sched: Fix comment for requeue_rt_entity
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
9745512c 26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
864616ee 29 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 30 *
21805085 31 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
32 * 'timeslice length' - timeslices in CFS are of variable length
33 * and have no persistent notion like in traditional, time-slice
34 * based scheduling concepts.
bf0f6f24 35 *
d274a4ce
IM
36 * (to see the precise effective timeslice length of your workload,
37 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 38 */
21406928
MG
39unsigned int sysctl_sched_latency = 6000000ULL;
40unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 41
1983a922
CE
42/*
43 * The initial- and re-scaling of tunables is configurable
44 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45 *
46 * Options are:
47 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
48 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
49 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 */
51enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 = SCHED_TUNABLESCALING_LOG;
53
2bd8e6d4 54/*
b2be5e96 55 * Minimal preemption granularity for CPU-bound tasks:
864616ee 56 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 57 */
0bf377bb
IM
58unsigned int sysctl_sched_min_granularity = 750000ULL;
59unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
60
61/*
b2be5e96
PZ
62 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 */
0bf377bb 64static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
65
66/*
2bba22c5 67 * After fork, child runs first. If set to 0 (default) then
b2be5e96 68 * parent will (try to) run first.
21805085 69 */
2bba22c5 70unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 71
bf0f6f24
IM
72/*
73 * SCHED_OTHER wake-up granularity.
172e082a 74 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 */
172e082a 80unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 81unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 82
da84d961
IM
83const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
84
a7a4f8a7
PT
85/*
86 * The exponential sliding window over which load is averaged for shares
87 * distribution.
88 * (default: 10msec)
89 */
90unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
91
ec12cb7f
PT
92#ifdef CONFIG_CFS_BANDWIDTH
93/*
94 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
95 * each time a cfs_rq requests quota.
96 *
97 * Note: in the case that the slice exceeds the runtime remaining (either due
98 * to consumption or the quota being specified to be smaller than the slice)
99 * we will always only issue the remaining available time.
100 *
101 * default: 5 msec, units: microseconds
102 */
103unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
104#endif
105
a4c2f00f
PZ
106static const struct sched_class fair_sched_class;
107
bf0f6f24
IM
108/**************************************************************
109 * CFS operations on generic schedulable entities:
110 */
111
62160e3f 112#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 113
62160e3f 114/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
115static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
116{
62160e3f 117 return cfs_rq->rq;
bf0f6f24
IM
118}
119
62160e3f
IM
120/* An entity is a task if it doesn't "own" a runqueue */
121#define entity_is_task(se) (!se->my_q)
bf0f6f24 122
8f48894f
PZ
123static inline struct task_struct *task_of(struct sched_entity *se)
124{
125#ifdef CONFIG_SCHED_DEBUG
126 WARN_ON_ONCE(!entity_is_task(se));
127#endif
128 return container_of(se, struct task_struct, se);
129}
130
b758149c
PZ
131/* Walk up scheduling entities hierarchy */
132#define for_each_sched_entity(se) \
133 for (; se; se = se->parent)
134
135static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
136{
137 return p->se.cfs_rq;
138}
139
140/* runqueue on which this entity is (to be) queued */
141static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
142{
143 return se->cfs_rq;
144}
145
146/* runqueue "owned" by this group */
147static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
148{
149 return grp->my_q;
150}
151
3d4b47b4
PZ
152static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
153{
154 if (!cfs_rq->on_list) {
67e86250
PT
155 /*
156 * Ensure we either appear before our parent (if already
157 * enqueued) or force our parent to appear after us when it is
158 * enqueued. The fact that we always enqueue bottom-up
159 * reduces this to two cases.
160 */
161 if (cfs_rq->tg->parent &&
162 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
163 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
164 &rq_of(cfs_rq)->leaf_cfs_rq_list);
165 } else {
166 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 167 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 168 }
3d4b47b4
PZ
169
170 cfs_rq->on_list = 1;
171 }
172}
173
174static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
175{
176 if (cfs_rq->on_list) {
177 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
178 cfs_rq->on_list = 0;
179 }
180}
181
b758149c
PZ
182/* Iterate thr' all leaf cfs_rq's on a runqueue */
183#define for_each_leaf_cfs_rq(rq, cfs_rq) \
184 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
185
186/* Do the two (enqueued) entities belong to the same group ? */
187static inline int
188is_same_group(struct sched_entity *se, struct sched_entity *pse)
189{
190 if (se->cfs_rq == pse->cfs_rq)
191 return 1;
192
193 return 0;
194}
195
196static inline struct sched_entity *parent_entity(struct sched_entity *se)
197{
198 return se->parent;
199}
200
464b7527
PZ
201/* return depth at which a sched entity is present in the hierarchy */
202static inline int depth_se(struct sched_entity *se)
203{
204 int depth = 0;
205
206 for_each_sched_entity(se)
207 depth++;
208
209 return depth;
210}
211
212static void
213find_matching_se(struct sched_entity **se, struct sched_entity **pse)
214{
215 int se_depth, pse_depth;
216
217 /*
218 * preemption test can be made between sibling entities who are in the
219 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
220 * both tasks until we find their ancestors who are siblings of common
221 * parent.
222 */
223
224 /* First walk up until both entities are at same depth */
225 se_depth = depth_se(*se);
226 pse_depth = depth_se(*pse);
227
228 while (se_depth > pse_depth) {
229 se_depth--;
230 *se = parent_entity(*se);
231 }
232
233 while (pse_depth > se_depth) {
234 pse_depth--;
235 *pse = parent_entity(*pse);
236 }
237
238 while (!is_same_group(*se, *pse)) {
239 *se = parent_entity(*se);
240 *pse = parent_entity(*pse);
241 }
242}
243
8f48894f
PZ
244#else /* !CONFIG_FAIR_GROUP_SCHED */
245
246static inline struct task_struct *task_of(struct sched_entity *se)
247{
248 return container_of(se, struct task_struct, se);
249}
bf0f6f24 250
62160e3f
IM
251static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
252{
253 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
254}
255
256#define entity_is_task(se) 1
257
b758149c
PZ
258#define for_each_sched_entity(se) \
259 for (; se; se = NULL)
bf0f6f24 260
b758149c 261static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 262{
b758149c 263 return &task_rq(p)->cfs;
bf0f6f24
IM
264}
265
b758149c
PZ
266static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
267{
268 struct task_struct *p = task_of(se);
269 struct rq *rq = task_rq(p);
270
271 return &rq->cfs;
272}
273
274/* runqueue "owned" by this group */
275static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
276{
277 return NULL;
278}
279
3d4b47b4
PZ
280static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
281{
282}
283
284static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
285{
286}
287
b758149c
PZ
288#define for_each_leaf_cfs_rq(rq, cfs_rq) \
289 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
290
291static inline int
292is_same_group(struct sched_entity *se, struct sched_entity *pse)
293{
294 return 1;
295}
296
297static inline struct sched_entity *parent_entity(struct sched_entity *se)
298{
299 return NULL;
300}
301
464b7527
PZ
302static inline void
303find_matching_se(struct sched_entity **se, struct sched_entity **pse)
304{
305}
306
b758149c
PZ
307#endif /* CONFIG_FAIR_GROUP_SCHED */
308
ec12cb7f
PT
309static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
310 unsigned long delta_exec);
bf0f6f24
IM
311
312/**************************************************************
313 * Scheduling class tree data structure manipulation methods:
314 */
315
0702e3eb 316static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 317{
368059a9
PZ
318 s64 delta = (s64)(vruntime - min_vruntime);
319 if (delta > 0)
02e0431a
PZ
320 min_vruntime = vruntime;
321
322 return min_vruntime;
323}
324
0702e3eb 325static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
326{
327 s64 delta = (s64)(vruntime - min_vruntime);
328 if (delta < 0)
329 min_vruntime = vruntime;
330
331 return min_vruntime;
332}
333
54fdc581
FC
334static inline int entity_before(struct sched_entity *a,
335 struct sched_entity *b)
336{
337 return (s64)(a->vruntime - b->vruntime) < 0;
338}
339
1af5f730
PZ
340static void update_min_vruntime(struct cfs_rq *cfs_rq)
341{
342 u64 vruntime = cfs_rq->min_vruntime;
343
344 if (cfs_rq->curr)
345 vruntime = cfs_rq->curr->vruntime;
346
347 if (cfs_rq->rb_leftmost) {
348 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
349 struct sched_entity,
350 run_node);
351
e17036da 352 if (!cfs_rq->curr)
1af5f730
PZ
353 vruntime = se->vruntime;
354 else
355 vruntime = min_vruntime(vruntime, se->vruntime);
356 }
357
358 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
359#ifndef CONFIG_64BIT
360 smp_wmb();
361 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
362#endif
1af5f730
PZ
363}
364
bf0f6f24
IM
365/*
366 * Enqueue an entity into the rb-tree:
367 */
0702e3eb 368static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
369{
370 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
371 struct rb_node *parent = NULL;
372 struct sched_entity *entry;
bf0f6f24
IM
373 int leftmost = 1;
374
375 /*
376 * Find the right place in the rbtree:
377 */
378 while (*link) {
379 parent = *link;
380 entry = rb_entry(parent, struct sched_entity, run_node);
381 /*
382 * We dont care about collisions. Nodes with
383 * the same key stay together.
384 */
2bd2d6f2 385 if (entity_before(se, entry)) {
bf0f6f24
IM
386 link = &parent->rb_left;
387 } else {
388 link = &parent->rb_right;
389 leftmost = 0;
390 }
391 }
392
393 /*
394 * Maintain a cache of leftmost tree entries (it is frequently
395 * used):
396 */
1af5f730 397 if (leftmost)
57cb499d 398 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
399
400 rb_link_node(&se->run_node, parent, link);
401 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
402}
403
0702e3eb 404static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 405{
3fe69747
PZ
406 if (cfs_rq->rb_leftmost == &se->run_node) {
407 struct rb_node *next_node;
3fe69747
PZ
408
409 next_node = rb_next(&se->run_node);
410 cfs_rq->rb_leftmost = next_node;
3fe69747 411 }
e9acbff6 412
bf0f6f24 413 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
414}
415
ac53db59 416static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 417{
f4b6755f
PZ
418 struct rb_node *left = cfs_rq->rb_leftmost;
419
420 if (!left)
421 return NULL;
422
423 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
424}
425
ac53db59
RR
426static struct sched_entity *__pick_next_entity(struct sched_entity *se)
427{
428 struct rb_node *next = rb_next(&se->run_node);
429
430 if (!next)
431 return NULL;
432
433 return rb_entry(next, struct sched_entity, run_node);
434}
435
436#ifdef CONFIG_SCHED_DEBUG
f4b6755f 437static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 438{
7eee3e67 439 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 440
70eee74b
BS
441 if (!last)
442 return NULL;
7eee3e67
IM
443
444 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
445}
446
bf0f6f24
IM
447/**************************************************************
448 * Scheduling class statistics methods:
449 */
450
acb4a848 451int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 452 void __user *buffer, size_t *lenp,
b2be5e96
PZ
453 loff_t *ppos)
454{
8d65af78 455 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 456 int factor = get_update_sysctl_factor();
b2be5e96
PZ
457
458 if (ret || !write)
459 return ret;
460
461 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
462 sysctl_sched_min_granularity);
463
acb4a848
CE
464#define WRT_SYSCTL(name) \
465 (normalized_sysctl_##name = sysctl_##name / (factor))
466 WRT_SYSCTL(sched_min_granularity);
467 WRT_SYSCTL(sched_latency);
468 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
469#undef WRT_SYSCTL
470
b2be5e96
PZ
471 return 0;
472}
473#endif
647e7cac 474
a7be37ac 475/*
f9c0b095 476 * delta /= w
a7be37ac
PZ
477 */
478static inline unsigned long
479calc_delta_fair(unsigned long delta, struct sched_entity *se)
480{
f9c0b095
PZ
481 if (unlikely(se->load.weight != NICE_0_LOAD))
482 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
483
484 return delta;
485}
486
647e7cac
IM
487/*
488 * The idea is to set a period in which each task runs once.
489 *
490 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
491 * this period because otherwise the slices get too small.
492 *
493 * p = (nr <= nl) ? l : l*nr/nl
494 */
4d78e7b6
PZ
495static u64 __sched_period(unsigned long nr_running)
496{
497 u64 period = sysctl_sched_latency;
b2be5e96 498 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
499
500 if (unlikely(nr_running > nr_latency)) {
4bf0b771 501 period = sysctl_sched_min_granularity;
4d78e7b6 502 period *= nr_running;
4d78e7b6
PZ
503 }
504
505 return period;
506}
507
647e7cac
IM
508/*
509 * We calculate the wall-time slice from the period by taking a part
510 * proportional to the weight.
511 *
f9c0b095 512 * s = p*P[w/rw]
647e7cac 513 */
6d0f0ebd 514static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 515{
0a582440 516 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 517
0a582440 518 for_each_sched_entity(se) {
6272d68c 519 struct load_weight *load;
3104bf03 520 struct load_weight lw;
6272d68c
LM
521
522 cfs_rq = cfs_rq_of(se);
523 load = &cfs_rq->load;
f9c0b095 524
0a582440 525 if (unlikely(!se->on_rq)) {
3104bf03 526 lw = cfs_rq->load;
0a582440
MG
527
528 update_load_add(&lw, se->load.weight);
529 load = &lw;
530 }
531 slice = calc_delta_mine(slice, se->load.weight, load);
532 }
533 return slice;
bf0f6f24
IM
534}
535
647e7cac 536/*
ac884dec 537 * We calculate the vruntime slice of a to be inserted task
647e7cac 538 *
f9c0b095 539 * vs = s/w
647e7cac 540 */
f9c0b095 541static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 542{
f9c0b095 543 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
544}
545
d6b55918 546static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
6d5ab293 547static void update_cfs_shares(struct cfs_rq *cfs_rq);
3b3d190e 548
bf0f6f24
IM
549/*
550 * Update the current task's runtime statistics. Skip current tasks that
551 * are not in our scheduling class.
552 */
553static inline void
8ebc91d9
IM
554__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
555 unsigned long delta_exec)
bf0f6f24 556{
bbdba7c0 557 unsigned long delta_exec_weighted;
bf0f6f24 558
41acab88
LDM
559 schedstat_set(curr->statistics.exec_max,
560 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
561
562 curr->sum_exec_runtime += delta_exec;
7a62eabc 563 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 564 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 565
e9acbff6 566 curr->vruntime += delta_exec_weighted;
1af5f730 567 update_min_vruntime(cfs_rq);
3b3d190e 568
70caf8a6 569#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 570 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 571#endif
bf0f6f24
IM
572}
573
b7cc0896 574static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 575{
429d43bc 576 struct sched_entity *curr = cfs_rq->curr;
305e6835 577 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
578 unsigned long delta_exec;
579
580 if (unlikely(!curr))
581 return;
582
583 /*
584 * Get the amount of time the current task was running
585 * since the last time we changed load (this cannot
586 * overflow on 32 bits):
587 */
8ebc91d9 588 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
589 if (!delta_exec)
590 return;
bf0f6f24 591
8ebc91d9
IM
592 __update_curr(cfs_rq, curr, delta_exec);
593 curr->exec_start = now;
d842de87
SV
594
595 if (entity_is_task(curr)) {
596 struct task_struct *curtask = task_of(curr);
597
f977bb49 598 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 599 cpuacct_charge(curtask, delta_exec);
f06febc9 600 account_group_exec_runtime(curtask, delta_exec);
d842de87 601 }
ec12cb7f
PT
602
603 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
604}
605
606static inline void
5870db5b 607update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 608{
41acab88 609 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
610}
611
bf0f6f24
IM
612/*
613 * Task is being enqueued - update stats:
614 */
d2417e5a 615static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 616{
bf0f6f24
IM
617 /*
618 * Are we enqueueing a waiting task? (for current tasks
619 * a dequeue/enqueue event is a NOP)
620 */
429d43bc 621 if (se != cfs_rq->curr)
5870db5b 622 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
623}
624
bf0f6f24 625static void
9ef0a961 626update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 627{
41acab88
LDM
628 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
629 rq_of(cfs_rq)->clock - se->statistics.wait_start));
630 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
631 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
632 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
633#ifdef CONFIG_SCHEDSTATS
634 if (entity_is_task(se)) {
635 trace_sched_stat_wait(task_of(se),
41acab88 636 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
637 }
638#endif
41acab88 639 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
640}
641
642static inline void
19b6a2e3 643update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 644{
bf0f6f24
IM
645 /*
646 * Mark the end of the wait period if dequeueing a
647 * waiting task:
648 */
429d43bc 649 if (se != cfs_rq->curr)
9ef0a961 650 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
651}
652
653/*
654 * We are picking a new current task - update its stats:
655 */
656static inline void
79303e9e 657update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
658{
659 /*
660 * We are starting a new run period:
661 */
305e6835 662 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
663}
664
bf0f6f24
IM
665/**************************************************
666 * Scheduling class queueing methods:
667 */
668
c09595f6
PZ
669#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
670static void
671add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
672{
673 cfs_rq->task_weight += weight;
674}
675#else
676static inline void
677add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
678{
679}
680#endif
681
30cfdcfc
DA
682static void
683account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
684{
685 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
686 if (!parent_entity(se))
687 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 688 if (entity_is_task(se)) {
c09595f6 689 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
690 list_add(&se->group_node, &cfs_rq->tasks);
691 }
30cfdcfc 692 cfs_rq->nr_running++;
30cfdcfc
DA
693}
694
695static void
696account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
697{
698 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
699 if (!parent_entity(se))
700 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 701 if (entity_is_task(se)) {
c09595f6 702 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
703 list_del_init(&se->group_node);
704 }
30cfdcfc 705 cfs_rq->nr_running--;
30cfdcfc
DA
706}
707
3ff6dcac 708#ifdef CONFIG_FAIR_GROUP_SCHED
64660c86
PT
709/* we need this in update_cfs_load and load-balance functions below */
710static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3ff6dcac 711# ifdef CONFIG_SMP
d6b55918
PT
712static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
713 int global_update)
714{
715 struct task_group *tg = cfs_rq->tg;
716 long load_avg;
717
718 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
719 load_avg -= cfs_rq->load_contribution;
720
721 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
722 atomic_add(load_avg, &tg->load_weight);
723 cfs_rq->load_contribution += load_avg;
724 }
725}
726
727static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 728{
a7a4f8a7 729 u64 period = sysctl_sched_shares_window;
2069dd75 730 u64 now, delta;
e33078ba 731 unsigned long load = cfs_rq->load.weight;
2069dd75 732
64660c86 733 if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
2069dd75
PZ
734 return;
735
05ca62c6 736 now = rq_of(cfs_rq)->clock_task;
2069dd75
PZ
737 delta = now - cfs_rq->load_stamp;
738
e33078ba
PT
739 /* truncate load history at 4 idle periods */
740 if (cfs_rq->load_stamp > cfs_rq->load_last &&
741 now - cfs_rq->load_last > 4 * period) {
742 cfs_rq->load_period = 0;
743 cfs_rq->load_avg = 0;
f07333bf 744 delta = period - 1;
e33078ba
PT
745 }
746
2069dd75 747 cfs_rq->load_stamp = now;
3b3d190e 748 cfs_rq->load_unacc_exec_time = 0;
2069dd75 749 cfs_rq->load_period += delta;
e33078ba
PT
750 if (load) {
751 cfs_rq->load_last = now;
752 cfs_rq->load_avg += delta * load;
753 }
2069dd75 754
d6b55918
PT
755 /* consider updating load contribution on each fold or truncate */
756 if (global_update || cfs_rq->load_period > period
757 || !cfs_rq->load_period)
758 update_cfs_rq_load_contribution(cfs_rq, global_update);
759
2069dd75
PZ
760 while (cfs_rq->load_period > period) {
761 /*
762 * Inline assembly required to prevent the compiler
763 * optimising this loop into a divmod call.
764 * See __iter_div_u64_rem() for another example of this.
765 */
766 asm("" : "+rm" (cfs_rq->load_period));
767 cfs_rq->load_period /= 2;
768 cfs_rq->load_avg /= 2;
769 }
3d4b47b4 770
e33078ba
PT
771 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
772 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
773}
774
cf5f0acf
PZ
775static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
776{
777 long tg_weight;
778
779 /*
780 * Use this CPU's actual weight instead of the last load_contribution
781 * to gain a more accurate current total weight. See
782 * update_cfs_rq_load_contribution().
