sched: remove the 'u64 now' parameter from __enqueue_sleeper()
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 */
19
20/*
21 * Preemption granularity:
22 * (default: 2 msec, units: nanoseconds)
23 *
24 * NOTE: this granularity value is not the same as the concept of
25 * 'timeslice length' - timeslices in CFS will typically be somewhat
26 * larger than this value. (to see the precise effective timeslice
27 * length of your workload, run vmstat and monitor the context-switches
28 * field)
29 *
30 * On SMP systems the value of this is multiplied by the log2 of the
31 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
32 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
33 */
34unsigned int sysctl_sched_granularity __read_mostly = 2000000000ULL/HZ;
35
36/*
37 * SCHED_BATCH wake-up granularity.
38 * (default: 10 msec, units: nanoseconds)
39 *
40 * This option delays the preemption effects of decoupled workloads
41 * and reduces their over-scheduling. Synchronous workloads will still
42 * have immediate wakeup/sleep latencies.
43 */
44unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly =
45 10000000000ULL/HZ;
46
47/*
48 * SCHED_OTHER wake-up granularity.
49 * (default: 1 msec, units: nanoseconds)
50 *
51 * This option delays the preemption effects of decoupled workloads
52 * and reduces their over-scheduling. Synchronous workloads will still
53 * have immediate wakeup/sleep latencies.
54 */
55unsigned int sysctl_sched_wakeup_granularity __read_mostly = 1000000000ULL/HZ;
56
57unsigned int sysctl_sched_stat_granularity __read_mostly;
58
59/*
60 * Initialized in sched_init_granularity():
61 */
62unsigned int sysctl_sched_runtime_limit __read_mostly;
63
64/*
65 * Debugging: various feature bits
66 */
67enum {
68 SCHED_FEAT_FAIR_SLEEPERS = 1,
69 SCHED_FEAT_SLEEPER_AVG = 2,
70 SCHED_FEAT_SLEEPER_LOAD_AVG = 4,
71 SCHED_FEAT_PRECISE_CPU_LOAD = 8,
72 SCHED_FEAT_START_DEBIT = 16,
73 SCHED_FEAT_SKIP_INITIAL = 32,
74};
75
76unsigned int sysctl_sched_features __read_mostly =
77 SCHED_FEAT_FAIR_SLEEPERS *1 |
78 SCHED_FEAT_SLEEPER_AVG *1 |
79 SCHED_FEAT_SLEEPER_LOAD_AVG *1 |
80 SCHED_FEAT_PRECISE_CPU_LOAD *1 |
81 SCHED_FEAT_START_DEBIT *1 |
82 SCHED_FEAT_SKIP_INITIAL *0;
83
84extern struct sched_class fair_sched_class;
85
86/**************************************************************
87 * CFS operations on generic schedulable entities:
88 */
89
90#ifdef CONFIG_FAIR_GROUP_SCHED
91
92/* cpu runqueue to which this cfs_rq is attached */
93static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
94{
95 return cfs_rq->rq;
96}
97
98/* currently running entity (if any) on this cfs_rq */
99static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
100{
101 return cfs_rq->curr;
102}
103
104/* An entity is a task if it doesn't "own" a runqueue */
105#define entity_is_task(se) (!se->my_q)
106
107static inline void
108set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se)
109{
110 cfs_rq->curr = se;
111}
112
113#else /* CONFIG_FAIR_GROUP_SCHED */
114
115static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
116{
117 return container_of(cfs_rq, struct rq, cfs);
118}
119
120static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
121{
122 struct rq *rq = rq_of(cfs_rq);
123
124 if (unlikely(rq->curr->sched_class != &fair_sched_class))
125 return NULL;
126
127 return &rq->curr->se;
128}
129
130#define entity_is_task(se) 1
131
132static inline void
133set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
134
135#endif /* CONFIG_FAIR_GROUP_SCHED */
136
137static inline struct task_struct *task_of(struct sched_entity *se)
138{
139 return container_of(se, struct task_struct, se);
140}
141
142
143/**************************************************************
144 * Scheduling class tree data structure manipulation methods:
145 */
146
147/*
148 * Enqueue an entity into the rb-tree:
149 */
150static inline void
151__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
152{
153 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
154 struct rb_node *parent = NULL;
155 struct sched_entity *entry;
156 s64 key = se->fair_key;
157 int leftmost = 1;
158
159 /*
160 * Find the right place in the rbtree:
161 */
162 while (*link) {
163 parent = *link;
164 entry = rb_entry(parent, struct sched_entity, run_node);
165 /*
166 * We dont care about collisions. Nodes with
167 * the same key stay together.
