sched: Expire invalid runtime
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
9745512c 26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
864616ee 29 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 30 *
21805085 31 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
32 * 'timeslice length' - timeslices in CFS are of variable length
33 * and have no persistent notion like in traditional, time-slice
34 * based scheduling concepts.
bf0f6f24 35 *
d274a4ce
IM
36 * (to see the precise effective timeslice length of your workload,
37 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 38 */
21406928
MG
39unsigned int sysctl_sched_latency = 6000000ULL;
40unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 41
1983a922
CE
42/*
43 * The initial- and re-scaling of tunables is configurable
44 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45 *
46 * Options are:
47 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
48 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
49 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 */
51enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 = SCHED_TUNABLESCALING_LOG;
53
2bd8e6d4 54/*
b2be5e96 55 * Minimal preemption granularity for CPU-bound tasks:
864616ee 56 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 57 */
0bf377bb
IM
58unsigned int sysctl_sched_min_granularity = 750000ULL;
59unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
60
61/*
b2be5e96
PZ
62 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 */
0bf377bb 64static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
65
66/*
2bba22c5 67 * After fork, child runs first. If set to 0 (default) then
b2be5e96 68 * parent will (try to) run first.
21805085 69 */
2bba22c5 70unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 71
bf0f6f24
IM
72/*
73 * SCHED_OTHER wake-up granularity.
172e082a 74 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 */
172e082a 80unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 81unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 82
da84d961
IM
83const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
84
a7a4f8a7
PT
85/*
86 * The exponential sliding window over which load is averaged for shares
87 * distribution.
88 * (default: 10msec)
89 */
90unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
91
ec12cb7f
PT
92#ifdef CONFIG_CFS_BANDWIDTH
93/*
94 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
95 * each time a cfs_rq requests quota.
96 *
97 * Note: in the case that the slice exceeds the runtime remaining (either due
98 * to consumption or the quota being specified to be smaller than the slice)
99 * we will always only issue the remaining available time.
100 *
101 * default: 5 msec, units: microseconds
102 */
103unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
104#endif
105
a4c2f00f
PZ
106static const struct sched_class fair_sched_class;
107
bf0f6f24
IM
108/**************************************************************
109 * CFS operations on generic schedulable entities:
110 */
111
62160e3f 112#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 113
62160e3f 114/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
115static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
116{
62160e3f 117 return cfs_rq->rq;
bf0f6f24
IM
118}
119
62160e3f
IM
120/* An entity is a task if it doesn't "own" a runqueue */
121#define entity_is_task(se) (!se->my_q)
bf0f6f24 122
8f48894f
PZ
123static inline struct task_struct *task_of(struct sched_entity *se)
124{
125#ifdef CONFIG_SCHED_DEBUG
126 WARN_ON_ONCE(!entity_is_task(se));
127#endif
128 return container_of(se, struct task_struct, se);
129}
130
b758149c
PZ
131/* Walk up scheduling entities hierarchy */
132#define for_each_sched_entity(se) \
133 for (; se; se = se->parent)
134
135static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
136{
137 return p->se.cfs_rq;
138}
139
140/* runqueue on which this entity is (to be) queued */
141static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
142{
143 return se->cfs_rq;
144}
145
146/* runqueue "owned" by this group */
147static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
148{
149 return grp->my_q;
150}
151
3d4b47b4
PZ
152static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
153{
154 if (!cfs_rq->on_list) {
67e86250
PT
155 /*
156 * Ensure we either appear before our parent (if already
157 * enqueued) or force our parent to appear after us when it is
158 * enqueued. The fact that we always enqueue bottom-up
159 * reduces this to two cases.
160 */
161 if (cfs_rq->tg->parent &&
162 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
163 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
164 &rq_of(cfs_rq)->leaf_cfs_rq_list);
165 } else {
166 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 167 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 168 }
3d4b47b4
PZ
169
170 cfs_rq->on_list = 1;
171 }
172}
173
174static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
175{
176 if (cfs_rq->on_list) {
177 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
178 cfs_rq->on_list = 0;
179 }
180}
181
b758149c
PZ
182/* Iterate thr' all leaf cfs_rq's on a runqueue */
183#define for_each_leaf_cfs_rq(rq, cfs_rq) \
184 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
185
186/* Do the two (enqueued) entities belong to the same group ? */
187static inline int
188is_same_group(struct sched_entity *se, struct sched_entity *pse)
189{
190 if (se->cfs_rq == pse->cfs_rq)
191 return 1;
192
193 return 0;
194}
195
196static inline struct sched_entity *parent_entity(struct sched_entity *se)
197{
198 return se->parent;
199}
200
464b7527
PZ
201/* return depth at which a sched entity is present in the hierarchy */
202static inline int depth_se(struct sched_entity *se)
203{
204 int depth = 0;
205
206 for_each_sched_entity(se)
207 depth++;
208
209 return depth;
210}
211
212static void
213find_matching_se(struct sched_entity **se, struct sched_entity **pse)
214{
215 int se_depth, pse_depth;
216
217 /*
218 * preemption test can be made between sibling entities who are in the
219 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
220 * both tasks until we find their ancestors who are siblings of common
221 * parent.
222 */
223
224 /* First walk up until both entities are at same depth */
225 se_depth = depth_se(*se);
226 pse_depth = depth_se(*pse);
227
228 while (se_depth > pse_depth) {
229 se_depth--;
230 *se = parent_entity(*se);
231 }
232
233 while (pse_depth > se_depth) {
234 pse_depth--;
235 *pse = parent_entity(*pse);
236 }
237
238 while (!is_same_group(*se, *pse)) {
239 *se = parent_entity(*se);
240 *pse = parent_entity(*pse);
241 }
242}
243
8f48894f
PZ
244#else /* !CONFIG_FAIR_GROUP_SCHED */
245
246static inline struct task_struct *task_of(struct sched_entity *se)
247{
248 return container_of(se, struct task_struct, se);
249}
bf0f6f24 250
62160e3f
IM
251static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
252{
253 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
254}
255
256#define entity_is_task(se) 1
257
b758149c
PZ
258#define for_each_sched_entity(se) \
259 for (; se; se = NULL)
bf0f6f24 260
b758149c 261static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 262{
b758149c 263 return &task_rq(p)->cfs;
bf0f6f24
IM
264}
265
b758149c
PZ
266static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
267{
268 struct task_struct *p = task_of(se);
269 struct rq *rq = task_rq(p);
270
271 return &rq->cfs;
272}
273
274/* runqueue "owned" by this group */
275static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
276{
277 return NULL;
278}
279
3d4b47b4
PZ
280static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
281{
282}
283
284static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285{
286}
287
b758149c
PZ
288#define for_each_leaf_cfs_rq(rq, cfs_rq) \
289 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
290
291static inline int
292is_same_group(struct sched_entity *se, struct sched_entity *pse)
293{
294 return 1;
295}
296
297static inline struct sched_entity *parent_entity(struct sched_entity *se)
298{
299 return NULL;
300}
301
464b7527
PZ
302static inline void
303find_matching_se(struct sched_entity **se, struct sched_entity **pse)
304{
305}
306
b758149c
PZ
307#endif /* CONFIG_FAIR_GROUP_SCHED */
308
ec12cb7f
PT
309static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
310 unsigned long delta_exec);
bf0f6f24
IM
311
312/**************************************************************
313 * Scheduling class tree data structure manipulation methods:
314 */
315
0702e3eb 316static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 317{
368059a9
PZ
318 s64 delta = (s64)(vruntime - min_vruntime);
319 if (delta > 0)
02e0431a
PZ
320 min_vruntime = vruntime;
321
322 return min_vruntime;
323}
324
0702e3eb 325static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
326{
327 s64 delta = (s64)(vruntime - min_vruntime);
328 if (delta < 0)
329 min_vruntime = vruntime;
330
331 return min_vruntime;
332}
333
54fdc581
FC
334static inline int entity_before(struct sched_entity *a,
335 struct sched_entity *b)
336{
337 return (s64)(a->vruntime - b->vruntime) < 0;
338}
339
1af5f730
PZ
340static void update_min_vruntime(struct cfs_rq *cfs_rq)
341{
342 u64 vruntime = cfs_rq->min_vruntime;
343
344 if (cfs_rq->curr)
345 vruntime = cfs_rq->curr->vruntime;
346
347 if (cfs_rq->rb_leftmost) {
348 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
349 struct sched_entity,
350 run_node);
351
e17036da 352 if (!cfs_rq->curr)
1af5f730
PZ
353 vruntime = se->vruntime;
354 else
355 vruntime = min_vruntime(vruntime, se->vruntime);
356 }
357
358 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
359#ifndef CONFIG_64BIT
360 smp_wmb();
361 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
362#endif
1af5f730
PZ
363}
364
bf0f6f24
IM
365/*
366 * Enqueue an entity into the rb-tree:
367 */
0702e3eb 368static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
369{
370 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
371 struct rb_node *parent = NULL;
372 struct sched_entity *entry;
bf0f6f24
IM
373 int leftmost = 1;
374
375 /*
376 * Find the right place in the rbtree:
377 */
378 while (*link) {
379 parent = *link;
380 entry = rb_entry(parent, struct sched_entity, run_node);
381 /*
382 * We dont care about collisions. Nodes with
383 * the same key stay together.
384 */
2bd2d6f2 385 if (entity_before(se, entry)) {
bf0f6f24
IM
386 link = &parent->rb_left;
387 } else {
388 link = &parent->rb_right;
389 leftmost = 0;
390 }
391 }
392
393 /*
394 * Maintain a cache of leftmost tree entries (it is frequently
395 * used):
396 */
1af5f730 397 if (leftmost)
57cb499d 398 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
399
400 rb_link_node(&se->run_node, parent, link);
401 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
402}
403
0702e3eb 404static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 405{
3fe69747
PZ
406 if (cfs_rq->rb_leftmost == &se->run_node) {
407 struct rb_node *next_node;
3fe69747
PZ
408
409 next_node = rb_next(&se->run_node);
410 cfs_rq->rb_leftmost = next_node;
3fe69747 411 }
e9acbff6 412
bf0f6f24 413 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
414}
415
ac53db59 416static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 417{
f4b6755f
PZ
418 struct rb_node *left = cfs_rq->rb_leftmost;
419
420 if (!left)
421 return NULL;
422
423 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
424}
425
ac53db59
RR
426static struct sched_entity *__pick_next_entity(struct sched_entity *se)
427{
428 struct rb_node *next = rb_next(&se->run_node);
429
430 if (!next)
431 return NULL;
432
433 return rb_entry(next, struct sched_entity, run_node);
434}
435
436#ifdef CONFIG_SCHED_DEBUG
f4b6755f 437static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 438{
7eee3e67 439 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 440
70eee74b
BS
441 if (!last)
442 return NULL;
7eee3e67
IM
443
444 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
445}
446
bf0f6f24
IM
447/**************************************************************
448 * Scheduling class statistics methods:
449 */
450
acb4a848 451int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 452 void __user *buffer, size_t *lenp,
b2be5e96
PZ
453 loff_t *ppos)
454{
8d65af78 455 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 456 int factor = get_update_sysctl_factor();
b2be5e96
PZ
457
458 if (ret || !write)
459 return ret;
460
461 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
462 sysctl_sched_min_granularity);
463
acb4a848
CE
464#define WRT_SYSCTL(name) \
465 (normalized_sysctl_##name = sysctl_##name / (factor))
466 WRT_SYSCTL(sched_min_granularity);
467 WRT_SYSCTL(sched_latency);
468 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
469#undef WRT_SYSCTL
470
b2be5e96
PZ
471 return 0;
472}
473#endif
647e7cac 474
a7be37ac 475/*
f9c0b095 476 * delta /= w
a7be37ac
PZ
477 */
478static inline unsigned long
479calc_delta_fair(unsigned long delta, struct sched_entity *se)
480{
f9c0b095
PZ
481 if (unlikely(se->load.weight != NICE_0_LOAD))
482 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
483
484 return delta;
485}
486
647e7cac
IM
487/*
488 * The idea is to set a period in which each task runs once.
489 *
490 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
491 * this period because otherwise the slices get too small.
492 *
493 * p = (nr <= nl) ? l : l*nr/nl
494 */
4d78e7b6
PZ
495static u64 __sched_period(unsigned long nr_running)
496{
497 u64 period = sysctl_sched_latency;
b2be5e96 498 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
499
500 if (unlikely(nr_running > nr_latency)) {
4bf0b771 501 period = sysctl_sched_min_granularity;
4d78e7b6 502 period *= nr_running;
4d78e7b6
PZ
503 }
504
505 return period;
506}
507
647e7cac
IM
508/*
509 * We calculate the wall-time slice from the period by taking a part
510 * proportional to the weight.
511 *
f9c0b095 512 * s = p*P[w/rw]
647e7cac 513 */
6d0f0ebd 514static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 515{
0a582440 516 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 517
0a582440 518 for_each_sched_entity(se) {
6272d68c 519 struct load_weight *load;
3104bf03 520 struct load_weight lw;
6272d68c
LM
521
522 cfs_rq = cfs_rq_of(se);
523 load = &cfs_rq->load;
f9c0b095 524
0a582440 525 if (unlikely(!se->on_rq)) {
3104bf03 526 lw = cfs_rq->load;
0a582440
MG
527
528 update_load_add(&lw, se->load.weight);
529 load = &lw;
530 }
531 slice = calc_delta_mine(slice, se->load.weight, load);
532 }
533 return slice;
bf0f6f24
IM
534}
535
647e7cac 536/*
ac884dec 537 * We calculate the vruntime slice of a to be inserted task
647e7cac 538 *
f9c0b095 539 * vs = s/w
647e7cac 540 */
f9c0b095 541static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 542{
f9c0b095 543 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
544}
545
d6b55918 546static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
6d5ab293 547static void update_cfs_shares(struct cfs_rq *cfs_rq);
3b3d190e 548
bf0f6f24
IM
549/*
550 * Update the current task's runtime statistics. Skip current tasks that
551 * are not in our scheduling class.
552 */
553static inline void
8ebc91d9
IM
554__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
555 unsigned long delta_exec)
bf0f6f24 556{
bbdba7c0 557 unsigned long delta_exec_weighted;
bf0f6f24 558
41acab88
LDM
559 schedstat_set(curr->statistics.exec_max,
560 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
561
562 curr->sum_exec_runtime += delta_exec;
7a62eabc 563 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 564 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 565
e9acbff6 566 curr->vruntime += delta_exec_weighted;
1af5f730 567 update_min_vruntime(cfs_rq);
3b3d190e 568
70caf8a6 569#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 570 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 571#endif
bf0f6f24
IM
572}
573
b7cc0896 574static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 575{
429d43bc 576 struct sched_entity *curr = cfs_rq->curr;
305e6835 577 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
578 unsigned long delta_exec;
579
580 if (unlikely(!curr))
581 return;
582
583 /*
584 * Get the amount of time the current task was running
585 * since the last time we changed load (this cannot
586 * overflow on 32 bits):
587 */
8ebc91d9 588 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
589 if (!delta_exec)
590 return;
bf0f6f24 591
8ebc91d9
IM
592 __update_curr(cfs_rq, curr, delta_exec);
593 curr->exec_start = now;
d842de87
SV
594
595 if (entity_is_task(curr)) {
596 struct task_struct *curtask = task_of(curr);
597
f977bb49 598 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 599 cpuacct_charge(curtask, delta_exec);
f06febc9 600 account_group_exec_runtime(curtask, delta_exec);
d842de87 601 }
ec12cb7f
PT
602
603 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
604}
605
606static inline void
5870db5b 607update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 608{
41acab88 609 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
610}
611
bf0f6f24
IM
612/*
613 * Task is being enqueued - update stats:
614 */
d2417e5a 615static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 616{
bf0f6f24
IM
617 /*
618 * Are we enqueueing a waiting task? (for current tasks
619 * a dequeue/enqueue event is a NOP)
620 */
429d43bc 621 if (se != cfs_rq->curr)
5870db5b 622 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
623}
624
bf0f6f24 625static void
9ef0a961 626update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 627{
41acab88
LDM
628 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
629 rq_of(cfs_rq)->clock - se->statistics.wait_start));
630 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
631 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
632 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
633#ifdef CONFIG_SCHEDSTATS
634 if (entity_is_task(se)) {
635 trace_sched_stat_wait(task_of(se),
41acab88 636 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
637 }
638#endif
41acab88 639 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
640}
641
642static inline void
19b6a2e3 643update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 644{
bf0f6f24
IM
645 /*
646 * Mark the end of the wait period if dequeueing a
647 * waiting task:
648 */
429d43bc 649 if (se != cfs_rq->curr)
9ef0a961 650 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
651}
652
653/*
654 * We are picking a new current task - update its stats:
655 */
656static inline void
79303e9e 657update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
658{
659 /*
660 * We are starting a new run period:
661 */
305e6835 662 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
663}
664
bf0f6f24
IM
665/**************************************************
666 * Scheduling class queueing methods:
667 */
668
c09595f6
PZ
669#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
670static void
671add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
672{
673 cfs_rq->task_weight += weight;
674}
675#else
676static inline void
677add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
678{
679}
680#endif
681
30cfdcfc
DA
682static void
683account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
684{
685 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
686 if (!parent_entity(se))
687 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 688 if (entity_is_task(se)) {
c09595f6 689 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
690 list_add(&se->group_node, &cfs_rq->tasks);
691 }
30cfdcfc 692 cfs_rq->nr_running++;
30cfdcfc
DA
693}
694
695static void
696account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
697{
698 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
699 if (!parent_entity(se))
700 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 701 if (entity_is_task(se)) {
c09595f6 702 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
703 list_del_init(&se->group_node);
704 }
30cfdcfc 705 cfs_rq->nr_running--;
30cfdcfc
DA
706}
707
3ff6dcac
YZ
708#ifdef CONFIG_FAIR_GROUP_SCHED
709# ifdef CONFIG_SMP
d6b55918
PT
710static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
711 int global_update)
712{
713 struct task_group *tg = cfs_rq->tg;
714 long load_avg;
715
716 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
717 load_avg -= cfs_rq->load_contribution;
718
719 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
720 atomic_add(load_avg, &tg->load_weight);
721 cfs_rq->load_contribution += load_avg;
722 }
723}
724
725static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 726{
a7a4f8a7 727 u64 period = sysctl_sched_shares_window;
2069dd75 728 u64 now, delta;
e33078ba 729 unsigned long load = cfs_rq->load.weight;
2069dd75 730
b815f196 731 if (cfs_rq->tg == &root_task_group)
2069dd75
PZ
732 return;
733
05ca62c6 734 now = rq_of(cfs_rq)->clock_task;
2069dd75
PZ
735 delta = now - cfs_rq->load_stamp;
736
e33078ba
PT
737 /* truncate load history at 4 idle periods */
738 if (cfs_rq->load_stamp > cfs_rq->load_last &&
739 now - cfs_rq->load_last > 4 * period) {
740 cfs_rq->load_period = 0;
741 cfs_rq->load_avg = 0;
f07333bf 742 delta = period - 1;
e33078ba
PT
743 }
744
2069dd75 745 cfs_rq->load_stamp = now;
3b3d190e 746 cfs_rq->load_unacc_exec_time = 0;
2069dd75 747 cfs_rq->load_period += delta;
e33078ba
PT
748 if (load) {
749 cfs_rq->load_last = now;
750 cfs_rq->load_avg += delta * load;
751 }
2069dd75 752
d6b55918
PT
753 /* consider updating load contribution on each fold or truncate */
754 if (global_update || cfs_rq->load_period > period
755 || !cfs_rq->load_period)
756 update_cfs_rq_load_contribution(cfs_rq, global_update);
757
2069dd75
PZ
758 while (cfs_rq->load_period > period) {
759 /*
760 * Inline assembly required to prevent the compiler
761 * optimising this loop into a divmod call.
