sched: Make set_*_buddy() work on non-task entities
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
9745512c 26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
864616ee 29 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 30 *
21805085 31 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
32 * 'timeslice length' - timeslices in CFS are of variable length
33 * and have no persistent notion like in traditional, time-slice
34 * based scheduling concepts.
bf0f6f24 35 *
d274a4ce
IM
36 * (to see the precise effective timeslice length of your workload,
37 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 38 */
21406928
MG
39unsigned int sysctl_sched_latency = 6000000ULL;
40unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 41
1983a922
CE
42/*
43 * The initial- and re-scaling of tunables is configurable
44 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45 *
46 * Options are:
47 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
48 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
49 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 */
51enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 = SCHED_TUNABLESCALING_LOG;
53
2bd8e6d4 54/*
b2be5e96 55 * Minimal preemption granularity for CPU-bound tasks:
864616ee 56 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 57 */
0bf377bb
IM
58unsigned int sysctl_sched_min_granularity = 750000ULL;
59unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
60
61/*
b2be5e96
PZ
62 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 */
0bf377bb 64static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
65
66/*
2bba22c5 67 * After fork, child runs first. If set to 0 (default) then
b2be5e96 68 * parent will (try to) run first.
21805085 69 */
2bba22c5 70unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 71
bf0f6f24
IM
72/*
73 * SCHED_OTHER wake-up granularity.
172e082a 74 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 */
172e082a 80unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 81unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 82
da84d961
IM
83const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
84
a7a4f8a7
PT
85/*
86 * The exponential sliding window over which load is averaged for shares
87 * distribution.
88 * (default: 10msec)
89 */
90unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
91
a4c2f00f
PZ
92static const struct sched_class fair_sched_class;
93
bf0f6f24
IM
94/**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
62160e3f 98#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 99
62160e3f 100/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
101static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102{
62160e3f 103 return cfs_rq->rq;
bf0f6f24
IM
104}
105
62160e3f
IM
106/* An entity is a task if it doesn't "own" a runqueue */
107#define entity_is_task(se) (!se->my_q)
bf0f6f24 108
8f48894f
PZ
109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111#ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113#endif
114 return container_of(se, struct task_struct, se);
115}
116
b758149c
PZ
117/* Walk up scheduling entities hierarchy */
118#define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
120
121static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122{
123 return p->se.cfs_rq;
124}
125
126/* runqueue on which this entity is (to be) queued */
127static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128{
129 return se->cfs_rq;
130}
131
132/* runqueue "owned" by this group */
133static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134{
135 return grp->my_q;
136}
137
138/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
140 */
141static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142{
143 return cfs_rq->tg->cfs_rq[this_cpu];
144}
145
3d4b47b4
PZ
146static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
147{
148 if (!cfs_rq->on_list) {
67e86250
PT
149 /*
150 * Ensure we either appear before our parent (if already
151 * enqueued) or force our parent to appear after us when it is
152 * enqueued. The fact that we always enqueue bottom-up
153 * reduces this to two cases.
154 */
155 if (cfs_rq->tg->parent &&
156 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
157 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
158 &rq_of(cfs_rq)->leaf_cfs_rq_list);
159 } else {
160 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 161 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 162 }
3d4b47b4
PZ
163
164 cfs_rq->on_list = 1;
165 }
166}
167
168static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
169{
170 if (cfs_rq->on_list) {
171 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
172 cfs_rq->on_list = 0;
173 }
174}
175
b758149c
PZ
176/* Iterate thr' all leaf cfs_rq's on a runqueue */
177#define for_each_leaf_cfs_rq(rq, cfs_rq) \
178 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
179
180/* Do the two (enqueued) entities belong to the same group ? */
181static inline int
182is_same_group(struct sched_entity *se, struct sched_entity *pse)
183{
184 if (se->cfs_rq == pse->cfs_rq)
185 return 1;
186
187 return 0;
188}
189
190static inline struct sched_entity *parent_entity(struct sched_entity *se)
191{
192 return se->parent;
193}
194
464b7527
PZ
195/* return depth at which a sched entity is present in the hierarchy */
196static inline int depth_se(struct sched_entity *se)
197{
198 int depth = 0;
199
200 for_each_sched_entity(se)
201 depth++;
202
203 return depth;
204}
205
206static void
207find_matching_se(struct sched_entity **se, struct sched_entity **pse)
208{
209 int se_depth, pse_depth;
210
211 /*
212 * preemption test can be made between sibling entities who are in the
213 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
214 * both tasks until we find their ancestors who are siblings of common
215 * parent.
216 */
217
218 /* First walk up until both entities are at same depth */
219 se_depth = depth_se(*se);
220 pse_depth = depth_se(*pse);
221
222 while (se_depth > pse_depth) {
223 se_depth--;
224 *se = parent_entity(*se);
225 }
226
227 while (pse_depth > se_depth) {
228 pse_depth--;
229 *pse = parent_entity(*pse);
230 }
231
232 while (!is_same_group(*se, *pse)) {
233 *se = parent_entity(*se);
234 *pse = parent_entity(*pse);
235 }
236}
237
8f48894f
PZ
238#else /* !CONFIG_FAIR_GROUP_SCHED */
239
240static inline struct task_struct *task_of(struct sched_entity *se)
241{
242 return container_of(se, struct task_struct, se);
243}
bf0f6f24 244
62160e3f
IM
245static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
246{
247 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
248}
249
250#define entity_is_task(se) 1
251
b758149c
PZ
252#define for_each_sched_entity(se) \
253 for (; se; se = NULL)
bf0f6f24 254
b758149c 255static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 256{
b758149c 257 return &task_rq(p)->cfs;
bf0f6f24
IM
258}
259
b758149c
PZ
260static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
261{
262 struct task_struct *p = task_of(se);
263 struct rq *rq = task_rq(p);
264
265 return &rq->cfs;
266}
267
268/* runqueue "owned" by this group */
269static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
270{
271 return NULL;
272}
273
274static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
275{
276 return &cpu_rq(this_cpu)->cfs;
277}
278
3d4b47b4
PZ
279static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
280{
281}
282
283static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
284{
285}
286
b758149c
PZ
287#define for_each_leaf_cfs_rq(rq, cfs_rq) \
288 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
289
290static inline int
291is_same_group(struct sched_entity *se, struct sched_entity *pse)
292{
293 return 1;
294}
295
296static inline struct sched_entity *parent_entity(struct sched_entity *se)
297{
298 return NULL;
299}
300
464b7527
PZ
301static inline void
302find_matching_se(struct sched_entity **se, struct sched_entity **pse)
303{
304}
305
b758149c
PZ
306#endif /* CONFIG_FAIR_GROUP_SCHED */
307
bf0f6f24
IM
308
309/**************************************************************
310 * Scheduling class tree data structure manipulation methods:
311 */
312
0702e3eb 313static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 314{
368059a9
PZ
315 s64 delta = (s64)(vruntime - min_vruntime);
316 if (delta > 0)
02e0431a
PZ
317 min_vruntime = vruntime;
318
319 return min_vruntime;
320}
321
0702e3eb 322static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
323{
324 s64 delta = (s64)(vruntime - min_vruntime);
325 if (delta < 0)
326 min_vruntime = vruntime;
327
328 return min_vruntime;
329}
330
54fdc581
FC
331static inline int entity_before(struct sched_entity *a,
332 struct sched_entity *b)
333{
334 return (s64)(a->vruntime - b->vruntime) < 0;
335}
336
0702e3eb 337static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 338{
30cfdcfc 339 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
340}
341
1af5f730
PZ
342static void update_min_vruntime(struct cfs_rq *cfs_rq)
343{
344 u64 vruntime = cfs_rq->min_vruntime;
345
346 if (cfs_rq->curr)
347 vruntime = cfs_rq->curr->vruntime;
348
349 if (cfs_rq->rb_leftmost) {
350 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
351 struct sched_entity,
352 run_node);
353
e17036da 354 if (!cfs_rq->curr)
1af5f730
PZ
355 vruntime = se->vruntime;
356 else
357 vruntime = min_vruntime(vruntime, se->vruntime);
358 }
359
360 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
361#ifndef CONFIG_64BIT
362 smp_wmb();
363 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
364#endif
1af5f730
PZ
365}
366
bf0f6f24
IM
367/*
368 * Enqueue an entity into the rb-tree:
369 */
0702e3eb 370static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
371{
372 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
373 struct rb_node *parent = NULL;
374 struct sched_entity *entry;
9014623c 375 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
376 int leftmost = 1;
377
378 /*
379 * Find the right place in the rbtree:
380 */
381 while (*link) {
382 parent = *link;
383 entry = rb_entry(parent, struct sched_entity, run_node);
384 /*
385 * We dont care about collisions. Nodes with
386 * the same key stay together.
387 */
9014623c 388 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
389 link = &parent->rb_left;
390 } else {
391 link = &parent->rb_right;
392 leftmost = 0;
393 }
394 }
395
396 /*
397 * Maintain a cache of leftmost tree entries (it is frequently
398 * used):
399 */
1af5f730 400 if (leftmost)
57cb499d 401 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
402
403 rb_link_node(&se->run_node, parent, link);
404 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
405}
406
0702e3eb 407static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 408{
3fe69747
PZ
409 if (cfs_rq->rb_leftmost == &se->run_node) {
410 struct rb_node *next_node;
3fe69747
PZ
411
412 next_node = rb_next(&se->run_node);
413 cfs_rq->rb_leftmost = next_node;
3fe69747 414 }
e9acbff6 415
bf0f6f24 416 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
417}
418
ac53db59 419static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 420{
f4b6755f
PZ
421 struct rb_node *left = cfs_rq->rb_leftmost;
422
423 if (!left)
424 return NULL;
425
426 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
427}
428
ac53db59
RR
429static struct sched_entity *__pick_next_entity(struct sched_entity *se)
430{
431 struct rb_node *next = rb_next(&se->run_node);
432
433 if (!next)
434 return NULL;
435
436 return rb_entry(next, struct sched_entity, run_node);
437}
438
439#ifdef CONFIG_SCHED_DEBUG
f4b6755f 440static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 441{
7eee3e67 442 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 443
70eee74b
BS
444 if (!last)
445 return NULL;
7eee3e67
IM
446
447 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
448}
449
bf0f6f24
IM
450/**************************************************************
451 * Scheduling class statistics methods:
452 */
453
acb4a848 454int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 455 void __user *buffer, size_t *lenp,
b2be5e96
PZ
456 loff_t *ppos)
457{
8d65af78 458 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 459 int factor = get_update_sysctl_factor();
b2be5e96
PZ
460
461 if (ret || !write)
462 return ret;
463
464 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
465 sysctl_sched_min_granularity);
466
acb4a848
CE
467#define WRT_SYSCTL(name) \
468 (normalized_sysctl_##name = sysctl_##name / (factor))
469 WRT_SYSCTL(sched_min_granularity);
470 WRT_SYSCTL(sched_latency);
471 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
472#undef WRT_SYSCTL
473
b2be5e96
PZ
474 return 0;
475}
476#endif
647e7cac 477
a7be37ac 478/*
f9c0b095 479 * delta /= w
a7be37ac
PZ
480 */
481static inline unsigned long
482calc_delta_fair(unsigned long delta, struct sched_entity *se)
483{
f9c0b095
PZ
484 if (unlikely(se->load.weight != NICE_0_LOAD))
485 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
486
487 return delta;
488}
489
647e7cac
IM
490/*
491 * The idea is to set a period in which each task runs once.
492 *
493 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
494 * this period because otherwise the slices get too small.
495 *
496 * p = (nr <= nl) ? l : l*nr/nl
497 */
4d78e7b6
PZ
498static u64 __sched_period(unsigned long nr_running)
499{
500 u64 period = sysctl_sched_latency;
b2be5e96 501 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
502
503 if (unlikely(nr_running > nr_latency)) {
4bf0b771 504 period = sysctl_sched_min_granularity;
4d78e7b6 505 period *= nr_running;
4d78e7b6
PZ
506 }
507
508 return period;
509}
510
647e7cac
IM
511/*
512 * We calculate the wall-time slice from the period by taking a part
513 * proportional to the weight.
514 *
f9c0b095 515 * s = p*P[w/rw]
647e7cac 516 */
6d0f0ebd 517static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 518{
0a582440 519 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 520
0a582440 521 for_each_sched_entity(se) {
6272d68c 522 struct load_weight *load;
3104bf03 523 struct load_weight lw;
6272d68c
LM
524
525 cfs_rq = cfs_rq_of(se);
526 load = &cfs_rq->load;
f9c0b095 527
0a582440 528 if (unlikely(!se->on_rq)) {
3104bf03 529 lw = cfs_rq->load;
0a582440
MG
530
531 update_load_add(&lw, se->load.weight);
532 load = &lw;
533 }
534 slice = calc_delta_mine(slice, se->load.weight, load);
535 }
536 return slice;
bf0f6f24
IM
537}
538
647e7cac 539/*
ac884dec 540 * We calculate the vruntime slice of a to be inserted task
647e7cac 541 *
f9c0b095 542 * vs = s/w
647e7cac 543 */
f9c0b095 544static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 545{
f9c0b095 546 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
547}
548
d6b55918 549static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
6d5ab293 550static void update_cfs_shares(struct cfs_rq *cfs_rq);
3b3d190e 551
bf0f6f24
IM
552/*
553 * Update the current task's runtime statistics. Skip current tasks that
554 * are not in our scheduling class.
555 */
556static inline void
8ebc91d9
IM
557__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
558 unsigned long delta_exec)
bf0f6f24 559{
bbdba7c0 560 unsigned long delta_exec_weighted;
bf0f6f24 561
41acab88
LDM
562 schedstat_set(curr->statistics.exec_max,
563 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
564
565 curr->sum_exec_runtime += delta_exec;
7a62eabc 566 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 567 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 568
e9acbff6 569 curr->vruntime += delta_exec_weighted;
1af5f730 570 update_min_vruntime(cfs_rq);
3b3d190e 571
70caf8a6 572#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 573 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 574#endif
bf0f6f24
IM
575}
576
b7cc0896 577static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 578{
429d43bc 579 struct sched_entity *curr = cfs_rq->curr;
305e6835 580 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
581 unsigned long delta_exec;
582
583 if (unlikely(!curr))
584 return;
585
586 /*
587 * Get the amount of time the current task was running
588 * since the last time we changed load (this cannot
589 * overflow on 32 bits):
590 */
8ebc91d9 591 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
592 if (!delta_exec)
593 return;
bf0f6f24 594
8ebc91d9
IM
595 __update_curr(cfs_rq, curr, delta_exec);
596 curr->exec_start = now;
d842de87
SV
597
598 if (entity_is_task(curr)) {
599 struct task_struct *curtask = task_of(curr);
600
f977bb49 601 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 602 cpuacct_charge(curtask, delta_exec);
f06febc9 603 account_group_exec_runtime(curtask, delta_exec);
d842de87 604 }
bf0f6f24
IM
605}
606
607static inline void
5870db5b 608update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 609{
41acab88 610 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
611}
612
bf0f6f24
IM
613/*
614 * Task is being enqueued - update stats:
615 */
d2417e5a 616static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 617{
bf0f6f24
IM
618 /*
619 * Are we enqueueing a waiting task? (for current tasks
620 * a dequeue/enqueue event is a NOP)
621 */
429d43bc 622 if (se != cfs_rq->curr)
5870db5b 623 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
624}
625
bf0f6f24 626static void
9ef0a961 627update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 628{
41acab88
LDM
629 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
630 rq_of(cfs_rq)->clock - se->statistics.wait_start));
631 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
632 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
633 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
634#ifdef CONFIG_SCHEDSTATS
635 if (entity_is_task(se)) {
636 trace_sched_stat_wait(task_of(se),
41acab88 637 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
638 }
639#endif
41acab88 640 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
641}
642
643static inline void
19b6a2e3 644update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 645{
bf0f6f24
IM
646 /*
647 * Mark the end of the wait period if dequeueing a
648 * waiting task:
649 */
429d43bc 650 if (se != cfs_rq->curr)
9ef0a961 651 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
652}
653
654/*
655 * We are picking a new current task - update its stats:
656 */
657static inline void
79303e9e 658update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
659{
660 /*
661 * We are starting a new run period:
662 */
305e6835 663 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
664}
665
bf0f6f24
IM
666/**************************************************
667 * Scheduling class queueing methods:
668 */
669
c09595f6
PZ
670#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
671static void
672add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
673{
674 cfs_rq->task_weight += weight;
675}
676#else
677static inline void
678add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
679{
680}
681#endif
682
30cfdcfc
DA
683static void
684account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
685{
686 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
687 if (!parent_entity(se))
688 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 689 if (entity_is_task(se)) {
c09595f6 690 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
691 list_add(&se->group_node, &cfs_rq->tasks);
692 }
30cfdcfc 693 cfs_rq->nr_running++;
30cfdcfc
DA
694}
695
696static void
697account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
698{
699 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
700 if (!parent_entity(se))
701 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 702 if (entity_is_task(se)) {
c09595f6 703 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
704 list_del_init(&se->group_node);
705 }
30cfdcfc 706 cfs_rq->nr_running--;
30cfdcfc
DA
707}
708
3ff6dcac
YZ
709#ifdef CONFIG_FAIR_GROUP_SCHED
710# ifdef CONFIG_SMP
d6b55918
PT
711static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
712 int global_update)
713{
714 struct task_group *tg = cfs_rq->tg;
715 long load_avg;
716
717 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
718 load_avg -= cfs_rq->load_contribution;
719
720 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
721 atomic_add(load_avg, &tg->load_weight);
722 cfs_rq->load_contribution += load_avg;
723 }
724}
725
726static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 727{
a7a4f8a7 728 u64 period = sysctl_sched_shares_window;
2069dd75 729 u64 now, delta;
e33078ba 730 unsigned long load = cfs_rq->load.weight;
2069dd75 731
b815f196 732 if (cfs_rq->tg == &root_task_group)
2069dd75
PZ
733 return;
734
05ca62c6 735 now = rq_of(cfs_rq)->clock_task;
2069dd75
PZ
736 delta = now - cfs_rq->load_stamp;
737
e33078ba
PT
738 /* truncate load history at 4 idle periods */
739 if (cfs_rq->load_stamp > cfs_rq->load_last &&
740 now - cfs_rq->load_last > 4 * period) {
741 cfs_rq->load_period = 0;
742 cfs_rq->load_avg = 0;
f07333bf 743 delta = period - 1;
e33078ba
PT
744 }
745
2069dd75 746 cfs_rq->load_stamp = now;
3b3d190e 747 cfs_rq->load_unacc_exec_time = 0;
2069dd75 748 cfs_rq->load_period += delta;
e33078ba
PT
749 if (load) {
750 cfs_rq->load_last = now;
751 cfs_rq->load_avg += delta * load;
752 }
2069dd75 753
d6b55918
PT
754 /* consider updating load contribution on each fold or truncate */
755 if (global_update || cfs_rq->load_period > period
756 || !cfs_rq->load_period)
757 update_cfs_rq_load_contribution(cfs_rq, global_update);
758
2069dd75
PZ
759 while (cfs_rq->load_period > period) {
760 /*
761 * Inline assembly required to prevent the compiler
762 * optimising this loop into a divmod call.
