sched: remove the 'u64 now' parameter from enqueue_entity()
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 */
19
20/*
21 * Preemption granularity:
22 * (default: 2 msec, units: nanoseconds)
23 *
24 * NOTE: this granularity value is not the same as the concept of
25 * 'timeslice length' - timeslices in CFS will typically be somewhat
26 * larger than this value. (to see the precise effective timeslice
27 * length of your workload, run vmstat and monitor the context-switches
28 * field)
29 *
30 * On SMP systems the value of this is multiplied by the log2 of the
31 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
32 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
33 */
34unsigned int sysctl_sched_granularity __read_mostly = 2000000000ULL/HZ;
35
36/*
37 * SCHED_BATCH wake-up granularity.
38 * (default: 10 msec, units: nanoseconds)
39 *
40 * This option delays the preemption effects of decoupled workloads
41 * and reduces their over-scheduling. Synchronous workloads will still
42 * have immediate wakeup/sleep latencies.
43 */
44unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly =
45 10000000000ULL/HZ;
46
47/*
48 * SCHED_OTHER wake-up granularity.
49 * (default: 1 msec, units: nanoseconds)
50 *
51 * This option delays the preemption effects of decoupled workloads
52 * and reduces their over-scheduling. Synchronous workloads will still
53 * have immediate wakeup/sleep latencies.
54 */
55unsigned int sysctl_sched_wakeup_granularity __read_mostly = 1000000000ULL/HZ;
56
57unsigned int sysctl_sched_stat_granularity __read_mostly;
58
59/*
60 * Initialized in sched_init_granularity():
61 */
62unsigned int sysctl_sched_runtime_limit __read_mostly;
63
64/*
65 * Debugging: various feature bits
66 */
67enum {
68 SCHED_FEAT_FAIR_SLEEPERS = 1,
69 SCHED_FEAT_SLEEPER_AVG = 2,
70 SCHED_FEAT_SLEEPER_LOAD_AVG = 4,
71 SCHED_FEAT_PRECISE_CPU_LOAD = 8,
72 SCHED_FEAT_START_DEBIT = 16,
73 SCHED_FEAT_SKIP_INITIAL = 32,
74};
75
76unsigned int sysctl_sched_features __read_mostly =
77 SCHED_FEAT_FAIR_SLEEPERS *1 |
78 SCHED_FEAT_SLEEPER_AVG *1 |
79 SCHED_FEAT_SLEEPER_LOAD_AVG *1 |
80 SCHED_FEAT_PRECISE_CPU_LOAD *1 |
81 SCHED_FEAT_START_DEBIT *1 |
82 SCHED_FEAT_SKIP_INITIAL *0;
83
84extern struct sched_class fair_sched_class;
85
86/**************************************************************
87 * CFS operations on generic schedulable entities:
88 */
89
90#ifdef CONFIG_FAIR_GROUP_SCHED
91
92/* cpu runqueue to which this cfs_rq is attached */
93static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
94{
95 return cfs_rq->rq;
96}
97
98/* currently running entity (if any) on this cfs_rq */
99static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
100{
101 return cfs_rq->curr;
102}
103
104/* An entity is a task if it doesn't "own" a runqueue */
105#define entity_is_task(se) (!se->my_q)
106
107static inline void
108set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se)
109{
110 cfs_rq->curr = se;
111}
112
113#else /* CONFIG_FAIR_GROUP_SCHED */
114
115static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
116{
117 return container_of(cfs_rq, struct rq, cfs);
118}
119
120static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
121{
122 struct rq *rq = rq_of(cfs_rq);
123
124 if (unlikely(rq->curr->sched_class != &fair_sched_class))
125 return NULL;
126
127 return &rq->curr->se;
128}
129
130#define entity_is_task(se) 1
131
132static inline void
133set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
134
135#endif /* CONFIG_FAIR_GROUP_SCHED */
136
137static inline struct task_struct *task_of(struct sched_entity *se)
138{
139 return container_of(se, struct task_struct, se);
140}
141
142
143/**************************************************************
144 * Scheduling class tree data structure manipulation methods:
145 */
146
147/*
148 * Enqueue an entity into the rb-tree:
149 */
150static inline void
151__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
152{
153 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
154 struct rb_node *parent = NULL;
155 struct sched_entity *entry;
156 s64 key = se->fair_key;
157 int leftmost = 1;
158
159 /*
160 * Find the right place in the rbtree:
161 */
162 while (*link) {
163 parent = *link;
164 entry = rb_entry(parent, struct sched_entity, run_node);
165 /*
166 * We dont care about collisions. Nodes with
167 * the same key stay together.
