sched: Clean up some f_b_g() comments
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
9745512c 25
bf0f6f24 26/*
21805085 27 * Targeted preemption latency for CPU-bound tasks:
864616ee 28 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 37 */
21406928
MG
38unsigned int sysctl_sched_latency = 6000000ULL;
39unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 40
1983a922
CE
41/*
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
2bd8e6d4 53/*
b2be5e96 54 * Minimal preemption granularity for CPU-bound tasks:
864616ee 55 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 56 */
0bf377bb
IM
57unsigned int sysctl_sched_min_granularity = 750000ULL;
58unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
59
60/*
b2be5e96
PZ
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
0bf377bb 63static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
64
65/*
2bba22c5 66 * After fork, child runs first. If set to 0 (default) then
b2be5e96 67 * parent will (try to) run first.
21805085 68 */
2bba22c5 69unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 70
bf0f6f24
IM
71/*
72 * SCHED_OTHER wake-up granularity.
172e082a 73 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
74 *
75 * This option delays the preemption effects of decoupled workloads
76 * and reduces their over-scheduling. Synchronous workloads will still
77 * have immediate wakeup/sleep latencies.
78 */
172e082a 79unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 80unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 81
da84d961
IM
82const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
83
a7a4f8a7
PT
84/*
85 * The exponential sliding window over which load is averaged for shares
86 * distribution.
87 * (default: 10msec)
88 */
89unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
90
a4c2f00f
PZ
91static const struct sched_class fair_sched_class;
92
bf0f6f24
IM
93/**************************************************************
94 * CFS operations on generic schedulable entities:
95 */
96
62160e3f 97#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 98
62160e3f 99/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
100static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
101{
62160e3f 102 return cfs_rq->rq;
bf0f6f24
IM
103}
104
62160e3f
IM
105/* An entity is a task if it doesn't "own" a runqueue */
106#define entity_is_task(se) (!se->my_q)
bf0f6f24 107
8f48894f
PZ
108static inline struct task_struct *task_of(struct sched_entity *se)
109{
110#ifdef CONFIG_SCHED_DEBUG
111 WARN_ON_ONCE(!entity_is_task(se));
112#endif
113 return container_of(se, struct task_struct, se);
114}
115
b758149c
PZ
116/* Walk up scheduling entities hierarchy */
117#define for_each_sched_entity(se) \
118 for (; se; se = se->parent)
119
120static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
121{
122 return p->se.cfs_rq;
123}
124
125/* runqueue on which this entity is (to be) queued */
126static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
127{
128 return se->cfs_rq;
129}
130
131/* runqueue "owned" by this group */
132static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
133{
134 return grp->my_q;
135}
136
137/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
138 * another cpu ('this_cpu')
139 */
140static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
141{
142 return cfs_rq->tg->cfs_rq[this_cpu];
143}
144
3d4b47b4
PZ
145static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
146{
147 if (!cfs_rq->on_list) {
67e86250
PT
148 /*
149 * Ensure we either appear before our parent (if already
150 * enqueued) or force our parent to appear after us when it is
151 * enqueued. The fact that we always enqueue bottom-up
152 * reduces this to two cases.
153 */
154 if (cfs_rq->tg->parent &&
155 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
156 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
157 &rq_of(cfs_rq)->leaf_cfs_rq_list);
158 } else {
159 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 160 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 161 }
3d4b47b4
PZ
162
163 cfs_rq->on_list = 1;
164 }
165}
166
167static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
168{
169 if (cfs_rq->on_list) {
170 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
171 cfs_rq->on_list = 0;
172 }
173}
174
b758149c
PZ
175/* Iterate thr' all leaf cfs_rq's on a runqueue */
176#define for_each_leaf_cfs_rq(rq, cfs_rq) \
177 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
178
179/* Do the two (enqueued) entities belong to the same group ? */
180static inline int
181is_same_group(struct sched_entity *se, struct sched_entity *pse)
182{
183 if (se->cfs_rq == pse->cfs_rq)
184 return 1;
185
186 return 0;
187}
188
189static inline struct sched_entity *parent_entity(struct sched_entity *se)
190{
191 return se->parent;
192}
193
464b7527
PZ
194/* return depth at which a sched entity is present in the hierarchy */
195static inline int depth_se(struct sched_entity *se)
196{
197 int depth = 0;
198
199 for_each_sched_entity(se)
200 depth++;
201
202 return depth;
203}
204
205static void
206find_matching_se(struct sched_entity **se, struct sched_entity **pse)
207{
208 int se_depth, pse_depth;
209
210 /*
211 * preemption test can be made between sibling entities who are in the
212 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
213 * both tasks until we find their ancestors who are siblings of common
214 * parent.
215 */
216
217 /* First walk up until both entities are at same depth */
218 se_depth = depth_se(*se);
219 pse_depth = depth_se(*pse);
220
221 while (se_depth > pse_depth) {
222 se_depth--;
223 *se = parent_entity(*se);
224 }
225
226 while (pse_depth > se_depth) {
227 pse_depth--;
228 *pse = parent_entity(*pse);
229 }
230
231 while (!is_same_group(*se, *pse)) {
232 *se = parent_entity(*se);
233 *pse = parent_entity(*pse);
234 }
235}
236
8f48894f
PZ
237#else /* !CONFIG_FAIR_GROUP_SCHED */
238
239static inline struct task_struct *task_of(struct sched_entity *se)
240{
241 return container_of(se, struct task_struct, se);
242}
bf0f6f24 243
62160e3f
IM
244static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
245{
246 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
247}
248
249#define entity_is_task(se) 1
250
b758149c
PZ
251#define for_each_sched_entity(se) \
252 for (; se; se = NULL)
bf0f6f24 253
b758149c 254static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 255{
b758149c 256 return &task_rq(p)->cfs;
bf0f6f24
IM
257}
258
b758149c
PZ
259static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
260{
261 struct task_struct *p = task_of(se);
262 struct rq *rq = task_rq(p);
263
264 return &rq->cfs;
265}
266
267/* runqueue "owned" by this group */
268static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
269{
270 return NULL;
271}
272
273static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
274{
275 return &cpu_rq(this_cpu)->cfs;
276}
277
3d4b47b4
PZ
278static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
279{
280}
281
282static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
283{
284}
285
b758149c
PZ
286#define for_each_leaf_cfs_rq(rq, cfs_rq) \
287 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
288
289static inline int
290is_same_group(struct sched_entity *se, struct sched_entity *pse)
291{
292 return 1;
293}
294
295static inline struct sched_entity *parent_entity(struct sched_entity *se)
296{
297 return NULL;
298}
299
464b7527
PZ
300static inline void
301find_matching_se(struct sched_entity **se, struct sched_entity **pse)
302{
303}
304
b758149c
PZ
305#endif /* CONFIG_FAIR_GROUP_SCHED */
306
bf0f6f24
IM
307
308/**************************************************************
309 * Scheduling class tree data structure manipulation methods:
310 */
311
0702e3eb 312static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 313{
368059a9
PZ
314 s64 delta = (s64)(vruntime - min_vruntime);
315 if (delta > 0)
02e0431a
PZ
316 min_vruntime = vruntime;
317
318 return min_vruntime;
319}
320
0702e3eb 321static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
322{
323 s64 delta = (s64)(vruntime - min_vruntime);
324 if (delta < 0)
325 min_vruntime = vruntime;
326
327 return min_vruntime;
328}
329
54fdc581
FC
330static inline int entity_before(struct sched_entity *a,
331 struct sched_entity *b)
332{
333 return (s64)(a->vruntime - b->vruntime) < 0;
334}
335
0702e3eb 336static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 337{
30cfdcfc 338 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
339}
340
1af5f730
PZ
341static void update_min_vruntime(struct cfs_rq *cfs_rq)
342{
343 u64 vruntime = cfs_rq->min_vruntime;
344
345 if (cfs_rq->curr)
346 vruntime = cfs_rq->curr->vruntime;
347
348 if (cfs_rq->rb_leftmost) {
349 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
350 struct sched_entity,
351 run_node);
352
e17036da 353 if (!cfs_rq->curr)
1af5f730
PZ
354 vruntime = se->vruntime;
355 else
356 vruntime = min_vruntime(vruntime, se->vruntime);
357 }
358
359 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
360}
361
bf0f6f24
IM
362/*
363 * Enqueue an entity into the rb-tree:
364 */
0702e3eb 365static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
366{
367 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
368 struct rb_node *parent = NULL;
369 struct sched_entity *entry;
9014623c 370 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
371 int leftmost = 1;
372
373 /*
374 * Find the right place in the rbtree:
375 */
376 while (*link) {
377 parent = *link;
378 entry = rb_entry(parent, struct sched_entity, run_node);
379 /*
380 * We dont care about collisions. Nodes with
381 * the same key stay together.
382 */
9014623c 383 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
384 link = &parent->rb_left;
385 } else {
386 link = &parent->rb_right;
387 leftmost = 0;
388 }
389 }
390
391 /*
392 * Maintain a cache of leftmost tree entries (it is frequently
393 * used):
394 */
1af5f730 395 if (leftmost)
57cb499d 396 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
397
398 rb_link_node(&se->run_node, parent, link);
399 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
400}
401
0702e3eb 402static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 403{
3fe69747
PZ
404 if (cfs_rq->rb_leftmost == &se->run_node) {
405 struct rb_node *next_node;
3fe69747
PZ
406
407 next_node = rb_next(&se->run_node);
408 cfs_rq->rb_leftmost = next_node;
3fe69747 409 }
e9acbff6 410
bf0f6f24 411 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
412}
413
ac53db59 414static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 415{
f4b6755f
PZ
416 struct rb_node *left = cfs_rq->rb_leftmost;
417
418 if (!left)
419 return NULL;
420
421 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
422}
423
ac53db59
RR
424static struct sched_entity *__pick_next_entity(struct sched_entity *se)
425{
426 struct rb_node *next = rb_next(&se->run_node);
427
428 if (!next)
429 return NULL;
430
431 return rb_entry(next, struct sched_entity, run_node);
432}
433
434#ifdef CONFIG_SCHED_DEBUG
f4b6755f 435static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 436{
7eee3e67 437 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 438
70eee74b
BS
439 if (!last)
440 return NULL;
7eee3e67
IM
441
442 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
443}
444
bf0f6f24
IM
445/**************************************************************
446 * Scheduling class statistics methods:
447 */
448
acb4a848 449int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 450 void __user *buffer, size_t *lenp,
b2be5e96
PZ
451 loff_t *ppos)
452{
8d65af78 453 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 454 int factor = get_update_sysctl_factor();
b2be5e96
PZ
455
456 if (ret || !write)
457 return ret;
458
459 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
460 sysctl_sched_min_granularity);
461
acb4a848
CE
462#define WRT_SYSCTL(name) \
463 (normalized_sysctl_##name = sysctl_##name / (factor))
464 WRT_SYSCTL(sched_min_granularity);
465 WRT_SYSCTL(sched_latency);
466 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
467#undef WRT_SYSCTL
468
b2be5e96
PZ
469 return 0;
470}
471#endif
647e7cac 472
a7be37ac 473/*
f9c0b095 474 * delta /= w
a7be37ac
PZ
475 */
476static inline unsigned long
477calc_delta_fair(unsigned long delta, struct sched_entity *se)
478{
f9c0b095
PZ
479 if (unlikely(se->load.weight != NICE_0_LOAD))
480 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
481
482 return delta;
483}
484
647e7cac
IM
485/*
486 * The idea is to set a period in which each task runs once.
487 *
488 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
489 * this period because otherwise the slices get too small.
490 *
491 * p = (nr <= nl) ? l : l*nr/nl
492 */
4d78e7b6
PZ
493static u64 __sched_period(unsigned long nr_running)
494{
495 u64 period = sysctl_sched_latency;
b2be5e96 496 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
497
498 if (unlikely(nr_running > nr_latency)) {
4bf0b771 499 period = sysctl_sched_min_granularity;
4d78e7b6 500 period *= nr_running;
4d78e7b6
PZ
501 }
502
503 return period;
504}
505
647e7cac
IM
506/*
507 * We calculate the wall-time slice from the period by taking a part
508 * proportional to the weight.
509 *
f9c0b095 510 * s = p*P[w/rw]
647e7cac 511 */
6d0f0ebd 512static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 513{
0a582440 514 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 515
0a582440 516 for_each_sched_entity(se) {
6272d68c 517 struct load_weight *load;
3104bf03 518 struct load_weight lw;
6272d68c
LM
519
520 cfs_rq = cfs_rq_of(se);
521 load = &cfs_rq->load;
f9c0b095 522
0a582440 523 if (unlikely(!se->on_rq)) {
3104bf03 524 lw = cfs_rq->load;
0a582440
MG
525
526 update_load_add(&lw, se->load.weight);
527 load = &lw;
528 }
529 slice = calc_delta_mine(slice, se->load.weight, load);
530 }
531 return slice;
bf0f6f24
IM
532}
533
647e7cac 534/*
ac884dec 535 * We calculate the vruntime slice of a to be inserted task
647e7cac 536 *
f9c0b095 537 * vs = s/w
647e7cac 538 */
f9c0b095 539static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 540{
f9c0b095 541 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
542}
543
d6b55918 544static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
6d5ab293 545static void update_cfs_shares(struct cfs_rq *cfs_rq);
3b3d190e 546
bf0f6f24
IM
547/*
548 * Update the current task's runtime statistics. Skip current tasks that
549 * are not in our scheduling class.
550 */
551static inline void
8ebc91d9
IM
552__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
553 unsigned long delta_exec)
bf0f6f24 554{
bbdba7c0 555 unsigned long delta_exec_weighted;
bf0f6f24 556
41acab88
LDM
557 schedstat_set(curr->statistics.exec_max,
558 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
559
560 curr->sum_exec_runtime += delta_exec;
7a62eabc 561 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 562 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 563
e9acbff6 564 curr->vruntime += delta_exec_weighted;
1af5f730 565 update_min_vruntime(cfs_rq);
3b3d190e 566
70caf8a6 567#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 568 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 569#endif
bf0f6f24
IM
570}
571
b7cc0896 572static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 573{
429d43bc 574 struct sched_entity *curr = cfs_rq->curr;
305e6835 575 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
576 unsigned long delta_exec;
577
578 if (unlikely(!curr))
579 return;
580
581 /*
582 * Get the amount of time the current task was running
583 * since the last time we changed load (this cannot
584 * overflow on 32 bits):
585 */
8ebc91d9 586 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
587 if (!delta_exec)
588 return;
bf0f6f24 589
8ebc91d9
IM
590 __update_curr(cfs_rq, curr, delta_exec);
591 curr->exec_start = now;
d842de87
SV
592
593 if (entity_is_task(curr)) {
594 struct task_struct *curtask = task_of(curr);
595
f977bb49 596 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 597 cpuacct_charge(curtask, delta_exec);
f06febc9 598 account_group_exec_runtime(curtask, delta_exec);
d842de87 599 }
bf0f6f24
IM
600}
601
602static inline void
5870db5b 603update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 604{
41acab88 605 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
606}
607
bf0f6f24
IM
608/*
609 * Task is being enqueued - update stats:
610 */
d2417e5a 611static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 612{
bf0f6f24
IM
613 /*
614 * Are we enqueueing a waiting task? (for current tasks
615 * a dequeue/enqueue event is a NOP)
616 */
429d43bc 617 if (se != cfs_rq->curr)
5870db5b 618 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
619}
620
bf0f6f24 621static void
9ef0a961 622update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 623{
41acab88
LDM
624 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
625 rq_of(cfs_rq)->clock - se->statistics.wait_start));
626 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
627 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
628 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
629#ifdef CONFIG_SCHEDSTATS
630 if (entity_is_task(se)) {
631 trace_sched_stat_wait(task_of(se),
41acab88 632 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
633 }
634#endif
41acab88 635 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
636}
637
638static inline void
19b6a2e3 639update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 640{
bf0f6f24
IM
641 /*
642 * Mark the end of the wait period if dequeueing a
643 * waiting task:
644 */
429d43bc 645 if (se != cfs_rq->curr)
9ef0a961 646 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
647}
648
649/*
650 * We are picking a new current task - update its stats:
651 */
652static inline void
79303e9e 653update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
654{
655 /*
656 * We are starting a new run period:
657 */
305e6835 658 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
659}
660
bf0f6f24
IM
661/**************************************************
662 * Scheduling class queueing methods:
663 */
664
c09595f6
PZ
665#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
666static void
667add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
668{
669 cfs_rq->task_weight += weight;
670}
671#else
672static inline void
673add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
674{
675}
676#endif
677
30cfdcfc
DA
678static void
679account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
680{
681 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
682 if (!parent_entity(se))
683 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 684 if (entity_is_task(se)) {
c09595f6 685 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
686 list_add(&se->group_node, &cfs_rq->tasks);
687 }
30cfdcfc 688 cfs_rq->nr_running++;
30cfdcfc
DA
689}
690
691static void
692account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
693{
694 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
695 if (!parent_entity(se))
696 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 697 if (entity_is_task(se)) {
c09595f6 698 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
699 list_del_init(&se->group_node);
700 }
30cfdcfc 701 cfs_rq->nr_running--;
30cfdcfc
DA
702}
703
3ff6dcac
YZ
704#ifdef CONFIG_FAIR_GROUP_SCHED
705# ifdef CONFIG_SMP
d6b55918
PT
706static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
707 int global_update)
708{
709 struct task_group *tg = cfs_rq->tg;
710 long load_avg;
711
712 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
713 load_avg -= cfs_rq->load_contribution;
714
715 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
716 atomic_add(load_avg, &tg->load_weight);
717 cfs_rq->load_contribution += load_avg;
718 }
719}
720
721static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 722{
a7a4f8a7 723 u64 period = sysctl_sched_shares_window;
2069dd75 724 u64 now, delta;
e33078ba 725 unsigned long load = cfs_rq->load.weight;
2069dd75 726
b815f196 727 if (cfs_rq->tg == &root_task_group)
2069dd75
PZ
728 return;
729
05ca62c6 730 now = rq_of(cfs_rq)->clock_task;
2069dd75
PZ
731 delta = now - cfs_rq->load_stamp;
732
e33078ba
PT
733 /* truncate load history at 4 idle periods */
734 if (cfs_rq->load_stamp > cfs_rq->load_last &&
735 now - cfs_rq->load_last > 4 * period) {
736 cfs_rq->load_period = 0;
737 cfs_rq->load_avg = 0;
f07333bf 738 delta = period - 1;
e33078ba
PT
739 }
740
2069dd75 741 cfs_rq->load_stamp = now;
3b3d190e 742 cfs_rq->load_unacc_exec_time = 0;
2069dd75 743 cfs_rq->load_period += delta;
e33078ba
PT
744 if (load) {
745 cfs_rq->load_last = now;
746 cfs_rq->load_avg += delta * load;
747 }
2069dd75 748
d6b55918
PT
749 /* consider updating load contribution on each fold or truncate */
750 if (global_update || cfs_rq->load_period > period
751 || !cfs_rq->load_period)
752 update_cfs_rq_load_contribution(cfs_rq, global_update);
753
2069dd75
PZ
754 while (cfs_rq->load_period > period) {
755 /*
756 * Inline assembly required to prevent the compiler
757 * optimising this loop into a divmod call.