762 * See __iter_div_u64_rem() for another example of this.
763 */
764 asm("" : "+rm" (cfs_rq->load_period));
765 cfs_rq->load_period /= 2;
766 cfs_rq->load_avg /= 2;
767 }
3d4b47b4 768
e33078ba
PT
769 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
770 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
771}
772
6d5ab293 773static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
774{
775 long load_weight, load, shares;
776
6d5ab293 777 load = cfs_rq->load.weight;
3ff6dcac
YZ
778
779 load_weight = atomic_read(&tg->load_weight);
3ff6dcac 780 load_weight += load;
6d5ab293 781 load_weight -= cfs_rq->load_contribution;
3ff6dcac
YZ
782
783 shares = (tg->shares * load);
784 if (load_weight)
785 shares /= load_weight;
786
787 if (shares < MIN_SHARES)
788 shares = MIN_SHARES;
789 if (shares > tg->shares)
790 shares = tg->shares;
791
792 return shares;
793}
794
795static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
796{
797 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
798 update_cfs_load(cfs_rq, 0);
6d5ab293 799 update_cfs_shares(cfs_rq);
3ff6dcac
YZ
800 }
801}
802# else /* CONFIG_SMP */
803static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
804{
805}
806
6d5ab293 807static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
808{
809 return tg->shares;
810}
811
812static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
813{
814}
815# endif /* CONFIG_SMP */
2069dd75
PZ
816static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
817 unsigned long weight)
818{
19e5eebb
PT
819 if (se->on_rq) {
820 /* commit outstanding execution time */
821 if (cfs_rq->curr == se)
822 update_curr(cfs_rq);
2069dd75 823 account_entity_dequeue(cfs_rq, se);
19e5eebb 824 }
2069dd75
PZ
825
826 update_load_set(&se->load, weight);
827
828 if (se->on_rq)
829 account_entity_enqueue(cfs_rq, se);
830}
831
6d5ab293 832static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
833{
834 struct task_group *tg;
835 struct sched_entity *se;
3ff6dcac 836 long shares;
2069dd75 837
2069dd75
PZ
838 tg = cfs_rq->tg;
839 se = tg->se[cpu_of(rq_of(cfs_rq))];
840 if (!se)
841 return;
3ff6dcac
YZ
842#ifndef CONFIG_SMP
843 if (likely(se->load.weight == tg->shares))
844 return;
845#endif
6d5ab293 846 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
847
848 reweight_entity(cfs_rq_of(se), se, shares);
849}
850#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 851static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
852{
853}
854
6d5ab293 855static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
856{
857}
43365bd7
PT
858
859static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
860{
861}
2069dd75
PZ
862#endif /* CONFIG_FAIR_GROUP_SCHED */
863
2396af69 864static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 865{
bf0f6f24 866#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
867 struct task_struct *tsk = NULL;
868
869 if (entity_is_task(se))
870 tsk = task_of(se);
871
41acab88
LDM
872 if (se->statistics.sleep_start) {
873 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
874
875 if ((s64)delta < 0)
876 delta = 0;
877
41acab88
LDM
878 if (unlikely(delta > se->statistics.sleep_max))
879 se->statistics.sleep_max = delta;
bf0f6f24 880
41acab88
LDM
881 se->statistics.sleep_start = 0;
882 se->statistics.sum_sleep_runtime += delta;
9745512c 883
768d0c27 884 if (tsk) {
e414314c 885 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
886 trace_sched_stat_sleep(tsk, delta);
887 }
bf0f6f24 888 }
41acab88
LDM
889 if (se->statistics.block_start) {
890 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
891
892 if ((s64)delta < 0)
893 delta = 0;
894
41acab88
LDM
895 if (unlikely(delta > se->statistics.block_max))
896 se->statistics.block_max = delta;
bf0f6f24 897
41acab88
LDM
898 se->statistics.block_start = 0;
899 se->statistics.sum_sleep_runtime += delta;
30084fbd 900
e414314c 901 if (tsk) {
8f0dfc34 902 if (tsk->in_iowait) {
41acab88
LDM
903 se->statistics.iowait_sum += delta;
904 se->statistics.iowait_count++;
768d0c27 905 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
906 }
907
e414314c
PZ
908 /*
909 * Blocking time is in units of nanosecs, so shift by
910 * 20 to get a milliseconds-range estimation of the
911 * amount of time that the task spent sleeping:
912 */
913 if (unlikely(prof_on == SLEEP_PROFILING)) {
914 profile_hits(SLEEP_PROFILING,
915 (void *)get_wchan(tsk),
916 delta >> 20);
917 }
918 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 919 }
bf0f6f24
IM
920 }
921#endif
922}
923
ddc97297
PZ
924static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
925{
926#ifdef CONFIG_SCHED_DEBUG
927 s64 d = se->vruntime - cfs_rq->min_vruntime;
928
929 if (d < 0)
930 d = -d;
931
932 if (d > 3*sysctl_sched_latency)
933 schedstat_inc(cfs_rq, nr_spread_over);
934#endif
935}
936
aeb73b04
PZ
937static void
938place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
939{
1af5f730 940 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 941
2cb8600e
PZ
942 /*
943 * The 'current' period is already promised to the current tasks,
944 * however the extra weight of the new task will slow them down a
945 * little, place the new task so that it fits in the slot that
946 * stays open at the end.
947 */
94dfb5e7 948 if (initial && sched_feat(START_DEBIT))
f9c0b095 949 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 950
a2e7a7eb 951 /* sleeps up to a single latency don't count. */
5ca9880c 952 if (!initial) {
a2e7a7eb 953 unsigned long thresh = sysctl_sched_latency;
a7be37ac 954
a2e7a7eb
MG
955 /*
956 * Halve their sleep time's effect, to allow
957 * for a gentler effect of sleepers:
958 */
959 if (sched_feat(GENTLE_FAIR_SLEEPERS))
960 thresh >>= 1;
51e0304c 961
a2e7a7eb 962 vruntime -= thresh;
aeb73b04
PZ
963 }
964
b5d9d734
MG
965 /* ensure we never gain time by being placed backwards. */
966 vruntime = max_vruntime(se->vruntime, vruntime);
967
67e9fb2a 968 se->vruntime = vruntime;
aeb73b04
PZ
969}
970
bf0f6f24 971static void
88ec22d3 972enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 973{
88ec22d3
PZ
974 /*
975 * Update the normalized vruntime before updating min_vruntime
976 * through callig update_curr().
977 */
371fd7e7 978 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
979 se->vruntime += cfs_rq->min_vruntime;
980
bf0f6f24 981 /*
a2a2d680 982 * Update run-time statistics of the 'current'.
bf0f6f24 983 */
b7cc0896 984 update_curr(cfs_rq);
d6b55918 985 update_cfs_load(cfs_rq, 0);
a992241d 986 account_entity_enqueue(cfs_rq, se);
6d5ab293 987 update_cfs_shares(cfs_rq);
bf0f6f24 988
88ec22d3 989 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 990 place_entity(cfs_rq, se, 0);
2396af69 991 enqueue_sleeper(cfs_rq, se);
e9acbff6 992 }
bf0f6f24 993
d2417e5a 994 update_stats_enqueue(cfs_rq, se);
ddc97297 995 check_spread(cfs_rq, se);
83b699ed
SV
996 if (se != cfs_rq->curr)
997 __enqueue_entity(cfs_rq, se);
2069dd75 998 se->on_rq = 1;
3d4b47b4
PZ
999
1000 if (cfs_rq->nr_running == 1)
1001 list_add_leaf_cfs_rq(cfs_rq);
bf0f6f24
IM
1002}
1003
2c13c919 1004static void __clear_buddies_last(struct sched_entity *se)
2002c695 1005{
2c13c919
RR
1006 for_each_sched_entity(se) {
1007 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1008 if (cfs_rq->last == se)
1009 cfs_rq->last = NULL;
1010 else
1011 break;
1012 }
1013}
2002c695 1014
2c13c919
RR
1015static void __clear_buddies_next(struct sched_entity *se)
1016{
1017 for_each_sched_entity(se) {
1018 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1019 if (cfs_rq->next == se)
1020 cfs_rq->next = NULL;
1021 else
1022 break;
1023 }
2002c695
PZ
1024}
1025
ac53db59
RR
1026static void __clear_buddies_skip(struct sched_entity *se)
1027{
1028 for_each_sched_entity(se) {
1029 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1030 if (cfs_rq->skip == se)
1031 cfs_rq->skip = NULL;
1032 else
1033 break;
1034 }
1035}
1036
a571bbea
PZ
1037static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1038{
2c13c919
RR
1039 if (cfs_rq->last == se)
1040 __clear_buddies_last(se);
1041
1042 if (cfs_rq->next == se)
1043 __clear_buddies_next(se);
ac53db59
RR
1044
1045 if (cfs_rq->skip == se)
1046 __clear_buddies_skip(se);
a571bbea
PZ
1047}
1048
bf0f6f24 1049static void
371fd7e7 1050dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1051{
a2a2d680
DA
1052 /*
1053 * Update run-time statistics of the 'current'.
1054 */
1055 update_curr(cfs_rq);
1056
19b6a2e3 1057 update_stats_dequeue(cfs_rq, se);
371fd7e7 1058 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1059#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1060 if (entity_is_task(se)) {
1061 struct task_struct *tsk = task_of(se);
1062
1063 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1064 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1065 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1066 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1067 }
db36cc7d 1068#endif
67e9fb2a
PZ
1069 }
1070
2002c695 1071 clear_buddies(cfs_rq, se);
4793241b 1072
83b699ed 1073 if (se != cfs_rq->curr)
30cfdcfc 1074 __dequeue_entity(cfs_rq, se);
2069dd75 1075 se->on_rq = 0;
d6b55918 1076 update_cfs_load(cfs_rq, 0);
30cfdcfc 1077 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1078
1079 /*
1080 * Normalize the entity after updating the min_vruntime because the
1081 * update can refer to the ->curr item and we need to reflect this
1082 * movement in our normalized position.
1083 */
371fd7e7 1084 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1085 se->vruntime -= cfs_rq->min_vruntime;
1e876231
PZ
1086
1087 update_min_vruntime(cfs_rq);
1088 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1089}
1090
1091/*
1092 * Preempt the current task with a newly woken task if needed:
1093 */
7c92e54f 1094static void
2e09bf55 1095check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1096{
11697830
PZ
1097 unsigned long ideal_runtime, delta_exec;
1098
6d0f0ebd 1099 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1100 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1101 if (delta_exec > ideal_runtime) {
bf0f6f24 1102 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1103 /*
1104 * The current task ran long enough, ensure it doesn't get
1105 * re-elected due to buddy favours.
1106 */
1107 clear_buddies(cfs_rq, curr);
f685ceac
MG
1108 return;
1109 }
1110
1111 /*
1112 * Ensure that a task that missed wakeup preemption by a
1113 * narrow margin doesn't have to wait for a full slice.
1114 * This also mitigates buddy induced latencies under load.
1115 */
f685ceac
MG
1116 if (delta_exec < sysctl_sched_min_granularity)
1117 return;
1118
1119 if (cfs_rq->nr_running > 1) {
ac53db59 1120 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac
MG
1121 s64 delta = curr->vruntime - se->vruntime;
1122
d7d82944
MG
1123 if (delta < 0)
1124 return;
1125
f685ceac
MG
1126 if (delta > ideal_runtime)
1127 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5 1128 }
bf0f6f24
IM
1129}
1130
83b699ed 1131static void
8494f412 1132set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1133{
83b699ed
SV
1134 /* 'current' is not kept within the tree. */
1135 if (se->on_rq) {
1136 /*
1137 * Any task has to be enqueued before it get to execute on
1138 * a CPU. So account for the time it spent waiting on the
1139 * runqueue.
1140 */
1141 update_stats_wait_end(cfs_rq, se);
1142 __dequeue_entity(cfs_rq, se);
1143 }
1144
79303e9e 1145 update_stats_curr_start(cfs_rq, se);
429d43bc 1146 cfs_rq->curr = se;
eba1ed4b
IM
1147#ifdef CONFIG_SCHEDSTATS
1148 /*
1149 * Track our maximum slice length, if the CPU's load is at
1150 * least twice that of our own weight (i.e. dont track it
1151 * when there are only lesser-weight tasks around):
1152 */
495eca49 1153 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1154 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1155 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1156 }
1157#endif
4a55b450 1158 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1159}
1160
3f3a4904
PZ
1161static int
1162wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1163
ac53db59
RR
1164/*
1165 * Pick the next process, keeping these things in mind, in this order:
1166 * 1) keep things fair between processes/task groups
1167 * 2) pick the "next" process, since someone really wants that to run
1168 * 3) pick the "last" process, for cache locality
1169 * 4) do not run the "skip" process, if something else is available
1170 */
f4b6755f 1171static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1172{
ac53db59 1173 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1174 struct sched_entity *left = se;
f4b6755f 1175
ac53db59
RR
1176 /*
1177 * Avoid running the skip buddy, if running something else can
1178 * be done without getting too unfair.
1179 */
1180 if (cfs_rq->skip == se) {
1181 struct sched_entity *second = __pick_next_entity(se);
1182 if (second && wakeup_preempt_entity(second, left) < 1)
1183 se = second;
1184 }
aa2ac252 1185
f685ceac
MG
1186 /*
1187 * Prefer last buddy, try to return the CPU to a preempted task.
1188 */
1189 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1190 se = cfs_rq->last;
1191
ac53db59
RR
1192 /*
1193 * Someone really wants this to run. If it's not unfair, run it.
1194 */
1195 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1196 se = cfs_rq->next;
1197
f685ceac 1198 clear_buddies(cfs_rq, se);
4793241b
PZ
1199
1200 return se;
aa2ac252
PZ
1201}
1202
ab6cde26 1203static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1204{
1205 /*
1206 * If still on the runqueue then deactivate_task()
1207 * was not called and update_curr() has to be done:
1208 */
1209 if (prev->on_rq)
b7cc0896 1210 update_curr(cfs_rq);
bf0f6f24 1211
ddc97297 1212 check_spread(cfs_rq, prev);
30cfdcfc 1213 if (prev->on_rq) {
5870db5b 1214 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1215 /* Put 'current' back into the tree. */
1216 __enqueue_entity(cfs_rq, prev);
1217 }
429d43bc 1218 cfs_rq->curr = NULL;
bf0f6f24
IM
1219}
1220
8f4d37ec
PZ
1221static void
1222entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1223{
bf0f6f24 1224 /*
30cfdcfc 1225 * Update run-time statistics of the 'current'.
bf0f6f24 1226 */
30cfdcfc 1227 update_curr(cfs_rq);
bf0f6f24 1228
43365bd7
PT
1229 /*
1230 * Update share accounting for long-running entities.
1231 */
1232 update_entity_shares_tick(cfs_rq);
1233
8f4d37ec
PZ
1234#ifdef CONFIG_SCHED_HRTICK
1235 /*
1236 * queued ticks are scheduled to match the slice, so don't bother
1237 * validating it and just reschedule.
1238 */
983ed7a6
HH
1239 if (queued) {
1240 resched_task(rq_of(cfs_rq)->curr);
1241 return;
1242 }
8f4d37ec
PZ
1243 /*
1244 * don't let the period tick interfere with the hrtick preemption
1245 */
1246 if (!sched_feat(DOUBLE_TICK) &&
1247 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1248 return;
1249#endif
1250
2c2efaed 1251 if (cfs_rq->nr_running > 1)
2e09bf55 1252 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1253}
1254
ab84d31e
PT
1255
1256/**************************************************
1257 * CFS bandwidth control machinery
1258 */
1259
1260#ifdef CONFIG_CFS_BANDWIDTH
1261/*
1262 * default period for cfs group bandwidth.
1263 * default: 0.1s, units: nanoseconds
1264 */
1265static inline u64 default_cfs_period(void)
1266{
1267 return 100000000ULL;
1268}
ec12cb7f
PT
1269
1270static inline u64 sched_cfs_bandwidth_slice(void)
1271{
1272 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1273}
1274
a9cf55b2
PT
1275/*
1276 * Replenish runtime according to assigned quota and update expiration time.
1277 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1278 * additional synchronization around rq->lock.