168 */
169 if (key - entry->fair_key < 0) {
170 link = &parent->rb_left;
171 } else {
172 link = &parent->rb_right;
173 leftmost = 0;
174 }
175 }
176
177 /*
178 * Maintain a cache of leftmost tree entries (it is frequently
179 * used):
180 */
181 if (leftmost)
182 cfs_rq->rb_leftmost = &se->run_node;
183
184 rb_link_node(&se->run_node, parent, link);
185 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
186 update_load_add(&cfs_rq->load, se->load.weight);
187 cfs_rq->nr_running++;
188 se->on_rq = 1;
189}
190
191static inline void
192__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
193{
194 if (cfs_rq->rb_leftmost == &se->run_node)
195 cfs_rq->rb_leftmost = rb_next(&se->run_node);
196 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
197 update_load_sub(&cfs_rq->load, se->load.weight);
198 cfs_rq->nr_running--;
199 se->on_rq = 0;
200}
201
202static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
203{
204 return cfs_rq->rb_leftmost;
205}
206
207static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
208{
209 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
210}
211
212/**************************************************************
213 * Scheduling class statistics methods:
214 */
215
216/*
217 * We rescale the rescheduling granularity of tasks according to their
218 * nice level, but only linearly, not exponentially:
219 */
220static long
221niced_granularity(struct sched_entity *curr, unsigned long granularity)
222{
223 u64 tmp;
224
225 /*
226 * Negative nice levels get the same granularity as nice-0:
227 */
228 if (likely(curr->load.weight >= NICE_0_LOAD))
229 return granularity;
230 /*
231 * Positive nice level tasks get linearly finer
232 * granularity:
233 */
234 tmp = curr->load.weight * (u64)granularity;
235
236 /*
237 * It will always fit into 'long':
238 */
239 return (long) (tmp >> NICE_0_SHIFT);
240}
241
242static inline void
243limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
244{
245 long limit = sysctl_sched_runtime_limit;
246
247 /*
248 * Niced tasks have the same history dynamic range as
249 * non-niced tasks:
250 */
251 if (unlikely(se->wait_runtime > limit)) {
252 se->wait_runtime = limit;
253 schedstat_inc(se, wait_runtime_overruns);
254 schedstat_inc(cfs_rq, wait_runtime_overruns);
255 }
256 if (unlikely(se->wait_runtime < -limit)) {
257 se->wait_runtime = -limit;
258 schedstat_inc(se, wait_runtime_underruns);
259 schedstat_inc(cfs_rq, wait_runtime_underruns);
260 }
261}
262
263static inline void
264__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
265{
266 se->wait_runtime += delta;
267 schedstat_add(se, sum_wait_runtime, delta);
268 limit_wait_runtime(cfs_rq, se);
269}
270
271static void
272add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
273{
274 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
275 __add_wait_runtime(cfs_rq, se, delta);
276 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
277}
278
279/*
280 * Update the current task's runtime statistics. Skip current tasks that
281 * are not in our scheduling class.