763 * See __iter_div_u64_rem() for another example of this.
764 */
765 asm("" : "+rm" (cfs_rq->load_period));
766 cfs_rq->load_period /= 2;
767 cfs_rq->load_avg /= 2;
768 }
3d4b47b4 769
e33078ba
PT
770 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
771 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
772}
773
6d5ab293 774static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
775{
776 long load_weight, load, shares;
777
6d5ab293 778 load = cfs_rq->load.weight;
3ff6dcac
YZ
779
780 load_weight = atomic_read(&tg->load_weight);
3ff6dcac 781 load_weight += load;
6d5ab293 782 load_weight -= cfs_rq->load_contribution;
3ff6dcac
YZ
783
784 shares = (tg->shares * load);
785 if (load_weight)
786 shares /= load_weight;
787
788 if (shares < MIN_SHARES)
789 shares = MIN_SHARES;
790 if (shares > tg->shares)
791 shares = tg->shares;
792
793 return shares;
794}
795
796static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
797{
798 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
799 update_cfs_load(cfs_rq, 0);
6d5ab293 800 update_cfs_shares(cfs_rq);
3ff6dcac
YZ
801 }
802}
803# else /* CONFIG_SMP */
804static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
805{
806}
807
6d5ab293 808static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
809{
810 return tg->shares;
811}
812
813static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
814{
815}
816# endif /* CONFIG_SMP */
2069dd75
PZ
817static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
818 unsigned long weight)
819{
19e5eebb
PT
820 if (se->on_rq) {
821 /* commit outstanding execution time */
822 if (cfs_rq->curr == se)
823 update_curr(cfs_rq);
2069dd75 824 account_entity_dequeue(cfs_rq, se);
19e5eebb 825 }
2069dd75
PZ
826
827 update_load_set(&se->load, weight);
828
829 if (se->on_rq)
830 account_entity_enqueue(cfs_rq, se);
831}
832
6d5ab293 833static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
834{
835 struct task_group *tg;
836 struct sched_entity *se;
3ff6dcac 837 long shares;
2069dd75 838
2069dd75
PZ
839 tg = cfs_rq->tg;
840 se = tg->se[cpu_of(rq_of(cfs_rq))];
841 if (!se)
842 return;
3ff6dcac
YZ
843#ifndef CONFIG_SMP
844 if (likely(se->load.weight == tg->shares))
845 return;
846#endif
6d5ab293 847 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
848
849 reweight_entity(cfs_rq_of(se), se, shares);
850}
851#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 852static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
853{
854}
855
6d5ab293 856static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
857{
858}
43365bd7
PT
859
860static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
861{
862}
2069dd75
PZ
863#endif /* CONFIG_FAIR_GROUP_SCHED */
864
2396af69 865static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 866{
bf0f6f24 867#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
868 struct task_struct *tsk = NULL;
869
870 if (entity_is_task(se))
871 tsk = task_of(se);
872
41acab88
LDM
873 if (se->statistics.sleep_start) {
874 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
875
876 if ((s64)delta < 0)
877 delta = 0;
878
41acab88
LDM
879 if (unlikely(delta > se->statistics.sleep_max))
880 se->statistics.sleep_max = delta;
bf0f6f24 881
41acab88
LDM
882 se->statistics.sleep_start = 0;
883 se->statistics.sum_sleep_runtime += delta;
9745512c 884
768d0c27 885 if (tsk) {
e414314c 886 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
887 trace_sched_stat_sleep(tsk, delta);
888 }
bf0f6f24 889 }
41acab88
LDM
890 if (se->statistics.block_start) {
891 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
892
893 if ((s64)delta < 0)
894 delta = 0;
895
41acab88
LDM
896 if (unlikely(delta > se->statistics.block_max))
897 se->statistics.block_max = delta;
bf0f6f24 898
41acab88
LDM
899 se->statistics.block_start = 0;
900 se->statistics.sum_sleep_runtime += delta;
30084fbd 901
e414314c 902 if (tsk) {
8f0dfc34 903 if (tsk->in_iowait) {
41acab88
LDM
904 se->statistics.iowait_sum += delta;
905 se->statistics.iowait_count++;
768d0c27 906 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
907 }
908
e414314c
PZ
909 /*
910 * Blocking time is in units of nanosecs, so shift by
911 * 20 to get a milliseconds-range estimation of the
912 * amount of time that the task spent sleeping:
913 */
914 if (unlikely(prof_on == SLEEP_PROFILING)) {
915 profile_hits(SLEEP_PROFILING,
916 (void *)get_wchan(tsk),
917 delta >> 20);
918 }
919 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 920 }
bf0f6f24
IM
921 }
922#endif
923}
924
ddc97297
PZ
925static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
926{
927#ifdef CONFIG_SCHED_DEBUG
928 s64 d = se->vruntime - cfs_rq->min_vruntime;
929
930 if (d < 0)
931 d = -d;
932
933 if (d > 3*sysctl_sched_latency)
934 schedstat_inc(cfs_rq, nr_spread_over);
935#endif
936}
937
aeb73b04
PZ
938static void
939place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
940{
1af5f730 941 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 942
2cb8600e
PZ
943 /*
944 * The 'current' period is already promised to the current tasks,
945 * however the extra weight of the new task will slow them down a
946 * little, place the new task so that it fits in the slot that
947 * stays open at the end.
948 */
94dfb5e7 949 if (initial && sched_feat(START_DEBIT))
f9c0b095 950 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 951
a2e7a7eb 952 /* sleeps up to a single latency don't count. */
5ca9880c 953 if (!initial) {
a2e7a7eb 954 unsigned long thresh = sysctl_sched_latency;
a7be37ac 955
a2e7a7eb
MG
956 /*
957 * Halve their sleep time's effect, to allow
958 * for a gentler effect of sleepers:
959 */
960 if (sched_feat(GENTLE_FAIR_SLEEPERS))
961 thresh >>= 1;
51e0304c 962
a2e7a7eb 963 vruntime -= thresh;
aeb73b04
PZ
964 }
965
b5d9d734
MG
966 /* ensure we never gain time by being placed backwards. */
967 vruntime = max_vruntime(se->vruntime, vruntime);
968
67e9fb2a 969 se->vruntime = vruntime;
aeb73b04
PZ
970}
971
bf0f6f24 972static void
88ec22d3 973enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 974{
88ec22d3
PZ
975 /*
976 * Update the normalized vruntime before updating min_vruntime
977 * through callig update_curr().
978 */
371fd7e7 979 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
980 se->vruntime += cfs_rq->min_vruntime;
981
bf0f6f24 982 /*
a2a2d680 983 * Update run-time statistics of the 'current'.
bf0f6f24 984 */
b7cc0896 985 update_curr(cfs_rq);
d6b55918 986 update_cfs_load(cfs_rq, 0);
a992241d 987 account_entity_enqueue(cfs_rq, se);
6d5ab293 988 update_cfs_shares(cfs_rq);
bf0f6f24 989
88ec22d3 990 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 991 place_entity(cfs_rq, se, 0);
2396af69 992 enqueue_sleeper(cfs_rq, se);
e9acbff6 993 }
bf0f6f24 994
d2417e5a 995 update_stats_enqueue(cfs_rq, se);
ddc97297 996 check_spread(cfs_rq, se);
83b699ed
SV
997 if (se != cfs_rq->curr)
998 __enqueue_entity(cfs_rq, se);
2069dd75 999 se->on_rq = 1;
3d4b47b4
PZ
1000
1001 if (cfs_rq->nr_running == 1)
1002 list_add_leaf_cfs_rq(cfs_rq);
bf0f6f24
IM
1003}
1004
2c13c919 1005static void __clear_buddies_last(struct sched_entity *se)
2002c695 1006{
2c13c919
RR
1007 for_each_sched_entity(se) {
1008 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1009 if (cfs_rq->last == se)
1010 cfs_rq->last = NULL;
1011 else
1012 break;
1013 }
1014}
2002c695 1015
2c13c919
RR
1016static void __clear_buddies_next(struct sched_entity *se)
1017{
1018 for_each_sched_entity(se) {
1019 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1020 if (cfs_rq->next == se)
1021 cfs_rq->next = NULL;
1022 else
1023 break;
1024 }
2002c695
PZ
1025}
1026
ac53db59
RR
1027static void __clear_buddies_skip(struct sched_entity *se)
1028{
1029 for_each_sched_entity(se) {
1030 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1031 if (cfs_rq->skip == se)
1032 cfs_rq->skip = NULL;
1033 else
1034 break;
1035 }
1036}
1037
a571bbea
PZ
1038static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1039{
2c13c919
RR
1040 if (cfs_rq->last == se)
1041 __clear_buddies_last(se);
1042
1043 if (cfs_rq->next == se)
1044 __clear_buddies_next(se);
ac53db59
RR
1045
1046 if (cfs_rq->skip == se)
1047 __clear_buddies_skip(se);
a571bbea
PZ
1048}
1049
bf0f6f24 1050static void
371fd7e7 1051dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1052{
a2a2d680
DA
1053 /*
1054 * Update run-time statistics of the 'current'.
1055 */
1056 update_curr(cfs_rq);
1057
19b6a2e3 1058 update_stats_dequeue(cfs_rq, se);
371fd7e7 1059 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1060#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1061 if (entity_is_task(se)) {
1062 struct task_struct *tsk = task_of(se);
1063
1064 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1065 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1066 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1067 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1068 }
db36cc7d 1069#endif
67e9fb2a
PZ
1070 }
1071
2002c695 1072 clear_buddies(cfs_rq, se);
4793241b 1073
83b699ed 1074 if (se != cfs_rq->curr)
30cfdcfc 1075 __dequeue_entity(cfs_rq, se);
2069dd75 1076 se->on_rq = 0;
d6b55918 1077 update_cfs_load(cfs_rq, 0);
30cfdcfc 1078 account_entity_dequeue(cfs_rq, se);
1af5f730 1079 update_min_vruntime(cfs_rq);
6d5ab293 1080 update_cfs_shares(cfs_rq);
88ec22d3
PZ
1081
1082 /*
1083 * Normalize the entity after updating the min_vruntime because the
1084 * update can refer to the ->curr item and we need to reflect this
1085 * movement in our normalized position.
1086 */
371fd7e7 1087 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1088 se->vruntime -= cfs_rq->min_vruntime;
bf0f6f24
IM
1089}
1090
1091/*
1092 * Preempt the current task with a newly woken task if needed:
1093 */
7c92e54f 1094static void
2e09bf55 1095check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1096{
11697830
PZ
1097 unsigned long ideal_runtime, delta_exec;
1098
6d0f0ebd 1099 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1100 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1101 if (delta_exec > ideal_runtime) {
bf0f6f24 1102 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1103 /*
1104 * The current task ran long enough, ensure it doesn't get
1105 * re-elected due to buddy favours.
1106 */
1107 clear_buddies(cfs_rq, curr);
f685ceac
MG
1108 return;
1109 }
1110
1111 /*
1112 * Ensure that a task that missed wakeup preemption by a
1113 * narrow margin doesn't have to wait for a full slice.
1114 * This also mitigates buddy induced latencies under load.
1115 */
1116 if (!sched_feat(WAKEUP_PREEMPT))
1117 return;
1118
1119 if (delta_exec < sysctl_sched_min_granularity)
1120 return;
1121
1122 if (cfs_rq->nr_running > 1) {
ac53db59 1123 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac
MG
1124 s64 delta = curr->vruntime - se->vruntime;
1125
d7d82944
MG
1126 if (delta < 0)
1127 return;
1128
f685ceac
MG
1129 if (delta > ideal_runtime)
1130 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5 1131 }
bf0f6f24
IM
1132}
1133
83b699ed 1134static void
8494f412 1135set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1136{
83b699ed
SV
1137 /* 'current' is not kept within the tree. */
1138 if (se->on_rq) {
1139 /*
1140 * Any task has to be enqueued before it get to execute on
1141 * a CPU. So account for the time it spent waiting on the
1142 * runqueue.
1143 */
1144 update_stats_wait_end(cfs_rq, se);
1145 __dequeue_entity(cfs_rq, se);
1146 }
1147
79303e9e 1148 update_stats_curr_start(cfs_rq, se);
429d43bc 1149 cfs_rq->curr = se;
eba1ed4b
IM
1150#ifdef CONFIG_SCHEDSTATS
1151 /*
1152 * Track our maximum slice length, if the CPU's load is at
1153 * least twice that of our own weight (i.e. dont track it
1154 * when there are only lesser-weight tasks around):
1155 */
495eca49 1156 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1157 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1158 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1159 }
1160#endif
4a55b450 1161 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1162}
1163
3f3a4904
PZ
1164static int
1165wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1166
ac53db59
RR
1167/*
1168 * Pick the next process, keeping these things in mind, in this order:
1169 * 1) keep things fair between processes/task groups
1170 * 2) pick the "next" process, since someone really wants that to run
1171 * 3) pick the "last" process, for cache locality
1172 * 4) do not run the "skip" process, if something else is available
1173 */
f4b6755f 1174static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1175{
ac53db59 1176 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1177 struct sched_entity *left = se;
f4b6755f 1178
ac53db59
RR
1179 /*
1180 * Avoid running the skip buddy, if running something else can
1181 * be done without getting too unfair.
1182 */
1183 if (cfs_rq->skip == se) {
1184 struct sched_entity *second = __pick_next_entity(se);
1185 if (second && wakeup_preempt_entity(second, left) < 1)
1186 se = second;
1187 }
aa2ac252 1188
f685ceac
MG
1189 /*
1190 * Prefer last buddy, try to return the CPU to a preempted task.
1191 */
1192 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1193 se = cfs_rq->last;
1194
ac53db59
RR
1195 /*
1196 * Someone really wants this to run. If it's not unfair, run it.
1197 */
1198 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1199 se = cfs_rq->next;
1200
f685ceac 1201 clear_buddies(cfs_rq, se);
4793241b
PZ
1202
1203 return se;
aa2ac252
PZ
1204}
1205
ab6cde26 1206static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1207{
1208 /*
1209 * If still on the runqueue then deactivate_task()
1210 * was not called and update_curr() has to be done:
1211 */
1212 if (prev->on_rq)
b7cc0896 1213 update_curr(cfs_rq);
bf0f6f24 1214
ddc97297 1215 check_spread(cfs_rq, prev);
30cfdcfc 1216 if (prev->on_rq) {
5870db5b 1217 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1218 /* Put 'current' back into the tree. */
1219 __enqueue_entity(cfs_rq, prev);
1220 }
429d43bc 1221 cfs_rq->curr = NULL;
bf0f6f24
IM
1222}
1223
8f4d37ec
PZ
1224static void
1225entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1226{
bf0f6f24 1227 /*
30cfdcfc 1228 * Update run-time statistics of the 'current'.
bf0f6f24 1229 */
30cfdcfc 1230 update_curr(cfs_rq);
bf0f6f24 1231
43365bd7
PT
1232 /*
1233 * Update share accounting for long-running entities.
1234 */
1235 update_entity_shares_tick(cfs_rq);
1236
8f4d37ec
PZ
1237#ifdef CONFIG_SCHED_HRTICK
1238 /*
1239 * queued ticks are scheduled to match the slice, so don't bother
1240 * validating it and just reschedule.