783 */
784 tg_weight = atomic_read(&tg->load_weight);
785 tg_weight -= cfs_rq->load_contribution;
786 tg_weight += cfs_rq->load.weight;
787
788 return tg_weight;
789}
790
6d5ab293 791static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 792{
cf5f0acf 793 long tg_weight, load, shares;
3ff6dcac 794
cf5f0acf 795 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 796 load = cfs_rq->load.weight;
3ff6dcac 797
3ff6dcac 798 shares = (tg->shares * load);
cf5f0acf
PZ
799 if (tg_weight)
800 shares /= tg_weight;
3ff6dcac
YZ
801
802 if (shares < MIN_SHARES)
803 shares = MIN_SHARES;
804 if (shares > tg->shares)
805 shares = tg->shares;
806
807 return shares;
808}
809
810static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
811{
812 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
813 update_cfs_load(cfs_rq, 0);
6d5ab293 814 update_cfs_shares(cfs_rq);
3ff6dcac
YZ
815 }
816}
817# else /* CONFIG_SMP */
818static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
819{
820}
821
6d5ab293 822static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
823{
824 return tg->shares;
825}
826
827static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
828{
829}
830# endif /* CONFIG_SMP */
2069dd75
PZ
831static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
832 unsigned long weight)
833{
19e5eebb
PT
834 if (se->on_rq) {
835 /* commit outstanding execution time */
836 if (cfs_rq->curr == se)
837 update_curr(cfs_rq);
2069dd75 838 account_entity_dequeue(cfs_rq, se);
19e5eebb 839 }
2069dd75
PZ
840
841 update_load_set(&se->load, weight);
842
843 if (se->on_rq)
844 account_entity_enqueue(cfs_rq, se);
845}
846
6d5ab293 847static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
848{
849 struct task_group *tg;
850 struct sched_entity *se;
3ff6dcac 851 long shares;
2069dd75 852
2069dd75
PZ
853 tg = cfs_rq->tg;
854 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 855 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 856 return;
3ff6dcac
YZ
857#ifndef CONFIG_SMP
858 if (likely(se->load.weight == tg->shares))
859 return;
860#endif
6d5ab293 861 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
862
863 reweight_entity(cfs_rq_of(se), se, shares);
864}
865#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 866static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
867{
868}
869
6d5ab293 870static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
871{
872}
43365bd7
PT
873
874static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
875{
876}
2069dd75
PZ
877#endif /* CONFIG_FAIR_GROUP_SCHED */
878
2396af69 879static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 880{
bf0f6f24 881#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
882 struct task_struct *tsk = NULL;
883
884 if (entity_is_task(se))
885 tsk = task_of(se);
886
41acab88
LDM
887 if (se->statistics.sleep_start) {
888 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
889
890 if ((s64)delta < 0)
891 delta = 0;
892
41acab88
LDM
893 if (unlikely(delta > se->statistics.sleep_max))
894 se->statistics.sleep_max = delta;
bf0f6f24 895
41acab88
LDM
896 se->statistics.sleep_start = 0;
897 se->statistics.sum_sleep_runtime += delta;
9745512c 898
768d0c27 899 if (tsk) {
e414314c 900 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
901 trace_sched_stat_sleep(tsk, delta);
902 }
bf0f6f24 903 }
41acab88
LDM
904 if (se->statistics.block_start) {
905 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
906
907 if ((s64)delta < 0)
908 delta = 0;
909
41acab88
LDM
910 if (unlikely(delta > se->statistics.block_max))
911 se->statistics.block_max = delta;
bf0f6f24 912
41acab88
LDM
913 se->statistics.block_start = 0;
914 se->statistics.sum_sleep_runtime += delta;
30084fbd 915
e414314c 916 if (tsk) {
8f0dfc34 917 if (tsk->in_iowait) {
41acab88
LDM
918 se->statistics.iowait_sum += delta;
919 se->statistics.iowait_count++;
768d0c27 920 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
921 }
922
e414314c
PZ
923 /*
924 * Blocking time is in units of nanosecs, so shift by
925 * 20 to get a milliseconds-range estimation of the
926 * amount of time that the task spent sleeping:
927 */
928 if (unlikely(prof_on == SLEEP_PROFILING)) {
929 profile_hits(SLEEP_PROFILING,
930 (void *)get_wchan(tsk),
931 delta >> 20);
932 }
933 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 934 }
bf0f6f24
IM
935 }
936#endif
937}
938
ddc97297
PZ
939static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
940{
941#ifdef CONFIG_SCHED_DEBUG
942 s64 d = se->vruntime - cfs_rq->min_vruntime;
943
944 if (d < 0)
945 d = -d;
946
947 if (d > 3*sysctl_sched_latency)
948 schedstat_inc(cfs_rq, nr_spread_over);
949#endif
950}
951
aeb73b04
PZ
952static void
953place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
954{
1af5f730 955 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 956
2cb8600e
PZ
957 /*
958 * The 'current' period is already promised to the current tasks,
959 * however the extra weight of the new task will slow them down a
960 * little, place the new task so that it fits in the slot that
961 * stays open at the end.
962 */
94dfb5e7 963 if (initial && sched_feat(START_DEBIT))
f9c0b095 964 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 965
a2e7a7eb 966 /* sleeps up to a single latency don't count. */
5ca9880c 967 if (!initial) {
a2e7a7eb 968 unsigned long thresh = sysctl_sched_latency;
a7be37ac 969
a2e7a7eb
MG
970 /*
971 * Halve their sleep time's effect, to allow
972 * for a gentler effect of sleepers:
973 */
974 if (sched_feat(GENTLE_FAIR_SLEEPERS))
975 thresh >>= 1;
51e0304c 976
a2e7a7eb 977 vruntime -= thresh;
aeb73b04
PZ
978 }
979
b5d9d734
MG
980 /* ensure we never gain time by being placed backwards. */
981 vruntime = max_vruntime(se->vruntime, vruntime);
982
67e9fb2a 983 se->vruntime = vruntime;
aeb73b04
PZ
984}
985
d3d9dc33
PT
986static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
987
bf0f6f24 988static void
88ec22d3 989enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 990{
88ec22d3
PZ
991 /*
992 * Update the normalized vruntime before updating min_vruntime
993 * through callig update_curr().
994 */
371fd7e7 995 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
996 se->vruntime += cfs_rq->min_vruntime;
997
bf0f6f24 998 /*
a2a2d680 999 * Update run-time statistics of the 'current'.
bf0f6f24 1000 */
b7cc0896 1001 update_curr(cfs_rq);
d6b55918 1002 update_cfs_load(cfs_rq, 0);
a992241d 1003 account_entity_enqueue(cfs_rq, se);
6d5ab293 1004 update_cfs_shares(cfs_rq);
bf0f6f24 1005
88ec22d3 1006 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1007 place_entity(cfs_rq, se, 0);
2396af69 1008 enqueue_sleeper(cfs_rq, se);
e9acbff6 1009 }
bf0f6f24 1010
d2417e5a 1011 update_stats_enqueue(cfs_rq, se);
ddc97297 1012 check_spread(cfs_rq, se);
83b699ed
SV
1013 if (se != cfs_rq->curr)
1014 __enqueue_entity(cfs_rq, se);
2069dd75 1015 se->on_rq = 1;
3d4b47b4 1016
d3d9dc33 1017 if (cfs_rq->nr_running == 1) {
3d4b47b4 1018 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1019 check_enqueue_throttle(cfs_rq);
1020 }
bf0f6f24
IM
1021}
1022
2c13c919 1023static void __clear_buddies_last(struct sched_entity *se)
2002c695 1024{
2c13c919
RR
1025 for_each_sched_entity(se) {
1026 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1027 if (cfs_rq->last == se)
1028 cfs_rq->last = NULL;
1029 else
1030 break;
1031 }
1032}
2002c695 1033
2c13c919
RR
1034static void __clear_buddies_next(struct sched_entity *se)
1035{
1036 for_each_sched_entity(se) {
1037 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1038 if (cfs_rq->next == se)
1039 cfs_rq->next = NULL;
1040 else
1041 break;
1042 }
2002c695
PZ
1043}
1044
ac53db59
RR
1045static void __clear_buddies_skip(struct sched_entity *se)
1046{
1047 for_each_sched_entity(se) {
1048 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1049 if (cfs_rq->skip == se)
1050 cfs_rq->skip = NULL;
1051 else
1052 break;
1053 }
1054}
1055
a571bbea
PZ
1056static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1057{
2c13c919
RR
1058 if (cfs_rq->last == se)
1059 __clear_buddies_last(se);
1060
1061 if (cfs_rq->next == se)
1062 __clear_buddies_next(se);
ac53db59
RR
1063
1064 if (cfs_rq->skip == se)
1065 __clear_buddies_skip(se);
a571bbea
PZ
1066}
1067
d8b4986d
PT
1068static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1069
bf0f6f24 1070static void
371fd7e7 1071dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1072{
a2a2d680
DA
1073 /*
1074 * Update run-time statistics of the 'current'.
1075 */
1076 update_curr(cfs_rq);
1077
19b6a2e3 1078 update_stats_dequeue(cfs_rq, se);
371fd7e7 1079 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1080#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1081 if (entity_is_task(se)) {
1082 struct task_struct *tsk = task_of(se);
1083
1084 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1085 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1086 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1087 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1088 }
db36cc7d 1089#endif
67e9fb2a
PZ
1090 }
1091
2002c695 1092 clear_buddies(cfs_rq, se);
4793241b 1093
83b699ed 1094 if (se != cfs_rq->curr)
30cfdcfc 1095 __dequeue_entity(cfs_rq, se);
2069dd75 1096 se->on_rq = 0;
d6b55918 1097 update_cfs_load(cfs_rq, 0);
30cfdcfc 1098 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1099
1100 /*
1101 * Normalize the entity after updating the min_vruntime because the
1102 * update can refer to the ->curr item and we need to reflect this
1103 * movement in our normalized position.
1104 */
371fd7e7 1105 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1106 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1107
d8b4986d
PT
1108 /* return excess runtime on last dequeue */
1109 return_cfs_rq_runtime(cfs_rq);
1110
1e876231
PZ
1111 update_min_vruntime(cfs_rq);
1112 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1113}
1114
1115/*
1116 * Preempt the current task with a newly woken task if needed:
1117 */
7c92e54f 1118static void
2e09bf55 1119check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1120{
11697830 1121 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1122 struct sched_entity *se;
1123 s64 delta;
11697830 1124
6d0f0ebd 1125 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1126 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1127 if (delta_exec > ideal_runtime) {
bf0f6f24 1128 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1129 /*
1130 * The current task ran long enough, ensure it doesn't get
1131 * re-elected due to buddy favours.
1132 */
1133 clear_buddies(cfs_rq, curr);
f685ceac
MG
1134 return;
1135 }
1136
1137 /*
1138 * Ensure that a task that missed wakeup preemption by a
1139 * narrow margin doesn't have to wait for a full slice.
1140 * This also mitigates buddy induced latencies under load.
1141 */
f685ceac
MG
1142 if (delta_exec < sysctl_sched_min_granularity)
1143 return;
1144
f4cfb33e
WX
1145 se = __pick_first_entity(cfs_rq);
1146 delta = curr->vruntime - se->vruntime;
f685ceac 1147
f4cfb33e
WX
1148 if (delta < 0)
1149 return;
d7d82944 1150
f4cfb33e
WX
1151 if (delta > ideal_runtime)
1152 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1153}
1154
83b699ed 1155static void
8494f412 1156set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1157{
83b699ed
SV
1158 /* 'current' is not kept within the tree. */
1159 if (se->on_rq) {
1160 /*
1161 * Any task has to be enqueued before it get to execute on
1162 * a CPU. So account for the time it spent waiting on the
1163 * runqueue.
1164 */
1165 update_stats_wait_end(cfs_rq, se);
1166 __dequeue_entity(cfs_rq, se);
1167 }
1168
79303e9e 1169 update_stats_curr_start(cfs_rq, se);
429d43bc 1170 cfs_rq->curr = se;
eba1ed4b
IM
1171#ifdef CONFIG_SCHEDSTATS
1172 /*
1173 * Track our maximum slice length, if the CPU's load is at
1174 * least twice that of our own weight (i.e. dont track it
1175 * when there are only lesser-weight tasks around):
1176 */
495eca49 1177 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1178 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1179 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1180 }
1181#endif
4a55b450 1182 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1183}
1184
3f3a4904
PZ
1185static int
1186wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1187
ac53db59
RR
1188/*
1189 * Pick the next process, keeping these things in mind, in this order:
1190 * 1) keep things fair between processes/task groups
1191 * 2) pick the "next" process, since someone really wants that to run
1192 * 3) pick the "last" process, for cache locality
1193 * 4) do not run the "skip" process, if something else is available
1194 */
f4b6755f 1195static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1196{
ac53db59 1197 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1198 struct sched_entity *left = se;
f4b6755f 1199
ac53db59
RR
1200 /*
1201 * Avoid running the skip buddy, if running something else can
1202 * be done without getting too unfair.
1203 */
1204 if (cfs_rq->skip == se) {
1205 struct sched_entity *second = __pick_next_entity(se);
1206 if (second && wakeup_preempt_entity(second, left) < 1)
1207 se = second;
1208 }
aa2ac252 1209
f685ceac
MG
1210 /*
1211 * Prefer last buddy, try to return the CPU to a preempted task.
1212 */
1213 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1214 se = cfs_rq->last;
1215
ac53db59
RR
1216 /*
1217 * Someone really wants this to run. If it's not unfair, run it.
1218 */
1219 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1220 se = cfs_rq->next;
1221
f685ceac 1222 clear_buddies(cfs_rq, se);
4793241b
PZ
1223
1224 return se;
aa2ac252
PZ
1225}
1226
d3d9dc33
PT
1227static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1228
ab6cde26 1229static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1230{
1231 /*
1232 * If still on the runqueue then deactivate_task()
1233 * was not called and update_curr() has to be done:
1234 */
1235 if (prev->on_rq)
b7cc0896 1236 update_curr(cfs_rq);
bf0f6f24 1237
d3d9dc33
PT
1238 /* throttle cfs_rqs exceeding runtime */
1239 check_cfs_rq_runtime(cfs_rq);
1240
ddc97297 1241 check_spread(cfs_rq, prev);
30cfdcfc 1242 if (prev->on_rq) {
5870db5b 1243 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1244 /* Put 'current' back into the tree. */
1245 __enqueue_entity(cfs_rq, prev);
1246 }
429d43bc 1247 cfs_rq->curr = NULL;
bf0f6f24
IM
1248}
1249
8f4d37ec
PZ
1250static void
1251entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1252{
bf0f6f24 1253 /*
30cfdcfc 1254 * Update run-time statistics of the 'current'.
bf0f6f24 1255 */
30cfdcfc 1256 update_curr(cfs_rq);
bf0f6f24 1257
43365bd7
PT
1258 /*
1259 * Update share accounting for long-running entities.
1260 */
1261 update_entity_shares_tick(cfs_rq);
1262
8f4d37ec
PZ
1263#ifdef CONFIG_SCHED_HRTICK
1264 /*
1265 * queued ticks are scheduled to match the slice, so don't bother
1266 * validating it and just reschedule.
1267 */
983ed7a6
HH
1268 if (queued) {
1269 resched_task(rq_of(cfs_rq)->curr);
1270 return;
1271 }
8f4d37ec
PZ
1272 /*
1273 * don't let the period tick interfere with the hrtick preemption
1274 */
1275 if (!sched_feat(DOUBLE_TICK) &&
1276 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1277 return;
1278#endif
1279
2c2efaed 1280 if (cfs_rq->nr_running > 1)
2e09bf55 1281 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1282}
1283
ab84d31e
PT
1284
1285/**************************************************
1286 * CFS bandwidth control machinery
1287 */
1288
1289#ifdef CONFIG_CFS_BANDWIDTH
1290/*
1291 * default period for cfs group bandwidth.
1292 * default: 0.1s, units: nanoseconds
1293 */
1294static inline u64 default_cfs_period(void)
1295{
1296 return 100000000ULL;
1297}
ec12cb7f
PT
1298
1299static inline u64 sched_cfs_bandwidth_slice(void)
1300{
1301 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1302}
1303
a9cf55b2
PT
1304/*
1305 * Replenish runtime according to assigned quota and update expiration time.
1306 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1307 * additional synchronization around rq->lock.
1308 *
1309 * requires cfs_b->lock
1310 */
1311static void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
1312{
1313 u64 now;
1314
1315 if (cfs_b->quota == RUNTIME_INF)
1316 return;
1317
1318 now = sched_clock_cpu(smp_processor_id());
1319 cfs_b->runtime = cfs_b->quota;
1320 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1321}
1322
85dac906
PT
1323/* returns 0 on failure to allocate runtime */
1324static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
1325{
1326 struct task_group *tg = cfs_rq->tg;
1327 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 1328 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
1329
1330 /* note: this is a positive sum as runtime_remaining <= 0 */
1331 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1332
1333 raw_spin_lock(&cfs_b->lock);
1334 if (cfs_b->quota == RUNTIME_INF)
1335 amount = min_amount;
58088ad0 1336 else {
a9cf55b2
PT
1337 /*
1338 * If the bandwidth pool has become inactive, then at least one
1339 * period must have elapsed since the last consumption.
1340 * Refresh the global state and ensure bandwidth timer becomes
1341 * active.
1342 */
1343 if (!cfs_b->timer_active) {
1344 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 1345 __start_cfs_bandwidth(cfs_b);
a9cf55b2 1346 }
58088ad0
PT
1347
1348 if (cfs_b->runtime > 0) {
1349 amount = min(cfs_b->runtime, min_amount);
1350 cfs_b->runtime -= amount;
1351 cfs_b->idle = 0;
1352 }
ec12cb7f 1353 }
a9cf55b2 1354 expires = cfs_b->runtime_expires;
ec12cb7f
PT
1355 raw_spin_unlock(&cfs_b->lock);
1356
1357 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
1358 /*
1359 * we may have advanced our local expiration to account for allowed
1360 * spread between our sched_clock and the one on which runtime was
1361 * issued.
1362 */
1363 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1364 cfs_rq->runtime_expires = expires;
85dac906
PT
1365
1366 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
1367}
1368
a9cf55b2
PT
1369/*
1370 * Note: This depends on the synchronization provided by sched_clock and the
1371 * fact that rq->clock snapshots this value.
1372 */
1373static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 1374{
a9cf55b2
PT
1375 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1376 struct rq *rq = rq_of(cfs_rq);
1377
1378 /* if the deadline is ahead of our clock, nothing to do */
1379 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
1380 return;
1381
a9cf55b2
PT
1382 if (cfs_rq->runtime_remaining < 0)
1383 return;
1384
1385 /*
1386 * If the local deadline has passed we have to consider the
1387 * possibility that our sched_clock is 'fast' and the global deadline
1388 * has not truly expired.
1389 *
1390 * Fortunately we can check determine whether this the case by checking
1391 * whether the global deadline has advanced.
1392 */
1393
1394 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1395 /* extend local deadline, drift is bounded above by 2 ticks */
1396 cfs_rq->runtime_expires += TICK_NSEC;
1397 } else {
1398 /* global deadline is ahead, expiration has passed */
1399 cfs_rq->runtime_remaining = 0;
1400 }
1401}
1402
1403static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1404 unsigned long delta_exec)
1405{
1406 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 1407 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
1408 expire_cfs_rq_runtime(cfs_rq);
1409
1410 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
1411 return;
1412
85dac906
PT
1413 /*
1414 * if we're unable to extend our runtime we resched so that the active
1415 * hierarchy can be throttled
1416 */
1417 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1418 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
1419}
1420
1421static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1422 unsigned long delta_exec)
1423{
56f570e5 1424 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
1425 return;
1426
1427 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1428}
1429
85dac906
PT
1430static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1431{
56f570e5 1432 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
1433}
1434
64660c86
PT
1435/* check whether cfs_rq, or any parent, is throttled */
1436static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1437{
56f570e5 1438 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
1439}
1440
1441/*
1442 * Ensure that neither of the group entities corresponding to src_cpu or
1443 * dest_cpu are members of a throttled hierarchy when performing group
1444 * load-balance operations.