758 * See __iter_div_u64_rem() for another example of this.
759 */
760 asm("" : "+rm" (cfs_rq->load_period));
761 cfs_rq->load_period /= 2;
762 cfs_rq->load_avg /= 2;
763 }
3d4b47b4 764
e33078ba
PT
765 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
766 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
767}
768
6d5ab293 769static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
770{
771 long load_weight, load, shares;
772
6d5ab293 773 load = cfs_rq->load.weight;
3ff6dcac
YZ
774
775 load_weight = atomic_read(&tg->load_weight);
3ff6dcac 776 load_weight += load;
6d5ab293 777 load_weight -= cfs_rq->load_contribution;
3ff6dcac
YZ
778
779 shares = (tg->shares * load);
780 if (load_weight)
781 shares /= load_weight;
782
783 if (shares < MIN_SHARES)
784 shares = MIN_SHARES;
785 if (shares > tg->shares)
786 shares = tg->shares;
787
788 return shares;
789}
790
791static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
792{
793 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
794 update_cfs_load(cfs_rq, 0);
6d5ab293 795 update_cfs_shares(cfs_rq);
3ff6dcac
YZ
796 }
797}
798# else /* CONFIG_SMP */
799static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
800{
801}
802
6d5ab293 803static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
804{
805 return tg->shares;
806}
807
808static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
809{
810}
811# endif /* CONFIG_SMP */
2069dd75
PZ
812static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
813 unsigned long weight)
814{
19e5eebb
PT
815 if (se->on_rq) {
816 /* commit outstanding execution time */
817 if (cfs_rq->curr == se)
818 update_curr(cfs_rq);
2069dd75 819 account_entity_dequeue(cfs_rq, se);
19e5eebb 820 }
2069dd75
PZ
821
822 update_load_set(&se->load, weight);
823
824 if (se->on_rq)
825 account_entity_enqueue(cfs_rq, se);
826}
827
6d5ab293 828static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
829{
830 struct task_group *tg;
831 struct sched_entity *se;
3ff6dcac 832 long shares;
2069dd75 833
2069dd75
PZ
834 tg = cfs_rq->tg;
835 se = tg->se[cpu_of(rq_of(cfs_rq))];
836 if (!se)
837 return;
3ff6dcac
YZ
838#ifndef CONFIG_SMP
839 if (likely(se->load.weight == tg->shares))
840 return;
841#endif
6d5ab293 842 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
843
844 reweight_entity(cfs_rq_of(se), se, shares);
845}
846#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 847static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
848{
849}
850
6d5ab293 851static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
852{
853}
43365bd7
PT
854
855static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
856{
857}
2069dd75
PZ
858#endif /* CONFIG_FAIR_GROUP_SCHED */
859
2396af69 860static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 861{
bf0f6f24 862#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
863 struct task_struct *tsk = NULL;
864
865 if (entity_is_task(se))
866 tsk = task_of(se);
867
41acab88
LDM
868 if (se->statistics.sleep_start) {
869 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
870
871 if ((s64)delta < 0)
872 delta = 0;
873
41acab88
LDM
874 if (unlikely(delta > se->statistics.sleep_max))
875 se->statistics.sleep_max = delta;
bf0f6f24 876
41acab88
LDM
877 se->statistics.sleep_start = 0;
878 se->statistics.sum_sleep_runtime += delta;
9745512c 879
768d0c27 880 if (tsk) {
e414314c 881 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
882 trace_sched_stat_sleep(tsk, delta);
883 }
bf0f6f24 884 }
41acab88
LDM
885 if (se->statistics.block_start) {
886 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
887
888 if ((s64)delta < 0)
889 delta = 0;
890
41acab88
LDM
891 if (unlikely(delta > se->statistics.block_max))
892 se->statistics.block_max = delta;
bf0f6f24 893
41acab88
LDM
894 se->statistics.block_start = 0;
895 se->statistics.sum_sleep_runtime += delta;
30084fbd 896
e414314c 897 if (tsk) {
8f0dfc34 898 if (tsk->in_iowait) {
41acab88
LDM
899 se->statistics.iowait_sum += delta;
900 se->statistics.iowait_count++;
768d0c27 901 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
902 }
903
e414314c
PZ
904 /*
905 * Blocking time is in units of nanosecs, so shift by
906 * 20 to get a milliseconds-range estimation of the
907 * amount of time that the task spent sleeping:
908 */
909 if (unlikely(prof_on == SLEEP_PROFILING)) {
910 profile_hits(SLEEP_PROFILING,
911 (void *)get_wchan(tsk),
912 delta >> 20);
913 }
914 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 915 }
bf0f6f24
IM
916 }
917#endif
918}
919
ddc97297
PZ
920static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
921{
922#ifdef CONFIG_SCHED_DEBUG
923 s64 d = se->vruntime - cfs_rq->min_vruntime;
924
925 if (d < 0)
926 d = -d;
927
928 if (d > 3*sysctl_sched_latency)
929 schedstat_inc(cfs_rq, nr_spread_over);
930#endif
931}
932
aeb73b04
PZ
933static void
934place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
935{
1af5f730 936 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 937
2cb8600e
PZ
938 /*
939 * The 'current' period is already promised to the current tasks,
940 * however the extra weight of the new task will slow them down a
941 * little, place the new task so that it fits in the slot that
942 * stays open at the end.
943 */
94dfb5e7 944 if (initial && sched_feat(START_DEBIT))
f9c0b095 945 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 946
a2e7a7eb 947 /* sleeps up to a single latency don't count. */
5ca9880c 948 if (!initial) {
a2e7a7eb 949 unsigned long thresh = sysctl_sched_latency;
a7be37ac 950
a2e7a7eb
MG
951 /*
952 * Halve their sleep time's effect, to allow
953 * for a gentler effect of sleepers:
954 */
955 if (sched_feat(GENTLE_FAIR_SLEEPERS))
956 thresh >>= 1;
51e0304c 957
a2e7a7eb 958 vruntime -= thresh;
aeb73b04
PZ
959 }
960
b5d9d734
MG
961 /* ensure we never gain time by being placed backwards. */
962 vruntime = max_vruntime(se->vruntime, vruntime);
963
67e9fb2a 964 se->vruntime = vruntime;
aeb73b04
PZ
965}
966
bf0f6f24 967static void
88ec22d3 968enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 969{
88ec22d3
PZ
970 /*
971 * Update the normalized vruntime before updating min_vruntime
972 * through callig update_curr().
973 */
371fd7e7 974 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
975 se->vruntime += cfs_rq->min_vruntime;
976
bf0f6f24 977 /*
a2a2d680 978 * Update run-time statistics of the 'current'.
bf0f6f24 979 */
b7cc0896 980 update_curr(cfs_rq);
d6b55918 981 update_cfs_load(cfs_rq, 0);
a992241d 982 account_entity_enqueue(cfs_rq, se);
6d5ab293 983 update_cfs_shares(cfs_rq);
bf0f6f24 984
88ec22d3 985 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 986 place_entity(cfs_rq, se, 0);
2396af69 987 enqueue_sleeper(cfs_rq, se);
e9acbff6 988 }
bf0f6f24 989
d2417e5a 990 update_stats_enqueue(cfs_rq, se);
ddc97297 991 check_spread(cfs_rq, se);
83b699ed
SV
992 if (se != cfs_rq->curr)
993 __enqueue_entity(cfs_rq, se);
2069dd75 994 se->on_rq = 1;
3d4b47b4
PZ
995
996 if (cfs_rq->nr_running == 1)
997 list_add_leaf_cfs_rq(cfs_rq);
bf0f6f24
IM
998}
999
2c13c919 1000static void __clear_buddies_last(struct sched_entity *se)
2002c695 1001{
2c13c919
RR
1002 for_each_sched_entity(se) {
1003 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1004 if (cfs_rq->last == se)
1005 cfs_rq->last = NULL;
1006 else
1007 break;
1008 }
1009}
2002c695 1010
2c13c919
RR
1011static void __clear_buddies_next(struct sched_entity *se)
1012{
1013 for_each_sched_entity(se) {
1014 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1015 if (cfs_rq->next == se)
1016 cfs_rq->next = NULL;
1017 else
1018 break;
1019 }
2002c695
PZ
1020}
1021
ac53db59
RR
1022static void __clear_buddies_skip(struct sched_entity *se)
1023{
1024 for_each_sched_entity(se) {
1025 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1026 if (cfs_rq->skip == se)
1027 cfs_rq->skip = NULL;
1028 else
1029 break;
1030 }
1031}
1032
a571bbea
PZ
1033static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1034{
2c13c919
RR
1035 if (cfs_rq->last == se)
1036 __clear_buddies_last(se);
1037
1038 if (cfs_rq->next == se)
1039 __clear_buddies_next(se);
ac53db59
RR
1040
1041 if (cfs_rq->skip == se)
1042 __clear_buddies_skip(se);
a571bbea
PZ
1043}
1044
bf0f6f24 1045static void
371fd7e7 1046dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1047{
a2a2d680
DA
1048 /*
1049 * Update run-time statistics of the 'current'.
1050 */
1051 update_curr(cfs_rq);
1052
19b6a2e3 1053 update_stats_dequeue(cfs_rq, se);
371fd7e7 1054 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1055#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1056 if (entity_is_task(se)) {
1057 struct task_struct *tsk = task_of(se);
1058
1059 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1060 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1061 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1062 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1063 }
db36cc7d 1064#endif
67e9fb2a
PZ
1065 }
1066
2002c695 1067 clear_buddies(cfs_rq, se);
4793241b 1068
83b699ed 1069 if (se != cfs_rq->curr)
30cfdcfc 1070 __dequeue_entity(cfs_rq, se);
2069dd75 1071 se->on_rq = 0;
d6b55918 1072 update_cfs_load(cfs_rq, 0);
30cfdcfc 1073 account_entity_dequeue(cfs_rq, se);
1af5f730 1074 update_min_vruntime(cfs_rq);
6d5ab293 1075 update_cfs_shares(cfs_rq);
88ec22d3
PZ
1076
1077 /*
1078 * Normalize the entity after updating the min_vruntime because the
1079 * update can refer to the ->curr item and we need to reflect this
1080 * movement in our normalized position.
1081 */
371fd7e7 1082 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1083 se->vruntime -= cfs_rq->min_vruntime;
bf0f6f24
IM
1084}
1085
1086/*
1087 * Preempt the current task with a newly woken task if needed:
1088 */
7c92e54f 1089static void
2e09bf55 1090check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1091{
11697830
PZ
1092 unsigned long ideal_runtime, delta_exec;
1093
6d0f0ebd 1094 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1095 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1096 if (delta_exec > ideal_runtime) {
bf0f6f24 1097 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1098 /*
1099 * The current task ran long enough, ensure it doesn't get
1100 * re-elected due to buddy favours.
1101 */
1102 clear_buddies(cfs_rq, curr);
f685ceac
MG
1103 return;
1104 }
1105
1106 /*
1107 * Ensure that a task that missed wakeup preemption by a
1108 * narrow margin doesn't have to wait for a full slice.
1109 * This also mitigates buddy induced latencies under load.
1110 */
1111 if (!sched_feat(WAKEUP_PREEMPT))
1112 return;
1113
1114 if (delta_exec < sysctl_sched_min_granularity)
1115 return;
1116
1117 if (cfs_rq->nr_running > 1) {
ac53db59 1118 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac
MG
1119 s64 delta = curr->vruntime - se->vruntime;
1120
d7d82944
MG
1121 if (delta < 0)
1122 return;
1123
f685ceac
MG
1124 if (delta > ideal_runtime)
1125 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5 1126 }
bf0f6f24
IM
1127}
1128
83b699ed 1129static void
8494f412 1130set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1131{
83b699ed
SV
1132 /* 'current' is not kept within the tree. */
1133 if (se->on_rq) {
1134 /*
1135 * Any task has to be enqueued before it get to execute on
1136 * a CPU. So account for the time it spent waiting on the
1137 * runqueue.
1138 */
1139 update_stats_wait_end(cfs_rq, se);
1140 __dequeue_entity(cfs_rq, se);
1141 }
1142
79303e9e 1143 update_stats_curr_start(cfs_rq, se);
429d43bc 1144 cfs_rq->curr = se;
eba1ed4b
IM
1145#ifdef CONFIG_SCHEDSTATS
1146 /*
1147 * Track our maximum slice length, if the CPU's load is at
1148 * least twice that of our own weight (i.e. dont track it
1149 * when there are only lesser-weight tasks around):
1150 */
495eca49 1151 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1152 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1153 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1154 }
1155#endif
4a55b450 1156 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1157}
1158
3f3a4904
PZ
1159static int
1160wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1161
ac53db59
RR
1162/*
1163 * Pick the next process, keeping these things in mind, in this order:
1164 * 1) keep things fair between processes/task groups
1165 * 2) pick the "next" process, since someone really wants that to run
1166 * 3) pick the "last" process, for cache locality
1167 * 4) do not run the "skip" process, if something else is available
1168 */
f4b6755f 1169static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1170{
ac53db59 1171 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1172 struct sched_entity *left = se;
f4b6755f 1173
ac53db59
RR
1174 /*
1175 * Avoid running the skip buddy, if running something else can
1176 * be done without getting too unfair.
1177 */
1178 if (cfs_rq->skip == se) {
1179 struct sched_entity *second = __pick_next_entity(se);
1180 if (second && wakeup_preempt_entity(second, left) < 1)
1181 se = second;
1182 }
aa2ac252 1183
f685ceac
MG
1184 /*
1185 * Prefer last buddy, try to return the CPU to a preempted task.
1186 */
1187 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1188 se = cfs_rq->last;
1189
ac53db59
RR
1190 /*
1191 * Someone really wants this to run. If it's not unfair, run it.
1192 */
1193 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1194 se = cfs_rq->next;
1195
f685ceac 1196 clear_buddies(cfs_rq, se);
4793241b
PZ
1197
1198 return se;
aa2ac252
PZ
1199}
1200
ab6cde26 1201static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1202{
1203 /*
1204 * If still on the runqueue then deactivate_task()
1205 * was not called and update_curr() has to be done:
1206 */
1207 if (prev->on_rq)
b7cc0896 1208 update_curr(cfs_rq);
bf0f6f24 1209
ddc97297 1210 check_spread(cfs_rq, prev);
30cfdcfc 1211 if (prev->on_rq) {
5870db5b 1212 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1213 /* Put 'current' back into the tree. */
1214 __enqueue_entity(cfs_rq, prev);
1215 }
429d43bc 1216 cfs_rq->curr = NULL;
bf0f6f24
IM
1217}
1218
8f4d37ec
PZ
1219static void
1220entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1221{
bf0f6f24 1222 /*
30cfdcfc 1223 * Update run-time statistics of the 'current'.
bf0f6f24 1224 */
30cfdcfc 1225 update_curr(cfs_rq);
bf0f6f24 1226
43365bd7
PT
1227 /*
1228 * Update share accounting for long-running entities.