1279 *
1280 * requires cfs_b->lock
1281 */
1282static void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
1283{
1284 u64 now;
1285
1286 if (cfs_b->quota == RUNTIME_INF)
1287 return;
1288
1289 now = sched_clock_cpu(smp_processor_id());
1290 cfs_b->runtime = cfs_b->quota;
1291 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1292}
1293
ec12cb7f
PT
1294static void assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1295{
1296 struct task_group *tg = cfs_rq->tg;
1297 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 1298 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
1299
1300 /* note: this is a positive sum as runtime_remaining <= 0 */
1301 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1302
1303 raw_spin_lock(&cfs_b->lock);
1304 if (cfs_b->quota == RUNTIME_INF)
1305 amount = min_amount;
58088ad0 1306 else {
a9cf55b2
PT
1307 /*
1308 * If the bandwidth pool has become inactive, then at least one
1309 * period must have elapsed since the last consumption.
1310 * Refresh the global state and ensure bandwidth timer becomes
1311 * active.
1312 */
1313 if (!cfs_b->timer_active) {
1314 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 1315 __start_cfs_bandwidth(cfs_b);
a9cf55b2 1316 }
58088ad0
PT
1317
1318 if (cfs_b->runtime > 0) {
1319 amount = min(cfs_b->runtime, min_amount);
1320 cfs_b->runtime -= amount;
1321 cfs_b->idle = 0;
1322 }
ec12cb7f 1323 }
a9cf55b2 1324 expires = cfs_b->runtime_expires;
ec12cb7f
PT
1325 raw_spin_unlock(&cfs_b->lock);
1326
1327 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
1328 /*
1329 * we may have advanced our local expiration to account for allowed
1330 * spread between our sched_clock and the one on which runtime was
1331 * issued.
1332 */
1333 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1334 cfs_rq->runtime_expires = expires;
ec12cb7f
PT
1335}
1336
a9cf55b2
PT
1337/*
1338 * Note: This depends on the synchronization provided by sched_clock and the
1339 * fact that rq->clock snapshots this value.
1340 */
1341static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 1342{
a9cf55b2
PT
1343 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1344 struct rq *rq = rq_of(cfs_rq);
1345
1346 /* if the deadline is ahead of our clock, nothing to do */
1347 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
1348 return;
1349
a9cf55b2
PT
1350 if (cfs_rq->runtime_remaining < 0)
1351 return;
1352
1353 /*
1354 * If the local deadline has passed we have to consider the
1355 * possibility that our sched_clock is 'fast' and the global deadline
1356 * has not truly expired.
1357 *
1358 * Fortunately we can check determine whether this the case by checking
1359 * whether the global deadline has advanced.
1360 */
1361
1362 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1363 /* extend local deadline, drift is bounded above by 2 ticks */
1364 cfs_rq->runtime_expires += TICK_NSEC;
1365 } else {
1366 /* global deadline is ahead, expiration has passed */
1367 cfs_rq->runtime_remaining = 0;
1368 }
1369}
1370
1371static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1372 unsigned long delta_exec)
1373{
1374 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 1375 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
1376 expire_cfs_rq_runtime(cfs_rq);
1377
1378 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
1379 return;
1380
1381 assign_cfs_rq_runtime(cfs_rq);
1382}
1383
1384static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1385 unsigned long delta_exec)
1386{
1387 if (!cfs_rq->runtime_enabled)
1388 return;
1389
1390 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1391}
1392
58088ad0
PT
1393/*
1394 * Responsible for refilling a task_group's bandwidth and unthrottling its
1395 * cfs_rqs as appropriate. If there has been no activity within the last
1396 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1397 * used to track this state.
1398 */
1399static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1400{
1401 int idle = 1;
1402
1403 raw_spin_lock(&cfs_b->lock);
1404 /* no need to continue the timer with no bandwidth constraint */
1405 if (cfs_b->quota == RUNTIME_INF)
1406 goto out_unlock;
1407
1408 idle = cfs_b->idle;
a9cf55b2
PT
1409 /* if we're going inactive then everything else can be deferred */
1410 if (idle)
1411 goto out_unlock;
1412
1413 __refill_cfs_bandwidth_runtime(cfs_b);
1414
58088ad0
PT
1415
1416 /* mark as potentially idle for the upcoming period */
1417 cfs_b->idle = 1;
1418out_unlock:
1419 if (idle)
1420 cfs_b->timer_active = 0;
1421 raw_spin_unlock(&cfs_b->lock);
1422
1423 return idle;
1424}
ec12cb7f
PT
1425#else
1426static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1427 unsigned long delta_exec) {}
ab84d31e
PT
1428#endif
1429
bf0f6f24
IM
1430/**************************************************
1431 * CFS operations on tasks:
1432 */
1433
8f4d37ec
PZ
1434#ifdef CONFIG_SCHED_HRTICK
1435static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1436{
8f4d37ec
PZ
1437 struct sched_entity *se = &p->se;
1438 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1439
1440 WARN_ON(task_rq(p) != rq);
1441
1442 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1443 u64 slice = sched_slice(cfs_rq, se);
1444 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1445 s64 delta = slice - ran;
1446
1447 if (delta < 0) {
1448 if (rq->curr == p)
1449 resched_task(p);
1450 return;
1451 }
1452
1453 /*
1454 * Don't schedule slices shorter than 10000ns, that just
1455 * doesn't make sense. Rely on vruntime for fairness.
1456 */
31656519 1457 if (rq->curr != p)
157124c1 1458 delta = max_t(s64, 10000LL, delta);
8f4d37ec 1459
31656519 1460 hrtick_start(rq, delta);
8f4d37ec
PZ
1461 }
1462}
a4c2f00f
PZ
1463
1464/*
1465 * called from enqueue/dequeue and updates the hrtick when the
1466 * current task is from our class and nr_running is low enough
1467 * to matter.
1468 */
1469static void hrtick_update(struct rq *rq)
1470{
1471 struct task_struct *curr = rq->curr;
1472
1473 if (curr->sched_class != &fair_sched_class)
1474 return;
1475
1476 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1477 hrtick_start_fair(rq, curr);
1478}
55e12e5e 1479#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1480static inline void
1481hrtick_start_fair(struct rq *rq, struct task_struct *p)
1482{
1483}
a4c2f00f
PZ
1484
1485static inline void hrtick_update(struct rq *rq)
1486{
1487}
8f4d37ec
PZ
1488#endif
1489
bf0f6f24
IM
1490/*
1491 * The enqueue_task method is called before nr_running is
1492 * increased. Here we update the fair scheduling stats and
1493 * then put the task into the rbtree:
1494 */
ea87bb78 1495static void
371fd7e7 1496enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1497{
1498 struct cfs_rq *cfs_rq;
62fb1851 1499 struct sched_entity *se = &p->se;
bf0f6f24
IM
1500
1501 for_each_sched_entity(se) {
62fb1851 1502 if (se->on_rq)
bf0f6f24
IM
1503 break;
1504 cfs_rq = cfs_rq_of(se);
88ec22d3 1505 enqueue_entity(cfs_rq, se, flags);
953bfcd1 1506 cfs_rq->h_nr_running++;
88ec22d3 1507 flags = ENQUEUE_WAKEUP;
bf0f6f24 1508 }
8f4d37ec 1509
2069dd75 1510 for_each_sched_entity(se) {
0f317143 1511 cfs_rq = cfs_rq_of(se);
953bfcd1 1512 cfs_rq->h_nr_running++;
2069dd75 1513
d6b55918 1514 update_cfs_load(cfs_rq, 0);
6d5ab293 1515 update_cfs_shares(cfs_rq);
2069dd75
PZ
1516 }
1517
953bfcd1 1518 inc_nr_running(rq);
a4c2f00f 1519 hrtick_update(rq);
bf0f6f24
IM
1520}
1521
2f36825b
VP
1522static void set_next_buddy(struct sched_entity *se);
1523
bf0f6f24
IM
1524/*
1525 * The dequeue_task method is called before nr_running is
1526 * decreased. We remove the task from the rbtree and
1527 * update the fair scheduling stats:
1528 */
371fd7e7 1529static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1530{
1531 struct cfs_rq *cfs_rq;
62fb1851 1532 struct sched_entity *se = &p->se;
2f36825b 1533 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
1534
1535 for_each_sched_entity(se) {
1536 cfs_rq = cfs_rq_of(se);
371fd7e7 1537 dequeue_entity(cfs_rq, se, flags);
953bfcd1 1538 cfs_rq->h_nr_running--;
2069dd75 1539
bf0f6f24 1540 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
1541 if (cfs_rq->load.weight) {
1542 /*
1543 * Bias pick_next to pick a task from this cfs_rq, as
1544 * p is sleeping when it is within its sched_slice.
1545 */
1546 if (task_sleep && parent_entity(se))
1547 set_next_buddy(parent_entity(se));
9598c82d
PT
1548
1549 /* avoid re-evaluating load for this entity */
1550 se = parent_entity(se);
bf0f6f24 1551 break;
2f36825b 1552 }
371fd7e7 1553 flags |= DEQUEUE_SLEEP;
bf0f6f24 1554 }
8f4d37ec 1555
2069dd75 1556 for_each_sched_entity(se) {
0f317143 1557 cfs_rq = cfs_rq_of(se);
953bfcd1 1558 cfs_rq->h_nr_running--;
2069dd75 1559
d6b55918 1560 update_cfs_load(cfs_rq, 0);
6d5ab293 1561 update_cfs_shares(cfs_rq);
2069dd75
PZ
1562 }
1563
953bfcd1 1564 dec_nr_running(rq);
a4c2f00f 1565 hrtick_update(rq);
bf0f6f24
IM
1566}
1567
e7693a36 1568#ifdef CONFIG_SMP
098fb9db 1569
74f8e4b2 1570static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
1571{
1572 struct sched_entity *se = &p->se;
1573 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
1574 u64 min_vruntime;
1575
1576#ifndef CONFIG_64BIT
1577 u64 min_vruntime_copy;
88ec22d3 1578
3fe1698b
PZ
1579 do {
1580 min_vruntime_copy = cfs_rq->min_vruntime_copy;
1581 smp_rmb();
1582 min_vruntime = cfs_rq->min_vruntime;
1583 } while (min_vruntime != min_vruntime_copy);
1584#else
1585 min_vruntime = cfs_rq->min_vruntime;
1586#endif
88ec22d3 1587
3fe1698b 1588 se->vruntime -= min_vruntime;
88ec22d3
PZ
1589}
1590
bb3469ac 1591#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1592/*
1593 * effective_load() calculates the load change as seen from the root_task_group
1594 *
1595 * Adding load to a group doesn't make a group heavier, but can cause movement
1596 * of group shares between cpus. Assuming the shares were perfectly aligned one
1597 * can calculate the shift in shares.
f5bfb7d9 1598 */
2069dd75 1599static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 1600{
4be9daaa 1601 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1602
1603 if (!tg->parent)
1604 return wl;
1605
4be9daaa 1606 for_each_sched_entity(se) {
977dda7c 1607 long lw, w;
4be9daaa 1608
977dda7c
PT
1609 tg = se->my_q->tg;
1610 w = se->my_q->load.weight;
bb3469ac 1611
977dda7c
PT
1612 /* use this cpu's instantaneous contribution */
1613 lw = atomic_read(&tg->load_weight);
1614 lw -= se->my_q->load_contribution;
1615 lw += w + wg;
4be9daaa 1616
977dda7c 1617 wl += w;
940959e9 1618
977dda7c
PT
1619 if (lw > 0 && wl < lw)
1620 wl = (wl * tg->shares) / lw;
1621 else
1622 wl = tg->shares;
940959e9 1623
977dda7c
PT
1624 /* zero point is MIN_SHARES */
1625 if (wl < MIN_SHARES)
1626 wl = MIN_SHARES;
1627 wl -= se->load.weight;
4be9daaa 1628 wg = 0;
4be9daaa 1629 }
bb3469ac 1630
4be9daaa 1631 return wl;
bb3469ac
PZ
1632}
1633#else
4be9daaa 1634
83378269
PZ
1635static inline unsigned long effective_load(struct task_group *tg, int cpu,
1636 unsigned long wl, unsigned long wg)
4be9daaa 1637{
83378269 1638 return wl;
bb3469ac 1639}
4be9daaa 1640
bb3469ac
PZ
1641#endif
1642
c88d5910 1643static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1644{
e37b6a7b 1645 s64 this_load, load;
c88d5910 1646 int idx, this_cpu, prev_cpu;
098fb9db 1647 unsigned long tl_per_task;
c88d5910 1648 struct task_group *tg;
83378269 1649 unsigned long weight;
b3137bc8 1650 int balanced;
098fb9db 1651
c88d5910
PZ
1652 idx = sd->wake_idx;
1653 this_cpu = smp_processor_id();
1654 prev_cpu = task_cpu(p);
1655 load = source_load(prev_cpu, idx);
1656 this_load = target_load(this_cpu, idx);
098fb9db 1657
b3137bc8
MG
1658 /*
1659 * If sync wakeup then subtract the (maximum possible)
1660 * effect of the currently running task from the load
1661 * of the current CPU:
1662 */
83378269
PZ
1663 if (sync) {
1664 tg = task_group(current);
1665 weight = current->se.load.weight;
1666
c88d5910 1667 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1668 load += effective_load(tg, prev_cpu, 0, -weight);
1669 }
b3137bc8 1670
83378269
PZ
1671 tg = task_group(p);
1672 weight = p->se.load.weight;
b3137bc8 1673
71a29aa7
PZ
1674 /*
1675 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
1676 * due to the sync cause above having dropped this_load to 0, we'll
1677 * always have an imbalance, but there's really nothing you can do
1678 * about that, so that's good too.
71a29aa7
PZ
1679 *
1680 * Otherwise check if either cpus are near enough in load to allow this
1681 * task to be woken on this_cpu.
1682 */
e37b6a7b
PT
1683 if (this_load > 0) {
1684 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
1685
1686 this_eff_load = 100;
1687 this_eff_load *= power_of(prev_cpu);
1688 this_eff_load *= this_load +
1689 effective_load(tg, this_cpu, weight, weight);
1690
1691 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1692 prev_eff_load *= power_of(this_cpu);
1693 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1694
1695 balanced = this_eff_load <= prev_eff_load;
1696 } else
1697 balanced = true;
b3137bc8 1698
098fb9db 1699 /*
4ae7d5ce
IM
1700 * If the currently running task will sleep within
1701 * a reasonable amount of time then attract this newly
1702 * woken task:
098fb9db 1703 */
2fb7635c
PZ
1704 if (sync && balanced)
1705 return 1;
098fb9db 1706
41acab88 1707 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
1708 tl_per_task = cpu_avg_load_per_task(this_cpu);
1709
c88d5910
PZ
1710 if (balanced ||
1711 (this_load <= load &&
1712 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
1713 /*
1714 * This domain has SD_WAKE_AFFINE and
1715 * p is cache cold in this domain, and
1716 * there is no bad imbalance.
1717 */
c88d5910 1718 schedstat_inc(sd, ttwu_move_affine);
41acab88 1719 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
1720
1721 return 1;
1722 }
1723 return 0;
1724}
1725
aaee1203
PZ
1726/*
1727 * find_idlest_group finds and returns the least busy CPU group within the
1728 * domain.
1729 */
1730static struct sched_group *
78e7ed53 1731find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 1732 int this_cpu, int load_idx)
e7693a36 1733{
b3bd3de6 1734 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 1735 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 1736 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 1737
aaee1203
PZ
1738 do {
1739 unsigned long load, avg_load;
1740 int local_group;
1741 int i;
e7693a36 1742
aaee1203
PZ
1743 /* Skip over this group if it has no CPUs allowed */
1744 if (!cpumask_intersects(sched_group_cpus(group),
1745 &p->cpus_allowed))
1746 continue;
1747
1748 local_group = cpumask_test_cpu(this_cpu,
1749 sched_group_cpus(group));
1750
1751 /* Tally up the load of all CPUs in the group */
1752 avg_load = 0;
1753
1754 for_each_cpu(i, sched_group_cpus(group)) {
1755 /* Bias balancing toward cpus of our domain */
1756 if (local_group)
1757 load = source_load(i, load_idx);
1758 else
1759 load = target_load(i, load_idx);
1760
1761 avg_load += load;
1762 }
1763
1764 /* Adjust by relative CPU power of the group */
9c3f75cb 1765 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
1766
1767 if (local_group) {
1768 this_load = avg_load;
aaee1203
PZ
1769 } else if (avg_load < min_load) {
1770 min_load = avg_load;
1771 idlest = group;
1772 }
1773 } while (group = group->next, group != sd->groups);
1774
1775 if (!idlest || 100*this_load < imbalance*min_load)
1776 return NULL;
1777 return idlest;
1778}
1779
1780/*
1781 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1782 */
1783static int
1784find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1785{
1786 unsigned long load, min_load = ULONG_MAX;
1787 int idlest = -1;
1788 int i;
1789
1790 /* Traverse only the allowed CPUs */
1791 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1792 load = weighted_cpuload(i);
1793
1794 if (load < min_load || (load == min_load && i == this_cpu)) {
1795 min_load = load;
1796 idlest = i;
e7693a36
GH
1797 }
1798 }
1799
aaee1203
PZ
1800 return idlest;
1801}
e7693a36 1802
a50bde51
PZ
1803/*
1804 * Try and locate an idle CPU in the sched_domain.
1805 */
99bd5e2f 1806static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
1807{
1808 int cpu = smp_processor_id();
1809 int prev_cpu = task_cpu(p);
99bd5e2f 1810 struct sched_domain *sd;
a50bde51
PZ
1811 int i;
1812
1813 /*
99bd5e2f
SS
1814 * If the task is going to be woken-up on this cpu and if it is
1815 * already idle, then it is the right target.
a50bde51 1816 */
99bd5e2f
SS
1817 if (target == cpu && idle_cpu(cpu))
1818 return cpu;
1819
1820 /*
1821 * If the task is going to be woken-up on the cpu where it previously
1822 * ran and if it is currently idle, then it the right target.
1823 */
1824 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 1825 return prev_cpu;
a50bde51
PZ
1826
1827 /*
99bd5e2f 1828 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 1829 */
dce840a0 1830 rcu_read_lock();
99bd5e2f
SS
1831 for_each_domain(target, sd) {
1832 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
fe3bcfe1 1833 break;
99bd5e2f
SS
1834
1835 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1836 if (idle_cpu(i)) {
1837 target = i;
1838 break;
1839 }
a50bde51 1840 }
99bd5e2f
SS
1841
1842 /*
1843 * Lets stop looking for an idle sibling when we reached
1844 * the domain that spans the current cpu and prev_cpu.
