sched/cpupri: Remove cpupri->pri_active
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
9745512c 26
bf0f6f24 27/*
21805085 28 * Targeted preemption latency for CPU-bound tasks:
864616ee 29 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 30 *
21805085 31 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
32 * 'timeslice length' - timeslices in CFS are of variable length
33 * and have no persistent notion like in traditional, time-slice
34 * based scheduling concepts.
bf0f6f24 35 *
d274a4ce
IM
36 * (to see the precise effective timeslice length of your workload,
37 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 38 */
21406928
MG
39unsigned int sysctl_sched_latency = 6000000ULL;
40unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 41
1983a922
CE
42/*
43 * The initial- and re-scaling of tunables is configurable
44 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45 *
46 * Options are:
47 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
48 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
49 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 */
51enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 = SCHED_TUNABLESCALING_LOG;
53
2bd8e6d4 54/*
b2be5e96 55 * Minimal preemption granularity for CPU-bound tasks:
864616ee 56 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 57 */
0bf377bb
IM
58unsigned int sysctl_sched_min_granularity = 750000ULL;
59unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
60
61/*
b2be5e96
PZ
62 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 */
0bf377bb 64static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
65
66/*
2bba22c5 67 * After fork, child runs first. If set to 0 (default) then
b2be5e96 68 * parent will (try to) run first.
21805085 69 */
2bba22c5 70unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 71
bf0f6f24
IM
72/*
73 * SCHED_OTHER wake-up granularity.
172e082a 74 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 */
172e082a 80unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 81unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 82
da84d961
IM
83const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
84
a7a4f8a7
PT
85/*
86 * The exponential sliding window over which load is averaged for shares
87 * distribution.
88 * (default: 10msec)
89 */
90unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
91
a4c2f00f
PZ
92static const struct sched_class fair_sched_class;
93
bf0f6f24
IM
94/**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
62160e3f 98#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 99
62160e3f 100/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
101static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102{
62160e3f 103 return cfs_rq->rq;
bf0f6f24
IM
104}
105
62160e3f
IM
106/* An entity is a task if it doesn't "own" a runqueue */
107#define entity_is_task(se) (!se->my_q)
bf0f6f24 108
8f48894f
PZ
109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111#ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113#endif
114 return container_of(se, struct task_struct, se);
115}
116
b758149c
PZ
117/* Walk up scheduling entities hierarchy */
118#define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
120
121static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122{
123 return p->se.cfs_rq;
124}
125
126/* runqueue on which this entity is (to be) queued */
127static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128{
129 return se->cfs_rq;
130}
131
132/* runqueue "owned" by this group */
133static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134{
135 return grp->my_q;
136}
137
3d4b47b4
PZ
138static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
139{
140 if (!cfs_rq->on_list) {
67e86250
PT
141 /*
142 * Ensure we either appear before our parent (if already
143 * enqueued) or force our parent to appear after us when it is
144 * enqueued. The fact that we always enqueue bottom-up
145 * reduces this to two cases.
146 */
147 if (cfs_rq->tg->parent &&
148 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
149 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
150 &rq_of(cfs_rq)->leaf_cfs_rq_list);
151 } else {
152 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 153 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 154 }
3d4b47b4
PZ
155
156 cfs_rq->on_list = 1;
157 }
158}
159
160static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
161{
162 if (cfs_rq->on_list) {
163 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
164 cfs_rq->on_list = 0;
165 }
166}
167
b758149c
PZ
168/* Iterate thr' all leaf cfs_rq's on a runqueue */
169#define for_each_leaf_cfs_rq(rq, cfs_rq) \
170 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
171
172/* Do the two (enqueued) entities belong to the same group ? */
173static inline int
174is_same_group(struct sched_entity *se, struct sched_entity *pse)
175{
176 if (se->cfs_rq == pse->cfs_rq)
177 return 1;
178
179 return 0;
180}
181
182static inline struct sched_entity *parent_entity(struct sched_entity *se)
183{
184 return se->parent;
185}
186
464b7527
PZ
187/* return depth at which a sched entity is present in the hierarchy */
188static inline int depth_se(struct sched_entity *se)
189{
190 int depth = 0;
191
192 for_each_sched_entity(se)
193 depth++;
194
195 return depth;
196}
197
198static void
199find_matching_se(struct sched_entity **se, struct sched_entity **pse)
200{
201 int se_depth, pse_depth;
202
203 /*
204 * preemption test can be made between sibling entities who are in the
205 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
206 * both tasks until we find their ancestors who are siblings of common
207 * parent.
208 */
209
210 /* First walk up until both entities are at same depth */
211 se_depth = depth_se(*se);
212 pse_depth = depth_se(*pse);
213
214 while (se_depth > pse_depth) {
215 se_depth--;
216 *se = parent_entity(*se);
217 }
218
219 while (pse_depth > se_depth) {
220 pse_depth--;
221 *pse = parent_entity(*pse);
222 }
223
224 while (!is_same_group(*se, *pse)) {
225 *se = parent_entity(*se);
226 *pse = parent_entity(*pse);
227 }
228}
229
8f48894f
PZ
230#else /* !CONFIG_FAIR_GROUP_SCHED */
231
232static inline struct task_struct *task_of(struct sched_entity *se)
233{
234 return container_of(se, struct task_struct, se);
235}
bf0f6f24 236
62160e3f
IM
237static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
238{
239 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
240}
241
242#define entity_is_task(se) 1
243
b758149c
PZ
244#define for_each_sched_entity(se) \
245 for (; se; se = NULL)
bf0f6f24 246
b758149c 247static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 248{
b758149c 249 return &task_rq(p)->cfs;
bf0f6f24
IM
250}
251
b758149c
PZ
252static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
253{
254 struct task_struct *p = task_of(se);
255 struct rq *rq = task_rq(p);
256
257 return &rq->cfs;
258}
259
260/* runqueue "owned" by this group */
261static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
262{
263 return NULL;
264}
265
3d4b47b4
PZ
266static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
267{
268}
269
270static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
271{
272}
273
b758149c
PZ
274#define for_each_leaf_cfs_rq(rq, cfs_rq) \
275 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
276
277static inline int
278is_same_group(struct sched_entity *se, struct sched_entity *pse)
279{
280 return 1;
281}
282
283static inline struct sched_entity *parent_entity(struct sched_entity *se)
284{
285 return NULL;
286}
287
464b7527
PZ
288static inline void
289find_matching_se(struct sched_entity **se, struct sched_entity **pse)
290{
291}
292
b758149c
PZ
293#endif /* CONFIG_FAIR_GROUP_SCHED */
294
bf0f6f24
IM
295
296/**************************************************************
297 * Scheduling class tree data structure manipulation methods:
298 */
299
0702e3eb 300static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 301{
368059a9
PZ
302 s64 delta = (s64)(vruntime - min_vruntime);
303 if (delta > 0)
02e0431a
PZ
304 min_vruntime = vruntime;
305
306 return min_vruntime;
307}
308
0702e3eb 309static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
310{
311 s64 delta = (s64)(vruntime - min_vruntime);
312 if (delta < 0)
313 min_vruntime = vruntime;
314
315 return min_vruntime;
316}
317
54fdc581
FC
318static inline int entity_before(struct sched_entity *a,
319 struct sched_entity *b)
320{
321 return (s64)(a->vruntime - b->vruntime) < 0;
322}
323
1af5f730
PZ
324static void update_min_vruntime(struct cfs_rq *cfs_rq)
325{
326 u64 vruntime = cfs_rq->min_vruntime;
327
328 if (cfs_rq->curr)
329 vruntime = cfs_rq->curr->vruntime;
330
331 if (cfs_rq->rb_leftmost) {
332 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
333 struct sched_entity,
334 run_node);
335
e17036da 336 if (!cfs_rq->curr)
1af5f730
PZ
337 vruntime = se->vruntime;
338 else
339 vruntime = min_vruntime(vruntime, se->vruntime);
340 }
341
342 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
343#ifndef CONFIG_64BIT
344 smp_wmb();
345 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
346#endif
1af5f730
PZ
347}
348
bf0f6f24
IM
349/*
350 * Enqueue an entity into the rb-tree:
351 */
0702e3eb 352static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
353{
354 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
355 struct rb_node *parent = NULL;
356 struct sched_entity *entry;
bf0f6f24
IM
357 int leftmost = 1;
358
359 /*
360 * Find the right place in the rbtree:
361 */
362 while (*link) {
363 parent = *link;
364 entry = rb_entry(parent, struct sched_entity, run_node);
365 /*
366 * We dont care about collisions. Nodes with
367 * the same key stay together.
368 */
2bd2d6f2 369 if (entity_before(se, entry)) {
bf0f6f24
IM
370 link = &parent->rb_left;
371 } else {
372 link = &parent->rb_right;
373 leftmost = 0;
374 }
375 }
376
377 /*
378 * Maintain a cache of leftmost tree entries (it is frequently
379 * used):
380 */
1af5f730 381 if (leftmost)
57cb499d 382 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
383
384 rb_link_node(&se->run_node, parent, link);
385 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
386}
387
0702e3eb 388static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 389{
3fe69747
PZ
390 if (cfs_rq->rb_leftmost == &se->run_node) {
391 struct rb_node *next_node;
3fe69747
PZ
392
393 next_node = rb_next(&se->run_node);
394 cfs_rq->rb_leftmost = next_node;
3fe69747 395 }
e9acbff6 396
bf0f6f24 397 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
398}
399
ac53db59 400static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 401{
f4b6755f
PZ
402 struct rb_node *left = cfs_rq->rb_leftmost;
403
404 if (!left)
405 return NULL;
406
407 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
408}
409
ac53db59
RR
410static struct sched_entity *__pick_next_entity(struct sched_entity *se)
411{
412 struct rb_node *next = rb_next(&se->run_node);
413
414 if (!next)
415 return NULL;
416
417 return rb_entry(next, struct sched_entity, run_node);
418}
419
420#ifdef CONFIG_SCHED_DEBUG
f4b6755f 421static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 422{
7eee3e67 423 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 424
70eee74b
BS
425 if (!last)
426 return NULL;
7eee3e67
IM
427
428 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
429}
430
bf0f6f24
IM
431/**************************************************************
432 * Scheduling class statistics methods:
433 */
434
acb4a848 435int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 436 void __user *buffer, size_t *lenp,
b2be5e96
PZ
437 loff_t *ppos)
438{
8d65af78 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 440 int factor = get_update_sysctl_factor();
b2be5e96
PZ
441
442 if (ret || !write)
443 return ret;
444
445 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
446 sysctl_sched_min_granularity);
447
acb4a848
CE
448#define WRT_SYSCTL(name) \
449 (normalized_sysctl_##name = sysctl_##name / (factor))
450 WRT_SYSCTL(sched_min_granularity);
451 WRT_SYSCTL(sched_latency);
452 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
453#undef WRT_SYSCTL
454
b2be5e96
PZ
455 return 0;
456}
457#endif
647e7cac 458
a7be37ac 459/*
f9c0b095 460 * delta /= w
a7be37ac
PZ
461 */
462static inline unsigned long
463calc_delta_fair(unsigned long delta, struct sched_entity *se)
464{
f9c0b095
PZ
465 if (unlikely(se->load.weight != NICE_0_LOAD))
466 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
467
468 return delta;
469}
470
647e7cac
IM
471/*
472 * The idea is to set a period in which each task runs once.
473 *
474 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
475 * this period because otherwise the slices get too small.
476 *
477 * p = (nr <= nl) ? l : l*nr/nl
478 */
4d78e7b6
PZ
479static u64 __sched_period(unsigned long nr_running)
480{
481 u64 period = sysctl_sched_latency;
b2be5e96 482 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
483
484 if (unlikely(nr_running > nr_latency)) {
4bf0b771 485 period = sysctl_sched_min_granularity;
4d78e7b6 486 period *= nr_running;
4d78e7b6
PZ
487 }
488
489 return period;
490}
491
647e7cac
IM
492/*
493 * We calculate the wall-time slice from the period by taking a part
494 * proportional to the weight.