1229 */
1230 update_entity_shares_tick(cfs_rq);
1231
8f4d37ec
PZ
1232#ifdef CONFIG_SCHED_HRTICK
1233 /*
1234 * queued ticks are scheduled to match the slice, so don't bother
1235 * validating it and just reschedule.
1236 */
983ed7a6
HH
1237 if (queued) {
1238 resched_task(rq_of(cfs_rq)->curr);
1239 return;
1240 }
8f4d37ec
PZ
1241 /*
1242 * don't let the period tick interfere with the hrtick preemption
1243 */
1244 if (!sched_feat(DOUBLE_TICK) &&
1245 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1246 return;
1247#endif
1248
ce6c1311 1249 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 1250 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1251}
1252
1253/**************************************************
1254 * CFS operations on tasks:
1255 */
1256
8f4d37ec
PZ
1257#ifdef CONFIG_SCHED_HRTICK
1258static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1259{
8f4d37ec
PZ
1260 struct sched_entity *se = &p->se;
1261 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1262
1263 WARN_ON(task_rq(p) != rq);
1264
1265 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1266 u64 slice = sched_slice(cfs_rq, se);
1267 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1268 s64 delta = slice - ran;
1269
1270 if (delta < 0) {
1271 if (rq->curr == p)
1272 resched_task(p);
1273 return;
1274 }
1275
1276 /*
1277 * Don't schedule slices shorter than 10000ns, that just
1278 * doesn't make sense. Rely on vruntime for fairness.
1279 */
31656519 1280 if (rq->curr != p)
157124c1 1281 delta = max_t(s64, 10000LL, delta);
8f4d37ec 1282
31656519 1283 hrtick_start(rq, delta);
8f4d37ec
PZ
1284 }
1285}
a4c2f00f
PZ
1286
1287/*
1288 * called from enqueue/dequeue and updates the hrtick when the
1289 * current task is from our class and nr_running is low enough
1290 * to matter.
1291 */
1292static void hrtick_update(struct rq *rq)
1293{
1294 struct task_struct *curr = rq->curr;
1295
1296 if (curr->sched_class != &fair_sched_class)
1297 return;
1298
1299 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1300 hrtick_start_fair(rq, curr);
1301}
55e12e5e 1302#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1303static inline void
1304hrtick_start_fair(struct rq *rq, struct task_struct *p)
1305{
1306}
a4c2f00f
PZ
1307
1308static inline void hrtick_update(struct rq *rq)
1309{
1310}
8f4d37ec
PZ
1311#endif
1312
bf0f6f24
IM
1313/*
1314 * The enqueue_task method is called before nr_running is
1315 * increased. Here we update the fair scheduling stats and
1316 * then put the task into the rbtree:
1317 */
ea87bb78 1318static void
371fd7e7 1319enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1320{
1321 struct cfs_rq *cfs_rq;
62fb1851 1322 struct sched_entity *se = &p->se;
bf0f6f24
IM
1323
1324 for_each_sched_entity(se) {
62fb1851 1325 if (se->on_rq)
bf0f6f24
IM
1326 break;
1327 cfs_rq = cfs_rq_of(se);
88ec22d3
PZ
1328 enqueue_entity(cfs_rq, se, flags);
1329 flags = ENQUEUE_WAKEUP;
bf0f6f24 1330 }
8f4d37ec 1331
2069dd75
PZ
1332 for_each_sched_entity(se) {
1333 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1334
d6b55918 1335 update_cfs_load(cfs_rq, 0);
6d5ab293 1336 update_cfs_shares(cfs_rq);
2069dd75
PZ
1337 }
1338
a4c2f00f 1339 hrtick_update(rq);
bf0f6f24
IM
1340}
1341
1342/*
1343 * The dequeue_task method is called before nr_running is
1344 * decreased. We remove the task from the rbtree and
1345 * update the fair scheduling stats:
1346 */
371fd7e7 1347static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1348{
1349 struct cfs_rq *cfs_rq;
62fb1851 1350 struct sched_entity *se = &p->se;
bf0f6f24
IM
1351
1352 for_each_sched_entity(se) {
1353 cfs_rq = cfs_rq_of(se);
371fd7e7 1354 dequeue_entity(cfs_rq, se, flags);
2069dd75 1355
bf0f6f24 1356 /* Don't dequeue parent if it has other entities besides us */
62fb1851 1357 if (cfs_rq->load.weight)
bf0f6f24 1358 break;
371fd7e7 1359 flags |= DEQUEUE_SLEEP;
bf0f6f24 1360 }
8f4d37ec 1361
2069dd75
PZ
1362 for_each_sched_entity(se) {
1363 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1364
d6b55918 1365 update_cfs_load(cfs_rq, 0);
6d5ab293 1366 update_cfs_shares(cfs_rq);
2069dd75
PZ
1367 }
1368
a4c2f00f 1369 hrtick_update(rq);
bf0f6f24
IM
1370}
1371
e7693a36 1372#ifdef CONFIG_SMP
098fb9db 1373
88ec22d3
PZ
1374static void task_waking_fair(struct rq *rq, struct task_struct *p)
1375{
1376 struct sched_entity *se = &p->se;
1377 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1378
1379 se->vruntime -= cfs_rq->min_vruntime;
1380}
1381
bb3469ac 1382#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1383/*
1384 * effective_load() calculates the load change as seen from the root_task_group
1385 *
1386 * Adding load to a group doesn't make a group heavier, but can cause movement
1387 * of group shares between cpus. Assuming the shares were perfectly aligned one
1388 * can calculate the shift in shares.
f5bfb7d9 1389 */
2069dd75 1390static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 1391{
4be9daaa 1392 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1393
1394 if (!tg->parent)
1395 return wl;
1396
4be9daaa 1397 for_each_sched_entity(se) {
977dda7c 1398 long lw, w;
4be9daaa 1399
977dda7c
PT
1400 tg = se->my_q->tg;
1401 w = se->my_q->load.weight;
bb3469ac 1402
977dda7c
PT
1403 /* use this cpu's instantaneous contribution */
1404 lw = atomic_read(&tg->load_weight);
1405 lw -= se->my_q->load_contribution;
1406 lw += w + wg;
4be9daaa 1407
977dda7c 1408 wl += w;
940959e9 1409
977dda7c
PT
1410 if (lw > 0 && wl < lw)
1411 wl = (wl * tg->shares) / lw;
1412 else
1413 wl = tg->shares;
940959e9 1414
977dda7c
PT
1415 /* zero point is MIN_SHARES */
1416 if (wl < MIN_SHARES)
1417 wl = MIN_SHARES;
1418 wl -= se->load.weight;
4be9daaa 1419 wg = 0;
4be9daaa 1420 }
bb3469ac 1421
4be9daaa 1422 return wl;
bb3469ac 1423}
4be9daaa 1424
bb3469ac 1425#else
4be9daaa 1426
83378269
PZ
1427static inline unsigned long effective_load(struct task_group *tg, int cpu,
1428 unsigned long wl, unsigned long wg)
4be9daaa 1429{
83378269 1430 return wl;
bb3469ac 1431}
4be9daaa 1432
bb3469ac
PZ
1433#endif
1434
c88d5910 1435static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1436{
e37b6a7b 1437 s64 this_load, load;
c88d5910 1438 int idx, this_cpu, prev_cpu;
098fb9db 1439 unsigned long tl_per_task;
c88d5910 1440 struct task_group *tg;
83378269 1441 unsigned long weight;
b3137bc8 1442 int balanced;
098fb9db 1443
c88d5910
PZ
1444 idx = sd->wake_idx;
1445 this_cpu = smp_processor_id();
1446 prev_cpu = task_cpu(p);
1447 load = source_load(prev_cpu, idx);
1448 this_load = target_load(this_cpu, idx);
098fb9db 1449
b3137bc8
MG
1450 /*
1451 * If sync wakeup then subtract the (maximum possible)
1452 * effect of the currently running task from the load
1453 * of the current CPU:
1454 */
f3b577de 1455 rcu_read_lock();
83378269
PZ
1456 if (sync) {
1457 tg = task_group(current);
1458 weight = current->se.load.weight;
1459
c88d5910 1460 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1461 load += effective_load(tg, prev_cpu, 0, -weight);
1462 }
b3137bc8 1463
83378269
PZ
1464 tg = task_group(p);
1465 weight = p->se.load.weight;
b3137bc8 1466
71a29aa7
PZ
1467 /*
1468 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
1469 * due to the sync cause above having dropped this_load to 0, we'll
1470 * always have an imbalance, but there's really nothing you can do
1471 * about that, so that's good too.
71a29aa7
PZ
1472 *
1473 * Otherwise check if either cpus are near enough in load to allow this
1474 * task to be woken on this_cpu.
1475 */
e37b6a7b
PT
1476 if (this_load > 0) {
1477 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
1478
1479 this_eff_load = 100;
1480 this_eff_load *= power_of(prev_cpu);
1481 this_eff_load *= this_load +
1482 effective_load(tg, this_cpu, weight, weight);
1483
1484 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1485 prev_eff_load *= power_of(this_cpu);
1486 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1487
1488 balanced = this_eff_load <= prev_eff_load;
1489 } else
1490 balanced = true;
f3b577de 1491 rcu_read_unlock();
b3137bc8 1492
098fb9db 1493 /*
4ae7d5ce
IM
1494 * If the currently running task will sleep within
1495 * a reasonable amount of time then attract this newly
1496 * woken task:
098fb9db 1497 */
2fb7635c
PZ
1498 if (sync && balanced)
1499 return 1;
098fb9db 1500
41acab88 1501 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
1502 tl_per_task = cpu_avg_load_per_task(this_cpu);
1503
c88d5910
PZ
1504 if (balanced ||
1505 (this_load <= load &&
1506 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
1507 /*
1508 * This domain has SD_WAKE_AFFINE and
1509 * p is cache cold in this domain, and
1510 * there is no bad imbalance.
1511 */
c88d5910 1512 schedstat_inc(sd, ttwu_move_affine);
41acab88 1513 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
1514
1515 return 1;
1516 }
1517 return 0;
1518}
1519
aaee1203
PZ
1520/*
1521 * find_idlest_group finds and returns the least busy CPU group within the
1522 * domain.
1523 */
1524static struct sched_group *
78e7ed53 1525find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 1526 int this_cpu, int load_idx)
e7693a36 1527{
b3bd3de6 1528 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 1529 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 1530 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 1531
aaee1203
PZ
1532 do {
1533 unsigned long load, avg_load;
1534 int local_group;
1535 int i;
e7693a36 1536
aaee1203
PZ
1537 /* Skip over this group if it has no CPUs allowed */
1538 if (!cpumask_intersects(sched_group_cpus(group),
1539 &p->cpus_allowed))
1540 continue;
1541
1542 local_group = cpumask_test_cpu(this_cpu,
1543 sched_group_cpus(group));
1544
1545 /* Tally up the load of all CPUs in the group */
1546 avg_load = 0;
1547
1548 for_each_cpu(i, sched_group_cpus(group)) {
1549 /* Bias balancing toward cpus of our domain */
1550 if (local_group)
1551 load = source_load(i, load_idx);
1552 else
1553 load = target_load(i, load_idx);
1554
1555 avg_load += load;
1556 }
1557
1558 /* Adjust by relative CPU power of the group */
1559 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1560
1561 if (local_group) {
1562 this_load = avg_load;
aaee1203
PZ
1563 } else if (avg_load < min_load) {
1564 min_load = avg_load;
1565 idlest = group;
1566 }
1567 } while (group = group->next, group != sd->groups);
1568
1569 if (!idlest || 100*this_load < imbalance*min_load)
1570 return NULL;
1571 return idlest;
1572}
1573
1574/*
1575 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1576 */
1577static int
1578find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1579{
1580 unsigned long load, min_load = ULONG_MAX;
1581 int idlest = -1;
1582 int i;
1583
1584 /* Traverse only the allowed CPUs */
1585 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1586 load = weighted_cpuload(i);
1587
1588 if (load < min_load || (load == min_load && i == this_cpu)) {
1589 min_load = load;
1590 idlest = i;
e7693a36
GH
1591 }
1592 }
1593
aaee1203
PZ
1594 return idlest;
1595}
e7693a36 1596
a50bde51
PZ
1597/*
1598 * Try and locate an idle CPU in the sched_domain.
1599 */
99bd5e2f 1600static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
1601{
1602 int cpu = smp_processor_id();
1603 int prev_cpu = task_cpu(p);
99bd5e2f 1604 struct sched_domain *sd;
a50bde51
PZ
1605 int i;
1606
1607 /*
99bd5e2f
SS
1608 * If the task is going to be woken-up on this cpu and if it is
1609 * already idle, then it is the right target.
a50bde51 1610 */
99bd5e2f
SS
1611 if (target == cpu && idle_cpu(cpu))
1612 return cpu;
1613
1614 /*
1615 * If the task is going to be woken-up on the cpu where it previously
1616 * ran and if it is currently idle, then it the right target.
1617 */
1618 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 1619 return prev_cpu;
a50bde51
PZ
1620
1621 /*
99bd5e2f 1622 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 1623 */
99bd5e2f
SS
1624 for_each_domain(target, sd) {
1625 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
fe3bcfe1 1626 break;
99bd5e2f
SS
1627
1628 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1629 if (idle_cpu(i)) {
1630 target = i;
1631 break;
1632 }
a50bde51 1633 }
99bd5e2f
SS
1634
1635 /*
1636 * Lets stop looking for an idle sibling when we reached
1637 * the domain that spans the current cpu and prev_cpu.
1638 */
1639 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1640 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1641 break;
a50bde51
PZ
1642 }
1643
1644 return target;
1645}
1646
aaee1203
PZ
1647/*
1648 * sched_balance_self: balance the current task (running on cpu) in domains
1649 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1650 * SD_BALANCE_EXEC.
1651 *
1652 * Balance, ie. select the least loaded group.
1653 *
1654 * Returns the target CPU number, or the same CPU if no balancing is needed.
1655 *
1656 * preempt must be disabled.
1657 */
0017d735
PZ
1658static int
1659select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 1660{
29cd8bae 1661 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
1662 int cpu = smp_processor_id();
1663 int prev_cpu = task_cpu(p);
1664 int new_cpu = cpu;
99bd5e2f 1665 int want_affine = 0;
29cd8bae 1666 int want_sd = 1;
5158f4e4 1667 int sync = wake_flags & WF_SYNC;
c88d5910 1668
0763a660 1669 if (sd_flag & SD_BALANCE_WAKE) {
beac4c7e 1670 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
c88d5910
PZ
1671 want_affine = 1;
1672 new_cpu = prev_cpu;
1673 }
aaee1203
PZ
1674
1675 for_each_domain(cpu, tmp) {
e4f42888
PZ
1676 if (!(tmp->flags & SD_LOAD_BALANCE))
1677 continue;
1678
aaee1203 1679 /*
ae154be1
PZ
1680 * If power savings logic is enabled for a domain, see if we
1681 * are not overloaded, if so, don't balance wider.
aaee1203 1682 */
59abf026 1683 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
1684 unsigned long power = 0;
1685 unsigned long nr_running = 0;
1686 unsigned long capacity;
1687 int i;
1688
1689 for_each_cpu(i, sched_domain_span(tmp)) {
1690 power += power_of(i);
1691 nr_running += cpu_rq(i)->cfs.nr_running;
1692 }
1693
1694 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1695
59abf026
PZ
1696 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1697 nr_running /= 2;
1698
1699 if (nr_running < capacity)
29cd8bae 1700 want_sd = 0;
ae154be1 1701 }
aaee1203 1702
fe3bcfe1 1703 /*
99bd5e2f
SS
1704 * If both cpu and prev_cpu are part of this domain,
1705 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 1706 */
99bd5e2f
SS
1707 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1708 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1709 affine_sd = tmp;
1710 want_affine = 0;
c88d5910
PZ
1711 }
1712
29cd8bae
PZ
1713 if (!want_sd && !want_affine)
1714 break;
1715
0763a660 1716 if (!(tmp->flags & sd_flag))
c88d5910
PZ
1717 continue;
1718
29cd8bae
PZ
1719 if (want_sd)
1720 sd = tmp;
1721 }
1722
8b911acd 1723 if (affine_sd) {
99bd5e2f
SS
1724 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1725 return select_idle_sibling(p, cpu);
1726 else
1727 return select_idle_sibling(p, prev_cpu);
8b911acd 1728 }
e7693a36 1729
aaee1203 1730 while (sd) {
5158f4e4 1731 int load_idx = sd->forkexec_idx;
aaee1203 1732 struct sched_group *group;
c88d5910 1733 int weight;
098fb9db 1734
0763a660 1735 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
1736 sd = sd->child;
1737 continue;
1738 }
098fb9db 1739
5158f4e4
PZ
1740 if (sd_flag & SD_BALANCE_WAKE)
1741 load_idx = sd->wake_idx;
098fb9db 1742
5158f4e4 1743 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
1744 if (!group) {
1745 sd = sd->child;
1746 continue;
1747 }
4ae7d5ce 1748
d7c33c49 1749 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
1750 if (new_cpu == -1 || new_cpu == cpu) {
1751 /* Now try balancing at a lower domain level of cpu */
1752 sd = sd->child;
1753 continue;
e7693a36 1754 }
aaee1203
PZ
1755
1756 /* Now try balancing at a lower domain level of new_cpu */
1757 cpu = new_cpu;
669c55e9 1758 weight = sd->span_weight;
aaee1203
PZ
1759 sd = NULL;
1760 for_each_domain(cpu, tmp) {
669c55e9 1761 if (weight <= tmp->span_weight)
aaee1203 1762 break;
0763a660 1763 if (tmp->flags & sd_flag)
aaee1203
PZ
1764 sd = tmp;
1765 }
1766 /* while loop will break here if sd == NULL */
e7693a36
GH
1767 }
1768
c88d5910 1769 return new_cpu;
e7693a36
GH
1770}
1771#endif /* CONFIG_SMP */
1772
e52fb7c0
PZ
1773static unsigned long
1774wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1775{
1776 unsigned long gran = sysctl_sched_wakeup_granularity;
1777
1778 /*
e52fb7c0
PZ
1779 * Since its curr running now, convert the gran from real-time
1780 * to virtual-time in his units.