1845 */
1846 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1847 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1848 break;
a50bde51 1849 }
dce840a0 1850 rcu_read_unlock();
a50bde51
PZ
1851
1852 return target;
1853}
1854
aaee1203
PZ
1855/*
1856 * sched_balance_self: balance the current task (running on cpu) in domains
1857 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1858 * SD_BALANCE_EXEC.
1859 *
1860 * Balance, ie. select the least loaded group.
1861 *
1862 * Returns the target CPU number, or the same CPU if no balancing is needed.
1863 *
1864 * preempt must be disabled.
1865 */
0017d735 1866static int
7608dec2 1867select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 1868{
29cd8bae 1869 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
1870 int cpu = smp_processor_id();
1871 int prev_cpu = task_cpu(p);
1872 int new_cpu = cpu;
99bd5e2f 1873 int want_affine = 0;
29cd8bae 1874 int want_sd = 1;
5158f4e4 1875 int sync = wake_flags & WF_SYNC;
c88d5910 1876
0763a660 1877 if (sd_flag & SD_BALANCE_WAKE) {
beac4c7e 1878 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
c88d5910
PZ
1879 want_affine = 1;
1880 new_cpu = prev_cpu;
1881 }
aaee1203 1882
dce840a0 1883 rcu_read_lock();
aaee1203 1884 for_each_domain(cpu, tmp) {
e4f42888
PZ
1885 if (!(tmp->flags & SD_LOAD_BALANCE))
1886 continue;
1887
aaee1203 1888 /*
ae154be1
PZ
1889 * If power savings logic is enabled for a domain, see if we
1890 * are not overloaded, if so, don't balance wider.
aaee1203 1891 */
59abf026 1892 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
1893 unsigned long power = 0;
1894 unsigned long nr_running = 0;
1895 unsigned long capacity;
1896 int i;
1897
1898 for_each_cpu(i, sched_domain_span(tmp)) {
1899 power += power_of(i);
1900 nr_running += cpu_rq(i)->cfs.nr_running;
1901 }
1902
1399fa78 1903 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
ae154be1 1904
59abf026
PZ
1905 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1906 nr_running /= 2;
1907
1908 if (nr_running < capacity)
29cd8bae 1909 want_sd = 0;
ae154be1 1910 }
aaee1203 1911
fe3bcfe1 1912 /*
99bd5e2f
SS
1913 * If both cpu and prev_cpu are part of this domain,
1914 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 1915 */
99bd5e2f
SS
1916 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1917 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1918 affine_sd = tmp;
1919 want_affine = 0;
c88d5910
PZ
1920 }
1921
29cd8bae
PZ
1922 if (!want_sd && !want_affine)
1923 break;
1924
0763a660 1925 if (!(tmp->flags & sd_flag))
c88d5910
PZ
1926 continue;
1927
29cd8bae
PZ
1928 if (want_sd)
1929 sd = tmp;
1930 }
1931
8b911acd 1932 if (affine_sd) {
99bd5e2f 1933 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
dce840a0
PZ
1934 prev_cpu = cpu;
1935
1936 new_cpu = select_idle_sibling(p, prev_cpu);
1937 goto unlock;
8b911acd 1938 }
e7693a36 1939
aaee1203 1940 while (sd) {
5158f4e4 1941 int load_idx = sd->forkexec_idx;
aaee1203 1942 struct sched_group *group;
c88d5910 1943 int weight;
098fb9db 1944
0763a660 1945 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
1946 sd = sd->child;
1947 continue;
1948 }
098fb9db 1949
5158f4e4
PZ
1950 if (sd_flag & SD_BALANCE_WAKE)
1951 load_idx = sd->wake_idx;
098fb9db 1952
5158f4e4 1953 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
1954 if (!group) {
1955 sd = sd->child;
1956 continue;
1957 }
4ae7d5ce 1958
d7c33c49 1959 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
1960 if (new_cpu == -1 || new_cpu == cpu) {
1961 /* Now try balancing at a lower domain level of cpu */
1962 sd = sd->child;
1963 continue;
e7693a36 1964 }
aaee1203
PZ
1965
1966 /* Now try balancing at a lower domain level of new_cpu */
1967 cpu = new_cpu;
669c55e9 1968 weight = sd->span_weight;
aaee1203
PZ
1969 sd = NULL;
1970 for_each_domain(cpu, tmp) {
669c55e9 1971 if (weight <= tmp->span_weight)
aaee1203 1972 break;
0763a660 1973 if (tmp->flags & sd_flag)
aaee1203
PZ
1974 sd = tmp;
1975 }
1976 /* while loop will break here if sd == NULL */
e7693a36 1977 }
dce840a0
PZ
1978unlock:
1979 rcu_read_unlock();
e7693a36 1980
c88d5910 1981 return new_cpu;
e7693a36
GH
1982}
1983#endif /* CONFIG_SMP */
1984
e52fb7c0
PZ
1985static unsigned long
1986wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1987{
1988 unsigned long gran = sysctl_sched_wakeup_granularity;
1989
1990 /*
e52fb7c0
PZ
1991 * Since its curr running now, convert the gran from real-time
1992 * to virtual-time in his units.
13814d42
MG
1993 *
1994 * By using 'se' instead of 'curr' we penalize light tasks, so
1995 * they get preempted easier. That is, if 'se' < 'curr' then
1996 * the resulting gran will be larger, therefore penalizing the
1997 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1998 * be smaller, again penalizing the lighter task.
1999 *
2000 * This is especially important for buddies when the leftmost
2001 * task is higher priority than the buddy.
0bbd3336 2002 */
f4ad9bd2 2003 return calc_delta_fair(gran, se);
0bbd3336
PZ
2004}
2005
464b7527
PZ
2006/*
2007 * Should 'se' preempt 'curr'.
2008 *
2009 * |s1
2010 * |s2
2011 * |s3
2012 * g
2013 * |<--->|c
2014 *
2015 * w(c, s1) = -1
2016 * w(c, s2) = 0
2017 * w(c, s3) = 1
2018 *
2019 */
2020static int
2021wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2022{
2023 s64 gran, vdiff = curr->vruntime - se->vruntime;
2024
2025 if (vdiff <= 0)
2026 return -1;
2027
e52fb7c0 2028 gran = wakeup_gran(curr, se);
464b7527
PZ
2029 if (vdiff > gran)
2030 return 1;
2031
2032 return 0;
2033}
2034
02479099
PZ
2035static void set_last_buddy(struct sched_entity *se)
2036{
69c80f3e
VP
2037 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2038 return;
2039
2040 for_each_sched_entity(se)
2041 cfs_rq_of(se)->last = se;
02479099
PZ
2042}
2043
2044static void set_next_buddy(struct sched_entity *se)
2045{
69c80f3e
VP
2046 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2047 return;
2048
2049 for_each_sched_entity(se)
2050 cfs_rq_of(se)->next = se;
02479099
PZ
2051}
2052
ac53db59
RR
2053static void set_skip_buddy(struct sched_entity *se)
2054{
69c80f3e
VP
2055 for_each_sched_entity(se)
2056 cfs_rq_of(se)->skip = se;
ac53db59
RR
2057}
2058
bf0f6f24
IM
2059/*
2060 * Preempt the current task with a newly woken task if needed:
2061 */
5a9b86f6 2062static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
2063{
2064 struct task_struct *curr = rq->curr;
8651a86c 2065 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 2066 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 2067 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 2068 int next_buddy_marked = 0;
bf0f6f24 2069
4ae7d5ce
IM
2070 if (unlikely(se == pse))
2071 return;
2072
2f36825b 2073 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 2074 set_next_buddy(pse);
2f36825b
VP
2075 next_buddy_marked = 1;
2076 }
57fdc26d 2077
aec0a514
BR
2078 /*
2079 * We can come here with TIF_NEED_RESCHED already set from new task
2080 * wake up path.
2081 */
2082 if (test_tsk_need_resched(curr))
2083 return;
2084
a2f5c9ab
DH
2085 /* Idle tasks are by definition preempted by non-idle tasks. */
2086 if (unlikely(curr->policy == SCHED_IDLE) &&
2087 likely(p->policy != SCHED_IDLE))
2088 goto preempt;
2089
91c234b4 2090 /*
a2f5c9ab
DH
2091 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2092 * is driven by the tick):
91c234b4 2093 */
6bc912b7 2094 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 2095 return;
bf0f6f24 2096
464b7527 2097 find_matching_se(&se, &pse);
9bbd7374 2098 update_curr(cfs_rq_of(se));
002f128b 2099 BUG_ON(!pse);
2f36825b
VP
2100 if (wakeup_preempt_entity(se, pse) == 1) {
2101 /*
2102 * Bias pick_next to pick the sched entity that is
2103 * triggering this preemption.
2104 */
2105 if (!next_buddy_marked)
2106 set_next_buddy(pse);
3a7e73a2 2107 goto preempt;
2f36825b 2108 }
464b7527 2109
3a7e73a2 2110 return;
a65ac745 2111
3a7e73a2
PZ
2112preempt:
2113 resched_task(curr);
2114 /*
2115 * Only set the backward buddy when the current task is still
2116 * on the rq. This can happen when a wakeup gets interleaved
2117 * with schedule on the ->pre_schedule() or idle_balance()
2118 * point, either of which can * drop the rq lock.
2119 *
2120 * Also, during early boot the idle thread is in the fair class,
2121 * for obvious reasons its a bad idea to schedule back to it.
2122 */
2123 if (unlikely(!se->on_rq || curr == rq->idle))
2124 return;
2125
2126 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2127 set_last_buddy(se);
bf0f6f24
IM
2128}
2129
fb8d4724 2130static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 2131{
8f4d37ec 2132 struct task_struct *p;
bf0f6f24
IM
2133 struct cfs_rq *cfs_rq = &rq->cfs;
2134 struct sched_entity *se;
2135
36ace27e 2136 if (!cfs_rq->nr_running)
bf0f6f24
IM
2137 return NULL;
2138
2139 do {
9948f4b2 2140 se = pick_next_entity(cfs_rq);
f4b6755f 2141 set_next_entity(cfs_rq, se);
bf0f6f24
IM
2142 cfs_rq = group_cfs_rq(se);
2143 } while (cfs_rq);
2144
8f4d37ec
PZ
2145 p = task_of(se);
2146 hrtick_start_fair(rq, p);
2147
2148 return p;
bf0f6f24
IM
2149}
2150
2151/*
2152 * Account for a descheduled task:
2153 */
31ee529c 2154static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
2155{
2156 struct sched_entity *se = &prev->se;
2157 struct cfs_rq *cfs_rq;
2158
2159 for_each_sched_entity(se) {
2160 cfs_rq = cfs_rq_of(se);
ab6cde26 2161 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
2162 }
2163}
2164
ac53db59
RR
2165/*
2166 * sched_yield() is very simple
2167 *
2168 * The magic of dealing with the ->skip buddy is in pick_next_entity.
2169 */
2170static void yield_task_fair(struct rq *rq)
2171{
2172 struct task_struct *curr = rq->curr;
2173 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2174 struct sched_entity *se = &curr->se;
2175
2176 /*
2177 * Are we the only task in the tree?
2178 */
2179 if (unlikely(rq->nr_running == 1))
2180 return;
2181
2182 clear_buddies(cfs_rq, se);
2183
2184 if (curr->policy != SCHED_BATCH) {
2185 update_rq_clock(rq);
2186 /*
2187 * Update run-time statistics of the 'current'.
2188 */
2189 update_curr(cfs_rq);
2190 }
2191
2192 set_skip_buddy(se);
2193}
2194
d95f4122
MG
2195static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
2196{
2197 struct sched_entity *se = &p->se;
2198
2199 if (!se->on_rq)
2200 return false;
2201
2202 /* Tell the scheduler that we'd really like pse to run next. */
2203 set_next_buddy(se);
2204
d95f4122
MG
2205 yield_task_fair(rq);
2206
2207 return true;
2208}
2209
681f3e68 2210#ifdef CONFIG_SMP
bf0f6f24
IM
2211/**************************************************
2212 * Fair scheduling class load-balancing methods:
2213 */
2214
1e3c88bd
PZ
2215/*
2216 * pull_task - move a task from a remote runqueue to the local runqueue.
2217 * Both runqueues must be locked.
2218 */
2219static void pull_task(struct rq *src_rq, struct task_struct *p,
2220 struct rq *this_rq, int this_cpu)
2221{
2222 deactivate_task(src_rq, p, 0);
2223 set_task_cpu(p, this_cpu);
2224 activate_task(this_rq, p, 0);
2225 check_preempt_curr(this_rq, p, 0);
2226}
2227
2228/*
2229 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2230 */
2231static
2232int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2233 struct sched_domain *sd, enum cpu_idle_type idle,
2234 int *all_pinned)
2235{
2236 int tsk_cache_hot = 0;
2237 /*
2238 * We do not migrate tasks that are:
2239 * 1) running (obviously), or
2240 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2241 * 3) are cache-hot on their current CPU.
2242 */
2243 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
41acab88 2244 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
2245 return 0;
2246 }
2247 *all_pinned = 0;
2248
2249 if (task_running(rq, p)) {
41acab88 2250 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
2251 return 0;
2252 }
2253
2254 /*
2255 * Aggressive migration if:
2256 * 1) task is cache cold, or
2257 * 2) too many balance attempts have failed.
2258 */
2259
305e6835 2260 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1e3c88bd
PZ
2261 if (!tsk_cache_hot ||
2262 sd->nr_balance_failed > sd->cache_nice_tries) {
2263#ifdef CONFIG_SCHEDSTATS
2264 if (tsk_cache_hot) {
2265 schedstat_inc(sd, lb_hot_gained[idle]);
41acab88 2266 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
2267 }
2268#endif
2269 return 1;
2270 }
2271
2272 if (tsk_cache_hot) {
41acab88 2273 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
2274 return 0;
2275 }
2276 return 1;
2277}
2278
897c395f
PZ
2279/*
2280 * move_one_task tries to move exactly one task from busiest to this_rq, as
2281 * part of active balancing operations within "domain".
2282 * Returns 1 if successful and 0 otherwise.
2283 *
2284 * Called with both runqueues locked.
2285 */
2286static int
2287move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2288 struct sched_domain *sd, enum cpu_idle_type idle)
2289{
2290 struct task_struct *p, *n;
2291 struct cfs_rq *cfs_rq;
2292 int pinned = 0;
2293
2294 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2295 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2296
2297 if (!can_migrate_task(p, busiest, this_cpu,
2298 sd, idle, &pinned))
2299 continue;
2300
2301 pull_task(busiest, p, this_rq, this_cpu);
2302 /*
2303 * Right now, this is only the second place pull_task()
2304 * is called, so we can safely collect pull_task()
2305 * stats here rather than inside pull_task().
2306 */
2307 schedstat_inc(sd, lb_gained[idle]);
2308 return 1;
2309 }
2310 }
2311
2312 return 0;
2313}
2314
1e3c88bd
PZ
2315static unsigned long
2316balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2317 unsigned long max_load_move, struct sched_domain *sd,
2318 enum cpu_idle_type idle, int *all_pinned,
931aeeda 2319 struct cfs_rq *busiest_cfs_rq)
1e3c88bd 2320{
b30aef17 2321 int loops = 0, pulled = 0;
1e3c88bd 2322 long rem_load_move = max_load_move;
ee00e66f 2323 struct task_struct *p, *n;
1e3c88bd
PZ
2324
2325 if (max_load_move == 0)
2326 goto out;
2327
ee00e66f
PZ
2328 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2329 if (loops++ > sysctl_sched_nr_migrate)
2330 break;
1e3c88bd 2331
ee00e66f 2332 if ((p->se.load.weight >> 1) > rem_load_move ||
b30aef17
KC
2333 !can_migrate_task(p, busiest, this_cpu, sd, idle,
2334 all_pinned))
ee00e66f 2335 continue;
1e3c88bd 2336
ee00e66f
PZ
2337 pull_task(busiest, p, this_rq, this_cpu);
2338 pulled++;
2339 rem_load_move -= p->se.load.weight;
1e3c88bd
PZ
2340
2341#ifdef CONFIG_PREEMPT
ee00e66f
PZ
2342 /*
2343 * NEWIDLE balancing is a source of latency, so preemptible
2344 * kernels will stop after the first task is pulled to minimize
2345 * the critical section.
2346 */
2347 if (idle == CPU_NEWLY_IDLE)
2348 break;
1e3c88bd
PZ
2349#endif
2350
ee00e66f
PZ
2351 /*
2352 * We only want to steal up to the prescribed amount of
2353 * weighted load.
2354 */
2355 if (rem_load_move <= 0)
2356 break;
1e3c88bd
PZ
2357 }
2358out:
2359 /*
2360 * Right now, this is one of only two places pull_task() is called,
2361 * so we can safely collect pull_task() stats here rather than
2362 * inside pull_task().
2363 */
2364 schedstat_add(sd, lb_gained[idle], pulled);
2365
1e3c88bd
PZ
2366 return max_load_move - rem_load_move;
2367}
2368
230059de 2369#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
2370/*
2371 * update tg->load_weight by folding this cpu's load_avg
2372 */
67e86250 2373static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
2374{
2375 struct cfs_rq *cfs_rq;
2376 unsigned long flags;
2377 struct rq *rq;
9e3081ca
PZ
2378
2379 if (!tg->se[cpu])
2380 return 0;
2381
2382 rq = cpu_rq(cpu);
2383 cfs_rq = tg->cfs_rq[cpu];
2384
2385 raw_spin_lock_irqsave(&rq->lock, flags);
2386
2387 update_rq_clock(rq);
d6b55918 2388 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
2389
2390 /*
2391 * We need to update shares after updating tg->load_weight in
2392 * order to adjust the weight of groups with long running tasks.
2393 */
6d5ab293 2394 update_cfs_shares(cfs_rq);
9e3081ca
PZ
2395
2396 raw_spin_unlock_irqrestore(&rq->lock, flags);
2397
2398 return 0;
2399}
2400
2401static void update_shares(int cpu)
2402{
2403 struct cfs_rq *cfs_rq;
2404 struct rq *rq = cpu_rq(cpu);
2405
2406 rcu_read_lock();
9763b67f
PZ
2407 /*
2408 * Iterates the task_group tree in a bottom up fashion, see
2409 * list_add_leaf_cfs_rq() for details.