495 *
f9c0b095 496 * s = p*P[w/rw]
647e7cac 497 */
6d0f0ebd 498static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 499{
0a582440 500 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 501
0a582440 502 for_each_sched_entity(se) {
6272d68c 503 struct load_weight *load;
3104bf03 504 struct load_weight lw;
6272d68c
LM
505
506 cfs_rq = cfs_rq_of(se);
507 load = &cfs_rq->load;
f9c0b095 508
0a582440 509 if (unlikely(!se->on_rq)) {
3104bf03 510 lw = cfs_rq->load;
0a582440
MG
511
512 update_load_add(&lw, se->load.weight);
513 load = &lw;
514 }
515 slice = calc_delta_mine(slice, se->load.weight, load);
516 }
517 return slice;
bf0f6f24
IM
518}
519
647e7cac 520/*
ac884dec 521 * We calculate the vruntime slice of a to be inserted task
647e7cac 522 *
f9c0b095 523 * vs = s/w
647e7cac 524 */
f9c0b095 525static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 526{
f9c0b095 527 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
528}
529
d6b55918 530static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
6d5ab293 531static void update_cfs_shares(struct cfs_rq *cfs_rq);
3b3d190e 532
bf0f6f24
IM
533/*
534 * Update the current task's runtime statistics. Skip current tasks that
535 * are not in our scheduling class.
536 */
537static inline void
8ebc91d9
IM
538__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
539 unsigned long delta_exec)
bf0f6f24 540{
bbdba7c0 541 unsigned long delta_exec_weighted;
bf0f6f24 542
41acab88
LDM
543 schedstat_set(curr->statistics.exec_max,
544 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
545
546 curr->sum_exec_runtime += delta_exec;
7a62eabc 547 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 548 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 549
e9acbff6 550 curr->vruntime += delta_exec_weighted;
1af5f730 551 update_min_vruntime(cfs_rq);
3b3d190e 552
70caf8a6 553#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 554 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 555#endif
bf0f6f24
IM
556}
557
b7cc0896 558static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 559{
429d43bc 560 struct sched_entity *curr = cfs_rq->curr;
305e6835 561 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
562 unsigned long delta_exec;
563
564 if (unlikely(!curr))
565 return;
566
567 /*
568 * Get the amount of time the current task was running
569 * since the last time we changed load (this cannot
570 * overflow on 32 bits):
571 */
8ebc91d9 572 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
573 if (!delta_exec)
574 return;
bf0f6f24 575
8ebc91d9
IM
576 __update_curr(cfs_rq, curr, delta_exec);
577 curr->exec_start = now;
d842de87
SV
578
579 if (entity_is_task(curr)) {
580 struct task_struct *curtask = task_of(curr);
581
f977bb49 582 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 583 cpuacct_charge(curtask, delta_exec);
f06febc9 584 account_group_exec_runtime(curtask, delta_exec);
d842de87 585 }
bf0f6f24
IM
586}
587
588static inline void
5870db5b 589update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 590{
41acab88 591 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
592}
593
bf0f6f24
IM
594/*
595 * Task is being enqueued - update stats:
596 */
d2417e5a 597static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 598{
bf0f6f24
IM
599 /*
600 * Are we enqueueing a waiting task? (for current tasks
601 * a dequeue/enqueue event is a NOP)
602 */
429d43bc 603 if (se != cfs_rq->curr)
5870db5b 604 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
605}
606
bf0f6f24 607static void
9ef0a961 608update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 609{
41acab88
LDM
610 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
611 rq_of(cfs_rq)->clock - se->statistics.wait_start));
612 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
613 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
614 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
615#ifdef CONFIG_SCHEDSTATS
616 if (entity_is_task(se)) {
617 trace_sched_stat_wait(task_of(se),
41acab88 618 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
619 }
620#endif
41acab88 621 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
622}
623
624static inline void
19b6a2e3 625update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 626{
bf0f6f24
IM
627 /*
628 * Mark the end of the wait period if dequeueing a
629 * waiting task:
630 */
429d43bc 631 if (se != cfs_rq->curr)
9ef0a961 632 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
633}
634
635/*
636 * We are picking a new current task - update its stats:
637 */
638static inline void
79303e9e 639update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
640{
641 /*
642 * We are starting a new run period:
643 */
305e6835 644 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
645}
646
bf0f6f24
IM
647/**************************************************
648 * Scheduling class queueing methods:
649 */
650
c09595f6
PZ
651#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
652static void
653add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
654{
655 cfs_rq->task_weight += weight;
656}
657#else
658static inline void
659add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
660{
661}
662#endif
663
30cfdcfc
DA
664static void
665account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
666{
667 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
668 if (!parent_entity(se))
669 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 670 if (entity_is_task(se)) {
c09595f6 671 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
672 list_add(&se->group_node, &cfs_rq->tasks);
673 }
30cfdcfc 674 cfs_rq->nr_running++;
30cfdcfc
DA
675}
676
677static void
678account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
679{
680 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
681 if (!parent_entity(se))
682 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 683 if (entity_is_task(se)) {
c09595f6 684 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
685 list_del_init(&se->group_node);
686 }
30cfdcfc 687 cfs_rq->nr_running--;
30cfdcfc
DA
688}
689
3ff6dcac
YZ
690#ifdef CONFIG_FAIR_GROUP_SCHED
691# ifdef CONFIG_SMP
d6b55918
PT
692static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
693 int global_update)
694{
695 struct task_group *tg = cfs_rq->tg;
696 long load_avg;
697
698 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
699 load_avg -= cfs_rq->load_contribution;
700
701 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
702 atomic_add(load_avg, &tg->load_weight);
703 cfs_rq->load_contribution += load_avg;
704 }
705}
706
707static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 708{
a7a4f8a7 709 u64 period = sysctl_sched_shares_window;
2069dd75 710 u64 now, delta;
e33078ba 711 unsigned long load = cfs_rq->load.weight;
2069dd75 712
b815f196 713 if (cfs_rq->tg == &root_task_group)
2069dd75
PZ
714 return;
715
05ca62c6 716 now = rq_of(cfs_rq)->clock_task;
2069dd75
PZ
717 delta = now - cfs_rq->load_stamp;
718
e33078ba
PT
719 /* truncate load history at 4 idle periods */
720 if (cfs_rq->load_stamp > cfs_rq->load_last &&
721 now - cfs_rq->load_last > 4 * period) {
722 cfs_rq->load_period = 0;
723 cfs_rq->load_avg = 0;
f07333bf 724 delta = period - 1;
e33078ba
PT
725 }
726
2069dd75 727 cfs_rq->load_stamp = now;
3b3d190e 728 cfs_rq->load_unacc_exec_time = 0;
2069dd75 729 cfs_rq->load_period += delta;
e33078ba
PT
730 if (load) {
731 cfs_rq->load_last = now;
732 cfs_rq->load_avg += delta * load;
733 }
2069dd75 734
d6b55918
PT
735 /* consider updating load contribution on each fold or truncate */
736 if (global_update || cfs_rq->load_period > period
737 || !cfs_rq->load_period)
738 update_cfs_rq_load_contribution(cfs_rq, global_update);
739
2069dd75
PZ
740 while (cfs_rq->load_period > period) {
741 /*
742 * Inline assembly required to prevent the compiler
743 * optimising this loop into a divmod call.
744 * See __iter_div_u64_rem() for another example of this.
745 */
746 asm("" : "+rm" (cfs_rq->load_period));
747 cfs_rq->load_period /= 2;
748 cfs_rq->load_avg /= 2;
749 }
3d4b47b4 750
e33078ba
PT
751 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
752 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
753}
754
6d5ab293 755static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
756{
757 long load_weight, load, shares;
758
6d5ab293 759 load = cfs_rq->load.weight;
3ff6dcac
YZ
760
761 load_weight = atomic_read(&tg->load_weight);
3ff6dcac 762 load_weight += load;
6d5ab293 763 load_weight -= cfs_rq->load_contribution;
3ff6dcac
YZ
764
765 shares = (tg->shares * load);
766 if (load_weight)
767 shares /= load_weight;
768
769 if (shares < MIN_SHARES)
770 shares = MIN_SHARES;
771 if (shares > tg->shares)
772 shares = tg->shares;
773
774 return shares;
775}
776
777static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
778{
779 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
780 update_cfs_load(cfs_rq, 0);
6d5ab293 781 update_cfs_shares(cfs_rq);
3ff6dcac
YZ
782 }
783}
784# else /* CONFIG_SMP */
785static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
786{
787}
788
6d5ab293 789static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
790{
791 return tg->shares;
792}
793
794static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
795{
796}
797# endif /* CONFIG_SMP */
2069dd75
PZ
798static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
799 unsigned long weight)
800{
19e5eebb
PT
801 if (se->on_rq) {
802 /* commit outstanding execution time */
803 if (cfs_rq->curr == se)
804 update_curr(cfs_rq);
2069dd75 805 account_entity_dequeue(cfs_rq, se);
19e5eebb 806 }
2069dd75
PZ
807
808 update_load_set(&se->load, weight);
809
810 if (se->on_rq)
811 account_entity_enqueue(cfs_rq, se);
812}
813
6d5ab293 814static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
815{
816 struct task_group *tg;
817 struct sched_entity *se;
3ff6dcac 818 long shares;
2069dd75 819
2069dd75
PZ
820 tg = cfs_rq->tg;
821 se = tg->se[cpu_of(rq_of(cfs_rq))];
822 if (!se)
823 return;
3ff6dcac
YZ
824#ifndef CONFIG_SMP
825 if (likely(se->load.weight == tg->shares))
826 return;
827#endif
6d5ab293 828 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
829
830 reweight_entity(cfs_rq_of(se), se, shares);
831}
832#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 833static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
834{
835}
836
6d5ab293 837static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
838{
839}
43365bd7
PT
840
841static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
842{
843}
2069dd75
PZ
844#endif /* CONFIG_FAIR_GROUP_SCHED */
845
2396af69 846static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 847{
bf0f6f24 848#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
849 struct task_struct *tsk = NULL;
850
851 if (entity_is_task(se))
852 tsk = task_of(se);
853
41acab88
LDM
854 if (se->statistics.sleep_start) {
855 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
856
857 if ((s64)delta < 0)
858 delta = 0;
859
41acab88
LDM
860 if (unlikely(delta > se->statistics.sleep_max))
861 se->statistics.sleep_max = delta;
bf0f6f24 862
41acab88
LDM
863 se->statistics.sleep_start = 0;
864 se->statistics.sum_sleep_runtime += delta;
9745512c 865
768d0c27 866 if (tsk) {
e414314c 867 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
868 trace_sched_stat_sleep(tsk, delta);
869 }
bf0f6f24 870 }
41acab88
LDM
871 if (se->statistics.block_start) {
872 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
873
874 if ((s64)delta < 0)
875 delta = 0;
876
41acab88
LDM
877 if (unlikely(delta > se->statistics.block_max))
878 se->statistics.block_max = delta;
bf0f6f24 879
41acab88
LDM
880 se->statistics.block_start = 0;
881 se->statistics.sum_sleep_runtime += delta;
30084fbd 882
e414314c 883 if (tsk) {
8f0dfc34 884 if (tsk->in_iowait) {
41acab88
LDM
885 se->statistics.iowait_sum += delta;
886 se->statistics.iowait_count++;
768d0c27 887 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
888 }
889
e414314c
PZ
890 /*
891 * Blocking time is in units of nanosecs, so shift by
892 * 20 to get a milliseconds-range estimation of the
893 * amount of time that the task spent sleeping:
894 */
895 if (unlikely(prof_on == SLEEP_PROFILING)) {
896 profile_hits(SLEEP_PROFILING,
897 (void *)get_wchan(tsk),
898 delta >> 20);
899 }
900 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 901 }
bf0f6f24
IM
902 }
903#endif
904}
905
ddc97297
PZ
906static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
907{
908#ifdef CONFIG_SCHED_DEBUG
909 s64 d = se->vruntime - cfs_rq->min_vruntime;
910
911 if (d < 0)
912 d = -d;
913
914 if (d > 3*sysctl_sched_latency)
915 schedstat_inc(cfs_rq, nr_spread_over);
916#endif
917}
918
aeb73b04
PZ
919static void
920place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
921{
1af5f730 922 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 923
2cb8600e
PZ
924 /*
925 * The 'current' period is already promised to the current tasks,
926 * however the extra weight of the new task will slow them down a
927 * little, place the new task so that it fits in the slot that
928 * stays open at the end.
