq_online_fair,
4870 .rq_offline = rq_offline_fair,
88ec22d3
PZ
4871
4872 .task_waking = task_waking_fair,
681f3e68 4873#endif
bf0f6f24 4874
83b699ed 4875 .set_curr_task = set_curr_task_fair,
bf0f6f24 4876 .task_tick = task_tick_fair,
cd29fe6f 4877 .task_fork = task_fork_fair,
cb469845
SR
4878
4879 .prio_changed = prio_changed_fair,
da7a735e 4880 .switched_from = switched_from_fair,
cb469845 4881 .switched_to = switched_to_fair,
810b3817 4882
0d721cea
PW
4883 .get_rr_interval = get_rr_interval_fair,
4884
810b3817 4885#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4886 .task_move_group = task_move_group_fair,
810b3817 4887#endif
bf0f6f24
IM
4888};
4889
4890#ifdef CONFIG_SCHED_DEBUG
5cef9eca 4891static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 4892{
bf0f6f24
IM
4893 struct cfs_rq *cfs_rq;
4894
5973e5b9 4895 rcu_read_lock();
c3b64f1e 4896 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 4897 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 4898 rcu_read_unlock();
bf0f6f24
IM
4899}
4900#endif