2410 */
67e86250
PT
2411 for_each_leaf_cfs_rq(rq, cfs_rq)
2412 update_shares_cpu(cfs_rq->tg, cpu);
9e3081ca
PZ
2413 rcu_read_unlock();
2414}
2415
9763b67f
PZ
2416/*
2417 * Compute the cpu's hierarchical load factor for each task group.
2418 * This needs to be done in a top-down fashion because the load of a child
2419 * group is a fraction of its parents load.
2420 */
2421static int tg_load_down(struct task_group *tg, void *data)
2422{
2423 unsigned long load;
2424 long cpu = (long)data;
2425
2426 if (!tg->parent) {
2427 load = cpu_rq(cpu)->load.weight;
2428 } else {
2429 load = tg->parent->cfs_rq[cpu]->h_load;
2430 load *= tg->se[cpu]->load.weight;
2431 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
2432 }
2433
2434 tg->cfs_rq[cpu]->h_load = load;
2435
2436 return 0;
2437}
2438
2439static void update_h_load(long cpu)
2440{
2441 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
2442}
2443
230059de
PZ
2444static unsigned long
2445load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2446 unsigned long max_load_move,
2447 struct sched_domain *sd, enum cpu_idle_type idle,
931aeeda 2448 int *all_pinned)
230059de
PZ
2449{
2450 long rem_load_move = max_load_move;
9763b67f 2451 struct cfs_rq *busiest_cfs_rq;
230059de
PZ
2452
2453 rcu_read_lock();
9763b67f 2454 update_h_load(cpu_of(busiest));
230059de 2455
9763b67f 2456 for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
230059de
PZ
2457 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2458 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2459 u64 rem_load, moved_load;
2460
2461 /*
2462 * empty group
2463 */
2464 if (!busiest_cfs_rq->task_weight)
2465 continue;
2466
2467 rem_load = (u64)rem_load_move * busiest_weight;
2468 rem_load = div_u64(rem_load, busiest_h_load + 1);
2469
2470 moved_load = balance_tasks(this_rq, this_cpu, busiest,
931aeeda 2471 rem_load, sd, idle, all_pinned,
230059de
PZ
2472 busiest_cfs_rq);
2473
2474 if (!moved_load)
2475 continue;
2476
2477 moved_load *= busiest_h_load;
2478 moved_load = div_u64(moved_load, busiest_weight + 1);
2479
2480 rem_load_move -= moved_load;
2481 if (rem_load_move < 0)
2482 break;
2483 }
2484 rcu_read_unlock();
2485
2486 return max_load_move - rem_load_move;
2487}
2488#else
9e3081ca
PZ
2489static inline void update_shares(int cpu)
2490{
2491}
2492
230059de
PZ
2493static unsigned long
2494load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2495 unsigned long max_load_move,
2496 struct sched_domain *sd, enum cpu_idle_type idle,
931aeeda 2497 int *all_pinned)
230059de
PZ
2498{
2499 return balance_tasks(this_rq, this_cpu, busiest,
2500 max_load_move, sd, idle, all_pinned,
931aeeda 2501 &busiest->cfs);
230059de
PZ
2502}
2503#endif
2504
1e3c88bd
PZ
2505/*
2506 * move_tasks tries to move up to max_load_move weighted load from busiest to
2507 * this_rq, as part of a balancing operation within domain "sd".
2508 * Returns 1 if successful and 0 otherwise.
2509 *
2510 * Called with both runqueues locked.
2511 */
2512static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2513 unsigned long max_load_move,
2514 struct sched_domain *sd, enum cpu_idle_type idle,
2515 int *all_pinned)
2516{
3d45fd80 2517 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
2518
2519 do {
3d45fd80 2520 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd 2521 max_load_move - total_load_moved,
931aeeda 2522 sd, idle, all_pinned);
3d45fd80
PZ
2523
2524 total_load_moved += load_moved;
1e3c88bd
PZ
2525
2526#ifdef CONFIG_PREEMPT
2527 /*
2528 * NEWIDLE balancing is a source of latency, so preemptible
2529 * kernels will stop after the first task is pulled to minimize
2530 * the critical section.
2531 */
2532 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2533 break;
baa8c110
PZ
2534
2535 if (raw_spin_is_contended(&this_rq->lock) ||
2536 raw_spin_is_contended(&busiest->lock))
2537 break;
1e3c88bd 2538#endif
3d45fd80 2539 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
2540
2541 return total_load_moved > 0;
2542}
2543
1e3c88bd
PZ
2544/********** Helpers for find_busiest_group ************************/
2545/*
2546 * sd_lb_stats - Structure to store the statistics of a sched_domain
2547 * during load balancing.
2548 */
2549struct sd_lb_stats {
2550 struct sched_group *busiest; /* Busiest group in this sd */
2551 struct sched_group *this; /* Local group in this sd */
2552 unsigned long total_load; /* Total load of all groups in sd */
2553 unsigned long total_pwr; /* Total power of all groups in sd */
2554 unsigned long avg_load; /* Average load across all groups in sd */
2555
2556 /** Statistics of this group */
2557 unsigned long this_load;
2558 unsigned long this_load_per_task;
2559 unsigned long this_nr_running;
fab47622 2560 unsigned long this_has_capacity;
aae6d3dd 2561 unsigned int this_idle_cpus;
1e3c88bd
PZ
2562
2563 /* Statistics of the busiest group */
aae6d3dd 2564 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
2565 unsigned long max_load;
2566 unsigned long busiest_load_per_task;
2567 unsigned long busiest_nr_running;
dd5feea1 2568 unsigned long busiest_group_capacity;
fab47622 2569 unsigned long busiest_has_capacity;
aae6d3dd 2570 unsigned int busiest_group_weight;
1e3c88bd
PZ
2571
2572 int group_imb; /* Is there imbalance in this sd */
2573#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2574 int power_savings_balance; /* Is powersave balance needed for this sd */
2575 struct sched_group *group_min; /* Least loaded group in sd */
2576 struct sched_group *group_leader; /* Group which relieves group_min */
2577 unsigned long min_load_per_task; /* load_per_task in group_min */
2578 unsigned long leader_nr_running; /* Nr running of group_leader */
2579 unsigned long min_nr_running; /* Nr running of group_min */
2580#endif
2581};
2582
2583/*
2584 * sg_lb_stats - stats of a sched_group required for load_balancing
2585 */
2586struct sg_lb_stats {
2587 unsigned long avg_load; /*Avg load across the CPUs of the group */
2588 unsigned long group_load; /* Total load over the CPUs of the group */
2589 unsigned long sum_nr_running; /* Nr tasks running in the group */
2590 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2591 unsigned long group_capacity;
aae6d3dd
SS
2592 unsigned long idle_cpus;
2593 unsigned long group_weight;
1e3c88bd 2594 int group_imb; /* Is there an imbalance in the group ? */
fab47622 2595 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
2596};
2597
2598/**
2599 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2600 * @group: The group whose first cpu is to be returned.
2601 */
2602static inline unsigned int group_first_cpu(struct sched_group *group)
2603{
2604 return cpumask_first(sched_group_cpus(group));
2605}
2606
2607/**
2608 * get_sd_load_idx - Obtain the load index for a given sched domain.
2609 * @sd: The sched_domain whose load_idx is to be obtained.
2610 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2611 */
2612static inline int get_sd_load_idx(struct sched_domain *sd,
2613 enum cpu_idle_type idle)
2614{
2615 int load_idx;
2616
2617 switch (idle) {
2618 case CPU_NOT_IDLE:
2619 load_idx = sd->busy_idx;
2620 break;
2621
2622 case CPU_NEWLY_IDLE:
2623 load_idx = sd->newidle_idx;
2624 break;
2625 default:
2626 load_idx = sd->idle_idx;
2627 break;
2628 }
2629
2630 return load_idx;
2631}
2632
2633
2634#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2635/**
2636 * init_sd_power_savings_stats - Initialize power savings statistics for
2637 * the given sched_domain, during load balancing.
2638 *
2639 * @sd: Sched domain whose power-savings statistics are to be initialized.
2640 * @sds: Variable containing the statistics for sd.
2641 * @idle: Idle status of the CPU at which we're performing load-balancing.
2642 */
2643static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2644 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2645{
2646 /*
2647 * Busy processors will not participate in power savings
2648 * balance.
2649 */
2650 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2651 sds->power_savings_balance = 0;
2652 else {
2653 sds->power_savings_balance = 1;
2654 sds->min_nr_running = ULONG_MAX;
2655 sds->leader_nr_running = 0;
2656 }
2657}
2658
2659/**
2660 * update_sd_power_savings_stats - Update the power saving stats for a
2661 * sched_domain while performing load balancing.
2662 *
2663 * @group: sched_group belonging to the sched_domain under consideration.
2664 * @sds: Variable containing the statistics of the sched_domain
2665 * @local_group: Does group contain the CPU for which we're performing
2666 * load balancing ?
2667 * @sgs: Variable containing the statistics of the group.
2668 */
2669static inline void update_sd_power_savings_stats(struct sched_group *group,
2670 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2671{
2672
2673 if (!sds->power_savings_balance)
2674 return;
2675
2676 /*
2677 * If the local group is idle or completely loaded
2678 * no need to do power savings balance at this domain
2679 */
2680 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2681 !sds->this_nr_running))
2682 sds->power_savings_balance = 0;
2683
2684 /*
2685 * If a group is already running at full capacity or idle,
2686 * don't include that group in power savings calculations
2687 */
2688 if (!sds->power_savings_balance ||
2689 sgs->sum_nr_running >= sgs->group_capacity ||
2690 !sgs->sum_nr_running)
2691 return;
2692
2693 /*
2694 * Calculate the group which has the least non-idle load.
2695 * This is the group from where we need to pick up the load
2696 * for saving power
2697 */
2698 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2699 (sgs->sum_nr_running == sds->min_nr_running &&
2700 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2701 sds->group_min = group;
2702 sds->min_nr_running = sgs->sum_nr_running;
2703 sds->min_load_per_task = sgs->sum_weighted_load /
2704 sgs->sum_nr_running;
2705 }
2706
2707 /*
2708 * Calculate the group which is almost near its
2709 * capacity but still has some space to pick up some load
2710 * from other group and save more power
2711 */
2712 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2713 return;
2714
2715 if (sgs->sum_nr_running > sds->leader_nr_running ||
2716 (sgs->sum_nr_running == sds->leader_nr_running &&
2717 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2718 sds->group_leader = group;
2719 sds->leader_nr_running = sgs->sum_nr_running;
2720 }
2721}
2722
2723/**
2724 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2725 * @sds: Variable containing the statistics of the sched_domain
2726 * under consideration.
2727 * @this_cpu: Cpu at which we're currently performing load-balancing.
2728 * @imbalance: Variable to store the imbalance.
2729 *
2730 * Description:
2731 * Check if we have potential to perform some power-savings balance.
2732 * If yes, set the busiest group to be the least loaded group in the
2733 * sched_domain, so that it's CPUs can be put to idle.
2734 *
2735 * Returns 1 if there is potential to perform power-savings balance.
2736 * Else returns 0.
2737 */
2738static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2739 int this_cpu, unsigned long *imbalance)
2740{
2741 if (!sds->power_savings_balance)
2742 return 0;
2743
2744 if (sds->this != sds->group_leader ||
2745 sds->group_leader == sds->group_min)
2746 return 0;
2747
2748 *imbalance = sds->min_load_per_task;
2749 sds->busiest = sds->group_min;
2750
2751 return 1;
2752
2753}
2754#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2755static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2756 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2757{
2758 return;
2759}
2760
2761static inline void update_sd_power_savings_stats(struct sched_group *group,
2762 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2763{
2764 return;
2765}
2766
2767static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2768 int this_cpu, unsigned long *imbalance)
2769{
2770 return 0;
2771}
2772#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2773
2774
2775unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2776{
1399fa78 2777 return SCHED_POWER_SCALE;
1e3c88bd
PZ
2778}
2779
2780unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2781{
2782 return default_scale_freq_power(sd, cpu);
2783}
2784
2785unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2786{
669c55e9 2787 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
2788 unsigned long smt_gain = sd->smt_gain;
2789
2790 smt_gain /= weight;
2791
2792 return smt_gain;
2793}
2794
2795unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2796{
2797 return default_scale_smt_power(sd, cpu);
2798}
2799
2800unsigned long scale_rt_power(int cpu)
2801{
2802 struct rq *rq = cpu_rq(cpu);
2803 u64 total, available;
2804
1e3c88bd 2805 total = sched_avg_period() + (rq->clock - rq->age_stamp);
aa483808
VP
2806
2807 if (unlikely(total < rq->rt_avg)) {
2808 /* Ensures that power won't end up being negative */
2809 available = 0;
2810 } else {
2811 available = total - rq->rt_avg;
2812 }
1e3c88bd 2813
1399fa78
NR
2814 if (unlikely((s64)total < SCHED_POWER_SCALE))
2815 total = SCHED_POWER_SCALE;
1e3c88bd 2816
1399fa78 2817 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
2818
2819 return div_u64(available, total);
2820}
2821
2822static void update_cpu_power(struct sched_domain *sd, int cpu)
2823{
669c55e9 2824 unsigned long weight = sd->span_weight;
1399fa78 2825 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
2826 struct sched_group *sdg = sd->groups;
2827
1e3c88bd
PZ
2828 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2829 if (sched_feat(ARCH_POWER))
2830 power *= arch_scale_smt_power(sd, cpu);
2831 else
2832 power *= default_scale_smt_power(sd, cpu);
2833
1399fa78 2834 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
2835 }
2836
9c3f75cb 2837 sdg->sgp->power_orig = power;
9d5efe05
SV
2838
2839 if (sched_feat(ARCH_POWER))
2840 power *= arch_scale_freq_power(sd, cpu);
2841 else
2842 power *= default_scale_freq_power(sd, cpu);
2843
1399fa78 2844 power >>= SCHED_POWER_SHIFT;
9d5efe05 2845
1e3c88bd 2846 power *= scale_rt_power(cpu);
1399fa78 2847 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
2848
2849 if (!power)
2850 power = 1;
2851
e51fd5e2 2852 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 2853 sdg->sgp->power = power;
1e3c88bd
PZ
2854}
2855
2856static void update_group_power(struct sched_domain *sd, int cpu)
2857{
2858 struct sched_domain *child = sd->child;
2859 struct sched_group *group, *sdg = sd->groups;
2860 unsigned long power;
2861
2862 if (!child) {
2863 update_cpu_power(sd, cpu);
2864 return;
2865 }
2866
2867 power = 0;
2868
2869 group = child->groups;
2870 do {
9c3f75cb 2871 power += group->sgp->power;
1e3c88bd
PZ
2872 group = group->next;
2873 } while (group != child->groups);
2874
9c3f75cb 2875 sdg->sgp->power = power;
1e3c88bd
PZ
2876}
2877
9d5efe05
SV
2878/*
2879 * Try and fix up capacity for tiny siblings, this is needed when
2880 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2881 * which on its own isn't powerful enough.
2882 *
2883 * See update_sd_pick_busiest() and check_asym_packing().
2884 */
2885static inline int
2886fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2887{
2888 /*
1399fa78 2889 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 2890 */
a6c75f2f 2891 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
2892 return 0;
2893
2894 /*
2895 * If ~90% of the cpu_power is still there, we're good.
2896 */
9c3f75cb 2897 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
2898 return 1;
2899
2900 return 0;
2901}
2902
1e3c88bd
PZ
2903/**
2904 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2905 * @sd: The sched_domain whose statistics are to be updated.
2906 * @group: sched_group whose statistics are to be updated.
2907 * @this_cpu: Cpu for which load balance is currently performed.
2908 * @idle: Idle status of this_cpu
2909 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd
PZ
2910 * @local_group: Does group contain this_cpu.
2911 * @cpus: Set of cpus considered for load balancing.
2912 * @balance: Should we balance.
2913 * @sgs: variable to hold the statistics for this group.
2914 */
2915static inline void update_sg_lb_stats(struct sched_domain *sd,
2916 struct sched_group *group, int this_cpu,
46e49b38 2917 enum cpu_idle_type idle, int load_idx,
1e3c88bd
PZ
2918 int local_group, const struct cpumask *cpus,
2919 int *balance, struct sg_lb_stats *sgs)
2920{
2582f0eb 2921 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
1e3c88bd
PZ
2922 int i;
2923 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 2924 unsigned long avg_load_per_task = 0;
1e3c88bd 2925
871e35bc 2926 if (local_group)
1e3c88bd 2927 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
2928
2929 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
2930 max_cpu_load = 0;
2931 min_cpu_load = ~0UL;
2582f0eb 2932 max_nr_running = 0;
1e3c88bd
PZ
2933
2934 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2935 struct rq *rq = cpu_rq(i);
2936
1e3c88bd
PZ
2937 /* Bias balancing toward cpus of our domain */
2938 if (local_group) {
2939 if (idle_cpu(i) && !first_idle_cpu) {
2940 first_idle_cpu = 1;
2941 balance_cpu = i;
2942 }
2943
2944 load = target_load(i, load_idx);
2945 } else {
2946 load = source_load(i, load_idx);
2582f0eb 2947 if (load > max_cpu_load) {
1e3c88bd 2948 max_cpu_load = load;
2582f0eb
NR
2949 max_nr_running = rq->nr_running;
2950 }
1e3c88bd
PZ
2951 if (min_cpu_load > load)
2952 min_cpu_load = load;
2953 }
2954
2955 sgs->group_load += load;
2956 sgs->sum_nr_running += rq->nr_running;
2957 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
2958 if (idle_cpu(i))
2959 sgs->idle_cpus++;
1e3c88bd
PZ
2960 }
2961
2962 /*
2963 * First idle cpu or the first cpu(busiest) in this sched group
2964 * is eligible for doing load balancing at this and above
2965 * domains. In the newly idle case, we will allow all the cpu's
2966 * to do the newly idle load balance.