1445 */
1446static inline int throttled_lb_pair(struct task_group *tg,
1447 int src_cpu, int dest_cpu)
1448{
1449 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1450
1451 src_cfs_rq = tg->cfs_rq[src_cpu];
1452 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1453
1454 return throttled_hierarchy(src_cfs_rq) ||
1455 throttled_hierarchy(dest_cfs_rq);
1456}
1457
1458/* updated child weight may affect parent so we have to do this bottom up */
1459static int tg_unthrottle_up(struct task_group *tg, void *data)
1460{
1461 struct rq *rq = data;
1462 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1463
1464 cfs_rq->throttle_count--;
1465#ifdef CONFIG_SMP
1466 if (!cfs_rq->throttle_count) {
1467 u64 delta = rq->clock_task - cfs_rq->load_stamp;
1468
1469 /* leaving throttled state, advance shares averaging windows */
1470 cfs_rq->load_stamp += delta;
1471 cfs_rq->load_last += delta;
1472
1473 /* update entity weight now that we are on_rq again */
1474 update_cfs_shares(cfs_rq);
1475 }
1476#endif
1477
1478 return 0;
1479}
1480
1481static int tg_throttle_down(struct task_group *tg, void *data)
1482{
1483 struct rq *rq = data;
1484 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1485
1486 /* group is entering throttled state, record last load */
1487 if (!cfs_rq->throttle_count)
1488 update_cfs_load(cfs_rq, 0);
1489 cfs_rq->throttle_count++;
1490
1491 return 0;
1492}
1493
d3d9dc33 1494static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
1495{
1496 struct rq *rq = rq_of(cfs_rq);
1497 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1498 struct sched_entity *se;
1499 long task_delta, dequeue = 1;
1500
1501 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1502
1503 /* account load preceding throttle */
64660c86
PT
1504 rcu_read_lock();
1505 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
1506 rcu_read_unlock();
85dac906
PT
1507
1508 task_delta = cfs_rq->h_nr_running;
1509 for_each_sched_entity(se) {
1510 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
1511 /* throttled entity or throttle-on-deactivate */
1512 if (!se->on_rq)
1513 break;
1514
1515 if (dequeue)
1516 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
1517 qcfs_rq->h_nr_running -= task_delta;
1518
1519 if (qcfs_rq->load.weight)
1520 dequeue = 0;
1521 }
1522
1523 if (!se)
1524 rq->nr_running -= task_delta;
1525
1526 cfs_rq->throttled = 1;
e8da1b18 1527 cfs_rq->throttled_timestamp = rq->clock;
85dac906
PT
1528 raw_spin_lock(&cfs_b->lock);
1529 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
1530 raw_spin_unlock(&cfs_b->lock);
1531}
1532
671fd9da
PT
1533static void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
1534{
1535 struct rq *rq = rq_of(cfs_rq);
1536 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1537 struct sched_entity *se;
1538 int enqueue = 1;
1539 long task_delta;
1540
1541 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
1542
1543 cfs_rq->throttled = 0;
1544 raw_spin_lock(&cfs_b->lock);
e8da1b18 1545 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
671fd9da
PT
1546 list_del_rcu(&cfs_rq->throttled_list);
1547 raw_spin_unlock(&cfs_b->lock);
e8da1b18 1548 cfs_rq->throttled_timestamp = 0;
671fd9da 1549
64660c86
PT
1550 update_rq_clock(rq);
1551 /* update hierarchical throttle state */
1552 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
1553
671fd9da
PT
1554 if (!cfs_rq->load.weight)
1555 return;
1556
1557 task_delta = cfs_rq->h_nr_running;
1558 for_each_sched_entity(se) {
1559 if (se->on_rq)
1560 enqueue = 0;
1561
1562 cfs_rq = cfs_rq_of(se);
1563 if (enqueue)
1564 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
1565 cfs_rq->h_nr_running += task_delta;
1566
1567 if (cfs_rq_throttled(cfs_rq))
1568 break;
1569 }
1570
1571 if (!se)
1572 rq->nr_running += task_delta;
1573
1574 /* determine whether we need to wake up potentially idle cpu */
1575 if (rq->curr == rq->idle && rq->cfs.nr_running)
1576 resched_task(rq->curr);
1577}
1578
1579static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
1580 u64 remaining, u64 expires)
1581{
1582 struct cfs_rq *cfs_rq;
1583 u64 runtime = remaining;
1584
1585 rcu_read_lock();
1586 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
1587 throttled_list) {
1588 struct rq *rq = rq_of(cfs_rq);
1589
1590 raw_spin_lock(&rq->lock);
1591 if (!cfs_rq_throttled(cfs_rq))
1592 goto next;
1593
1594 runtime = -cfs_rq->runtime_remaining + 1;
1595 if (runtime > remaining)
1596 runtime = remaining;
1597 remaining -= runtime;
1598
1599 cfs_rq->runtime_remaining += runtime;
1600 cfs_rq->runtime_expires = expires;
1601
1602 /* we check whether we're throttled above */
1603 if (cfs_rq->runtime_remaining > 0)
1604 unthrottle_cfs_rq(cfs_rq);
1605
1606next:
1607 raw_spin_unlock(&rq->lock);
1608
1609 if (!remaining)
1610 break;
1611 }
1612 rcu_read_unlock();
1613
1614 return remaining;
1615}
1616
58088ad0
PT
1617/*
1618 * Responsible for refilling a task_group's bandwidth and unthrottling its
1619 * cfs_rqs as appropriate. If there has been no activity within the last
1620 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
1621 * used to track this state.
1622 */
1623static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
1624{
671fd9da
PT
1625 u64 runtime, runtime_expires;
1626 int idle = 1, throttled;
58088ad0
PT
1627
1628 raw_spin_lock(&cfs_b->lock);
1629 /* no need to continue the timer with no bandwidth constraint */
1630 if (cfs_b->quota == RUNTIME_INF)
1631 goto out_unlock;
1632
671fd9da
PT
1633 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1634 /* idle depends on !throttled (for the case of a large deficit) */
1635 idle = cfs_b->idle && !throttled;
e8da1b18 1636 cfs_b->nr_periods += overrun;
671fd9da 1637
a9cf55b2
PT
1638 /* if we're going inactive then everything else can be deferred */
1639 if (idle)
1640 goto out_unlock;
1641
1642 __refill_cfs_bandwidth_runtime(cfs_b);
1643
671fd9da
PT
1644 if (!throttled) {
1645 /* mark as potentially idle for the upcoming period */
1646 cfs_b->idle = 1;
1647 goto out_unlock;
1648 }
1649
e8da1b18
NR
1650 /* account preceding periods in which throttling occurred */
1651 cfs_b->nr_throttled += overrun;
1652
671fd9da
PT
1653 /*
1654 * There are throttled entities so we must first use the new bandwidth
1655 * to unthrottle them before making it generally available. This
1656 * ensures that all existing debts will be paid before a new cfs_rq is
1657 * allowed to run.
1658 */
1659 runtime = cfs_b->runtime;
1660 runtime_expires = cfs_b->runtime_expires;
1661 cfs_b->runtime = 0;
1662
1663 /*
1664 * This check is repeated as we are holding onto the new bandwidth
1665 * while we unthrottle. This can potentially race with an unthrottled
1666 * group trying to acquire new bandwidth from the global pool.
1667 */
1668 while (throttled && runtime > 0) {
1669 raw_spin_unlock(&cfs_b->lock);
1670 /* we can't nest cfs_b->lock while distributing bandwidth */
1671 runtime = distribute_cfs_runtime(cfs_b, runtime,
1672 runtime_expires);
1673 raw_spin_lock(&cfs_b->lock);
1674
1675 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
1676 }
58088ad0 1677
671fd9da
PT
1678 /* return (any) remaining runtime */
1679 cfs_b->runtime = runtime;
1680 /*
1681 * While we are ensured activity in the period following an
1682 * unthrottle, this also covers the case in which the new bandwidth is
1683 * insufficient to cover the existing bandwidth deficit. (Forcing the
1684 * timer to remain active while there are any throttled entities.)
1685 */
1686 cfs_b->idle = 0;
58088ad0
PT
1687out_unlock:
1688 if (idle)
1689 cfs_b->timer_active = 0;
1690 raw_spin_unlock(&cfs_b->lock);
1691
1692 return idle;
1693}
d3d9dc33 1694
d8b4986d
PT
1695/* a cfs_rq won't donate quota below this amount */
1696static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
1697/* minimum remaining period time to redistribute slack quota */
1698static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
1699/* how long we wait to gather additional slack before distributing */
1700static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
1701
1702/* are we near the end of the current quota period? */
1703static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
1704{
1705 struct hrtimer *refresh_timer = &cfs_b->period_timer;
1706 u64 remaining;
1707
1708 /* if the call-back is running a quota refresh is already occurring */
1709 if (hrtimer_callback_running(refresh_timer))
1710 return 1;
1711
1712 /* is a quota refresh about to occur? */
1713 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
1714 if (remaining < min_expire)
1715 return 1;
1716
1717 return 0;
1718}
1719
1720static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
1721{
1722 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
1723
1724 /* if there's a quota refresh soon don't bother with slack */
1725 if (runtime_refresh_within(cfs_b, min_left))
1726 return;
1727
1728 start_bandwidth_timer(&cfs_b->slack_timer,
1729 ns_to_ktime(cfs_bandwidth_slack_period));
1730}
1731
1732/* we know any runtime found here is valid as update_curr() precedes return */
1733static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1734{
1735 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1736 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
1737
1738 if (slack_runtime <= 0)
1739 return;
1740
1741 raw_spin_lock(&cfs_b->lock);
1742 if (cfs_b->quota != RUNTIME_INF &&
1743 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
1744 cfs_b->runtime += slack_runtime;
1745
1746 /* we are under rq->lock, defer unthrottling using a timer */
1747 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
1748 !list_empty(&cfs_b->throttled_cfs_rq))
1749 start_cfs_slack_bandwidth(cfs_b);
1750 }
1751 raw_spin_unlock(&cfs_b->lock);
1752
1753 /* even if it's not valid for return we don't want to try again */
1754 cfs_rq->runtime_remaining -= slack_runtime;
1755}
1756
1757static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1758{
56f570e5
PT
1759 if (!cfs_bandwidth_used())
1760 return;
1761
fccfdc6f 1762 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
1763 return;
1764
1765 __return_cfs_rq_runtime(cfs_rq);
1766}
1767
1768/*
1769 * This is done with a timer (instead of inline with bandwidth return) since
1770 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
1771 */
1772static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
1773{
1774 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
1775 u64 expires;
1776
1777 /* confirm we're still not at a refresh boundary */
1778 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
1779 return;
1780
1781 raw_spin_lock(&cfs_b->lock);
1782 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
1783 runtime = cfs_b->runtime;
1784 cfs_b->runtime = 0;
1785 }
1786 expires = cfs_b->runtime_expires;
1787 raw_spin_unlock(&cfs_b->lock);
1788
1789 if (!runtime)
1790 return;
1791
1792 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
1793
1794 raw_spin_lock(&cfs_b->lock);
1795 if (expires == cfs_b->runtime_expires)
1796 cfs_b->runtime = runtime;
1797 raw_spin_unlock(&cfs_b->lock);
1798}
1799
d3d9dc33
PT
1800/*
1801 * When a group wakes up we want to make sure that its quota is not already
1802 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
1803 * runtime as update_curr() throttling can not not trigger until it's on-rq.
1804 */
1805static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
1806{
56f570e5
PT
1807 if (!cfs_bandwidth_used())
1808 return;
1809
d3d9dc33
PT
1810 /* an active group must be handled by the update_curr()->put() path */
1811 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
1812 return;
1813
1814 /* ensure the group is not already throttled */
1815 if (cfs_rq_throttled(cfs_rq))
1816 return;
1817
1818 /* update runtime allocation */
1819 account_cfs_rq_runtime(cfs_rq, 0);
1820 if (cfs_rq->runtime_remaining <= 0)
1821 throttle_cfs_rq(cfs_rq);
1822}
1823
1824/* conditionally throttle active cfs_rq's from put_prev_entity() */
1825static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1826{
56f570e5
PT
1827 if (!cfs_bandwidth_used())
1828 return;
1829
d3d9dc33
PT
1830 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
1831 return;
1832
1833 /*
1834 * it's possible for a throttled entity to be forced into a running
1835 * state (e.g. set_curr_task), in this case we're finished.
1836 */
1837 if (cfs_rq_throttled(cfs_rq))
1838 return;
1839
1840 throttle_cfs_rq(cfs_rq);
1841}
ec12cb7f
PT
1842#else
1843static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1844 unsigned long delta_exec) {}
d3d9dc33
PT
1845static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
1846static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
d8b4986d 1847static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
1848
1849static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1850{
1851 return 0;
1852}
64660c86
PT
1853
1854static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1855{
1856 return 0;
1857}
1858
1859static inline int throttled_lb_pair(struct task_group *tg,
1860 int src_cpu, int dest_cpu)
1861{
1862 return 0;
1863}
ab84d31e
PT
1864#endif
1865
bf0f6f24
IM
1866/**************************************************
1867 * CFS operations on tasks:
1868 */
1869
8f4d37ec
PZ
1870#ifdef CONFIG_SCHED_HRTICK
1871static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1872{
8f4d37ec
PZ
1873 struct sched_entity *se = &p->se;
1874 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1875
1876 WARN_ON(task_rq(p) != rq);
1877
1878 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1879 u64 slice = sched_slice(cfs_rq, se);
1880 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1881 s64 delta = slice - ran;
1882
1883 if (delta < 0) {
1884 if (rq->curr == p)
1885 resched_task(p);
1886 return;
1887 }
1888
1889 /*
1890 * Don't schedule slices shorter than 10000ns, that just
1891 * doesn't make sense. Rely on vruntime for fairness.
1892 */
31656519 1893 if (rq->curr != p)
157124c1 1894 delta = max_t(s64, 10000LL, delta);
8f4d37ec 1895
31656519 1896 hrtick_start(rq, delta);
8f4d37ec
PZ
1897 }
1898}
a4c2f00f
PZ
1899
1900/*
1901 * called from enqueue/dequeue and updates the hrtick when the
1902 * current task is from our class and nr_running is low enough
1903 * to matter.
1904 */
1905static void hrtick_update(struct rq *rq)
1906{
1907 struct task_struct *curr = rq->curr;
1908
1909 if (curr->sched_class != &fair_sched_class)
1910 return;
1911
1912 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1913 hrtick_start_fair(rq, curr);
1914}
55e12e5e 1915#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1916static inline void
1917hrtick_start_fair(struct rq *rq, struct task_struct *p)
1918{
1919}
a4c2f00f
PZ
1920
1921static inline void hrtick_update(struct rq *rq)
1922{
1923}
8f4d37ec
PZ
1924#endif
1925
bf0f6f24
IM
1926/*
1927 * The enqueue_task method is called before nr_running is
1928 * increased. Here we update the fair scheduling stats and
1929 * then put the task into the rbtree:
1930 */
ea87bb78 1931static void
371fd7e7 1932enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1933{
1934 struct cfs_rq *cfs_rq;
62fb1851 1935 struct sched_entity *se = &p->se;
bf0f6f24
IM
1936
1937 for_each_sched_entity(se) {
62fb1851 1938 if (se->on_rq)
bf0f6f24
IM
1939 break;
1940 cfs_rq = cfs_rq_of(se);
88ec22d3 1941 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
1942
1943 /*
1944 * end evaluation on encountering a throttled cfs_rq
1945 *
1946 * note: in the case of encountering a throttled cfs_rq we will
1947 * post the final h_nr_running increment below.
1948 */
1949 if (cfs_rq_throttled(cfs_rq))
1950 break;
953bfcd1 1951 cfs_rq->h_nr_running++;
85dac906 1952
88ec22d3 1953 flags = ENQUEUE_WAKEUP;
bf0f6f24 1954 }
8f4d37ec 1955
2069dd75 1956 for_each_sched_entity(se) {
0f317143 1957 cfs_rq = cfs_rq_of(se);
953bfcd1 1958 cfs_rq->h_nr_running++;
2069dd75 1959
85dac906
PT
1960 if (cfs_rq_throttled(cfs_rq))
1961 break;
1962
d6b55918 1963 update_cfs_load(cfs_rq, 0);
6d5ab293 1964 update_cfs_shares(cfs_rq);
2069dd75
PZ
1965 }
1966
85dac906
PT
1967 if (!se)
1968 inc_nr_running(rq);
a4c2f00f 1969 hrtick_update(rq);
bf0f6f24
IM
1970}
1971
2f36825b
VP
1972static void set_next_buddy(struct sched_entity *se);
1973
bf0f6f24
IM
1974/*
1975 * The dequeue_task method is called before nr_running is
1976 * decreased. We remove the task from the rbtree and
1977 * update the fair scheduling stats:
1978 */
371fd7e7 1979static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1980{
1981 struct cfs_rq *cfs_rq;
62fb1851 1982 struct sched_entity *se = &p->se;
2f36825b 1983 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
1984
1985 for_each_sched_entity(se) {
1986 cfs_rq = cfs_rq_of(se);
371fd7e7 1987 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
1988
1989 /*
1990 * end evaluation on encountering a throttled cfs_rq
1991 *
1992 * note: in the case of encountering a throttled cfs_rq we will
1993 * post the final h_nr_running decrement below.
1994 */
1995 if (cfs_rq_throttled(cfs_rq))
1996 break;
953bfcd1 1997 cfs_rq->h_nr_running--;
2069dd75 1998
bf0f6f24 1999 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2000 if (cfs_rq->load.weight) {
2001 /*
2002 * Bias pick_next to pick a task from this cfs_rq, as
2003 * p is sleeping when it is within its sched_slice.
2004 */
2005 if (task_sleep && parent_entity(se))
2006 set_next_buddy(parent_entity(se));
9598c82d
PT
2007
2008 /* avoid re-evaluating load for this entity */
2009 se = parent_entity(se);
bf0f6f24 2010 break;
2f36825b 2011 }
371fd7e7 2012 flags |= DEQUEUE_SLEEP;
bf0f6f24 2013 }
8f4d37ec 2014
2069dd75 2015 for_each_sched_entity(se) {
0f317143 2016 cfs_rq = cfs_rq_of(se);
953bfcd1 2017 cfs_rq->h_nr_running--;
2069dd75 2018
85dac906
PT
2019 if (cfs_rq_throttled(cfs_rq))
2020 break;
2021
d6b55918 2022 update_cfs_load(cfs_rq, 0);
6d5ab293 2023 update_cfs_shares(cfs_rq);
2069dd75
PZ
2024 }
2025
85dac906
PT
2026 if (!se)
2027 dec_nr_running(rq);
a4c2f00f 2028 hrtick_update(rq);
bf0f6f24
IM
2029}
2030
e7693a36 2031#ifdef CONFIG_SMP
098fb9db 2032
74f8e4b2 2033static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
2034{
2035 struct sched_entity *se = &p->se;
2036 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
2037 u64 min_vruntime;
2038
2039#ifndef CONFIG_64BIT
2040 u64 min_vruntime_copy;
88ec22d3 2041
3fe1698b
PZ
2042 do {
2043 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2044 smp_rmb();
2045 min_vruntime = cfs_rq->min_vruntime;
2046 } while (min_vruntime != min_vruntime_copy);
2047#else
2048 min_vruntime = cfs_rq->min_vruntime;
2049#endif
88ec22d3 2050
3fe1698b 2051 se->vruntime -= min_vruntime;
88ec22d3
PZ
2052}
2053
bb3469ac 2054#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
2055/*
2056 * effective_load() calculates the load change as seen from the root_task_group
2057 *
2058 * Adding load to a group doesn't make a group heavier, but can cause movement
2059 * of group shares between cpus. Assuming the shares were perfectly aligned one
2060 * can calculate the shift in shares.
cf5f0acf
PZ
2061 *
2062 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2063 * on this @cpu and results in a total addition (subtraction) of @wg to the
2064 * total group weight.
2065 *
2066 * Given a runqueue weight distribution (rw_i) we can compute a shares
2067 * distribution (s_i) using:
2068 *
2069 * s_i = rw_i / \Sum rw_j (1)
2070 *
2071 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2072 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2073 * shares distribution (s_i):
2074 *
2075 * rw_i = { 2, 4, 1, 0 }
2076 * s_i = { 2/7, 4/7, 1/7, 0 }
2077 *
2078 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2079 * task used to run on and the CPU the waker is running on), we need to
2080 * compute the effect of waking a task on either CPU and, in case of a sync
2081 * wakeup, compute the effect of the current task going to sleep.