1241 */
983ed7a6
HH
1242 if (queued) {
1243 resched_task(rq_of(cfs_rq)->curr);
1244 return;
1245 }
8f4d37ec
PZ
1246 /*
1247 * don't let the period tick interfere with the hrtick preemption
1248 */
1249 if (!sched_feat(DOUBLE_TICK) &&
1250 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1251 return;
1252#endif
1253
ce6c1311 1254 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 1255 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1256}
1257
1258/**************************************************
1259 * CFS operations on tasks:
1260 */
1261
8f4d37ec
PZ
1262#ifdef CONFIG_SCHED_HRTICK
1263static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1264{
8f4d37ec
PZ
1265 struct sched_entity *se = &p->se;
1266 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1267
1268 WARN_ON(task_rq(p) != rq);
1269
1270 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1271 u64 slice = sched_slice(cfs_rq, se);
1272 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1273 s64 delta = slice - ran;
1274
1275 if (delta < 0) {
1276 if (rq->curr == p)
1277 resched_task(p);
1278 return;
1279 }
1280
1281 /*
1282 * Don't schedule slices shorter than 10000ns, that just
1283 * doesn't make sense. Rely on vruntime for fairness.
1284 */
31656519 1285 if (rq->curr != p)
157124c1 1286 delta = max_t(s64, 10000LL, delta);
8f4d37ec 1287
31656519 1288 hrtick_start(rq, delta);
8f4d37ec
PZ
1289 }
1290}
a4c2f00f
PZ
1291
1292/*
1293 * called from enqueue/dequeue and updates the hrtick when the
1294 * current task is from our class and nr_running is low enough
1295 * to matter.
1296 */
1297static void hrtick_update(struct rq *rq)
1298{
1299 struct task_struct *curr = rq->curr;
1300
1301 if (curr->sched_class != &fair_sched_class)
1302 return;
1303
1304 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1305 hrtick_start_fair(rq, curr);
1306}
55e12e5e 1307#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1308static inline void
1309hrtick_start_fair(struct rq *rq, struct task_struct *p)
1310{
1311}
a4c2f00f
PZ
1312
1313static inline void hrtick_update(struct rq *rq)
1314{
1315}
8f4d37ec
PZ
1316#endif
1317
bf0f6f24
IM
1318/*
1319 * The enqueue_task method is called before nr_running is
1320 * increased. Here we update the fair scheduling stats and
1321 * then put the task into the rbtree:
1322 */
ea87bb78 1323static void
371fd7e7 1324enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1325{
1326 struct cfs_rq *cfs_rq;
62fb1851 1327 struct sched_entity *se = &p->se;
bf0f6f24
IM
1328
1329 for_each_sched_entity(se) {
62fb1851 1330 if (se->on_rq)
bf0f6f24
IM
1331 break;
1332 cfs_rq = cfs_rq_of(se);
88ec22d3
PZ
1333 enqueue_entity(cfs_rq, se, flags);
1334 flags = ENQUEUE_WAKEUP;
bf0f6f24 1335 }
8f4d37ec 1336
2069dd75
PZ
1337 for_each_sched_entity(se) {
1338 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1339
d6b55918 1340 update_cfs_load(cfs_rq, 0);
6d5ab293 1341 update_cfs_shares(cfs_rq);
2069dd75
PZ
1342 }
1343
a4c2f00f 1344 hrtick_update(rq);
bf0f6f24
IM
1345}
1346
1347/*
1348 * The dequeue_task method is called before nr_running is
1349 * decreased. We remove the task from the rbtree and
1350 * update the fair scheduling stats:
1351 */
371fd7e7 1352static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1353{
1354 struct cfs_rq *cfs_rq;
62fb1851 1355 struct sched_entity *se = &p->se;
bf0f6f24
IM
1356
1357 for_each_sched_entity(se) {
1358 cfs_rq = cfs_rq_of(se);
371fd7e7 1359 dequeue_entity(cfs_rq, se, flags);
2069dd75 1360
bf0f6f24 1361 /* Don't dequeue parent if it has other entities besides us */
62fb1851 1362 if (cfs_rq->load.weight)
bf0f6f24 1363 break;
371fd7e7 1364 flags |= DEQUEUE_SLEEP;
bf0f6f24 1365 }
8f4d37ec 1366
2069dd75
PZ
1367 for_each_sched_entity(se) {
1368 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1369
d6b55918 1370 update_cfs_load(cfs_rq, 0);
6d5ab293 1371 update_cfs_shares(cfs_rq);
2069dd75
PZ
1372 }
1373
a4c2f00f 1374 hrtick_update(rq);
bf0f6f24
IM
1375}
1376
e7693a36 1377#ifdef CONFIG_SMP
098fb9db 1378
74f8e4b2 1379static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
1380{
1381 struct sched_entity *se = &p->se;
1382 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
1383 u64 min_vruntime;
1384
1385#ifndef CONFIG_64BIT
1386 u64 min_vruntime_copy;
88ec22d3 1387
3fe1698b
PZ
1388 do {
1389 min_vruntime_copy = cfs_rq->min_vruntime_copy;
1390 smp_rmb();
1391 min_vruntime = cfs_rq->min_vruntime;
1392 } while (min_vruntime != min_vruntime_copy);
1393#else
1394 min_vruntime = cfs_rq->min_vruntime;
1395#endif
88ec22d3 1396
3fe1698b 1397 se->vruntime -= min_vruntime;
88ec22d3
PZ
1398}
1399
bb3469ac 1400#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1401/*
1402 * effective_load() calculates the load change as seen from the root_task_group
1403 *
1404 * Adding load to a group doesn't make a group heavier, but can cause movement
1405 * of group shares between cpus. Assuming the shares were perfectly aligned one
1406 * can calculate the shift in shares.
f5bfb7d9 1407 */
2069dd75 1408static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 1409{
4be9daaa 1410 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1411
1412 if (!tg->parent)
1413 return wl;
1414
4be9daaa 1415 for_each_sched_entity(se) {
977dda7c 1416 long lw, w;
4be9daaa 1417
977dda7c
PT
1418 tg = se->my_q->tg;
1419 w = se->my_q->load.weight;
bb3469ac 1420
977dda7c
PT
1421 /* use this cpu's instantaneous contribution */
1422 lw = atomic_read(&tg->load_weight);
1423 lw -= se->my_q->load_contribution;
1424 lw += w + wg;
4be9daaa 1425
977dda7c 1426 wl += w;
940959e9 1427
977dda7c
PT
1428 if (lw > 0 && wl < lw)
1429 wl = (wl * tg->shares) / lw;
1430 else
1431 wl = tg->shares;
940959e9 1432
977dda7c
PT
1433 /* zero point is MIN_SHARES */
1434 if (wl < MIN_SHARES)
1435 wl = MIN_SHARES;
1436 wl -= se->load.weight;
4be9daaa 1437 wg = 0;
4be9daaa 1438 }
bb3469ac 1439
4be9daaa 1440 return wl;
bb3469ac 1441}
4be9daaa 1442
bb3469ac 1443#else
4be9daaa 1444
83378269
PZ
1445static inline unsigned long effective_load(struct task_group *tg, int cpu,
1446 unsigned long wl, unsigned long wg)
4be9daaa 1447{
83378269 1448 return wl;
bb3469ac 1449}
4be9daaa 1450
bb3469ac
PZ
1451#endif
1452
c88d5910 1453static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1454{
e37b6a7b 1455 s64 this_load, load;
c88d5910 1456 int idx, this_cpu, prev_cpu;
098fb9db 1457 unsigned long tl_per_task;
c88d5910 1458 struct task_group *tg;
83378269 1459 unsigned long weight;
b3137bc8 1460 int balanced;
098fb9db 1461
c88d5910
PZ
1462 idx = sd->wake_idx;
1463 this_cpu = smp_processor_id();
1464 prev_cpu = task_cpu(p);
1465 load = source_load(prev_cpu, idx);
1466 this_load = target_load(this_cpu, idx);
098fb9db 1467
b3137bc8
MG
1468 /*
1469 * If sync wakeup then subtract the (maximum possible)
1470 * effect of the currently running task from the load
1471 * of the current CPU:
1472 */
f3b577de 1473 rcu_read_lock();
83378269
PZ
1474 if (sync) {
1475 tg = task_group(current);
1476 weight = current->se.load.weight;
1477
c88d5910 1478 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1479 load += effective_load(tg, prev_cpu, 0, -weight);
1480 }
b3137bc8 1481
83378269
PZ
1482 tg = task_group(p);
1483 weight = p->se.load.weight;
b3137bc8 1484
71a29aa7
PZ
1485 /*
1486 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
1487 * due to the sync cause above having dropped this_load to 0, we'll
1488 * always have an imbalance, but there's really nothing you can do
1489 * about that, so that's good too.
71a29aa7
PZ
1490 *
1491 * Otherwise check if either cpus are near enough in load to allow this
1492 * task to be woken on this_cpu.
1493 */
e37b6a7b
PT
1494 if (this_load > 0) {
1495 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
1496
1497 this_eff_load = 100;
1498 this_eff_load *= power_of(prev_cpu);
1499 this_eff_load *= this_load +
1500 effective_load(tg, this_cpu, weight, weight);
1501
1502 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1503 prev_eff_load *= power_of(this_cpu);
1504 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1505
1506 balanced = this_eff_load <= prev_eff_load;
1507 } else
1508 balanced = true;
f3b577de 1509 rcu_read_unlock();
b3137bc8 1510
098fb9db 1511 /*
4ae7d5ce
IM
1512 * If the currently running task will sleep within
1513 * a reasonable amount of time then attract this newly
1514 * woken task:
098fb9db 1515 */
2fb7635c
PZ
1516 if (sync && balanced)
1517 return 1;
098fb9db 1518
41acab88 1519 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
1520 tl_per_task = cpu_avg_load_per_task(this_cpu);
1521
c88d5910
PZ
1522 if (balanced ||
1523 (this_load <= load &&
1524 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
1525 /*
1526 * This domain has SD_WAKE_AFFINE and
1527 * p is cache cold in this domain, and
1528 * there is no bad imbalance.
1529 */
c88d5910 1530 schedstat_inc(sd, ttwu_move_affine);
41acab88 1531 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
1532
1533 return 1;
1534 }
1535 return 0;
1536}
1537
aaee1203
PZ
1538/*
1539 * find_idlest_group finds and returns the least busy CPU group within the
1540 * domain.
1541 */
1542static struct sched_group *
78e7ed53 1543find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 1544 int this_cpu, int load_idx)
e7693a36 1545{
b3bd3de6 1546 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 1547 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 1548 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 1549
aaee1203
PZ
1550 do {
1551 unsigned long load, avg_load;
1552 int local_group;
1553 int i;
e7693a36 1554
aaee1203
PZ
1555 /* Skip over this group if it has no CPUs allowed */
1556 if (!cpumask_intersects(sched_group_cpus(group),
1557 &p->cpus_allowed))
1558 continue;
1559
1560 local_group = cpumask_test_cpu(this_cpu,
1561 sched_group_cpus(group));
1562
1563 /* Tally up the load of all CPUs in the group */
1564 avg_load = 0;
1565
1566 for_each_cpu(i, sched_group_cpus(group)) {
1567 /* Bias balancing toward cpus of our domain */
1568 if (local_group)
1569 load = source_load(i, load_idx);
1570 else
1571 load = target_load(i, load_idx);
1572
1573 avg_load += load;
1574 }
1575
1576 /* Adjust by relative CPU power of the group */
1577 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1578
1579 if (local_group) {
1580 this_load = avg_load;
aaee1203
PZ
1581 } else if (avg_load < min_load) {
1582 min_load = avg_load;
1583 idlest = group;
1584 }
1585 } while (group = group->next, group != sd->groups);
1586
1587 if (!idlest || 100*this_load < imbalance*min_load)
1588 return NULL;
1589 return idlest;
1590}
1591
1592/*
1593 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1594 */
1595static int
1596find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1597{
1598 unsigned long load, min_load = ULONG_MAX;
1599 int idlest = -1;
1600 int i;
1601
1602 /* Traverse only the allowed CPUs */
1603 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1604 load = weighted_cpuload(i);
1605
1606 if (load < min_load || (load == min_load && i == this_cpu)) {
1607 min_load = load;
1608 idlest = i;
e7693a36
GH
1609 }
1610 }
1611
aaee1203
PZ
1612 return idlest;
1613}
e7693a36 1614
a50bde51
PZ
1615/*
1616 * Try and locate an idle CPU in the sched_domain.
1617 */
99bd5e2f 1618static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
1619{
1620 int cpu = smp_processor_id();
1621 int prev_cpu = task_cpu(p);
99bd5e2f 1622 struct sched_domain *sd;
a50bde51
PZ
1623 int i;
1624
1625 /*
99bd5e2f
SS
1626 * If the task is going to be woken-up on this cpu and if it is
1627 * already idle, then it is the right target.
a50bde51 1628 */
99bd5e2f
SS
1629 if (target == cpu && idle_cpu(cpu))
1630 return cpu;
1631
1632 /*
1633 * If the task is going to be woken-up on the cpu where it previously
1634 * ran and if it is currently idle, then it the right target.
1635 */
1636 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 1637 return prev_cpu;
a50bde51
PZ
1638
1639 /*
99bd5e2f 1640 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 1641 */
dce840a0 1642 rcu_read_lock();
99bd5e2f
SS
1643 for_each_domain(target, sd) {
1644 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
fe3bcfe1 1645 break;
99bd5e2f
SS
1646
1647 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1648 if (idle_cpu(i)) {
1649 target = i;
1650 break;
1651 }
a50bde51 1652 }
99bd5e2f
SS
1653
1654 /*
1655 * Lets stop looking for an idle sibling when we reached
1656 * the domain that spans the current cpu and prev_cpu.
1657 */
1658 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1659 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1660 break;
a50bde51 1661 }
dce840a0 1662 rcu_read_unlock();
a50bde51
PZ
1663
1664 return target;
1665}
1666
aaee1203
PZ
1667/*
1668 * sched_balance_self: balance the current task (running on cpu) in domains
1669 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1670 * SD_BALANCE_EXEC.
1671 *
1672 * Balance, ie. select the least loaded group.
1673 *
1674 * Returns the target CPU number, or the same CPU if no balancing is needed.
1675 *
1676 * preempt must be disabled.
1677 */
0017d735 1678static int
7608dec2 1679select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 1680{
29cd8bae 1681 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
1682 int cpu = smp_processor_id();
1683 int prev_cpu = task_cpu(p);
1684 int new_cpu = cpu;
99bd5e2f 1685 int want_affine = 0;
29cd8bae 1686 int want_sd = 1;
5158f4e4 1687 int sync = wake_flags & WF_SYNC;
c88d5910 1688
0763a660 1689 if (sd_flag & SD_BALANCE_WAKE) {
beac4c7e 1690 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
c88d5910
PZ
1691 want_affine = 1;
1692 new_cpu = prev_cpu;
1693 }
aaee1203 1694
dce840a0 1695 rcu_read_lock();
aaee1203 1696 for_each_domain(cpu, tmp) {
e4f42888
PZ
1697 if (!(tmp->flags & SD_LOAD_BALANCE))
1698 continue;
1699
aaee1203 1700 /*
ae154be1
PZ
1701 * If power savings logic is enabled for a domain, see if we
1702 * are not overloaded, if so, don't balance wider.
aaee1203 1703 */
59abf026 1704 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
1705 unsigned long power = 0;
1706 unsigned long nr_running = 0;
1707 unsigned long capacity;
1708 int i;
1709
1710 for_each_cpu(i, sched_domain_span(tmp)) {
1711 power += power_of(i);
1712 nr_running += cpu_rq(i)->cfs.nr_running;
1713 }
1714
1715 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1716
59abf026
PZ
1717 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1718 nr_running /= 2;
1719
1720 if (nr_running < capacity)
29cd8bae 1721 want_sd = 0;
ae154be1 1722 }
aaee1203 1723
fe3bcfe1 1724 /*
99bd5e2f
SS
1725 * If both cpu and prev_cpu are part of this domain,
1726 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 1727 */
99bd5e2f
SS
1728 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1729 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1730 affine_sd = tmp;
1731 want_affine = 0;
c88d5910
PZ
1732 }
1733
29cd8bae
PZ
1734 if (!want_sd && !want_affine)
1735 break;
1736
0763a660 1737 if (!(tmp->flags & sd_flag))
c88d5910
PZ
1738 continue;
1739
29cd8bae
PZ
1740 if (want_sd)
1741 sd = tmp;
1742 }
1743
8b911acd 1744 if (affine_sd) {
99bd5e2f 1745 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
dce840a0
PZ
1746 prev_cpu = cpu;
1747
1748 new_cpu = select_idle_sibling(p, prev_cpu);
1749 goto unlock;
8b911acd 1750 }
e7693a36 1751
aaee1203 1752 while (sd) {
5158f4e4 1753 int load_idx = sd->forkexec_idx;
aaee1203 1754 struct sched_group *group;
c88d5910 1755 int weight;
098fb9db 1756
0763a660 1757 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
1758 sd = sd->child;
1759 continue;
1760 }
098fb9db 1761
5158f4e4
PZ
1762 if (sd_flag & SD_BALANCE_WAKE)
1763 load_idx = sd->wake_idx;
098fb9db 1764
5158f4e4 1765 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
1766 if (!group) {
1767 sd = sd->child;
1768 continue;
1769 }
4ae7d5ce 1770
d7c33c49 1771 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
1772 if (new_cpu == -1 || new_cpu == cpu) {
1773 /* Now try balancing at a lower domain level of cpu */
1774 sd = sd->child;
1775 continue;
e7693a36 1776 }
aaee1203
PZ
1777
1778 /* Now try balancing at a lower domain level of new_cpu */
1779 cpu = new_cpu;
669c55e9 1780 weight = sd->span_weight;
aaee1203
PZ
1781 sd = NULL;
1782 for_each_domain(cpu, tmp) {
669c55e9 1783 if (weight <= tmp->span_weight)
aaee1203 1784 break;
0763a660 1785 if (tmp->flags & sd_flag)
aaee1203
PZ
1786 sd = tmp;
1787 }
1788 /* while loop will break here if sd == NULL */
e7693a36 1789 }
dce840a0
PZ
1790unlock:
1791 rcu_read_unlock();
e7693a36 1792
c88d5910 1793 return new_cpu;
e7693a36
GH
1794}
1795#endif /* CONFIG_SMP */
1796
e52fb7c0
PZ
1797static unsigned long
1798wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1799{
1800 unsigned long gran = sysctl_sched_wakeup_granularity;
1801
1802 /*
e52fb7c0
PZ
1803 * Since its curr running now, convert the gran from real-time
1804 * to virtual-time in his units.