929 */
94dfb5e7 930 if (initial && sched_feat(START_DEBIT))
f9c0b095 931 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 932
a2e7a7eb 933 /* sleeps up to a single latency don't count. */
5ca9880c 934 if (!initial) {
a2e7a7eb 935 unsigned long thresh = sysctl_sched_latency;
a7be37ac 936
a2e7a7eb
MG
937 /*
938 * Halve their sleep time's effect, to allow
939 * for a gentler effect of sleepers:
940 */
941 if (sched_feat(GENTLE_FAIR_SLEEPERS))
942 thresh >>= 1;
51e0304c 943
a2e7a7eb 944 vruntime -= thresh;
aeb73b04
PZ
945 }
946
b5d9d734
MG
947 /* ensure we never gain time by being placed backwards. */
948 vruntime = max_vruntime(se->vruntime, vruntime);
949
67e9fb2a 950 se->vruntime = vruntime;
aeb73b04
PZ
951}
952
bf0f6f24 953static void
88ec22d3 954enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 955{
88ec22d3
PZ
956 /*
957 * Update the normalized vruntime before updating min_vruntime
958 * through callig update_curr().
959 */
371fd7e7 960 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
961 se->vruntime += cfs_rq->min_vruntime;
962
bf0f6f24 963 /*
a2a2d680 964 * Update run-time statistics of the 'current'.
bf0f6f24 965 */
b7cc0896 966 update_curr(cfs_rq);
d6b55918 967 update_cfs_load(cfs_rq, 0);
a992241d 968 account_entity_enqueue(cfs_rq, se);
6d5ab293 969 update_cfs_shares(cfs_rq);
bf0f6f24 970
88ec22d3 971 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 972 place_entity(cfs_rq, se, 0);
2396af69 973 enqueue_sleeper(cfs_rq, se);
e9acbff6 974 }
bf0f6f24 975
d2417e5a 976 update_stats_enqueue(cfs_rq, se);
ddc97297 977 check_spread(cfs_rq, se);
83b699ed
SV
978 if (se != cfs_rq->curr)
979 __enqueue_entity(cfs_rq, se);
2069dd75 980 se->on_rq = 1;
3d4b47b4
PZ
981
982 if (cfs_rq->nr_running == 1)
983 list_add_leaf_cfs_rq(cfs_rq);
bf0f6f24
IM
984}
985
2c13c919 986static void __clear_buddies_last(struct sched_entity *se)
2002c695 987{
2c13c919
RR
988 for_each_sched_entity(se) {
989 struct cfs_rq *cfs_rq = cfs_rq_of(se);
990 if (cfs_rq->last == se)
991 cfs_rq->last = NULL;
992 else
993 break;
994 }
995}
2002c695 996
2c13c919
RR
997static void __clear_buddies_next(struct sched_entity *se)
998{
999 for_each_sched_entity(se) {
1000 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1001 if (cfs_rq->next == se)
1002 cfs_rq->next = NULL;
1003 else
1004 break;
1005 }
2002c695
PZ
1006}
1007
ac53db59
RR
1008static void __clear_buddies_skip(struct sched_entity *se)
1009{
1010 for_each_sched_entity(se) {
1011 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1012 if (cfs_rq->skip == se)
1013 cfs_rq->skip = NULL;
1014 else
1015 break;
1016 }
1017}
1018
a571bbea
PZ
1019static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1020{
2c13c919
RR
1021 if (cfs_rq->last == se)
1022 __clear_buddies_last(se);
1023
1024 if (cfs_rq->next == se)
1025 __clear_buddies_next(se);
ac53db59
RR
1026
1027 if (cfs_rq->skip == se)
1028 __clear_buddies_skip(se);
a571bbea
PZ
1029}
1030
bf0f6f24 1031static void
371fd7e7 1032dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1033{
a2a2d680
DA
1034 /*
1035 * Update run-time statistics of the 'current'.
1036 */
1037 update_curr(cfs_rq);
1038
19b6a2e3 1039 update_stats_dequeue(cfs_rq, se);
371fd7e7 1040 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1041#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1042 if (entity_is_task(se)) {
1043 struct task_struct *tsk = task_of(se);
1044
1045 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1046 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1047 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1048 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1049 }
db36cc7d 1050#endif
67e9fb2a
PZ
1051 }
1052
2002c695 1053 clear_buddies(cfs_rq, se);
4793241b 1054
83b699ed 1055 if (se != cfs_rq->curr)
30cfdcfc 1056 __dequeue_entity(cfs_rq, se);
2069dd75 1057 se->on_rq = 0;
d6b55918 1058 update_cfs_load(cfs_rq, 0);
30cfdcfc 1059 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1060
1061 /*
1062 * Normalize the entity after updating the min_vruntime because the
1063 * update can refer to the ->curr item and we need to reflect this
1064 * movement in our normalized position.
1065 */
371fd7e7 1066 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1067 se->vruntime -= cfs_rq->min_vruntime;
1e876231
PZ
1068
1069 update_min_vruntime(cfs_rq);
1070 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1071}
1072
1073/*
1074 * Preempt the current task with a newly woken task if needed:
1075 */
7c92e54f 1076static void
2e09bf55 1077check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1078{
11697830
PZ
1079 unsigned long ideal_runtime, delta_exec;
1080
6d0f0ebd 1081 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1082 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1083 if (delta_exec > ideal_runtime) {
bf0f6f24 1084 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1085 /*
1086 * The current task ran long enough, ensure it doesn't get
1087 * re-elected due to buddy favours.
1088 */
1089 clear_buddies(cfs_rq, curr);
f685ceac
MG
1090 return;
1091 }
1092
1093 /*
1094 * Ensure that a task that missed wakeup preemption by a
1095 * narrow margin doesn't have to wait for a full slice.
1096 * This also mitigates buddy induced latencies under load.
1097 */
f685ceac
MG
1098 if (delta_exec < sysctl_sched_min_granularity)
1099 return;
1100
1101 if (cfs_rq->nr_running > 1) {
ac53db59 1102 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac
MG
1103 s64 delta = curr->vruntime - se->vruntime;
1104
d7d82944
MG
1105 if (delta < 0)
1106 return;
1107
f685ceac
MG
1108 if (delta > ideal_runtime)
1109 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5 1110 }
bf0f6f24
IM
1111}
1112
83b699ed 1113static void
8494f412 1114set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1115{
83b699ed
SV
1116 /* 'current' is not kept within the tree. */
1117 if (se->on_rq) {
1118 /*
1119 * Any task has to be enqueued before it get to execute on
1120 * a CPU. So account for the time it spent waiting on the
1121 * runqueue.
1122 */
1123 update_stats_wait_end(cfs_rq, se);
1124 __dequeue_entity(cfs_rq, se);
1125 }
1126
79303e9e 1127 update_stats_curr_start(cfs_rq, se);
429d43bc 1128 cfs_rq->curr = se;
eba1ed4b
IM
1129#ifdef CONFIG_SCHEDSTATS
1130 /*
1131 * Track our maximum slice length, if the CPU's load is at
1132 * least twice that of our own weight (i.e. dont track it
1133 * when there are only lesser-weight tasks around):
1134 */
495eca49 1135 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1136 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1137 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1138 }
1139#endif
4a55b450 1140 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1141}
1142
3f3a4904
PZ
1143static int
1144wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1145
ac53db59
RR
1146/*
1147 * Pick the next process, keeping these things in mind, in this order:
1148 * 1) keep things fair between processes/task groups
1149 * 2) pick the "next" process, since someone really wants that to run
1150 * 3) pick the "last" process, for cache locality
1151 * 4) do not run the "skip" process, if something else is available
1152 */
f4b6755f 1153static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1154{
ac53db59 1155 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1156 struct sched_entity *left = se;
f4b6755f 1157
ac53db59
RR
1158 /*
1159 * Avoid running the skip buddy, if running something else can
1160 * be done without getting too unfair.
1161 */
1162 if (cfs_rq->skip == se) {
1163 struct sched_entity *second = __pick_next_entity(se);
1164 if (second && wakeup_preempt_entity(second, left) < 1)
1165 se = second;
1166 }
aa2ac252 1167
f685ceac
MG
1168 /*
1169 * Prefer last buddy, try to return the CPU to a preempted task.
1170 */
1171 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1172 se = cfs_rq->last;
1173
ac53db59
RR
1174 /*
1175 * Someone really wants this to run. If it's not unfair, run it.
1176 */
1177 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1178 se = cfs_rq->next;
1179
f685ceac 1180 clear_buddies(cfs_rq, se);
4793241b
PZ
1181
1182 return se;
aa2ac252
PZ
1183}
1184
ab6cde26 1185static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1186{
1187 /*
1188 * If still on the runqueue then deactivate_task()
1189 * was not called and update_curr() has to be done:
1190 */
1191 if (prev->on_rq)
b7cc0896 1192 update_curr(cfs_rq);
bf0f6f24 1193
ddc97297 1194 check_spread(cfs_rq, prev);
30cfdcfc 1195 if (prev->on_rq) {
5870db5b 1196 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1197 /* Put 'current' back into the tree. */
1198 __enqueue_entity(cfs_rq, prev);
1199 }
429d43bc 1200 cfs_rq->curr = NULL;
bf0f6f24
IM
1201}
1202
8f4d37ec
PZ
1203static void
1204entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1205{
bf0f6f24 1206 /*
30cfdcfc 1207 * Update run-time statistics of the 'current'.
bf0f6f24 1208 */
30cfdcfc 1209 update_curr(cfs_rq);
bf0f6f24 1210
43365bd7
PT
1211 /*
1212 * Update share accounting for long-running entities.
1213 */
1214 update_entity_shares_tick(cfs_rq);
1215
8f4d37ec
PZ
1216#ifdef CONFIG_SCHED_HRTICK
1217 /*
1218 * queued ticks are scheduled to match the slice, so don't bother
1219 * validating it and just reschedule.
1220 */
983ed7a6
HH
1221 if (queued) {
1222 resched_task(rq_of(cfs_rq)->curr);
1223 return;
1224 }
8f4d37ec
PZ
1225 /*
1226 * don't let the period tick interfere with the hrtick preemption
1227 */
1228 if (!sched_feat(DOUBLE_TICK) &&
1229 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1230 return;
1231#endif
1232
2c2efaed 1233 if (cfs_rq->nr_running > 1)
2e09bf55 1234 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1235}
1236
1237/**************************************************
1238 * CFS operations on tasks:
1239 */
1240
8f4d37ec
PZ
1241#ifdef CONFIG_SCHED_HRTICK
1242static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1243{
8f4d37ec
PZ
1244 struct sched_entity *se = &p->se;
1245 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1246
1247 WARN_ON(task_rq(p) != rq);
1248
1249 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1250 u64 slice = sched_slice(cfs_rq, se);
1251 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1252 s64 delta = slice - ran;
1253
1254 if (delta < 0) {
1255 if (rq->curr == p)
1256 resched_task(p);
1257 return;
1258 }
1259
1260 /*
1261 * Don't schedule slices shorter than 10000ns, that just
1262 * doesn't make sense. Rely on vruntime for fairness.
1263 */
31656519 1264 if (rq->curr != p)
157124c1 1265 delta = max_t(s64, 10000LL, delta);
8f4d37ec 1266
31656519 1267 hrtick_start(rq, delta);
8f4d37ec
PZ
1268 }
1269}
a4c2f00f
PZ
1270
1271/*
1272 * called from enqueue/dequeue and updates the hrtick when the
1273 * current task is from our class and nr_running is low enough
1274 * to matter.