2082 *
2083 * So for a change of @wl to the local @cpu with an overall group weight change
2084 * of @wl we can compute the new shares distribution (s'_i) using:
2085 *
2086 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2087 *
2088 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2089 * differences in waking a task to CPU 0. The additional task changes the
2090 * weight and shares distributions like:
2091 *
2092 * rw'_i = { 3, 4, 1, 0 }
2093 * s'_i = { 3/8, 4/8, 1/8, 0 }
2094 *
2095 * We can then compute the difference in effective weight by using:
2096 *
2097 * dw_i = S * (s'_i - s_i) (3)
2098 *
2099 * Where 'S' is the group weight as seen by its parent.
2100 *
2101 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2102 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2103 * 4/7) times the weight of the group.
f5bfb7d9 2104 */
2069dd75 2105static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 2106{
4be9daaa 2107 struct sched_entity *se = tg->se[cpu];
f1d239f7 2108
cf5f0acf 2109 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
2110 return wl;
2111
4be9daaa 2112 for_each_sched_entity(se) {
cf5f0acf 2113 long w, W;
4be9daaa 2114
977dda7c 2115 tg = se->my_q->tg;
bb3469ac 2116
cf5f0acf
PZ
2117 /*
2118 * W = @wg + \Sum rw_j
2119 */
2120 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 2121
cf5f0acf
PZ
2122 /*
2123 * w = rw_i + @wl
2124 */
2125 w = se->my_q->load.weight + wl;
940959e9 2126
cf5f0acf
PZ
2127 /*
2128 * wl = S * s'_i; see (2)
2129 */
2130 if (W > 0 && w < W)
2131 wl = (w * tg->shares) / W;
977dda7c
PT
2132 else
2133 wl = tg->shares;
940959e9 2134
cf5f0acf
PZ
2135 /*
2136 * Per the above, wl is the new se->load.weight value; since
2137 * those are clipped to [MIN_SHARES, ...) do so now. See
2138 * calc_cfs_shares().
2139 */
977dda7c
PT
2140 if (wl < MIN_SHARES)
2141 wl = MIN_SHARES;
cf5f0acf
PZ
2142
2143 /*
2144 * wl = dw_i = S * (s'_i - s_i); see (3)
2145 */
977dda7c 2146 wl -= se->load.weight;
cf5f0acf
PZ
2147
2148 /*
2149 * Recursively apply this logic to all parent groups to compute
2150 * the final effective load change on the root group. Since
2151 * only the @tg group gets extra weight, all parent groups can
2152 * only redistribute existing shares. @wl is the shift in shares
2153 * resulting from this level per the above.
2154 */
4be9daaa 2155 wg = 0;
4be9daaa 2156 }
bb3469ac 2157
4be9daaa 2158 return wl;
bb3469ac
PZ
2159}
2160#else
4be9daaa 2161
83378269
PZ
2162static inline unsigned long effective_load(struct task_group *tg, int cpu,
2163 unsigned long wl, unsigned long wg)
4be9daaa 2164{
83378269 2165 return wl;
bb3469ac 2166}
4be9daaa 2167
bb3469ac
PZ
2168#endif
2169
c88d5910 2170static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 2171{
e37b6a7b 2172 s64 this_load, load;
c88d5910 2173 int idx, this_cpu, prev_cpu;
098fb9db 2174 unsigned long tl_per_task;
c88d5910 2175 struct task_group *tg;
83378269 2176 unsigned long weight;
b3137bc8 2177 int balanced;
098fb9db 2178
c88d5910
PZ
2179 idx = sd->wake_idx;
2180 this_cpu = smp_processor_id();
2181 prev_cpu = task_cpu(p);
2182 load = source_load(prev_cpu, idx);
2183 this_load = target_load(this_cpu, idx);
098fb9db 2184
b3137bc8
MG
2185 /*
2186 * If sync wakeup then subtract the (maximum possible)
2187 * effect of the currently running task from the load
2188 * of the current CPU:
2189 */
83378269
PZ
2190 if (sync) {
2191 tg = task_group(current);
2192 weight = current->se.load.weight;
2193
c88d5910 2194 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
2195 load += effective_load(tg, prev_cpu, 0, -weight);
2196 }
b3137bc8 2197
83378269
PZ
2198 tg = task_group(p);
2199 weight = p->se.load.weight;
b3137bc8 2200
71a29aa7
PZ
2201 /*
2202 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
2203 * due to the sync cause above having dropped this_load to 0, we'll
2204 * always have an imbalance, but there's really nothing you can do
2205 * about that, so that's good too.
71a29aa7
PZ
2206 *
2207 * Otherwise check if either cpus are near enough in load to allow this
2208 * task to be woken on this_cpu.
2209 */
e37b6a7b
PT
2210 if (this_load > 0) {
2211 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
2212
2213 this_eff_load = 100;
2214 this_eff_load *= power_of(prev_cpu);
2215 this_eff_load *= this_load +
2216 effective_load(tg, this_cpu, weight, weight);
2217
2218 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2219 prev_eff_load *= power_of(this_cpu);
2220 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2221
2222 balanced = this_eff_load <= prev_eff_load;
2223 } else
2224 balanced = true;
b3137bc8 2225
098fb9db 2226 /*
4ae7d5ce
IM
2227 * If the currently running task will sleep within
2228 * a reasonable amount of time then attract this newly
2229 * woken task:
098fb9db 2230 */
2fb7635c
PZ
2231 if (sync && balanced)
2232 return 1;
098fb9db 2233
41acab88 2234 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
2235 tl_per_task = cpu_avg_load_per_task(this_cpu);
2236
c88d5910
PZ
2237 if (balanced ||
2238 (this_load <= load &&
2239 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
2240 /*
2241 * This domain has SD_WAKE_AFFINE and
2242 * p is cache cold in this domain, and
2243 * there is no bad imbalance.
2244 */
c88d5910 2245 schedstat_inc(sd, ttwu_move_affine);
41acab88 2246 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
2247
2248 return 1;
2249 }
2250 return 0;
2251}
2252
aaee1203
PZ
2253/*
2254 * find_idlest_group finds and returns the least busy CPU group within the
2255 * domain.
2256 */
2257static struct sched_group *
78e7ed53 2258find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 2259 int this_cpu, int load_idx)
e7693a36 2260{
b3bd3de6 2261 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 2262 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 2263 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 2264
aaee1203
PZ
2265 do {
2266 unsigned long load, avg_load;
2267 int local_group;
2268 int i;
e7693a36 2269
aaee1203
PZ
2270 /* Skip over this group if it has no CPUs allowed */
2271 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 2272 tsk_cpus_allowed(p)))
aaee1203
PZ
2273 continue;
2274
2275 local_group = cpumask_test_cpu(this_cpu,
2276 sched_group_cpus(group));
2277
2278 /* Tally up the load of all CPUs in the group */
2279 avg_load = 0;
2280
2281 for_each_cpu(i, sched_group_cpus(group)) {
2282 /* Bias balancing toward cpus of our domain */
2283 if (local_group)
2284 load = source_load(i, load_idx);
2285 else
2286 load = target_load(i, load_idx);
2287
2288 avg_load += load;
2289 }
2290
2291 /* Adjust by relative CPU power of the group */
9c3f75cb 2292 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
2293
2294 if (local_group) {
2295 this_load = avg_load;
aaee1203
PZ
2296 } else if (avg_load < min_load) {
2297 min_load = avg_load;
2298 idlest = group;
2299 }
2300 } while (group = group->next, group != sd->groups);
2301
2302 if (!idlest || 100*this_load < imbalance*min_load)
2303 return NULL;
2304 return idlest;
2305}
2306
2307/*
2308 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2309 */
2310static int
2311find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2312{
2313 unsigned long load, min_load = ULONG_MAX;
2314 int idlest = -1;
2315 int i;
2316
2317 /* Traverse only the allowed CPUs */
fa17b507 2318 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
2319 load = weighted_cpuload(i);
2320
2321 if (load < min_load || (load == min_load && i == this_cpu)) {
2322 min_load = load;
2323 idlest = i;
e7693a36
GH
2324 }
2325 }
2326
aaee1203
PZ
2327 return idlest;
2328}
e7693a36 2329
a50bde51
PZ
2330/*
2331 * Try and locate an idle CPU in the sched_domain.
2332 */
99bd5e2f 2333static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
2334{
2335 int cpu = smp_processor_id();
2336 int prev_cpu = task_cpu(p);
99bd5e2f 2337 struct sched_domain *sd;
4dcfe102
PZ
2338 struct sched_group *sg;
2339 int i, smt = 0;
a50bde51
PZ
2340
2341 /*
99bd5e2f
SS
2342 * If the task is going to be woken-up on this cpu and if it is
2343 * already idle, then it is the right target.
a50bde51 2344 */
99bd5e2f
SS
2345 if (target == cpu && idle_cpu(cpu))
2346 return cpu;
2347
2348 /*
2349 * If the task is going to be woken-up on the cpu where it previously
2350 * ran and if it is currently idle, then it the right target.
2351 */
2352 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 2353 return prev_cpu;
a50bde51
PZ
2354
2355 /*
99bd5e2f 2356 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 2357 */
dce840a0 2358 rcu_read_lock();
4dcfe102 2359again:
99bd5e2f 2360 for_each_domain(target, sd) {
4dcfe102
PZ
2361 if (!smt && (sd->flags & SD_SHARE_CPUPOWER))
2362 continue;
99bd5e2f 2363
4dcfe102
PZ
2364 if (!(sd->flags & SD_SHARE_PKG_RESOURCES)) {
2365 if (!smt) {
2366 smt = 1;
2367 goto again;
99bd5e2f 2368 }
4dcfe102 2369 break;
a50bde51 2370 }
99bd5e2f 2371
4dcfe102
PZ
2372 sg = sd->groups;
2373 do {
2374 if (!cpumask_intersects(sched_group_cpus(sg),
2375 tsk_cpus_allowed(p)))
2376 goto next;
2377
2378 for_each_cpu(i, sched_group_cpus(sg)) {
2379 if (!idle_cpu(i))
2380 goto next;
2381 }
2382
2383 target = cpumask_first_and(sched_group_cpus(sg),
2384 tsk_cpus_allowed(p));
2385 goto done;
2386next:
2387 sg = sg->next;
2388 } while (sg != sd->groups);
a50bde51 2389 }
4dcfe102 2390done:
dce840a0 2391 rcu_read_unlock();
a50bde51
PZ
2392
2393 return target;
2394}
2395
aaee1203
PZ
2396/*
2397 * sched_balance_self: balance the current task (running on cpu) in domains
2398 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2399 * SD_BALANCE_EXEC.
2400 *
2401 * Balance, ie. select the least loaded group.
2402 *
2403 * Returns the target CPU number, or the same CPU if no balancing is needed.
2404 *
2405 * preempt must be disabled.
2406 */
0017d735 2407static int
7608dec2 2408select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 2409{
29cd8bae 2410 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
2411 int cpu = smp_processor_id();
2412 int prev_cpu = task_cpu(p);
2413 int new_cpu = cpu;
99bd5e2f 2414 int want_affine = 0;
29cd8bae 2415 int want_sd = 1;
5158f4e4 2416 int sync = wake_flags & WF_SYNC;
c88d5910 2417
0763a660 2418 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 2419 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
2420 want_affine = 1;
2421 new_cpu = prev_cpu;
2422 }
aaee1203 2423
dce840a0 2424 rcu_read_lock();
aaee1203 2425 for_each_domain(cpu, tmp) {
e4f42888
PZ
2426 if (!(tmp->flags & SD_LOAD_BALANCE))
2427 continue;
2428
aaee1203 2429 /*
ae154be1
PZ
2430 * If power savings logic is enabled for a domain, see if we
2431 * are not overloaded, if so, don't balance wider.
aaee1203 2432 */
59abf026 2433 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
2434 unsigned long power = 0;
2435 unsigned long nr_running = 0;
2436 unsigned long capacity;
2437 int i;
2438
2439 for_each_cpu(i, sched_domain_span(tmp)) {
2440 power += power_of(i);
2441 nr_running += cpu_rq(i)->cfs.nr_running;
2442 }
2443
1399fa78 2444 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
ae154be1 2445
59abf026
PZ
2446 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2447 nr_running /= 2;
2448
2449 if (nr_running < capacity)
29cd8bae 2450 want_sd = 0;
ae154be1 2451 }
aaee1203 2452
fe3bcfe1 2453 /*
99bd5e2f
SS
2454 * If both cpu and prev_cpu are part of this domain,
2455 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 2456 */
99bd5e2f
SS
2457 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
2458 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
2459 affine_sd = tmp;
2460 want_affine = 0;
c88d5910
PZ
2461 }
2462
29cd8bae
PZ
2463 if (!want_sd && !want_affine)
2464 break;
2465
0763a660 2466 if (!(tmp->flags & sd_flag))
c88d5910
PZ
2467 continue;
2468
29cd8bae
PZ
2469 if (want_sd)
2470 sd = tmp;
2471 }
2472
8b911acd 2473 if (affine_sd) {
99bd5e2f 2474 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
dce840a0
PZ
2475 prev_cpu = cpu;
2476
2477 new_cpu = select_idle_sibling(p, prev_cpu);
2478 goto unlock;
8b911acd 2479 }
e7693a36 2480
aaee1203 2481 while (sd) {
5158f4e4 2482 int load_idx = sd->forkexec_idx;
aaee1203 2483 struct sched_group *group;
c88d5910 2484 int weight;
098fb9db 2485
0763a660 2486 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
2487 sd = sd->child;
2488 continue;
2489 }
098fb9db 2490
5158f4e4
PZ
2491 if (sd_flag & SD_BALANCE_WAKE)
2492 load_idx = sd->wake_idx;
098fb9db 2493
5158f4e4 2494 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
2495 if (!group) {
2496 sd = sd->child;
2497 continue;
2498 }
4ae7d5ce 2499
d7c33c49 2500 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
2501 if (new_cpu == -1 || new_cpu == cpu) {
2502 /* Now try balancing at a lower domain level of cpu */
2503 sd = sd->child;
2504 continue;
e7693a36 2505 }
aaee1203
PZ
2506
2507 /* Now try balancing at a lower domain level of new_cpu */
2508 cpu = new_cpu;
669c55e9 2509 weight = sd->span_weight;
aaee1203
PZ
2510 sd = NULL;
2511 for_each_domain(cpu, tmp) {
669c55e9 2512 if (weight <= tmp->span_weight)
aaee1203 2513 break;
0763a660 2514 if (tmp->flags & sd_flag)
aaee1203
PZ
2515 sd = tmp;
2516 }
2517 /* while loop will break here if sd == NULL */
e7693a36 2518 }
dce840a0
PZ
2519unlock:
2520 rcu_read_unlock();
e7693a36 2521
c88d5910 2522 return new_cpu;
e7693a36
GH
2523}
2524#endif /* CONFIG_SMP */
2525
e52fb7c0
PZ
2526static unsigned long
2527wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
2528{
2529 unsigned long gran = sysctl_sched_wakeup_granularity;
2530
2531 /*
e52fb7c0
PZ
2532 * Since its curr running now, convert the gran from real-time
2533 * to virtual-time in his units.
13814d42
MG
2534 *
2535 * By using 'se' instead of 'curr' we penalize light tasks, so
2536 * they get preempted easier. That is, if 'se' < 'curr' then
2537 * the resulting gran will be larger, therefore penalizing the
2538 * lighter, if otoh 'se' > 'curr' then the resulting gran will
2539 * be smaller, again penalizing the lighter task.
2540 *
2541 * This is especially important for buddies when the leftmost
2542 * task is higher priority than the buddy.
0bbd3336 2543 */
f4ad9bd2 2544 return calc_delta_fair(gran, se);
0bbd3336
PZ
2545}
2546
464b7527
PZ
2547/*
2548 * Should 'se' preempt 'curr'.
2549 *
2550 * |s1
2551 * |s2
2552 * |s3
2553 * g
2554 * |<--->|c
2555 *
2556 * w(c, s1) = -1
2557 * w(c, s2) = 0
2558 * w(c, s3) = 1
2559 *
2560 */
2561static int
2562wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
2563{
2564 s64 gran, vdiff = curr->vruntime - se->vruntime;
2565
2566 if (vdiff <= 0)
2567 return -1;
2568
e52fb7c0 2569 gran = wakeup_gran(curr, se);
464b7527
PZ
2570 if (vdiff > gran)
2571 return 1;
2572
2573 return 0;
2574}
2575
02479099
PZ
2576static void set_last_buddy(struct sched_entity *se)
2577{
69c80f3e
VP
2578 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2579 return;
2580
2581 for_each_sched_entity(se)
2582 cfs_rq_of(se)->last = se;
02479099
PZ
2583}
2584
2585static void set_next_buddy(struct sched_entity *se)
2586{
69c80f3e
VP
2587 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
2588 return;
2589
2590 for_each_sched_entity(se)
2591 cfs_rq_of(se)->next = se;
02479099
PZ
2592}
2593
ac53db59
RR
2594static void set_skip_buddy(struct sched_entity *se)
2595{
69c80f3e
VP
2596 for_each_sched_entity(se)
2597 cfs_rq_of(se)->skip = se;
ac53db59
RR
2598}
2599
bf0f6f24
IM
2600/*
2601 * Preempt the current task with a newly woken task if needed:
2602 */
5a9b86f6 2603static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
2604{
2605 struct task_struct *curr = rq->curr;
8651a86c 2606 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 2607 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 2608 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 2609 int next_buddy_marked = 0;
bf0f6f24 2610
4ae7d5ce
IM
2611 if (unlikely(se == pse))
2612 return;
2613
5238cdd3
PT
2614 /*
2615 * This is possible from callers such as pull_task(), in which we
2616 * unconditionally check_prempt_curr() after an enqueue (which may have
2617 * lead to a throttle). This both saves work and prevents false
2618 * next-buddy nomination below.
2619 */
2620 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
2621 return;
2622
2f36825b 2623 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 2624 set_next_buddy(pse);
2f36825b
VP
2625 next_buddy_marked = 1;
2626 }
57fdc26d 2627
aec0a514
BR
2628 /*
2629 * We can come here with TIF_NEED_RESCHED already set from new task
2630 * wake up path.
5238cdd3
PT
2631 *
2632 * Note: this also catches the edge-case of curr being in a throttled
2633 * group (e.g. via set_curr_task), since update_curr() (in the
2634 * enqueue of curr) will have resulted in resched being set. This
2635 * prevents us from potentially nominating it as a false LAST_BUDDY
2636 * below.
aec0a514
BR
2637 */
2638 if (test_tsk_need_resched(curr))
2639 return;
2640
a2f5c9ab
DH
2641 /* Idle tasks are by definition preempted by non-idle tasks. */
2642 if (unlikely(curr->policy == SCHED_IDLE) &&
2643 likely(p->policy != SCHED_IDLE))
2644 goto preempt;
2645
91c234b4 2646 /*
a2f5c9ab
DH
2647 * Batch and idle tasks do not preempt non-idle tasks (their preemption
2648 * is driven by the tick):
91c234b4 2649 */
6bc912b7 2650 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 2651 return;
bf0f6f24 2652
464b7527 2653 find_matching_se(&se, &pse);
9bbd7374 2654 update_curr(cfs_rq_of(se));
002f128b 2655 BUG_ON(!pse);
2f36825b
VP
2656 if (wakeup_preempt_entity(se, pse) == 1) {
2657 /*
2658 * Bias pick_next to pick the sched entity that is
2659 * triggering this preemption.
2660 */
2661 if (!next_buddy_marked)
2662 set_next_buddy(pse);
3a7e73a2 2663 goto preempt;
2f36825b 2664 }
464b7527 2665
3a7e73a2 2666 return;
a65ac745 2667
3a7e73a2
PZ
2668preempt:
2669 resched_task(curr);
2670 /*
2671 * Only set the backward buddy when the current task is still
2672 * on the rq. This can happen when a wakeup gets interleaved
2673 * with schedule on the ->pre_schedule() or idle_balance()
2674 * point, either of which can * drop the rq lock.
2675 *
2676 * Also, during early boot the idle thread is in the fair class,
2677 * for obvious reasons its a bad idea to schedule back to it.