282 */
283static inline void
b7cc0896 284__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 285{
c5dcfe72 286 unsigned long delta, delta_exec, delta_fair, delta_mine;
bf0f6f24
IM
287 struct load_weight *lw = &cfs_rq->load;
288 unsigned long load = lw->weight;
289
bf0f6f24 290 delta_exec = curr->delta_exec;
8179ca23 291 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
292
293 curr->sum_exec_runtime += delta_exec;
294 cfs_rq->exec_clock += delta_exec;
295
fd8bb43e
IM
296 if (unlikely(!load))
297 return;
298
bf0f6f24
IM
299 delta_fair = calc_delta_fair(delta_exec, lw);
300 delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
301
0915c4e8 302 if (cfs_rq->sleeper_bonus > sysctl_sched_granularity) {
bf0f6f24
IM
303 delta = calc_delta_mine(cfs_rq->sleeper_bonus,
304 curr->load.weight, lw);
305 if (unlikely(delta > cfs_rq->sleeper_bonus))
306 delta = cfs_rq->sleeper_bonus;
307
308 cfs_rq->sleeper_bonus -= delta;
309 delta_mine -= delta;
310 }
311
312 cfs_rq->fair_clock += delta_fair;
313 /*
314 * We executed delta_exec amount of time on the CPU,
315 * but we were only entitled to delta_mine amount of
316 * time during that period (if nr_running == 1 then
317 * the two values are equal)
318 * [Note: delta_mine - delta_exec is negative]:
319 */
320 add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
321}
322
b7cc0896 323static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24
IM
324{
325 struct sched_entity *curr = cfs_rq_curr(cfs_rq);
326 unsigned long delta_exec;
327
328 if (unlikely(!curr))
329 return;
330
331 /*
332 * Get the amount of time the current task was running
333 * since the last time we changed load (this cannot
334 * overflow on 32 bits):
335 */
d281918d 336 delta_exec = (unsigned long)(rq_of(cfs_rq)->clock - curr->exec_start);
bf0f6f24
IM
337
338 curr->delta_exec += delta_exec;
339
340 if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) {
b7cc0896 341 __update_curr(cfs_rq, curr);
bf0f6f24
IM
342 curr->delta_exec = 0;
343 }
d281918d 344 curr->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
345}
346
347static inline void
5870db5b 348update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
349{
350 se->wait_start_fair = cfs_rq->fair_clock;
d281918d 351 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
352}
353
354/*
355 * We calculate fair deltas here, so protect against the random effects
356 * of a multiplication overflow by capping it to the runtime limit:
357 */
358#if BITS_PER_LONG == 32
359static inline unsigned long
360calc_weighted(unsigned long delta, unsigned long weight, int shift)
361{
362 u64 tmp = (u64)delta * weight >> shift;
363
364 if (unlikely(tmp > sysctl_sched_runtime_limit*2))
365 return sysctl_sched_runtime_limit*2;
366 return tmp;
367}
368#else
369static inline unsigned long
370calc_weighted(unsigned long delta, unsigned long weight, int shift)
371{
372 return delta * weight >> shift;
373}
374#endif
375
376/*
377 * Task is being enqueued - update stats:
378 */
d2417e5a 379static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
380{
381 s64 key;
382
383 /*
384 * Are we enqueueing a waiting task? (for current tasks
385 * a dequeue/enqueue event is a NOP)
386 */
387 if (se != cfs_rq_curr(cfs_rq))
5870db5b 388 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
389 /*
390 * Update the key:
391 */
392 key = cfs_rq->fair_clock;
393
394 /*
395 * Optimize the common nice 0 case:
396 */
397 if (likely(se->load.weight == NICE_0_LOAD)) {
398 key -= se->wait_runtime;
399 } else {
400 u64 tmp;
401
402 if (se->wait_runtime < 0) {
403 tmp = -se->wait_runtime;
404 key += (tmp * se->load.inv_weight) >>
405 (WMULT_SHIFT - NICE_0_SHIFT);
406 } else {
407 tmp = se->wait_runtime;
408 key -= (tmp * se->load.weight) >> NICE_0_SHIFT;
409 }
410 }
411
412 se->fair_key = key;
413}
414
415/*
416 * Note: must be called with a freshly updated rq->fair_clock.