13814d42
MG
1781 *
1782 * By using 'se' instead of 'curr' we penalize light tasks, so
1783 * they get preempted easier. That is, if 'se' < 'curr' then
1784 * the resulting gran will be larger, therefore penalizing the
1785 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1786 * be smaller, again penalizing the lighter task.
1787 *
1788 * This is especially important for buddies when the leftmost
1789 * task is higher priority than the buddy.
0bbd3336 1790 */
13814d42
MG
1791 if (unlikely(se->load.weight != NICE_0_LOAD))
1792 gran = calc_delta_fair(gran, se);
0bbd3336
PZ
1793
1794 return gran;
1795}
1796
464b7527
PZ
1797/*
1798 * Should 'se' preempt 'curr'.
1799 *
1800 * |s1
1801 * |s2
1802 * |s3
1803 * g
1804 * |<--->|c
1805 *
1806 * w(c, s1) = -1
1807 * w(c, s2) = 0
1808 * w(c, s3) = 1
1809 *
1810 */
1811static int
1812wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1813{
1814 s64 gran, vdiff = curr->vruntime - se->vruntime;
1815
1816 if (vdiff <= 0)
1817 return -1;
1818
e52fb7c0 1819 gran = wakeup_gran(curr, se);
464b7527
PZ
1820 if (vdiff > gran)
1821 return 1;
1822
1823 return 0;
1824}
1825
02479099
PZ
1826static void set_last_buddy(struct sched_entity *se)
1827{
6bc912b7
PZ
1828 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1829 for_each_sched_entity(se)
1830 cfs_rq_of(se)->last = se;
1831 }
02479099
PZ
1832}
1833
1834static void set_next_buddy(struct sched_entity *se)
1835{
6bc912b7
PZ
1836 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1837 for_each_sched_entity(se)
1838 cfs_rq_of(se)->next = se;
1839 }
02479099
PZ
1840}
1841
ac53db59
RR
1842static void set_skip_buddy(struct sched_entity *se)
1843{
1844 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1845 for_each_sched_entity(se)
1846 cfs_rq_of(se)->skip = se;
1847 }
1848}
1849
bf0f6f24
IM
1850/*
1851 * Preempt the current task with a newly woken task if needed:
1852 */
5a9b86f6 1853static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
1854{
1855 struct task_struct *curr = rq->curr;
8651a86c 1856 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1857 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 1858 int scale = cfs_rq->nr_running >= sched_nr_latency;
bf0f6f24 1859
4ae7d5ce
IM
1860 if (unlikely(se == pse))
1861 return;
1862
f685ceac 1863 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
3cb63d52 1864 set_next_buddy(pse);
57fdc26d 1865
aec0a514
BR
1866 /*
1867 * We can come here with TIF_NEED_RESCHED already set from new task
1868 * wake up path.
1869 */
1870 if (test_tsk_need_resched(curr))
1871 return;
1872
91c234b4 1873 /*
6bc912b7 1874 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1875 * the tick):
1876 */
6bc912b7 1877 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1878 return;
bf0f6f24 1879
6bc912b7 1880 /* Idle tasks are by definition preempted by everybody. */
3a7e73a2
PZ
1881 if (unlikely(curr->policy == SCHED_IDLE))
1882 goto preempt;
bf0f6f24 1883
ad4b78bb
PZ
1884 if (!sched_feat(WAKEUP_PREEMPT))
1885 return;
1886
3a7e73a2 1887 update_curr(cfs_rq);
464b7527 1888 find_matching_se(&se, &pse);
002f128b 1889 BUG_ON(!pse);
3a7e73a2
PZ
1890 if (wakeup_preempt_entity(se, pse) == 1)
1891 goto preempt;
464b7527 1892
3a7e73a2 1893 return;
a65ac745 1894
3a7e73a2
PZ
1895preempt:
1896 resched_task(curr);
1897 /*
1898 * Only set the backward buddy when the current task is still
1899 * on the rq. This can happen when a wakeup gets interleaved
1900 * with schedule on the ->pre_schedule() or idle_balance()
1901 * point, either of which can * drop the rq lock.
1902 *
1903 * Also, during early boot the idle thread is in the fair class,
1904 * for obvious reasons its a bad idea to schedule back to it.
1905 */
1906 if (unlikely(!se->on_rq || curr == rq->idle))
1907 return;
1908
1909 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1910 set_last_buddy(se);
bf0f6f24
IM
1911}
1912
fb8d4724 1913static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1914{
8f4d37ec 1915 struct task_struct *p;
bf0f6f24
IM
1916 struct cfs_rq *cfs_rq = &rq->cfs;
1917 struct sched_entity *se;
1918
36ace27e 1919 if (!cfs_rq->nr_running)
bf0f6f24
IM
1920 return NULL;
1921
1922 do {
9948f4b2 1923 se = pick_next_entity(cfs_rq);
f4b6755f 1924 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1925 cfs_rq = group_cfs_rq(se);
1926 } while (cfs_rq);
1927
8f4d37ec
PZ
1928 p = task_of(se);
1929 hrtick_start_fair(rq, p);
1930
1931 return p;
bf0f6f24
IM
1932}
1933
1934/*
1935 * Account for a descheduled task:
1936 */
31ee529c 1937static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1938{
1939 struct sched_entity *se = &prev->se;
1940 struct cfs_rq *cfs_rq;
1941
1942 for_each_sched_entity(se) {
1943 cfs_rq = cfs_rq_of(se);
ab6cde26 1944 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1945 }
1946}
1947
ac53db59
RR
1948/*
1949 * sched_yield() is very simple
1950 *
1951 * The magic of dealing with the ->skip buddy is in pick_next_entity.
1952 */
1953static void yield_task_fair(struct rq *rq)
1954{
1955 struct task_struct *curr = rq->curr;
1956 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1957 struct sched_entity *se = &curr->se;
1958
1959 /*
1960 * Are we the only task in the tree?
1961 */
1962 if (unlikely(rq->nr_running == 1))
1963 return;
1964
1965 clear_buddies(cfs_rq, se);
1966
1967 if (curr->policy != SCHED_BATCH) {
1968 update_rq_clock(rq);
1969 /*
1970 * Update run-time statistics of the 'current'.
1971 */
1972 update_curr(cfs_rq);
1973 }
1974
1975 set_skip_buddy(se);
1976}
1977
d95f4122
MG
1978static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
1979{
1980 struct sched_entity *se = &p->se;
1981
1982 if (!se->on_rq)
1983 return false;
1984
1985 /* Tell the scheduler that we'd really like pse to run next. */
1986 set_next_buddy(se);
1987
1988 /* Make p's CPU reschedule; pick_next_entity takes care of fairness. */
1989 if (preempt)
1990 resched_task(rq->curr);
1991
1992 yield_task_fair(rq);
1993
1994 return true;
1995}
1996
681f3e68 1997#ifdef CONFIG_SMP
bf0f6f24
IM
1998/**************************************************
1999 * Fair scheduling class load-balancing methods:
2000 */
2001
1e3c88bd
PZ
2002/*
2003 * pull_task - move a task from a remote runqueue to the local runqueue.
2004 * Both runqueues must be locked.
2005 */
2006static void pull_task(struct rq *src_rq, struct task_struct *p,
2007 struct rq *this_rq, int this_cpu)
2008{
2009 deactivate_task(src_rq, p, 0);
2010 set_task_cpu(p, this_cpu);
2011 activate_task(this_rq, p, 0);
2012 check_preempt_curr(this_rq, p, 0);
2013}
2014
2015/*
2016 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2017 */
2018static
2019int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2020 struct sched_domain *sd, enum cpu_idle_type idle,
2021 int *all_pinned)
2022{
2023 int tsk_cache_hot = 0;
2024 /*
2025 * We do not migrate tasks that are:
2026 * 1) running (obviously), or
2027 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2028 * 3) are cache-hot on their current CPU.
2029 */
2030 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
41acab88 2031 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
2032 return 0;
2033 }
2034 *all_pinned = 0;
2035
2036 if (task_running(rq, p)) {
41acab88 2037 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
2038 return 0;
2039 }
2040
2041 /*
2042 * Aggressive migration if:
2043 * 1) task is cache cold, or
2044 * 2) too many balance attempts have failed.
2045 */
2046
305e6835 2047 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1e3c88bd
PZ
2048 if (!tsk_cache_hot ||
2049 sd->nr_balance_failed > sd->cache_nice_tries) {
2050#ifdef CONFIG_SCHEDSTATS
2051 if (tsk_cache_hot) {
2052 schedstat_inc(sd, lb_hot_gained[idle]);
41acab88 2053 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
2054 }
2055#endif
2056 return 1;
2057 }
2058
2059 if (tsk_cache_hot) {
41acab88 2060 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
2061 return 0;
2062 }
2063 return 1;
2064}
2065
897c395f
PZ
2066/*
2067 * move_one_task tries to move exactly one task from busiest to this_rq, as
2068 * part of active balancing operations within "domain".
2069 * Returns 1 if successful and 0 otherwise.
2070 *
2071 * Called with both runqueues locked.
2072 */
2073static int
2074move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2075 struct sched_domain *sd, enum cpu_idle_type idle)
2076{
2077 struct task_struct *p, *n;
2078 struct cfs_rq *cfs_rq;
2079 int pinned = 0;
2080
2081 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2082 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2083
2084 if (!can_migrate_task(p, busiest, this_cpu,
2085 sd, idle, &pinned))
2086 continue;
2087
2088 pull_task(busiest, p, this_rq, this_cpu);
2089 /*
2090 * Right now, this is only the second place pull_task()
2091 * is called, so we can safely collect pull_task()
2092 * stats here rather than inside pull_task().
2093 */
2094 schedstat_inc(sd, lb_gained[idle]);
2095 return 1;
2096 }
2097 }
2098
2099 return 0;
2100}
2101
1e3c88bd
PZ
2102static unsigned long
2103balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2104 unsigned long max_load_move, struct sched_domain *sd,
2105 enum cpu_idle_type idle, int *all_pinned,
ee00e66f 2106 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1e3c88bd
PZ
2107{
2108 int loops = 0, pulled = 0, pinned = 0;
1e3c88bd 2109 long rem_load_move = max_load_move;
ee00e66f 2110 struct task_struct *p, *n;
1e3c88bd
PZ
2111
2112 if (max_load_move == 0)
2113 goto out;
2114
2115 pinned = 1;
2116
ee00e66f
PZ
2117 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2118 if (loops++ > sysctl_sched_nr_migrate)
2119 break;
1e3c88bd 2120
ee00e66f
PZ
2121 if ((p->se.load.weight >> 1) > rem_load_move ||
2122 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
2123 continue;
1e3c88bd 2124
ee00e66f
PZ
2125 pull_task(busiest, p, this_rq, this_cpu);
2126 pulled++;
2127 rem_load_move -= p->se.load.weight;
1e3c88bd
PZ
2128
2129#ifdef CONFIG_PREEMPT
ee00e66f
PZ
2130 /*
2131 * NEWIDLE balancing is a source of latency, so preemptible
2132 * kernels will stop after the first task is pulled to minimize
2133 * the critical section.
2134 */
2135 if (idle == CPU_NEWLY_IDLE)
2136 break;
1e3c88bd
PZ
2137#endif
2138
ee00e66f
PZ
2139 /*
2140 * We only want to steal up to the prescribed amount of
2141 * weighted load.
2142 */
2143 if (rem_load_move <= 0)
2144 break;
2145
1e3c88bd
PZ
2146 if (p->prio < *this_best_prio)
2147 *this_best_prio = p->prio;
1e3c88bd
PZ
2148 }
2149out:
2150 /*
2151 * Right now, this is one of only two places pull_task() is called,
2152 * so we can safely collect pull_task() stats here rather than
2153 * inside pull_task().
2154 */
2155 schedstat_add(sd, lb_gained[idle], pulled);
2156
2157 if (all_pinned)
2158 *all_pinned = pinned;
2159
2160 return max_load_move - rem_load_move;
2161}
2162
230059de 2163#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
2164/*
2165 * update tg->load_weight by folding this cpu's load_avg
2166 */
67e86250 2167static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
2168{
2169 struct cfs_rq *cfs_rq;
2170 unsigned long flags;
2171 struct rq *rq;
9e3081ca
PZ
2172
2173 if (!tg->se[cpu])
2174 return 0;
2175
2176 rq = cpu_rq(cpu);
2177 cfs_rq = tg->cfs_rq[cpu];
2178
2179 raw_spin_lock_irqsave(&rq->lock, flags);
2180
2181 update_rq_clock(rq);
d6b55918 2182 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
2183
2184 /*
2185 * We need to update shares after updating tg->load_weight in
2186 * order to adjust the weight of groups with long running tasks.
2187 */
6d5ab293 2188 update_cfs_shares(cfs_rq);
9e3081ca
PZ
2189
2190 raw_spin_unlock_irqrestore(&rq->lock, flags);
2191
2192 return 0;
2193}
2194
2195static void update_shares(int cpu)
2196{
2197 struct cfs_rq *cfs_rq;
2198 struct rq *rq = cpu_rq(cpu);
2199
2200 rcu_read_lock();
67e86250
PT
2201 for_each_leaf_cfs_rq(rq, cfs_rq)
2202 update_shares_cpu(cfs_rq->tg, cpu);
9e3081ca
PZ
2203 rcu_read_unlock();
2204}
2205
230059de
PZ
2206static unsigned long
2207load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2208 unsigned long max_load_move,
2209 struct sched_domain *sd, enum cpu_idle_type idle,
2210 int *all_pinned, int *this_best_prio)
2211{
2212 long rem_load_move = max_load_move;
2213 int busiest_cpu = cpu_of(busiest);
2214 struct task_group *tg;
2215
2216 rcu_read_lock();
2217 update_h_load(busiest_cpu);
2218
2219 list_for_each_entry_rcu(tg, &task_groups, list) {
2220 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
2221 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2222 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2223 u64 rem_load, moved_load;
2224
2225 /*
2226 * empty group
2227 */
2228 if (!busiest_cfs_rq->task_weight)
2229 continue;
2230
2231 rem_load = (u64)rem_load_move * busiest_weight;
2232 rem_load = div_u64(rem_load, busiest_h_load + 1);
2233
2234 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2235 rem_load, sd, idle, all_pinned, this_best_prio,
2236 busiest_cfs_rq);
2237
2238 if (!moved_load)
2239 continue;
2240
2241 moved_load *= busiest_h_load;
2242 moved_load = div_u64(moved_load, busiest_weight + 1);
2243
2244 rem_load_move -= moved_load;
2245 if (rem_load_move < 0)
2246 break;
2247 }
2248 rcu_read_unlock();
2249
2250 return max_load_move - rem_load_move;
2251}
2252#else
9e3081ca
PZ
2253static inline void update_shares(int cpu)
2254{
2255}
2256
230059de
PZ
2257static unsigned long
2258load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2259 unsigned long max_load_move,
2260 struct sched_domain *sd, enum cpu_idle_type idle,
2261 int *all_pinned, int *this_best_prio)
2262{
2263 return balance_tasks(this_rq, this_cpu, busiest,
2264 max_load_move, sd, idle, all_pinned,
2265 this_best_prio, &busiest->cfs);
2266}
2267#endif
2268
1e3c88bd
PZ
2269/*
2270 * move_tasks tries to move up to max_load_move weighted load from busiest to
2271 * this_rq, as part of a balancing operation within domain "sd".
