sched: remove last_min_vruntime effect
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
23/*
21805085
PZ
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
bf0f6f24 26 *
21805085
PZ
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
bf0f6f24
IM
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
21805085 35 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 36 */
2bd8e6d4
IM
37const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39/*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43const_debug unsigned int sysctl_sched_child_runs_first = 1;
21805085
PZ
44
45/*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
172ac3db 49unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
bf0f6f24 50
1799e35d
IM
51/*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57unsigned int __read_mostly sysctl_sched_compat_yield;
58
bf0f6f24
IM
59/*
60 * SCHED_BATCH wake-up granularity.
71fd3714 61 * (default: 25 msec, units: nanoseconds)
bf0f6f24
IM
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
2bd8e6d4 67const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
bf0f6f24
IM
68
69/*
70 * SCHED_OTHER wake-up granularity.
71 * (default: 1 msec, units: nanoseconds)
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
2e09bf55 77const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
bf0f6f24 78
bf0f6f24
IM
79extern struct sched_class fair_sched_class;
80
81/**************************************************************
82 * CFS operations on generic schedulable entities:
83 */
84
62160e3f 85#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 86
62160e3f 87/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
88static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
89{
62160e3f 90 return cfs_rq->rq;
bf0f6f24
IM
91}
92
62160e3f
IM
93/* An entity is a task if it doesn't "own" a runqueue */
94#define entity_is_task(se) (!se->my_q)
bf0f6f24 95
62160e3f 96#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 97
62160e3f
IM
98static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
99{
100 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
101}
102
103#define entity_is_task(se) 1
104
bf0f6f24
IM
105#endif /* CONFIG_FAIR_GROUP_SCHED */
106
107static inline struct task_struct *task_of(struct sched_entity *se)
108{
109 return container_of(se, struct task_struct, se);
110}
111
112
113/**************************************************************
114 * Scheduling class tree data structure manipulation methods:
115 */
116
02e0431a
PZ
117static inline u64
118max_vruntime(u64 min_vruntime, u64 vruntime)
119{
120 if ((vruntime > min_vruntime) ||
121 (min_vruntime > (1ULL << 61) && vruntime < (1ULL << 50)))
122 min_vruntime = vruntime;
123
124 return min_vruntime;
125}
126
e9acbff6
IM
127static inline void
128set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
129{
130 struct sched_entity *se;
131
132 cfs_rq->rb_leftmost = leftmost;
02e0431a 133 if (leftmost)
e9acbff6 134 se = rb_entry(leftmost, struct sched_entity, run_node);
e9acbff6
IM
135}
136
02e0431a
PZ
137static inline s64
138entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 139{
30cfdcfc 140 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
141}
142
bf0f6f24
IM
143/*
144 * Enqueue an entity into the rb-tree:
145 */
19ccd97a 146static void
bf0f6f24
IM
147__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
148{
149 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
150 struct rb_node *parent = NULL;
151 struct sched_entity *entry;
9014623c 152 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
153 int leftmost = 1;
154
155 /*
156 * Find the right place in the rbtree:
157 */
158 while (*link) {
159 parent = *link;
160 entry = rb_entry(parent, struct sched_entity, run_node);
161 /*
162 * We dont care about collisions. Nodes with
163 * the same key stay together.