417 */
418static inline void
eac55ea3 419__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
420{
421 unsigned long delta_fair = se->delta_fair_run;
422
d281918d
IM
423 schedstat_set(se->wait_max, max(se->wait_max,
424 rq_of(cfs_rq)->clock - se->wait_start));
bf0f6f24
IM
425
426 if (unlikely(se->load.weight != NICE_0_LOAD))
427 delta_fair = calc_weighted(delta_fair, se->load.weight,
428 NICE_0_SHIFT);
429
430 add_wait_runtime(cfs_rq, se, delta_fair);
431}
432
433static void
9ef0a961 434update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
435{
436 unsigned long delta_fair;
437
438 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
439 (u64)(cfs_rq->fair_clock - se->wait_start_fair));
440
441 se->delta_fair_run += delta_fair;
442 if (unlikely(abs(se->delta_fair_run) >=
443 sysctl_sched_stat_granularity)) {
eac55ea3 444 __update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
445 se->delta_fair_run = 0;
446 }
447
448 se->wait_start_fair = 0;
6cfb0d5d 449 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
450}
451
452static inline void
19b6a2e3 453update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 454{
b7cc0896 455 update_curr(cfs_rq);
bf0f6f24
IM
456 /*
457 * Mark the end of the wait period if dequeueing a
458 * waiting task:
459 */
460 if (se != cfs_rq_curr(cfs_rq))
9ef0a961 461 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
462}
463
464/*
465 * We are picking a new current task - update its stats:
466 */
467static inline void
79303e9e 468update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
469{
470 /*
471 * We are starting a new run period:
472 */
d281918d 473 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
474}
475
476/*
477 * We are descheduling a task - update its stats:
478 */
479static inline void
c7e9b5b2 480update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
481{
482 se->exec_start = 0;
483}
484
485/**************************************************
486 * Scheduling class queueing methods:
487 */
488
dfdc119e 489static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
490{
491 unsigned long load = cfs_rq->load.weight, delta_fair;
492 long prev_runtime;
493
494 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG)
495 load = rq_of(cfs_rq)->cpu_load[2];
496
497 delta_fair = se->delta_fair_sleep;
498
499 /*
500 * Fix up delta_fair with the effect of us running
501 * during the whole sleep period:
502 */
503 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG)
504 delta_fair = div64_likely32((u64)delta_fair * load,
505 load + se->load.weight);
506
507 if (unlikely(se->load.weight != NICE_0_LOAD))
508 delta_fair = calc_weighted(delta_fair, se->load.weight,
509 NICE_0_SHIFT);
510
511 prev_runtime = se->wait_runtime;
512 __add_wait_runtime(cfs_rq, se, delta_fair);
513 delta_fair = se->wait_runtime - prev_runtime;
514
515 /*
516 * Track the amount of bonus we've given to sleepers:
517 */
518 cfs_rq->sleeper_bonus += delta_fair;
519
520 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
521}
522
523static void
524enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
525{
526 struct task_struct *tsk = task_of(se);
527 unsigned long delta_fair;
528
529 if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
530 !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS))
531 return;
532
533 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
534 (u64)(cfs_rq->fair_clock - se->sleep_start_fair));
535
536 se->delta_fair_sleep += delta_fair;
537 if (unlikely(abs(se->delta_fair_sleep) >=
538 sysctl_sched_stat_granularity)) {
dfdc119e 539 __enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
540 se->delta_fair_sleep = 0;
541 }
542
543 se->sleep_start_fair = 0;
544
545#ifdef CONFIG_SCHEDSTATS
546 if (se->sleep_start) {
d281918d 547 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
548
549 if ((s64)delta < 0)
550 delta = 0;
551
552 if (unlikely(delta > se->sleep_max))
553 se->sleep_max = delta;
554
555 se->sleep_start = 0;
556 se->sum_sleep_runtime += delta;
557 }
558 if (se->block_start) {
d281918d 559 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
560
561 if ((s64)delta < 0)
562 delta = 0;
563
564 if (unlikely(delta > se->block_max))
565 se->block_max = delta;
566
567 se->block_start = 0;
568 se->sum_sleep_runtime += delta;
569 }
570#endif
571}
572
573static void
574enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
575 int wakeup, u64 now)
576{
577 /*
578 * Update the fair clock.