13814d42
MG
1805 *
1806 * By using 'se' instead of 'curr' we penalize light tasks, so
1807 * they get preempted easier. That is, if 'se' < 'curr' then
1808 * the resulting gran will be larger, therefore penalizing the
1809 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1810 * be smaller, again penalizing the lighter task.
1811 *
1812 * This is especially important for buddies when the leftmost
1813 * task is higher priority than the buddy.
0bbd3336 1814 */
f4ad9bd2 1815 return calc_delta_fair(gran, se);
0bbd3336
PZ
1816}
1817
464b7527
PZ
1818/*
1819 * Should 'se' preempt 'curr'.
1820 *
1821 * |s1
1822 * |s2
1823 * |s3
1824 * g
1825 * |<--->|c
1826 *
1827 * w(c, s1) = -1
1828 * w(c, s2) = 0
1829 * w(c, s3) = 1
1830 *
1831 */
1832static int
1833wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1834{
1835 s64 gran, vdiff = curr->vruntime - se->vruntime;
1836
1837 if (vdiff <= 0)
1838 return -1;
1839
e52fb7c0 1840 gran = wakeup_gran(curr, se);
464b7527
PZ
1841 if (vdiff > gran)
1842 return 1;
1843
1844 return 0;
1845}
1846
02479099
PZ
1847static void set_last_buddy(struct sched_entity *se)
1848{
69c80f3e
VP
1849 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
1850 return;
1851
1852 for_each_sched_entity(se)
1853 cfs_rq_of(se)->last = se;
02479099
PZ
1854}
1855
1856static void set_next_buddy(struct sched_entity *se)
1857{
69c80f3e
VP
1858 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
1859 return;
1860
1861 for_each_sched_entity(se)
1862 cfs_rq_of(se)->next = se;
02479099
PZ
1863}
1864
ac53db59
RR
1865static void set_skip_buddy(struct sched_entity *se)
1866{
69c80f3e
VP
1867 for_each_sched_entity(se)
1868 cfs_rq_of(se)->skip = se;
ac53db59
RR
1869}
1870
bf0f6f24
IM
1871/*
1872 * Preempt the current task with a newly woken task if needed:
1873 */
5a9b86f6 1874static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
1875{
1876 struct task_struct *curr = rq->curr;
8651a86c 1877 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1878 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 1879 int scale = cfs_rq->nr_running >= sched_nr_latency;
bf0f6f24 1880
4ae7d5ce
IM
1881 if (unlikely(se == pse))
1882 return;
1883
f685ceac 1884 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
3cb63d52 1885 set_next_buddy(pse);
57fdc26d 1886
aec0a514
BR
1887 /*
1888 * We can come here with TIF_NEED_RESCHED already set from new task
1889 * wake up path.
1890 */
1891 if (test_tsk_need_resched(curr))
1892 return;
1893
a2f5c9ab
DH
1894 /* Idle tasks are by definition preempted by non-idle tasks. */
1895 if (unlikely(curr->policy == SCHED_IDLE) &&
1896 likely(p->policy != SCHED_IDLE))
1897 goto preempt;
1898
91c234b4 1899 /*
a2f5c9ab
DH
1900 * Batch and idle tasks do not preempt non-idle tasks (their preemption
1901 * is driven by the tick):
91c234b4 1902 */
6bc912b7 1903 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1904 return;
bf0f6f24 1905
bf0f6f24 1906
ad4b78bb
PZ
1907 if (!sched_feat(WAKEUP_PREEMPT))
1908 return;
1909
3a7e73a2 1910 update_curr(cfs_rq);
464b7527 1911 find_matching_se(&se, &pse);
002f128b 1912 BUG_ON(!pse);
3a7e73a2
PZ
1913 if (wakeup_preempt_entity(se, pse) == 1)
1914 goto preempt;
464b7527 1915
3a7e73a2 1916 return;
a65ac745 1917
3a7e73a2
PZ
1918preempt:
1919 resched_task(curr);
1920 /*
1921 * Only set the backward buddy when the current task is still
1922 * on the rq. This can happen when a wakeup gets interleaved
1923 * with schedule on the ->pre_schedule() or idle_balance()
1924 * point, either of which can * drop the rq lock.
1925 *
1926 * Also, during early boot the idle thread is in the fair class,
1927 * for obvious reasons its a bad idea to schedule back to it.
1928 */
1929 if (unlikely(!se->on_rq || curr == rq->idle))
1930 return;
1931
1932 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1933 set_last_buddy(se);
bf0f6f24
IM
1934}
1935
fb8d4724 1936static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1937{
8f4d37ec 1938 struct task_struct *p;
bf0f6f24
IM
1939 struct cfs_rq *cfs_rq = &rq->cfs;
1940 struct sched_entity *se;
1941
36ace27e 1942 if (!cfs_rq->nr_running)
bf0f6f24
IM
1943 return NULL;
1944
1945 do {
9948f4b2 1946 se = pick_next_entity(cfs_rq);
f4b6755f 1947 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1948 cfs_rq = group_cfs_rq(se);
1949 } while (cfs_rq);
1950
8f4d37ec
PZ
1951 p = task_of(se);
1952 hrtick_start_fair(rq, p);
1953
1954 return p;
bf0f6f24
IM
1955}
1956
1957/*
1958 * Account for a descheduled task:
1959 */
31ee529c 1960static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1961{
1962 struct sched_entity *se = &prev->se;
1963 struct cfs_rq *cfs_rq;
1964
1965 for_each_sched_entity(se) {
1966 cfs_rq = cfs_rq_of(se);
ab6cde26 1967 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1968 }
1969}
1970
ac53db59
RR
1971/*
1972 * sched_yield() is very simple
1973 *
1974 * The magic of dealing with the ->skip buddy is in pick_next_entity.
1975 */
1976static void yield_task_fair(struct rq *rq)
1977{
1978 struct task_struct *curr = rq->curr;
1979 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1980 struct sched_entity *se = &curr->se;
1981
1982 /*
1983 * Are we the only task in the tree?
1984 */
1985 if (unlikely(rq->nr_running == 1))
1986 return;
1987
1988 clear_buddies(cfs_rq, se);
1989
1990 if (curr->policy != SCHED_BATCH) {
1991 update_rq_clock(rq);
1992 /*
1993 * Update run-time statistics of the 'current'.
1994 */
1995 update_curr(cfs_rq);
1996 }
1997
1998 set_skip_buddy(se);
1999}
2000
d95f4122
MG
2001static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
2002{
2003 struct sched_entity *se = &p->se;
2004
2005 if (!se->on_rq)
2006 return false;
2007
2008 /* Tell the scheduler that we'd really like pse to run next. */
2009 set_next_buddy(se);
2010
d95f4122
MG
2011 yield_task_fair(rq);
2012
2013 return true;
2014}
2015
681f3e68 2016#ifdef CONFIG_SMP
bf0f6f24
IM
2017/**************************************************
2018 * Fair scheduling class load-balancing methods:
2019 */
2020
1e3c88bd
PZ
2021/*
2022 * pull_task - move a task from a remote runqueue to the local runqueue.
2023 * Both runqueues must be locked.
2024 */
2025static void pull_task(struct rq *src_rq, struct task_struct *p,
2026 struct rq *this_rq, int this_cpu)
2027{
2028 deactivate_task(src_rq, p, 0);
2029 set_task_cpu(p, this_cpu);
2030 activate_task(this_rq, p, 0);
2031 check_preempt_curr(this_rq, p, 0);
2032}
2033
2034/*
2035 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2036 */
2037static
2038int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2039 struct sched_domain *sd, enum cpu_idle_type idle,
2040 int *all_pinned)
2041{
2042 int tsk_cache_hot = 0;
2043 /*
2044 * We do not migrate tasks that are:
2045 * 1) running (obviously), or
2046 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2047 * 3) are cache-hot on their current CPU.
2048 */
2049 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
41acab88 2050 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
2051 return 0;
2052 }
2053 *all_pinned = 0;
2054
2055 if (task_running(rq, p)) {
41acab88 2056 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
2057 return 0;
2058 }
2059
2060 /*
2061 * Aggressive migration if:
2062 * 1) task is cache cold, or
2063 * 2) too many balance attempts have failed.
2064 */
2065
305e6835 2066 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1e3c88bd
PZ
2067 if (!tsk_cache_hot ||
2068 sd->nr_balance_failed > sd->cache_nice_tries) {
2069#ifdef CONFIG_SCHEDSTATS
2070 if (tsk_cache_hot) {
2071 schedstat_inc(sd, lb_hot_gained[idle]);
41acab88 2072 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
2073 }
2074#endif
2075 return 1;
2076 }
2077
2078 if (tsk_cache_hot) {
41acab88 2079 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
2080 return 0;
2081 }
2082 return 1;
2083}
2084
897c395f
PZ
2085/*
2086 * move_one_task tries to move exactly one task from busiest to this_rq, as
2087 * part of active balancing operations within "domain".
2088 * Returns 1 if successful and 0 otherwise.
2089 *
2090 * Called with both runqueues locked.
2091 */
2092static int
2093move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2094 struct sched_domain *sd, enum cpu_idle_type idle)
2095{
2096 struct task_struct *p, *n;
2097 struct cfs_rq *cfs_rq;
2098 int pinned = 0;
2099
2100 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2101 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2102
2103 if (!can_migrate_task(p, busiest, this_cpu,
2104 sd, idle, &pinned))
2105 continue;
2106
2107 pull_task(busiest, p, this_rq, this_cpu);
2108 /*
2109 * Right now, this is only the second place pull_task()
2110 * is called, so we can safely collect pull_task()
2111 * stats here rather than inside pull_task().
2112 */
2113 schedstat_inc(sd, lb_gained[idle]);
2114 return 1;
2115 }
2116 }
2117
2118 return 0;
2119}
2120
1e3c88bd
PZ
2121static unsigned long
2122balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2123 unsigned long max_load_move, struct sched_domain *sd,
2124 enum cpu_idle_type idle, int *all_pinned,
ee00e66f 2125 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1e3c88bd 2126{
b30aef17 2127 int loops = 0, pulled = 0;
1e3c88bd 2128 long rem_load_move = max_load_move;
ee00e66f 2129 struct task_struct *p, *n;
1e3c88bd
PZ
2130
2131 if (max_load_move == 0)
2132 goto out;
2133
ee00e66f
PZ
2134 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2135 if (loops++ > sysctl_sched_nr_migrate)
2136 break;
1e3c88bd 2137
ee00e66f 2138 if ((p->se.load.weight >> 1) > rem_load_move ||
b30aef17
KC
2139 !can_migrate_task(p, busiest, this_cpu, sd, idle,
2140 all_pinned))
ee00e66f 2141 continue;
1e3c88bd 2142
ee00e66f
PZ
2143 pull_task(busiest, p, this_rq, this_cpu);
2144 pulled++;
2145 rem_load_move -= p->se.load.weight;
1e3c88bd
PZ
2146
2147#ifdef CONFIG_PREEMPT
ee00e66f
PZ
2148 /*
2149 * NEWIDLE balancing is a source of latency, so preemptible
2150 * kernels will stop after the first task is pulled to minimize
2151 * the critical section.
2152 */
2153 if (idle == CPU_NEWLY_IDLE)
2154 break;
1e3c88bd
PZ
2155#endif
2156
ee00e66f
PZ
2157 /*
2158 * We only want to steal up to the prescribed amount of
2159 * weighted load.
2160 */
2161 if (rem_load_move <= 0)
2162 break;
2163
1e3c88bd
PZ
2164 if (p->prio < *this_best_prio)
2165 *this_best_prio = p->prio;
1e3c88bd
PZ
2166 }
2167out:
2168 /*
2169 * Right now, this is one of only two places pull_task() is called,
2170 * so we can safely collect pull_task() stats here rather than
2171 * inside pull_task().
2172 */
2173 schedstat_add(sd, lb_gained[idle], pulled);
2174
1e3c88bd
PZ
2175 return max_load_move - rem_load_move;
2176}
2177
230059de 2178#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
2179/*
2180 * update tg->load_weight by folding this cpu's load_avg
2181 */
67e86250 2182static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
2183{
2184 struct cfs_rq *cfs_rq;
2185 unsigned long flags;
2186 struct rq *rq;
9e3081ca
PZ
2187
2188 if (!tg->se[cpu])
2189 return 0;
2190
2191 rq = cpu_rq(cpu);
2192 cfs_rq = tg->cfs_rq[cpu];
2193
2194 raw_spin_lock_irqsave(&rq->lock, flags);
2195
2196 update_rq_clock(rq);
d6b55918 2197 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
2198
2199 /*
2200 * We need to update shares after updating tg->load_weight in
2201 * order to adjust the weight of groups with long running tasks.
2202 */
6d5ab293 2203 update_cfs_shares(cfs_rq);
9e3081ca
PZ
2204
2205 raw_spin_unlock_irqrestore(&rq->lock, flags);
2206
2207 return 0;
2208}
2209
2210static void update_shares(int cpu)
2211{
2212 struct cfs_rq *cfs_rq;
2213 struct rq *rq = cpu_rq(cpu);
2214
2215 rcu_read_lock();
67e86250
PT
2216 for_each_leaf_cfs_rq(rq, cfs_rq)
2217 update_shares_cpu(cfs_rq->tg, cpu);
9e3081ca
PZ
2218 rcu_read_unlock();
2219}
2220
230059de
PZ
2221static unsigned long
2222load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2223 unsigned long max_load_move,
2224 struct sched_domain *sd, enum cpu_idle_type idle,
2225 int *all_pinned, int *this_best_prio)
2226{
2227 long rem_load_move = max_load_move;
2228 int busiest_cpu = cpu_of(busiest);
2229 struct task_group *tg;
2230
2231 rcu_read_lock();
2232 update_h_load(busiest_cpu);
2233
2234 list_for_each_entry_rcu(tg, &task_groups, list) {
2235 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
2236 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2237 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2238 u64 rem_load, moved_load;
2239
2240 /*
2241 * empty group
2242 */
2243 if (!busiest_cfs_rq->task_weight)
2244 continue;
2245
2246 rem_load = (u64)rem_load_move * busiest_weight;
2247 rem_load = div_u64(rem_load, busiest_h_load + 1);
2248
2249 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2250 rem_load, sd, idle, all_pinned, this_best_prio,
2251 busiest_cfs_rq);
2252
2253 if (!moved_load)
2254 continue;
2255
2256 moved_load *= busiest_h_load;
2257 moved_load = div_u64(moved_load, busiest_weight + 1);
2258
2259 rem_load_move -= moved_load;
2260 if (rem_load_move < 0)
2261 break;
2262 }
2263 rcu_read_unlock();
2264
2265 return max_load_move - rem_load_move;
2266}
2267#else
9e3081ca
PZ
2268static inline void update_shares(int cpu)
2269{
2270}
2271
230059de
PZ
2272static unsigned long
2273load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2274 unsigned long max_load_move,
2275 struct sched_domain *sd, enum cpu_idle_type idle,
2276 int *all_pinned, int *this_best_prio)
2277{
2278 return balance_tasks(this_rq, this_cpu, busiest,
2279 max_load_move, sd, idle, all_pinned,
2280 this_best_prio, &busiest->cfs);
2281}
2282#endif
2283
1e3c88bd
PZ
2284/*
2285 * move_tasks tries to move up to max_load_move weighted load from busiest to
2286 * this_rq, as part of a balancing operation within domain "sd".
2287 * Returns 1 if successful and 0 otherwise.
2288 *
2289 * Called with both runqueues locked.