164 */
9014623c 165 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
166 link = &parent->rb_left;
167 } else {
168 link = &parent->rb_right;
169 leftmost = 0;
170 }
171 }
172
173 /*
174 * Maintain a cache of leftmost tree entries (it is frequently
175 * used):
176 */
177 if (leftmost)
e9acbff6 178 set_leftmost(cfs_rq, &se->run_node);
bf0f6f24
IM
179
180 rb_link_node(&se->run_node, parent, link);
181 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
182}
183
19ccd97a 184static void
bf0f6f24
IM
185__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
186{
187 if (cfs_rq->rb_leftmost == &se->run_node)
e9acbff6
IM
188 set_leftmost(cfs_rq, rb_next(&se->run_node));
189
bf0f6f24 190 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
191}
192
193static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
194{
195 return cfs_rq->rb_leftmost;
196}
197
198static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
199{
200 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
201}
202
aeb73b04
PZ
203static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
204{
205 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
206 struct sched_entity *se = NULL;
207 struct rb_node *parent;
208
209 while (*link) {
210 parent = *link;
211 se = rb_entry(parent, struct sched_entity, run_node);
212 link = &parent->rb_right;
213 }
214
215 return se;
216}
217
bf0f6f24
IM
218/**************************************************************
219 * Scheduling class statistics methods:
220 */
221
4d78e7b6
PZ
222static u64 __sched_period(unsigned long nr_running)
223{
224 u64 period = sysctl_sched_latency;
225 unsigned long nr_latency =
226 sysctl_sched_latency / sysctl_sched_min_granularity;
227
228 if (unlikely(nr_running > nr_latency)) {
229 period *= nr_running;
230 do_div(period, nr_latency);
231 }
232
233 return period;
234}
235
6d0f0ebd 236static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 237{
6d0f0ebd 238 u64 period = __sched_period(cfs_rq->nr_running);
21805085 239
6d0f0ebd
PZ
240 period *= se->load.weight;
241 do_div(period, cfs_rq->load.weight);
21805085 242
6d0f0ebd 243 return period;
bf0f6f24
IM
244}
245
67e9fb2a
PZ
246static u64 __sched_vslice(unsigned long nr_running)
247{
248 u64 period = __sched_period(nr_running);
249
250 do_div(period, nr_running);
251
252 return period;
253}
254
bf0f6f24
IM
255/*
256 * Update the current task's runtime statistics. Skip current tasks that
257 * are not in our scheduling class.
258 */
259static inline void
8ebc91d9
IM
260__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
261 unsigned long delta_exec)
bf0f6f24 262{
bbdba7c0 263 unsigned long delta_exec_weighted;
02e0431a 264 u64 next_vruntime, min_vruntime;
bf0f6f24 265
8179ca23 266 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
267
268 curr->sum_exec_runtime += delta_exec;
7a62eabc 269 schedstat_add(cfs_rq, exec_clock, delta_exec);
e9acbff6
IM
270 delta_exec_weighted = delta_exec;
271 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
272 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
273 &curr->load);
274 }
275 curr->vruntime += delta_exec_weighted;
02e0431a
PZ
276
277 /*
278 * maintain cfs_rq->min_vruntime to be a monotonic increasing
279 * value tracking the leftmost vruntime in the tree.
280 */
281 if (first_fair(cfs_rq)) {
282 next_vruntime = __pick_next_entity(cfs_rq)->vruntime;
283
284 /* min_vruntime() := !max_vruntime() */
285 min_vruntime = max_vruntime(curr->vruntime, next_vruntime);
286 if (min_vruntime == next_vruntime)
287 min_vruntime = curr->vruntime;
288 else
289 min_vruntime = next_vruntime;
290 } else
291 min_vruntime = curr->vruntime;
292
293 cfs_rq->min_vruntime =
294 max_vruntime(cfs_rq->min_vruntime, min_vruntime);
bf0f6f24
IM
295}
296
b7cc0896 297static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 298{
429d43bc 299 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 300 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
301 unsigned long delta_exec;
302
303 if (unlikely(!curr))
304 return;
305
306 /*
307 * Get the amount of time the current task was running
308 * since the last time we changed load (this cannot
309 * overflow on 32 bits):
310 */
8ebc91d9 311 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 312
8ebc91d9
IM
313 __update_curr(cfs_rq, curr, delta_exec);
314 curr->exec_start = now;
bf0f6f24
IM
315}
316
317static inline void
5870db5b 318update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 319{
d281918d 320 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
321}
322
bf0f6f24 323static inline unsigned long
08e2388a 324calc_weighted(unsigned long delta, struct sched_entity *se)
bf0f6f24 325{
08e2388a 326 unsigned long weight = se->load.weight;
bf0f6f24 327
08e2388a
IM
328 if (unlikely(weight != NICE_0_LOAD))