1275 */
1276static void hrtick_update(struct rq *rq)
1277{
1278 struct task_struct *curr = rq->curr;
1279
1280 if (curr->sched_class != &fair_sched_class)
1281 return;
1282
1283 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1284 hrtick_start_fair(rq, curr);
1285}
55e12e5e 1286#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1287static inline void
1288hrtick_start_fair(struct rq *rq, struct task_struct *p)
1289{
1290}
a4c2f00f
PZ
1291
1292static inline void hrtick_update(struct rq *rq)
1293{
1294}
8f4d37ec
PZ
1295#endif
1296
bf0f6f24
IM
1297/*
1298 * The enqueue_task method is called before nr_running is
1299 * increased. Here we update the fair scheduling stats and
1300 * then put the task into the rbtree:
1301 */
ea87bb78 1302static void
371fd7e7 1303enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1304{
1305 struct cfs_rq *cfs_rq;
62fb1851 1306 struct sched_entity *se = &p->se;
bf0f6f24
IM
1307
1308 for_each_sched_entity(se) {
62fb1851 1309 if (se->on_rq)
bf0f6f24
IM
1310 break;
1311 cfs_rq = cfs_rq_of(se);
88ec22d3
PZ
1312 enqueue_entity(cfs_rq, se, flags);
1313 flags = ENQUEUE_WAKEUP;
bf0f6f24 1314 }
8f4d37ec 1315
2069dd75 1316 for_each_sched_entity(se) {
0f317143 1317 cfs_rq = cfs_rq_of(se);
2069dd75 1318
d6b55918 1319 update_cfs_load(cfs_rq, 0);
6d5ab293 1320 update_cfs_shares(cfs_rq);
2069dd75
PZ
1321 }
1322
a4c2f00f 1323 hrtick_update(rq);
bf0f6f24
IM
1324}
1325
2f36825b
VP
1326static void set_next_buddy(struct sched_entity *se);
1327
bf0f6f24
IM
1328/*
1329 * The dequeue_task method is called before nr_running is
1330 * decreased. We remove the task from the rbtree and
1331 * update the fair scheduling stats:
1332 */
371fd7e7 1333static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1334{
1335 struct cfs_rq *cfs_rq;
62fb1851 1336 struct sched_entity *se = &p->se;
2f36825b 1337 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
1338
1339 for_each_sched_entity(se) {
1340 cfs_rq = cfs_rq_of(se);
371fd7e7 1341 dequeue_entity(cfs_rq, se, flags);
2069dd75 1342
bf0f6f24 1343 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
1344 if (cfs_rq->load.weight) {
1345 /*
1346 * Bias pick_next to pick a task from this cfs_rq, as
1347 * p is sleeping when it is within its sched_slice.
1348 */
1349 if (task_sleep && parent_entity(se))
1350 set_next_buddy(parent_entity(se));
9598c82d
PT
1351
1352 /* avoid re-evaluating load for this entity */
1353 se = parent_entity(se);
bf0f6f24 1354 break;
2f36825b 1355 }
371fd7e7 1356 flags |= DEQUEUE_SLEEP;
bf0f6f24 1357 }
8f4d37ec 1358
2069dd75 1359 for_each_sched_entity(se) {
0f317143 1360 cfs_rq = cfs_rq_of(se);
2069dd75 1361
d6b55918 1362 update_cfs_load(cfs_rq, 0);
6d5ab293 1363 update_cfs_shares(cfs_rq);
2069dd75
PZ
1364 }
1365
a4c2f00f 1366 hrtick_update(rq);
bf0f6f24
IM
1367}
1368
e7693a36 1369#ifdef CONFIG_SMP
098fb9db 1370
74f8e4b2 1371static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
1372{
1373 struct sched_entity *se = &p->se;
1374 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
1375 u64 min_vruntime;
1376
1377#ifndef CONFIG_64BIT
1378 u64 min_vruntime_copy;
88ec22d3 1379
3fe1698b
PZ
1380 do {
1381 min_vruntime_copy = cfs_rq->min_vruntime_copy;
1382 smp_rmb();
1383 min_vruntime = cfs_rq->min_vruntime;
1384 } while (min_vruntime != min_vruntime_copy);
1385#else
1386 min_vruntime = cfs_rq->min_vruntime;
1387#endif
88ec22d3 1388
3fe1698b 1389 se->vruntime -= min_vruntime;
88ec22d3
PZ
1390}
1391
bb3469ac 1392#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1393/*
1394 * effective_load() calculates the load change as seen from the root_task_group
1395 *
1396 * Adding load to a group doesn't make a group heavier, but can cause movement
1397 * of group shares between cpus. Assuming the shares were perfectly aligned one
1398 * can calculate the shift in shares.
f5bfb7d9 1399 */
2069dd75 1400static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 1401{
4be9daaa 1402 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1403
1404 if (!tg->parent)
1405 return wl;
1406
4be9daaa 1407 for_each_sched_entity(se) {
977dda7c 1408 long lw, w;
4be9daaa 1409
977dda7c
PT
1410 tg = se->my_q->tg;
1411 w = se->my_q->load.weight;
bb3469ac 1412
977dda7c
PT
1413 /* use this cpu's instantaneous contribution */
1414 lw = atomic_read(&tg->load_weight);
1415 lw -= se->my_q->load_contribution;
1416 lw += w + wg;
4be9daaa 1417
977dda7c 1418 wl += w;
940959e9 1419
977dda7c
PT
1420 if (lw > 0 && wl < lw)
1421 wl = (wl * tg->shares) / lw;
1422 else
1423 wl = tg->shares;
940959e9 1424
977dda7c
PT
1425 /* zero point is MIN_SHARES */
1426 if (wl < MIN_SHARES)
1427 wl = MIN_SHARES;
1428 wl -= se->load.weight;
4be9daaa 1429 wg = 0;
4be9daaa 1430 }
bb3469ac 1431
4be9daaa 1432 return wl;
bb3469ac 1433}
4be9daaa 1434
bb3469ac 1435#else
4be9daaa 1436
83378269
PZ
1437static inline unsigned long effective_load(struct task_group *tg, int cpu,
1438 unsigned long wl, unsigned long wg)
4be9daaa 1439{
83378269 1440 return wl;
bb3469ac 1441}
4be9daaa 1442
bb3469ac
PZ
1443#endif
1444
c88d5910 1445static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1446{
e37b6a7b 1447 s64 this_load, load;
c88d5910 1448 int idx, this_cpu, prev_cpu;
098fb9db 1449 unsigned long tl_per_task;
c88d5910 1450 struct task_group *tg;
83378269 1451 unsigned long weight;
b3137bc8 1452 int balanced;
098fb9db 1453
c88d5910
PZ
1454 idx = sd->wake_idx;
1455 this_cpu = smp_processor_id();
1456 prev_cpu = task_cpu(p);
1457 load = source_load(prev_cpu, idx);
1458 this_load = target_load(this_cpu, idx);
098fb9db 1459
b3137bc8
MG
1460 /*
1461 * If sync wakeup then subtract the (maximum possible)
1462 * effect of the currently running task from the load
1463 * of the current CPU:
1464 */
83378269
PZ
1465 if (sync) {
1466 tg = task_group(current);
1467 weight = current->se.load.weight;
1468
c88d5910 1469 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1470 load += effective_load(tg, prev_cpu, 0, -weight);
1471 }
b3137bc8 1472
83378269
PZ
1473 tg = task_group(p);
1474 weight = p->se.load.weight;
b3137bc8 1475
71a29aa7
PZ
1476 /*
1477 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
1478 * due to the sync cause above having dropped this_load to 0, we'll
1479 * always have an imbalance, but there's really nothing you can do
1480 * about that, so that's good too.
71a29aa7
PZ
1481 *
1482 * Otherwise check if either cpus are near enough in load to allow this
1483 * task to be woken on this_cpu.
1484 */
e37b6a7b
PT
1485 if (this_load > 0) {
1486 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
1487
1488 this_eff_load = 100;
1489 this_eff_load *= power_of(prev_cpu);
1490 this_eff_load *= this_load +
1491 effective_load(tg, this_cpu, weight, weight);
1492
1493 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1494 prev_eff_load *= power_of(this_cpu);
1495 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1496
1497 balanced = this_eff_load <= prev_eff_load;
1498 } else
1499 balanced = true;
b3137bc8 1500
098fb9db 1501 /*
4ae7d5ce
IM
1502 * If the currently running task will sleep within
1503 * a reasonable amount of time then attract this newly
1504 * woken task:
098fb9db 1505 */
2fb7635c
PZ
1506 if (sync && balanced)
1507 return 1;
098fb9db 1508
41acab88 1509 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
1510 tl_per_task = cpu_avg_load_per_task(this_cpu);
1511
c88d5910
PZ
1512 if (balanced ||
1513 (this_load <= load &&
1514 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
1515 /*
1516 * This domain has SD_WAKE_AFFINE and
1517 * p is cache cold in this domain, and
1518 * there is no bad imbalance.
1519 */
c88d5910 1520 schedstat_inc(sd, ttwu_move_affine);
41acab88 1521 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
1522
1523 return 1;
1524 }
1525 return 0;
1526}
1527
aaee1203
PZ
1528/*
1529 * find_idlest_group finds and returns the least busy CPU group within the
1530 * domain.
1531 */
1532static struct sched_group *
78e7ed53 1533find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 1534 int this_cpu, int load_idx)
e7693a36 1535{
b3bd3de6 1536 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 1537 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 1538 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 1539
aaee1203
PZ
1540 do {
1541 unsigned long load, avg_load;
1542 int local_group;
1543 int i;
e7693a36 1544
aaee1203
PZ
1545 /* Skip over this group if it has no CPUs allowed */
1546 if (!cpumask_intersects(sched_group_cpus(group),
1547 &p->cpus_allowed))
1548 continue;
1549
1550 local_group = cpumask_test_cpu(this_cpu,
1551 sched_group_cpus(group));
1552
1553 /* Tally up the load of all CPUs in the group */
1554 avg_load = 0;
1555
1556 for_each_cpu(i, sched_group_cpus(group)) {
1557 /* Bias balancing toward cpus of our domain */
1558 if (local_group)
1559 load = source_load(i, load_idx);
1560 else
1561 load = target_load(i, load_idx);
1562
1563 avg_load += load;
1564 }
1565
1566 /* Adjust by relative CPU power of the group */
9c3f75cb 1567 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
1568
1569 if (local_group) {
1570 this_load = avg_load;
aaee1203
PZ
1571 } else if (avg_load < min_load) {
1572 min_load = avg_load;
1573 idlest = group;
1574 }
1575 } while (group = group->next, group != sd->groups);
1576
1577 if (!idlest || 100*this_load < imbalance*min_load)
1578 return NULL;
1579 return idlest;
1580}
1581
1582/*
1583 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1584 */
1585static int
1586find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1587{
1588 unsigned long load, min_load = ULONG_MAX;
1589 int idlest = -1;
1590 int i;
1591
1592 /* Traverse only the allowed CPUs */
1593 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1594 load = weighted_cpuload(i);
1595
1596 if (load < min_load || (load == min_load && i == this_cpu)) {
1597 min_load = load;
1598 idlest = i;
e7693a36
GH
1599 }
1600 }
1601
aaee1203
PZ
1602 return idlest;
1603}
e7693a36 1604
a50bde51
PZ
1605/*
1606 * Try and locate an idle CPU in the sched_domain.
1607 */
99bd5e2f 1608static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
1609{
1610 int cpu = smp_processor_id();
1611 int prev_cpu = task_cpu(p);
99bd5e2f 1612 struct sched_domain *sd;
a50bde51
PZ
1613 int i;
1614
1615 /*
99bd5e2f
SS
1616 * If the task is going to be woken-up on this cpu and if it is
1617 * already idle, then it is the right target.
a50bde51 1618 */
99bd5e2f
SS
1619 if (target == cpu && idle_cpu(cpu))
1620 return cpu;
1621
1622 /*
1623 * If the task is going to be woken-up on the cpu where it previously
1624 * ran and if it is currently idle, then it the right target.