168 */
169 if (key - entry->fair_key < 0) {
170 link = &parent->rb_left;
171 } else {
172 link = &parent->rb_right;
173 leftmost = 0;
174 }
175 }
176
177 /*
178 * Maintain a cache of leftmost tree entries (it is frequently
179 * used):
180 */
181 if (leftmost)
182 cfs_rq->rb_leftmost = &se->run_node;
183
184 rb_link_node(&se->run_node, parent, link);
185 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
186 update_load_add(&cfs_rq->load, se->load.weight);
187 cfs_rq->nr_running++;
188 se->on_rq = 1;
189}
190
191static inline void
192__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
193{
194 if (cfs_rq->rb_leftmost == &se->run_node)
195 cfs_rq->rb_leftmost = rb_next(&se->run_node);
196 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
197 update_load_sub(&cfs_rq->load, se->load.weight);
198 cfs_rq->nr_running--;
199 se->on_rq = 0;
200}
201
202static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
203{
204 return cfs_rq->rb_leftmost;
205}
206
207static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
208{
209 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
210}
211
212/**************************************************************
213 * Scheduling class statistics methods:
214 */
215
216/*
217 * We rescale the rescheduling granularity of tasks according to their
218 * nice level, but only linearly, not exponentially:
219 */
220static long
221niced_granularity(struct sched_entity *curr, unsigned long granularity)
222{
223 u64 tmp;
224
225 /*
226 * Negative nice levels get the same granularity as nice-0:
227 */
228 if (likely(curr->load.weight >= NICE_0_LOAD))
229 return granularity;
230 /*
231 * Positive nice level tasks get linearly finer
232 * granularity:
233 */
234 tmp = curr->load.weight * (u64)granularity;
235
236 /*
237 * It will always fit into 'long':
238 */
239 return (long) (tmp >> NICE_0_SHIFT);
240}
241
242static inline void
243limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
244{
245 long limit = sysctl_sched_runtime_limit;
246
247 /*
248 * Niced tasks have the same history dynamic range as
249 * non-niced tasks:
250 */
251 if (unlikely(se->wait_runtime > limit)) {
252 se->wait_runtime = limit;
253 schedstat_inc(se, wait_runtime_overruns);
254 schedstat_inc(cfs_rq, wait_runtime_overruns);
255 }
256 if (unlikely(se->wait_runtime < -limit)) {
257 se->wait_runtime = -limit;
258 schedstat_inc(se, wait_runtime_underruns);
259 schedstat_inc(cfs_rq, wait_runtime_underruns);
260 }
261}
262
263static inline void
264__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
265{
266 se->wait_runtime += delta;
267 schedstat_add(se, sum_wait_runtime, delta);
268 limit_wait_runtime(cfs_rq, se);
269}
270
271static void
272add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
273{
274 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
275 __add_wait_runtime(cfs_rq, se, delta);
276 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
277}
278
279/*
280 * Update the current task's runtime statistics. Skip current tasks that
281 * are not in our scheduling class.