329 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
330 else
331 return delta;
bf0f6f24 332}
bf0f6f24
IM
333
334/*
335 * Task is being enqueued - update stats:
336 */
d2417e5a 337static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 338{
bf0f6f24
IM
339 /*
340 * Are we enqueueing a waiting task? (for current tasks
341 * a dequeue/enqueue event is a NOP)
342 */
429d43bc 343 if (se != cfs_rq->curr)
5870db5b 344 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
345}
346
bf0f6f24 347static void
9ef0a961 348update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 349{
bbdba7c0
IM
350 schedstat_set(se->wait_max, max(se->wait_max,
351 rq_of(cfs_rq)->clock - se->wait_start));
6cfb0d5d 352 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
353}
354
355static inline void
19b6a2e3 356update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 357{
b7cc0896 358 update_curr(cfs_rq);
bf0f6f24
IM
359 /*
360 * Mark the end of the wait period if dequeueing a
361 * waiting task:
362 */
429d43bc 363 if (se != cfs_rq->curr)
9ef0a961 364 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
365}
366
367/*
368 * We are picking a new current task - update its stats:
369 */
370static inline void
79303e9e 371update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
372{
373 /*
374 * We are starting a new run period:
375 */
d281918d 376 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
377}
378
379/*
380 * We are descheduling a task - update its stats:
381 */
382static inline void
c7e9b5b2 383update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
384{
385 se->exec_start = 0;
386}
387
388/**************************************************
389 * Scheduling class queueing methods:
390 */
391
30cfdcfc
DA
392static void
393account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
394{
395 update_load_add(&cfs_rq->load, se->load.weight);
396 cfs_rq->nr_running++;
397 se->on_rq = 1;
398}
399
400static void
401account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
402{
403 update_load_sub(&cfs_rq->load, se->load.weight);
404 cfs_rq->nr_running--;
405 se->on_rq = 0;
406}
407
2396af69 408static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 409{
bf0f6f24
IM
410#ifdef CONFIG_SCHEDSTATS
411 if (se->sleep_start) {
d281918d 412 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
413
414 if ((s64)delta < 0)
415 delta = 0;
416
417 if (unlikely(delta > se->sleep_max))
418 se->sleep_max = delta;
419
420 se->sleep_start = 0;
421 se->sum_sleep_runtime += delta;
422 }
423 if (se->block_start) {
d281918d 424 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
425
426 if ((s64)delta < 0)
427 delta = 0;
428
429 if (unlikely(delta > se->block_max))
430 se->block_max = delta;
431
432 se->block_start = 0;
433 se->sum_sleep_runtime += delta;
30084fbd
IM
434
435 /*
436 * Blocking time is in units of nanosecs, so shift by 20 to
437 * get a milliseconds-range estimation of the amount of
438 * time that the task spent sleeping:
439 */
440 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf
IM
441 struct task_struct *tsk = task_of(se);
442
30084fbd
IM
443 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
444 delta >> 20);
445 }
bf0f6f24
IM
446 }
447#endif
448}
449
ddc97297
PZ
450static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
451{
452#ifdef CONFIG_SCHED_DEBUG
453 s64 d = se->vruntime - cfs_rq->min_vruntime;
454
455 if (d < 0)
456 d = -d;
457
458 if (d > 3*sysctl_sched_latency)
459 schedstat_inc(cfs_rq, nr_spread_over);
460#endif
461}
462
aeb73b04
PZ
463static void
464place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
465{
67e9fb2a 466 u64 vruntime;
aeb73b04 467
67e9fb2a 468 vruntime = cfs_rq->min_vruntime;
94dfb5e7
PZ
469
470 if (sched_feat(USE_TREE_AVG)) {
471 struct sched_entity *last = __pick_last_entity(cfs_rq);
472 if (last) {
67e9fb2a
PZ
473 vruntime += last->vruntime;
474 vruntime >>= 1;
94dfb5e7 475 }
67e9fb2a
PZ
476 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
477 vruntime += __sched_vslice(cfs_rq->nr_running)/2;
94dfb5e7
PZ
478
479 if (initial && sched_feat(START_DEBIT))
67e9fb2a 480 vruntime += __sched_vslice(cfs_rq->nr_running + 1);
aeb73b04 481
8465e792
IM
482 if (!initial) {
483 if (sched_feat(NEW_FAIR_SLEEPERS)) {
dc1f31c9 484 s64 latency = cfs_rq->min_vruntime - se->vruntime;
8465e792
IM
485 if (latency < 0 || !cfs_rq->nr_running)
486 latency = 0;
487 else
488 latency = min_t(s64, latency, sysctl_sched_latency);
489 vruntime -= latency;
490 }
491 vruntime = max(vruntime, se->vruntime);
aeb73b04
PZ
492 }
493
67e9fb2a
PZ
494 se->vruntime = vruntime;
495
aeb73b04
PZ
496}
497
bf0f6f24 498static void
83b699ed 499enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
500{
501 /*
502 * Update the fair clock.