1625 */
1626 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 1627 return prev_cpu;
a50bde51
PZ
1628
1629 /*
99bd5e2f 1630 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 1631 */
dce840a0 1632 rcu_read_lock();
99bd5e2f
SS
1633 for_each_domain(target, sd) {
1634 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
fe3bcfe1 1635 break;
99bd5e2f
SS
1636
1637 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1638 if (idle_cpu(i)) {
1639 target = i;
1640 break;
1641 }
a50bde51 1642 }
99bd5e2f
SS
1643
1644 /*
1645 * Lets stop looking for an idle sibling when we reached
1646 * the domain that spans the current cpu and prev_cpu.
1647 */
1648 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1649 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1650 break;
a50bde51 1651 }
dce840a0 1652 rcu_read_unlock();
a50bde51
PZ
1653
1654 return target;
1655}
1656
aaee1203
PZ
1657/*
1658 * sched_balance_self: balance the current task (running on cpu) in domains
1659 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1660 * SD_BALANCE_EXEC.
1661 *
1662 * Balance, ie. select the least loaded group.
1663 *
1664 * Returns the target CPU number, or the same CPU if no balancing is needed.
1665 *
1666 * preempt must be disabled.
1667 */
0017d735 1668static int
7608dec2 1669select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 1670{
29cd8bae 1671 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
1672 int cpu = smp_processor_id();
1673 int prev_cpu = task_cpu(p);
1674 int new_cpu = cpu;
99bd5e2f 1675 int want_affine = 0;
29cd8bae 1676 int want_sd = 1;
5158f4e4 1677 int sync = wake_flags & WF_SYNC;
c88d5910 1678
0763a660 1679 if (sd_flag & SD_BALANCE_WAKE) {
beac4c7e 1680 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
c88d5910
PZ
1681 want_affine = 1;
1682 new_cpu = prev_cpu;
1683 }
aaee1203 1684
dce840a0 1685 rcu_read_lock();
aaee1203 1686 for_each_domain(cpu, tmp) {
e4f42888
PZ
1687 if (!(tmp->flags & SD_LOAD_BALANCE))
1688 continue;
1689
aaee1203 1690 /*
ae154be1
PZ
1691 * If power savings logic is enabled for a domain, see if we
1692 * are not overloaded, if so, don't balance wider.
aaee1203 1693 */
59abf026 1694 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
1695 unsigned long power = 0;
1696 unsigned long nr_running = 0;
1697 unsigned long capacity;
1698 int i;
1699
1700 for_each_cpu(i, sched_domain_span(tmp)) {
1701 power += power_of(i);
1702 nr_running += cpu_rq(i)->cfs.nr_running;
1703 }
1704
1399fa78 1705 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
ae154be1 1706
59abf026
PZ
1707 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1708 nr_running /= 2;
1709
1710 if (nr_running < capacity)
29cd8bae 1711 want_sd = 0;
ae154be1 1712 }
aaee1203 1713
fe3bcfe1 1714 /*
99bd5e2f
SS
1715 * If both cpu and prev_cpu are part of this domain,
1716 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 1717 */
99bd5e2f
SS
1718 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1719 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1720 affine_sd = tmp;
1721 want_affine = 0;
c88d5910
PZ
1722 }
1723
29cd8bae
PZ
1724 if (!want_sd && !want_affine)
1725 break;
1726
0763a660 1727 if (!(tmp->flags & sd_flag))
c88d5910
PZ
1728 continue;
1729
29cd8bae
PZ
1730 if (want_sd)
1731 sd = tmp;
1732 }
1733
8b911acd 1734 if (affine_sd) {
99bd5e2f 1735 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
dce840a0
PZ
1736 prev_cpu = cpu;
1737
1738 new_cpu = select_idle_sibling(p, prev_cpu);
1739 goto unlock;
8b911acd 1740 }
e7693a36 1741
aaee1203 1742 while (sd) {
5158f4e4 1743 int load_idx = sd->forkexec_idx;
aaee1203 1744 struct sched_group *group;
c88d5910 1745 int weight;
098fb9db 1746
0763a660 1747 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
1748 sd = sd->child;
1749 continue;
1750 }
098fb9db 1751
5158f4e4
PZ
1752 if (sd_flag & SD_BALANCE_WAKE)
1753 load_idx = sd->wake_idx;
098fb9db 1754
5158f4e4 1755 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
1756 if (!group) {
1757 sd = sd->child;
1758 continue;
1759 }
4ae7d5ce 1760
d7c33c49 1761 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
1762 if (new_cpu == -1 || new_cpu == cpu) {
1763 /* Now try balancing at a lower domain level of cpu */
1764 sd = sd->child;
1765 continue;
e7693a36 1766 }
aaee1203
PZ
1767
1768 /* Now try balancing at a lower domain level of new_cpu */
1769 cpu = new_cpu;
669c55e9 1770 weight = sd->span_weight;
aaee1203
PZ
1771 sd = NULL;
1772 for_each_domain(cpu, tmp) {
669c55e9 1773 if (weight <= tmp->span_weight)
aaee1203 1774 break;
0763a660 1775 if (tmp->flags & sd_flag)
aaee1203
PZ
1776 sd = tmp;
1777 }
1778 /* while loop will break here if sd == NULL */
e7693a36 1779 }
dce840a0
PZ
1780unlock:
1781 rcu_read_unlock();
e7693a36 1782
c88d5910 1783 return new_cpu;
e7693a36
GH
1784}
1785#endif /* CONFIG_SMP */
1786
e52fb7c0
PZ
1787static unsigned long
1788wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1789{
1790 unsigned long gran = sysctl_sched_wakeup_granularity;
1791
1792 /*
e52fb7c0
PZ
1793 * Since its curr running now, convert the gran from real-time
1794 * to virtual-time in his units.
13814d42
MG
1795 *
1796 * By using 'se' instead of 'curr' we penalize light tasks, so
1797 * they get preempted easier. That is, if 'se' < 'curr' then
1798 * the resulting gran will be larger, therefore penalizing the
1799 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1800 * be smaller, again penalizing the lighter task.
1801 *
1802 * This is especially important for buddies when the leftmost
1803 * task is higher priority than the buddy.
0bbd3336 1804 */
f4ad9bd2 1805 return calc_delta_fair(gran, se);
0bbd3336
PZ
1806}
1807
464b7527
PZ
1808/*
1809 * Should 'se' preempt 'curr'.
1810 *
1811 * |s1
1812 * |s2
1813 * |s3
1814 * g
1815 * |<--->|c
1816 *
1817 * w(c, s1) = -1
1818 * w(c, s2) = 0
1819 * w(c, s3) = 1
1820 *
1821 */
1822static int
1823wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1824{
1825 s64 gran, vdiff = curr->vruntime - se->vruntime;
1826
1827 if (vdiff <= 0)
1828 return -1;
1829
e52fb7c0 1830 gran = wakeup_gran(curr, se);
464b7527
PZ
1831 if (vdiff > gran)
1832 return 1;
1833
1834 return 0;
1835}
1836
02479099
PZ
1837static void set_last_buddy(struct sched_entity *se)
1838{
69c80f3e
VP
1839 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
1840 return;
1841
1842 for_each_sched_entity(se)
1843 cfs_rq_of(se)->last = se;
02479099
PZ
1844}
1845
1846static void set_next_buddy(struct sched_entity *se)
1847{
69c80f3e
VP
1848 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
1849 return;
1850
1851 for_each_sched_entity(se)
1852 cfs_rq_of(se)->next = se;
02479099
PZ
1853}
1854
ac53db59
RR
1855static void set_skip_buddy(struct sched_entity *se)
1856{
69c80f3e
VP
1857 for_each_sched_entity(se)
1858 cfs_rq_of(se)->skip = se;
ac53db59
RR
1859}
1860
bf0f6f24
IM
1861/*
1862 * Preempt the current task with a newly woken task if needed:
1863 */
5a9b86f6 1864static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
1865{
1866 struct task_struct *curr = rq->curr;
8651a86c 1867 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1868 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 1869 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 1870 int next_buddy_marked = 0;
bf0f6f24 1871
4ae7d5ce
IM
1872 if (unlikely(se == pse))
1873 return;
1874
2f36825b 1875 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 1876 set_next_buddy(pse);
2f36825b
VP
1877 next_buddy_marked = 1;
1878 }
57fdc26d 1879
aec0a514
BR
1880 /*
1881 * We can come here with TIF_NEED_RESCHED already set from new task
1882 * wake up path.
1883 */
1884 if (test_tsk_need_resched(curr))
1885 return;
1886
a2f5c9ab
DH
1887 /* Idle tasks are by definition preempted by non-idle tasks. */
1888 if (unlikely(curr->policy == SCHED_IDLE) &&
1889 likely(p->policy != SCHED_IDLE))
1890 goto preempt;
1891
91c234b4 1892 /*
a2f5c9ab
DH
1893 * Batch and idle tasks do not preempt non-idle tasks (their preemption
1894 * is driven by the tick):
91c234b4 1895 */
6bc912b7 1896 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1897 return;
bf0f6f24 1898
464b7527 1899 find_matching_se(&se, &pse);
9bbd7374 1900 update_curr(cfs_rq_of(se));
002f128b 1901 BUG_ON(!pse);
2f36825b
VP
1902 if (wakeup_preempt_entity(se, pse) == 1) {
1903 /*
1904 * Bias pick_next to pick the sched entity that is
1905 * triggering this preemption.
1906 */
1907 if (!next_buddy_marked)
1908 set_next_buddy(pse);
3a7e73a2 1909 goto preempt;
2f36825b 1910 }
464b7527 1911
3a7e73a2 1912 return;
a65ac745 1913
3a7e73a2
PZ
1914preempt:
1915 resched_task(curr);
1916 /*
1917 * Only set the backward buddy when the current task is still
1918 * on the rq. This can happen when a wakeup gets interleaved
1919 * with schedule on the ->pre_schedule() or idle_balance()
1920 * point, either of which can * drop the rq lock.
1921 *
1922 * Also, during early boot the idle thread is in the fair class,
1923 * for obvious reasons its a bad idea to schedule back to it.
1924 */
1925 if (unlikely(!se->on_rq || curr == rq->idle))
1926 return;
1927
1928 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1929 set_last_buddy(se);
bf0f6f24
IM
1930}
1931
fb8d4724 1932static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1933{
8f4d37ec 1934 struct task_struct *p;
bf0f6f24
IM
1935 struct cfs_rq *cfs_rq = &rq->cfs;
1936 struct sched_entity *se;
1937
36ace27e 1938 if (!cfs_rq->nr_running)
bf0f6f24
IM
1939 return NULL;
1940
1941 do {
9948f4b2 1942 se = pick_next_entity(cfs_rq);
f4b6755f 1943 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1944 cfs_rq = group_cfs_rq(se);
1945 } while (cfs_rq);
1946
8f4d37ec
PZ
1947 p = task_of(se);
1948 hrtick_start_fair(rq, p);
1949
1950 return p;
bf0f6f24
IM
1951}
1952
1953/*
1954 * Account for a descheduled task:
1955 */
31ee529c 1956static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1957{
1958 struct sched_entity *se = &prev->se;
1959 struct cfs_rq *cfs_rq;
1960
1961 for_each_sched_entity(se) {
1962 cfs_rq = cfs_rq_of(se);
ab6cde26 1963 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1964 }
1965}
1966
ac53db59
RR
1967/*
1968 * sched_yield() is very simple
1969 *
1970 * The magic of dealing with the ->skip buddy is in pick_next_entity.
1971 */
1972static void yield_task_fair(struct rq *rq)
1973{
1974 struct task_struct *curr = rq->curr;
1975 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1976 struct sched_entity *se = &curr->se;
1977
1978 /*
1979 * Are we the only task in the tree?