2967 */
bbc8cb5b
PZ
2968 if (idle != CPU_NEWLY_IDLE && local_group) {
2969 if (balance_cpu != this_cpu) {
2970 *balance = 0;
2971 return;
2972 }
2973 update_group_power(sd, this_cpu);
1e3c88bd
PZ
2974 }
2975
2976 /* Adjust by relative CPU power of the group */
9c3f75cb 2977 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 2978
1e3c88bd
PZ
2979 /*
2980 * Consider the group unbalanced when the imbalance is larger
866ab43e 2981 * than the average weight of a task.
1e3c88bd
PZ
2982 *
2983 * APZ: with cgroup the avg task weight can vary wildly and
2984 * might not be a suitable number - should we keep a
2985 * normalized nr_running number somewhere that negates
2986 * the hierarchy?
2987 */
dd5feea1
SS
2988 if (sgs->sum_nr_running)
2989 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 2990
866ab43e 2991 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
1e3c88bd
PZ
2992 sgs->group_imb = 1;
2993
9c3f75cb 2994 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 2995 SCHED_POWER_SCALE);
9d5efe05
SV
2996 if (!sgs->group_capacity)
2997 sgs->group_capacity = fix_small_capacity(sd, group);
aae6d3dd 2998 sgs->group_weight = group->group_weight;
fab47622
NR
2999
3000 if (sgs->group_capacity > sgs->sum_nr_running)
3001 sgs->group_has_capacity = 1;
1e3c88bd
PZ
3002}
3003
532cb4c4
MN
3004/**
3005 * update_sd_pick_busiest - return 1 on busiest group
3006 * @sd: sched_domain whose statistics are to be checked
3007 * @sds: sched_domain statistics
3008 * @sg: sched_group candidate to be checked for being the busiest
b6b12294
MN
3009 * @sgs: sched_group statistics
3010 * @this_cpu: the current cpu
532cb4c4
MN
3011 *
3012 * Determine if @sg is a busier group than the previously selected
3013 * busiest group.
3014 */
3015static bool update_sd_pick_busiest(struct sched_domain *sd,
3016 struct sd_lb_stats *sds,
3017 struct sched_group *sg,
3018 struct sg_lb_stats *sgs,
3019 int this_cpu)
3020{
3021 if (sgs->avg_load <= sds->max_load)
3022 return false;
3023
3024 if (sgs->sum_nr_running > sgs->group_capacity)
3025 return true;
3026
3027 if (sgs->group_imb)
3028 return true;
3029
3030 /*
3031 * ASYM_PACKING needs to move all the work to the lowest
3032 * numbered CPUs in the group, therefore mark all groups
3033 * higher than ourself as busy.
3034 */
3035 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3036 this_cpu < group_first_cpu(sg)) {
3037 if (!sds->busiest)
3038 return true;
3039
3040 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3041 return true;
3042 }
3043
3044 return false;
3045}
3046
1e3c88bd
PZ
3047/**
3048 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3049 * @sd: sched_domain whose statistics are to be updated.
3050 * @this_cpu: Cpu for which load balance is currently performed.
3051 * @idle: Idle status of this_cpu
1e3c88bd
PZ
3052 * @cpus: Set of cpus considered for load balancing.
3053 * @balance: Should we balance.
3054 * @sds: variable to hold the statistics for this sched_domain.
3055 */
3056static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
46e49b38
VP
3057 enum cpu_idle_type idle, const struct cpumask *cpus,
3058 int *balance, struct sd_lb_stats *sds)
1e3c88bd
PZ
3059{
3060 struct sched_domain *child = sd->child;
532cb4c4 3061 struct sched_group *sg = sd->groups;
1e3c88bd
PZ
3062 struct sg_lb_stats sgs;
3063 int load_idx, prefer_sibling = 0;
3064
3065 if (child && child->flags & SD_PREFER_SIBLING)
3066 prefer_sibling = 1;
3067
3068 init_sd_power_savings_stats(sd, sds, idle);
3069 load_idx = get_sd_load_idx(sd, idle);
3070
3071 do {
3072 int local_group;
3073
532cb4c4 3074 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
1e3c88bd 3075 memset(&sgs, 0, sizeof(sgs));
46e49b38 3076 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
1e3c88bd
PZ
3077 local_group, cpus, balance, &sgs);
3078
8f190fb3 3079 if (local_group && !(*balance))
1e3c88bd
PZ
3080 return;
3081
3082 sds->total_load += sgs.group_load;
9c3f75cb 3083 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
3084
3085 /*
3086 * In case the child domain prefers tasks go to siblings
532cb4c4 3087 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
3088 * and move all the excess tasks away. We lower the capacity
3089 * of a group only if the local group has the capacity to fit
3090 * these excess tasks, i.e. nr_running < group_capacity. The
3091 * extra check prevents the case where you always pull from the
3092 * heaviest group when it is already under-utilized (possible
3093 * with a large weight task outweighs the tasks on the system).
1e3c88bd 3094 */
75dd321d 3095 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
3096 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3097
3098 if (local_group) {
3099 sds->this_load = sgs.avg_load;
532cb4c4 3100 sds->this = sg;
1e3c88bd
PZ
3101 sds->this_nr_running = sgs.sum_nr_running;
3102 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 3103 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 3104 sds->this_idle_cpus = sgs.idle_cpus;
532cb4c4 3105 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
1e3c88bd 3106 sds->max_load = sgs.avg_load;
532cb4c4 3107 sds->busiest = sg;
1e3c88bd 3108 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 3109 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 3110 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 3111 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 3112 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 3113 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
3114 sds->group_imb = sgs.group_imb;
3115 }
3116
532cb4c4
MN
3117 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
3118 sg = sg->next;
3119 } while (sg != sd->groups);
3120}
3121
2ec57d44 3122int __weak arch_sd_sibling_asym_packing(void)
532cb4c4
MN
3123{
3124 return 0*SD_ASYM_PACKING;
3125}
3126
3127/**
3128 * check_asym_packing - Check to see if the group is packed into the
3129 * sched doman.
3130 *
3131 * This is primarily intended to used at the sibling level. Some
3132 * cores like POWER7 prefer to use lower numbered SMT threads. In the
3133 * case of POWER7, it can move to lower SMT modes only when higher
3134 * threads are idle. When in lower SMT modes, the threads will
3135 * perform better since they share less core resources. Hence when we
3136 * have idle threads, we want them to be the higher ones.
3137 *
3138 * This packing function is run on idle threads. It checks to see if
3139 * the busiest CPU in this domain (core in the P7 case) has a higher
3140 * CPU number than the packing function is being run on. Here we are
3141 * assuming lower CPU number will be equivalent to lower a SMT thread
3142 * number.
3143 *
b6b12294
MN
3144 * Returns 1 when packing is required and a task should be moved to
3145 * this CPU. The amount of the imbalance is returned in *imbalance.
3146 *
532cb4c4
MN
3147 * @sd: The sched_domain whose packing is to be checked.
3148 * @sds: Statistics of the sched_domain which is to be packed
3149 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3150 * @imbalance: returns amount of imbalanced due to packing.
532cb4c4
MN
3151 */
3152static int check_asym_packing(struct sched_domain *sd,
3153 struct sd_lb_stats *sds,
3154 int this_cpu, unsigned long *imbalance)
3155{
3156 int busiest_cpu;
3157
3158 if (!(sd->flags & SD_ASYM_PACKING))
3159 return 0;
3160
3161 if (!sds->busiest)
3162 return 0;
3163
3164 busiest_cpu = group_first_cpu(sds->busiest);
3165 if (this_cpu > busiest_cpu)
3166 return 0;
3167
9c3f75cb 3168 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
1399fa78 3169 SCHED_POWER_SCALE);
532cb4c4 3170 return 1;
1e3c88bd
PZ
3171}
3172
3173/**
3174 * fix_small_imbalance - Calculate the minor imbalance that exists
3175 * amongst the groups of a sched_domain, during
3176 * load balancing.
3177 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3178 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3179 * @imbalance: Variable to store the imbalance.
3180 */
3181static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3182 int this_cpu, unsigned long *imbalance)
3183{
3184 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3185 unsigned int imbn = 2;
dd5feea1 3186 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
3187
3188 if (sds->this_nr_running) {
3189 sds->this_load_per_task /= sds->this_nr_running;
3190 if (sds->busiest_load_per_task >
3191 sds->this_load_per_task)
3192 imbn = 1;
3193 } else
3194 sds->this_load_per_task =
3195 cpu_avg_load_per_task(this_cpu);
3196
dd5feea1 3197 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 3198 * SCHED_POWER_SCALE;
9c3f75cb 3199 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
3200
3201 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
3202 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
3203 *imbalance = sds->busiest_load_per_task;
3204 return;
3205 }
3206
3207 /*
3208 * OK, we don't have enough imbalance to justify moving tasks,
3209 * however we may be able to increase total CPU power used by
3210 * moving them.
3211 */
3212
9c3f75cb 3213 pwr_now += sds->busiest->sgp->power *
1e3c88bd 3214 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 3215 pwr_now += sds->this->sgp->power *
1e3c88bd 3216 min(sds->this_load_per_task, sds->this_load);
1399fa78 3217 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
3218
3219 /* Amount of load we'd subtract */
1399fa78 3220 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 3221 sds->busiest->sgp->power;
1e3c88bd 3222 if (sds->max_load > tmp)
9c3f75cb 3223 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
3224 min(sds->busiest_load_per_task, sds->max_load - tmp);
3225
3226 /* Amount of load we'd add */
9c3f75cb 3227 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 3228 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
3229 tmp = (sds->max_load * sds->busiest->sgp->power) /
3230 sds->this->sgp->power;
1e3c88bd 3231 else
1399fa78 3232 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
3233 sds->this->sgp->power;
3234 pwr_move += sds->this->sgp->power *
1e3c88bd 3235 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 3236 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
3237
3238 /* Move if we gain throughput */
3239 if (pwr_move > pwr_now)
3240 *imbalance = sds->busiest_load_per_task;
3241}
3242
3243/**
3244 * calculate_imbalance - Calculate the amount of imbalance present within the
3245 * groups of a given sched_domain during load balance.
3246 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3247 * @this_cpu: Cpu for which currently load balance is being performed.
3248 * @imbalance: The variable to store the imbalance.
3249 */
3250static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3251 unsigned long *imbalance)
3252{
dd5feea1
SS
3253 unsigned long max_pull, load_above_capacity = ~0UL;
3254
3255 sds->busiest_load_per_task /= sds->busiest_nr_running;
3256 if (sds->group_imb) {
3257 sds->busiest_load_per_task =
3258 min(sds->busiest_load_per_task, sds->avg_load);
3259 }
3260
1e3c88bd
PZ
3261 /*
3262 * In the presence of smp nice balancing, certain scenarios can have
3263 * max load less than avg load(as we skip the groups at or below
3264 * its cpu_power, while calculating max_load..)
3265 */
3266 if (sds->max_load < sds->avg_load) {
3267 *imbalance = 0;
3268 return fix_small_imbalance(sds, this_cpu, imbalance);
3269 }
3270
dd5feea1
SS
3271 if (!sds->group_imb) {
3272 /*
3273 * Don't want to pull so many tasks that a group would go idle.
3274 */
3275 load_above_capacity = (sds->busiest_nr_running -
3276 sds->busiest_group_capacity);
3277
1399fa78 3278 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 3279
9c3f75cb 3280 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
3281 }
3282
3283 /*
3284 * We're trying to get all the cpus to the average_load, so we don't
3285 * want to push ourselves above the average load, nor do we wish to
3286 * reduce the max loaded cpu below the average load. At the same time,
3287 * we also don't want to reduce the group load below the group capacity
3288 * (so that we can implement power-savings policies etc). Thus we look
3289 * for the minimum possible imbalance.
3290 * Be careful of negative numbers as they'll appear as very large values
3291 * with unsigned longs.
3292 */
3293 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
3294
3295 /* How much load to actually move to equalise the imbalance */
9c3f75cb
PZ
3296 *imbalance = min(max_pull * sds->busiest->sgp->power,
3297 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 3298 / SCHED_POWER_SCALE;
1e3c88bd
PZ
3299
3300 /*
3301 * if *imbalance is less than the average load per runnable task
25985edc 3302 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
3303 * a think about bumping its value to force at least one task to be
3304 * moved
3305 */
3306 if (*imbalance < sds->busiest_load_per_task)
3307 return fix_small_imbalance(sds, this_cpu, imbalance);
3308
3309}
fab47622 3310
1e3c88bd
PZ
3311/******* find_busiest_group() helpers end here *********************/
3312
3313/**
3314 * find_busiest_group - Returns the busiest group within the sched_domain
3315 * if there is an imbalance. If there isn't an imbalance, and
3316 * the user has opted for power-savings, it returns a group whose
3317 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3318 * such a group exists.
3319 *
3320 * Also calculates the amount of weighted load which should be moved
3321 * to restore balance.
3322 *
3323 * @sd: The sched_domain whose busiest group is to be returned.
3324 * @this_cpu: The cpu for which load balancing is currently being performed.
3325 * @imbalance: Variable which stores amount of weighted load which should
3326 * be moved to restore balance/put a group to idle.
3327 * @idle: The idle status of this_cpu.
1e3c88bd
PZ
3328 * @cpus: The set of CPUs under consideration for load-balancing.
3329 * @balance: Pointer to a variable indicating if this_cpu
3330 * is the appropriate cpu to perform load balancing at this_level.
3331 *
3332 * Returns: - the busiest group if imbalance exists.
3333 * - If no imbalance and user has opted for power-savings balance,
3334 * return the least loaded group whose CPUs can be
3335 * put to idle by rebalancing its tasks onto our group.
3336 */
3337static struct sched_group *
3338find_busiest_group(struct sched_domain *sd, int this_cpu,
3339 unsigned long *imbalance, enum cpu_idle_type idle,
46e49b38 3340 const struct cpumask *cpus, int *balance)
1e3c88bd
PZ
3341{
3342 struct sd_lb_stats sds;
3343
3344 memset(&sds, 0, sizeof(sds));
3345
3346 /*
3347 * Compute the various statistics relavent for load balancing at
3348 * this level.
3349 */
46e49b38 3350 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
1e3c88bd 3351
cc57aa8f
PZ
3352 /*
3353 * this_cpu is not the appropriate cpu to perform load balancing at
3354 * this level.
1e3c88bd 3355 */
8f190fb3 3356 if (!(*balance))
1e3c88bd
PZ
3357 goto ret;
3358
532cb4c4
MN
3359 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3360 check_asym_packing(sd, &sds, this_cpu, imbalance))
3361 return sds.busiest;
3362
cc57aa8f 3363 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
3364 if (!sds.busiest || sds.busiest_nr_running == 0)
3365 goto out_balanced;
3366
1399fa78 3367 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 3368
866ab43e
PZ
3369 /*
3370 * If the busiest group is imbalanced the below checks don't
3371 * work because they assumes all things are equal, which typically
3372 * isn't true due to cpus_allowed constraints and the like.
3373 */
3374 if (sds.group_imb)
3375 goto force_balance;
3376
cc57aa8f 3377 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
fab47622
NR
3378 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3379 !sds.busiest_has_capacity)
3380 goto force_balance;
3381
cc57aa8f
PZ
3382 /*
3383 * If the local group is more busy than the selected busiest group
3384 * don't try and pull any tasks.
3385 */
1e3c88bd
PZ
3386 if (sds.this_load >= sds.max_load)
3387 goto out_balanced;
3388
cc57aa8f
PZ
3389 /*
3390 * Don't pull any tasks if this group is already above the domain
3391 * average load.
3392 */
1e3c88bd
PZ
3393 if (sds.this_load >= sds.avg_load)
3394 goto out_balanced;
3395
c186fafe 3396 if (idle == CPU_IDLE) {
aae6d3dd
SS
3397 /*
3398 * This cpu is idle. If the busiest group load doesn't
3399 * have more tasks than the number of available cpu's and
3400 * there is no imbalance between this and busiest group
3401 * wrt to idle cpu's, it is balanced.
3402 */
c186fafe 3403 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
3404 sds.busiest_nr_running <= sds.busiest_group_weight)
3405 goto out_balanced;
c186fafe
PZ
3406 } else {
3407 /*
3408 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3409 * imbalance_pct to be conservative.
3410 */
3411 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3412 goto out_balanced;
aae6d3dd 3413 }
1e3c88bd 3414
fab47622 3415force_balance:
1e3c88bd
PZ
3416 /* Looks like there is an imbalance. Compute it */
3417 calculate_imbalance(&sds, this_cpu, imbalance);
3418 return sds.busiest;
3419
3420out_balanced:
3421 /*
3422 * There is no obvious imbalance. But check if we can do some balancing
3423 * to save power.
3424 */
3425 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3426 return sds.busiest;
3427ret:
3428 *imbalance = 0;
3429 return NULL;
3430}
3431
3432/*
3433 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3434 */
3435static struct rq *
9d5efe05
SV
3436find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3437 enum cpu_idle_type idle, unsigned long imbalance,
3438 const struct cpumask *cpus)
1e3c88bd
PZ
3439{
3440 struct rq *busiest = NULL, *rq;
3441 unsigned long max_load = 0;
3442 int i;
3443
3444 for_each_cpu(i, sched_group_cpus(group)) {
3445 unsigned long power = power_of(i);
1399fa78
NR
3446 unsigned long capacity = DIV_ROUND_CLOSEST(power,
3447 SCHED_POWER_SCALE);
1e3c88bd
PZ
3448 unsigned long wl;
3449
9d5efe05
SV
3450 if (!capacity)
3451 capacity = fix_small_capacity(sd, group);
3452
1e3c88bd
PZ
3453 if (!cpumask_test_cpu(i, cpus))
3454 continue;
3455
3456 rq = cpu_rq(i);
6e40f5bb 3457 wl = weighted_cpuload(i);
1e3c88bd 3458
6e40f5bb
TG
3459 /*
3460 * When comparing with imbalance, use weighted_cpuload()
3461 * which is not scaled with the cpu power.
3462 */
1e3c88bd
PZ
3463 if (capacity && rq->nr_running == 1 && wl > imbalance)
3464 continue;
3465
6e40f5bb
TG
3466 /*
3467 * For the load comparisons with the other cpu's, consider
3468 * the weighted_cpuload() scaled with the cpu power, so that
3469 * the load can be moved away from the cpu that is potentially
3470 * running at a lower capacity.