503 */
b7cc0896 504 update_curr(cfs_rq);
bf0f6f24 505
e9acbff6 506 if (wakeup) {
67e9fb2a 507 /* se->vruntime += cfs_rq->min_vruntime; */
aeb73b04 508 place_entity(cfs_rq, se, 0);
2396af69 509 enqueue_sleeper(cfs_rq, se);
e9acbff6 510 }
bf0f6f24 511
d2417e5a 512 update_stats_enqueue(cfs_rq, se);
ddc97297 513 check_spread(cfs_rq, se);
83b699ed
SV
514 if (se != cfs_rq->curr)
515 __enqueue_entity(cfs_rq, se);
30cfdcfc 516 account_entity_enqueue(cfs_rq, se);
bf0f6f24
IM
517}
518
519static void
525c2716 520dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 521{
19b6a2e3 522 update_stats_dequeue(cfs_rq, se);
db36cc7d 523 if (sleep) {
67e9fb2a 524#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
525 if (entity_is_task(se)) {
526 struct task_struct *tsk = task_of(se);
527
528 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 529 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 530 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 531 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 532 }
db36cc7d 533#endif
67e9fb2a
PZ
534 /* se->vruntime = entity_key(cfs_rq, se); */
535 se->last_min_vruntime = cfs_rq->min_vruntime;
536 }
537
83b699ed 538 if (se != cfs_rq->curr)
30cfdcfc
DA
539 __dequeue_entity(cfs_rq, se);
540 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
541}
542
543/*
544 * Preempt the current task with a newly woken task if needed:
545 */
7c92e54f 546static void
2e09bf55 547check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 548{
11697830
PZ
549 unsigned long ideal_runtime, delta_exec;
550
6d0f0ebd 551 ideal_runtime = sched_slice(cfs_rq, curr);
11697830
PZ
552 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
553 if (delta_exec > ideal_runtime)
bf0f6f24
IM
554 resched_task(rq_of(cfs_rq)->curr);
555}
556
83b699ed 557static void
8494f412 558set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 559{
83b699ed
SV
560 /* 'current' is not kept within the tree. */
561 if (se->on_rq) {
562 /*
563 * Any task has to be enqueued before it get to execute on
564 * a CPU. So account for the time it spent waiting on the
565 * runqueue.
566 */
567 update_stats_wait_end(cfs_rq, se);
568 __dequeue_entity(cfs_rq, se);
569 }
570
79303e9e 571 update_stats_curr_start(cfs_rq, se);
429d43bc 572 cfs_rq->curr = se;
eba1ed4b
IM
573#ifdef CONFIG_SCHEDSTATS
574 /*
575 * Track our maximum slice length, if the CPU's load is at
576 * least twice that of our own weight (i.e. dont track it
577 * when there are only lesser-weight tasks around):
578 */
495eca49 579 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
580 se->slice_max = max(se->slice_max,
581 se->sum_exec_runtime - se->prev_sum_exec_runtime);
582 }
583#endif
4a55b450 584 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
585}
586
9948f4b2 587static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24
IM
588{
589 struct sched_entity *se = __pick_next_entity(cfs_rq);
590
8494f412 591 set_next_entity(cfs_rq, se);
bf0f6f24
IM
592
593 return se;
594}
595
ab6cde26 596static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
597{
598 /*
599 * If still on the runqueue then deactivate_task()
600 * was not called and update_curr() has to be done:
601 */
602 if (prev->on_rq)
b7cc0896 603 update_curr(cfs_rq);
bf0f6f24 604
c7e9b5b2 605 update_stats_curr_end(cfs_rq, prev);
bf0f6f24 606
ddc97297 607 check_spread(cfs_rq, prev);
30cfdcfc 608 if (prev->on_rq) {
5870db5b 609 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
610 /* Put 'current' back into the tree. */
611 __enqueue_entity(cfs_rq, prev);
612 }
429d43bc 613 cfs_rq->curr = NULL;
bf0f6f24
IM
614}
615
616static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
617{
bf0f6f24 618 /*
30cfdcfc 619 * Update run-time statistics of the 'current'.