579 */
b7cc0896 580 update_curr(cfs_rq);
bf0f6f24
IM
581
582 if (wakeup)
583 enqueue_sleeper(cfs_rq, se, now);
584
d2417e5a 585 update_stats_enqueue(cfs_rq, se);
bf0f6f24
IM
586 __enqueue_entity(cfs_rq, se);
587}
588
589static void
590dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
591 int sleep, u64 now)
592{
19b6a2e3 593 update_stats_dequeue(cfs_rq, se);
bf0f6f24
IM
594 if (sleep) {
595 se->sleep_start_fair = cfs_rq->fair_clock;
596#ifdef CONFIG_SCHEDSTATS
597 if (entity_is_task(se)) {
598 struct task_struct *tsk = task_of(se);
599
600 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 601 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 602 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 603 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
604 }
605 cfs_rq->wait_runtime -= se->wait_runtime;
606#endif
607 }
608 __dequeue_entity(cfs_rq, se);
609}
610
611/*
612 * Preempt the current task with a newly woken task if needed:
613 */
614static void
615__check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
616 struct sched_entity *curr, unsigned long granularity)
617{
618 s64 __delta = curr->fair_key - se->fair_key;
619
620 /*
621 * Take scheduling granularity into account - do not
622 * preempt the current task unless the best task has
623 * a larger than sched_granularity fairness advantage:
624 */
625 if (__delta > niced_granularity(curr, granularity))
626 resched_task(rq_of(cfs_rq)->curr);
627}
628
629static inline void
630set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
631{
632 /*
633 * Any task has to be enqueued before it get to execute on
634 * a CPU. So account for the time it spent waiting on the
635 * runqueue. (note, here we rely on pick_next_task() having
636 * done a put_prev_task_fair() shortly before this, which
637 * updated rq->fair_clock - used by update_stats_wait_end())
638 */
9ef0a961 639 update_stats_wait_end(cfs_rq, se);
79303e9e 640 update_stats_curr_start(cfs_rq, se);
bf0f6f24
IM
641 set_cfs_rq_curr(cfs_rq, se);
642}
643
644static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq, u64 now)
645{
646 struct sched_entity *se = __pick_next_entity(cfs_rq);
647
648 set_next_entity(cfs_rq, se, now);
649
650 return se;
651}
652
653static void
654put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev, u64 now)
655{
656 /*
657 * If still on the runqueue then deactivate_task()
658 * was not called and update_curr() has to be done:
659 */
660 if (prev->on_rq)
b7cc0896 661 update_curr(cfs_rq);
bf0f6f24 662
c7e9b5b2 663 update_stats_curr_end(cfs_rq, prev);
bf0f6f24
IM
664
665 if (prev->on_rq)
5870db5b 666 update_stats_wait_start(cfs_rq, prev);
bf0f6f24
IM
667 set_cfs_rq_curr(cfs_rq, NULL);
668}
669
670static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
671{
672 struct rq *rq = rq_of(cfs_rq);
673 struct sched_entity *next;
c1b3da3e
IM
674 u64 now;
675
676 __update_rq_clock(rq);
677 now = rq->clock;
bf0f6f24
IM
678
679 /*
680 * Dequeue and enqueue the task to update its
681 * position within the tree:
682 */
683 dequeue_entity(cfs_rq, curr, 0, now);
684 enqueue_entity(cfs_rq, curr, 0, now);
685
686 /*
687 * Reschedule if another task tops the current one.