2272 * Returns 1 if successful and 0 otherwise.
2273 *
2274 * Called with both runqueues locked.
2275 */
2276static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2277 unsigned long max_load_move,
2278 struct sched_domain *sd, enum cpu_idle_type idle,
2279 int *all_pinned)
2280{
3d45fd80 2281 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
2282 int this_best_prio = this_rq->curr->prio;
2283
2284 do {
3d45fd80 2285 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd
PZ
2286 max_load_move - total_load_moved,
2287 sd, idle, all_pinned, &this_best_prio);
3d45fd80
PZ
2288
2289 total_load_moved += load_moved;
1e3c88bd
PZ
2290
2291#ifdef CONFIG_PREEMPT
2292 /*
2293 * NEWIDLE balancing is a source of latency, so preemptible
2294 * kernels will stop after the first task is pulled to minimize
2295 * the critical section.
2296 */
2297 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2298 break;
baa8c110
PZ
2299
2300 if (raw_spin_is_contended(&this_rq->lock) ||
2301 raw_spin_is_contended(&busiest->lock))
2302 break;
1e3c88bd 2303#endif
3d45fd80 2304 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
2305
2306 return total_load_moved > 0;
2307}
2308
1e3c88bd
PZ
2309/********** Helpers for find_busiest_group ************************/
2310/*
2311 * sd_lb_stats - Structure to store the statistics of a sched_domain
2312 * during load balancing.
2313 */
2314struct sd_lb_stats {
2315 struct sched_group *busiest; /* Busiest group in this sd */
2316 struct sched_group *this; /* Local group in this sd */
2317 unsigned long total_load; /* Total load of all groups in sd */
2318 unsigned long total_pwr; /* Total power of all groups in sd */
2319 unsigned long avg_load; /* Average load across all groups in sd */
2320
2321 /** Statistics of this group */
2322 unsigned long this_load;
2323 unsigned long this_load_per_task;
2324 unsigned long this_nr_running;
fab47622 2325 unsigned long this_has_capacity;
aae6d3dd 2326 unsigned int this_idle_cpus;
1e3c88bd
PZ
2327
2328 /* Statistics of the busiest group */
aae6d3dd 2329 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
2330 unsigned long max_load;
2331 unsigned long busiest_load_per_task;
2332 unsigned long busiest_nr_running;
dd5feea1 2333 unsigned long busiest_group_capacity;
fab47622 2334 unsigned long busiest_has_capacity;
aae6d3dd 2335 unsigned int busiest_group_weight;
1e3c88bd
PZ
2336
2337 int group_imb; /* Is there imbalance in this sd */
2338#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2339 int power_savings_balance; /* Is powersave balance needed for this sd */
2340 struct sched_group *group_min; /* Least loaded group in sd */
2341 struct sched_group *group_leader; /* Group which relieves group_min */
2342 unsigned long min_load_per_task; /* load_per_task in group_min */
2343 unsigned long leader_nr_running; /* Nr running of group_leader */
2344 unsigned long min_nr_running; /* Nr running of group_min */
2345#endif
2346};
2347
2348/*
2349 * sg_lb_stats - stats of a sched_group required for load_balancing
2350 */
2351struct sg_lb_stats {
2352 unsigned long avg_load; /*Avg load across the CPUs of the group */
2353 unsigned long group_load; /* Total load over the CPUs of the group */
2354 unsigned long sum_nr_running; /* Nr tasks running in the group */
2355 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2356 unsigned long group_capacity;
aae6d3dd
SS
2357 unsigned long idle_cpus;
2358 unsigned long group_weight;
1e3c88bd 2359 int group_imb; /* Is there an imbalance in the group ? */
fab47622 2360 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
2361};
2362
2363/**
2364 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2365 * @group: The group whose first cpu is to be returned.
2366 */
2367static inline unsigned int group_first_cpu(struct sched_group *group)
2368{
2369 return cpumask_first(sched_group_cpus(group));
2370}
2371
2372/**
2373 * get_sd_load_idx - Obtain the load index for a given sched domain.
2374 * @sd: The sched_domain whose load_idx is to be obtained.
2375 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2376 */
2377static inline int get_sd_load_idx(struct sched_domain *sd,
2378 enum cpu_idle_type idle)
2379{
2380 int load_idx;
2381
2382 switch (idle) {
2383 case CPU_NOT_IDLE:
2384 load_idx = sd->busy_idx;
2385 break;
2386
2387 case CPU_NEWLY_IDLE:
2388 load_idx = sd->newidle_idx;
2389 break;
2390 default:
2391 load_idx = sd->idle_idx;
2392 break;
2393 }
2394
2395 return load_idx;
2396}
2397
2398
2399#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2400/**
2401 * init_sd_power_savings_stats - Initialize power savings statistics for
2402 * the given sched_domain, during load balancing.
2403 *
2404 * @sd: Sched domain whose power-savings statistics are to be initialized.
2405 * @sds: Variable containing the statistics for sd.
2406 * @idle: Idle status of the CPU at which we're performing load-balancing.
2407 */
2408static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2409 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2410{
2411 /*
2412 * Busy processors will not participate in power savings
2413 * balance.
2414 */
2415 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2416 sds->power_savings_balance = 0;
2417 else {
2418 sds->power_savings_balance = 1;
2419 sds->min_nr_running = ULONG_MAX;
2420 sds->leader_nr_running = 0;
2421 }
2422}
2423
2424/**
2425 * update_sd_power_savings_stats - Update the power saving stats for a
2426 * sched_domain while performing load balancing.
2427 *
2428 * @group: sched_group belonging to the sched_domain under consideration.
2429 * @sds: Variable containing the statistics of the sched_domain
2430 * @local_group: Does group contain the CPU for which we're performing
2431 * load balancing ?
2432 * @sgs: Variable containing the statistics of the group.
2433 */
2434static inline void update_sd_power_savings_stats(struct sched_group *group,
2435 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2436{
2437
2438 if (!sds->power_savings_balance)
2439 return;
2440
2441 /*
2442 * If the local group is idle or completely loaded
2443 * no need to do power savings balance at this domain
2444 */
2445 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2446 !sds->this_nr_running))
2447 sds->power_savings_balance = 0;
2448
2449 /*
2450 * If a group is already running at full capacity or idle,
2451 * don't include that group in power savings calculations
2452 */
2453 if (!sds->power_savings_balance ||
2454 sgs->sum_nr_running >= sgs->group_capacity ||
2455 !sgs->sum_nr_running)
2456 return;
2457
2458 /*
2459 * Calculate the group which has the least non-idle load.
2460 * This is the group from where we need to pick up the load
2461 * for saving power
2462 */
2463 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2464 (sgs->sum_nr_running == sds->min_nr_running &&
2465 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2466 sds->group_min = group;
2467 sds->min_nr_running = sgs->sum_nr_running;
2468 sds->min_load_per_task = sgs->sum_weighted_load /
2469 sgs->sum_nr_running;
2470 }
2471
2472 /*
2473 * Calculate the group which is almost near its
2474 * capacity but still has some space to pick up some load
2475 * from other group and save more power
2476 */
2477 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2478 return;
2479
2480 if (sgs->sum_nr_running > sds->leader_nr_running ||
2481 (sgs->sum_nr_running == sds->leader_nr_running &&
2482 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2483 sds->group_leader = group;
2484 sds->leader_nr_running = sgs->sum_nr_running;
2485 }
2486}
2487
2488/**
2489 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2490 * @sds: Variable containing the statistics of the sched_domain
2491 * under consideration.
2492 * @this_cpu: Cpu at which we're currently performing load-balancing.
2493 * @imbalance: Variable to store the imbalance.
2494 *
2495 * Description:
2496 * Check if we have potential to perform some power-savings balance.
2497 * If yes, set the busiest group to be the least loaded group in the
2498 * sched_domain, so that it's CPUs can be put to idle.
2499 *
2500 * Returns 1 if there is potential to perform power-savings balance.
2501 * Else returns 0.
2502 */
2503static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2504 int this_cpu, unsigned long *imbalance)
2505{
2506 if (!sds->power_savings_balance)
2507 return 0;
2508
2509 if (sds->this != sds->group_leader ||
2510 sds->group_leader == sds->group_min)
2511 return 0;
2512
2513 *imbalance = sds->min_load_per_task;
2514 sds->busiest = sds->group_min;
2515
2516 return 1;
2517
2518}
2519#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2520static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2521 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2522{
2523 return;
2524}
2525
2526static inline void update_sd_power_savings_stats(struct sched_group *group,
2527 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2528{
2529 return;
2530}
2531
2532static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2533 int this_cpu, unsigned long *imbalance)
2534{
2535 return 0;
2536}
2537#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2538
2539
2540unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2541{
2542 return SCHED_LOAD_SCALE;
2543}
2544
2545unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2546{
2547 return default_scale_freq_power(sd, cpu);
2548}
2549
2550unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2551{
669c55e9 2552 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
2553 unsigned long smt_gain = sd->smt_gain;
2554
2555 smt_gain /= weight;
2556
2557 return smt_gain;
2558}
2559
2560unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2561{
2562 return default_scale_smt_power(sd, cpu);
2563}
2564
2565unsigned long scale_rt_power(int cpu)
2566{
2567 struct rq *rq = cpu_rq(cpu);
2568 u64 total, available;
2569
1e3c88bd 2570 total = sched_avg_period() + (rq->clock - rq->age_stamp);
aa483808
VP
2571
2572 if (unlikely(total < rq->rt_avg)) {
2573 /* Ensures that power won't end up being negative */
2574 available = 0;
2575 } else {
2576 available = total - rq->rt_avg;
2577 }
1e3c88bd
PZ
2578
2579 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2580 total = SCHED_LOAD_SCALE;
2581
2582 total >>= SCHED_LOAD_SHIFT;
2583
2584 return div_u64(available, total);
2585}
2586
2587static void update_cpu_power(struct sched_domain *sd, int cpu)
2588{
669c55e9 2589 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
2590 unsigned long power = SCHED_LOAD_SCALE;
2591 struct sched_group *sdg = sd->groups;
2592
1e3c88bd
PZ
2593 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2594 if (sched_feat(ARCH_POWER))
2595 power *= arch_scale_smt_power(sd, cpu);
2596 else
2597 power *= default_scale_smt_power(sd, cpu);
2598
2599 power >>= SCHED_LOAD_SHIFT;
2600 }
2601
9d5efe05
SV
2602 sdg->cpu_power_orig = power;
2603
2604 if (sched_feat(ARCH_POWER))
2605 power *= arch_scale_freq_power(sd, cpu);
2606 else
2607 power *= default_scale_freq_power(sd, cpu);
2608
2609 power >>= SCHED_LOAD_SHIFT;
2610
1e3c88bd
PZ
2611 power *= scale_rt_power(cpu);
2612 power >>= SCHED_LOAD_SHIFT;
2613
2614 if (!power)
2615 power = 1;
2616
e51fd5e2 2617 cpu_rq(cpu)->cpu_power = power;
1e3c88bd
PZ
2618 sdg->cpu_power = power;
2619}
2620
2621static void update_group_power(struct sched_domain *sd, int cpu)
2622{
2623 struct sched_domain *child = sd->child;
2624 struct sched_group *group, *sdg = sd->groups;
2625 unsigned long power;
2626
2627 if (!child) {
2628 update_cpu_power(sd, cpu);
2629 return;
2630 }
2631
2632 power = 0;
2633
2634 group = child->groups;
2635 do {
2636 power += group->cpu_power;
2637 group = group->next;
2638 } while (group != child->groups);
2639
2640 sdg->cpu_power = power;
2641}
2642
9d5efe05
SV
2643/*
2644 * Try and fix up capacity for tiny siblings, this is needed when
2645 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2646 * which on its own isn't powerful enough.
2647 *
2648 * See update_sd_pick_busiest() and check_asym_packing().
2649 */
2650static inline int
2651fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2652{
2653 /*
2654 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2655 */
2656 if (sd->level != SD_LV_SIBLING)
2657 return 0;
2658
2659 /*
2660 * If ~90% of the cpu_power is still there, we're good.
2661 */
694f5a11 2662 if (group->cpu_power * 32 > group->cpu_power_orig * 29)
9d5efe05
SV
2663 return 1;
2664
2665 return 0;
2666}
2667
1e3c88bd
PZ
2668/**
2669 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2670 * @sd: The sched_domain whose statistics are to be updated.
2671 * @group: sched_group whose statistics are to be updated.
2672 * @this_cpu: Cpu for which load balance is currently performed.
2673 * @idle: Idle status of this_cpu
2674 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd
PZ
2675 * @local_group: Does group contain this_cpu.
2676 * @cpus: Set of cpus considered for load balancing.
2677 * @balance: Should we balance.
2678 * @sgs: variable to hold the statistics for this group.
2679 */
2680static inline void update_sg_lb_stats(struct sched_domain *sd,
2681 struct sched_group *group, int this_cpu,
46e49b38 2682 enum cpu_idle_type idle, int load_idx,
1e3c88bd
PZ
2683 int local_group, const struct cpumask *cpus,
2684 int *balance, struct sg_lb_stats *sgs)
2685{
2582f0eb 2686 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
1e3c88bd
PZ
2687 int i;
2688 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 2689 unsigned long avg_load_per_task = 0;
1e3c88bd 2690
871e35bc 2691 if (local_group)
1e3c88bd 2692 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
2693
2694 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
2695 max_cpu_load = 0;
2696 min_cpu_load = ~0UL;
2582f0eb 2697 max_nr_running = 0;
1e3c88bd
PZ
2698
2699 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2700 struct rq *rq = cpu_rq(i);
2701
1e3c88bd
PZ
2702 /* Bias balancing toward cpus of our domain */
2703 if (local_group) {
2704 if (idle_cpu(i) && !first_idle_cpu) {
2705 first_idle_cpu = 1;
2706 balance_cpu = i;
2707 }
2708
2709 load = target_load(i, load_idx);
2710 } else {
2711 load = source_load(i, load_idx);
2582f0eb 2712 if (load > max_cpu_load) {
1e3c88bd 2713 max_cpu_load = load;
2582f0eb
NR
2714 max_nr_running = rq->nr_running;
2715 }
1e3c88bd
PZ
2716 if (min_cpu_load > load)
2717 min_cpu_load = load;
2718 }
2719
2720 sgs->group_load += load;
2721 sgs->sum_nr_running += rq->nr_running;
2722 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
2723 if (idle_cpu(i))
2724 sgs->idle_cpus++;
1e3c88bd
PZ
2725 }
2726
2727 /*
2728 * First idle cpu or the first cpu(busiest) in this sched group
2729 * is eligible for doing load balancing at this and above
2730 * domains. In the newly idle case, we will allow all the cpu's
2731 * to do the newly idle load balance.
2732 */
bbc8cb5b
PZ
2733 if (idle != CPU_NEWLY_IDLE && local_group) {
2734 if (balance_cpu != this_cpu) {
2735 *balance = 0;
2736 return;
2737 }
2738 update_group_power(sd, this_cpu);
1e3c88bd
PZ
2739 }
2740
2741 /* Adjust by relative CPU power of the group */
2742 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2743
1e3c88bd
PZ
2744 /*
2745 * Consider the group unbalanced when the imbalance is larger
2746 * than the average weight of two tasks.
2747 *
2748 * APZ: with cgroup the avg task weight can vary wildly and
2749 * might not be a suitable number - should we keep a
2750 * normalized nr_running number somewhere that negates
2751 * the hierarchy?
2752 */
dd5feea1
SS
2753 if (sgs->sum_nr_running)
2754 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 2755
2582f0eb 2756 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
1e3c88bd
PZ
2757 sgs->group_imb = 1;
2758
2582f0eb 2759 sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
9d5efe05
SV
2760 if (!sgs->group_capacity)
2761 sgs->group_capacity = fix_small_capacity(sd, group);
aae6d3dd 2762 sgs->group_weight = group->group_weight;
fab47622
NR
2763
2764 if (sgs->group_capacity > sgs->sum_nr_running)
2765 sgs->group_has_capacity = 1;
1e3c88bd
PZ
2766}
2767
532cb4c4
MN
2768/**
2769 * update_sd_pick_busiest - return 1 on busiest group
2770 * @sd: sched_domain whose statistics are to be checked
2771 * @sds: sched_domain statistics
2772 * @sg: sched_group candidate to be checked for being the busiest
b6b12294
MN
2773 * @sgs: sched_group statistics
2774 * @this_cpu: the current cpu
532cb4c4
MN
2775 *
2776 * Determine if @sg is a busier group than the previously selected
2777 * busiest group.
2778 */
2779static bool update_sd_pick_busiest(struct sched_domain *sd,
2780 struct sd_lb_stats *sds,
2781 struct sched_group *sg,
2782 struct sg_lb_stats *sgs,
2783 int this_cpu)
2784{
2785 if (sgs->avg_load <= sds->max_load)
2786 return false;
2787
2788 if (sgs->sum_nr_running > sgs->group_capacity)
2789 return true;
2790
2791 if (sgs->group_imb)
2792 return true;
2793
2794 /*
2795 * ASYM_PACKING needs to move all the work to the lowest
2796 * numbered CPUs in the group, therefore mark all groups
2797 * higher than ourself as busy.