bf0f6f24 620 */
30cfdcfc 621 update_curr(cfs_rq);
bf0f6f24 622
2e09bf55
IM
623 if (cfs_rq->nr_running > 1)
624 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
625}
626
627/**************************************************
628 * CFS operations on tasks:
629 */
630
631#ifdef CONFIG_FAIR_GROUP_SCHED
632
633/* Walk up scheduling entities hierarchy */
634#define for_each_sched_entity(se) \
635 for (; se; se = se->parent)
636
637static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
638{
639 return p->se.cfs_rq;
640}
641
642/* runqueue on which this entity is (to be) queued */
643static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
644{
645 return se->cfs_rq;
646}
647
648/* runqueue "owned" by this group */
649static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
650{
651 return grp->my_q;
652}
653
654/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
655 * another cpu ('this_cpu')
656 */
657static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
658{
29f59db3 659 return cfs_rq->tg->cfs_rq[this_cpu];
bf0f6f24
IM
660}
661
662/* Iterate thr' all leaf cfs_rq's on a runqueue */
663#define for_each_leaf_cfs_rq(rq, cfs_rq) \
664 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
665
666/* Do the two (enqueued) tasks belong to the same group ? */
667static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
668{
669 if (curr->se.cfs_rq == p->se.cfs_rq)
670 return 1;
671
672 return 0;
673}
674
675#else /* CONFIG_FAIR_GROUP_SCHED */
676
677#define for_each_sched_entity(se) \
678 for (; se; se = NULL)
679
680static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
681{
682 return &task_rq(p)->cfs;
683}
684
685static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
686{
687 struct task_struct *p = task_of(se);
688 struct rq *rq = task_rq(p);
689
690 return &rq->cfs;
691}
692
693/* runqueue "owned" by this group */
694static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
695{
696 return NULL;
697}
698
699static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
700{
701 return &cpu_rq(this_cpu)->cfs;
702}
703
704#define for_each_leaf_cfs_rq(rq, cfs_rq) \
705 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
706
707static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
708{
709 return 1;
710}
711
712#endif /* CONFIG_FAIR_GROUP_SCHED */
713
714/*
715 * The enqueue_task method is called before nr_running is
716 * increased. Here we update the fair scheduling stats and
717 * then put the task into the rbtree:
718 */
fd390f6a 719static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
720{
721 struct cfs_rq *cfs_rq;
722 struct sched_entity *se = &p->se;
723
724 for_each_sched_entity(se) {
725 if (se->on_rq)
726 break;
727 cfs_rq = cfs_rq_of(se);
83b699ed 728 enqueue_entity(cfs_rq, se, wakeup);
bf0f6f24
IM
729 }
730}
731
732/*
733 * The dequeue_task method is called before nr_running is
734 * decreased. We remove the task from the rbtree and
735 * update the fair scheduling stats:
736 */
f02231e5 737static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
738{
739 struct cfs_rq *cfs_rq;
740 struct sched_entity *se = &p->se;
741
742 for_each_sched_entity(se) {
743 cfs_rq = cfs_rq_of(se);
525c2716 744 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24
IM
745 /* Don't dequeue parent if it has other entities besides us */
746 if (cfs_rq->load.weight)
747 break;
748 }
749}
750
751/*
1799e35d
IM
752 * sched_yield() support is very simple - we dequeue and enqueue.
753 *
754 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 755 */
4530d7ab 756static void yield_task_fair(struct rq *rq)
bf0f6f24 757{
72ea22f8 758 struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
1799e35d 759 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
4530d7ab 760 struct sched_entity *rightmost, *se = &rq->curr->se;
1799e35d 761 struct rb_node *parent;
bf0f6f24
IM
762
763 /*
1799e35d
IM
764 * Are we the only task in the tree?
765 */
766 if (unlikely(cfs_rq->nr_running == 1))
767 return;
768
769 if (likely(!sysctl_sched_compat_yield)) {
770 __update_rq_clock(rq);
771 /*
772 * Dequeue and enqueue the task to update its
773 * position within the tree:
774 */
4530d7ab 775 dequeue_entity(cfs_rq, se, 0);
83b699ed 776 enqueue_entity(cfs_rq, se, 0);
1799e35d
IM
777
778 return;
779 }
780 /*
781 * Find the rightmost entry in the rbtree:
bf0f6f24 782 */
1799e35d
IM
783 do {
784 parent = *link;
785 link = &parent->rb_right;
786 } while (*link);
787
788 rightmost = rb_entry(parent, struct sched_entity, run_node);
789 /*
790 * Already in the rightmost position?