282 */
283static inline void
b7cc0896 284__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 285{
c5dcfe72 286 unsigned long delta, delta_exec, delta_fair, delta_mine;
bf0f6f24
IM
287 struct load_weight *lw = &cfs_rq->load;
288 unsigned long load = lw->weight;
289
bf0f6f24 290 delta_exec = curr->delta_exec;
8179ca23 291 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
292
293 curr->sum_exec_runtime += delta_exec;
294 cfs_rq->exec_clock += delta_exec;
295
fd8bb43e
IM
296 if (unlikely(!load))
297 return;
298
bf0f6f24
IM
299 delta_fair = calc_delta_fair(delta_exec, lw);
300 delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
301
0915c4e8 302 if (cfs_rq->sleeper_bonus > sysctl_sched_granularity) {
bf0f6f24
IM
303 delta = calc_delta_mine(cfs_rq->sleeper_bonus,
304 curr->load.weight, lw);
305 if (unlikely(delta > cfs_rq->sleeper_bonus))
306 delta = cfs_rq->sleeper_bonus;
307
308 cfs_rq->sleeper_bonus -= delta;
309 delta_mine -= delta;
310 }
311
312 cfs_rq->fair_clock += delta_fair;
313 /*
314 * We executed delta_exec amount of time on the CPU,
315 * but we were only entitled to delta_mine amount of
316 * time during that period (if nr_running == 1 then
317 * the two values are equal)
318 * [Note: delta_mine - delta_exec is negative]:
319 */
320 add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
321}
322
b7cc0896 323static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24
IM
324{
325 struct sched_entity *curr = cfs_rq_curr(cfs_rq);
326 unsigned long delta_exec;
327
328 if (unlikely(!curr))
329 return;
330
331 /*
332 * Get the amount of time the current task was running
333 * since the last time we changed load (this cannot
334 * overflow on 32 bits):
335 */
d281918d 336 delta_exec = (unsigned long)(rq_of(cfs_rq)->clock - curr->exec_start);
bf0f6f24
IM
337
338 curr->delta_exec += delta_exec;
339
340 if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) {
b7cc0896 341 __update_curr(cfs_rq, curr);
bf0f6f24
IM
342 curr->delta_exec = 0;
343 }
d281918d 344 curr->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
345}
346
347static inline void
5870db5b 348update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
349{
350 se->wait_start_fair = cfs_rq->fair_clock;
d281918d 351 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
352}
353
354/*
355 * We calculate fair deltas here, so protect against the random effects
356 * of a multiplication overflow by capping it to the runtime limit:
357 */
358#if BITS_PER_LONG == 32
359static inline unsigned long
360calc_weighted(unsigned long delta, unsigned long weight, int shift)
361{
362 u64 tmp = (u64)delta * weight >> shift;
363
364 if (unlikely(tmp > sysctl_sched_runtime_limit*2))
365 return sysctl_sched_runtime_limit*2;
366 return tmp;
367}
368#else
369static inline unsigned long
370calc_weighted(unsigned long delta, unsigned long weight, int shift)
371{
372 return delta * weight >> shift;
373}
374#endif
375
376/*
377 * Task is being enqueued - update stats:
378 */
d2417e5a 379static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
380{
381 s64 key;
382
383 /*
384 * Are we enqueueing a waiting task? (for current tasks
385 * a dequeue/enqueue event is a NOP)
386 */
387 if (se != cfs_rq_curr(cfs_rq))
5870db5b 388 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
389 /*
390 * Update the key:
391 */
392 key = cfs_rq->fair_clock;
393
394 /*
395 * Optimize the common nice 0 case:
396 */
397 if (likely(se->load.weight == NICE_0_LOAD)) {
398 key -= se->wait_runtime;
399 } else {
400 u64 tmp;
401
402 if (se->wait_runtime < 0) {
403 tmp = -se->wait_runtime;
404 key += (tmp * se->load.inv_weight) >>
405 (WMULT_SHIFT - NICE_0_SHIFT);
406 } else {
407 tmp = se->wait_runtime;
408 key -= (tmp * se->load.weight) >> NICE_0_SHIFT;
409 }
410 }
411
412 se->fair_key = key;
413}
414
415/*
416 * Note: must be called with a freshly updated rq->fair_clock.