2798 */
2799 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2800 this_cpu < group_first_cpu(sg)) {
2801 if (!sds->busiest)
2802 return true;
2803
2804 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2805 return true;
2806 }
2807
2808 return false;
2809}
2810
1e3c88bd
PZ
2811/**
2812 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2813 * @sd: sched_domain whose statistics are to be updated.
2814 * @this_cpu: Cpu for which load balance is currently performed.
2815 * @idle: Idle status of this_cpu
1e3c88bd
PZ
2816 * @cpus: Set of cpus considered for load balancing.
2817 * @balance: Should we balance.
2818 * @sds: variable to hold the statistics for this sched_domain.
2819 */
2820static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
46e49b38
VP
2821 enum cpu_idle_type idle, const struct cpumask *cpus,
2822 int *balance, struct sd_lb_stats *sds)
1e3c88bd
PZ
2823{
2824 struct sched_domain *child = sd->child;
532cb4c4 2825 struct sched_group *sg = sd->groups;
1e3c88bd
PZ
2826 struct sg_lb_stats sgs;
2827 int load_idx, prefer_sibling = 0;
2828
2829 if (child && child->flags & SD_PREFER_SIBLING)
2830 prefer_sibling = 1;
2831
2832 init_sd_power_savings_stats(sd, sds, idle);
2833 load_idx = get_sd_load_idx(sd, idle);
2834
2835 do {
2836 int local_group;
2837
532cb4c4 2838 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
1e3c88bd 2839 memset(&sgs, 0, sizeof(sgs));
46e49b38 2840 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
1e3c88bd
PZ
2841 local_group, cpus, balance, &sgs);
2842
8f190fb3 2843 if (local_group && !(*balance))
1e3c88bd
PZ
2844 return;
2845
2846 sds->total_load += sgs.group_load;
532cb4c4 2847 sds->total_pwr += sg->cpu_power;
1e3c88bd
PZ
2848
2849 /*
2850 * In case the child domain prefers tasks go to siblings
532cb4c4 2851 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
2852 * and move all the excess tasks away. We lower the capacity
2853 * of a group only if the local group has the capacity to fit
2854 * these excess tasks, i.e. nr_running < group_capacity. The
2855 * extra check prevents the case where you always pull from the
2856 * heaviest group when it is already under-utilized (possible
2857 * with a large weight task outweighs the tasks on the system).
1e3c88bd 2858 */
75dd321d 2859 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
2860 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2861
2862 if (local_group) {
2863 sds->this_load = sgs.avg_load;
532cb4c4 2864 sds->this = sg;
1e3c88bd
PZ
2865 sds->this_nr_running = sgs.sum_nr_running;
2866 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 2867 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 2868 sds->this_idle_cpus = sgs.idle_cpus;
532cb4c4 2869 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
1e3c88bd 2870 sds->max_load = sgs.avg_load;
532cb4c4 2871 sds->busiest = sg;
1e3c88bd 2872 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 2873 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 2874 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 2875 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 2876 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 2877 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
2878 sds->group_imb = sgs.group_imb;
2879 }
2880
532cb4c4
MN
2881 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2882 sg = sg->next;
2883 } while (sg != sd->groups);
2884}
2885
2ec57d44 2886int __weak arch_sd_sibling_asym_packing(void)
532cb4c4
MN
2887{
2888 return 0*SD_ASYM_PACKING;
2889}
2890
2891/**
2892 * check_asym_packing - Check to see if the group is packed into the
2893 * sched doman.
2894 *
2895 * This is primarily intended to used at the sibling level. Some
2896 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2897 * case of POWER7, it can move to lower SMT modes only when higher
2898 * threads are idle. When in lower SMT modes, the threads will
2899 * perform better since they share less core resources. Hence when we
2900 * have idle threads, we want them to be the higher ones.
2901 *
2902 * This packing function is run on idle threads. It checks to see if
2903 * the busiest CPU in this domain (core in the P7 case) has a higher
2904 * CPU number than the packing function is being run on. Here we are
2905 * assuming lower CPU number will be equivalent to lower a SMT thread
2906 * number.
2907 *
b6b12294
MN
2908 * Returns 1 when packing is required and a task should be moved to
2909 * this CPU. The amount of the imbalance is returned in *imbalance.
2910 *
532cb4c4
MN
2911 * @sd: The sched_domain whose packing is to be checked.
2912 * @sds: Statistics of the sched_domain which is to be packed
2913 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2914 * @imbalance: returns amount of imbalanced due to packing.
532cb4c4
MN
2915 */
2916static int check_asym_packing(struct sched_domain *sd,
2917 struct sd_lb_stats *sds,
2918 int this_cpu, unsigned long *imbalance)
2919{
2920 int busiest_cpu;
2921
2922 if (!(sd->flags & SD_ASYM_PACKING))
2923 return 0;
2924
2925 if (!sds->busiest)
2926 return 0;
2927
2928 busiest_cpu = group_first_cpu(sds->busiest);
2929 if (this_cpu > busiest_cpu)
2930 return 0;
2931
2932 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2933 SCHED_LOAD_SCALE);
2934 return 1;
1e3c88bd
PZ
2935}
2936
2937/**
2938 * fix_small_imbalance - Calculate the minor imbalance that exists
2939 * amongst the groups of a sched_domain, during
2940 * load balancing.
2941 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2942 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2943 * @imbalance: Variable to store the imbalance.
2944 */
2945static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2946 int this_cpu, unsigned long *imbalance)
2947{
2948 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2949 unsigned int imbn = 2;
dd5feea1 2950 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
2951
2952 if (sds->this_nr_running) {
2953 sds->this_load_per_task /= sds->this_nr_running;
2954 if (sds->busiest_load_per_task >
2955 sds->this_load_per_task)
2956 imbn = 1;
2957 } else
2958 sds->this_load_per_task =
2959 cpu_avg_load_per_task(this_cpu);
2960
dd5feea1
SS
2961 scaled_busy_load_per_task = sds->busiest_load_per_task
2962 * SCHED_LOAD_SCALE;
2963 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2964
2965 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2966 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
2967 *imbalance = sds->busiest_load_per_task;
2968 return;
2969 }
2970
2971 /*
2972 * OK, we don't have enough imbalance to justify moving tasks,
2973 * however we may be able to increase total CPU power used by
2974 * moving them.
2975 */
2976
2977 pwr_now += sds->busiest->cpu_power *
2978 min(sds->busiest_load_per_task, sds->max_load);
2979 pwr_now += sds->this->cpu_power *
2980 min(sds->this_load_per_task, sds->this_load);
2981 pwr_now /= SCHED_LOAD_SCALE;
2982
2983 /* Amount of load we'd subtract */
2984 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2985 sds->busiest->cpu_power;
2986 if (sds->max_load > tmp)
2987 pwr_move += sds->busiest->cpu_power *
2988 min(sds->busiest_load_per_task, sds->max_load - tmp);
2989
2990 /* Amount of load we'd add */
2991 if (sds->max_load * sds->busiest->cpu_power <
2992 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2993 tmp = (sds->max_load * sds->busiest->cpu_power) /
2994 sds->this->cpu_power;
2995 else
2996 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2997 sds->this->cpu_power;
2998 pwr_move += sds->this->cpu_power *
2999 min(sds->this_load_per_task, sds->this_load + tmp);
3000 pwr_move /= SCHED_LOAD_SCALE;
3001
3002 /* Move if we gain throughput */
3003 if (pwr_move > pwr_now)
3004 *imbalance = sds->busiest_load_per_task;
3005}
3006
3007/**
3008 * calculate_imbalance - Calculate the amount of imbalance present within the
3009 * groups of a given sched_domain during load balance.
3010 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3011 * @this_cpu: Cpu for which currently load balance is being performed.
3012 * @imbalance: The variable to store the imbalance.
3013 */
3014static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3015 unsigned long *imbalance)
3016{
dd5feea1
SS
3017 unsigned long max_pull, load_above_capacity = ~0UL;
3018
3019 sds->busiest_load_per_task /= sds->busiest_nr_running;
3020 if (sds->group_imb) {
3021 sds->busiest_load_per_task =
3022 min(sds->busiest_load_per_task, sds->avg_load);
3023 }
3024
1e3c88bd
PZ
3025 /*
3026 * In the presence of smp nice balancing, certain scenarios can have
3027 * max load less than avg load(as we skip the groups at or below
3028 * its cpu_power, while calculating max_load..)
3029 */
3030 if (sds->max_load < sds->avg_load) {
3031 *imbalance = 0;
3032 return fix_small_imbalance(sds, this_cpu, imbalance);
3033 }
3034
dd5feea1
SS
3035 if (!sds->group_imb) {
3036 /*
3037 * Don't want to pull so many tasks that a group would go idle.
3038 */
3039 load_above_capacity = (sds->busiest_nr_running -
3040 sds->busiest_group_capacity);
3041
3042 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
3043
3044 load_above_capacity /= sds->busiest->cpu_power;
3045 }
3046
3047 /*
3048 * We're trying to get all the cpus to the average_load, so we don't
3049 * want to push ourselves above the average load, nor do we wish to
3050 * reduce the max loaded cpu below the average load. At the same time,
3051 * we also don't want to reduce the group load below the group capacity
3052 * (so that we can implement power-savings policies etc). Thus we look
3053 * for the minimum possible imbalance.
3054 * Be careful of negative numbers as they'll appear as very large values
3055 * with unsigned longs.
3056 */
3057 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
3058
3059 /* How much load to actually move to equalise the imbalance */
3060 *imbalance = min(max_pull * sds->busiest->cpu_power,
3061 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3062 / SCHED_LOAD_SCALE;
3063
3064 /*
3065 * if *imbalance is less than the average load per runnable task
3066 * there is no gaurantee that any tasks will be moved so we'll have
3067 * a think about bumping its value to force at least one task to be
3068 * moved
3069 */
3070 if (*imbalance < sds->busiest_load_per_task)
3071 return fix_small_imbalance(sds, this_cpu, imbalance);
3072
3073}
fab47622 3074
1e3c88bd
PZ
3075/******* find_busiest_group() helpers end here *********************/
3076
3077/**
3078 * find_busiest_group - Returns the busiest group within the sched_domain
3079 * if there is an imbalance. If there isn't an imbalance, and
3080 * the user has opted for power-savings, it returns a group whose
3081 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3082 * such a group exists.
3083 *
3084 * Also calculates the amount of weighted load which should be moved
3085 * to restore balance.
3086 *
3087 * @sd: The sched_domain whose busiest group is to be returned.
3088 * @this_cpu: The cpu for which load balancing is currently being performed.
3089 * @imbalance: Variable which stores amount of weighted load which should
3090 * be moved to restore balance/put a group to idle.
3091 * @idle: The idle status of this_cpu.
1e3c88bd
PZ
3092 * @cpus: The set of CPUs under consideration for load-balancing.
3093 * @balance: Pointer to a variable indicating if this_cpu
3094 * is the appropriate cpu to perform load balancing at this_level.
3095 *
3096 * Returns: - the busiest group if imbalance exists.
3097 * - If no imbalance and user has opted for power-savings balance,
3098 * return the least loaded group whose CPUs can be
3099 * put to idle by rebalancing its tasks onto our group.
3100 */
3101static struct sched_group *
3102find_busiest_group(struct sched_domain *sd, int this_cpu,
3103 unsigned long *imbalance, enum cpu_idle_type idle,
46e49b38 3104 const struct cpumask *cpus, int *balance)
1e3c88bd
PZ
3105{
3106 struct sd_lb_stats sds;
3107
3108 memset(&sds, 0, sizeof(sds));
3109
3110 /*
3111 * Compute the various statistics relavent for load balancing at
3112 * this level.
3113 */
46e49b38 3114 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
1e3c88bd 3115
cc57aa8f
PZ
3116 /*
3117 * this_cpu is not the appropriate cpu to perform load balancing at
3118 * this level.
1e3c88bd 3119 */
8f190fb3 3120 if (!(*balance))
1e3c88bd
PZ
3121 goto ret;
3122
532cb4c4
MN
3123 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3124 check_asym_packing(sd, &sds, this_cpu, imbalance))
3125 return sds.busiest;
3126
cc57aa8f 3127 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
3128 if (!sds.busiest || sds.busiest_nr_running == 0)
3129 goto out_balanced;
3130
cc57aa8f 3131 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
fab47622
NR
3132 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3133 !sds.busiest_has_capacity)
3134 goto force_balance;
3135
cc57aa8f
PZ
3136 /*
3137 * If the local group is more busy than the selected busiest group
3138 * don't try and pull any tasks.
3139 */
1e3c88bd
PZ
3140 if (sds.this_load >= sds.max_load)
3141 goto out_balanced;
3142
cc57aa8f
PZ
3143 /*
3144 * Don't pull any tasks if this group is already above the domain
3145 * average load.
3146 */
1e3c88bd 3147 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1e3c88bd
PZ
3148 if (sds.this_load >= sds.avg_load)
3149 goto out_balanced;
3150
c186fafe 3151 if (idle == CPU_IDLE) {
aae6d3dd
SS
3152 /*
3153 * This cpu is idle. If the busiest group load doesn't
3154 * have more tasks than the number of available cpu's and
3155 * there is no imbalance between this and busiest group
3156 * wrt to idle cpu's, it is balanced.
3157 */
c186fafe 3158 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
3159 sds.busiest_nr_running <= sds.busiest_group_weight)
3160 goto out_balanced;
c186fafe
PZ
3161 } else {
3162 /*
3163 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3164 * imbalance_pct to be conservative.
3165 */
3166 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3167 goto out_balanced;
aae6d3dd 3168 }
1e3c88bd 3169
fab47622 3170force_balance:
1e3c88bd
PZ
3171 /* Looks like there is an imbalance. Compute it */
3172 calculate_imbalance(&sds, this_cpu, imbalance);
3173 return sds.busiest;
3174
3175out_balanced:
3176 /*
3177 * There is no obvious imbalance. But check if we can do some balancing
3178 * to save power.
3179 */
3180 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3181 return sds.busiest;
3182ret:
3183 *imbalance = 0;
3184 return NULL;
3185}
3186
3187/*
3188 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3189 */
3190static struct rq *
9d5efe05
SV
3191find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3192 enum cpu_idle_type idle, unsigned long imbalance,
3193 const struct cpumask *cpus)
1e3c88bd
PZ
3194{
3195 struct rq *busiest = NULL, *rq;
3196 unsigned long max_load = 0;
3197 int i;
3198
3199 for_each_cpu(i, sched_group_cpus(group)) {
3200 unsigned long power = power_of(i);
3201 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
3202 unsigned long wl;
3203
9d5efe05
SV
3204 if (!capacity)
3205 capacity = fix_small_capacity(sd, group);
3206
1e3c88bd
PZ
3207 if (!cpumask_test_cpu(i, cpus))
3208 continue;
3209
3210 rq = cpu_rq(i);
6e40f5bb 3211 wl = weighted_cpuload(i);
1e3c88bd 3212
6e40f5bb
TG
3213 /*
3214 * When comparing with imbalance, use weighted_cpuload()
3215 * which is not scaled with the cpu power.
3216 */
1e3c88bd
PZ
3217 if (capacity && rq->nr_running == 1 && wl > imbalance)
3218 continue;
3219
6e40f5bb
TG
3220 /*
3221 * For the load comparisons with the other cpu's, consider
3222 * the weighted_cpuload() scaled with the cpu power, so that
3223 * the load can be moved away from the cpu that is potentially
3224 * running at a lower capacity.
3225 */
3226 wl = (wl * SCHED_LOAD_SCALE) / power;
3227
1e3c88bd
PZ
3228 if (wl > max_load) {
3229 max_load = wl;
3230 busiest = rq;
3231 }
3232 }
3233
3234 return busiest;
3235}
3236
3237/*
3238 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3239 * so long as it is large enough.
3240 */
3241#define MAX_PINNED_INTERVAL 512
3242
3243/* Working cpumask for load_balance and load_balance_newidle. */
3244static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3245
46e49b38 3246static int need_active_balance(struct sched_domain *sd, int idle,
532cb4c4 3247 int busiest_cpu, int this_cpu)
1af3ed3d
PZ
3248{
3249 if (idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
3250
3251 /*
3252 * ASYM_PACKING needs to force migrate tasks from busy but
3253 * higher numbered CPUs in order to pack all tasks in the
3254 * lowest numbered CPUs.
3255 */
3256 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3257 return 1;
3258
1af3ed3d
PZ
3259 /*
3260 * The only task running in a non-idle cpu can be moved to this
3261 * cpu in an attempt to completely freeup the other CPU
3262 * package.