791 */
792 if (unlikely(rightmost == se))
793 return;
794
795 /*
796 * Minimally necessary key value to be last in the tree:
797 */
30cfdcfc 798 se->vruntime = rightmost->vruntime + 1;
1799e35d
IM
799
800 if (cfs_rq->rb_leftmost == &se->run_node)
801 cfs_rq->rb_leftmost = rb_next(&se->run_node);
802 /*
803 * Relink the task to the rightmost position:
804 */
805 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
806 rb_link_node(&se->run_node, parent, link);
807 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
808}
809
810/*
811 * Preempt the current task with a newly woken task if needed:
812 */
2e09bf55 813static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
814{
815 struct task_struct *curr = rq->curr;
816 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
bf0f6f24
IM
817
818 if (unlikely(rt_prio(p->prio))) {
a8e504d2 819 update_rq_clock(rq);
b7cc0896 820 update_curr(cfs_rq);
bf0f6f24
IM
821 resched_task(curr);
822 return;
823 }
2e09bf55
IM
824 if (is_same_group(curr, p)) {
825 s64 delta = curr->se.vruntime - p->se.vruntime;
bf0f6f24 826
2e09bf55
IM
827 if (delta > (s64)sysctl_sched_wakeup_granularity)
828 resched_task(curr);
829 }
bf0f6f24
IM
830}
831
fb8d4724 832static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24
IM
833{
834 struct cfs_rq *cfs_rq = &rq->cfs;
835 struct sched_entity *se;
836
837 if (unlikely(!cfs_rq->nr_running))
838 return NULL;
839
840 do {
9948f4b2 841 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
842 cfs_rq = group_cfs_rq(se);
843 } while (cfs_rq);
844
845 return task_of(se);
846}
847
848/*
849 * Account for a descheduled task:
850 */
31ee529c 851static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
852{
853 struct sched_entity *se = &prev->se;
854 struct cfs_rq *cfs_rq;
855
856 for_each_sched_entity(se) {
857 cfs_rq = cfs_rq_of(se);
ab6cde26 858 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
859 }
860}
861
862/**************************************************
863 * Fair scheduling class load-balancing methods:
864 */
865
866/*
867 * Load-balancing iterator. Note: while the runqueue stays locked
868 * during the whole iteration, the current task might be
869 * dequeued so the iterator has to be dequeue-safe. Here we
870 * achieve that by always pre-iterating before returning
871 * the current task:
872 */
873static inline struct task_struct *
874__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
875{
876 struct task_struct *p;
877
878 if (!curr)
879 return NULL;
880
881 p = rb_entry(curr, struct task_struct, se.run_node);
882 cfs_rq->rb_load_balance_curr = rb_next(curr);
883
884 return p;
885}
886
887static struct task_struct *load_balance_start_fair(void *arg)
888{
889 struct cfs_rq *cfs_rq = arg;
890
891 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
892}
893
894static struct task_struct *load_balance_next_fair(void *arg)
895{
896 struct cfs_rq *cfs_rq = arg;
897
898 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
899}
900
a4ac01c3 901#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24
IM
902static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
903{
904 struct sched_entity *curr;
905 struct task_struct *p;
906
907 if (!cfs_rq->nr_running)
908 return MAX_PRIO;
909
9b5b7751
SV
910 curr = cfs_rq->curr;
911 if (!curr)
912 curr = __pick_next_entity(cfs_rq);
913
bf0f6f24
IM
914 p = task_of(curr);
915
916 return p->prio;
917}
a4ac01c3 918#endif
bf0f6f24 919
43010659 920static unsigned long
bf0f6f24 921load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
a4ac01c3
PW
922 unsigned long max_nr_move, unsigned long max_load_move,
923 struct sched_domain *sd, enum cpu_idle_type idle,
924 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
925{
926 struct cfs_rq *busy_cfs_rq;
927 unsigned long load_moved, total_nr_moved = 0, nr_moved;
928 long rem_load_move = max_load_move;
929 struct rq_iterator cfs_rq_iterator;
930
931 cfs_rq_iterator.start = load_balance_start_fair;
932 cfs_rq_iterator.next = load_balance_next_fair;
933
934 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 935#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 936 struct cfs_rq *this_cfs_rq;
e56f31aa 937 long imbalance;