2290 */
2291static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2292 unsigned long max_load_move,
2293 struct sched_domain *sd, enum cpu_idle_type idle,
2294 int *all_pinned)
2295{
3d45fd80 2296 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
2297 int this_best_prio = this_rq->curr->prio;
2298
2299 do {
3d45fd80 2300 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd
PZ
2301 max_load_move - total_load_moved,
2302 sd, idle, all_pinned, &this_best_prio);
3d45fd80
PZ
2303
2304 total_load_moved += load_moved;
1e3c88bd
PZ
2305
2306#ifdef CONFIG_PREEMPT
2307 /*
2308 * NEWIDLE balancing is a source of latency, so preemptible
2309 * kernels will stop after the first task is pulled to minimize
2310 * the critical section.
2311 */
2312 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2313 break;
baa8c110
PZ
2314
2315 if (raw_spin_is_contended(&this_rq->lock) ||
2316 raw_spin_is_contended(&busiest->lock))
2317 break;
1e3c88bd 2318#endif
3d45fd80 2319 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
2320
2321 return total_load_moved > 0;
2322}
2323
1e3c88bd
PZ
2324/********** Helpers for find_busiest_group ************************/
2325/*
2326 * sd_lb_stats - Structure to store the statistics of a sched_domain
2327 * during load balancing.
2328 */
2329struct sd_lb_stats {
2330 struct sched_group *busiest; /* Busiest group in this sd */
2331 struct sched_group *this; /* Local group in this sd */
2332 unsigned long total_load; /* Total load of all groups in sd */
2333 unsigned long total_pwr; /* Total power of all groups in sd */
2334 unsigned long avg_load; /* Average load across all groups in sd */
2335
2336 /** Statistics of this group */
2337 unsigned long this_load;
2338 unsigned long this_load_per_task;
2339 unsigned long this_nr_running;
fab47622 2340 unsigned long this_has_capacity;
aae6d3dd 2341 unsigned int this_idle_cpus;
1e3c88bd
PZ
2342
2343 /* Statistics of the busiest group */
aae6d3dd 2344 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
2345 unsigned long max_load;
2346 unsigned long busiest_load_per_task;
2347 unsigned long busiest_nr_running;
dd5feea1 2348 unsigned long busiest_group_capacity;
fab47622 2349 unsigned long busiest_has_capacity;
aae6d3dd 2350 unsigned int busiest_group_weight;
1e3c88bd
PZ
2351
2352 int group_imb; /* Is there imbalance in this sd */
2353#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2354 int power_savings_balance; /* Is powersave balance needed for this sd */
2355 struct sched_group *group_min; /* Least loaded group in sd */
2356 struct sched_group *group_leader; /* Group which relieves group_min */
2357 unsigned long min_load_per_task; /* load_per_task in group_min */
2358 unsigned long leader_nr_running; /* Nr running of group_leader */
2359 unsigned long min_nr_running; /* Nr running of group_min */
2360#endif
2361};
2362
2363/*
2364 * sg_lb_stats - stats of a sched_group required for load_balancing
2365 */
2366struct sg_lb_stats {
2367 unsigned long avg_load; /*Avg load across the CPUs of the group */
2368 unsigned long group_load; /* Total load over the CPUs of the group */
2369 unsigned long sum_nr_running; /* Nr tasks running in the group */
2370 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2371 unsigned long group_capacity;
aae6d3dd
SS
2372 unsigned long idle_cpus;
2373 unsigned long group_weight;
1e3c88bd 2374 int group_imb; /* Is there an imbalance in the group ? */
fab47622 2375 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
2376};
2377
2378/**
2379 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2380 * @group: The group whose first cpu is to be returned.
2381 */
2382static inline unsigned int group_first_cpu(struct sched_group *group)
2383{
2384 return cpumask_first(sched_group_cpus(group));
2385}
2386
2387/**
2388 * get_sd_load_idx - Obtain the load index for a given sched domain.
2389 * @sd: The sched_domain whose load_idx is to be obtained.
2390 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2391 */
2392static inline int get_sd_load_idx(struct sched_domain *sd,
2393 enum cpu_idle_type idle)
2394{
2395 int load_idx;
2396
2397 switch (idle) {
2398 case CPU_NOT_IDLE:
2399 load_idx = sd->busy_idx;
2400 break;
2401
2402 case CPU_NEWLY_IDLE:
2403 load_idx = sd->newidle_idx;
2404 break;
2405 default:
2406 load_idx = sd->idle_idx;
2407 break;
2408 }
2409
2410 return load_idx;
2411}
2412
2413
2414#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2415/**
2416 * init_sd_power_savings_stats - Initialize power savings statistics for
2417 * the given sched_domain, during load balancing.
2418 *
2419 * @sd: Sched domain whose power-savings statistics are to be initialized.
2420 * @sds: Variable containing the statistics for sd.
2421 * @idle: Idle status of the CPU at which we're performing load-balancing.
2422 */
2423static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2424 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2425{
2426 /*
2427 * Busy processors will not participate in power savings
2428 * balance.
2429 */
2430 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2431 sds->power_savings_balance = 0;
2432 else {
2433 sds->power_savings_balance = 1;
2434 sds->min_nr_running = ULONG_MAX;
2435 sds->leader_nr_running = 0;
2436 }
2437}
2438
2439/**
2440 * update_sd_power_savings_stats - Update the power saving stats for a
2441 * sched_domain while performing load balancing.
2442 *
2443 * @group: sched_group belonging to the sched_domain under consideration.
2444 * @sds: Variable containing the statistics of the sched_domain
2445 * @local_group: Does group contain the CPU for which we're performing
2446 * load balancing ?
2447 * @sgs: Variable containing the statistics of the group.
2448 */
2449static inline void update_sd_power_savings_stats(struct sched_group *group,
2450 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2451{
2452
2453 if (!sds->power_savings_balance)
2454 return;
2455
2456 /*
2457 * If the local group is idle or completely loaded
2458 * no need to do power savings balance at this domain
2459 */
2460 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2461 !sds->this_nr_running))
2462 sds->power_savings_balance = 0;
2463
2464 /*
2465 * If a group is already running at full capacity or idle,
2466 * don't include that group in power savings calculations
2467 */
2468 if (!sds->power_savings_balance ||
2469 sgs->sum_nr_running >= sgs->group_capacity ||
2470 !sgs->sum_nr_running)
2471 return;
2472
2473 /*
2474 * Calculate the group which has the least non-idle load.
2475 * This is the group from where we need to pick up the load
2476 * for saving power
2477 */
2478 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2479 (sgs->sum_nr_running == sds->min_nr_running &&
2480 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2481 sds->group_min = group;
2482 sds->min_nr_running = sgs->sum_nr_running;
2483 sds->min_load_per_task = sgs->sum_weighted_load /
2484 sgs->sum_nr_running;
2485 }
2486
2487 /*
2488 * Calculate the group which is almost near its
2489 * capacity but still has some space to pick up some load
2490 * from other group and save more power
2491 */
2492 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2493 return;
2494
2495 if (sgs->sum_nr_running > sds->leader_nr_running ||
2496 (sgs->sum_nr_running == sds->leader_nr_running &&
2497 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2498 sds->group_leader = group;
2499 sds->leader_nr_running = sgs->sum_nr_running;
2500 }
2501}
2502
2503/**
2504 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2505 * @sds: Variable containing the statistics of the sched_domain
2506 * under consideration.
2507 * @this_cpu: Cpu at which we're currently performing load-balancing.
2508 * @imbalance: Variable to store the imbalance.
2509 *
2510 * Description:
2511 * Check if we have potential to perform some power-savings balance.
2512 * If yes, set the busiest group to be the least loaded group in the
2513 * sched_domain, so that it's CPUs can be put to idle.
2514 *
2515 * Returns 1 if there is potential to perform power-savings balance.
2516 * Else returns 0.
2517 */
2518static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2519 int this_cpu, unsigned long *imbalance)
2520{
2521 if (!sds->power_savings_balance)
2522 return 0;
2523
2524 if (sds->this != sds->group_leader ||
2525 sds->group_leader == sds->group_min)
2526 return 0;
2527
2528 *imbalance = sds->min_load_per_task;
2529 sds->busiest = sds->group_min;
2530
2531 return 1;
2532
2533}
2534#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2535static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2536 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2537{
2538 return;
2539}
2540
2541static inline void update_sd_power_savings_stats(struct sched_group *group,
2542 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2543{
2544 return;
2545}
2546
2547static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2548 int this_cpu, unsigned long *imbalance)
2549{
2550 return 0;
2551}
2552#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2553
2554
2555unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2556{
2557 return SCHED_LOAD_SCALE;
2558}
2559
2560unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2561{
2562 return default_scale_freq_power(sd, cpu);
2563}
2564
2565unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2566{
669c55e9 2567 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
2568 unsigned long smt_gain = sd->smt_gain;
2569
2570 smt_gain /= weight;
2571
2572 return smt_gain;
2573}
2574
2575unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2576{
2577 return default_scale_smt_power(sd, cpu);
2578}
2579
2580unsigned long scale_rt_power(int cpu)
2581{
2582 struct rq *rq = cpu_rq(cpu);
2583 u64 total, available;
2584
1e3c88bd 2585 total = sched_avg_period() + (rq->clock - rq->age_stamp);
aa483808
VP
2586
2587 if (unlikely(total < rq->rt_avg)) {
2588 /* Ensures that power won't end up being negative */
2589 available = 0;
2590 } else {
2591 available = total - rq->rt_avg;
2592 }
1e3c88bd
PZ
2593
2594 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2595 total = SCHED_LOAD_SCALE;
2596
2597 total >>= SCHED_LOAD_SHIFT;
2598
2599 return div_u64(available, total);
2600}
2601
2602static void update_cpu_power(struct sched_domain *sd, int cpu)
2603{
669c55e9 2604 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
2605 unsigned long power = SCHED_LOAD_SCALE;
2606 struct sched_group *sdg = sd->groups;
2607
1e3c88bd
PZ
2608 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2609 if (sched_feat(ARCH_POWER))
2610 power *= arch_scale_smt_power(sd, cpu);
2611 else
2612 power *= default_scale_smt_power(sd, cpu);
2613
2614 power >>= SCHED_LOAD_SHIFT;
2615 }
2616
9d5efe05
SV
2617 sdg->cpu_power_orig = power;
2618
2619 if (sched_feat(ARCH_POWER))
2620 power *= arch_scale_freq_power(sd, cpu);
2621 else
2622 power *= default_scale_freq_power(sd, cpu);
2623
2624 power >>= SCHED_LOAD_SHIFT;
2625
1e3c88bd
PZ
2626 power *= scale_rt_power(cpu);
2627 power >>= SCHED_LOAD_SHIFT;
2628
2629 if (!power)
2630 power = 1;
2631
e51fd5e2 2632 cpu_rq(cpu)->cpu_power = power;
1e3c88bd
PZ
2633 sdg->cpu_power = power;
2634}
2635
2636static void update_group_power(struct sched_domain *sd, int cpu)
2637{
2638 struct sched_domain *child = sd->child;
2639 struct sched_group *group, *sdg = sd->groups;
2640 unsigned long power;
2641
2642 if (!child) {
2643 update_cpu_power(sd, cpu);
2644 return;
2645 }
2646
2647 power = 0;
2648
2649 group = child->groups;
2650 do {
2651 power += group->cpu_power;
2652 group = group->next;
2653 } while (group != child->groups);
2654
2655 sdg->cpu_power = power;
2656}
2657
9d5efe05
SV
2658/*
2659 * Try and fix up capacity for tiny siblings, this is needed when
2660 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2661 * which on its own isn't powerful enough.
2662 *
2663 * See update_sd_pick_busiest() and check_asym_packing().
2664 */
2665static inline int
2666fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2667{
2668 /*
2669 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2670 */
a6c75f2f 2671 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
2672 return 0;
2673
2674 /*
2675 * If ~90% of the cpu_power is still there, we're good.
2676 */
694f5a11 2677 if (group->cpu_power * 32 > group->cpu_power_orig * 29)
9d5efe05
SV
2678 return 1;
2679
2680 return 0;
2681}
2682
1e3c88bd
PZ
2683/**
2684 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2685 * @sd: The sched_domain whose statistics are to be updated.
2686 * @group: sched_group whose statistics are to be updated.
2687 * @this_cpu: Cpu for which load balance is currently performed.
2688 * @idle: Idle status of this_cpu
2689 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd
PZ
2690 * @local_group: Does group contain this_cpu.
2691 * @cpus: Set of cpus considered for load balancing.
2692 * @balance: Should we balance.
2693 * @sgs: variable to hold the statistics for this group.
2694 */
2695static inline void update_sg_lb_stats(struct sched_domain *sd,
2696 struct sched_group *group, int this_cpu,
46e49b38 2697 enum cpu_idle_type idle, int load_idx,
1e3c88bd
PZ
2698 int local_group, const struct cpumask *cpus,
2699 int *balance, struct sg_lb_stats *sgs)
2700{
2582f0eb 2701 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
1e3c88bd
PZ
2702 int i;
2703 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 2704 unsigned long avg_load_per_task = 0;
1e3c88bd 2705
871e35bc 2706 if (local_group)
1e3c88bd 2707 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
2708
2709 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
2710 max_cpu_load = 0;
2711 min_cpu_load = ~0UL;
2582f0eb 2712 max_nr_running = 0;
1e3c88bd
PZ
2713
2714 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2715 struct rq *rq = cpu_rq(i);
2716
1e3c88bd
PZ
2717 /* Bias balancing toward cpus of our domain */
2718 if (local_group) {
2719 if (idle_cpu(i) && !first_idle_cpu) {
2720 first_idle_cpu = 1;
2721 balance_cpu = i;
2722 }
2723
2724 load = target_load(i, load_idx);
2725 } else {
2726 load = source_load(i, load_idx);
2582f0eb 2727 if (load > max_cpu_load) {
1e3c88bd 2728 max_cpu_load = load;
2582f0eb
NR
2729 max_nr_running = rq->nr_running;
2730 }
1e3c88bd
PZ
2731 if (min_cpu_load > load)
2732 min_cpu_load = load;
2733 }
2734
2735 sgs->group_load += load;
2736 sgs->sum_nr_running += rq->nr_running;
2737 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
2738 if (idle_cpu(i))
2739 sgs->idle_cpus++;
1e3c88bd
PZ
2740 }
2741
2742 /*
2743 * First idle cpu or the first cpu(busiest) in this sched group
2744 * is eligible for doing load balancing at this and above
2745 * domains. In the newly idle case, we will allow all the cpu's
2746 * to do the newly idle load balance.
2747 */
bbc8cb5b
PZ
2748 if (idle != CPU_NEWLY_IDLE && local_group) {
2749 if (balance_cpu != this_cpu) {
2750 *balance = 0;
2751 return;
2752 }
2753 update_group_power(sd, this_cpu);
1e3c88bd
PZ
2754 }
2755
2756 /* Adjust by relative CPU power of the group */
2757 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2758
1e3c88bd
PZ
2759 /*
2760 * Consider the group unbalanced when the imbalance is larger
866ab43e 2761 * than the average weight of a task.
1e3c88bd
PZ
2762 *
2763 * APZ: with cgroup the avg task weight can vary wildly and
2764 * might not be a suitable number - should we keep a
2765 * normalized nr_running number somewhere that negates
2766 * the hierarchy?
2767 */
dd5feea1
SS
2768 if (sgs->sum_nr_running)
2769 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 2770
866ab43e 2771 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
1e3c88bd
PZ
2772 sgs->group_imb = 1;
2773
2582f0eb 2774 sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
9d5efe05
SV
2775 if (!sgs->group_capacity)
2776 sgs->group_capacity = fix_small_capacity(sd, group);
aae6d3dd 2777 sgs->group_weight = group->group_weight;
fab47622
NR
2778
2779 if (sgs->group_capacity > sgs->sum_nr_running)
2780 sgs->group_has_capacity = 1;
1e3c88bd
PZ
2781}
2782
532cb4c4
MN
2783/**
2784 * update_sd_pick_busiest - return 1 on busiest group
2785 * @sd: sched_domain whose statistics are to be checked
2786 * @sds: sched_domain statistics
2787 * @sg: sched_group candidate to be checked for being the busiest
b6b12294
MN
2788 * @sgs: sched_group statistics
2789 * @this_cpu: the current cpu
532cb4c4
MN
2790 *
2791 * Determine if @sg is a busier group than the previously selected
2792 * busiest group.
2793 */
2794static bool update_sd_pick_busiest(struct sched_domain *sd,
2795 struct sd_lb_stats *sds,
2796 struct sched_group *sg,
2797 struct sg_lb_stats *sgs,
2798 int this_cpu)
2799{
2800 if (sgs->avg_load <= sds->max_load)
2801 return false;
2802
2803 if (sgs->sum_nr_running > sgs->group_capacity)
2804 return true;
2805
2806 if (sgs->group_imb)
2807 return true;
2808
2809 /*
2810 * ASYM_PACKING needs to move all the work to the lowest
2811 * numbered CPUs in the group, therefore mark all groups
2812 * higher than ourself as busy.
2813 */
2814 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2815 this_cpu < group_first_cpu(sg)) {
2816 if (!sds->busiest)
2817 return true;
2818
2819 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2820 return true;
2821 }
2822
2823 return false;
2824}
2825
1e3c88bd
PZ
2826/**
2827 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2828 * @sd: sched_domain whose statistics are to be updated.