417 */
418static inline void
eac55ea3 419__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
420{
421 unsigned long delta_fair = se->delta_fair_run;
422
d281918d
IM
423 schedstat_set(se->wait_max, max(se->wait_max,
424 rq_of(cfs_rq)->clock - se->wait_start));
bf0f6f24
IM
425
426 if (unlikely(se->load.weight != NICE_0_LOAD))
427 delta_fair = calc_weighted(delta_fair, se->load.weight,
428 NICE_0_SHIFT);
429
430 add_wait_runtime(cfs_rq, se, delta_fair);
431}
432
433static void
9ef0a961 434update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
435{
436 unsigned long delta_fair;
437
438 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
439 (u64)(cfs_rq->fair_clock - se->wait_start_fair));
440
441 se->delta_fair_run += delta_fair;
442 if (unlikely(abs(se->delta_fair_run) >=
443 sysctl_sched_stat_granularity)) {
eac55ea3 444 __update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
445 se->delta_fair_run = 0;
446 }
447
448 se->wait_start_fair = 0;
6cfb0d5d 449 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
450}
451
452static inline void
19b6a2e3 453update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 454{
b7cc0896 455 update_curr(cfs_rq);
bf0f6f24
IM
456 /*
457 * Mark the end of the wait period if dequeueing a
458 * waiting task:
459 */
460 if (se != cfs_rq_curr(cfs_rq))
9ef0a961 461 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
462}
463
464/*
465 * We are picking a new current task - update its stats:
466 */
467static inline void
79303e9e 468update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
469{
470 /*
471 * We are starting a new run period:
472 */
d281918d 473 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
474}
475
476/*
477 * We are descheduling a task - update its stats:
478 */
479static inline void
c7e9b5b2 480update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
481{
482 se->exec_start = 0;
483}
484
485/**************************************************
486 * Scheduling class queueing methods:
487 */
488
dfdc119e 489static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
490{
491 unsigned long load = cfs_rq->load.weight, delta_fair;
492 long prev_runtime;
493
494 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG)
495 load = rq_of(cfs_rq)->cpu_load[2];
496
497 delta_fair = se->delta_fair_sleep;
498
499 /*
500 * Fix up delta_fair with the effect of us running
501 * during the whole sleep period:
502 */
503 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG)
504 delta_fair = div64_likely32((u64)delta_fair * load,
505 load + se->load.weight);
506
507 if (unlikely(se->load.weight != NICE_0_LOAD))
508 delta_fair = calc_weighted(delta_fair, se->load.weight,
509 NICE_0_SHIFT);
510
511 prev_runtime = se->wait_runtime;
512 __add_wait_runtime(cfs_rq, se, delta_fair);
513 delta_fair = se->wait_runtime - prev_runtime;
514
515 /*
516 * Track the amount of bonus we've given to sleepers:
517 */
518 cfs_rq->sleeper_bonus += delta_fair;
519
520 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
521}
522
2396af69 523static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
524{
525 struct task_struct *tsk = task_of(se);
526 unsigned long delta_fair;
527
528 if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
529 !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS))
530 return;
531
532 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
533 (u64)(cfs_rq->fair_clock - se->sleep_start_fair));
534
535 se->delta_fair_sleep += delta_fair;
536 if (unlikely(abs(se->delta_fair_sleep) >=
537 sysctl_sched_stat_granularity)) {
dfdc119e 538 __enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
539 se->delta_fair_sleep = 0;
540 }
541
542 se->sleep_start_fair = 0;
543
544#ifdef CONFIG_SCHEDSTATS
545 if (se->sleep_start) {
d281918d 546 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
547
548 if ((s64)delta < 0)
549 delta = 0;
550
551 if (unlikely(delta > se->sleep_max))
552 se->sleep_max = delta;
553
554 se->sleep_start = 0;
555 se->sum_sleep_runtime += delta;
556 }
557 if (se->block_start) {
d281918d 558 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
559
560 if ((s64)delta < 0)
561 delta = 0;
562
563 if (unlikely(delta > se->block_max))
564 se->block_max = delta;
565
566 se->block_start = 0;
567 se->sum_sleep_runtime += delta;
568 }
569#endif
570}
571
572static void
668031ca 573enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
574{
575 /*
576 * Update the fair clock.