1980 */
1981 if (unlikely(rq->nr_running == 1))
1982 return;
1983
1984 clear_buddies(cfs_rq, se);
1985
1986 if (curr->policy != SCHED_BATCH) {
1987 update_rq_clock(rq);
1988 /*
1989 * Update run-time statistics of the 'current'.
1990 */
1991 update_curr(cfs_rq);
1992 }
1993
1994 set_skip_buddy(se);
1995}
1996
d95f4122
MG
1997static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
1998{
1999 struct sched_entity *se = &p->se;
2000
2001 if (!se->on_rq)
2002 return false;
2003
2004 /* Tell the scheduler that we'd really like pse to run next. */
2005 set_next_buddy(se);
2006
d95f4122
MG
2007 yield_task_fair(rq);
2008
2009 return true;
2010}
2011
681f3e68 2012#ifdef CONFIG_SMP
bf0f6f24
IM
2013/**************************************************
2014 * Fair scheduling class load-balancing methods:
2015 */
2016
1e3c88bd
PZ
2017/*
2018 * pull_task - move a task from a remote runqueue to the local runqueue.
2019 * Both runqueues must be locked.
2020 */
2021static void pull_task(struct rq *src_rq, struct task_struct *p,
2022 struct rq *this_rq, int this_cpu)
2023{
2024 deactivate_task(src_rq, p, 0);
2025 set_task_cpu(p, this_cpu);
2026 activate_task(this_rq, p, 0);
2027 check_preempt_curr(this_rq, p, 0);
2028}
2029
2030/*
2031 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2032 */
2033static
2034int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2035 struct sched_domain *sd, enum cpu_idle_type idle,
2036 int *all_pinned)
2037{
2038 int tsk_cache_hot = 0;
2039 /*
2040 * We do not migrate tasks that are:
2041 * 1) running (obviously), or
2042 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2043 * 3) are cache-hot on their current CPU.
2044 */
2045 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
41acab88 2046 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
2047 return 0;
2048 }
2049 *all_pinned = 0;
2050
2051 if (task_running(rq, p)) {
41acab88 2052 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
2053 return 0;
2054 }
2055
2056 /*
2057 * Aggressive migration if:
2058 * 1) task is cache cold, or
2059 * 2) too many balance attempts have failed.
2060 */
2061
305e6835 2062 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1e3c88bd
PZ
2063 if (!tsk_cache_hot ||
2064 sd->nr_balance_failed > sd->cache_nice_tries) {
2065#ifdef CONFIG_SCHEDSTATS
2066 if (tsk_cache_hot) {
2067 schedstat_inc(sd, lb_hot_gained[idle]);
41acab88 2068 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
2069 }
2070#endif
2071 return 1;
2072 }
2073
2074 if (tsk_cache_hot) {
41acab88 2075 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
2076 return 0;
2077 }
2078 return 1;
2079}
2080
897c395f
PZ
2081/*
2082 * move_one_task tries to move exactly one task from busiest to this_rq, as
2083 * part of active balancing operations within "domain".
2084 * Returns 1 if successful and 0 otherwise.
2085 *
2086 * Called with both runqueues locked.
2087 */
2088static int
2089move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2090 struct sched_domain *sd, enum cpu_idle_type idle)
2091{
2092 struct task_struct *p, *n;
2093 struct cfs_rq *cfs_rq;
2094 int pinned = 0;
2095
2096 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2097 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2098
2099 if (!can_migrate_task(p, busiest, this_cpu,
2100 sd, idle, &pinned))
2101 continue;
2102
2103 pull_task(busiest, p, this_rq, this_cpu);
2104 /*
2105 * Right now, this is only the second place pull_task()
2106 * is called, so we can safely collect pull_task()
2107 * stats here rather than inside pull_task().
2108 */
2109 schedstat_inc(sd, lb_gained[idle]);
2110 return 1;
2111 }
2112 }
2113
2114 return 0;
2115}
2116
1e3c88bd
PZ
2117static unsigned long
2118balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2119 unsigned long max_load_move, struct sched_domain *sd,
2120 enum cpu_idle_type idle, int *all_pinned,
931aeeda 2121 struct cfs_rq *busiest_cfs_rq)
1e3c88bd 2122{
b30aef17 2123 int loops = 0, pulled = 0;
1e3c88bd 2124 long rem_load_move = max_load_move;
ee00e66f 2125 struct task_struct *p, *n;
1e3c88bd
PZ
2126
2127 if (max_load_move == 0)
2128 goto out;
2129
ee00e66f
PZ
2130 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2131 if (loops++ > sysctl_sched_nr_migrate)
2132 break;
1e3c88bd 2133
ee00e66f 2134 if ((p->se.load.weight >> 1) > rem_load_move ||
b30aef17
KC
2135 !can_migrate_task(p, busiest, this_cpu, sd, idle,
2136 all_pinned))
ee00e66f 2137 continue;
1e3c88bd 2138
ee00e66f
PZ
2139 pull_task(busiest, p, this_rq, this_cpu);
2140 pulled++;
2141 rem_load_move -= p->se.load.weight;
1e3c88bd
PZ
2142
2143#ifdef CONFIG_PREEMPT
ee00e66f
PZ
2144 /*
2145 * NEWIDLE balancing is a source of latency, so preemptible
2146 * kernels will stop after the first task is pulled to minimize
2147 * the critical section.
2148 */
2149 if (idle == CPU_NEWLY_IDLE)
2150 break;
1e3c88bd
PZ
2151#endif
2152
ee00e66f
PZ
2153 /*
2154 * We only want to steal up to the prescribed amount of
2155 * weighted load.
2156 */
2157 if (rem_load_move <= 0)
2158 break;
1e3c88bd
PZ
2159 }
2160out:
2161 /*
2162 * Right now, this is one of only two places pull_task() is called,
2163 * so we can safely collect pull_task() stats here rather than
2164 * inside pull_task().
2165 */
2166 schedstat_add(sd, lb_gained[idle], pulled);
2167
1e3c88bd
PZ
2168 return max_load_move - rem_load_move;
2169}
2170
230059de 2171#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
2172/*
2173 * update tg->load_weight by folding this cpu's load_avg
2174 */
67e86250 2175static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
2176{
2177 struct cfs_rq *cfs_rq;
2178 unsigned long flags;
2179 struct rq *rq;
9e3081ca
PZ
2180
2181 if (!tg->se[cpu])
2182 return 0;
2183
2184 rq = cpu_rq(cpu);
2185 cfs_rq = tg->cfs_rq[cpu];
2186
2187 raw_spin_lock_irqsave(&rq->lock, flags);
2188
2189 update_rq_clock(rq);
d6b55918 2190 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
2191
2192 /*
2193 * We need to update shares after updating tg->load_weight in
2194 * order to adjust the weight of groups with long running tasks.
2195 */
6d5ab293 2196 update_cfs_shares(cfs_rq);
9e3081ca
PZ
2197
2198 raw_spin_unlock_irqrestore(&rq->lock, flags);
2199
2200 return 0;
2201}
2202
2203static void update_shares(int cpu)
2204{
2205 struct cfs_rq *cfs_rq;
2206 struct rq *rq = cpu_rq(cpu);
2207
2208 rcu_read_lock();
9763b67f
PZ
2209 /*
2210 * Iterates the task_group tree in a bottom up fashion, see
2211 * list_add_leaf_cfs_rq() for details.
2212 */
67e86250
PT
2213 for_each_leaf_cfs_rq(rq, cfs_rq)
2214 update_shares_cpu(cfs_rq->tg, cpu);
9e3081ca
PZ
2215 rcu_read_unlock();
2216}
2217
9763b67f
PZ
2218/*
2219 * Compute the cpu's hierarchical load factor for each task group.
2220 * This needs to be done in a top-down fashion because the load of a child
2221 * group is a fraction of its parents load.
2222 */
2223static int tg_load_down(struct task_group *tg, void *data)
2224{
2225 unsigned long load;
2226 long cpu = (long)data;
2227
2228 if (!tg->parent) {
2229 load = cpu_rq(cpu)->load.weight;
2230 } else {
2231 load = tg->parent->cfs_rq[cpu]->h_load;
2232 load *= tg->se[cpu]->load.weight;
2233 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
2234 }
2235
2236 tg->cfs_rq[cpu]->h_load = load;
2237
2238 return 0;
2239}
2240
2241static void update_h_load(long cpu)
2242{
2243 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
2244}
2245
230059de
PZ
2246static unsigned long
2247load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2248 unsigned long max_load_move,
2249 struct sched_domain *sd, enum cpu_idle_type idle,
931aeeda 2250 int *all_pinned)
230059de
PZ
2251{
2252 long rem_load_move = max_load_move;
9763b67f 2253 struct cfs_rq *busiest_cfs_rq;
230059de
PZ
2254
2255 rcu_read_lock();
9763b67f 2256 update_h_load(cpu_of(busiest));
230059de 2257
9763b67f 2258 for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
230059de
PZ
2259 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2260 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2261 u64 rem_load, moved_load;
2262
2263 /*
2264 * empty group
2265 */
2266 if (!busiest_cfs_rq->task_weight)
2267 continue;
2268
2269 rem_load = (u64)rem_load_move * busiest_weight;
2270 rem_load = div_u64(rem_load, busiest_h_load + 1);
2271
2272 moved_load = balance_tasks(this_rq, this_cpu, busiest,
931aeeda 2273 rem_load, sd, idle, all_pinned,
230059de
PZ
2274 busiest_cfs_rq);
2275
2276 if (!moved_load)
2277 continue;
2278
2279 moved_load *= busiest_h_load;
2280 moved_load = div_u64(moved_load, busiest_weight + 1);
2281
2282 rem_load_move -= moved_load;
2283 if (rem_load_move < 0)
2284 break;
2285 }
2286 rcu_read_unlock();
2287
2288 return max_load_move - rem_load_move;
2289}
2290#else
9e3081ca
PZ
2291static inline void update_shares(int cpu)
2292{
2293}
2294
230059de
PZ
2295static unsigned long
2296load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2297 unsigned long max_load_move,
2298 struct sched_domain *sd, enum cpu_idle_type idle,
931aeeda 2299 int *all_pinned)
230059de
PZ
2300{
2301 return balance_tasks(this_rq, this_cpu, busiest,
2302 max_load_move, sd, idle, all_pinned,
931aeeda 2303 &busiest->cfs);
230059de
PZ
2304}
2305#endif
2306
1e3c88bd
PZ
2307/*
2308 * move_tasks tries to move up to max_load_move weighted load from busiest to
2309 * this_rq, as part of a balancing operation within domain "sd".
2310 * Returns 1 if successful and 0 otherwise.
2311 *
2312 * Called with both runqueues locked.
2313 */
2314static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2315 unsigned long max_load_move,
2316 struct sched_domain *sd, enum cpu_idle_type idle,
2317 int *all_pinned)
2318{
3d45fd80 2319 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
2320
2321 do {
3d45fd80 2322 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd 2323 max_load_move - total_load_moved,
931aeeda 2324 sd, idle, all_pinned);
3d45fd80
PZ
2325
2326 total_load_moved += load_moved;
1e3c88bd
PZ
2327
2328#ifdef CONFIG_PREEMPT
2329 /*
2330 * NEWIDLE balancing is a source of latency, so preemptible
2331 * kernels will stop after the first task is pulled to minimize
2332 * the critical section.
2333 */
2334 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2335 break;
baa8c110
PZ
2336
2337 if (raw_spin_is_contended(&this_rq->lock) ||
2338 raw_spin_is_contended(&busiest->lock))
2339 break;
1e3c88bd 2340#endif
3d45fd80 2341 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
2342
2343 return total_load_moved > 0;
2344}
2345
1e3c88bd
PZ
2346/********** Helpers for find_busiest_group ************************/
2347/*
2348 * sd_lb_stats - Structure to store the statistics of a sched_domain
2349 * during load balancing.