688 */
689 next = __pick_next_entity(cfs_rq);
690 if (next == curr)
691 return;
692
693 __check_preempt_curr_fair(cfs_rq, next, curr, sysctl_sched_granularity);
694}
695
696/**************************************************
697 * CFS operations on tasks:
698 */
699
700#ifdef CONFIG_FAIR_GROUP_SCHED
701
702/* Walk up scheduling entities hierarchy */
703#define for_each_sched_entity(se) \
704 for (; se; se = se->parent)
705
706static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
707{
708 return p->se.cfs_rq;
709}
710
711/* runqueue on which this entity is (to be) queued */
712static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
713{
714 return se->cfs_rq;
715}
716
717/* runqueue "owned" by this group */
718static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
719{
720 return grp->my_q;
721}
722
723/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
724 * another cpu ('this_cpu')
725 */
726static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
727{
728 /* A later patch will take group into account */
729 return &cpu_rq(this_cpu)->cfs;
730}
731
732/* Iterate thr' all leaf cfs_rq's on a runqueue */
733#define for_each_leaf_cfs_rq(rq, cfs_rq) \
734 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
735
736/* Do the two (enqueued) tasks belong to the same group ? */
737static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
738{
739 if (curr->se.cfs_rq == p->se.cfs_rq)
740 return 1;
741
742 return 0;
743}
744
745#else /* CONFIG_FAIR_GROUP_SCHED */
746
747#define for_each_sched_entity(se) \
748 for (; se; se = NULL)
749
750static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
751{
752 return &task_rq(p)->cfs;
753}
754
755static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
756{
757 struct task_struct *p = task_of(se);
758 struct rq *rq = task_rq(p);
759
760 return &rq->cfs;
761}
762
763/* runqueue "owned" by this group */
764static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
765{
766 return NULL;
767}
768
769static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
770{
771 return &cpu_rq(this_cpu)->cfs;
772}
773
774#define for_each_leaf_cfs_rq(rq, cfs_rq) \
775 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
776
777static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
778{
779 return 1;
780}
781
782#endif /* CONFIG_FAIR_GROUP_SCHED */
783
784/*
785 * The enqueue_task method is called before nr_running is
786 * increased. Here we update the fair scheduling stats and
787 * then put the task into the rbtree:
788 */
789static void
790enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
791{
792 struct cfs_rq *cfs_rq;
793 struct sched_entity *se = &p->se;
794
795 for_each_sched_entity(se) {
796 if (se->on_rq)
797 break;
798 cfs_rq = cfs_rq_of(se);
799 enqueue_entity(cfs_rq, se, wakeup, now);
800 }
801}
802
803/*
804 * The dequeue_task method is called before nr_running is
805 * decreased. We remove the task from the rbtree and
806 * update the fair scheduling stats:
807 */
808static void
809dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep, u64 now)
810{
811 struct cfs_rq *cfs_rq;
812 struct sched_entity *se = &p->se;
813
814 for_each_sched_entity(se) {
815 cfs_rq = cfs_rq_of(se);
816 dequeue_entity(cfs_rq, se, sleep, now);
817 /* Don't dequeue parent if it has other entities besides us */
818 if (cfs_rq->load.weight)
819 break;
820 }
821}
822
823/*
824 * sched_yield() support is very simple - we dequeue and enqueue
825 */
826static void yield_task_fair(struct rq *rq, struct task_struct *p)
827{
828 struct cfs_rq *cfs_rq = task_cfs_rq(p);
c1b3da3e 829 u64 now;
bf0f6f24 830
c1b3da3e
IM
831 __update_rq_clock(rq);
832 now = rq->clock;
bf0f6f24
IM
833 /*
834 * Dequeue and enqueue the task to update its
835 * position within the tree:
836 */
837 dequeue_entity(cfs_rq, &p->se, 0, now);
838 enqueue_entity(cfs_rq, &p->se, 0, now);
839}
840
841/*
842 * Preempt the current task with a newly woken task if needed:
843 */
844static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
845{
846 struct task_struct *curr = rq->curr;
847 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
848 unsigned long gran;
849
850 if (unlikely(rt_prio(p->prio))) {
a8e504d2 851 update_rq_clock(rq);
b7cc0896 852 update_curr(cfs_rq);
bf0f6f24
IM
853 resched_task(curr);
854 return;
855 }
856
857 gran = sysctl_sched_wakeup_granularity;
858 /*
859 * Batch tasks prefer throughput over latency:
860 */
861 if (unlikely(p->policy == SCHED_BATCH))
862 gran = sysctl_sched_batch_wakeup_granularity;
863
864 if (is_same_group(curr, p))
865 __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