577 */
b7cc0896 578 update_curr(cfs_rq);
bf0f6f24
IM
579
580 if (wakeup)
2396af69 581 enqueue_sleeper(cfs_rq, se);
bf0f6f24 582
d2417e5a 583 update_stats_enqueue(cfs_rq, se);
bf0f6f24
IM
584 __enqueue_entity(cfs_rq, se);
585}
586
587static void
588dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
589 int sleep, u64 now)
590{
19b6a2e3 591 update_stats_dequeue(cfs_rq, se);
bf0f6f24
IM
592 if (sleep) {
593 se->sleep_start_fair = cfs_rq->fair_clock;
594#ifdef CONFIG_SCHEDSTATS
595 if (entity_is_task(se)) {
596 struct task_struct *tsk = task_of(se);
597
598 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 599 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 600 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 601 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
602 }
603 cfs_rq->wait_runtime -= se->wait_runtime;
604#endif
605 }
606 __dequeue_entity(cfs_rq, se);
607}
608
609/*
610 * Preempt the current task with a newly woken task if needed:
611 */
612static void
613__check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
614 struct sched_entity *curr, unsigned long granularity)
615{
616 s64 __delta = curr->fair_key - se->fair_key;
617
618 /*
619 * Take scheduling granularity into account - do not
620 * preempt the current task unless the best task has
621 * a larger than sched_granularity fairness advantage:
622 */
623 if (__delta > niced_granularity(curr, granularity))
624 resched_task(rq_of(cfs_rq)->curr);
625}
626
627static inline void
628set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
629{
630 /*
631 * Any task has to be enqueued before it get to execute on
632 * a CPU. So account for the time it spent waiting on the
633 * runqueue. (note, here we rely on pick_next_task() having
634 * done a put_prev_task_fair() shortly before this, which
635 * updated rq->fair_clock - used by update_stats_wait_end())
636 */
9ef0a961 637 update_stats_wait_end(cfs_rq, se);
79303e9e 638 update_stats_curr_start(cfs_rq, se);
bf0f6f24
IM
639 set_cfs_rq_curr(cfs_rq, se);
640}
641
642static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq, u64 now)
643{
644 struct sched_entity *se = __pick_next_entity(cfs_rq);
645
646 set_next_entity(cfs_rq, se, now);
647
648 return se;
649}
650
651static void
652put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev, u64 now)
653{
654 /*
655 * If still on the runqueue then deactivate_task()
656 * was not called and update_curr() has to be done:
657 */
658 if (prev->on_rq)
b7cc0896 659 update_curr(cfs_rq);
bf0f6f24 660
c7e9b5b2 661 update_stats_curr_end(cfs_rq, prev);
bf0f6f24
IM
662
663 if (prev->on_rq)
5870db5b 664 update_stats_wait_start(cfs_rq, prev);
bf0f6f24
IM
665 set_cfs_rq_curr(cfs_rq, NULL);
666}
667
668static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
669{
670 struct rq *rq = rq_of(cfs_rq);
671 struct sched_entity *next;
c1b3da3e
IM
672 u64 now;
673
674 __update_rq_clock(rq);
675 now = rq->clock;
bf0f6f24
IM
676
677 /*
678 * Dequeue and enqueue the task to update its
679 * position within the tree:
680 */
681 dequeue_entity(cfs_rq, curr, 0, now);
668031ca 682 enqueue_entity(cfs_rq, curr, 0);
bf0f6f24
IM
683
684 /*
685 * Reschedule if another task tops the current one.