2350 */
2351struct sd_lb_stats {
2352 struct sched_group *busiest; /* Busiest group in this sd */
2353 struct sched_group *this; /* Local group in this sd */
2354 unsigned long total_load; /* Total load of all groups in sd */
2355 unsigned long total_pwr; /* Total power of all groups in sd */
2356 unsigned long avg_load; /* Average load across all groups in sd */
2357
2358 /** Statistics of this group */
2359 unsigned long this_load;
2360 unsigned long this_load_per_task;
2361 unsigned long this_nr_running;
fab47622 2362 unsigned long this_has_capacity;
aae6d3dd 2363 unsigned int this_idle_cpus;
1e3c88bd
PZ
2364
2365 /* Statistics of the busiest group */
aae6d3dd 2366 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
2367 unsigned long max_load;
2368 unsigned long busiest_load_per_task;
2369 unsigned long busiest_nr_running;
dd5feea1 2370 unsigned long busiest_group_capacity;
fab47622 2371 unsigned long busiest_has_capacity;
aae6d3dd 2372 unsigned int busiest_group_weight;
1e3c88bd
PZ
2373
2374 int group_imb; /* Is there imbalance in this sd */
2375#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2376 int power_savings_balance; /* Is powersave balance needed for this sd */
2377 struct sched_group *group_min; /* Least loaded group in sd */
2378 struct sched_group *group_leader; /* Group which relieves group_min */
2379 unsigned long min_load_per_task; /* load_per_task in group_min */
2380 unsigned long leader_nr_running; /* Nr running of group_leader */
2381 unsigned long min_nr_running; /* Nr running of group_min */
2382#endif
2383};
2384
2385/*
2386 * sg_lb_stats - stats of a sched_group required for load_balancing
2387 */
2388struct sg_lb_stats {
2389 unsigned long avg_load; /*Avg load across the CPUs of the group */
2390 unsigned long group_load; /* Total load over the CPUs of the group */
2391 unsigned long sum_nr_running; /* Nr tasks running in the group */
2392 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2393 unsigned long group_capacity;
aae6d3dd
SS
2394 unsigned long idle_cpus;
2395 unsigned long group_weight;
1e3c88bd 2396 int group_imb; /* Is there an imbalance in the group ? */
fab47622 2397 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
2398};
2399
2400/**
2401 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2402 * @group: The group whose first cpu is to be returned.
2403 */
2404static inline unsigned int group_first_cpu(struct sched_group *group)
2405{
2406 return cpumask_first(sched_group_cpus(group));
2407}
2408
2409/**
2410 * get_sd_load_idx - Obtain the load index for a given sched domain.
2411 * @sd: The sched_domain whose load_idx is to be obtained.
2412 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2413 */
2414static inline int get_sd_load_idx(struct sched_domain *sd,
2415 enum cpu_idle_type idle)
2416{
2417 int load_idx;
2418
2419 switch (idle) {
2420 case CPU_NOT_IDLE:
2421 load_idx = sd->busy_idx;
2422 break;
2423
2424 case CPU_NEWLY_IDLE:
2425 load_idx = sd->newidle_idx;
2426 break;
2427 default:
2428 load_idx = sd->idle_idx;
2429 break;
2430 }
2431
2432 return load_idx;
2433}
2434
2435
2436#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2437/**
2438 * init_sd_power_savings_stats - Initialize power savings statistics for
2439 * the given sched_domain, during load balancing.
2440 *
2441 * @sd: Sched domain whose power-savings statistics are to be initialized.
2442 * @sds: Variable containing the statistics for sd.
2443 * @idle: Idle status of the CPU at which we're performing load-balancing.
2444 */
2445static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2446 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2447{
2448 /*
2449 * Busy processors will not participate in power savings
2450 * balance.
2451 */
2452 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2453 sds->power_savings_balance = 0;
2454 else {
2455 sds->power_savings_balance = 1;
2456 sds->min_nr_running = ULONG_MAX;
2457 sds->leader_nr_running = 0;
2458 }
2459}
2460
2461/**
2462 * update_sd_power_savings_stats - Update the power saving stats for a
2463 * sched_domain while performing load balancing.
2464 *
2465 * @group: sched_group belonging to the sched_domain under consideration.
2466 * @sds: Variable containing the statistics of the sched_domain
2467 * @local_group: Does group contain the CPU for which we're performing
2468 * load balancing ?
2469 * @sgs: Variable containing the statistics of the group.
2470 */
2471static inline void update_sd_power_savings_stats(struct sched_group *group,
2472 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2473{
2474
2475 if (!sds->power_savings_balance)
2476 return;
2477
2478 /*
2479 * If the local group is idle or completely loaded
2480 * no need to do power savings balance at this domain
2481 */
2482 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2483 !sds->this_nr_running))
2484 sds->power_savings_balance = 0;
2485
2486 /*
2487 * If a group is already running at full capacity or idle,
2488 * don't include that group in power savings calculations
2489 */
2490 if (!sds->power_savings_balance ||
2491 sgs->sum_nr_running >= sgs->group_capacity ||
2492 !sgs->sum_nr_running)
2493 return;
2494
2495 /*
2496 * Calculate the group which has the least non-idle load.
2497 * This is the group from where we need to pick up the load
2498 * for saving power
2499 */
2500 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2501 (sgs->sum_nr_running == sds->min_nr_running &&
2502 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2503 sds->group_min = group;
2504 sds->min_nr_running = sgs->sum_nr_running;
2505 sds->min_load_per_task = sgs->sum_weighted_load /
2506 sgs->sum_nr_running;
2507 }
2508
2509 /*
2510 * Calculate the group which is almost near its
2511 * capacity but still has some space to pick up some load
2512 * from other group and save more power
2513 */
2514 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2515 return;
2516
2517 if (sgs->sum_nr_running > sds->leader_nr_running ||
2518 (sgs->sum_nr_running == sds->leader_nr_running &&
2519 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2520 sds->group_leader = group;
2521 sds->leader_nr_running = sgs->sum_nr_running;
2522 }
2523}
2524
2525/**
2526 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2527 * @sds: Variable containing the statistics of the sched_domain
2528 * under consideration.
2529 * @this_cpu: Cpu at which we're currently performing load-balancing.
2530 * @imbalance: Variable to store the imbalance.
2531 *
2532 * Description:
2533 * Check if we have potential to perform some power-savings balance.
2534 * If yes, set the busiest group to be the least loaded group in the
2535 * sched_domain, so that it's CPUs can be put to idle.
2536 *
2537 * Returns 1 if there is potential to perform power-savings balance.
2538 * Else returns 0.
2539 */
2540static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2541 int this_cpu, unsigned long *imbalance)
2542{
2543 if (!sds->power_savings_balance)
2544 return 0;
2545
2546 if (sds->this != sds->group_leader ||
2547 sds->group_leader == sds->group_min)
2548 return 0;
2549
2550 *imbalance = sds->min_load_per_task;
2551 sds->busiest = sds->group_min;
2552
2553 return 1;
2554
2555}
2556#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2557static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2558 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2559{
2560 return;
2561}
2562
2563static inline void update_sd_power_savings_stats(struct sched_group *group,
2564 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2565{
2566 return;
2567}
2568
2569static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2570 int this_cpu, unsigned long *imbalance)
2571{
2572 return 0;
2573}
2574#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2575
2576
2577unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2578{
1399fa78 2579 return SCHED_POWER_SCALE;
1e3c88bd
PZ
2580}
2581
2582unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2583{
2584 return default_scale_freq_power(sd, cpu);
2585}
2586
2587unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2588{
669c55e9 2589 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
2590 unsigned long smt_gain = sd->smt_gain;
2591
2592 smt_gain /= weight;
2593
2594 return smt_gain;
2595}
2596
2597unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2598{
2599 return default_scale_smt_power(sd, cpu);
2600}
2601
2602unsigned long scale_rt_power(int cpu)
2603{
2604 struct rq *rq = cpu_rq(cpu);
2605 u64 total, available;
2606
1e3c88bd 2607 total = sched_avg_period() + (rq->clock - rq->age_stamp);
aa483808
VP
2608
2609 if (unlikely(total < rq->rt_avg)) {
2610 /* Ensures that power won't end up being negative */
2611 available = 0;
2612 } else {
2613 available = total - rq->rt_avg;
2614 }
1e3c88bd 2615
1399fa78
NR
2616 if (unlikely((s64)total < SCHED_POWER_SCALE))
2617 total = SCHED_POWER_SCALE;
1e3c88bd 2618
1399fa78 2619 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
2620
2621 return div_u64(available, total);
2622}
2623
2624static void update_cpu_power(struct sched_domain *sd, int cpu)
2625{
669c55e9 2626 unsigned long weight = sd->span_weight;
1399fa78 2627 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
2628 struct sched_group *sdg = sd->groups;
2629
1e3c88bd
PZ
2630 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2631 if (sched_feat(ARCH_POWER))
2632 power *= arch_scale_smt_power(sd, cpu);
2633 else
2634 power *= default_scale_smt_power(sd, cpu);
2635
1399fa78 2636 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
2637 }
2638
9c3f75cb 2639 sdg->sgp->power_orig = power;
9d5efe05
SV
2640
2641 if (sched_feat(ARCH_POWER))
2642 power *= arch_scale_freq_power(sd, cpu);
2643 else
2644 power *= default_scale_freq_power(sd, cpu);
2645
1399fa78 2646 power >>= SCHED_POWER_SHIFT;
9d5efe05 2647
1e3c88bd 2648 power *= scale_rt_power(cpu);
1399fa78 2649 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
2650
2651 if (!power)
2652 power = 1;
2653
e51fd5e2 2654 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 2655 sdg->sgp->power = power;
1e3c88bd
PZ
2656}
2657
2658static void update_group_power(struct sched_domain *sd, int cpu)
2659{
2660 struct sched_domain *child = sd->child;
2661 struct sched_group *group, *sdg = sd->groups;
2662 unsigned long power;
2663
2664 if (!child) {
2665 update_cpu_power(sd, cpu);
2666 return;
2667 }
2668
2669 power = 0;
2670
2671 group = child->groups;
2672 do {
9c3f75cb 2673 power += group->sgp->power;
1e3c88bd
PZ
2674 group = group->next;
2675 } while (group != child->groups);
2676
9c3f75cb 2677 sdg->sgp->power = power;
1e3c88bd
PZ
2678}
2679
9d5efe05
SV
2680/*
2681 * Try and fix up capacity for tiny siblings, this is needed when
2682 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2683 * which on its own isn't powerful enough.
2684 *
2685 * See update_sd_pick_busiest() and check_asym_packing().
2686 */
2687static inline int
2688fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2689{
2690 /*
1399fa78 2691 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 2692 */
a6c75f2f 2693 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
2694 return 0;
2695
2696 /*
2697 * If ~90% of the cpu_power is still there, we're good.
2698 */
9c3f75cb 2699 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
2700 return 1;
2701
2702 return 0;
2703}
2704
1e3c88bd
PZ
2705/**
2706 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2707 * @sd: The sched_domain whose statistics are to be updated.
2708 * @group: sched_group whose statistics are to be updated.
2709 * @this_cpu: Cpu for which load balance is currently performed.
2710 * @idle: Idle status of this_cpu
2711 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd
PZ
2712 * @local_group: Does group contain this_cpu.
2713 * @cpus: Set of cpus considered for load balancing.
2714 * @balance: Should we balance.
2715 * @sgs: variable to hold the statistics for this group.