866}
867
868static struct task_struct *pick_next_task_fair(struct rq *rq, u64 now)
869{
870 struct cfs_rq *cfs_rq = &rq->cfs;
871 struct sched_entity *se;
872
873 if (unlikely(!cfs_rq->nr_running))
874 return NULL;
875
876 do {
877 se = pick_next_entity(cfs_rq, now);
878 cfs_rq = group_cfs_rq(se);
879 } while (cfs_rq);
880
881 return task_of(se);
882}
883
884/*
885 * Account for a descheduled task:
886 */
887static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, u64 now)
888{
889 struct sched_entity *se = &prev->se;
890 struct cfs_rq *cfs_rq;
891
892 for_each_sched_entity(se) {
893 cfs_rq = cfs_rq_of(se);
894 put_prev_entity(cfs_rq, se, now);
895 }
896}
897
898/**************************************************
899 * Fair scheduling class load-balancing methods:
900 */
901
902/*
903 * Load-balancing iterator. Note: while the runqueue stays locked
904 * during the whole iteration, the current task might be
905 * dequeued so the iterator has to be dequeue-safe. Here we
906 * achieve that by always pre-iterating before returning
907 * the current task:
908 */
909static inline struct task_struct *
910__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
911{
912 struct task_struct *p;
913
914 if (!curr)
915 return NULL;
916
917 p = rb_entry(curr, struct task_struct, se.run_node);
918 cfs_rq->rb_load_balance_curr = rb_next(curr);
919
920 return p;
921}
922
923static struct task_struct *load_balance_start_fair(void *arg)
924{
925 struct cfs_rq *cfs_rq = arg;
926
927 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
928}
929
930static struct task_struct *load_balance_next_fair(void *arg)
931{
932 struct cfs_rq *cfs_rq = arg;
933
934 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
935}
936
a4ac01c3 937#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24
IM
938static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
939{
940 struct sched_entity *curr;
941 struct task_struct *p;
942
943 if (!cfs_rq->nr_running)
944 return MAX_PRIO;
945
946 curr = __pick_next_entity(cfs_rq);
947 p = task_of(curr);
948
949 return p->prio;
950}
a4ac01c3 951#endif
bf0f6f24 952
43010659 953static unsigned long
bf0f6f24 954load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
a4ac01c3
PW
955 unsigned long max_nr_move, unsigned long max_load_move,
956 struct sched_domain *sd, enum cpu_idle_type idle,
957 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
958{
959 struct cfs_rq *busy_cfs_rq;
960 unsigned long load_moved, total_nr_moved = 0, nr_moved;
961 long rem_load_move = max_load_move;
962 struct rq_iterator cfs_rq_iterator;
963
964 cfs_rq_iterator.start = load_balance_start_fair;
965 cfs_rq_iterator.next = load_balance_next_fair;
966
967 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 968#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 969 struct cfs_rq *this_cfs_rq;
a4ac01c3 970 long imbalances;
bf0f6f24 971 unsigned long maxload;
bf0f6f24
IM
972
973 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
974
975 imbalance = busy_cfs_rq->load.weight -
976 this_cfs_rq->load.weight;
977 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
978 if (imbalance <= 0)
979 continue;
980
981 /* Don't pull more than imbalance/2 */
982 imbalance /= 2;
983 maxload = min(rem_load_move, imbalance);
984
a4ac01c3
PW
985 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
986#else
987#define maxload rem_load_move
988#endif
bf0f6f24
IM
989 /* pass busy_cfs_rq argument into
990 * load_balance_[start|next]_fair iterators
991 */
992 cfs_rq_iterator.arg = busy_cfs_rq;
993 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
994 max_nr_move, maxload, sd, idle, all_pinned,
a4ac01c3 995 &load_moved, this_best_prio, &cfs_rq_iterator);
bf0f6f24
IM
996
997 total_nr_moved += nr_moved;
998 max_nr_move -= nr_moved;
999 rem_load_move -= load_moved;
1000
1001 if (max_nr_move <= 0 || rem_load_move <= 0)
1002 break;
1003 }
1004
43010659 1005 return max_load_move - rem_load_move;
bf0f6f24
IM
1006}
1007
1008/*
1009 * scheduler tick hitting a task of our scheduling class:
1010 */
1011static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1012{
1013 struct cfs_rq *cfs_rq;
1014 struct sched_entity *se = &curr->se;
1015
1016 for_each_sched_entity(se) {
1017 cfs_rq = cfs_rq_of(se);
1018 entity_tick(cfs_rq, se);
1019 }
1020}
1021
1022/*
1023 * Share the fairness runtime between parent and child, thus the
1024 * total amount of pressure for CPU stays equal - new tasks
1025 * get a chance to run but frequent forkers are not allowed to
1026 * monopolize the CPU. Note: the parent runqueue is locked,
1027 * the child is not running yet.