686 */
687 next = __pick_next_entity(cfs_rq);
688 if (next == curr)
689 return;
690
691 __check_preempt_curr_fair(cfs_rq, next, curr, sysctl_sched_granularity);
692}
693
694/**************************************************
695 * CFS operations on tasks:
696 */
697
698#ifdef CONFIG_FAIR_GROUP_SCHED
699
700/* Walk up scheduling entities hierarchy */
701#define for_each_sched_entity(se) \
702 for (; se; se = se->parent)
703
704static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
705{
706 return p->se.cfs_rq;
707}
708
709/* runqueue on which this entity is (to be) queued */
710static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
711{
712 return se->cfs_rq;
713}
714
715/* runqueue "owned" by this group */
716static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
717{
718 return grp->my_q;
719}
720
721/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
722 * another cpu ('this_cpu')
723 */
724static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
725{
726 /* A later patch will take group into account */
727 return &cpu_rq(this_cpu)->cfs;
728}
729
730/* Iterate thr' all leaf cfs_rq's on a runqueue */
731#define for_each_leaf_cfs_rq(rq, cfs_rq) \
732 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
733
734/* Do the two (enqueued) tasks belong to the same group ? */
735static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
736{
737 if (curr->se.cfs_rq == p->se.cfs_rq)
738 return 1;
739
740 return 0;
741}
742
743#else /* CONFIG_FAIR_GROUP_SCHED */
744
745#define for_each_sched_entity(se) \
746 for (; se; se = NULL)
747
748static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
749{
750 return &task_rq(p)->cfs;
751}
752
753static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
754{
755 struct task_struct *p = task_of(se);
756 struct rq *rq = task_rq(p);
757
758 return &rq->cfs;
759}
760
761/* runqueue "owned" by this group */
762static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
763{
764 return NULL;
765}
766
767static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
768{
769 return &cpu_rq(this_cpu)->cfs;
770}
771
772#define for_each_leaf_cfs_rq(rq, cfs_rq) \
773 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
774
775static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
776{
777 return 1;
778}
779
780#endif /* CONFIG_FAIR_GROUP_SCHED */
781
782/*
783 * The enqueue_task method is called before nr_running is
784 * increased. Here we update the fair scheduling stats and
785 * then put the task into the rbtree:
786 */
787static void
788enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
789{
790 struct cfs_rq *cfs_rq;
791 struct sched_entity *se = &p->se;
792
793 for_each_sched_entity(se) {
794 if (se->on_rq)
795 break;
796 cfs_rq = cfs_rq_of(se);
668031ca 797 enqueue_entity(cfs_rq, se, wakeup);
bf0f6f24
IM
798 }
799}
800
801/*
802 * The dequeue_task method is called before nr_running is
803 * decreased. We remove the task from the rbtree and
804 * update the fair scheduling stats:
805 */
806static void
807dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep, u64 now)
808{
809 struct cfs_rq *cfs_rq;
810 struct sched_entity *se = &p->se;
811
812 for_each_sched_entity(se) {
813 cfs_rq = cfs_rq_of(se);
814 dequeue_entity(cfs_rq, se, sleep, now);
815 /* Don't dequeue parent if it has other entities besides us */
816 if (cfs_rq->load.weight)
817 break;
818 }
819}
820
821/*
822 * sched_yield() support is very simple - we dequeue and enqueue
823 */
824static void yield_task_fair(struct rq *rq, struct task_struct *p)
825{
826 struct cfs_rq *cfs_rq = task_cfs_rq(p);
c1b3da3e 827 u64 now;
bf0f6f24 828
c1b3da3e
IM
829 __update_rq_clock(rq);
830 now = rq->clock;
bf0f6f24
IM
831 /*
832 * Dequeue and enqueue the task to update its
833 * position within the tree:
834 */
835 dequeue_entity(cfs_rq, &p->se, 0, now);
668031ca 836 enqueue_entity(cfs_rq, &p->se, 0);
bf0f6f24
IM
837}
838
839/*
840 * Preempt the current task with a newly woken task if needed:
841 */
842static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
843{
844 struct task_struct *curr = rq->curr;
845 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
846 unsigned long gran;
847
848 if (unlikely(rt_prio(p->prio))) {
a8e504d2 849 update_rq_clock(rq);
b7cc0896 850 update_curr(cfs_rq);
bf0f6f24
IM
851 resched_task(curr);
852 return;
853 }
854
855 gran = sysctl_sched_wakeup_granularity;
856 /*
857 * Batch tasks prefer throughput over latency:
858 */
859 if (unlikely(p->policy == SCHED_BATCH))
860 gran = sysctl_sched_batch_wakeup_granularity;
861
862 if (is_same_group(curr, p))
863 __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