3263 *
3264 * The package power saving logic comes from
3265 * find_busiest_group(). If there are no imbalance, then
3266 * f_b_g() will return NULL. However when sched_mc={1,2} then
3267 * f_b_g() will select a group from which a running task may be
3268 * pulled to this cpu in order to make the other package idle.
3269 * If there is no opportunity to make a package idle and if
3270 * there are no imbalance, then f_b_g() will return NULL and no
3271 * action will be taken in load_balance_newidle().
3272 *
3273 * Under normal task pull operation due to imbalance, there
3274 * will be more than one task in the source run queue and
3275 * move_tasks() will succeed. ld_moved will be true and this
3276 * active balance code will not be triggered.
3277 */
1af3ed3d
PZ
3278 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3279 return 0;
3280 }
3281
3282 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3283}
3284
969c7921
TH
3285static int active_load_balance_cpu_stop(void *data);
3286
1e3c88bd
PZ
3287/*
3288 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3289 * tasks if there is an imbalance.
3290 */
3291static int load_balance(int this_cpu, struct rq *this_rq,
3292 struct sched_domain *sd, enum cpu_idle_type idle,
3293 int *balance)
3294{
46e49b38 3295 int ld_moved, all_pinned = 0, active_balance = 0;
1e3c88bd
PZ
3296 struct sched_group *group;
3297 unsigned long imbalance;
3298 struct rq *busiest;
3299 unsigned long flags;
3300 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3301
3302 cpumask_copy(cpus, cpu_active_mask);
3303
1e3c88bd
PZ
3304 schedstat_inc(sd, lb_count[idle]);
3305
3306redo:
46e49b38 3307 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
1e3c88bd
PZ
3308 cpus, balance);
3309
3310 if (*balance == 0)
3311 goto out_balanced;
3312
3313 if (!group) {
3314 schedstat_inc(sd, lb_nobusyg[idle]);
3315 goto out_balanced;
3316 }
3317
9d5efe05 3318 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
1e3c88bd
PZ
3319 if (!busiest) {
3320 schedstat_inc(sd, lb_nobusyq[idle]);
3321 goto out_balanced;
3322 }
3323
3324 BUG_ON(busiest == this_rq);
3325
3326 schedstat_add(sd, lb_imbalance[idle], imbalance);
3327
3328 ld_moved = 0;
3329 if (busiest->nr_running > 1) {
3330 /*
3331 * Attempt to move tasks. If find_busiest_group has found
3332 * an imbalance but busiest->nr_running <= 1, the group is
3333 * still unbalanced. ld_moved simply stays zero, so it is
3334 * correctly treated as an imbalance.
3335 */
3336 local_irq_save(flags);
3337 double_rq_lock(this_rq, busiest);
3338 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3339 imbalance, sd, idle, &all_pinned);
3340 double_rq_unlock(this_rq, busiest);
3341 local_irq_restore(flags);
3342
3343 /*
3344 * some other cpu did the load balance for us.
3345 */
3346 if (ld_moved && this_cpu != smp_processor_id())
3347 resched_cpu(this_cpu);
3348
3349 /* All tasks on this runqueue were pinned by CPU affinity */
3350 if (unlikely(all_pinned)) {
3351 cpumask_clear_cpu(cpu_of(busiest), cpus);
3352 if (!cpumask_empty(cpus))
3353 goto redo;
3354 goto out_balanced;
3355 }
3356 }
3357
3358 if (!ld_moved) {
3359 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
3360 /*
3361 * Increment the failure counter only on periodic balance.
3362 * We do not want newidle balance, which can be very
3363 * frequent, pollute the failure counter causing
3364 * excessive cache_hot migrations and active balances.
3365 */
3366 if (idle != CPU_NEWLY_IDLE)
3367 sd->nr_balance_failed++;
1e3c88bd 3368
46e49b38 3369 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
1e3c88bd
PZ
3370 raw_spin_lock_irqsave(&busiest->lock, flags);
3371
969c7921
TH
3372 /* don't kick the active_load_balance_cpu_stop,
3373 * if the curr task on busiest cpu can't be
3374 * moved to this_cpu
1e3c88bd
PZ
3375 */
3376 if (!cpumask_test_cpu(this_cpu,
3377 &busiest->curr->cpus_allowed)) {
3378 raw_spin_unlock_irqrestore(&busiest->lock,
3379 flags);
3380 all_pinned = 1;
3381 goto out_one_pinned;
3382 }
3383
969c7921
TH
3384 /*
3385 * ->active_balance synchronizes accesses to
3386 * ->active_balance_work. Once set, it's cleared
3387 * only after active load balance is finished.
3388 */
1e3c88bd
PZ
3389 if (!busiest->active_balance) {
3390 busiest->active_balance = 1;
3391 busiest->push_cpu = this_cpu;
3392 active_balance = 1;
3393 }
3394 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 3395
1e3c88bd 3396 if (active_balance)
969c7921
TH
3397 stop_one_cpu_nowait(cpu_of(busiest),
3398 active_load_balance_cpu_stop, busiest,
3399 &busiest->active_balance_work);
1e3c88bd
PZ
3400
3401 /*
3402 * We've kicked active balancing, reset the failure
3403 * counter.
3404 */
3405 sd->nr_balance_failed = sd->cache_nice_tries+1;
3406 }
3407 } else
3408 sd->nr_balance_failed = 0;
3409
3410 if (likely(!active_balance)) {
3411 /* We were unbalanced, so reset the balancing interval */
3412 sd->balance_interval = sd->min_interval;
3413 } else {
3414 /*
3415 * If we've begun active balancing, start to back off. This
3416 * case may not be covered by the all_pinned logic if there
3417 * is only 1 task on the busy runqueue (because we don't call
3418 * move_tasks).
3419 */
3420 if (sd->balance_interval < sd->max_interval)
3421 sd->balance_interval *= 2;
3422 }
3423
1e3c88bd
PZ
3424 goto out;
3425
3426out_balanced:
3427 schedstat_inc(sd, lb_balanced[idle]);
3428
3429 sd->nr_balance_failed = 0;
3430
3431out_one_pinned:
3432 /* tune up the balancing interval */
3433 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3434 (sd->balance_interval < sd->max_interval))
3435 sd->balance_interval *= 2;
3436
46e49b38 3437 ld_moved = 0;
1e3c88bd 3438out:
1e3c88bd
PZ
3439 return ld_moved;
3440}
3441
1e3c88bd
PZ
3442/*
3443 * idle_balance is called by schedule() if this_cpu is about to become
3444 * idle. Attempts to pull tasks from other CPUs.
3445 */
3446static void idle_balance(int this_cpu, struct rq *this_rq)
3447{
3448 struct sched_domain *sd;
3449 int pulled_task = 0;
3450 unsigned long next_balance = jiffies + HZ;
3451
3452 this_rq->idle_stamp = this_rq->clock;
3453
3454 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3455 return;
3456
f492e12e
PZ
3457 /*
3458 * Drop the rq->lock, but keep IRQ/preempt disabled.
3459 */
3460 raw_spin_unlock(&this_rq->lock);
3461
c66eaf61 3462 update_shares(this_cpu);
1e3c88bd
PZ
3463 for_each_domain(this_cpu, sd) {
3464 unsigned long interval;
f492e12e 3465 int balance = 1;
1e3c88bd
PZ
3466
3467 if (!(sd->flags & SD_LOAD_BALANCE))
3468 continue;
3469
f492e12e 3470 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 3471 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
3472 pulled_task = load_balance(this_cpu, this_rq,
3473 sd, CPU_NEWLY_IDLE, &balance);
3474 }
1e3c88bd
PZ
3475
3476 interval = msecs_to_jiffies(sd->balance_interval);
3477 if (time_after(next_balance, sd->last_balance + interval))
3478 next_balance = sd->last_balance + interval;
d5ad140b
NR
3479 if (pulled_task) {
3480 this_rq->idle_stamp = 0;
1e3c88bd 3481 break;
d5ad140b 3482 }
1e3c88bd 3483 }
f492e12e
PZ
3484
3485 raw_spin_lock(&this_rq->lock);
3486
1e3c88bd
PZ
3487 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3488 /*
3489 * We are going idle. next_balance may be set based on
3490 * a busy processor. So reset next_balance.
3491 */
3492 this_rq->next_balance = next_balance;
3493 }
3494}
3495
3496/*
969c7921
TH
3497 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3498 * running tasks off the busiest CPU onto idle CPUs. It requires at
3499 * least 1 task to be running on each physical CPU where possible, and
3500 * avoids physical / logical imbalances.
1e3c88bd 3501 */
969c7921 3502static int active_load_balance_cpu_stop(void *data)
1e3c88bd 3503{
969c7921
TH
3504 struct rq *busiest_rq = data;
3505 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 3506 int target_cpu = busiest_rq->push_cpu;
969c7921 3507 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 3508 struct sched_domain *sd;
969c7921
TH
3509
3510 raw_spin_lock_irq(&busiest_rq->lock);
3511
3512 /* make sure the requested cpu hasn't gone down in the meantime */
3513 if (unlikely(busiest_cpu != smp_processor_id() ||
3514 !busiest_rq->active_balance))
3515 goto out_unlock;
1e3c88bd
PZ
3516
3517 /* Is there any task to move? */
3518 if (busiest_rq->nr_running <= 1)
969c7921 3519 goto out_unlock;
1e3c88bd
PZ
3520
3521 /*
3522 * This condition is "impossible", if it occurs
3523 * we need to fix it. Originally reported by
3524 * Bjorn Helgaas on a 128-cpu setup.
3525 */
3526 BUG_ON(busiest_rq == target_rq);
3527
3528 /* move a task from busiest_rq to target_rq */
3529 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
3530
3531 /* Search for an sd spanning us and the target CPU. */
3532 for_each_domain(target_cpu, sd) {
3533 if ((sd->flags & SD_LOAD_BALANCE) &&
3534 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3535 break;
3536 }
3537
3538 if (likely(sd)) {
3539 schedstat_inc(sd, alb_count);
3540
3541 if (move_one_task(target_rq, target_cpu, busiest_rq,
3542 sd, CPU_IDLE))
3543 schedstat_inc(sd, alb_pushed);
3544 else
3545 schedstat_inc(sd, alb_failed);
3546 }
3547 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
3548out_unlock:
3549 busiest_rq->active_balance = 0;
3550 raw_spin_unlock_irq(&busiest_rq->lock);
3551 return 0;
1e3c88bd
PZ
3552}
3553
3554#ifdef CONFIG_NO_HZ
83cd4fe2
VP
3555
3556static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3557
3558static void trigger_sched_softirq(void *data)
3559{
3560 raise_softirq_irqoff(SCHED_SOFTIRQ);
3561}
3562
3563static inline void init_sched_softirq_csd(struct call_single_data *csd)
3564{
3565 csd->func = trigger_sched_softirq;
3566 csd->info = NULL;
3567 csd->flags = 0;
3568 csd->priv = 0;
3569}
3570
3571/*
3572 * idle load balancing details
3573 * - One of the idle CPUs nominates itself as idle load_balancer, while
3574 * entering idle.
3575 * - This idle load balancer CPU will also go into tickless mode when
3576 * it is idle, just like all other idle CPUs
3577 * - When one of the busy CPUs notice that there may be an idle rebalancing
3578 * needed, they will kick the idle load balancer, which then does idle
3579 * load balancing for all the idle CPUs.
3580 */
1e3c88bd
PZ
3581static struct {
3582 atomic_t load_balancer;
83cd4fe2
VP
3583 atomic_t first_pick_cpu;
3584 atomic_t second_pick_cpu;
3585 cpumask_var_t idle_cpus_mask;
3586 cpumask_var_t grp_idle_mask;
3587 unsigned long next_balance; /* in jiffy units */
3588} nohz ____cacheline_aligned;
1e3c88bd
PZ
3589
3590int get_nohz_load_balancer(void)
3591{
3592 return atomic_read(&nohz.load_balancer);
3593}
3594
3595#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3596/**
3597 * lowest_flag_domain - Return lowest sched_domain containing flag.
3598 * @cpu: The cpu whose lowest level of sched domain is to
3599 * be returned.
3600 * @flag: The flag to check for the lowest sched_domain
3601 * for the given cpu.
3602 *
3603 * Returns the lowest sched_domain of a cpu which contains the given flag.
3604 */
3605static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3606{
3607 struct sched_domain *sd;
3608
3609 for_each_domain(cpu, sd)
3610 if (sd && (sd->flags & flag))
3611 break;
3612
3613 return sd;
3614}
3615
3616/**
3617 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3618 * @cpu: The cpu whose domains we're iterating over.
3619 * @sd: variable holding the value of the power_savings_sd
3620 * for cpu.
3621 * @flag: The flag to filter the sched_domains to be iterated.
3622 *
3623 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3624 * set, starting from the lowest sched_domain to the highest.
3625 */
3626#define for_each_flag_domain(cpu, sd, flag) \
3627 for (sd = lowest_flag_domain(cpu, flag); \
3628 (sd && (sd->flags & flag)); sd = sd->parent)
3629
3630/**
3631 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3632 * @ilb_group: group to be checked for semi-idleness
3633 *
3634 * Returns: 1 if the group is semi-idle. 0 otherwise.
3635 *
3636 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3637 * and atleast one non-idle CPU. This helper function checks if the given
3638 * sched_group is semi-idle or not.
3639 */
3640static inline int is_semi_idle_group(struct sched_group *ilb_group)
3641{
83cd4fe2 3642 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
1e3c88bd
PZ
3643 sched_group_cpus(ilb_group));
3644
3645 /*
3646 * A sched_group is semi-idle when it has atleast one busy cpu
3647 * and atleast one idle cpu.
3648 */
83cd4fe2 3649 if (cpumask_empty(nohz.grp_idle_mask))
1e3c88bd
PZ
3650 return 0;
3651
83cd4fe2 3652 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
1e3c88bd
PZ
3653 return 0;
3654
3655 return 1;
3656}
3657/**
3658 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3659 * @cpu: The cpu which is nominating a new idle_load_balancer.
3660 *
3661 * Returns: Returns the id of the idle load balancer if it exists,
3662 * Else, returns >= nr_cpu_ids.
3663 *
3664 * This algorithm picks the idle load balancer such that it belongs to a
3665 * semi-idle powersavings sched_domain. The idea is to try and avoid
3666 * completely idle packages/cores just for the purpose of idle load balancing
3667 * when there are other idle cpu's which are better suited for that job.
3668 */
3669static int find_new_ilb(int cpu)
3670{
3671 struct sched_domain *sd;
3672 struct sched_group *ilb_group;
3673
3674 /*
3675 * Have idle load balancer selection from semi-idle packages only
3676 * when power-aware load balancing is enabled
3677 */
3678 if (!(sched_smt_power_savings || sched_mc_power_savings))
3679 goto out_done;
3680
3681 /*
3682 * Optimize for the case when we have no idle CPUs or only one
3683 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3684 */
83cd4fe2 3685 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
1e3c88bd
PZ
3686 goto out_done;
3687
3688 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3689 ilb_group = sd->groups;
3690
3691 do {
3692 if (is_semi_idle_group(ilb_group))
83cd4fe2 3693 return cpumask_first(nohz.grp_idle_mask);
1e3c88bd
PZ
3694
3695 ilb_group = ilb_group->next;
3696
3697 } while (ilb_group != sd->groups);
3698 }
3699
3700out_done:
83cd4fe2 3701 return nr_cpu_ids;
1e3c88bd
PZ
3702}
3703#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3704static inline int find_new_ilb(int call_cpu)
3705{
83cd4fe2 3706 return nr_cpu_ids;
1e3c88bd
PZ
3707}
3708#endif
3709
83cd4fe2
VP
3710/*
3711 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3712 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3713 * CPU (if there is one).
3714 */
3715static void nohz_balancer_kick(int cpu)
3716{
3717 int ilb_cpu;
3718
3719 nohz.next_balance++;
3720
3721 ilb_cpu = get_nohz_load_balancer();
3722
3723 if (ilb_cpu >= nr_cpu_ids) {
3724 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3725 if (ilb_cpu >= nr_cpu_ids)
3726 return;
3727 }
3728
3729 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3730 struct call_single_data *cp;
3731
3732 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3733 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3734 __smp_call_function_single(ilb_cpu, cp, 0);
3735 }
3736 return;
3737}
3738
1e3c88bd
PZ
3739/*
3740 * This routine will try to nominate the ilb (idle load balancing)
3741 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
83cd4fe2 3742 * load balancing on behalf of all those cpus.
1e3c88bd 3743 *
83cd4fe2
VP
3744 * When the ilb owner becomes busy, we will not have new ilb owner until some
3745 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3746 * idle load balancing by kicking one of the idle CPUs.
1e3c88bd 3747 *
83cd4fe2
VP
3748 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3749 * ilb owner CPU in future (when there is a need for idle load balancing on
3750 * behalf of all idle CPUs).