2829 * @this_cpu: Cpu for which load balance is currently performed.
2830 * @idle: Idle status of this_cpu
1e3c88bd
PZ
2831 * @cpus: Set of cpus considered for load balancing.
2832 * @balance: Should we balance.
2833 * @sds: variable to hold the statistics for this sched_domain.
2834 */
2835static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
46e49b38
VP
2836 enum cpu_idle_type idle, const struct cpumask *cpus,
2837 int *balance, struct sd_lb_stats *sds)
1e3c88bd
PZ
2838{
2839 struct sched_domain *child = sd->child;
532cb4c4 2840 struct sched_group *sg = sd->groups;
1e3c88bd
PZ
2841 struct sg_lb_stats sgs;
2842 int load_idx, prefer_sibling = 0;
2843
2844 if (child && child->flags & SD_PREFER_SIBLING)
2845 prefer_sibling = 1;
2846
2847 init_sd_power_savings_stats(sd, sds, idle);
2848 load_idx = get_sd_load_idx(sd, idle);
2849
2850 do {
2851 int local_group;
2852
532cb4c4 2853 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
1e3c88bd 2854 memset(&sgs, 0, sizeof(sgs));
46e49b38 2855 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
1e3c88bd
PZ
2856 local_group, cpus, balance, &sgs);
2857
8f190fb3 2858 if (local_group && !(*balance))
1e3c88bd
PZ
2859 return;
2860
2861 sds->total_load += sgs.group_load;
532cb4c4 2862 sds->total_pwr += sg->cpu_power;
1e3c88bd
PZ
2863
2864 /*
2865 * In case the child domain prefers tasks go to siblings
532cb4c4 2866 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
2867 * and move all the excess tasks away. We lower the capacity
2868 * of a group only if the local group has the capacity to fit
2869 * these excess tasks, i.e. nr_running < group_capacity. The
2870 * extra check prevents the case where you always pull from the
2871 * heaviest group when it is already under-utilized (possible
2872 * with a large weight task outweighs the tasks on the system).
1e3c88bd 2873 */
75dd321d 2874 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
2875 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2876
2877 if (local_group) {
2878 sds->this_load = sgs.avg_load;
532cb4c4 2879 sds->this = sg;
1e3c88bd
PZ
2880 sds->this_nr_running = sgs.sum_nr_running;
2881 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 2882 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 2883 sds->this_idle_cpus = sgs.idle_cpus;
532cb4c4 2884 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
1e3c88bd 2885 sds->max_load = sgs.avg_load;
532cb4c4 2886 sds->busiest = sg;
1e3c88bd 2887 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 2888 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 2889 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 2890 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 2891 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 2892 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
2893 sds->group_imb = sgs.group_imb;
2894 }
2895
532cb4c4
MN
2896 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2897 sg = sg->next;
2898 } while (sg != sd->groups);
2899}
2900
2ec57d44 2901int __weak arch_sd_sibling_asym_packing(void)
532cb4c4
MN
2902{
2903 return 0*SD_ASYM_PACKING;
2904}
2905
2906/**
2907 * check_asym_packing - Check to see if the group is packed into the
2908 * sched doman.
2909 *
2910 * This is primarily intended to used at the sibling level. Some
2911 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2912 * case of POWER7, it can move to lower SMT modes only when higher
2913 * threads are idle. When in lower SMT modes, the threads will
2914 * perform better since they share less core resources. Hence when we
2915 * have idle threads, we want them to be the higher ones.
2916 *
2917 * This packing function is run on idle threads. It checks to see if
2918 * the busiest CPU in this domain (core in the P7 case) has a higher
2919 * CPU number than the packing function is being run on. Here we are
2920 * assuming lower CPU number will be equivalent to lower a SMT thread
2921 * number.
2922 *
b6b12294
MN
2923 * Returns 1 when packing is required and a task should be moved to
2924 * this CPU. The amount of the imbalance is returned in *imbalance.
2925 *
532cb4c4
MN
2926 * @sd: The sched_domain whose packing is to be checked.
2927 * @sds: Statistics of the sched_domain which is to be packed
2928 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2929 * @imbalance: returns amount of imbalanced due to packing.
532cb4c4
MN
2930 */
2931static int check_asym_packing(struct sched_domain *sd,
2932 struct sd_lb_stats *sds,
2933 int this_cpu, unsigned long *imbalance)
2934{
2935 int busiest_cpu;
2936
2937 if (!(sd->flags & SD_ASYM_PACKING))
2938 return 0;
2939
2940 if (!sds->busiest)
2941 return 0;
2942
2943 busiest_cpu = group_first_cpu(sds->busiest);
2944 if (this_cpu > busiest_cpu)
2945 return 0;
2946
2947 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2948 SCHED_LOAD_SCALE);
2949 return 1;
1e3c88bd
PZ
2950}
2951
2952/**
2953 * fix_small_imbalance - Calculate the minor imbalance that exists
2954 * amongst the groups of a sched_domain, during
2955 * load balancing.
2956 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2957 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2958 * @imbalance: Variable to store the imbalance.
2959 */
2960static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2961 int this_cpu, unsigned long *imbalance)
2962{
2963 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2964 unsigned int imbn = 2;
dd5feea1 2965 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
2966
2967 if (sds->this_nr_running) {
2968 sds->this_load_per_task /= sds->this_nr_running;
2969 if (sds->busiest_load_per_task >
2970 sds->this_load_per_task)
2971 imbn = 1;
2972 } else
2973 sds->this_load_per_task =
2974 cpu_avg_load_per_task(this_cpu);
2975
dd5feea1
SS
2976 scaled_busy_load_per_task = sds->busiest_load_per_task
2977 * SCHED_LOAD_SCALE;
2978 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2979
2980 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2981 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
2982 *imbalance = sds->busiest_load_per_task;
2983 return;
2984 }
2985
2986 /*
2987 * OK, we don't have enough imbalance to justify moving tasks,
2988 * however we may be able to increase total CPU power used by
2989 * moving them.
2990 */
2991
2992 pwr_now += sds->busiest->cpu_power *
2993 min(sds->busiest_load_per_task, sds->max_load);
2994 pwr_now += sds->this->cpu_power *
2995 min(sds->this_load_per_task, sds->this_load);
2996 pwr_now /= SCHED_LOAD_SCALE;
2997
2998 /* Amount of load we'd subtract */
2999 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3000 sds->busiest->cpu_power;
3001 if (sds->max_load > tmp)
3002 pwr_move += sds->busiest->cpu_power *
3003 min(sds->busiest_load_per_task, sds->max_load - tmp);
3004
3005 /* Amount of load we'd add */
3006 if (sds->max_load * sds->busiest->cpu_power <
3007 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3008 tmp = (sds->max_load * sds->busiest->cpu_power) /
3009 sds->this->cpu_power;
3010 else
3011 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3012 sds->this->cpu_power;
3013 pwr_move += sds->this->cpu_power *
3014 min(sds->this_load_per_task, sds->this_load + tmp);
3015 pwr_move /= SCHED_LOAD_SCALE;
3016
3017 /* Move if we gain throughput */
3018 if (pwr_move > pwr_now)
3019 *imbalance = sds->busiest_load_per_task;
3020}
3021
3022/**
3023 * calculate_imbalance - Calculate the amount of imbalance present within the
3024 * groups of a given sched_domain during load balance.
3025 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3026 * @this_cpu: Cpu for which currently load balance is being performed.
3027 * @imbalance: The variable to store the imbalance.
3028 */
3029static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3030 unsigned long *imbalance)
3031{
dd5feea1
SS
3032 unsigned long max_pull, load_above_capacity = ~0UL;
3033
3034 sds->busiest_load_per_task /= sds->busiest_nr_running;
3035 if (sds->group_imb) {
3036 sds->busiest_load_per_task =
3037 min(sds->busiest_load_per_task, sds->avg_load);
3038 }
3039
1e3c88bd
PZ
3040 /*
3041 * In the presence of smp nice balancing, certain scenarios can have
3042 * max load less than avg load(as we skip the groups at or below
3043 * its cpu_power, while calculating max_load..)
3044 */
3045 if (sds->max_load < sds->avg_load) {
3046 *imbalance = 0;
3047 return fix_small_imbalance(sds, this_cpu, imbalance);
3048 }
3049
dd5feea1
SS
3050 if (!sds->group_imb) {
3051 /*
3052 * Don't want to pull so many tasks that a group would go idle.
3053 */
3054 load_above_capacity = (sds->busiest_nr_running -
3055 sds->busiest_group_capacity);
3056
3057 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
3058
3059 load_above_capacity /= sds->busiest->cpu_power;
3060 }
3061
3062 /*
3063 * We're trying to get all the cpus to the average_load, so we don't
3064 * want to push ourselves above the average load, nor do we wish to
3065 * reduce the max loaded cpu below the average load. At the same time,
3066 * we also don't want to reduce the group load below the group capacity
3067 * (so that we can implement power-savings policies etc). Thus we look
3068 * for the minimum possible imbalance.
3069 * Be careful of negative numbers as they'll appear as very large values
3070 * with unsigned longs.
3071 */
3072 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
3073
3074 /* How much load to actually move to equalise the imbalance */
3075 *imbalance = min(max_pull * sds->busiest->cpu_power,
3076 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3077 / SCHED_LOAD_SCALE;
3078
3079 /*
3080 * if *imbalance is less than the average load per runnable task
25985edc 3081 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
3082 * a think about bumping its value to force at least one task to be
3083 * moved
3084 */
3085 if (*imbalance < sds->busiest_load_per_task)
3086 return fix_small_imbalance(sds, this_cpu, imbalance);
3087
3088}
fab47622 3089
1e3c88bd
PZ
3090/******* find_busiest_group() helpers end here *********************/
3091
3092/**
3093 * find_busiest_group - Returns the busiest group within the sched_domain
3094 * if there is an imbalance. If there isn't an imbalance, and
3095 * the user has opted for power-savings, it returns a group whose
3096 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3097 * such a group exists.
3098 *
3099 * Also calculates the amount of weighted load which should be moved
3100 * to restore balance.
3101 *
3102 * @sd: The sched_domain whose busiest group is to be returned.
3103 * @this_cpu: The cpu for which load balancing is currently being performed.
3104 * @imbalance: Variable which stores amount of weighted load which should
3105 * be moved to restore balance/put a group to idle.
3106 * @idle: The idle status of this_cpu.
1e3c88bd
PZ
3107 * @cpus: The set of CPUs under consideration for load-balancing.
3108 * @balance: Pointer to a variable indicating if this_cpu
3109 * is the appropriate cpu to perform load balancing at this_level.
3110 *
3111 * Returns: - the busiest group if imbalance exists.
3112 * - If no imbalance and user has opted for power-savings balance,
3113 * return the least loaded group whose CPUs can be
3114 * put to idle by rebalancing its tasks onto our group.
3115 */
3116static struct sched_group *
3117find_busiest_group(struct sched_domain *sd, int this_cpu,
3118 unsigned long *imbalance, enum cpu_idle_type idle,
46e49b38 3119 const struct cpumask *cpus, int *balance)
1e3c88bd
PZ
3120{
3121 struct sd_lb_stats sds;
3122
3123 memset(&sds, 0, sizeof(sds));
3124
3125 /*
3126 * Compute the various statistics relavent for load balancing at
3127 * this level.
3128 */
46e49b38 3129 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
1e3c88bd 3130
cc57aa8f
PZ
3131 /*
3132 * this_cpu is not the appropriate cpu to perform load balancing at
3133 * this level.
1e3c88bd 3134 */
8f190fb3 3135 if (!(*balance))
1e3c88bd
PZ
3136 goto ret;
3137
532cb4c4
MN
3138 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3139 check_asym_packing(sd, &sds, this_cpu, imbalance))
3140 return sds.busiest;
3141
cc57aa8f 3142 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
3143 if (!sds.busiest || sds.busiest_nr_running == 0)
3144 goto out_balanced;
3145
b0432d8f
KC
3146 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3147
866ab43e
PZ
3148 /*
3149 * If the busiest group is imbalanced the below checks don't
3150 * work because they assumes all things are equal, which typically
3151 * isn't true due to cpus_allowed constraints and the like.
3152 */
3153 if (sds.group_imb)
3154 goto force_balance;
3155
cc57aa8f 3156 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
fab47622
NR
3157 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3158 !sds.busiest_has_capacity)
3159 goto force_balance;
3160
cc57aa8f
PZ
3161 /*
3162 * If the local group is more busy than the selected busiest group
3163 * don't try and pull any tasks.
3164 */
1e3c88bd
PZ
3165 if (sds.this_load >= sds.max_load)
3166 goto out_balanced;
3167
cc57aa8f
PZ
3168 /*
3169 * Don't pull any tasks if this group is already above the domain
3170 * average load.
3171 */
1e3c88bd
PZ
3172 if (sds.this_load >= sds.avg_load)
3173 goto out_balanced;
3174
c186fafe 3175 if (idle == CPU_IDLE) {
aae6d3dd
SS
3176 /*
3177 * This cpu is idle. If the busiest group load doesn't
3178 * have more tasks than the number of available cpu's and
3179 * there is no imbalance between this and busiest group
3180 * wrt to idle cpu's, it is balanced.
3181 */
c186fafe 3182 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
3183 sds.busiest_nr_running <= sds.busiest_group_weight)
3184 goto out_balanced;
c186fafe
PZ
3185 } else {
3186 /*
3187 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3188 * imbalance_pct to be conservative.
3189 */
3190 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3191 goto out_balanced;
aae6d3dd 3192 }
1e3c88bd 3193
fab47622 3194force_balance:
1e3c88bd
PZ
3195 /* Looks like there is an imbalance. Compute it */
3196 calculate_imbalance(&sds, this_cpu, imbalance);
3197 return sds.busiest;
3198
3199out_balanced:
3200 /*
3201 * There is no obvious imbalance. But check if we can do some balancing
3202 * to save power.
3203 */
3204 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3205 return sds.busiest;
3206ret:
3207 *imbalance = 0;
3208 return NULL;
3209}
3210
3211/*
3212 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3213 */
3214static struct rq *
9d5efe05
SV
3215find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3216 enum cpu_idle_type idle, unsigned long imbalance,
3217 const struct cpumask *cpus)
1e3c88bd
PZ
3218{
3219 struct rq *busiest = NULL, *rq;
3220 unsigned long max_load = 0;
3221 int i;
3222
3223 for_each_cpu(i, sched_group_cpus(group)) {
3224 unsigned long power = power_of(i);
3225 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
3226 unsigned long wl;
3227
9d5efe05
SV
3228 if (!capacity)
3229 capacity = fix_small_capacity(sd, group);
3230
1e3c88bd
PZ
3231 if (!cpumask_test_cpu(i, cpus))
3232 continue;
3233
3234 rq = cpu_rq(i);
6e40f5bb 3235 wl = weighted_cpuload(i);
1e3c88bd 3236
6e40f5bb
TG
3237 /*
3238 * When comparing with imbalance, use weighted_cpuload()
3239 * which is not scaled with the cpu power.
3240 */
1e3c88bd
PZ
3241 if (capacity && rq->nr_running == 1 && wl > imbalance)
3242 continue;
3243
6e40f5bb
TG
3244 /*
3245 * For the load comparisons with the other cpu's, consider
3246 * the weighted_cpuload() scaled with the cpu power, so that
3247 * the load can be moved away from the cpu that is potentially
3248 * running at a lower capacity.
3249 */
3250 wl = (wl * SCHED_LOAD_SCALE) / power;
3251
1e3c88bd
PZ
3252 if (wl > max_load) {
3253 max_load = wl;
3254 busiest = rq;
3255 }
3256 }
3257
3258 return busiest;
3259}
3260
3261/*
3262 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3263 * so long as it is large enough.
3264 */
3265#define MAX_PINNED_INTERVAL 512
3266
3267/* Working cpumask for load_balance and load_balance_newidle. */
3268static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3269
46e49b38 3270static int need_active_balance(struct sched_domain *sd, int idle,
532cb4c4 3271 int busiest_cpu, int this_cpu)
1af3ed3d
PZ
3272{
3273 if (idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
3274
3275 /*
3276 * ASYM_PACKING needs to force migrate tasks from busy but
3277 * higher numbered CPUs in order to pack all tasks in the
3278 * lowest numbered CPUs.
3279 */
3280 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3281 return 1;
3282
1af3ed3d
PZ
3283 /*
3284 * The only task running in a non-idle cpu can be moved to this
3285 * cpu in an attempt to completely freeup the other CPU
3286 * package.
3287 *
3288 * The package power saving logic comes from
3289 * find_busiest_group(). If there are no imbalance, then
3290 * f_b_g() will return NULL. However when sched_mc={1,2} then
3291 * f_b_g() will select a group from which a running task may be
3292 * pulled to this cpu in order to make the other package idle.
3293 * If there is no opportunity to make a package idle and if
3294 * there are no imbalance, then f_b_g() will return NULL and no
3295 * action will be taken in load_balance_newidle().
3296 *
3297 * Under normal task pull operation due to imbalance, there
3298 * will be more than one task in the source run queue and
3299 * move_tasks() will succeed. ld_moved will be true and this
3300 * active balance code will not be triggered.