864}
865
866static struct task_struct *pick_next_task_fair(struct rq *rq, u64 now)
867{
868 struct cfs_rq *cfs_rq = &rq->cfs;
869 struct sched_entity *se;
870
871 if (unlikely(!cfs_rq->nr_running))
872 return NULL;
873
874 do {
875 se = pick_next_entity(cfs_rq, now);
876 cfs_rq = group_cfs_rq(se);
877 } while (cfs_rq);
878
879 return task_of(se);
880}
881
882/*
883 * Account for a descheduled task:
884 */
885static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, u64 now)
886{
887 struct sched_entity *se = &prev->se;
888 struct cfs_rq *cfs_rq;
889
890 for_each_sched_entity(se) {
891 cfs_rq = cfs_rq_of(se);
892 put_prev_entity(cfs_rq, se, now);
893 }
894}
895
896/**************************************************
897 * Fair scheduling class load-balancing methods:
898 */
899
900/*
901 * Load-balancing iterator. Note: while the runqueue stays locked
902 * during the whole iteration, the current task might be
903 * dequeued so the iterator has to be dequeue-safe. Here we
904 * achieve that by always pre-iterating before returning
905 * the current task:
906 */
907static inline struct task_struct *
908__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
909{
910 struct task_struct *p;
911
912 if (!curr)
913 return NULL;
914
915 p = rb_entry(curr, struct task_struct, se.run_node);
916 cfs_rq->rb_load_balance_curr = rb_next(curr);
917
918 return p;
919}
920
921static struct task_struct *load_balance_start_fair(void *arg)
922{
923 struct cfs_rq *cfs_rq = arg;
924
925 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
926}
927
928static struct task_struct *load_balance_next_fair(void *arg)
929{
930 struct cfs_rq *cfs_rq = arg;
931
932 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
933}
934
a4ac01c3 935#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24
IM
936static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
937{
938 struct sched_entity *curr;
939 struct task_struct *p;
940
941 if (!cfs_rq->nr_running)
942 return MAX_PRIO;
943
944 curr = __pick_next_entity(cfs_rq);
945 p = task_of(curr);
946
947 return p->prio;
948}
a4ac01c3 949#endif
bf0f6f24 950
43010659 951static unsigned long
bf0f6f24 952load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
a4ac01c3
PW
953 unsigned long max_nr_move, unsigned long max_load_move,
954 struct sched_domain *sd, enum cpu_idle_type idle,
955 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
956{
957 struct cfs_rq *busy_cfs_rq;
958 unsigned long load_moved, total_nr_moved = 0, nr_moved;
959 long rem_load_move = max_load_move;
960 struct rq_iterator cfs_rq_iterator;
961
962 cfs_rq_iterator.start = load_balance_start_fair;
963 cfs_rq_iterator.next = load_balance_next_fair;
964
965 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 966#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 967 struct cfs_rq *this_cfs_rq;
a4ac01c3 968 long imbalances;
bf0f6f24 969 unsigned long maxload;
bf0f6f24
IM
970
971 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
972
973 imbalance = busy_cfs_rq->load.weight -
974 this_cfs_rq->load.weight;
975 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
976 if (imbalance <= 0)
977 continue;
978
979 /* Don't pull more than imbalance/2 */
980 imbalance /= 2;
981 maxload = min(rem_load_move, imbalance);
982
a4ac01c3
PW
983 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
984#else
985#define maxload rem_load_move
986#endif
bf0f6f24
IM
987 /* pass busy_cfs_rq argument into
988 * load_balance_[start|next]_fair iterators
989 */
990 cfs_rq_iterator.arg = busy_cfs_rq;
991 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
992 max_nr_move, maxload, sd, idle, all_pinned,
a4ac01c3 993 &load_moved, this_best_prio, &cfs_rq_iterator);
bf0f6f24
IM
994
995 total_nr_moved += nr_moved;
996 max_nr_move -= nr_moved;
997 rem_load_move -= load_moved;
998
999 if (max_nr_move <= 0 || rem_load_move <= 0)
1000 break;
1001 }
1002
43010659 1003 return max_load_move - rem_load_move;
bf0f6f24
IM
1004}
1005
1006/*
1007 * scheduler tick hitting a task of our scheduling class:
1008 */
1009static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1010{
1011 struct cfs_rq *cfs_rq;
1012 struct sched_entity *se = &curr->se;
1013
1014 for_each_sched_entity(se) {
1015 cfs_rq = cfs_rq_of(se);
1016 entity_tick(cfs_rq, se);
1017 }
1018}
1019
1020/*
1021 * Share the fairness runtime between parent and child, thus the
1022 * total amount of pressure for CPU stays equal - new tasks
1023 * get a chance to run but frequent forkers are not allowed to
1024 * monopolize the CPU. Note: the parent runqueue is locked,
1025 * the child is not running yet.