1028 */
cad60d93 1029static void task_new_fair(struct rq *rq, struct task_struct *p, u64 now)
bf0f6f24
IM
1030{
1031 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1032 struct sched_entity *se = &p->se;
bf0f6f24
IM
1033
1034 sched_info_queued(p);
1035
d2417e5a 1036 update_stats_enqueue(cfs_rq, se);
bf0f6f24
IM
1037 /*
1038 * Child runs first: we let it run before the parent
1039 * until it reschedules once. We set up the key so that
1040 * it will preempt the parent:
1041 */
1042 p->se.fair_key = current->se.fair_key -
1043 niced_granularity(&rq->curr->se, sysctl_sched_granularity) - 1;
1044 /*
1045 * The first wait is dominated by the child-runs-first logic,
1046 * so do not credit it with that waiting time yet:
1047 */
1048 if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL)
1049 p->se.wait_start_fair = 0;
1050
1051 /*
1052 * The statistical average of wait_runtime is about
1053 * -granularity/2, so initialize the task with that:
1054 */
1055 if (sysctl_sched_features & SCHED_FEAT_START_DEBIT)
1056 p->se.wait_runtime = -(sysctl_sched_granularity / 2);
1057
1058 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
1059}
1060
1061#ifdef CONFIG_FAIR_GROUP_SCHED
1062/* Account for a task changing its policy or group.
1063 *
1064 * This routine is mostly called to set cfs_rq->curr field when a task
1065 * migrates between groups/classes.
1066 */
1067static void set_curr_task_fair(struct rq *rq)
1068{
1069 struct task_struct *curr = rq->curr;
1070 struct sched_entity *se = &curr->se;
a8e504d2 1071 u64 now;
bf0f6f24
IM
1072 struct cfs_rq *cfs_rq;
1073
a8e504d2
IM
1074 update_rq_clock(rq);
1075 now = rq->clock;
1076
bf0f6f24
IM
1077 for_each_sched_entity(se) {
1078 cfs_rq = cfs_rq_of(se);
1079 set_next_entity(cfs_rq, se, now);
1080 }
1081}
1082#else
1083static void set_curr_task_fair(struct rq *rq)
1084{
1085}
1086#endif
1087
1088/*
1089 * All the scheduling class methods:
1090 */
1091struct sched_class fair_sched_class __read_mostly = {
1092 .enqueue_task = enqueue_task_fair,
1093 .dequeue_task = dequeue_task_fair,
1094 .yield_task = yield_task_fair,
1095
1096 .check_preempt_curr = check_preempt_curr_fair,
1097
1098 .pick_next_task = pick_next_task_fair,
1099 .put_prev_task = put_prev_task_fair,
1100
1101 .load_balance = load_balance_fair,
1102
1103 .set_curr_task = set_curr_task_fair,
1104 .task_tick = task_tick_fair,
1105 .task_new = task_new_fair,
1106};
1107
1108#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1109static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24
IM
1110{
1111 struct rq *rq = cpu_rq(cpu);
1112 struct cfs_rq *cfs_rq;
1113
1114 for_each_leaf_cfs_rq(rq, cfs_rq)
5cef9eca 1115 print_cfs_rq(m, cpu, cfs_rq);
bf0f6f24
IM
1116}
1117#endif