2678 */
2679 if (unlikely(!se->on_rq || curr == rq->idle))
2680 return;
2681
2682 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
2683 set_last_buddy(se);
bf0f6f24
IM
2684}
2685
fb8d4724 2686static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 2687{
8f4d37ec 2688 struct task_struct *p;
bf0f6f24
IM
2689 struct cfs_rq *cfs_rq = &rq->cfs;
2690 struct sched_entity *se;
2691
36ace27e 2692 if (!cfs_rq->nr_running)
bf0f6f24
IM
2693 return NULL;
2694
2695 do {
9948f4b2 2696 se = pick_next_entity(cfs_rq);
f4b6755f 2697 set_next_entity(cfs_rq, se);
bf0f6f24
IM
2698 cfs_rq = group_cfs_rq(se);
2699 } while (cfs_rq);
2700
8f4d37ec
PZ
2701 p = task_of(se);
2702 hrtick_start_fair(rq, p);
2703
2704 return p;
bf0f6f24
IM
2705}
2706
2707/*
2708 * Account for a descheduled task:
2709 */
31ee529c 2710static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
2711{
2712 struct sched_entity *se = &prev->se;
2713 struct cfs_rq *cfs_rq;
2714
2715 for_each_sched_entity(se) {
2716 cfs_rq = cfs_rq_of(se);
ab6cde26 2717 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
2718 }
2719}
2720
ac53db59
RR
2721/*
2722 * sched_yield() is very simple
2723 *
2724 * The magic of dealing with the ->skip buddy is in pick_next_entity.
2725 */
2726static void yield_task_fair(struct rq *rq)
2727{
2728 struct task_struct *curr = rq->curr;
2729 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2730 struct sched_entity *se = &curr->se;
2731
2732 /*
2733 * Are we the only task in the tree?
2734 */
2735 if (unlikely(rq->nr_running == 1))
2736 return;
2737
2738 clear_buddies(cfs_rq, se);
2739
2740 if (curr->policy != SCHED_BATCH) {
2741 update_rq_clock(rq);
2742 /*
2743 * Update run-time statistics of the 'current'.
2744 */
2745 update_curr(cfs_rq);
2746 }
2747
2748 set_skip_buddy(se);
2749}
2750
d95f4122
MG
2751static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
2752{
2753 struct sched_entity *se = &p->se;
2754
5238cdd3
PT
2755 /* throttled hierarchies are not runnable */
2756 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
2757 return false;
2758
2759 /* Tell the scheduler that we'd really like pse to run next. */
2760 set_next_buddy(se);
2761
d95f4122
MG
2762 yield_task_fair(rq);
2763
2764 return true;
2765}
2766
681f3e68 2767#ifdef CONFIG_SMP
bf0f6f24
IM
2768/**************************************************
2769 * Fair scheduling class load-balancing methods:
2770 */
2771
1e3c88bd
PZ
2772/*
2773 * pull_task - move a task from a remote runqueue to the local runqueue.
2774 * Both runqueues must be locked.
2775 */
2776static void pull_task(struct rq *src_rq, struct task_struct *p,
2777 struct rq *this_rq, int this_cpu)
2778{
2779 deactivate_task(src_rq, p, 0);
2780 set_task_cpu(p, this_cpu);
2781 activate_task(this_rq, p, 0);
2782 check_preempt_curr(this_rq, p, 0);
2783}
2784
2785/*
2786 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2787 */
2788static
2789int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2790 struct sched_domain *sd, enum cpu_idle_type idle,
2791 int *all_pinned)
2792{
2793 int tsk_cache_hot = 0;
2794 /*
2795 * We do not migrate tasks that are:
2796 * 1) running (obviously), or
2797 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2798 * 3) are cache-hot on their current CPU.
2799 */
fa17b507 2800 if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) {
41acab88 2801 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
2802 return 0;
2803 }
2804 *all_pinned = 0;
2805
2806 if (task_running(rq, p)) {
41acab88 2807 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
2808 return 0;
2809 }
2810
2811 /*
2812 * Aggressive migration if:
2813 * 1) task is cache cold, or
2814 * 2) too many balance attempts have failed.
2815 */
2816
305e6835 2817 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1e3c88bd
PZ
2818 if (!tsk_cache_hot ||
2819 sd->nr_balance_failed > sd->cache_nice_tries) {
2820#ifdef CONFIG_SCHEDSTATS
2821 if (tsk_cache_hot) {
2822 schedstat_inc(sd, lb_hot_gained[idle]);
41acab88 2823 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
2824 }
2825#endif
2826 return 1;
2827 }
2828
2829 if (tsk_cache_hot) {
41acab88 2830 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
2831 return 0;
2832 }
2833 return 1;
2834}
2835
897c395f
PZ
2836/*
2837 * move_one_task tries to move exactly one task from busiest to this_rq, as
2838 * part of active balancing operations within "domain".
2839 * Returns 1 if successful and 0 otherwise.
2840 *
2841 * Called with both runqueues locked.
2842 */
2843static int
2844move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2845 struct sched_domain *sd, enum cpu_idle_type idle)
2846{
2847 struct task_struct *p, *n;
2848 struct cfs_rq *cfs_rq;
2849 int pinned = 0;
2850
2851 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2852 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
64660c86
PT
2853 if (throttled_lb_pair(task_group(p),
2854 busiest->cpu, this_cpu))
2855 break;
897c395f
PZ
2856
2857 if (!can_migrate_task(p, busiest, this_cpu,
2858 sd, idle, &pinned))
2859 continue;
2860
2861 pull_task(busiest, p, this_rq, this_cpu);
2862 /*
2863 * Right now, this is only the second place pull_task()
2864 * is called, so we can safely collect pull_task()
2865 * stats here rather than inside pull_task().
2866 */
2867 schedstat_inc(sd, lb_gained[idle]);
2868 return 1;
2869 }
2870 }
2871
2872 return 0;
2873}
2874
1e3c88bd
PZ
2875static unsigned long
2876balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2877 unsigned long max_load_move, struct sched_domain *sd,
2878 enum cpu_idle_type idle, int *all_pinned,
931aeeda 2879 struct cfs_rq *busiest_cfs_rq)
1e3c88bd 2880{
b30aef17 2881 int loops = 0, pulled = 0;
1e3c88bd 2882 long rem_load_move = max_load_move;
ee00e66f 2883 struct task_struct *p, *n;
1e3c88bd
PZ
2884
2885 if (max_load_move == 0)
2886 goto out;
2887
ee00e66f
PZ
2888 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2889 if (loops++ > sysctl_sched_nr_migrate)
2890 break;
1e3c88bd 2891
ee00e66f 2892 if ((p->se.load.weight >> 1) > rem_load_move ||
b30aef17
KC
2893 !can_migrate_task(p, busiest, this_cpu, sd, idle,
2894 all_pinned))
ee00e66f 2895 continue;
1e3c88bd 2896
ee00e66f
PZ
2897 pull_task(busiest, p, this_rq, this_cpu);
2898 pulled++;
2899 rem_load_move -= p->se.load.weight;
1e3c88bd
PZ
2900
2901#ifdef CONFIG_PREEMPT
ee00e66f
PZ
2902 /*
2903 * NEWIDLE balancing is a source of latency, so preemptible
2904 * kernels will stop after the first task is pulled to minimize
2905 * the critical section.
2906 */
2907 if (idle == CPU_NEWLY_IDLE)
2908 break;
1e3c88bd
PZ
2909#endif
2910
ee00e66f
PZ
2911 /*
2912 * We only want to steal up to the prescribed amount of
2913 * weighted load.
2914 */
2915 if (rem_load_move <= 0)
2916 break;
1e3c88bd
PZ
2917 }
2918out:
2919 /*
2920 * Right now, this is one of only two places pull_task() is called,
2921 * so we can safely collect pull_task() stats here rather than
2922 * inside pull_task().
2923 */
2924 schedstat_add(sd, lb_gained[idle], pulled);
2925
1e3c88bd
PZ
2926 return max_load_move - rem_load_move;
2927}
2928
230059de 2929#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
2930/*
2931 * update tg->load_weight by folding this cpu's load_avg
2932 */
67e86250 2933static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
2934{
2935 struct cfs_rq *cfs_rq;
2936 unsigned long flags;
2937 struct rq *rq;
9e3081ca
PZ
2938
2939 if (!tg->se[cpu])
2940 return 0;
2941
2942 rq = cpu_rq(cpu);
2943 cfs_rq = tg->cfs_rq[cpu];
2944
2945 raw_spin_lock_irqsave(&rq->lock, flags);
2946
2947 update_rq_clock(rq);
d6b55918 2948 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
2949
2950 /*
2951 * We need to update shares after updating tg->load_weight in
2952 * order to adjust the weight of groups with long running tasks.
2953 */
6d5ab293 2954 update_cfs_shares(cfs_rq);
9e3081ca
PZ
2955
2956 raw_spin_unlock_irqrestore(&rq->lock, flags);
2957
2958 return 0;
2959}
2960
2961static void update_shares(int cpu)
2962{
2963 struct cfs_rq *cfs_rq;
2964 struct rq *rq = cpu_rq(cpu);
2965
2966 rcu_read_lock();
9763b67f
PZ
2967 /*
2968 * Iterates the task_group tree in a bottom up fashion, see
2969 * list_add_leaf_cfs_rq() for details.
2970 */
64660c86
PT
2971 for_each_leaf_cfs_rq(rq, cfs_rq) {
2972 /* throttled entities do not contribute to load */
2973 if (throttled_hierarchy(cfs_rq))
2974 continue;
2975
67e86250 2976 update_shares_cpu(cfs_rq->tg, cpu);
64660c86 2977 }
9e3081ca
PZ
2978 rcu_read_unlock();
2979}
2980
9763b67f
PZ
2981/*
2982 * Compute the cpu's hierarchical load factor for each task group.
2983 * This needs to be done in a top-down fashion because the load of a child
2984 * group is a fraction of its parents load.
2985 */
2986static int tg_load_down(struct task_group *tg, void *data)
2987{
2988 unsigned long load;
2989 long cpu = (long)data;
2990
2991 if (!tg->parent) {
2992 load = cpu_rq(cpu)->load.weight;
2993 } else {
2994 load = tg->parent->cfs_rq[cpu]->h_load;
2995 load *= tg->se[cpu]->load.weight;
2996 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
2997 }
2998
2999 tg->cfs_rq[cpu]->h_load = load;
3000
3001 return 0;
3002}
3003
3004static void update_h_load(long cpu)
3005{
3006 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3007}
3008
230059de
PZ
3009static unsigned long
3010load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
3011 unsigned long max_load_move,
3012 struct sched_domain *sd, enum cpu_idle_type idle,
931aeeda 3013 int *all_pinned)
230059de
PZ
3014{
3015 long rem_load_move = max_load_move;
9763b67f 3016 struct cfs_rq *busiest_cfs_rq;
230059de
PZ
3017
3018 rcu_read_lock();
9763b67f 3019 update_h_load(cpu_of(busiest));
230059de 3020
9763b67f 3021 for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
230059de
PZ
3022 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
3023 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
3024 u64 rem_load, moved_load;
3025
3026 /*
64660c86 3027 * empty group or part of a throttled hierarchy
230059de 3028 */
64660c86
PT
3029 if (!busiest_cfs_rq->task_weight ||
3030 throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
230059de
PZ
3031 continue;
3032
3033 rem_load = (u64)rem_load_move * busiest_weight;
3034 rem_load = div_u64(rem_load, busiest_h_load + 1);
3035
3036 moved_load = balance_tasks(this_rq, this_cpu, busiest,
931aeeda 3037 rem_load, sd, idle, all_pinned,
230059de
PZ
3038 busiest_cfs_rq);
3039
3040 if (!moved_load)
3041 continue;
3042
3043 moved_load *= busiest_h_load;
3044 moved_load = div_u64(moved_load, busiest_weight + 1);
3045
3046 rem_load_move -= moved_load;
3047 if (rem_load_move < 0)
3048 break;
3049 }
3050 rcu_read_unlock();
3051
3052 return max_load_move - rem_load_move;
3053}
3054#else
9e3081ca
PZ
3055static inline void update_shares(int cpu)
3056{
3057}
3058
230059de
PZ
3059static unsigned long
3060load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
3061 unsigned long max_load_move,
3062 struct sched_domain *sd, enum cpu_idle_type idle,
931aeeda 3063 int *all_pinned)
230059de
PZ
3064{
3065 return balance_tasks(this_rq, this_cpu, busiest,
3066 max_load_move, sd, idle, all_pinned,
931aeeda 3067 &busiest->cfs);
230059de
PZ
3068}
3069#endif
3070
1e3c88bd
PZ
3071/*
3072 * move_tasks tries to move up to max_load_move weighted load from busiest to
3073 * this_rq, as part of a balancing operation within domain "sd".
3074 * Returns 1 if successful and 0 otherwise.
3075 *
3076 * Called with both runqueues locked.
3077 */
3078static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3079 unsigned long max_load_move,
3080 struct sched_domain *sd, enum cpu_idle_type idle,
3081 int *all_pinned)
3082{
3d45fd80 3083 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
3084
3085 do {
3d45fd80 3086 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd 3087 max_load_move - total_load_moved,
931aeeda 3088 sd, idle, all_pinned);
3d45fd80
PZ
3089
3090 total_load_moved += load_moved;
1e3c88bd
PZ
3091
3092#ifdef CONFIG_PREEMPT
3093 /*
3094 * NEWIDLE balancing is a source of latency, so preemptible
3095 * kernels will stop after the first task is pulled to minimize
3096 * the critical section.
3097 */
3098 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3099 break;
baa8c110
PZ
3100
3101 if (raw_spin_is_contended(&this_rq->lock) ||
3102 raw_spin_is_contended(&busiest->lock))
3103 break;
1e3c88bd 3104#endif
3d45fd80 3105 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
3106
3107 return total_load_moved > 0;
3108}
3109
1e3c88bd
PZ
3110/********** Helpers for find_busiest_group ************************/
3111/*
3112 * sd_lb_stats - Structure to store the statistics of a sched_domain
3113 * during load balancing.
3114 */
3115struct sd_lb_stats {
3116 struct sched_group *busiest; /* Busiest group in this sd */
3117 struct sched_group *this; /* Local group in this sd */
3118 unsigned long total_load; /* Total load of all groups in sd */
3119 unsigned long total_pwr; /* Total power of all groups in sd */
3120 unsigned long avg_load; /* Average load across all groups in sd */
3121
3122 /** Statistics of this group */
3123 unsigned long this_load;
3124 unsigned long this_load_per_task;
3125 unsigned long this_nr_running;
fab47622 3126 unsigned long this_has_capacity;
aae6d3dd 3127 unsigned int this_idle_cpus;
1e3c88bd
PZ
3128
3129 /* Statistics of the busiest group */
aae6d3dd 3130 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
3131 unsigned long max_load;
3132 unsigned long busiest_load_per_task;
3133 unsigned long busiest_nr_running;
dd5feea1 3134 unsigned long busiest_group_capacity;
fab47622 3135 unsigned long busiest_has_capacity;
aae6d3dd 3136 unsigned int busiest_group_weight;
1e3c88bd
PZ
3137
3138 int group_imb; /* Is there imbalance in this sd */
3139#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3140 int power_savings_balance; /* Is powersave balance needed for this sd */
3141 struct sched_group *group_min; /* Least loaded group in sd */
3142 struct sched_group *group_leader; /* Group which relieves group_min */
3143 unsigned long min_load_per_task; /* load_per_task in group_min */
3144 unsigned long leader_nr_running; /* Nr running of group_leader */
3145 unsigned long min_nr_running; /* Nr running of group_min */
3146#endif
3147};
3148
3149/*
3150 * sg_lb_stats - stats of a sched_group required for load_balancing
3151 */
3152struct sg_lb_stats {
3153 unsigned long avg_load; /*Avg load across the CPUs of the group */
3154 unsigned long group_load; /* Total load over the CPUs of the group */
3155 unsigned long sum_nr_running; /* Nr tasks running in the group */
3156 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3157 unsigned long group_capacity;
aae6d3dd
SS
3158 unsigned long idle_cpus;
3159 unsigned long group_weight;
1e3c88bd 3160 int group_imb; /* Is there an imbalance in the group ? */
fab47622 3161 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
3162};
3163
3164/**
3165 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3166 * @group: The group whose first cpu is to be returned.
3167 */
3168static inline unsigned int group_first_cpu(struct sched_group *group)
3169{
3170 return cpumask_first(sched_group_cpus(group));
3171}
3172
3173/**
3174 * get_sd_load_idx - Obtain the load index for a given sched domain.
3175 * @sd: The sched_domain whose load_idx is to be obtained.
3176 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3177 */
3178static inline int get_sd_load_idx(struct sched_domain *sd,
3179 enum cpu_idle_type idle)
3180{
3181 int load_idx;
3182
3183 switch (idle) {
3184 case CPU_NOT_IDLE:
3185 load_idx = sd->busy_idx;
3186 break;
3187
3188 case CPU_NEWLY_IDLE:
3189 load_idx = sd->newidle_idx;
3190 break;
3191 default:
3192 load_idx = sd->idle_idx;
3193 break;
3194 }
3195
3196 return load_idx;
3197}
3198
3199
3200#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3201/**
3202 * init_sd_power_savings_stats - Initialize power savings statistics for
3203 * the given sched_domain, during load balancing.
3204 *
3205 * @sd: Sched domain whose power-savings statistics are to be initialized.
3206 * @sds: Variable containing the statistics for sd.
3207 * @idle: Idle status of the CPU at which we're performing load-balancing.
3208 */
3209static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3210 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3211{
3212 /*
3213 * Busy processors will not participate in power savings
3214 * balance.
3215 */
3216 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3217 sds->power_savings_balance = 0;
3218 else {
3219 sds->power_savings_balance = 1;
3220 sds->min_nr_running = ULONG_MAX;
3221 sds->leader_nr_running = 0;
3222 }
3223}
3224
3225/**
3226 * update_sd_power_savings_stats - Update the power saving stats for a
3227 * sched_domain while performing load balancing.
3228 *
3229 * @group: sched_group belonging to the sched_domain under consideration.
3230 * @sds: Variable containing the statistics of the sched_domain
3231 * @local_group: Does group contain the CPU for which we're performing
3232 * load balancing ?
3233 * @sgs: Variable containing the statistics of the group.
3234 */
3235static inline void update_sd_power_savings_stats(struct sched_group *group,
3236 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3237{
3238
3239 if (!sds->power_savings_balance)
3240 return;
3241
3242 /*
3243 * If the local group is idle or completely loaded
3244 * no need to do power savings balance at this domain
3245 */
3246 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3247 !sds->this_nr_running))
3248 sds->power_savings_balance = 0;
3249
3250 /*
3251 * If a group is already running at full capacity or idle,
3252 * don't include that group in power savings calculations
3253 */
3254 if (!sds->power_savings_balance ||
3255 sgs->sum_nr_running >= sgs->group_capacity ||
3256 !sgs->sum_nr_running)
3257 return;
3258
3259 /*
3260 * Calculate the group which has the least non-idle load.
3261 * This is the group from where we need to pick up the load
3262 * for saving power
3263 */
3264 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3265 (sgs->sum_nr_running == sds->min_nr_running &&
3266 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3267 sds->group_min = group;
3268 sds->min_nr_running = sgs->sum_nr_running;
3269 sds->min_load_per_task = sgs->sum_weighted_load /
3270 sgs->sum_nr_running;
3271 }
3272
3273 /*
3274 * Calculate the group which is almost near its
3275 * capacity but still has some space to pick up some load
3276 * from other group and save more power
3277 */
3278 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3279 return;
3280
3281 if (sgs->sum_nr_running > sds->leader_nr_running ||
3282 (sgs->sum_nr_running == sds->leader_nr_running &&
3283 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3284 sds->group_leader = group;
3285 sds->leader_nr_running = sgs->sum_nr_running;
3286 }
3287}
3288
3289/**
3290 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3291 * @sds: Variable containing the statistics of the sched_domain
3292 * under consideration.
3293 * @this_cpu: Cpu at which we're currently performing load-balancing.
3294 * @imbalance: Variable to store the imbalance.
3295 *
3296 * Description:
3297 * Check if we have potential to perform some power-savings balance.
3298 * If yes, set the busiest group to be the least loaded group in the
3299 * sched_domain, so that it's CPUs can be put to idle.
3300 *
3301 * Returns 1 if there is potential to perform power-savings balance.
3302 * Else returns 0.