3301 */
1af3ed3d
PZ
3302 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3303 return 0;
3304 }
3305
3306 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3307}
3308
969c7921
TH
3309static int active_load_balance_cpu_stop(void *data);
3310
1e3c88bd
PZ
3311/*
3312 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3313 * tasks if there is an imbalance.
3314 */
3315static int load_balance(int this_cpu, struct rq *this_rq,
3316 struct sched_domain *sd, enum cpu_idle_type idle,
3317 int *balance)
3318{
46e49b38 3319 int ld_moved, all_pinned = 0, active_balance = 0;
1e3c88bd
PZ
3320 struct sched_group *group;
3321 unsigned long imbalance;
3322 struct rq *busiest;
3323 unsigned long flags;
3324 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3325
3326 cpumask_copy(cpus, cpu_active_mask);
3327
1e3c88bd
PZ
3328 schedstat_inc(sd, lb_count[idle]);
3329
3330redo:
46e49b38 3331 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
1e3c88bd
PZ
3332 cpus, balance);
3333
3334 if (*balance == 0)
3335 goto out_balanced;
3336
3337 if (!group) {
3338 schedstat_inc(sd, lb_nobusyg[idle]);
3339 goto out_balanced;
3340 }
3341
9d5efe05 3342 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
1e3c88bd
PZ
3343 if (!busiest) {
3344 schedstat_inc(sd, lb_nobusyq[idle]);
3345 goto out_balanced;
3346 }
3347
3348 BUG_ON(busiest == this_rq);
3349
3350 schedstat_add(sd, lb_imbalance[idle], imbalance);
3351
3352 ld_moved = 0;
3353 if (busiest->nr_running > 1) {
3354 /*
3355 * Attempt to move tasks. If find_busiest_group has found
3356 * an imbalance but busiest->nr_running <= 1, the group is
3357 * still unbalanced. ld_moved simply stays zero, so it is
3358 * correctly treated as an imbalance.
3359 */
b30aef17 3360 all_pinned = 1;
1e3c88bd
PZ
3361 local_irq_save(flags);
3362 double_rq_lock(this_rq, busiest);
3363 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3364 imbalance, sd, idle, &all_pinned);
3365 double_rq_unlock(this_rq, busiest);
3366 local_irq_restore(flags);
3367
3368 /*
3369 * some other cpu did the load balance for us.
3370 */
3371 if (ld_moved && this_cpu != smp_processor_id())
3372 resched_cpu(this_cpu);
3373
3374 /* All tasks on this runqueue were pinned by CPU affinity */
3375 if (unlikely(all_pinned)) {
3376 cpumask_clear_cpu(cpu_of(busiest), cpus);
3377 if (!cpumask_empty(cpus))
3378 goto redo;
3379 goto out_balanced;
3380 }
3381 }
3382
3383 if (!ld_moved) {
3384 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
3385 /*
3386 * Increment the failure counter only on periodic balance.
3387 * We do not want newidle balance, which can be very
3388 * frequent, pollute the failure counter causing
3389 * excessive cache_hot migrations and active balances.
3390 */
3391 if (idle != CPU_NEWLY_IDLE)
3392 sd->nr_balance_failed++;
1e3c88bd 3393
46e49b38 3394 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
1e3c88bd
PZ
3395 raw_spin_lock_irqsave(&busiest->lock, flags);
3396
969c7921
TH
3397 /* don't kick the active_load_balance_cpu_stop,
3398 * if the curr task on busiest cpu can't be
3399 * moved to this_cpu
1e3c88bd
PZ
3400 */
3401 if (!cpumask_test_cpu(this_cpu,
3402 &busiest->curr->cpus_allowed)) {
3403 raw_spin_unlock_irqrestore(&busiest->lock,
3404 flags);
3405 all_pinned = 1;
3406 goto out_one_pinned;
3407 }
3408
969c7921
TH
3409 /*
3410 * ->active_balance synchronizes accesses to
3411 * ->active_balance_work. Once set, it's cleared
3412 * only after active load balance is finished.
3413 */
1e3c88bd
PZ
3414 if (!busiest->active_balance) {
3415 busiest->active_balance = 1;
3416 busiest->push_cpu = this_cpu;
3417 active_balance = 1;
3418 }
3419 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 3420
1e3c88bd 3421 if (active_balance)
969c7921
TH
3422 stop_one_cpu_nowait(cpu_of(busiest),
3423 active_load_balance_cpu_stop, busiest,
3424 &busiest->active_balance_work);
1e3c88bd
PZ
3425
3426 /*
3427 * We've kicked active balancing, reset the failure
3428 * counter.
3429 */
3430 sd->nr_balance_failed = sd->cache_nice_tries+1;
3431 }
3432 } else
3433 sd->nr_balance_failed = 0;
3434
3435 if (likely(!active_balance)) {
3436 /* We were unbalanced, so reset the balancing interval */
3437 sd->balance_interval = sd->min_interval;
3438 } else {
3439 /*
3440 * If we've begun active balancing, start to back off. This
3441 * case may not be covered by the all_pinned logic if there
3442 * is only 1 task on the busy runqueue (because we don't call
3443 * move_tasks).
3444 */
3445 if (sd->balance_interval < sd->max_interval)
3446 sd->balance_interval *= 2;
3447 }
3448
1e3c88bd
PZ
3449 goto out;
3450
3451out_balanced:
3452 schedstat_inc(sd, lb_balanced[idle]);
3453
3454 sd->nr_balance_failed = 0;
3455
3456out_one_pinned:
3457 /* tune up the balancing interval */
3458 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3459 (sd->balance_interval < sd->max_interval))
3460 sd->balance_interval *= 2;
3461
46e49b38 3462 ld_moved = 0;
1e3c88bd 3463out:
1e3c88bd
PZ
3464 return ld_moved;
3465}
3466
1e3c88bd
PZ
3467/*
3468 * idle_balance is called by schedule() if this_cpu is about to become
3469 * idle. Attempts to pull tasks from other CPUs.
3470 */
3471static void idle_balance(int this_cpu, struct rq *this_rq)
3472{
3473 struct sched_domain *sd;
3474 int pulled_task = 0;
3475 unsigned long next_balance = jiffies + HZ;
3476
3477 this_rq->idle_stamp = this_rq->clock;
3478
3479 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3480 return;
3481
f492e12e
PZ
3482 /*
3483 * Drop the rq->lock, but keep IRQ/preempt disabled.
3484 */
3485 raw_spin_unlock(&this_rq->lock);
3486
c66eaf61 3487 update_shares(this_cpu);
dce840a0 3488 rcu_read_lock();
1e3c88bd
PZ
3489 for_each_domain(this_cpu, sd) {
3490 unsigned long interval;
f492e12e 3491 int balance = 1;
1e3c88bd
PZ
3492
3493 if (!(sd->flags & SD_LOAD_BALANCE))
3494 continue;
3495
f492e12e 3496 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 3497 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
3498 pulled_task = load_balance(this_cpu, this_rq,
3499 sd, CPU_NEWLY_IDLE, &balance);
3500 }
1e3c88bd
PZ
3501
3502 interval = msecs_to_jiffies(sd->balance_interval);
3503 if (time_after(next_balance, sd->last_balance + interval))
3504 next_balance = sd->last_balance + interval;
d5ad140b
NR
3505 if (pulled_task) {
3506 this_rq->idle_stamp = 0;
1e3c88bd 3507 break;
d5ad140b 3508 }
1e3c88bd 3509 }
dce840a0 3510 rcu_read_unlock();
f492e12e
PZ
3511
3512 raw_spin_lock(&this_rq->lock);
3513
1e3c88bd
PZ
3514 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3515 /*
3516 * We are going idle. next_balance may be set based on
3517 * a busy processor. So reset next_balance.
3518 */
3519 this_rq->next_balance = next_balance;
3520 }
3521}
3522
3523/*
969c7921
TH
3524 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3525 * running tasks off the busiest CPU onto idle CPUs. It requires at
3526 * least 1 task to be running on each physical CPU where possible, and
3527 * avoids physical / logical imbalances.
1e3c88bd 3528 */
969c7921 3529static int active_load_balance_cpu_stop(void *data)
1e3c88bd 3530{
969c7921
TH
3531 struct rq *busiest_rq = data;
3532 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 3533 int target_cpu = busiest_rq->push_cpu;
969c7921 3534 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 3535 struct sched_domain *sd;
969c7921
TH
3536
3537 raw_spin_lock_irq(&busiest_rq->lock);
3538
3539 /* make sure the requested cpu hasn't gone down in the meantime */
3540 if (unlikely(busiest_cpu != smp_processor_id() ||
3541 !busiest_rq->active_balance))
3542 goto out_unlock;
1e3c88bd
PZ
3543
3544 /* Is there any task to move? */
3545 if (busiest_rq->nr_running <= 1)
969c7921 3546 goto out_unlock;
1e3c88bd
PZ
3547
3548 /*
3549 * This condition is "impossible", if it occurs
3550 * we need to fix it. Originally reported by
3551 * Bjorn Helgaas on a 128-cpu setup.
3552 */
3553 BUG_ON(busiest_rq == target_rq);
3554
3555 /* move a task from busiest_rq to target_rq */
3556 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
3557
3558 /* Search for an sd spanning us and the target CPU. */
dce840a0 3559 rcu_read_lock();
1e3c88bd
PZ
3560 for_each_domain(target_cpu, sd) {
3561 if ((sd->flags & SD_LOAD_BALANCE) &&
3562 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3563 break;
3564 }
3565
3566 if (likely(sd)) {
3567 schedstat_inc(sd, alb_count);
3568
3569 if (move_one_task(target_rq, target_cpu, busiest_rq,
3570 sd, CPU_IDLE))
3571 schedstat_inc(sd, alb_pushed);
3572 else
3573 schedstat_inc(sd, alb_failed);
3574 }
dce840a0 3575 rcu_read_unlock();
1e3c88bd 3576 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
3577out_unlock:
3578 busiest_rq->active_balance = 0;
3579 raw_spin_unlock_irq(&busiest_rq->lock);
3580 return 0;
1e3c88bd
PZ
3581}
3582
3583#ifdef CONFIG_NO_HZ
83cd4fe2
VP
3584
3585static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3586
3587static void trigger_sched_softirq(void *data)
3588{
3589 raise_softirq_irqoff(SCHED_SOFTIRQ);
3590}
3591
3592static inline void init_sched_softirq_csd(struct call_single_data *csd)
3593{
3594 csd->func = trigger_sched_softirq;
3595 csd->info = NULL;
3596 csd->flags = 0;
3597 csd->priv = 0;
3598}
3599
3600/*
3601 * idle load balancing details
3602 * - One of the idle CPUs nominates itself as idle load_balancer, while
3603 * entering idle.
3604 * - This idle load balancer CPU will also go into tickless mode when
3605 * it is idle, just like all other idle CPUs
3606 * - When one of the busy CPUs notice that there may be an idle rebalancing
3607 * needed, they will kick the idle load balancer, which then does idle
3608 * load balancing for all the idle CPUs.
3609 */
1e3c88bd
PZ
3610static struct {
3611 atomic_t load_balancer;
83cd4fe2
VP
3612 atomic_t first_pick_cpu;
3613 atomic_t second_pick_cpu;
3614 cpumask_var_t idle_cpus_mask;
3615 cpumask_var_t grp_idle_mask;
3616 unsigned long next_balance; /* in jiffy units */
3617} nohz ____cacheline_aligned;
1e3c88bd
PZ
3618
3619int get_nohz_load_balancer(void)
3620{
3621 return atomic_read(&nohz.load_balancer);
3622}
3623
3624#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3625/**
3626 * lowest_flag_domain - Return lowest sched_domain containing flag.
3627 * @cpu: The cpu whose lowest level of sched domain is to
3628 * be returned.
3629 * @flag: The flag to check for the lowest sched_domain
3630 * for the given cpu.
3631 *
3632 * Returns the lowest sched_domain of a cpu which contains the given flag.
3633 */
3634static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3635{
3636 struct sched_domain *sd;
3637
3638 for_each_domain(cpu, sd)
3639 if (sd && (sd->flags & flag))
3640 break;
3641
3642 return sd;
3643}
3644
3645/**
3646 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3647 * @cpu: The cpu whose domains we're iterating over.
3648 * @sd: variable holding the value of the power_savings_sd
3649 * for cpu.
3650 * @flag: The flag to filter the sched_domains to be iterated.
3651 *
3652 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3653 * set, starting from the lowest sched_domain to the highest.
3654 */
3655#define for_each_flag_domain(cpu, sd, flag) \
3656 for (sd = lowest_flag_domain(cpu, flag); \
3657 (sd && (sd->flags & flag)); sd = sd->parent)
3658
3659/**
3660 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3661 * @ilb_group: group to be checked for semi-idleness
3662 *
3663 * Returns: 1 if the group is semi-idle. 0 otherwise.
3664 *
3665 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3666 * and atleast one non-idle CPU. This helper function checks if the given
3667 * sched_group is semi-idle or not.
3668 */
3669static inline int is_semi_idle_group(struct sched_group *ilb_group)
3670{
83cd4fe2 3671 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
1e3c88bd
PZ
3672 sched_group_cpus(ilb_group));
3673
3674 /*
3675 * A sched_group is semi-idle when it has atleast one busy cpu
3676 * and atleast one idle cpu.
3677 */
83cd4fe2 3678 if (cpumask_empty(nohz.grp_idle_mask))
1e3c88bd
PZ
3679 return 0;
3680
83cd4fe2 3681 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
1e3c88bd
PZ
3682 return 0;
3683
3684 return 1;
3685}
3686/**
3687 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3688 * @cpu: The cpu which is nominating a new idle_load_balancer.
3689 *
3690 * Returns: Returns the id of the idle load balancer if it exists,
3691 * Else, returns >= nr_cpu_ids.
3692 *
3693 * This algorithm picks the idle load balancer such that it belongs to a
3694 * semi-idle powersavings sched_domain. The idea is to try and avoid
3695 * completely idle packages/cores just for the purpose of idle load balancing
3696 * when there are other idle cpu's which are better suited for that job.
3697 */
3698static int find_new_ilb(int cpu)
3699{
3700 struct sched_domain *sd;
3701 struct sched_group *ilb_group;
dce840a0 3702 int ilb = nr_cpu_ids;
1e3c88bd
PZ
3703
3704 /*
3705 * Have idle load balancer selection from semi-idle packages only
3706 * when power-aware load balancing is enabled
3707 */
3708 if (!(sched_smt_power_savings || sched_mc_power_savings))
3709 goto out_done;
3710
3711 /*
3712 * Optimize for the case when we have no idle CPUs or only one
3713 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3714 */
83cd4fe2 3715 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
1e3c88bd
PZ
3716 goto out_done;
3717
dce840a0 3718 rcu_read_lock();
1e3c88bd
PZ
3719 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3720 ilb_group = sd->groups;
3721
3722 do {
dce840a0
PZ
3723 if (is_semi_idle_group(ilb_group)) {
3724 ilb = cpumask_first(nohz.grp_idle_mask);
3725 goto unlock;
3726 }
1e3c88bd
PZ
3727
3728 ilb_group = ilb_group->next;
3729
3730 } while (ilb_group != sd->groups);
3731 }
dce840a0
PZ
3732unlock:
3733 rcu_read_unlock();
1e3c88bd
PZ
3734
3735out_done:
dce840a0 3736 return ilb;
1e3c88bd
PZ
3737}
3738#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3739static inline int find_new_ilb(int call_cpu)
3740{
83cd4fe2 3741 return nr_cpu_ids;
1e3c88bd
PZ
3742}
3743#endif
3744
83cd4fe2
VP
3745/*
3746 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3747 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3748 * CPU (if there is one).
3749 */
3750static void nohz_balancer_kick(int cpu)
3751{
3752 int ilb_cpu;
3753
3754 nohz.next_balance++;
3755
3756 ilb_cpu = get_nohz_load_balancer();
3757
3758 if (ilb_cpu >= nr_cpu_ids) {
3759 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3760 if (ilb_cpu >= nr_cpu_ids)
3761 return;
3762 }
3763
3764 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3765 struct call_single_data *cp;
3766
3767 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3768 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3769 __smp_call_function_single(ilb_cpu, cp, 0);
3770 }
3771 return;
3772}
3773
1e3c88bd
PZ
3774/*
3775 * This routine will try to nominate the ilb (idle load balancing)
3776 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
83cd4fe2 3777 * load balancing on behalf of all those cpus.
1e3c88bd 3778 *
83cd4fe2
VP
3779 * When the ilb owner becomes busy, we will not have new ilb owner until some
3780 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3781 * idle load balancing by kicking one of the idle CPUs.
1e3c88bd 3782 *
83cd4fe2
VP
3783 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3784 * ilb owner CPU in future (when there is a need for idle load balancing on
3785 * behalf of all idle CPUs).
1e3c88bd 3786 */
83cd4fe2 3787void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
3788{
3789 int cpu = smp_processor_id();
3790
3791 if (stop_tick) {
1e3c88bd
PZ
3792 if (!cpu_active(cpu)) {
3793 if (atomic_read(&nohz.load_balancer) != cpu)
83cd4fe2 3794 return;
1e3c88bd
PZ
3795
3796 /*
3797 * If we are going offline and still the leader,
3798 * give up!