bf0f6f24 938 unsigned long maxload;
bf0f6f24
IM
939
940 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
941
e56f31aa 942 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
bf0f6f24
IM
943 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
944 if (imbalance <= 0)
945 continue;
946
947 /* Don't pull more than imbalance/2 */
948 imbalance /= 2;
949 maxload = min(rem_load_move, imbalance);
950
a4ac01c3
PW
951 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
952#else
e56f31aa 953# define maxload rem_load_move
a4ac01c3 954#endif
bf0f6f24
IM
955 /* pass busy_cfs_rq argument into
956 * load_balance_[start|next]_fair iterators
957 */
958 cfs_rq_iterator.arg = busy_cfs_rq;
959 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
960 max_nr_move, maxload, sd, idle, all_pinned,
a4ac01c3 961 &load_moved, this_best_prio, &cfs_rq_iterator);
bf0f6f24
IM
962
963 total_nr_moved += nr_moved;
964 max_nr_move -= nr_moved;
965 rem_load_move -= load_moved;
966
967 if (max_nr_move <= 0 || rem_load_move <= 0)
968 break;
969 }
970
43010659 971 return max_load_move - rem_load_move;
bf0f6f24
IM
972}
973
974/*
975 * scheduler tick hitting a task of our scheduling class:
976 */
977static void task_tick_fair(struct rq *rq, struct task_struct *curr)
978{
979 struct cfs_rq *cfs_rq;
980 struct sched_entity *se = &curr->se;
981
982 for_each_sched_entity(se) {
983 cfs_rq = cfs_rq_of(se);
984 entity_tick(cfs_rq, se);
985 }
986}
987
4d78e7b6
PZ
988#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
989
bf0f6f24
IM
990/*
991 * Share the fairness runtime between parent and child, thus the
992 * total amount of pressure for CPU stays equal - new tasks
993 * get a chance to run but frequent forkers are not allowed to
994 * monopolize the CPU. Note: the parent runqueue is locked,
995 * the child is not running yet.
996 */
ee0827d8 997static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
998{
999 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1000 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
bf0f6f24
IM
1001
1002 sched_info_queued(p);
1003
7109c442 1004 update_curr(cfs_rq);
aeb73b04 1005 place_entity(cfs_rq, se, 1);
4d78e7b6 1006
4d78e7b6
PZ
1007 if (sysctl_sched_child_runs_first &&
1008 curr->vruntime < se->vruntime) {
87fefa38 1009 /*
edcb60a3
IM
1010 * Upon rescheduling, sched_class::put_prev_task() will place
1011 * 'current' within the tree based on its new key value.
1012 */
4d78e7b6 1013 swap(curr->vruntime, se->vruntime);
4d78e7b6 1014 }
bf0f6f24 1015
e9acbff6 1016 update_stats_enqueue(cfs_rq, se);
ddc97297
PZ
1017 check_spread(cfs_rq, se);
1018 check_spread(cfs_rq, curr);
bf0f6f24 1019 __enqueue_entity(cfs_rq, se);
30cfdcfc 1020 account_entity_enqueue(cfs_rq, se);
bb61c210 1021 resched_task(rq->curr);
bf0f6f24
IM
1022}
1023
83b699ed
SV
1024/* Account for a task changing its policy or group.
1025 *
1026 * This routine is mostly called to set cfs_rq->curr field when a task
1027 * migrates between groups/classes.
1028 */
1029static void set_curr_task_fair(struct rq *rq)
1030{
1031 struct sched_entity *se = &rq->curr->se;
1032
1033 for_each_sched_entity(se)
1034 set_next_entity(cfs_rq_of(se), se);
1035}
1036
bf0f6f24
IM
1037/*
1038 * All the scheduling class methods:
1039 */
1040struct sched_class fair_sched_class __read_mostly = {
1041 .enqueue_task = enqueue_task_fair,
1042 .dequeue_task = dequeue_task_fair,
1043 .yield_task = yield_task_fair,
1044
2e09bf55 1045 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1046
1047 .pick_next_task = pick_next_task_fair,
1048 .put_prev_task = put_prev_task_fair,
1049
1050 .load_balance = load_balance_fair,
1051
83b699ed 1052 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1053 .task_tick = task_tick_fair,
1054 .task_new = task_new_fair,
1055};
1056
1057#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1058static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1059{
bf0f6f24
IM
1060 struct cfs_rq *cfs_rq;
1061
75c28ace
SV
1062#ifdef CONFIG_FAIR_GROUP_SCHED
1063 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1064#endif
c3b64f1e 1065 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1066 print_cfs_rq(m, cpu, cfs_rq);
bf0f6f24
IM
1067}
1068#endif