3303 */
3304static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3305 int this_cpu, unsigned long *imbalance)
3306{
3307 if (!sds->power_savings_balance)
3308 return 0;
3309
3310 if (sds->this != sds->group_leader ||
3311 sds->group_leader == sds->group_min)
3312 return 0;
3313
3314 *imbalance = sds->min_load_per_task;
3315 sds->busiest = sds->group_min;
3316
3317 return 1;
3318
3319}
3320#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3321static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3322 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3323{
3324 return;
3325}
3326
3327static inline void update_sd_power_savings_stats(struct sched_group *group,
3328 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3329{
3330 return;
3331}
3332
3333static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3334 int this_cpu, unsigned long *imbalance)
3335{
3336 return 0;
3337}
3338#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3339
3340
3341unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3342{
1399fa78 3343 return SCHED_POWER_SCALE;
1e3c88bd
PZ
3344}
3345
3346unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3347{
3348 return default_scale_freq_power(sd, cpu);
3349}
3350
3351unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3352{
669c55e9 3353 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
3354 unsigned long smt_gain = sd->smt_gain;
3355
3356 smt_gain /= weight;
3357
3358 return smt_gain;
3359}
3360
3361unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3362{
3363 return default_scale_smt_power(sd, cpu);
3364}
3365
3366unsigned long scale_rt_power(int cpu)
3367{
3368 struct rq *rq = cpu_rq(cpu);
3369 u64 total, available;
3370
1e3c88bd 3371 total = sched_avg_period() + (rq->clock - rq->age_stamp);
aa483808
VP
3372
3373 if (unlikely(total < rq->rt_avg)) {
3374 /* Ensures that power won't end up being negative */
3375 available = 0;
3376 } else {
3377 available = total - rq->rt_avg;
3378 }
1e3c88bd 3379
1399fa78
NR
3380 if (unlikely((s64)total < SCHED_POWER_SCALE))
3381 total = SCHED_POWER_SCALE;
1e3c88bd 3382
1399fa78 3383 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3384
3385 return div_u64(available, total);
3386}
3387
3388static void update_cpu_power(struct sched_domain *sd, int cpu)
3389{
669c55e9 3390 unsigned long weight = sd->span_weight;
1399fa78 3391 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
3392 struct sched_group *sdg = sd->groups;
3393
1e3c88bd
PZ
3394 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3395 if (sched_feat(ARCH_POWER))
3396 power *= arch_scale_smt_power(sd, cpu);
3397 else
3398 power *= default_scale_smt_power(sd, cpu);
3399
1399fa78 3400 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3401 }
3402
9c3f75cb 3403 sdg->sgp->power_orig = power;
9d5efe05
SV
3404
3405 if (sched_feat(ARCH_POWER))
3406 power *= arch_scale_freq_power(sd, cpu);
3407 else
3408 power *= default_scale_freq_power(sd, cpu);
3409
1399fa78 3410 power >>= SCHED_POWER_SHIFT;
9d5efe05 3411
1e3c88bd 3412 power *= scale_rt_power(cpu);
1399fa78 3413 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
3414
3415 if (!power)
3416 power = 1;
3417
e51fd5e2 3418 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 3419 sdg->sgp->power = power;
1e3c88bd
PZ
3420}
3421
3422static void update_group_power(struct sched_domain *sd, int cpu)
3423{
3424 struct sched_domain *child = sd->child;
3425 struct sched_group *group, *sdg = sd->groups;
3426 unsigned long power;
3427
3428 if (!child) {
3429 update_cpu_power(sd, cpu);
3430 return;
3431 }
3432
3433 power = 0;
3434
3435 group = child->groups;
3436 do {
9c3f75cb 3437 power += group->sgp->power;
1e3c88bd
PZ
3438 group = group->next;
3439 } while (group != child->groups);
3440
9c3f75cb 3441 sdg->sgp->power = power;
1e3c88bd
PZ
3442}
3443
9d5efe05
SV
3444/*
3445 * Try and fix up capacity for tiny siblings, this is needed when
3446 * things like SD_ASYM_PACKING need f_b_g to select another sibling
3447 * which on its own isn't powerful enough.
3448 *
3449 * See update_sd_pick_busiest() and check_asym_packing().
3450 */
3451static inline int
3452fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
3453{
3454 /*
1399fa78 3455 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 3456 */
a6c75f2f 3457 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
3458 return 0;
3459
3460 /*
3461 * If ~90% of the cpu_power is still there, we're good.
3462 */
9c3f75cb 3463 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
3464 return 1;
3465
3466 return 0;
3467}
3468
1e3c88bd
PZ
3469/**
3470 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3471 * @sd: The sched_domain whose statistics are to be updated.
3472 * @group: sched_group whose statistics are to be updated.
3473 * @this_cpu: Cpu for which load balance is currently performed.
3474 * @idle: Idle status of this_cpu
3475 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd
PZ
3476 * @local_group: Does group contain this_cpu.
3477 * @cpus: Set of cpus considered for load balancing.
3478 * @balance: Should we balance.
3479 * @sgs: variable to hold the statistics for this group.
3480 */
3481static inline void update_sg_lb_stats(struct sched_domain *sd,
3482 struct sched_group *group, int this_cpu,
46e49b38 3483 enum cpu_idle_type idle, int load_idx,
1e3c88bd
PZ
3484 int local_group, const struct cpumask *cpus,
3485 int *balance, struct sg_lb_stats *sgs)
3486{
2582f0eb 3487 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
1e3c88bd
PZ
3488 int i;
3489 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 3490 unsigned long avg_load_per_task = 0;
1e3c88bd 3491
871e35bc 3492 if (local_group)
1e3c88bd 3493 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
3494
3495 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
3496 max_cpu_load = 0;
3497 min_cpu_load = ~0UL;
2582f0eb 3498 max_nr_running = 0;
1e3c88bd
PZ
3499
3500 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3501 struct rq *rq = cpu_rq(i);
3502
1e3c88bd
PZ
3503 /* Bias balancing toward cpus of our domain */
3504 if (local_group) {
3505 if (idle_cpu(i) && !first_idle_cpu) {
3506 first_idle_cpu = 1;
3507 balance_cpu = i;
3508 }
3509
3510 load = target_load(i, load_idx);
3511 } else {
3512 load = source_load(i, load_idx);
2582f0eb 3513 if (load > max_cpu_load) {
1e3c88bd 3514 max_cpu_load = load;
2582f0eb
NR
3515 max_nr_running = rq->nr_running;
3516 }
1e3c88bd
PZ
3517 if (min_cpu_load > load)
3518 min_cpu_load = load;
3519 }
3520
3521 sgs->group_load += load;
3522 sgs->sum_nr_running += rq->nr_running;
3523 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
3524 if (idle_cpu(i))
3525 sgs->idle_cpus++;
1e3c88bd
PZ
3526 }
3527
3528 /*
3529 * First idle cpu or the first cpu(busiest) in this sched group
3530 * is eligible for doing load balancing at this and above
3531 * domains. In the newly idle case, we will allow all the cpu's
3532 * to do the newly idle load balance.
3533 */
bbc8cb5b
PZ
3534 if (idle != CPU_NEWLY_IDLE && local_group) {
3535 if (balance_cpu != this_cpu) {
3536 *balance = 0;
3537 return;
3538 }
3539 update_group_power(sd, this_cpu);
1e3c88bd
PZ
3540 }
3541
3542 /* Adjust by relative CPU power of the group */
9c3f75cb 3543 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 3544
1e3c88bd
PZ
3545 /*
3546 * Consider the group unbalanced when the imbalance is larger
866ab43e 3547 * than the average weight of a task.
1e3c88bd
PZ
3548 *
3549 * APZ: with cgroup the avg task weight can vary wildly and
3550 * might not be a suitable number - should we keep a
3551 * normalized nr_running number somewhere that negates
3552 * the hierarchy?
3553 */
dd5feea1
SS
3554 if (sgs->sum_nr_running)
3555 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 3556
866ab43e 3557 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
1e3c88bd
PZ
3558 sgs->group_imb = 1;
3559
9c3f75cb 3560 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 3561 SCHED_POWER_SCALE);
9d5efe05
SV
3562 if (!sgs->group_capacity)
3563 sgs->group_capacity = fix_small_capacity(sd, group);
aae6d3dd 3564 sgs->group_weight = group->group_weight;
fab47622
NR
3565
3566 if (sgs->group_capacity > sgs->sum_nr_running)
3567 sgs->group_has_capacity = 1;
1e3c88bd
PZ
3568}
3569
532cb4c4
MN
3570/**
3571 * update_sd_pick_busiest - return 1 on busiest group
3572 * @sd: sched_domain whose statistics are to be checked
3573 * @sds: sched_domain statistics
3574 * @sg: sched_group candidate to be checked for being the busiest
b6b12294
MN
3575 * @sgs: sched_group statistics
3576 * @this_cpu: the current cpu
532cb4c4
MN
3577 *
3578 * Determine if @sg is a busier group than the previously selected
3579 * busiest group.
3580 */
3581static bool update_sd_pick_busiest(struct sched_domain *sd,
3582 struct sd_lb_stats *sds,
3583 struct sched_group *sg,
3584 struct sg_lb_stats *sgs,
3585 int this_cpu)
3586{
3587 if (sgs->avg_load <= sds->max_load)
3588 return false;
3589
3590 if (sgs->sum_nr_running > sgs->group_capacity)
3591 return true;
3592
3593 if (sgs->group_imb)
3594 return true;
3595
3596 /*
3597 * ASYM_PACKING needs to move all the work to the lowest
3598 * numbered CPUs in the group, therefore mark all groups
3599 * higher than ourself as busy.
3600 */
3601 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
3602 this_cpu < group_first_cpu(sg)) {
3603 if (!sds->busiest)
3604 return true;
3605
3606 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
3607 return true;
3608 }
3609
3610 return false;
3611}
3612
1e3c88bd 3613/**
461819ac 3614 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
1e3c88bd
PZ
3615 * @sd: sched_domain whose statistics are to be updated.
3616 * @this_cpu: Cpu for which load balance is currently performed.
3617 * @idle: Idle status of this_cpu
1e3c88bd
PZ
3618 * @cpus: Set of cpus considered for load balancing.
3619 * @balance: Should we balance.
3620 * @sds: variable to hold the statistics for this sched_domain.
3621 */
3622static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
46e49b38
VP
3623 enum cpu_idle_type idle, const struct cpumask *cpus,
3624 int *balance, struct sd_lb_stats *sds)
1e3c88bd
PZ
3625{
3626 struct sched_domain *child = sd->child;
532cb4c4 3627 struct sched_group *sg = sd->groups;
1e3c88bd
PZ
3628 struct sg_lb_stats sgs;
3629 int load_idx, prefer_sibling = 0;
3630
3631 if (child && child->flags & SD_PREFER_SIBLING)
3632 prefer_sibling = 1;
3633
3634 init_sd_power_savings_stats(sd, sds, idle);
3635 load_idx = get_sd_load_idx(sd, idle);
3636
3637 do {
3638 int local_group;
3639
532cb4c4 3640 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
1e3c88bd 3641 memset(&sgs, 0, sizeof(sgs));
46e49b38 3642 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
1e3c88bd
PZ
3643 local_group, cpus, balance, &sgs);
3644
8f190fb3 3645 if (local_group && !(*balance))
1e3c88bd
PZ
3646 return;
3647
3648 sds->total_load += sgs.group_load;
9c3f75cb 3649 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
3650
3651 /*
3652 * In case the child domain prefers tasks go to siblings
532cb4c4 3653 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
3654 * and move all the excess tasks away. We lower the capacity
3655 * of a group only if the local group has the capacity to fit
3656 * these excess tasks, i.e. nr_running < group_capacity. The
3657 * extra check prevents the case where you always pull from the
3658 * heaviest group when it is already under-utilized (possible
3659 * with a large weight task outweighs the tasks on the system).
1e3c88bd 3660 */
75dd321d 3661 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
3662 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3663
3664 if (local_group) {
3665 sds->this_load = sgs.avg_load;
532cb4c4 3666 sds->this = sg;
1e3c88bd
PZ
3667 sds->this_nr_running = sgs.sum_nr_running;
3668 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 3669 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 3670 sds->this_idle_cpus = sgs.idle_cpus;
532cb4c4 3671 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
1e3c88bd 3672 sds->max_load = sgs.avg_load;
532cb4c4 3673 sds->busiest = sg;
1e3c88bd 3674 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 3675 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 3676 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 3677 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 3678 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 3679 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
3680 sds->group_imb = sgs.group_imb;
3681 }
3682
532cb4c4
MN
3683 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
3684 sg = sg->next;
3685 } while (sg != sd->groups);
3686}
3687
2ec57d44 3688int __weak arch_sd_sibling_asym_packing(void)
532cb4c4
MN
3689{
3690 return 0*SD_ASYM_PACKING;
3691}
3692
3693/**
3694 * check_asym_packing - Check to see if the group is packed into the
3695 * sched doman.
3696 *
3697 * This is primarily intended to used at the sibling level. Some
3698 * cores like POWER7 prefer to use lower numbered SMT threads. In the
3699 * case of POWER7, it can move to lower SMT modes only when higher
3700 * threads are idle. When in lower SMT modes, the threads will
3701 * perform better since they share less core resources. Hence when we
3702 * have idle threads, we want them to be the higher ones.
3703 *
3704 * This packing function is run on idle threads. It checks to see if
3705 * the busiest CPU in this domain (core in the P7 case) has a higher
3706 * CPU number than the packing function is being run on. Here we are
3707 * assuming lower CPU number will be equivalent to lower a SMT thread
3708 * number.
3709 *
b6b12294
MN
3710 * Returns 1 when packing is required and a task should be moved to
3711 * this CPU. The amount of the imbalance is returned in *imbalance.
3712 *
532cb4c4
MN
3713 * @sd: The sched_domain whose packing is to be checked.
3714 * @sds: Statistics of the sched_domain which is to be packed
3715 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3716 * @imbalance: returns amount of imbalanced due to packing.
532cb4c4
MN
3717 */
3718static int check_asym_packing(struct sched_domain *sd,
3719 struct sd_lb_stats *sds,
3720 int this_cpu, unsigned long *imbalance)
3721{
3722 int busiest_cpu;
3723
3724 if (!(sd->flags & SD_ASYM_PACKING))
3725 return 0;
3726
3727 if (!sds->busiest)
3728 return 0;
3729
3730 busiest_cpu = group_first_cpu(sds->busiest);
3731 if (this_cpu > busiest_cpu)
3732 return 0;
3733
9c3f75cb 3734 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
1399fa78 3735 SCHED_POWER_SCALE);
532cb4c4 3736 return 1;
1e3c88bd
PZ
3737}
3738
3739/**
3740 * fix_small_imbalance - Calculate the minor imbalance that exists
3741 * amongst the groups of a sched_domain, during
3742 * load balancing.
3743 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3744 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3745 * @imbalance: Variable to store the imbalance.
3746 */
3747static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3748 int this_cpu, unsigned long *imbalance)
3749{
3750 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3751 unsigned int imbn = 2;
dd5feea1 3752 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
3753
3754 if (sds->this_nr_running) {
3755 sds->this_load_per_task /= sds->this_nr_running;
3756 if (sds->busiest_load_per_task >
3757 sds->this_load_per_task)
3758 imbn = 1;
3759 } else
3760 sds->this_load_per_task =
3761 cpu_avg_load_per_task(this_cpu);
3762
dd5feea1 3763 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 3764 * SCHED_POWER_SCALE;
9c3f75cb 3765 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
3766
3767 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
3768 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
3769 *imbalance = sds->busiest_load_per_task;
3770 return;
3771 }
3772
3773 /*
3774 * OK, we don't have enough imbalance to justify moving tasks,
3775 * however we may be able to increase total CPU power used by
3776 * moving them.
3777 */
3778
9c3f75cb 3779 pwr_now += sds->busiest->sgp->power *
1e3c88bd 3780 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 3781 pwr_now += sds->this->sgp->power *
1e3c88bd 3782 min(sds->this_load_per_task, sds->this_load);
1399fa78 3783 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
3784
3785 /* Amount of load we'd subtract */
1399fa78 3786 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 3787 sds->busiest->sgp->power;
1e3c88bd 3788 if (sds->max_load > tmp)
9c3f75cb 3789 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
3790 min(sds->busiest_load_per_task, sds->max_load - tmp);
3791
3792 /* Amount of load we'd add */
9c3f75cb 3793 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 3794 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
3795 tmp = (sds->max_load * sds->busiest->sgp->power) /
3796 sds->this->sgp->power;
1e3c88bd 3797 else
1399fa78 3798 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
3799 sds->this->sgp->power;
3800 pwr_move += sds->this->sgp->power *
1e3c88bd 3801 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 3802 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
3803
3804 /* Move if we gain throughput */
3805 if (pwr_move > pwr_now)
3806 *imbalance = sds->busiest_load_per_task;
3807}
3808
3809/**
3810 * calculate_imbalance - Calculate the amount of imbalance present within the
3811 * groups of a given sched_domain during load balance.
3812 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3813 * @this_cpu: Cpu for which currently load balance is being performed.
3814 * @imbalance: The variable to store the imbalance.
3815 */
3816static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3817 unsigned long *imbalance)
3818{
dd5feea1
SS
3819 unsigned long max_pull, load_above_capacity = ~0UL;
3820
3821 sds->busiest_load_per_task /= sds->busiest_nr_running;
3822 if (sds->group_imb) {
3823 sds->busiest_load_per_task =
3824 min(sds->busiest_load_per_task, sds->avg_load);
3825 }
3826
1e3c88bd
PZ
3827 /*
3828 * In the presence of smp nice balancing, certain scenarios can have
3829 * max load less than avg load(as we skip the groups at or below
3830 * its cpu_power, while calculating max_load..)
3831 */
3832 if (sds->max_load < sds->avg_load) {
3833 *imbalance = 0;
3834 return fix_small_imbalance(sds, this_cpu, imbalance);
3835 }
3836
dd5feea1
SS
3837 if (!sds->group_imb) {
3838 /*
3839 * Don't want to pull so many tasks that a group would go idle.
3840 */
3841 load_above_capacity = (sds->busiest_nr_running -
3842 sds->busiest_group_capacity);
3843
1399fa78 3844 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 3845
9c3f75cb 3846 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
3847 }
3848
3849 /*
3850 * We're trying to get all the cpus to the average_load, so we don't
3851 * want to push ourselves above the average load, nor do we wish to
3852 * reduce the max loaded cpu below the average load. At the same time,
3853 * we also don't want to reduce the group load below the group capacity
3854 * (so that we can implement power-savings policies etc). Thus we look
3855 * for the minimum possible imbalance.
3856 * Be careful of negative numbers as they'll appear as very large values
3857 * with unsigned longs.
3858 */
3859 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
3860
3861 /* How much load to actually move to equalise the imbalance */
9c3f75cb
PZ
3862 *imbalance = min(max_pull * sds->busiest->sgp->power,
3863 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 3864 / SCHED_POWER_SCALE;
1e3c88bd
PZ
3865
3866 /*
3867 * if *imbalance is less than the average load per runnable task
25985edc 3868 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
3869 * a think about bumping its value to force at least one task to be
3870 * moved
3871 */
3872 if (*imbalance < sds->busiest_load_per_task)
3873 return fix_small_imbalance(sds, this_cpu, imbalance);
3874
3875}
fab47622 3876
1e3c88bd
PZ
3877/******* find_busiest_group() helpers end here *********************/
3878
3879/**
3880 * find_busiest_group - Returns the busiest group within the sched_domain
3881 * if there is an imbalance. If there isn't an imbalance, and
3882 * the user has opted for power-savings, it returns a group whose
3883 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3884 * such a group exists.
3885 *
3886 * Also calculates the amount of weighted load which should be moved
3887 * to restore balance.
3888 *
3889 * @sd: The sched_domain whose busiest group is to be returned.
3890 * @this_cpu: The cpu for which load balancing is currently being performed.
3891 * @imbalance: Variable which stores amount of weighted load which should
3892 * be moved to restore balance/put a group to idle.
3893 * @idle: The idle status of this_cpu.
1e3c88bd
PZ
3894 * @cpus: The set of CPUs under consideration for load-balancing.
3895 * @balance: Pointer to a variable indicating if this_cpu
3896 * is the appropriate cpu to perform load balancing at this_level.
3897 *
3898 * Returns: - the busiest group if imbalance exists.
3899 * - If no imbalance and user has opted for power-savings balance,
3900 * return the least loaded group whose CPUs can be
3901 * put to idle by rebalancing its tasks onto our group.