3471 */
1399fa78 3472 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 3473
1e3c88bd
PZ
3474 if (wl > max_load) {
3475 max_load = wl;
3476 busiest = rq;
3477 }
3478 }
3479
3480 return busiest;
3481}
3482
3483/*
3484 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3485 * so long as it is large enough.
3486 */
3487#define MAX_PINNED_INTERVAL 512
3488
3489/* Working cpumask for load_balance and load_balance_newidle. */
3490static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3491
46e49b38 3492static int need_active_balance(struct sched_domain *sd, int idle,
532cb4c4 3493 int busiest_cpu, int this_cpu)
1af3ed3d
PZ
3494{
3495 if (idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
3496
3497 /*
3498 * ASYM_PACKING needs to force migrate tasks from busy but
3499 * higher numbered CPUs in order to pack all tasks in the
3500 * lowest numbered CPUs.
3501 */
3502 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3503 return 1;
3504
1af3ed3d
PZ
3505 /*
3506 * The only task running in a non-idle cpu can be moved to this
3507 * cpu in an attempt to completely freeup the other CPU
3508 * package.
3509 *
3510 * The package power saving logic comes from
3511 * find_busiest_group(). If there are no imbalance, then
3512 * f_b_g() will return NULL. However when sched_mc={1,2} then
3513 * f_b_g() will select a group from which a running task may be
3514 * pulled to this cpu in order to make the other package idle.
3515 * If there is no opportunity to make a package idle and if
3516 * there are no imbalance, then f_b_g() will return NULL and no
3517 * action will be taken in load_balance_newidle().
3518 *
3519 * Under normal task pull operation due to imbalance, there
3520 * will be more than one task in the source run queue and
3521 * move_tasks() will succeed. ld_moved will be true and this
3522 * active balance code will not be triggered.
3523 */
1af3ed3d
PZ
3524 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3525 return 0;
3526 }
3527
3528 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3529}
3530
969c7921
TH
3531static int active_load_balance_cpu_stop(void *data);
3532
1e3c88bd
PZ
3533/*
3534 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3535 * tasks if there is an imbalance.
3536 */
3537static int load_balance(int this_cpu, struct rq *this_rq,
3538 struct sched_domain *sd, enum cpu_idle_type idle,
3539 int *balance)
3540{
46e49b38 3541 int ld_moved, all_pinned = 0, active_balance = 0;
1e3c88bd
PZ
3542 struct sched_group *group;
3543 unsigned long imbalance;
3544 struct rq *busiest;
3545 unsigned long flags;
3546 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3547
3548 cpumask_copy(cpus, cpu_active_mask);
3549
1e3c88bd
PZ
3550 schedstat_inc(sd, lb_count[idle]);
3551
3552redo:
46e49b38 3553 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
1e3c88bd
PZ
3554 cpus, balance);
3555
3556 if (*balance == 0)
3557 goto out_balanced;
3558
3559 if (!group) {
3560 schedstat_inc(sd, lb_nobusyg[idle]);
3561 goto out_balanced;
3562 }
3563
9d5efe05 3564 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
1e3c88bd
PZ
3565 if (!busiest) {
3566 schedstat_inc(sd, lb_nobusyq[idle]);
3567 goto out_balanced;
3568 }
3569
3570 BUG_ON(busiest == this_rq);
3571
3572 schedstat_add(sd, lb_imbalance[idle], imbalance);
3573
3574 ld_moved = 0;
3575 if (busiest->nr_running > 1) {
3576 /*
3577 * Attempt to move tasks. If find_busiest_group has found
3578 * an imbalance but busiest->nr_running <= 1, the group is
3579 * still unbalanced. ld_moved simply stays zero, so it is
3580 * correctly treated as an imbalance.
3581 */
b30aef17 3582 all_pinned = 1;
1e3c88bd
PZ
3583 local_irq_save(flags);
3584 double_rq_lock(this_rq, busiest);
3585 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3586 imbalance, sd, idle, &all_pinned);
3587 double_rq_unlock(this_rq, busiest);
3588 local_irq_restore(flags);
3589
3590 /*
3591 * some other cpu did the load balance for us.
3592 */
3593 if (ld_moved && this_cpu != smp_processor_id())
3594 resched_cpu(this_cpu);
3595
3596 /* All tasks on this runqueue were pinned by CPU affinity */
3597 if (unlikely(all_pinned)) {
3598 cpumask_clear_cpu(cpu_of(busiest), cpus);
3599 if (!cpumask_empty(cpus))
3600 goto redo;
3601 goto out_balanced;
3602 }
3603 }
3604
3605 if (!ld_moved) {
3606 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
3607 /*
3608 * Increment the failure counter only on periodic balance.
3609 * We do not want newidle balance, which can be very
3610 * frequent, pollute the failure counter causing
3611 * excessive cache_hot migrations and active balances.
3612 */
3613 if (idle != CPU_NEWLY_IDLE)
3614 sd->nr_balance_failed++;
1e3c88bd 3615
46e49b38 3616 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
1e3c88bd
PZ
3617 raw_spin_lock_irqsave(&busiest->lock, flags);
3618
969c7921
TH
3619 /* don't kick the active_load_balance_cpu_stop,
3620 * if the curr task on busiest cpu can't be
3621 * moved to this_cpu
1e3c88bd
PZ
3622 */
3623 if (!cpumask_test_cpu(this_cpu,
3624 &busiest->curr->cpus_allowed)) {
3625 raw_spin_unlock_irqrestore(&busiest->lock,
3626 flags);
3627 all_pinned = 1;
3628 goto out_one_pinned;
3629 }
3630
969c7921
TH
3631 /*
3632 * ->active_balance synchronizes accesses to
3633 * ->active_balance_work. Once set, it's cleared
3634 * only after active load balance is finished.
3635 */
1e3c88bd
PZ
3636 if (!busiest->active_balance) {
3637 busiest->active_balance = 1;
3638 busiest->push_cpu = this_cpu;
3639 active_balance = 1;
3640 }
3641 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 3642
1e3c88bd 3643 if (active_balance)
969c7921
TH
3644 stop_one_cpu_nowait(cpu_of(busiest),
3645 active_load_balance_cpu_stop, busiest,
3646 &busiest->active_balance_work);
1e3c88bd
PZ
3647
3648 /*
3649 * We've kicked active balancing, reset the failure
3650 * counter.
3651 */
3652 sd->nr_balance_failed = sd->cache_nice_tries+1;
3653 }
3654 } else
3655 sd->nr_balance_failed = 0;
3656
3657 if (likely(!active_balance)) {
3658 /* We were unbalanced, so reset the balancing interval */
3659 sd->balance_interval = sd->min_interval;
3660 } else {
3661 /*
3662 * If we've begun active balancing, start to back off. This
3663 * case may not be covered by the all_pinned logic if there
3664 * is only 1 task on the busy runqueue (because we don't call
3665 * move_tasks).
3666 */
3667 if (sd->balance_interval < sd->max_interval)
3668 sd->balance_interval *= 2;
3669 }
3670
1e3c88bd
PZ
3671 goto out;
3672
3673out_balanced:
3674 schedstat_inc(sd, lb_balanced[idle]);
3675
3676 sd->nr_balance_failed = 0;
3677
3678out_one_pinned:
3679 /* tune up the balancing interval */
3680 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3681 (sd->balance_interval < sd->max_interval))
3682 sd->balance_interval *= 2;
3683
46e49b38 3684 ld_moved = 0;
1e3c88bd 3685out:
1e3c88bd
PZ
3686 return ld_moved;
3687}
3688
1e3c88bd
PZ
3689/*
3690 * idle_balance is called by schedule() if this_cpu is about to become
3691 * idle. Attempts to pull tasks from other CPUs.
3692 */
3693static void idle_balance(int this_cpu, struct rq *this_rq)
3694{
3695 struct sched_domain *sd;
3696 int pulled_task = 0;
3697 unsigned long next_balance = jiffies + HZ;
3698
3699 this_rq->idle_stamp = this_rq->clock;
3700
3701 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3702 return;
3703
f492e12e
PZ
3704 /*
3705 * Drop the rq->lock, but keep IRQ/preempt disabled.
3706 */
3707 raw_spin_unlock(&this_rq->lock);
3708
c66eaf61 3709 update_shares(this_cpu);
dce840a0 3710 rcu_read_lock();
1e3c88bd
PZ
3711 for_each_domain(this_cpu, sd) {
3712 unsigned long interval;
f492e12e 3713 int balance = 1;
1e3c88bd
PZ
3714
3715 if (!(sd->flags & SD_LOAD_BALANCE))
3716 continue;
3717
f492e12e 3718 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 3719 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
3720 pulled_task = load_balance(this_cpu, this_rq,
3721 sd, CPU_NEWLY_IDLE, &balance);
3722 }
1e3c88bd
PZ
3723
3724 interval = msecs_to_jiffies(sd->balance_interval);
3725 if (time_after(next_balance, sd->last_balance + interval))
3726 next_balance = sd->last_balance + interval;
d5ad140b
NR
3727 if (pulled_task) {
3728 this_rq->idle_stamp = 0;
1e3c88bd 3729 break;
d5ad140b 3730 }
1e3c88bd 3731 }
dce840a0 3732 rcu_read_unlock();
f492e12e
PZ
3733
3734 raw_spin_lock(&this_rq->lock);
3735
1e3c88bd
PZ
3736 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3737 /*
3738 * We are going idle. next_balance may be set based on
3739 * a busy processor. So reset next_balance.
3740 */
3741 this_rq->next_balance = next_balance;
3742 }
3743}
3744
3745/*
969c7921
TH
3746 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3747 * running tasks off the busiest CPU onto idle CPUs. It requires at
3748 * least 1 task to be running on each physical CPU where possible, and
3749 * avoids physical / logical imbalances.
1e3c88bd 3750 */
969c7921 3751static int active_load_balance_cpu_stop(void *data)
1e3c88bd 3752{
969c7921
TH
3753 struct rq *busiest_rq = data;
3754 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 3755 int target_cpu = busiest_rq->push_cpu;
969c7921 3756 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 3757 struct sched_domain *sd;
969c7921
TH
3758
3759 raw_spin_lock_irq(&busiest_rq->lock);
3760
3761 /* make sure the requested cpu hasn't gone down in the meantime */
3762 if (unlikely(busiest_cpu != smp_processor_id() ||
3763 !busiest_rq->active_balance))
3764 goto out_unlock;
1e3c88bd
PZ
3765
3766 /* Is there any task to move? */
3767 if (busiest_rq->nr_running <= 1)
969c7921 3768 goto out_unlock;
1e3c88bd
PZ
3769
3770 /*
3771 * This condition is "impossible", if it occurs
3772 * we need to fix it. Originally reported by
3773 * Bjorn Helgaas on a 128-cpu setup.
3774 */
3775 BUG_ON(busiest_rq == target_rq);
3776
3777 /* move a task from busiest_rq to target_rq */
3778 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
3779
3780 /* Search for an sd spanning us and the target CPU. */
dce840a0 3781 rcu_read_lock();
1e3c88bd
PZ
3782 for_each_domain(target_cpu, sd) {
3783 if ((sd->flags & SD_LOAD_BALANCE) &&
3784 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3785 break;
3786 }
3787
3788 if (likely(sd)) {
3789 schedstat_inc(sd, alb_count);
3790
3791 if (move_one_task(target_rq, target_cpu, busiest_rq,
3792 sd, CPU_IDLE))
3793 schedstat_inc(sd, alb_pushed);
3794 else
3795 schedstat_inc(sd, alb_failed);
3796 }
dce840a0 3797 rcu_read_unlock();
1e3c88bd 3798 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
3799out_unlock:
3800 busiest_rq->active_balance = 0;
3801 raw_spin_unlock_irq(&busiest_rq->lock);
3802 return 0;
1e3c88bd
PZ
3803}
3804
3805#ifdef CONFIG_NO_HZ
83cd4fe2
VP
3806
3807static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3808
3809static void trigger_sched_softirq(void *data)
3810{
3811 raise_softirq_irqoff(SCHED_SOFTIRQ);
3812}
3813
3814static inline void init_sched_softirq_csd(struct call_single_data *csd)
3815{
3816 csd->func = trigger_sched_softirq;
3817 csd->info = NULL;
3818 csd->flags = 0;
3819 csd->priv = 0;
3820}
3821
3822/*
3823 * idle load balancing details
3824 * - One of the idle CPUs nominates itself as idle load_balancer, while
3825 * entering idle.
3826 * - This idle load balancer CPU will also go into tickless mode when
3827 * it is idle, just like all other idle CPUs
3828 * - When one of the busy CPUs notice that there may be an idle rebalancing
3829 * needed, they will kick the idle load balancer, which then does idle
3830 * load balancing for all the idle CPUs.
3831 */
1e3c88bd
PZ
3832static struct {
3833 atomic_t load_balancer;
83cd4fe2
VP
3834 atomic_t first_pick_cpu;
3835 atomic_t second_pick_cpu;
3836 cpumask_var_t idle_cpus_mask;
3837 cpumask_var_t grp_idle_mask;
3838 unsigned long next_balance; /* in jiffy units */
3839} nohz ____cacheline_aligned;
1e3c88bd
PZ
3840
3841int get_nohz_load_balancer(void)
3842{
3843 return atomic_read(&nohz.load_balancer);
3844}
3845
3846#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3847/**
3848 * lowest_flag_domain - Return lowest sched_domain containing flag.
3849 * @cpu: The cpu whose lowest level of sched domain is to
3850 * be returned.
3851 * @flag: The flag to check for the lowest sched_domain
3852 * for the given cpu.
3853 *
3854 * Returns the lowest sched_domain of a cpu which contains the given flag.
3855 */
3856static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3857{
3858 struct sched_domain *sd;
3859
3860 for_each_domain(cpu, sd)
08354716 3861 if (sd->flags & flag)
1e3c88bd
PZ
3862 break;
3863
3864 return sd;
3865}
3866
3867/**
3868 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3869 * @cpu: The cpu whose domains we're iterating over.
3870 * @sd: variable holding the value of the power_savings_sd
3871 * for cpu.
3872 * @flag: The flag to filter the sched_domains to be iterated.
3873 *
3874 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3875 * set, starting from the lowest sched_domain to the highest.
3876 */
3877#define for_each_flag_domain(cpu, sd, flag) \
3878 for (sd = lowest_flag_domain(cpu, flag); \
3879 (sd && (sd->flags & flag)); sd = sd->parent)
3880
3881/**
3882 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3883 * @ilb_group: group to be checked for semi-idleness
3884 *
3885 * Returns: 1 if the group is semi-idle. 0 otherwise.
3886 *
3887 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3888 * and atleast one non-idle CPU. This helper function checks if the given
3889 * sched_group is semi-idle or not.
3890 */
3891static inline int is_semi_idle_group(struct sched_group *ilb_group)
3892{
83cd4fe2 3893 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
1e3c88bd
PZ
3894 sched_group_cpus(ilb_group));
3895
3896 /*
3897 * A sched_group is semi-idle when it has atleast one busy cpu
3898 * and atleast one idle cpu.
3899 */
83cd4fe2 3900 if (cpumask_empty(nohz.grp_idle_mask))
1e3c88bd
PZ
3901 return 0;
3902
83cd4fe2 3903 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
1e3c88bd
PZ
3904 return 0;
3905
3906 return 1;
3907}
3908/**
3909 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3910 * @cpu: The cpu which is nominating a new idle_load_balancer.
3911 *
3912 * Returns: Returns the id of the idle load balancer if it exists,
3913 * Else, returns >= nr_cpu_ids.
3914 *
3915 * This algorithm picks the idle load balancer such that it belongs to a
3916 * semi-idle powersavings sched_domain. The idea is to try and avoid
3917 * completely idle packages/cores just for the purpose of idle load balancing
3918 * when there are other idle cpu's which are better suited for that job.
3919 */
3920static int find_new_ilb(int cpu)
3921{
3922 struct sched_domain *sd;
3923 struct sched_group *ilb_group;
dce840a0 3924 int ilb = nr_cpu_ids;
1e3c88bd
PZ
3925
3926 /*
3927 * Have idle load balancer selection from semi-idle packages only
3928 * when power-aware load balancing is enabled
3929 */
3930 if (!(sched_smt_power_savings || sched_mc_power_savings))
3931 goto out_done;
3932
3933 /*
3934 * Optimize for the case when we have no idle CPUs or only one
3935 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3936 */
83cd4fe2 3937 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
1e3c88bd
PZ
3938 goto out_done;
3939
dce840a0 3940 rcu_read_lock();
1e3c88bd
PZ
3941 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3942 ilb_group = sd->groups;
3943
3944 do {
dce840a0
PZ
3945 if (is_semi_idle_group(ilb_group)) {
3946 ilb = cpumask_first(nohz.grp_idle_mask);
3947 goto unlock;
3948 }
1e3c88bd
PZ
3949
3950 ilb_group = ilb_group->next;
3951
3952 } while (ilb_group != sd->groups);
3953 }
dce840a0
PZ
3954unlock:
3955 rcu_read_unlock();
1e3c88bd
PZ
3956
3957out_done:
dce840a0 3958 return ilb;
1e3c88bd
PZ
3959}
3960#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3961static inline int find_new_ilb(int call_cpu)
3962{
83cd4fe2 3963 return nr_cpu_ids;
1e3c88bd
PZ
3964}
3965#endif
3966
83cd4fe2
VP
3967/*
3968 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3969 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3970 * CPU (if there is one).
3971 */
3972static void nohz_balancer_kick(int cpu)
3973{
3974 int ilb_cpu;
3975
3976 nohz.next_balance++;
3977
3978 ilb_cpu = get_nohz_load_balancer();
3979
3980 if (ilb_cpu >= nr_cpu_ids) {
3981 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3982 if (ilb_cpu >= nr_cpu_ids)
3983 return;
3984 }
3985
3986 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3987 struct call_single_data *cp;
3988
3989 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3990 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3991 __smp_call_function_single(ilb_cpu, cp, 0);
3992 }
3993 return;
3994}
3995
1e3c88bd
PZ
3996/*
3997 * This routine will try to nominate the ilb (idle load balancing)
3998 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
83cd4fe2 3999 * load balancing on behalf of all those cpus.