1026 */
cad60d93 1027static void task_new_fair(struct rq *rq, struct task_struct *p, u64 now)
bf0f6f24
IM
1028{
1029 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1030 struct sched_entity *se = &p->se;
bf0f6f24
IM
1031
1032 sched_info_queued(p);
1033
d2417e5a 1034 update_stats_enqueue(cfs_rq, se);
bf0f6f24
IM
1035 /*
1036 * Child runs first: we let it run before the parent
1037 * until it reschedules once. We set up the key so that
1038 * it will preempt the parent:
1039 */
1040 p->se.fair_key = current->se.fair_key -
1041 niced_granularity(&rq->curr->se, sysctl_sched_granularity) - 1;
1042 /*
1043 * The first wait is dominated by the child-runs-first logic,
1044 * so do not credit it with that waiting time yet:
1045 */
1046 if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL)
1047 p->se.wait_start_fair = 0;
1048
1049 /*
1050 * The statistical average of wait_runtime is about
1051 * -granularity/2, so initialize the task with that:
1052 */
1053 if (sysctl_sched_features & SCHED_FEAT_START_DEBIT)
1054 p->se.wait_runtime = -(sysctl_sched_granularity / 2);
1055
1056 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
1057}
1058
1059#ifdef CONFIG_FAIR_GROUP_SCHED
1060/* Account for a task changing its policy or group.
1061 *
1062 * This routine is mostly called to set cfs_rq->curr field when a task
1063 * migrates between groups/classes.
1064 */
1065static void set_curr_task_fair(struct rq *rq)
1066{
1067 struct task_struct *curr = rq->curr;
1068 struct sched_entity *se = &curr->se;
a8e504d2 1069 u64 now;
bf0f6f24
IM
1070 struct cfs_rq *cfs_rq;
1071
a8e504d2
IM
1072 update_rq_clock(rq);
1073 now = rq->clock;
1074
bf0f6f24
IM
1075 for_each_sched_entity(se) {
1076 cfs_rq = cfs_rq_of(se);
1077 set_next_entity(cfs_rq, se, now);
1078 }
1079}
1080#else
1081static void set_curr_task_fair(struct rq *rq)
1082{
1083}
1084#endif
1085
1086/*
1087 * All the scheduling class methods:
1088 */
1089struct sched_class fair_sched_class __read_mostly = {
1090 .enqueue_task = enqueue_task_fair,
1091 .dequeue_task = dequeue_task_fair,
1092 .yield_task = yield_task_fair,
1093
1094 .check_preempt_curr = check_preempt_curr_fair,
1095
1096 .pick_next_task = pick_next_task_fair,
1097 .put_prev_task = put_prev_task_fair,
1098
1099 .load_balance = load_balance_fair,
1100
1101 .set_curr_task = set_curr_task_fair,
1102 .task_tick = task_tick_fair,
1103 .task_new = task_new_fair,
1104};
1105
1106#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1107static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24
IM
1108{
1109 struct rq *rq = cpu_rq(cpu);
1110 struct cfs_rq *cfs_rq;
1111
1112 for_each_leaf_cfs_rq(rq, cfs_rq)
5cef9eca 1113 print_cfs_rq(m, cpu, cfs_rq);
bf0f6f24
IM
1114}
1115#endif