3902 */
3903static struct sched_group *
3904find_busiest_group(struct sched_domain *sd, int this_cpu,
3905 unsigned long *imbalance, enum cpu_idle_type idle,
46e49b38 3906 const struct cpumask *cpus, int *balance)
1e3c88bd
PZ
3907{
3908 struct sd_lb_stats sds;
3909
3910 memset(&sds, 0, sizeof(sds));
3911
3912 /*
3913 * Compute the various statistics relavent for load balancing at
3914 * this level.
3915 */
46e49b38 3916 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
1e3c88bd 3917
cc57aa8f
PZ
3918 /*
3919 * this_cpu is not the appropriate cpu to perform load balancing at
3920 * this level.
1e3c88bd 3921 */
8f190fb3 3922 if (!(*balance))
1e3c88bd
PZ
3923 goto ret;
3924
532cb4c4
MN
3925 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3926 check_asym_packing(sd, &sds, this_cpu, imbalance))
3927 return sds.busiest;
3928
cc57aa8f 3929 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
3930 if (!sds.busiest || sds.busiest_nr_running == 0)
3931 goto out_balanced;
3932
1399fa78 3933 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 3934
866ab43e
PZ
3935 /*
3936 * If the busiest group is imbalanced the below checks don't
3937 * work because they assumes all things are equal, which typically
3938 * isn't true due to cpus_allowed constraints and the like.
3939 */
3940 if (sds.group_imb)
3941 goto force_balance;
3942
cc57aa8f 3943 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
fab47622
NR
3944 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3945 !sds.busiest_has_capacity)
3946 goto force_balance;
3947
cc57aa8f
PZ
3948 /*
3949 * If the local group is more busy than the selected busiest group
3950 * don't try and pull any tasks.
3951 */
1e3c88bd
PZ
3952 if (sds.this_load >= sds.max_load)
3953 goto out_balanced;
3954
cc57aa8f
PZ
3955 /*
3956 * Don't pull any tasks if this group is already above the domain
3957 * average load.
3958 */
1e3c88bd
PZ
3959 if (sds.this_load >= sds.avg_load)
3960 goto out_balanced;
3961
c186fafe 3962 if (idle == CPU_IDLE) {
aae6d3dd
SS
3963 /*
3964 * This cpu is idle. If the busiest group load doesn't
3965 * have more tasks than the number of available cpu's and
3966 * there is no imbalance between this and busiest group
3967 * wrt to idle cpu's, it is balanced.
3968 */
c186fafe 3969 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
3970 sds.busiest_nr_running <= sds.busiest_group_weight)
3971 goto out_balanced;
c186fafe
PZ
3972 } else {
3973 /*
3974 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3975 * imbalance_pct to be conservative.
3976 */
3977 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3978 goto out_balanced;
aae6d3dd 3979 }
1e3c88bd 3980
fab47622 3981force_balance:
1e3c88bd
PZ
3982 /* Looks like there is an imbalance. Compute it */
3983 calculate_imbalance(&sds, this_cpu, imbalance);
3984 return sds.busiest;
3985
3986out_balanced:
3987 /*
3988 * There is no obvious imbalance. But check if we can do some balancing
3989 * to save power.
3990 */
3991 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3992 return sds.busiest;
3993ret:
3994 *imbalance = 0;
3995 return NULL;
3996}
3997
3998/*
3999 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4000 */
4001static struct rq *
9d5efe05
SV
4002find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
4003 enum cpu_idle_type idle, unsigned long imbalance,
4004 const struct cpumask *cpus)
1e3c88bd
PZ
4005{
4006 struct rq *busiest = NULL, *rq;
4007 unsigned long max_load = 0;
4008 int i;
4009
4010 for_each_cpu(i, sched_group_cpus(group)) {
4011 unsigned long power = power_of(i);
1399fa78
NR
4012 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4013 SCHED_POWER_SCALE);
1e3c88bd
PZ
4014 unsigned long wl;
4015
9d5efe05
SV
4016 if (!capacity)
4017 capacity = fix_small_capacity(sd, group);
4018
1e3c88bd
PZ
4019 if (!cpumask_test_cpu(i, cpus))
4020 continue;
4021
4022 rq = cpu_rq(i);
6e40f5bb 4023 wl = weighted_cpuload(i);
1e3c88bd 4024
6e40f5bb
TG
4025 /*
4026 * When comparing with imbalance, use weighted_cpuload()
4027 * which is not scaled with the cpu power.
4028 */
1e3c88bd
PZ
4029 if (capacity && rq->nr_running == 1 && wl > imbalance)
4030 continue;
4031
6e40f5bb
TG
4032 /*
4033 * For the load comparisons with the other cpu's, consider
4034 * the weighted_cpuload() scaled with the cpu power, so that
4035 * the load can be moved away from the cpu that is potentially
4036 * running at a lower capacity.
4037 */
1399fa78 4038 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4039
1e3c88bd
PZ
4040 if (wl > max_load) {
4041 max_load = wl;
4042 busiest = rq;
4043 }
4044 }
4045
4046 return busiest;
4047}
4048
4049/*
4050 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4051 * so long as it is large enough.
4052 */
4053#define MAX_PINNED_INTERVAL 512
4054
4055/* Working cpumask for load_balance and load_balance_newidle. */
4056static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4057
46e49b38 4058static int need_active_balance(struct sched_domain *sd, int idle,
532cb4c4 4059 int busiest_cpu, int this_cpu)
1af3ed3d
PZ
4060{
4061 if (idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
4062
4063 /*
4064 * ASYM_PACKING needs to force migrate tasks from busy but
4065 * higher numbered CPUs in order to pack all tasks in the
4066 * lowest numbered CPUs.
4067 */
4068 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
4069 return 1;
4070
1af3ed3d
PZ
4071 /*
4072 * The only task running in a non-idle cpu can be moved to this
4073 * cpu in an attempt to completely freeup the other CPU
4074 * package.
4075 *
4076 * The package power saving logic comes from
4077 * find_busiest_group(). If there are no imbalance, then
4078 * f_b_g() will return NULL. However when sched_mc={1,2} then
4079 * f_b_g() will select a group from which a running task may be
4080 * pulled to this cpu in order to make the other package idle.
4081 * If there is no opportunity to make a package idle and if
4082 * there are no imbalance, then f_b_g() will return NULL and no
4083 * action will be taken in load_balance_newidle().
4084 *
4085 * Under normal task pull operation due to imbalance, there
4086 * will be more than one task in the source run queue and
4087 * move_tasks() will succeed. ld_moved will be true and this
4088 * active balance code will not be triggered.
4089 */
1af3ed3d
PZ
4090 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4091 return 0;
4092 }
4093
4094 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4095}
4096
969c7921
TH
4097static int active_load_balance_cpu_stop(void *data);
4098
1e3c88bd
PZ
4099/*
4100 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4101 * tasks if there is an imbalance.
4102 */
4103static int load_balance(int this_cpu, struct rq *this_rq,
4104 struct sched_domain *sd, enum cpu_idle_type idle,
4105 int *balance)
4106{
46e49b38 4107 int ld_moved, all_pinned = 0, active_balance = 0;
1e3c88bd
PZ
4108 struct sched_group *group;
4109 unsigned long imbalance;
4110 struct rq *busiest;
4111 unsigned long flags;
4112 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4113
4114 cpumask_copy(cpus, cpu_active_mask);
4115
1e3c88bd
PZ
4116 schedstat_inc(sd, lb_count[idle]);
4117
4118redo:
46e49b38 4119 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
1e3c88bd
PZ
4120 cpus, balance);
4121
4122 if (*balance == 0)
4123 goto out_balanced;
4124
4125 if (!group) {
4126 schedstat_inc(sd, lb_nobusyg[idle]);
4127 goto out_balanced;
4128 }
4129
9d5efe05 4130 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
1e3c88bd
PZ
4131 if (!busiest) {
4132 schedstat_inc(sd, lb_nobusyq[idle]);
4133 goto out_balanced;
4134 }
4135
4136 BUG_ON(busiest == this_rq);
4137
4138 schedstat_add(sd, lb_imbalance[idle], imbalance);
4139
4140 ld_moved = 0;
4141 if (busiest->nr_running > 1) {
4142 /*
4143 * Attempt to move tasks. If find_busiest_group has found
4144 * an imbalance but busiest->nr_running <= 1, the group is
4145 * still unbalanced. ld_moved simply stays zero, so it is
4146 * correctly treated as an imbalance.
4147 */
b30aef17 4148 all_pinned = 1;
1e3c88bd
PZ
4149 local_irq_save(flags);
4150 double_rq_lock(this_rq, busiest);
4151 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4152 imbalance, sd, idle, &all_pinned);
4153 double_rq_unlock(this_rq, busiest);
4154 local_irq_restore(flags);
4155
4156 /*
4157 * some other cpu did the load balance for us.
4158 */
4159 if (ld_moved && this_cpu != smp_processor_id())
4160 resched_cpu(this_cpu);
4161
4162 /* All tasks on this runqueue were pinned by CPU affinity */
4163 if (unlikely(all_pinned)) {
4164 cpumask_clear_cpu(cpu_of(busiest), cpus);
4165 if (!cpumask_empty(cpus))
4166 goto redo;
4167 goto out_balanced;
4168 }
4169 }
4170
4171 if (!ld_moved) {
4172 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
4173 /*
4174 * Increment the failure counter only on periodic balance.
4175 * We do not want newidle balance, which can be very
4176 * frequent, pollute the failure counter causing
4177 * excessive cache_hot migrations and active balances.
4178 */
4179 if (idle != CPU_NEWLY_IDLE)
4180 sd->nr_balance_failed++;
1e3c88bd 4181
46e49b38 4182 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
1e3c88bd
PZ
4183 raw_spin_lock_irqsave(&busiest->lock, flags);
4184
969c7921
TH
4185 /* don't kick the active_load_balance_cpu_stop,
4186 * if the curr task on busiest cpu can't be
4187 * moved to this_cpu
1e3c88bd
PZ
4188 */
4189 if (!cpumask_test_cpu(this_cpu,
fa17b507 4190 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
4191 raw_spin_unlock_irqrestore(&busiest->lock,
4192 flags);
4193 all_pinned = 1;
4194 goto out_one_pinned;
4195 }
4196
969c7921
TH
4197 /*
4198 * ->active_balance synchronizes accesses to
4199 * ->active_balance_work. Once set, it's cleared
4200 * only after active load balance is finished.
4201 */
1e3c88bd
PZ
4202 if (!busiest->active_balance) {
4203 busiest->active_balance = 1;
4204 busiest->push_cpu = this_cpu;
4205 active_balance = 1;
4206 }
4207 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 4208
1e3c88bd 4209 if (active_balance)
969c7921
TH
4210 stop_one_cpu_nowait(cpu_of(busiest),
4211 active_load_balance_cpu_stop, busiest,
4212 &busiest->active_balance_work);
1e3c88bd
PZ
4213
4214 /*
4215 * We've kicked active balancing, reset the failure
4216 * counter.
4217 */
4218 sd->nr_balance_failed = sd->cache_nice_tries+1;
4219 }
4220 } else
4221 sd->nr_balance_failed = 0;
4222
4223 if (likely(!active_balance)) {
4224 /* We were unbalanced, so reset the balancing interval */
4225 sd->balance_interval = sd->min_interval;
4226 } else {
4227 /*
4228 * If we've begun active balancing, start to back off. This
4229 * case may not be covered by the all_pinned logic if there
4230 * is only 1 task on the busy runqueue (because we don't call
4231 * move_tasks).
4232 */
4233 if (sd->balance_interval < sd->max_interval)
4234 sd->balance_interval *= 2;
4235 }
4236
1e3c88bd
PZ
4237 goto out;
4238
4239out_balanced:
4240 schedstat_inc(sd, lb_balanced[idle]);
4241
4242 sd->nr_balance_failed = 0;
4243
4244out_one_pinned:
4245 /* tune up the balancing interval */
4246 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4247 (sd->balance_interval < sd->max_interval))
4248 sd->balance_interval *= 2;
4249
46e49b38 4250 ld_moved = 0;
1e3c88bd 4251out:
1e3c88bd
PZ
4252 return ld_moved;
4253}
4254
1e3c88bd
PZ
4255/*
4256 * idle_balance is called by schedule() if this_cpu is about to become
4257 * idle. Attempts to pull tasks from other CPUs.
4258 */
4259static void idle_balance(int this_cpu, struct rq *this_rq)
4260{
4261 struct sched_domain *sd;
4262 int pulled_task = 0;
4263 unsigned long next_balance = jiffies + HZ;
4264
4265 this_rq->idle_stamp = this_rq->clock;
4266
4267 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4268 return;
4269
f492e12e
PZ
4270 /*
4271 * Drop the rq->lock, but keep IRQ/preempt disabled.
4272 */
4273 raw_spin_unlock(&this_rq->lock);
4274
c66eaf61 4275 update_shares(this_cpu);
dce840a0 4276 rcu_read_lock();
1e3c88bd
PZ
4277 for_each_domain(this_cpu, sd) {
4278 unsigned long interval;
f492e12e 4279 int balance = 1;
1e3c88bd
PZ
4280
4281 if (!(sd->flags & SD_LOAD_BALANCE))
4282 continue;
4283
f492e12e 4284 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 4285 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
4286 pulled_task = load_balance(this_cpu, this_rq,
4287 sd, CPU_NEWLY_IDLE, &balance);
4288 }
1e3c88bd
PZ
4289
4290 interval = msecs_to_jiffies(sd->balance_interval);
4291 if (time_after(next_balance, sd->last_balance + interval))
4292 next_balance = sd->last_balance + interval;
d5ad140b
NR
4293 if (pulled_task) {
4294 this_rq->idle_stamp = 0;
1e3c88bd 4295 break;
d5ad140b 4296 }
1e3c88bd 4297 }
dce840a0 4298 rcu_read_unlock();
f492e12e
PZ
4299
4300 raw_spin_lock(&this_rq->lock);
4301
1e3c88bd
PZ
4302 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4303 /*
4304 * We are going idle. next_balance may be set based on
4305 * a busy processor. So reset next_balance.
4306 */
4307 this_rq->next_balance = next_balance;
4308 }
4309}
4310
4311/*
969c7921
TH
4312 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
4313 * running tasks off the busiest CPU onto idle CPUs. It requires at
4314 * least 1 task to be running on each physical CPU where possible, and
4315 * avoids physical / logical imbalances.
1e3c88bd 4316 */
969c7921 4317static int active_load_balance_cpu_stop(void *data)
1e3c88bd 4318{
969c7921
TH
4319 struct rq *busiest_rq = data;
4320 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 4321 int target_cpu = busiest_rq->push_cpu;
969c7921 4322 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 4323 struct sched_domain *sd;
969c7921
TH
4324
4325 raw_spin_lock_irq(&busiest_rq->lock);
4326
4327 /* make sure the requested cpu hasn't gone down in the meantime */
4328 if (unlikely(busiest_cpu != smp_processor_id() ||
4329 !busiest_rq->active_balance))
4330 goto out_unlock;
1e3c88bd
PZ
4331
4332 /* Is there any task to move? */
4333 if (busiest_rq->nr_running <= 1)
969c7921 4334 goto out_unlock;
1e3c88bd
PZ
4335
4336 /*
4337 * This condition is "impossible", if it occurs
4338 * we need to fix it. Originally reported by
4339 * Bjorn Helgaas on a 128-cpu setup.
4340 */
4341 BUG_ON(busiest_rq == target_rq);
4342
4343 /* move a task from busiest_rq to target_rq */
4344 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
4345
4346 /* Search for an sd spanning us and the target CPU. */
dce840a0 4347 rcu_read_lock();
1e3c88bd
PZ
4348 for_each_domain(target_cpu, sd) {
4349 if ((sd->flags & SD_LOAD_BALANCE) &&
4350 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4351 break;
4352 }
4353
4354 if (likely(sd)) {
4355 schedstat_inc(sd, alb_count);
4356
4357 if (move_one_task(target_rq, target_cpu, busiest_rq,
4358 sd, CPU_IDLE))
4359 schedstat_inc(sd, alb_pushed);
4360 else
4361 schedstat_inc(sd, alb_failed);
4362 }
dce840a0 4363 rcu_read_unlock();
1e3c88bd 4364 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
4365out_unlock:
4366 busiest_rq->active_balance = 0;
4367 raw_spin_unlock_irq(&busiest_rq->lock);
4368 return 0;
1e3c88bd
PZ
4369}
4370
4371#ifdef CONFIG_NO_HZ
83cd4fe2
VP
4372/*
4373 * idle load balancing details
4374 * - One of the idle CPUs nominates itself as idle load_balancer, while
4375 * entering idle.
4376 * - This idle load balancer CPU will also go into tickless mode when
4377 * it is idle, just like all other idle CPUs
4378 * - When one of the busy CPUs notice that there may be an idle rebalancing
4379 * needed, they will kick the idle load balancer, which then does idle
4380 * load balancing for all the idle CPUs.
4381 */
1e3c88bd
PZ
4382static struct {
4383 atomic_t load_balancer;
83cd4fe2
VP
4384 atomic_t first_pick_cpu;
4385 atomic_t second_pick_cpu;
4386 cpumask_var_t idle_cpus_mask;
4387 cpumask_var_t grp_idle_mask;
4388 unsigned long next_balance; /* in jiffy units */
4389} nohz ____cacheline_aligned;
1e3c88bd
PZ
4390
4391int get_nohz_load_balancer(void)
4392{
4393 return atomic_read(&nohz.load_balancer);
4394}
4395
4396#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4397/**
4398 * lowest_flag_domain - Return lowest sched_domain containing flag.
4399 * @cpu: The cpu whose lowest level of sched domain is to
4400 * be returned.
4401 * @flag: The flag to check for the lowest sched_domain
4402 * for the given cpu.
4403 *
4404 * Returns the lowest sched_domain of a cpu which contains the given flag.
4405 */
4406static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4407{
4408 struct sched_domain *sd;
4409
4410 for_each_domain(cpu, sd)
08354716 4411 if (sd->flags & flag)
1e3c88bd
PZ
4412 break;
4413
4414 return sd;
4415}
4416
4417/**
4418 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4419 * @cpu: The cpu whose domains we're iterating over.
4420 * @sd: variable holding the value of the power_savings_sd
4421 * for cpu.
4422 * @flag: The flag to filter the sched_domains to be iterated.
4423 *
4424 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4425 * set, starting from the lowest sched_domain to the highest.
4426 */
4427#define for_each_flag_domain(cpu, sd, flag) \
4428 for (sd = lowest_flag_domain(cpu, flag); \
4429 (sd && (sd->flags & flag)); sd = sd->parent)
4430
4431/**
4432 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4433 * @ilb_group: group to be checked for semi-idleness
4434 *
4435 * Returns: 1 if the group is semi-idle. 0 otherwise.
4436 *
4437 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4438 * and atleast one non-idle CPU. This helper function checks if the given
4439 * sched_group is semi-idle or not.
4440 */
4441static inline int is_semi_idle_group(struct sched_group *ilb_group)
4442{
83cd4fe2 4443 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
1e3c88bd
PZ
4444 sched_group_cpus(ilb_group));
4445
4446 /*
4447 * A sched_group is semi-idle when it has atleast one busy cpu
4448 * and atleast one idle cpu.
4449 */
83cd4fe2 4450 if (cpumask_empty(nohz.grp_idle_mask))
1e3c88bd
PZ
4451 return 0;
4452
83cd4fe2 4453 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
1e3c88bd
PZ
4454 return 0;
4455
4456 return 1;
4457}
4458/**
4459 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4460 * @cpu: The cpu which is nominating a new idle_load_balancer.
4461 *
4462 * Returns: Returns the id of the idle load balancer if it exists,
4463 * Else, returns >= nr_cpu_ids.
4464 *
4465 * This algorithm picks the idle load balancer such that it belongs to a
4466 * semi-idle powersavings sched_domain. The idea is to try and avoid
4467 * completely idle packages/cores just for the purpose of idle load balancing
4468 * when there are other idle cpu's which are better suited for that job.