1e3c88bd 4000 *
83cd4fe2
VP
4001 * When the ilb owner becomes busy, we will not have new ilb owner until some
4002 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
4003 * idle load balancing by kicking one of the idle CPUs.
1e3c88bd 4004 *
83cd4fe2
VP
4005 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
4006 * ilb owner CPU in future (when there is a need for idle load balancing on
4007 * behalf of all idle CPUs).
1e3c88bd 4008 */
83cd4fe2 4009void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
4010{
4011 int cpu = smp_processor_id();
4012
4013 if (stop_tick) {
1e3c88bd
PZ
4014 if (!cpu_active(cpu)) {
4015 if (atomic_read(&nohz.load_balancer) != cpu)
83cd4fe2 4016 return;
1e3c88bd
PZ
4017
4018 /*
4019 * If we are going offline and still the leader,
4020 * give up!
4021 */
83cd4fe2
VP
4022 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
4023 nr_cpu_ids) != cpu)
1e3c88bd
PZ
4024 BUG();
4025
83cd4fe2 4026 return;
1e3c88bd
PZ
4027 }
4028
83cd4fe2 4029 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd 4030
83cd4fe2
VP
4031 if (atomic_read(&nohz.first_pick_cpu) == cpu)
4032 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
4033 if (atomic_read(&nohz.second_pick_cpu) == cpu)
4034 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
1e3c88bd 4035
83cd4fe2 4036 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
1e3c88bd
PZ
4037 int new_ilb;
4038
83cd4fe2
VP
4039 /* make me the ilb owner */
4040 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
4041 cpu) != nr_cpu_ids)
4042 return;
4043
1e3c88bd
PZ
4044 /*
4045 * Check to see if there is a more power-efficient
4046 * ilb.
4047 */
4048 new_ilb = find_new_ilb(cpu);
4049 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
83cd4fe2 4050 atomic_set(&nohz.load_balancer, nr_cpu_ids);
1e3c88bd 4051 resched_cpu(new_ilb);
83cd4fe2 4052 return;
1e3c88bd 4053 }
83cd4fe2 4054 return;
1e3c88bd
PZ
4055 }
4056 } else {
83cd4fe2
VP
4057 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
4058 return;
1e3c88bd 4059
83cd4fe2 4060 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd
PZ
4061
4062 if (atomic_read(&nohz.load_balancer) == cpu)
83cd4fe2
VP
4063 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
4064 nr_cpu_ids) != cpu)
1e3c88bd
PZ
4065 BUG();
4066 }
83cd4fe2 4067 return;
1e3c88bd
PZ
4068}
4069#endif
4070
4071static DEFINE_SPINLOCK(balancing);
4072
49c022e6
PZ
4073static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4074
4075/*
4076 * Scale the max load_balance interval with the number of CPUs in the system.
4077 * This trades load-balance latency on larger machines for less cross talk.
4078 */
4079static void update_max_interval(void)
4080{
4081 max_load_balance_interval = HZ*num_online_cpus()/10;
4082}
4083
1e3c88bd
PZ
4084/*
4085 * It checks each scheduling domain to see if it is due to be balanced,
4086 * and initiates a balancing operation if so.
4087 *
4088 * Balancing parameters are set up in arch_init_sched_domains.
4089 */
4090static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4091{
4092 int balance = 1;
4093 struct rq *rq = cpu_rq(cpu);
4094 unsigned long interval;
4095 struct sched_domain *sd;
4096 /* Earliest time when we have to do rebalance again */
4097 unsigned long next_balance = jiffies + 60*HZ;
4098 int update_next_balance = 0;
4099 int need_serialize;
4100
2069dd75
PZ
4101 update_shares(cpu);
4102
dce840a0 4103 rcu_read_lock();
1e3c88bd
PZ
4104 for_each_domain(cpu, sd) {
4105 if (!(sd->flags & SD_LOAD_BALANCE))
4106 continue;
4107
4108 interval = sd->balance_interval;
4109 if (idle != CPU_IDLE)
4110 interval *= sd->busy_factor;
4111
4112 /* scale ms to jiffies */
4113 interval = msecs_to_jiffies(interval);
49c022e6 4114 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
4115
4116 need_serialize = sd->flags & SD_SERIALIZE;
4117
4118 if (need_serialize) {
4119 if (!spin_trylock(&balancing))
4120 goto out;
4121 }
4122
4123 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4124 if (load_balance(cpu, rq, sd, idle, &balance)) {
4125 /*
4126 * We've pulled tasks over so either we're no
c186fafe 4127 * longer idle.
1e3c88bd
PZ
4128 */
4129 idle = CPU_NOT_IDLE;
4130 }
4131 sd->last_balance = jiffies;
4132 }
4133 if (need_serialize)
4134 spin_unlock(&balancing);
4135out:
4136 if (time_after(next_balance, sd->last_balance + interval)) {
4137 next_balance = sd->last_balance + interval;
4138 update_next_balance = 1;
4139 }
4140
4141 /*
4142 * Stop the load balance at this level. There is another
4143 * CPU in our sched group which is doing load balancing more
4144 * actively.
4145 */
4146 if (!balance)
4147 break;
4148 }
dce840a0 4149 rcu_read_unlock();
1e3c88bd
PZ
4150
4151 /*
4152 * next_balance will be updated only when there is a need.
4153 * When the cpu is attached to null domain for ex, it will not be
4154 * updated.
4155 */
4156 if (likely(update_next_balance))
4157 rq->next_balance = next_balance;
4158}
4159
83cd4fe2 4160#ifdef CONFIG_NO_HZ
1e3c88bd 4161/*
83cd4fe2 4162 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
4163 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4164 */
83cd4fe2
VP
4165static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
4166{
4167 struct rq *this_rq = cpu_rq(this_cpu);
4168 struct rq *rq;
4169 int balance_cpu;
4170
4171 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
4172 return;
4173
4174 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
4175 if (balance_cpu == this_cpu)
4176 continue;
4177
4178 /*
4179 * If this cpu gets work to do, stop the load balancing
4180 * work being done for other cpus. Next load
4181 * balancing owner will pick it up.
4182 */
4183 if (need_resched()) {
4184 this_rq->nohz_balance_kick = 0;
4185 break;
4186 }
4187
4188 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 4189 update_rq_clock(this_rq);
83cd4fe2
VP
4190 update_cpu_load(this_rq);
4191 raw_spin_unlock_irq(&this_rq->lock);
4192
4193 rebalance_domains(balance_cpu, CPU_IDLE);
4194
4195 rq = cpu_rq(balance_cpu);
4196 if (time_after(this_rq->next_balance, rq->next_balance))
4197 this_rq->next_balance = rq->next_balance;
4198 }
4199 nohz.next_balance = this_rq->next_balance;
4200 this_rq->nohz_balance_kick = 0;
4201}
4202
4203/*
4204 * Current heuristic for kicking the idle load balancer
4205 * - first_pick_cpu is the one of the busy CPUs. It will kick
4206 * idle load balancer when it has more than one process active. This
4207 * eliminates the need for idle load balancing altogether when we have
4208 * only one running process in the system (common case).
4209 * - If there are more than one busy CPU, idle load balancer may have
4210 * to run for active_load_balance to happen (i.e., two busy CPUs are
4211 * SMT or core siblings and can run better if they move to different
4212 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
4213 * which will kick idle load balancer as soon as it has any load.
4214 */
4215static inline int nohz_kick_needed(struct rq *rq, int cpu)
4216{
4217 unsigned long now = jiffies;
4218 int ret;
4219 int first_pick_cpu, second_pick_cpu;
4220
4221 if (time_before(now, nohz.next_balance))
4222 return 0;
4223
f6c3f168 4224 if (rq->idle_at_tick)
83cd4fe2
VP
4225 return 0;
4226
4227 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
4228 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
4229
4230 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
4231 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
4232 return 0;
4233
4234 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
4235 if (ret == nr_cpu_ids || ret == cpu) {
4236 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
4237 if (rq->nr_running > 1)
4238 return 1;
4239 } else {
4240 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
4241 if (ret == nr_cpu_ids || ret == cpu) {
4242 if (rq->nr_running)
4243 return 1;
4244 }
4245 }
4246 return 0;
4247}
4248#else
4249static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
4250#endif
4251
4252/*
4253 * run_rebalance_domains is triggered when needed from the scheduler tick.
4254 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4255 */
1e3c88bd
PZ
4256static void run_rebalance_domains(struct softirq_action *h)
4257{
4258 int this_cpu = smp_processor_id();
4259 struct rq *this_rq = cpu_rq(this_cpu);
4260 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4261 CPU_IDLE : CPU_NOT_IDLE;
4262
4263 rebalance_domains(this_cpu, idle);
4264
1e3c88bd 4265 /*
83cd4fe2 4266 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
4267 * balancing on behalf of the other idle cpus whose ticks are
4268 * stopped.
4269 */
83cd4fe2 4270 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
4271}
4272
4273static inline int on_null_domain(int cpu)
4274{
90a6501f 4275 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
4276}
4277
4278/*
4279 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd
PZ
4280 */
4281static inline void trigger_load_balance(struct rq *rq, int cpu)
4282{
1e3c88bd
PZ
4283 /* Don't need to rebalance while attached to NULL domain */
4284 if (time_after_eq(jiffies, rq->next_balance) &&
4285 likely(!on_null_domain(cpu)))
4286 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2
VP
4287#ifdef CONFIG_NO_HZ
4288 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4289 nohz_balancer_kick(cpu);
4290#endif
1e3c88bd
PZ
4291}
4292
0bcdcf28
CE
4293static void rq_online_fair(struct rq *rq)
4294{
4295 update_sysctl();
4296}
4297
4298static void rq_offline_fair(struct rq *rq)
4299{
4300 update_sysctl();
4301}
4302
1e3c88bd
PZ
4303#else /* CONFIG_SMP */
4304
4305/*
4306 * on UP we do not need to balance between CPUs:
4307 */
4308static inline void idle_balance(int cpu, struct rq *rq)
4309{
4310}
4311
55e12e5e 4312#endif /* CONFIG_SMP */
e1d1484f 4313
bf0f6f24
IM
4314/*
4315 * scheduler tick hitting a task of our scheduling class:
4316 */
8f4d37ec 4317static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
4318{
4319 struct cfs_rq *cfs_rq;
4320 struct sched_entity *se = &curr->se;
4321
4322 for_each_sched_entity(se) {
4323 cfs_rq = cfs_rq_of(se);
8f4d37ec 4324 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
4325 }
4326}
4327
4328/*
cd29fe6f
PZ
4329 * called on fork with the child task as argument from the parent's context
4330 * - child not yet on the tasklist
4331 * - preemption disabled
bf0f6f24 4332 */
cd29fe6f 4333static void task_fork_fair(struct task_struct *p)
bf0f6f24 4334{
cd29fe6f 4335 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 4336 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 4337 int this_cpu = smp_processor_id();
cd29fe6f
PZ
4338 struct rq *rq = this_rq();
4339 unsigned long flags;
4340
05fa785c 4341 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 4342
861d034e
PZ
4343 update_rq_clock(rq);
4344
b0a0f667
PM
4345 if (unlikely(task_cpu(p) != this_cpu)) {
4346 rcu_read_lock();
cd29fe6f 4347 __set_task_cpu(p, this_cpu);
b0a0f667
PM
4348 rcu_read_unlock();
4349 }
bf0f6f24 4350
7109c442 4351 update_curr(cfs_rq);
cd29fe6f 4352
b5d9d734
MG
4353 if (curr)
4354 se->vruntime = curr->vruntime;
aeb73b04 4355 place_entity(cfs_rq, se, 1);
4d78e7b6 4356
cd29fe6f 4357 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 4358 /*
edcb60a3
IM
4359 * Upon rescheduling, sched_class::put_prev_task() will place
4360 * 'current' within the tree based on its new key value.
4361 */
4d78e7b6 4362 swap(curr->vruntime, se->vruntime);
aec0a514 4363 resched_task(rq->curr);
4d78e7b6 4364 }
bf0f6f24 4365
88ec22d3
PZ
4366 se->vruntime -= cfs_rq->min_vruntime;
4367
05fa785c 4368 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
4369}
4370
cb469845
SR
4371/*
4372 * Priority of the task has changed. Check to see if we preempt
4373 * the current task.
4374 */
da7a735e
PZ
4375static void
4376prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 4377{
da7a735e
PZ
4378 if (!p->se.on_rq)
4379 return;
4380
cb469845
SR
4381 /*
4382 * Reschedule if we are currently running on this runqueue and
4383 * our priority decreased, or if we are not currently running on
4384 * this runqueue and our priority is higher than the current's
4385 */
da7a735e 4386 if (rq->curr == p) {
cb469845
SR
4387 if (p->prio > oldprio)
4388 resched_task(rq->curr);
4389 } else
15afe09b 4390 check_preempt_curr(rq, p, 0);
cb469845
SR
4391}
4392
da7a735e
PZ
4393static void switched_from_fair(struct rq *rq, struct task_struct *p)
4394{
4395 struct sched_entity *se = &p->se;
4396 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4397
4398 /*
4399 * Ensure the task's vruntime is normalized, so that when its
4400 * switched back to the fair class the enqueue_entity(.flags=0) will
4401 * do the right thing.
4402 *
4403 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4404 * have normalized the vruntime, if it was !on_rq, then only when
4405 * the task is sleeping will it still have non-normalized vruntime.
4406 */
4407 if (!se->on_rq && p->state != TASK_RUNNING) {
4408 /*
4409 * Fix up our vruntime so that the current sleep doesn't
4410 * cause 'unlimited' sleep bonus.
4411 */
4412 place_entity(cfs_rq, se, 0);
4413 se->vruntime -= cfs_rq->min_vruntime;
4414 }
4415}
4416
cb469845
SR
4417/*
4418 * We switched to the sched_fair class.
4419 */
da7a735e 4420static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 4421{
da7a735e
PZ
4422 if (!p->se.on_rq)
4423 return;
4424
cb469845
SR
4425 /*
4426 * We were most likely switched from sched_rt, so
4427 * kick off the schedule if running, otherwise just see
4428 * if we can still preempt the current task.
4429 */
da7a735e 4430 if (rq->curr == p)
cb469845
SR
4431 resched_task(rq->curr);
4432 else
15afe09b 4433 check_preempt_curr(rq, p, 0);
cb469845
SR
4434}
4435
83b699ed
SV
4436/* Account for a task changing its policy or group.
4437 *
4438 * This routine is mostly called to set cfs_rq->curr field when a task
4439 * migrates between groups/classes.
4440 */
4441static void set_curr_task_fair(struct rq *rq)
4442{
4443 struct sched_entity *se = &rq->curr->se;
4444
ec12cb7f
PT
4445 for_each_sched_entity(se) {
4446 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4447
4448 set_next_entity(cfs_rq, se);
4449 /* ensure bandwidth has been allocated on our new cfs_rq */
4450 account_cfs_rq_runtime(cfs_rq, 0);
4451 }
83b699ed
SV
4452}
4453
810b3817 4454#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4455static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 4456{
b2b5ce02
PZ
4457 /*
4458 * If the task was not on the rq at the time of this cgroup movement
4459 * it must have been asleep, sleeping tasks keep their ->vruntime
4460 * absolute on their old rq until wakeup (needed for the fair sleeper
4461 * bonus in place_entity()).
4462 *
4463 * If it was on the rq, we've just 'preempted' it, which does convert
4464 * ->vruntime to a relative base.
4465 *
4466 * Make sure both cases convert their relative position when migrating
4467 * to another cgroup's rq. This does somewhat interfere with the
4468 * fair sleeper stuff for the first placement, but who cares.
4469 */
4470 if (!on_rq)
4471 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4472 set_task_rq(p, task_cpu(p));
88ec22d3 4473 if (!on_rq)
b2b5ce02 4474 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817
PZ
4475}
4476#endif
4477
6d686f45 4478static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
4479{
4480 struct sched_entity *se = &task->se;
0d721cea
PW
4481 unsigned int rr_interval = 0;
4482
4483 /*
4484 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4485 * idle runqueue:
4486 */
0d721cea
PW
4487 if (rq->cfs.load.weight)
4488 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
4489
4490 return rr_interval;
4491}
4492
bf0f6f24
IM
4493/*
4494 * All the scheduling class methods:
4495 */
5522d5d5
IM
4496static const struct sched_class fair_sched_class = {
4497 .next = &idle_sched_class,
bf0f6f24
IM
4498 .enqueue_task = enqueue_task_fair,
4499 .dequeue_task = dequeue_task_fair,
4500 .yield_task = yield_task_fair,
d95f4122 4501 .yield_to_task = yield_to_task_fair,
bf0f6f24 4502
2e09bf55 4503 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
4504
4505 .pick_next_task = pick_next_task_fair,
4506 .put_prev_task = put_prev_task_fair,
4507
681f3e68 4508#ifdef CONFIG_SMP
4ce72a2c
LZ
4509 .select_task_rq = select_task_rq_fair,
4510
0bcdcf28
CE
4511 .rq_online = rq_online_fair,
4512 .rq_offline = rq_offline_fair,
88ec22d3
PZ
4513
4514 .task_waking = task_waking_fair,
681f3e68 4515#endif
bf0f6f24 4516
83b699ed 4517 .set_curr_task = set_curr_task_fair,
bf0f6f24 4518 .task_tick = task_tick_fair,
cd29fe6f 4519 .task_fork = task_fork_fair,
cb469845
SR
4520
4521 .prio_changed = prio_changed_fair,
da7a735e 4522 .switched_from = switched_from_fair,
cb469845 4523 .switched_to = switched_to_fair,
810b3817 4524
0d721cea
PW
4525 .get_rr_interval = get_rr_interval_fair,
4526
810b3817 4527#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4528 .task_move_group = task_move_group_fair,
810b3817 4529#endif
bf0f6f24
IM
4530};
4531
4532#ifdef CONFIG_SCHED_DEBUG
5cef9eca 4533static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 4534{
bf0f6f24
IM
4535 struct cfs_rq *cfs_rq;
4536
5973e5b9 4537 rcu_read_lock();
c3b64f1e 4538 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 4539 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 4540 rcu_read_unlock();
bf0f6f24
IM
4541}
4542#endif