3799 */
83cd4fe2
VP
3800 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3801 nr_cpu_ids) != cpu)
1e3c88bd
PZ
3802 BUG();
3803
83cd4fe2 3804 return;
1e3c88bd
PZ
3805 }
3806
83cd4fe2 3807 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd 3808
83cd4fe2
VP
3809 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3810 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3811 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3812 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
1e3c88bd 3813
83cd4fe2 3814 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
1e3c88bd
PZ
3815 int new_ilb;
3816
83cd4fe2
VP
3817 /* make me the ilb owner */
3818 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3819 cpu) != nr_cpu_ids)
3820 return;
3821
1e3c88bd
PZ
3822 /*
3823 * Check to see if there is a more power-efficient
3824 * ilb.
3825 */
3826 new_ilb = find_new_ilb(cpu);
3827 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
83cd4fe2 3828 atomic_set(&nohz.load_balancer, nr_cpu_ids);
1e3c88bd 3829 resched_cpu(new_ilb);
83cd4fe2 3830 return;
1e3c88bd 3831 }
83cd4fe2 3832 return;
1e3c88bd
PZ
3833 }
3834 } else {
83cd4fe2
VP
3835 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3836 return;
1e3c88bd 3837
83cd4fe2 3838 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd
PZ
3839
3840 if (atomic_read(&nohz.load_balancer) == cpu)
83cd4fe2
VP
3841 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3842 nr_cpu_ids) != cpu)
1e3c88bd
PZ
3843 BUG();
3844 }
83cd4fe2 3845 return;
1e3c88bd
PZ
3846}
3847#endif
3848
3849static DEFINE_SPINLOCK(balancing);
3850
49c022e6
PZ
3851static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3852
3853/*
3854 * Scale the max load_balance interval with the number of CPUs in the system.
3855 * This trades load-balance latency on larger machines for less cross talk.
3856 */
3857static void update_max_interval(void)
3858{
3859 max_load_balance_interval = HZ*num_online_cpus()/10;
3860}
3861
1e3c88bd
PZ
3862/*
3863 * It checks each scheduling domain to see if it is due to be balanced,
3864 * and initiates a balancing operation if so.
3865 *
3866 * Balancing parameters are set up in arch_init_sched_domains.
3867 */
3868static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3869{
3870 int balance = 1;
3871 struct rq *rq = cpu_rq(cpu);
3872 unsigned long interval;
3873 struct sched_domain *sd;
3874 /* Earliest time when we have to do rebalance again */
3875 unsigned long next_balance = jiffies + 60*HZ;
3876 int update_next_balance = 0;
3877 int need_serialize;
3878
2069dd75
PZ
3879 update_shares(cpu);
3880
dce840a0 3881 rcu_read_lock();
1e3c88bd
PZ
3882 for_each_domain(cpu, sd) {
3883 if (!(sd->flags & SD_LOAD_BALANCE))
3884 continue;
3885
3886 interval = sd->balance_interval;
3887 if (idle != CPU_IDLE)
3888 interval *= sd->busy_factor;
3889
3890 /* scale ms to jiffies */
3891 interval = msecs_to_jiffies(interval);
49c022e6 3892 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
3893
3894 need_serialize = sd->flags & SD_SERIALIZE;
3895
3896 if (need_serialize) {
3897 if (!spin_trylock(&balancing))
3898 goto out;
3899 }
3900
3901 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3902 if (load_balance(cpu, rq, sd, idle, &balance)) {
3903 /*
3904 * We've pulled tasks over so either we're no
c186fafe 3905 * longer idle.
1e3c88bd
PZ
3906 */
3907 idle = CPU_NOT_IDLE;
3908 }
3909 sd->last_balance = jiffies;
3910 }
3911 if (need_serialize)
3912 spin_unlock(&balancing);
3913out:
3914 if (time_after(next_balance, sd->last_balance + interval)) {
3915 next_balance = sd->last_balance + interval;
3916 update_next_balance = 1;
3917 }
3918
3919 /*
3920 * Stop the load balance at this level. There is another
3921 * CPU in our sched group which is doing load balancing more
3922 * actively.
3923 */
3924 if (!balance)
3925 break;
3926 }
dce840a0 3927 rcu_read_unlock();
1e3c88bd
PZ
3928
3929 /*
3930 * next_balance will be updated only when there is a need.
3931 * When the cpu is attached to null domain for ex, it will not be
3932 * updated.
3933 */
3934 if (likely(update_next_balance))
3935 rq->next_balance = next_balance;
3936}
3937
83cd4fe2 3938#ifdef CONFIG_NO_HZ
1e3c88bd 3939/*
83cd4fe2 3940 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
3941 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3942 */
83cd4fe2
VP
3943static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3944{
3945 struct rq *this_rq = cpu_rq(this_cpu);
3946 struct rq *rq;
3947 int balance_cpu;
3948
3949 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3950 return;
3951
3952 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3953 if (balance_cpu == this_cpu)
3954 continue;
3955
3956 /*
3957 * If this cpu gets work to do, stop the load balancing
3958 * work being done for other cpus. Next load
3959 * balancing owner will pick it up.
3960 */
3961 if (need_resched()) {
3962 this_rq->nohz_balance_kick = 0;
3963 break;
3964 }
3965
3966 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 3967 update_rq_clock(this_rq);
83cd4fe2
VP
3968 update_cpu_load(this_rq);
3969 raw_spin_unlock_irq(&this_rq->lock);
3970
3971 rebalance_domains(balance_cpu, CPU_IDLE);
3972
3973 rq = cpu_rq(balance_cpu);
3974 if (time_after(this_rq->next_balance, rq->next_balance))
3975 this_rq->next_balance = rq->next_balance;
3976 }
3977 nohz.next_balance = this_rq->next_balance;
3978 this_rq->nohz_balance_kick = 0;
3979}
3980
3981/*
3982 * Current heuristic for kicking the idle load balancer
3983 * - first_pick_cpu is the one of the busy CPUs. It will kick
3984 * idle load balancer when it has more than one process active. This
3985 * eliminates the need for idle load balancing altogether when we have
3986 * only one running process in the system (common case).
3987 * - If there are more than one busy CPU, idle load balancer may have
3988 * to run for active_load_balance to happen (i.e., two busy CPUs are
3989 * SMT or core siblings and can run better if they move to different
3990 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3991 * which will kick idle load balancer as soon as it has any load.
3992 */
3993static inline int nohz_kick_needed(struct rq *rq, int cpu)
3994{
3995 unsigned long now = jiffies;
3996 int ret;
3997 int first_pick_cpu, second_pick_cpu;
3998
3999 if (time_before(now, nohz.next_balance))
4000 return 0;
4001
f6c3f168 4002 if (rq->idle_at_tick)
83cd4fe2
VP
4003 return 0;
4004
4005 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
4006 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
4007
4008 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
4009 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
4010 return 0;
4011
4012 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
4013 if (ret == nr_cpu_ids || ret == cpu) {
4014 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
4015 if (rq->nr_running > 1)
4016 return 1;
4017 } else {
4018 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
4019 if (ret == nr_cpu_ids || ret == cpu) {
4020 if (rq->nr_running)
4021 return 1;
4022 }
4023 }
4024 return 0;
4025}
4026#else
4027static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
4028#endif
4029
4030/*
4031 * run_rebalance_domains is triggered when needed from the scheduler tick.
4032 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4033 */
1e3c88bd
PZ
4034static void run_rebalance_domains(struct softirq_action *h)
4035{
4036 int this_cpu = smp_processor_id();
4037 struct rq *this_rq = cpu_rq(this_cpu);
4038 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4039 CPU_IDLE : CPU_NOT_IDLE;
4040
4041 rebalance_domains(this_cpu, idle);
4042
1e3c88bd 4043 /*
83cd4fe2 4044 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
4045 * balancing on behalf of the other idle cpus whose ticks are
4046 * stopped.
4047 */
83cd4fe2 4048 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
4049}
4050
4051static inline int on_null_domain(int cpu)
4052{
90a6501f 4053 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
4054}
4055
4056/*
4057 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd
PZ
4058 */
4059static inline void trigger_load_balance(struct rq *rq, int cpu)
4060{
1e3c88bd
PZ
4061 /* Don't need to rebalance while attached to NULL domain */
4062 if (time_after_eq(jiffies, rq->next_balance) &&
4063 likely(!on_null_domain(cpu)))
4064 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2
VP
4065#ifdef CONFIG_NO_HZ
4066 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4067 nohz_balancer_kick(cpu);
4068#endif
1e3c88bd
PZ
4069}
4070
0bcdcf28
CE
4071static void rq_online_fair(struct rq *rq)
4072{
4073 update_sysctl();
4074}
4075
4076static void rq_offline_fair(struct rq *rq)
4077{
4078 update_sysctl();
4079}
4080
1e3c88bd
PZ
4081#else /* CONFIG_SMP */
4082
4083/*
4084 * on UP we do not need to balance between CPUs:
4085 */
4086static inline void idle_balance(int cpu, struct rq *rq)
4087{
4088}
4089
55e12e5e 4090#endif /* CONFIG_SMP */
e1d1484f 4091
bf0f6f24
IM
4092/*
4093 * scheduler tick hitting a task of our scheduling class:
4094 */
8f4d37ec 4095static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
4096{
4097 struct cfs_rq *cfs_rq;
4098 struct sched_entity *se = &curr->se;
4099
4100 for_each_sched_entity(se) {
4101 cfs_rq = cfs_rq_of(se);
8f4d37ec 4102 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
4103 }
4104}
4105
4106/*
cd29fe6f
PZ
4107 * called on fork with the child task as argument from the parent's context
4108 * - child not yet on the tasklist
4109 * - preemption disabled
bf0f6f24 4110 */
cd29fe6f 4111static void task_fork_fair(struct task_struct *p)
bf0f6f24 4112{
cd29fe6f 4113 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 4114 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 4115 int this_cpu = smp_processor_id();
cd29fe6f
PZ
4116 struct rq *rq = this_rq();
4117 unsigned long flags;
4118
05fa785c 4119 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 4120
861d034e
PZ
4121 update_rq_clock(rq);
4122
b0a0f667
PM
4123 if (unlikely(task_cpu(p) != this_cpu)) {
4124 rcu_read_lock();
cd29fe6f 4125 __set_task_cpu(p, this_cpu);
b0a0f667
PM
4126 rcu_read_unlock();
4127 }
bf0f6f24 4128
7109c442 4129 update_curr(cfs_rq);
cd29fe6f 4130
b5d9d734
MG
4131 if (curr)
4132 se->vruntime = curr->vruntime;
aeb73b04 4133 place_entity(cfs_rq, se, 1);
4d78e7b6 4134
cd29fe6f 4135 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 4136 /*
edcb60a3
IM
4137 * Upon rescheduling, sched_class::put_prev_task() will place
4138 * 'current' within the tree based on its new key value.
4139 */
4d78e7b6 4140 swap(curr->vruntime, se->vruntime);
aec0a514 4141 resched_task(rq->curr);
4d78e7b6 4142 }
bf0f6f24 4143
88ec22d3
PZ
4144 se->vruntime -= cfs_rq->min_vruntime;
4145
05fa785c 4146 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
4147}
4148
cb469845
SR
4149/*
4150 * Priority of the task has changed. Check to see if we preempt
4151 * the current task.
4152 */
da7a735e
PZ
4153static void
4154prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 4155{
da7a735e
PZ
4156 if (!p->se.on_rq)
4157 return;
4158
cb469845
SR
4159 /*
4160 * Reschedule if we are currently running on this runqueue and
4161 * our priority decreased, or if we are not currently running on
4162 * this runqueue and our priority is higher than the current's
4163 */
da7a735e 4164 if (rq->curr == p) {
cb469845
SR
4165 if (p->prio > oldprio)
4166 resched_task(rq->curr);
4167 } else
15afe09b 4168 check_preempt_curr(rq, p, 0);
cb469845
SR
4169}
4170
da7a735e
PZ
4171static void switched_from_fair(struct rq *rq, struct task_struct *p)
4172{
4173 struct sched_entity *se = &p->se;
4174 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4175
4176 /*
4177 * Ensure the task's vruntime is normalized, so that when its
4178 * switched back to the fair class the enqueue_entity(.flags=0) will
4179 * do the right thing.
4180 *
4181 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4182 * have normalized the vruntime, if it was !on_rq, then only when
4183 * the task is sleeping will it still have non-normalized vruntime.
4184 */
4185 if (!se->on_rq && p->state != TASK_RUNNING) {
4186 /*
4187 * Fix up our vruntime so that the current sleep doesn't
4188 * cause 'unlimited' sleep bonus.
4189 */
4190 place_entity(cfs_rq, se, 0);
4191 se->vruntime -= cfs_rq->min_vruntime;
4192 }
4193}
4194
cb469845
SR
4195/*
4196 * We switched to the sched_fair class.
4197 */
da7a735e 4198static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 4199{
da7a735e
PZ
4200 if (!p->se.on_rq)
4201 return;
4202
cb469845
SR
4203 /*
4204 * We were most likely switched from sched_rt, so
4205 * kick off the schedule if running, otherwise just see
4206 * if we can still preempt the current task.
4207 */
da7a735e 4208 if (rq->curr == p)
cb469845
SR
4209 resched_task(rq->curr);
4210 else
15afe09b 4211 check_preempt_curr(rq, p, 0);
cb469845
SR
4212}
4213
83b699ed
SV
4214/* Account for a task changing its policy or group.
4215 *
4216 * This routine is mostly called to set cfs_rq->curr field when a task
4217 * migrates between groups/classes.
4218 */
4219static void set_curr_task_fair(struct rq *rq)
4220{
4221 struct sched_entity *se = &rq->curr->se;
4222
4223 for_each_sched_entity(se)
4224 set_next_entity(cfs_rq_of(se), se);
4225}
4226
810b3817 4227#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4228static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 4229{
b2b5ce02
PZ
4230 /*
4231 * If the task was not on the rq at the time of this cgroup movement
4232 * it must have been asleep, sleeping tasks keep their ->vruntime
4233 * absolute on their old rq until wakeup (needed for the fair sleeper
4234 * bonus in place_entity()).
4235 *
4236 * If it was on the rq, we've just 'preempted' it, which does convert
4237 * ->vruntime to a relative base.
4238 *
4239 * Make sure both cases convert their relative position when migrating
4240 * to another cgroup's rq. This does somewhat interfere with the
4241 * fair sleeper stuff for the first placement, but who cares.
4242 */
4243 if (!on_rq)
4244 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4245 set_task_rq(p, task_cpu(p));
88ec22d3 4246 if (!on_rq)
b2b5ce02 4247 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817
PZ
4248}
4249#endif
4250
6d686f45 4251static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
4252{
4253 struct sched_entity *se = &task->se;
0d721cea
PW
4254 unsigned int rr_interval = 0;
4255
4256 /*
4257 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4258 * idle runqueue:
4259 */
0d721cea
PW
4260 if (rq->cfs.load.weight)
4261 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
4262
4263 return rr_interval;
4264}
4265
bf0f6f24
IM
4266/*
4267 * All the scheduling class methods:
4268 */
5522d5d5
IM
4269static const struct sched_class fair_sched_class = {
4270 .next = &idle_sched_class,
bf0f6f24
IM
4271 .enqueue_task = enqueue_task_fair,
4272 .dequeue_task = dequeue_task_fair,
4273 .yield_task = yield_task_fair,
d95f4122 4274 .yield_to_task = yield_to_task_fair,
bf0f6f24 4275
2e09bf55 4276 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
4277
4278 .pick_next_task = pick_next_task_fair,
4279 .put_prev_task = put_prev_task_fair,
4280
681f3e68 4281#ifdef CONFIG_SMP
4ce72a2c
LZ
4282 .select_task_rq = select_task_rq_fair,
4283
0bcdcf28
CE
4284 .rq_online = rq_online_fair,
4285 .rq_offline = rq_offline_fair,
88ec22d3
PZ
4286
4287 .task_waking = task_waking_fair,
681f3e68 4288#endif
bf0f6f24 4289
83b699ed 4290 .set_curr_task = set_curr_task_fair,
bf0f6f24 4291 .task_tick = task_tick_fair,
cd29fe6f 4292 .task_fork = task_fork_fair,
cb469845
SR
4293
4294 .prio_changed = prio_changed_fair,
da7a735e 4295 .switched_from = switched_from_fair,
cb469845 4296 .switched_to = switched_to_fair,
810b3817 4297
0d721cea
PW
4298 .get_rr_interval = get_rr_interval_fair,
4299
810b3817 4300#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4301 .task_move_group = task_move_group_fair,
810b3817 4302#endif
bf0f6f24
IM
4303};
4304
4305#ifdef CONFIG_SCHED_DEBUG
5cef9eca 4306static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 4307{
bf0f6f24
IM
4308 struct cfs_rq *cfs_rq;
4309
5973e5b9 4310 rcu_read_lock();
c3b64f1e 4311 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 4312 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 4313 rcu_read_unlock();
bf0f6f24
IM
4314}
4315#endif