4469 */
4470static int find_new_ilb(int cpu)
4471{
4472 struct sched_domain *sd;
4473 struct sched_group *ilb_group;
dce840a0 4474 int ilb = nr_cpu_ids;
1e3c88bd
PZ
4475
4476 /*
4477 * Have idle load balancer selection from semi-idle packages only
4478 * when power-aware load balancing is enabled
4479 */
4480 if (!(sched_smt_power_savings || sched_mc_power_savings))
4481 goto out_done;
4482
4483 /*
4484 * Optimize for the case when we have no idle CPUs or only one
4485 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4486 */
83cd4fe2 4487 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
1e3c88bd
PZ
4488 goto out_done;
4489
dce840a0 4490 rcu_read_lock();
1e3c88bd
PZ
4491 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4492 ilb_group = sd->groups;
4493
4494 do {
dce840a0
PZ
4495 if (is_semi_idle_group(ilb_group)) {
4496 ilb = cpumask_first(nohz.grp_idle_mask);
4497 goto unlock;
4498 }
1e3c88bd
PZ
4499
4500 ilb_group = ilb_group->next;
4501
4502 } while (ilb_group != sd->groups);
4503 }
dce840a0
PZ
4504unlock:
4505 rcu_read_unlock();
1e3c88bd
PZ
4506
4507out_done:
dce840a0 4508 return ilb;
1e3c88bd
PZ
4509}
4510#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4511static inline int find_new_ilb(int call_cpu)
4512{
83cd4fe2 4513 return nr_cpu_ids;
1e3c88bd
PZ
4514}
4515#endif
4516
83cd4fe2
VP
4517/*
4518 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
4519 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
4520 * CPU (if there is one).
4521 */
4522static void nohz_balancer_kick(int cpu)
4523{
4524 int ilb_cpu;
4525
4526 nohz.next_balance++;
4527
4528 ilb_cpu = get_nohz_load_balancer();
4529
4530 if (ilb_cpu >= nr_cpu_ids) {
4531 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
4532 if (ilb_cpu >= nr_cpu_ids)
4533 return;
4534 }
4535
4536 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
83cd4fe2 4537 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
ca38062e
SS
4538
4539 smp_mb();
4540 /*
4541 * Use smp_send_reschedule() instead of resched_cpu().
4542 * This way we generate a sched IPI on the target cpu which
4543 * is idle. And the softirq performing nohz idle load balance
4544 * will be run before returning from the IPI.
4545 */
4546 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
4547 }
4548 return;
4549}
4550
1e3c88bd
PZ
4551/*
4552 * This routine will try to nominate the ilb (idle load balancing)
4553 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
83cd4fe2 4554 * load balancing on behalf of all those cpus.
1e3c88bd 4555 *
83cd4fe2
VP
4556 * When the ilb owner becomes busy, we will not have new ilb owner until some
4557 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
4558 * idle load balancing by kicking one of the idle CPUs.
1e3c88bd 4559 *
83cd4fe2
VP
4560 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
4561 * ilb owner CPU in future (when there is a need for idle load balancing on
4562 * behalf of all idle CPUs).
1e3c88bd 4563 */
83cd4fe2 4564void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
4565{
4566 int cpu = smp_processor_id();
4567
4568 if (stop_tick) {
1e3c88bd
PZ
4569 if (!cpu_active(cpu)) {
4570 if (atomic_read(&nohz.load_balancer) != cpu)
83cd4fe2 4571 return;
1e3c88bd
PZ
4572
4573 /*
4574 * If we are going offline and still the leader,
4575 * give up!
4576 */
83cd4fe2
VP
4577 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
4578 nr_cpu_ids) != cpu)
1e3c88bd
PZ
4579 BUG();
4580
83cd4fe2 4581 return;
1e3c88bd
PZ
4582 }
4583
83cd4fe2 4584 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd 4585
83cd4fe2
VP
4586 if (atomic_read(&nohz.first_pick_cpu) == cpu)
4587 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
4588 if (atomic_read(&nohz.second_pick_cpu) == cpu)
4589 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
1e3c88bd 4590
83cd4fe2 4591 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
1e3c88bd
PZ
4592 int new_ilb;
4593
83cd4fe2
VP
4594 /* make me the ilb owner */
4595 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
4596 cpu) != nr_cpu_ids)
4597 return;
4598
1e3c88bd
PZ
4599 /*
4600 * Check to see if there is a more power-efficient
4601 * ilb.
4602 */
4603 new_ilb = find_new_ilb(cpu);
4604 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
83cd4fe2 4605 atomic_set(&nohz.load_balancer, nr_cpu_ids);
1e3c88bd 4606 resched_cpu(new_ilb);
83cd4fe2 4607 return;
1e3c88bd 4608 }
83cd4fe2 4609 return;
1e3c88bd
PZ
4610 }
4611 } else {
83cd4fe2
VP
4612 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
4613 return;
1e3c88bd 4614
83cd4fe2 4615 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd
PZ
4616
4617 if (atomic_read(&nohz.load_balancer) == cpu)
83cd4fe2
VP
4618 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
4619 nr_cpu_ids) != cpu)
1e3c88bd
PZ
4620 BUG();
4621 }
83cd4fe2 4622 return;
1e3c88bd
PZ
4623}
4624#endif
4625
4626static DEFINE_SPINLOCK(balancing);
4627
49c022e6
PZ
4628static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4629
4630/*
4631 * Scale the max load_balance interval with the number of CPUs in the system.
4632 * This trades load-balance latency on larger machines for less cross talk.
4633 */
4634static void update_max_interval(void)
4635{
4636 max_load_balance_interval = HZ*num_online_cpus()/10;
4637}
4638
1e3c88bd
PZ
4639/*
4640 * It checks each scheduling domain to see if it is due to be balanced,
4641 * and initiates a balancing operation if so.
4642 *
4643 * Balancing parameters are set up in arch_init_sched_domains.
4644 */
4645static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4646{
4647 int balance = 1;
4648 struct rq *rq = cpu_rq(cpu);
4649 unsigned long interval;
4650 struct sched_domain *sd;
4651 /* Earliest time when we have to do rebalance again */
4652 unsigned long next_balance = jiffies + 60*HZ;
4653 int update_next_balance = 0;
4654 int need_serialize;
4655
2069dd75
PZ
4656 update_shares(cpu);
4657
dce840a0 4658 rcu_read_lock();
1e3c88bd
PZ
4659 for_each_domain(cpu, sd) {
4660 if (!(sd->flags & SD_LOAD_BALANCE))
4661 continue;
4662
4663 interval = sd->balance_interval;
4664 if (idle != CPU_IDLE)
4665 interval *= sd->busy_factor;
4666
4667 /* scale ms to jiffies */
4668 interval = msecs_to_jiffies(interval);
49c022e6 4669 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
4670
4671 need_serialize = sd->flags & SD_SERIALIZE;
4672
4673 if (need_serialize) {
4674 if (!spin_trylock(&balancing))
4675 goto out;
4676 }
4677
4678 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4679 if (load_balance(cpu, rq, sd, idle, &balance)) {
4680 /*
4681 * We've pulled tasks over so either we're no
c186fafe 4682 * longer idle.
1e3c88bd
PZ
4683 */
4684 idle = CPU_NOT_IDLE;
4685 }
4686 sd->last_balance = jiffies;
4687 }
4688 if (need_serialize)
4689 spin_unlock(&balancing);
4690out:
4691 if (time_after(next_balance, sd->last_balance + interval)) {
4692 next_balance = sd->last_balance + interval;
4693 update_next_balance = 1;
4694 }
4695
4696 /*
4697 * Stop the load balance at this level. There is another
4698 * CPU in our sched group which is doing load balancing more
4699 * actively.
4700 */
4701 if (!balance)
4702 break;
4703 }
dce840a0 4704 rcu_read_unlock();
1e3c88bd
PZ
4705
4706 /*
4707 * next_balance will be updated only when there is a need.
4708 * When the cpu is attached to null domain for ex, it will not be
4709 * updated.
4710 */
4711 if (likely(update_next_balance))
4712 rq->next_balance = next_balance;
4713}
4714
83cd4fe2 4715#ifdef CONFIG_NO_HZ
1e3c88bd 4716/*
83cd4fe2 4717 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
4718 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4719 */
83cd4fe2
VP
4720static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
4721{
4722 struct rq *this_rq = cpu_rq(this_cpu);
4723 struct rq *rq;
4724 int balance_cpu;
4725
4726 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
4727 return;
4728
4729 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
4730 if (balance_cpu == this_cpu)
4731 continue;
4732
4733 /*
4734 * If this cpu gets work to do, stop the load balancing
4735 * work being done for other cpus. Next load
4736 * balancing owner will pick it up.
4737 */
4738 if (need_resched()) {
4739 this_rq->nohz_balance_kick = 0;
4740 break;
4741 }
4742
4743 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 4744 update_rq_clock(this_rq);
83cd4fe2
VP
4745 update_cpu_load(this_rq);
4746 raw_spin_unlock_irq(&this_rq->lock);
4747
4748 rebalance_domains(balance_cpu, CPU_IDLE);
4749
4750 rq = cpu_rq(balance_cpu);
4751 if (time_after(this_rq->next_balance, rq->next_balance))
4752 this_rq->next_balance = rq->next_balance;
4753 }
4754 nohz.next_balance = this_rq->next_balance;
4755 this_rq->nohz_balance_kick = 0;
4756}
4757
4758/*
4759 * Current heuristic for kicking the idle load balancer
4760 * - first_pick_cpu is the one of the busy CPUs. It will kick
4761 * idle load balancer when it has more than one process active. This
4762 * eliminates the need for idle load balancing altogether when we have
4763 * only one running process in the system (common case).
4764 * - If there are more than one busy CPU, idle load balancer may have
4765 * to run for active_load_balance to happen (i.e., two busy CPUs are
4766 * SMT or core siblings and can run better if they move to different
4767 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
4768 * which will kick idle load balancer as soon as it has any load.
4769 */
4770static inline int nohz_kick_needed(struct rq *rq, int cpu)
4771{
4772 unsigned long now = jiffies;
4773 int ret;
4774 int first_pick_cpu, second_pick_cpu;
4775
4776 if (time_before(now, nohz.next_balance))
4777 return 0;
4778
6eb57e0d 4779 if (idle_cpu(cpu))
83cd4fe2
VP
4780 return 0;
4781
4782 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
4783 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
4784
4785 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
4786 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
4787 return 0;
4788
4789 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
4790 if (ret == nr_cpu_ids || ret == cpu) {
4791 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
4792 if (rq->nr_running > 1)
4793 return 1;
4794 } else {
4795 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
4796 if (ret == nr_cpu_ids || ret == cpu) {
4797 if (rq->nr_running)
4798 return 1;
4799 }
4800 }
4801 return 0;
4802}
4803#else
4804static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
4805#endif
4806
4807/*
4808 * run_rebalance_domains is triggered when needed from the scheduler tick.
4809 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4810 */
1e3c88bd
PZ
4811static void run_rebalance_domains(struct softirq_action *h)
4812{
4813 int this_cpu = smp_processor_id();
4814 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 4815 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
4816 CPU_IDLE : CPU_NOT_IDLE;
4817
4818 rebalance_domains(this_cpu, idle);
4819
1e3c88bd 4820 /*
83cd4fe2 4821 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
4822 * balancing on behalf of the other idle cpus whose ticks are
4823 * stopped.
4824 */
83cd4fe2 4825 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
4826}
4827
4828static inline int on_null_domain(int cpu)
4829{
90a6501f 4830 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
4831}
4832
4833/*
4834 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd
PZ
4835 */
4836static inline void trigger_load_balance(struct rq *rq, int cpu)
4837{
1e3c88bd
PZ
4838 /* Don't need to rebalance while attached to NULL domain */
4839 if (time_after_eq(jiffies, rq->next_balance) &&
4840 likely(!on_null_domain(cpu)))
4841 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2
VP
4842#ifdef CONFIG_NO_HZ
4843 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4844 nohz_balancer_kick(cpu);
4845#endif
1e3c88bd
PZ
4846}
4847
0bcdcf28
CE
4848static void rq_online_fair(struct rq *rq)
4849{
4850 update_sysctl();
4851}
4852
4853static void rq_offline_fair(struct rq *rq)
4854{
4855 update_sysctl();
4856}
4857
1e3c88bd
PZ
4858#else /* CONFIG_SMP */
4859
4860/*
4861 * on UP we do not need to balance between CPUs:
4862 */
4863static inline void idle_balance(int cpu, struct rq *rq)
4864{
4865}
4866
55e12e5e 4867#endif /* CONFIG_SMP */
e1d1484f 4868
bf0f6f24
IM
4869/*
4870 * scheduler tick hitting a task of our scheduling class:
4871 */
8f4d37ec 4872static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
4873{
4874 struct cfs_rq *cfs_rq;
4875 struct sched_entity *se = &curr->se;
4876
4877 for_each_sched_entity(se) {
4878 cfs_rq = cfs_rq_of(se);
8f4d37ec 4879 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
4880 }
4881}
4882
4883/*
cd29fe6f
PZ
4884 * called on fork with the child task as argument from the parent's context
4885 * - child not yet on the tasklist
4886 * - preemption disabled
bf0f6f24 4887 */
cd29fe6f 4888static void task_fork_fair(struct task_struct *p)
bf0f6f24 4889{
cd29fe6f 4890 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 4891 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 4892 int this_cpu = smp_processor_id();
cd29fe6f
PZ
4893 struct rq *rq = this_rq();
4894 unsigned long flags;
4895
05fa785c 4896 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 4897
861d034e
PZ
4898 update_rq_clock(rq);
4899
b0a0f667
PM
4900 if (unlikely(task_cpu(p) != this_cpu)) {
4901 rcu_read_lock();
cd29fe6f 4902 __set_task_cpu(p, this_cpu);
b0a0f667
PM
4903 rcu_read_unlock();
4904 }
bf0f6f24 4905
7109c442 4906 update_curr(cfs_rq);
cd29fe6f 4907
b5d9d734
MG
4908 if (curr)
4909 se->vruntime = curr->vruntime;
aeb73b04 4910 place_entity(cfs_rq, se, 1);
4d78e7b6 4911
cd29fe6f 4912 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 4913 /*
edcb60a3
IM
4914 * Upon rescheduling, sched_class::put_prev_task() will place
4915 * 'current' within the tree based on its new key value.
4916 */
4d78e7b6 4917 swap(curr->vruntime, se->vruntime);
aec0a514 4918 resched_task(rq->curr);
4d78e7b6 4919 }
bf0f6f24 4920
88ec22d3
PZ
4921 se->vruntime -= cfs_rq->min_vruntime;
4922
05fa785c 4923 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
4924}
4925
cb469845
SR
4926/*
4927 * Priority of the task has changed. Check to see if we preempt
4928 * the current task.
4929 */
da7a735e
PZ
4930static void
4931prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 4932{
da7a735e
PZ
4933 if (!p->se.on_rq)
4934 return;
4935
cb469845
SR
4936 /*
4937 * Reschedule if we are currently running on this runqueue and
4938 * our priority decreased, or if we are not currently running on
4939 * this runqueue and our priority is higher than the current's
4940 */
da7a735e 4941 if (rq->curr == p) {
cb469845
SR
4942 if (p->prio > oldprio)
4943 resched_task(rq->curr);
4944 } else
15afe09b 4945 check_preempt_curr(rq, p, 0);
cb469845
SR
4946}
4947
da7a735e
PZ
4948static void switched_from_fair(struct rq *rq, struct task_struct *p)
4949{
4950 struct sched_entity *se = &p->se;
4951 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4952
4953 /*
4954 * Ensure the task's vruntime is normalized, so that when its
4955 * switched back to the fair class the enqueue_entity(.flags=0) will
4956 * do the right thing.
4957 *
4958 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4959 * have normalized the vruntime, if it was !on_rq, then only when
4960 * the task is sleeping will it still have non-normalized vruntime.
4961 */
4962 if (!se->on_rq && p->state != TASK_RUNNING) {
4963 /*
4964 * Fix up our vruntime so that the current sleep doesn't
4965 * cause 'unlimited' sleep bonus.
4966 */
4967 place_entity(cfs_rq, se, 0);
4968 se->vruntime -= cfs_rq->min_vruntime;
4969 }
4970}
4971
cb469845
SR
4972/*
4973 * We switched to the sched_fair class.
4974 */
da7a735e 4975static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 4976{
da7a735e
PZ
4977 if (!p->se.on_rq)
4978 return;
4979
cb469845
SR
4980 /*
4981 * We were most likely switched from sched_rt, so
4982 * kick off the schedule if running, otherwise just see
4983 * if we can still preempt the current task.
4984 */
da7a735e 4985 if (rq->curr == p)
cb469845
SR
4986 resched_task(rq->curr);
4987 else
15afe09b 4988 check_preempt_curr(rq, p, 0);
cb469845
SR
4989}
4990
83b699ed
SV
4991/* Account for a task changing its policy or group.
4992 *
4993 * This routine is mostly called to set cfs_rq->curr field when a task
4994 * migrates between groups/classes.
4995 */
4996static void set_curr_task_fair(struct rq *rq)
4997{
4998 struct sched_entity *se = &rq->curr->se;
4999
ec12cb7f
PT
5000 for_each_sched_entity(se) {
5001 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5002
5003 set_next_entity(cfs_rq, se);
5004 /* ensure bandwidth has been allocated on our new cfs_rq */
5005 account_cfs_rq_runtime(cfs_rq, 0);
5006 }
83b699ed
SV
5007}
5008
810b3817 5009#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5010static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5011{
b2b5ce02
PZ
5012 /*
5013 * If the task was not on the rq at the time of this cgroup movement
5014 * it must have been asleep, sleeping tasks keep their ->vruntime
5015 * absolute on their old rq until wakeup (needed for the fair sleeper
5016 * bonus in place_entity()).
5017 *
5018 * If it was on the rq, we've just 'preempted' it, which does convert
5019 * ->vruntime to a relative base.
5020 *
5021 * Make sure both cases convert their relative position when migrating
5022 * to another cgroup's rq. This does somewhat interfere with the
5023 * fair sleeper stuff for the first placement, but who cares.
5024 */
5025 if (!on_rq)
5026 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5027 set_task_rq(p, task_cpu(p));
88ec22d3 5028 if (!on_rq)
b2b5ce02 5029 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817
PZ
5030}
5031#endif
5032
6d686f45 5033static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
5034{
5035 struct sched_entity *se = &task->se;
0d721cea
PW
5036 unsigned int rr_interval = 0;
5037
5038 /*
5039 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5040 * idle runqueue:
5041 */
0d721cea
PW
5042 if (rq->cfs.load.weight)
5043 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
5044
5045 return rr_interval;
5046}
5047
bf0f6f24
IM
5048/*
5049 * All the scheduling class methods:
5050 */
5522d5d5
IM
5051static const struct sched_class fair_sched_class = {
5052 .next = &idle_sched_class,
bf0f6f24
IM
5053 .enqueue_task = enqueue_task_fair,
5054 .dequeue_task = dequeue_task_fair,
5055 .yield_task = yield_task_fair,
d95f4122 5056 .yield_to_task = yield_to_task_fair,
bf0f6f24 5057
2e09bf55 5058 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
5059
5060 .pick_next_task = pick_next_task_fair,
5061 .put_prev_task = put_prev_task_fair,
5062
681f3e68 5063#ifdef CONFIG_SMP
4ce72a2c
LZ
5064 .select_task_rq = select_task_rq_fair,
5065
0bcdcf28
CE
5066 .rq_online = rq_online_fair,
5067 .rq_offline = rq_offline_fair,
88ec22d3
PZ
5068
5069 .task_waking = task_waking_fair,
681f3e68 5070#endif
bf0f6f24 5071
83b699ed 5072 .set_curr_task = set_curr_task_fair,
bf0f6f24 5073 .task_tick = task_tick_fair,
cd29fe6f 5074 .task_fork = task_fork_fair,
cb469845
SR
5075
5076 .prio_changed = prio_changed_fair,
da7a735e 5077 .switched_from = switched_from_fair,
cb469845 5078 .switched_to = switched_to_fair,
810b3817 5079
0d721cea
PW
5080 .get_rr_interval = get_rr_interval_fair,
5081
810b3817 5082#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5083 .task_move_group = task_move_group_fair,
810b3817 5084#endif
bf0f6f24
IM
5085};
5086
5087#ifdef CONFIG_SCHED_DEBUG
5cef9eca 5088static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 5089{
bf0f6f24
IM
5090 struct cfs_rq *cfs_rq;
5091
5973e5b9 5092 rcu_read_lock();
c3b64f1e 5093 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 5094 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 5095 rcu_read_unlock();
bf0f6f24
IM
5096}
5097#endif