1e3c88bd 3751 */
83cd4fe2 3752void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
3753{
3754 int cpu = smp_processor_id();
3755
3756 if (stop_tick) {
1e3c88bd
PZ
3757 if (!cpu_active(cpu)) {
3758 if (atomic_read(&nohz.load_balancer) != cpu)
83cd4fe2 3759 return;
1e3c88bd
PZ
3760
3761 /*
3762 * If we are going offline and still the leader,
3763 * give up!
3764 */
83cd4fe2
VP
3765 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3766 nr_cpu_ids) != cpu)
1e3c88bd
PZ
3767 BUG();
3768
83cd4fe2 3769 return;
1e3c88bd
PZ
3770 }
3771
83cd4fe2 3772 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd 3773
83cd4fe2
VP
3774 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3775 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3776 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3777 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
1e3c88bd 3778
83cd4fe2 3779 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
1e3c88bd
PZ
3780 int new_ilb;
3781
83cd4fe2
VP
3782 /* make me the ilb owner */
3783 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3784 cpu) != nr_cpu_ids)
3785 return;
3786
1e3c88bd
PZ
3787 /*
3788 * Check to see if there is a more power-efficient
3789 * ilb.
3790 */
3791 new_ilb = find_new_ilb(cpu);
3792 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
83cd4fe2 3793 atomic_set(&nohz.load_balancer, nr_cpu_ids);
1e3c88bd 3794 resched_cpu(new_ilb);
83cd4fe2 3795 return;
1e3c88bd 3796 }
83cd4fe2 3797 return;
1e3c88bd
PZ
3798 }
3799 } else {
83cd4fe2
VP
3800 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3801 return;
1e3c88bd 3802
83cd4fe2 3803 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd
PZ
3804
3805 if (atomic_read(&nohz.load_balancer) == cpu)
83cd4fe2
VP
3806 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3807 nr_cpu_ids) != cpu)
1e3c88bd
PZ
3808 BUG();
3809 }
83cd4fe2 3810 return;
1e3c88bd
PZ
3811}
3812#endif
3813
3814static DEFINE_SPINLOCK(balancing);
3815
3816/*
3817 * It checks each scheduling domain to see if it is due to be balanced,
3818 * and initiates a balancing operation if so.
3819 *
3820 * Balancing parameters are set up in arch_init_sched_domains.
3821 */
3822static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3823{
3824 int balance = 1;
3825 struct rq *rq = cpu_rq(cpu);
3826 unsigned long interval;
3827 struct sched_domain *sd;
3828 /* Earliest time when we have to do rebalance again */
3829 unsigned long next_balance = jiffies + 60*HZ;
3830 int update_next_balance = 0;
3831 int need_serialize;
3832
2069dd75
PZ
3833 update_shares(cpu);
3834
1e3c88bd
PZ
3835 for_each_domain(cpu, sd) {
3836 if (!(sd->flags & SD_LOAD_BALANCE))
3837 continue;
3838
3839 interval = sd->balance_interval;
3840 if (idle != CPU_IDLE)
3841 interval *= sd->busy_factor;
3842
3843 /* scale ms to jiffies */
3844 interval = msecs_to_jiffies(interval);
3845 if (unlikely(!interval))
3846 interval = 1;
3847 if (interval > HZ*NR_CPUS/10)
3848 interval = HZ*NR_CPUS/10;
3849
3850 need_serialize = sd->flags & SD_SERIALIZE;
3851
3852 if (need_serialize) {
3853 if (!spin_trylock(&balancing))
3854 goto out;
3855 }
3856
3857 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3858 if (load_balance(cpu, rq, sd, idle, &balance)) {
3859 /*
3860 * We've pulled tasks over so either we're no
c186fafe 3861 * longer idle.
1e3c88bd
PZ
3862 */
3863 idle = CPU_NOT_IDLE;
3864 }
3865 sd->last_balance = jiffies;
3866 }
3867 if (need_serialize)
3868 spin_unlock(&balancing);
3869out:
3870 if (time_after(next_balance, sd->last_balance + interval)) {
3871 next_balance = sd->last_balance + interval;
3872 update_next_balance = 1;
3873 }
3874
3875 /*
3876 * Stop the load balance at this level. There is another
3877 * CPU in our sched group which is doing load balancing more
3878 * actively.
3879 */
3880 if (!balance)
3881 break;
3882 }
3883
3884 /*
3885 * next_balance will be updated only when there is a need.
3886 * When the cpu is attached to null domain for ex, it will not be
3887 * updated.
3888 */
3889 if (likely(update_next_balance))
3890 rq->next_balance = next_balance;
3891}
3892
83cd4fe2 3893#ifdef CONFIG_NO_HZ
1e3c88bd 3894/*
83cd4fe2 3895 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
3896 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3897 */
83cd4fe2
VP
3898static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3899{
3900 struct rq *this_rq = cpu_rq(this_cpu);
3901 struct rq *rq;
3902 int balance_cpu;
3903
3904 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3905 return;
3906
3907 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3908 if (balance_cpu == this_cpu)
3909 continue;
3910
3911 /*
3912 * If this cpu gets work to do, stop the load balancing
3913 * work being done for other cpus. Next load
3914 * balancing owner will pick it up.
3915 */
3916 if (need_resched()) {
3917 this_rq->nohz_balance_kick = 0;
3918 break;
3919 }
3920
3921 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 3922 update_rq_clock(this_rq);
83cd4fe2
VP
3923 update_cpu_load(this_rq);
3924 raw_spin_unlock_irq(&this_rq->lock);
3925
3926 rebalance_domains(balance_cpu, CPU_IDLE);
3927
3928 rq = cpu_rq(balance_cpu);
3929 if (time_after(this_rq->next_balance, rq->next_balance))
3930 this_rq->next_balance = rq->next_balance;
3931 }
3932 nohz.next_balance = this_rq->next_balance;
3933 this_rq->nohz_balance_kick = 0;
3934}
3935
3936/*
3937 * Current heuristic for kicking the idle load balancer
3938 * - first_pick_cpu is the one of the busy CPUs. It will kick
3939 * idle load balancer when it has more than one process active. This
3940 * eliminates the need for idle load balancing altogether when we have
3941 * only one running process in the system (common case).
3942 * - If there are more than one busy CPU, idle load balancer may have
3943 * to run for active_load_balance to happen (i.e., two busy CPUs are
3944 * SMT or core siblings and can run better if they move to different
3945 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3946 * which will kick idle load balancer as soon as it has any load.
3947 */
3948static inline int nohz_kick_needed(struct rq *rq, int cpu)
3949{
3950 unsigned long now = jiffies;
3951 int ret;
3952 int first_pick_cpu, second_pick_cpu;
3953
3954 if (time_before(now, nohz.next_balance))
3955 return 0;
3956
f6c3f168 3957 if (rq->idle_at_tick)
83cd4fe2
VP
3958 return 0;
3959
3960 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3961 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3962
3963 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3964 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3965 return 0;
3966
3967 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3968 if (ret == nr_cpu_ids || ret == cpu) {
3969 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3970 if (rq->nr_running > 1)
3971 return 1;
3972 } else {
3973 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3974 if (ret == nr_cpu_ids || ret == cpu) {
3975 if (rq->nr_running)
3976 return 1;
3977 }
3978 }
3979 return 0;
3980}
3981#else
3982static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3983#endif
3984
3985/*
3986 * run_rebalance_domains is triggered when needed from the scheduler tick.
3987 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
3988 */
1e3c88bd
PZ
3989static void run_rebalance_domains(struct softirq_action *h)
3990{
3991 int this_cpu = smp_processor_id();
3992 struct rq *this_rq = cpu_rq(this_cpu);
3993 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3994 CPU_IDLE : CPU_NOT_IDLE;
3995
3996 rebalance_domains(this_cpu, idle);
3997
1e3c88bd 3998 /*
83cd4fe2 3999 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
4000 * balancing on behalf of the other idle cpus whose ticks are
4001 * stopped.
4002 */
83cd4fe2 4003 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
4004}
4005
4006static inline int on_null_domain(int cpu)
4007{
90a6501f 4008 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
4009}
4010
4011/*
4012 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd
PZ
4013 */
4014static inline void trigger_load_balance(struct rq *rq, int cpu)
4015{
1e3c88bd
PZ
4016 /* Don't need to rebalance while attached to NULL domain */
4017 if (time_after_eq(jiffies, rq->next_balance) &&
4018 likely(!on_null_domain(cpu)))
4019 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2
VP
4020#ifdef CONFIG_NO_HZ
4021 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4022 nohz_balancer_kick(cpu);
4023#endif
1e3c88bd
PZ
4024}
4025
0bcdcf28
CE
4026static void rq_online_fair(struct rq *rq)
4027{
4028 update_sysctl();
4029}
4030
4031static void rq_offline_fair(struct rq *rq)
4032{
4033 update_sysctl();
4034}
4035
1e3c88bd
PZ
4036#else /* CONFIG_SMP */
4037
4038/*
4039 * on UP we do not need to balance between CPUs:
4040 */
4041static inline void idle_balance(int cpu, struct rq *rq)
4042{
4043}
4044
55e12e5e 4045#endif /* CONFIG_SMP */
e1d1484f 4046
bf0f6f24
IM
4047/*
4048 * scheduler tick hitting a task of our scheduling class:
4049 */
8f4d37ec 4050static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
4051{
4052 struct cfs_rq *cfs_rq;
4053 struct sched_entity *se = &curr->se;
4054
4055 for_each_sched_entity(se) {
4056 cfs_rq = cfs_rq_of(se);
8f4d37ec 4057 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
4058 }
4059}
4060
4061/*
cd29fe6f
PZ
4062 * called on fork with the child task as argument from the parent's context
4063 * - child not yet on the tasklist
4064 * - preemption disabled
bf0f6f24 4065 */
cd29fe6f 4066static void task_fork_fair(struct task_struct *p)
bf0f6f24 4067{
cd29fe6f 4068 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 4069 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 4070 int this_cpu = smp_processor_id();
cd29fe6f
PZ
4071 struct rq *rq = this_rq();
4072 unsigned long flags;
4073
05fa785c 4074 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 4075
861d034e
PZ
4076 update_rq_clock(rq);
4077
b0a0f667
PM
4078 if (unlikely(task_cpu(p) != this_cpu)) {
4079 rcu_read_lock();
cd29fe6f 4080 __set_task_cpu(p, this_cpu);
b0a0f667
PM
4081 rcu_read_unlock();
4082 }
bf0f6f24 4083
7109c442 4084 update_curr(cfs_rq);
cd29fe6f 4085
b5d9d734
MG
4086 if (curr)
4087 se->vruntime = curr->vruntime;
aeb73b04 4088 place_entity(cfs_rq, se, 1);
4d78e7b6 4089
cd29fe6f 4090 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 4091 /*
edcb60a3
IM
4092 * Upon rescheduling, sched_class::put_prev_task() will place
4093 * 'current' within the tree based on its new key value.
4094 */
4d78e7b6 4095 swap(curr->vruntime, se->vruntime);
aec0a514 4096 resched_task(rq->curr);
4d78e7b6 4097 }
bf0f6f24 4098
88ec22d3
PZ
4099 se->vruntime -= cfs_rq->min_vruntime;
4100
05fa785c 4101 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
4102}
4103
cb469845
SR
4104/*
4105 * Priority of the task has changed. Check to see if we preempt
4106 * the current task.
4107 */
da7a735e
PZ
4108static void
4109prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 4110{
da7a735e
PZ
4111 if (!p->se.on_rq)
4112 return;
4113
cb469845
SR
4114 /*
4115 * Reschedule if we are currently running on this runqueue and
4116 * our priority decreased, or if we are not currently running on
4117 * this runqueue and our priority is higher than the current's
4118 */
da7a735e 4119 if (rq->curr == p) {
cb469845
SR
4120 if (p->prio > oldprio)
4121 resched_task(rq->curr);
4122 } else
15afe09b 4123 check_preempt_curr(rq, p, 0);
cb469845
SR
4124}
4125
da7a735e
PZ
4126static void switched_from_fair(struct rq *rq, struct task_struct *p)
4127{
4128 struct sched_entity *se = &p->se;
4129 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4130
4131 /*
4132 * Ensure the task's vruntime is normalized, so that when its
4133 * switched back to the fair class the enqueue_entity(.flags=0) will
4134 * do the right thing.
4135 *
4136 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4137 * have normalized the vruntime, if it was !on_rq, then only when
4138 * the task is sleeping will it still have non-normalized vruntime.
4139 */
4140 if (!se->on_rq && p->state != TASK_RUNNING) {
4141 /*
4142 * Fix up our vruntime so that the current sleep doesn't
4143 * cause 'unlimited' sleep bonus.
4144 */
4145 place_entity(cfs_rq, se, 0);
4146 se->vruntime -= cfs_rq->min_vruntime;
4147 }
4148}
4149
cb469845
SR
4150/*
4151 * We switched to the sched_fair class.
4152 */
da7a735e 4153static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 4154{
da7a735e
PZ
4155 if (!p->se.on_rq)
4156 return;
4157
cb469845
SR
4158 /*
4159 * We were most likely switched from sched_rt, so
4160 * kick off the schedule if running, otherwise just see
4161 * if we can still preempt the current task.
4162 */
da7a735e 4163 if (rq->curr == p)
cb469845
SR
4164 resched_task(rq->curr);
4165 else
15afe09b 4166 check_preempt_curr(rq, p, 0);
cb469845
SR
4167}
4168
83b699ed
SV
4169/* Account for a task changing its policy or group.
4170 *
4171 * This routine is mostly called to set cfs_rq->curr field when a task
4172 * migrates between groups/classes.
4173 */
4174static void set_curr_task_fair(struct rq *rq)
4175{
4176 struct sched_entity *se = &rq->curr->se;
4177
4178 for_each_sched_entity(se)
4179 set_next_entity(cfs_rq_of(se), se);
4180}
4181
810b3817 4182#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4183static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 4184{
b2b5ce02
PZ
4185 /*
4186 * If the task was not on the rq at the time of this cgroup movement
4187 * it must have been asleep, sleeping tasks keep their ->vruntime
4188 * absolute on their old rq until wakeup (needed for the fair sleeper
4189 * bonus in place_entity()).
4190 *
4191 * If it was on the rq, we've just 'preempted' it, which does convert
4192 * ->vruntime to a relative base.
4193 *
4194 * Make sure both cases convert their relative position when migrating
4195 * to another cgroup's rq. This does somewhat interfere with the
4196 * fair sleeper stuff for the first placement, but who cares.
4197 */
4198 if (!on_rq)
4199 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4200 set_task_rq(p, task_cpu(p));
88ec22d3 4201 if (!on_rq)
b2b5ce02 4202 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817
PZ
4203}
4204#endif
4205
6d686f45 4206static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
4207{
4208 struct sched_entity *se = &task->se;
0d721cea
PW
4209 unsigned int rr_interval = 0;
4210
4211 /*
4212 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4213 * idle runqueue:
4214 */
0d721cea
PW
4215 if (rq->cfs.load.weight)
4216 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
4217
4218 return rr_interval;
4219}
4220
bf0f6f24
IM
4221/*
4222 * All the scheduling class methods:
4223 */
5522d5d5
IM
4224static const struct sched_class fair_sched_class = {
4225 .next = &idle_sched_class,
bf0f6f24
IM
4226 .enqueue_task = enqueue_task_fair,
4227 .dequeue_task = dequeue_task_fair,
4228 .yield_task = yield_task_fair,
d95f4122 4229 .yield_to_task = yield_to_task_fair,
bf0f6f24 4230
2e09bf55 4231 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
4232
4233 .pick_next_task = pick_next_task_fair,
4234 .put_prev_task = put_prev_task_fair,
4235
681f3e68 4236#ifdef CONFIG_SMP
4ce72a2c
LZ
4237 .select_task_rq = select_task_rq_fair,
4238
0bcdcf28
CE
4239 .rq_online = rq_online_fair,
4240 .rq_offline = rq_offline_fair,
88ec22d3
PZ
4241
4242 .task_waking = task_waking_fair,
681f3e68 4243#endif
bf0f6f24 4244
83b699ed 4245 .set_curr_task = set_curr_task_fair,
bf0f6f24 4246 .task_tick = task_tick_fair,
cd29fe6f 4247 .task_fork = task_fork_fair,
cb469845
SR
4248
4249 .prio_changed = prio_changed_fair,
da7a735e 4250 .switched_from = switched_from_fair,
cb469845 4251 .switched_to = switched_to_fair,
810b3817 4252
0d721cea
PW
4253 .get_rr_interval = get_rr_interval_fair,
4254
810b3817 4255#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4256 .task_move_group = task_move_group_fair,
810b3817 4257#endif
bf0f6f24
IM
4258};
4259
4260#ifdef CONFIG_SCHED_DEBUG
5cef9eca 4261static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 4262{
bf0f6f24
IM
4263 struct cfs_rq *cfs_rq;
4264
5973e5b9 4265 rcu_read_lock();
c3b64f1e 4266 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 4267 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 4268 rcu_read_unlock();
bf0f6f24
IM
4269}
4270#endif