2716 */
2717static inline void update_sg_lb_stats(struct sched_domain *sd,
2718 struct sched_group *group, int this_cpu,
46e49b38 2719 enum cpu_idle_type idle, int load_idx,
1e3c88bd
PZ
2720 int local_group, const struct cpumask *cpus,
2721 int *balance, struct sg_lb_stats *sgs)
2722{
2582f0eb 2723 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
1e3c88bd
PZ
2724 int i;
2725 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 2726 unsigned long avg_load_per_task = 0;
1e3c88bd 2727
871e35bc 2728 if (local_group)
1e3c88bd 2729 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
2730
2731 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
2732 max_cpu_load = 0;
2733 min_cpu_load = ~0UL;
2582f0eb 2734 max_nr_running = 0;
1e3c88bd
PZ
2735
2736 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2737 struct rq *rq = cpu_rq(i);
2738
1e3c88bd
PZ
2739 /* Bias balancing toward cpus of our domain */
2740 if (local_group) {
2741 if (idle_cpu(i) && !first_idle_cpu) {
2742 first_idle_cpu = 1;
2743 balance_cpu = i;
2744 }
2745
2746 load = target_load(i, load_idx);
2747 } else {
2748 load = source_load(i, load_idx);
2582f0eb 2749 if (load > max_cpu_load) {
1e3c88bd 2750 max_cpu_load = load;
2582f0eb
NR
2751 max_nr_running = rq->nr_running;
2752 }
1e3c88bd
PZ
2753 if (min_cpu_load > load)
2754 min_cpu_load = load;
2755 }
2756
2757 sgs->group_load += load;
2758 sgs->sum_nr_running += rq->nr_running;
2759 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
2760 if (idle_cpu(i))
2761 sgs->idle_cpus++;
1e3c88bd
PZ
2762 }
2763
2764 /*
2765 * First idle cpu or the first cpu(busiest) in this sched group
2766 * is eligible for doing load balancing at this and above
2767 * domains. In the newly idle case, we will allow all the cpu's
2768 * to do the newly idle load balance.
2769 */
bbc8cb5b
PZ
2770 if (idle != CPU_NEWLY_IDLE && local_group) {
2771 if (balance_cpu != this_cpu) {
2772 *balance = 0;
2773 return;
2774 }
2775 update_group_power(sd, this_cpu);
1e3c88bd
PZ
2776 }
2777
2778 /* Adjust by relative CPU power of the group */
9c3f75cb 2779 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 2780
1e3c88bd
PZ
2781 /*
2782 * Consider the group unbalanced when the imbalance is larger
866ab43e 2783 * than the average weight of a task.
1e3c88bd
PZ
2784 *
2785 * APZ: with cgroup the avg task weight can vary wildly and
2786 * might not be a suitable number - should we keep a
2787 * normalized nr_running number somewhere that negates
2788 * the hierarchy?
2789 */
dd5feea1
SS
2790 if (sgs->sum_nr_running)
2791 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 2792
866ab43e 2793 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
1e3c88bd
PZ
2794 sgs->group_imb = 1;
2795
9c3f75cb 2796 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 2797 SCHED_POWER_SCALE);
9d5efe05
SV
2798 if (!sgs->group_capacity)
2799 sgs->group_capacity = fix_small_capacity(sd, group);
aae6d3dd 2800 sgs->group_weight = group->group_weight;
fab47622
NR
2801
2802 if (sgs->group_capacity > sgs->sum_nr_running)
2803 sgs->group_has_capacity = 1;
1e3c88bd
PZ
2804}
2805
532cb4c4
MN
2806/**
2807 * update_sd_pick_busiest - return 1 on busiest group
2808 * @sd: sched_domain whose statistics are to be checked
2809 * @sds: sched_domain statistics
2810 * @sg: sched_group candidate to be checked for being the busiest
b6b12294
MN
2811 * @sgs: sched_group statistics
2812 * @this_cpu: the current cpu
532cb4c4
MN
2813 *
2814 * Determine if @sg is a busier group than the previously selected
2815 * busiest group.
2816 */
2817static bool update_sd_pick_busiest(struct sched_domain *sd,
2818 struct sd_lb_stats *sds,
2819 struct sched_group *sg,
2820 struct sg_lb_stats *sgs,
2821 int this_cpu)
2822{
2823 if (sgs->avg_load <= sds->max_load)
2824 return false;
2825
2826 if (sgs->sum_nr_running > sgs->group_capacity)
2827 return true;
2828
2829 if (sgs->group_imb)
2830 return true;
2831
2832 /*
2833 * ASYM_PACKING needs to move all the work to the lowest
2834 * numbered CPUs in the group, therefore mark all groups
2835 * higher than ourself as busy.
2836 */
2837 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2838 this_cpu < group_first_cpu(sg)) {
2839 if (!sds->busiest)
2840 return true;
2841
2842 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2843 return true;
2844 }
2845
2846 return false;
2847}
2848
1e3c88bd
PZ
2849/**
2850 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2851 * @sd: sched_domain whose statistics are to be updated.
2852 * @this_cpu: Cpu for which load balance is currently performed.
2853 * @idle: Idle status of this_cpu
1e3c88bd
PZ
2854 * @cpus: Set of cpus considered for load balancing.
2855 * @balance: Should we balance.
2856 * @sds: variable to hold the statistics for this sched_domain.
2857 */
2858static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
46e49b38
VP
2859 enum cpu_idle_type idle, const struct cpumask *cpus,
2860 int *balance, struct sd_lb_stats *sds)
1e3c88bd
PZ
2861{
2862 struct sched_domain *child = sd->child;
532cb4c4 2863 struct sched_group *sg = sd->groups;
1e3c88bd
PZ
2864 struct sg_lb_stats sgs;
2865 int load_idx, prefer_sibling = 0;
2866
2867 if (child && child->flags & SD_PREFER_SIBLING)
2868 prefer_sibling = 1;
2869
2870 init_sd_power_savings_stats(sd, sds, idle);
2871 load_idx = get_sd_load_idx(sd, idle);
2872
2873 do {
2874 int local_group;
2875
532cb4c4 2876 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
1e3c88bd 2877 memset(&sgs, 0, sizeof(sgs));
46e49b38 2878 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
1e3c88bd
PZ
2879 local_group, cpus, balance, &sgs);
2880
8f190fb3 2881 if (local_group && !(*balance))
1e3c88bd
PZ
2882 return;
2883
2884 sds->total_load += sgs.group_load;
9c3f75cb 2885 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
2886
2887 /*
2888 * In case the child domain prefers tasks go to siblings
532cb4c4 2889 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
2890 * and move all the excess tasks away. We lower the capacity
2891 * of a group only if the local group has the capacity to fit
2892 * these excess tasks, i.e. nr_running < group_capacity. The
2893 * extra check prevents the case where you always pull from the
2894 * heaviest group when it is already under-utilized (possible
2895 * with a large weight task outweighs the tasks on the system).
1e3c88bd 2896 */
75dd321d 2897 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
2898 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2899
2900 if (local_group) {
2901 sds->this_load = sgs.avg_load;
532cb4c4 2902 sds->this = sg;
1e3c88bd
PZ
2903 sds->this_nr_running = sgs.sum_nr_running;
2904 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 2905 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 2906 sds->this_idle_cpus = sgs.idle_cpus;
532cb4c4 2907 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
1e3c88bd 2908 sds->max_load = sgs.avg_load;
532cb4c4 2909 sds->busiest = sg;
1e3c88bd 2910 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 2911 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 2912 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 2913 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 2914 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 2915 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
2916 sds->group_imb = sgs.group_imb;
2917 }
2918
532cb4c4
MN
2919 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2920 sg = sg->next;
2921 } while (sg != sd->groups);
2922}
2923
2ec57d44 2924int __weak arch_sd_sibling_asym_packing(void)
532cb4c4
MN
2925{
2926 return 0*SD_ASYM_PACKING;
2927}
2928
2929/**
2930 * check_asym_packing - Check to see if the group is packed into the
2931 * sched doman.
2932 *
2933 * This is primarily intended to used at the sibling level. Some
2934 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2935 * case of POWER7, it can move to lower SMT modes only when higher
2936 * threads are idle. When in lower SMT modes, the threads will
2937 * perform better since they share less core resources. Hence when we
2938 * have idle threads, we want them to be the higher ones.
2939 *
2940 * This packing function is run on idle threads. It checks to see if
2941 * the busiest CPU in this domain (core in the P7 case) has a higher
2942 * CPU number than the packing function is being run on. Here we are
2943 * assuming lower CPU number will be equivalent to lower a SMT thread
2944 * number.
2945 *
b6b12294
MN
2946 * Returns 1 when packing is required and a task should be moved to
2947 * this CPU. The amount of the imbalance is returned in *imbalance.
2948 *
532cb4c4
MN
2949 * @sd: The sched_domain whose packing is to be checked.
2950 * @sds: Statistics of the sched_domain which is to be packed
2951 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2952 * @imbalance: returns amount of imbalanced due to packing.
532cb4c4
MN
2953 */
2954static int check_asym_packing(struct sched_domain *sd,
2955 struct sd_lb_stats *sds,
2956 int this_cpu, unsigned long *imbalance)
2957{
2958 int busiest_cpu;
2959
2960 if (!(sd->flags & SD_ASYM_PACKING))
2961 return 0;
2962
2963 if (!sds->busiest)
2964 return 0;
2965
2966 busiest_cpu = group_first_cpu(sds->busiest);
2967 if (this_cpu > busiest_cpu)
2968 return 0;
2969
9c3f75cb 2970 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
1399fa78 2971 SCHED_POWER_SCALE);
532cb4c4 2972 return 1;
1e3c88bd
PZ
2973}
2974
2975/**
2976 * fix_small_imbalance - Calculate the minor imbalance that exists
2977 * amongst the groups of a sched_domain, during
2978 * load balancing.
2979 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2980 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2981 * @imbalance: Variable to store the imbalance.
2982 */
2983static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2984 int this_cpu, unsigned long *imbalance)
2985{
2986 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2987 unsigned int imbn = 2;
dd5feea1 2988 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
2989
2990 if (sds->this_nr_running) {
2991 sds->this_load_per_task /= sds->this_nr_running;
2992 if (sds->busiest_load_per_task >
2993 sds->this_load_per_task)
2994 imbn = 1;
2995 } else
2996 sds->this_load_per_task =
2997 cpu_avg_load_per_task(this_cpu);
2998
dd5feea1 2999 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 3000 * SCHED_POWER_SCALE;
9c3f75cb 3001 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
3002
3003 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
3004 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
3005 *imbalance = sds->busiest_load_per_task;
3006 return;
3007 }
3008
3009 /*
3010 * OK, we don't have enough imbalance to justify moving tasks,
3011 * however we may be able to increase total CPU power used by
3012 * moving them.
3013 */
3014
9c3f75cb 3015 pwr_now += sds->busiest->sgp->power *
1e3c88bd 3016 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 3017 pwr_now += sds->this->sgp->power *
1e3c88bd 3018 min(sds->this_load_per_task, sds->this_load);
1399fa78 3019 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
3020
3021 /* Amount of load we'd subtract */
1399fa78 3022 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 3023 sds->busiest->sgp->power;
1e3c88bd 3024 if (sds->max_load > tmp)
9c3f75cb 3025 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
3026 min(sds->busiest_load_per_task, sds->max_load - tmp);
3027
3028 /* Amount of load we'd add */
9c3f75cb 3029 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 3030 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
3031 tmp = (sds->max_load * sds->busiest->sgp->power) /
3032 sds->this->sgp->power;
1e3c88bd 3033 else
1399fa78 3034 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
3035 sds->this->sgp->power;
3036 pwr_move += sds->this->sgp->power *
1e3c88bd 3037 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 3038 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
3039
3040 /* Move if we gain throughput */
3041 if (pwr_move > pwr_now)
3042 *imbalance = sds->busiest_load_per_task;
3043}
3044
3045/**
3046 * calculate_imbalance - Calculate the amount of imbalance present within the
3047 * groups of a given sched_domain during load balance.
3048 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3049 * @this_cpu: Cpu for which currently load balance is being performed.
3050 * @imbalance: The variable to store the imbalance.
3051 */
3052static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3053 unsigned long *imbalance)
3054{
dd5feea1
SS
3055 unsigned long max_pull, load_above_capacity = ~0UL;
3056
3057 sds->busiest_load_per_task /= sds->busiest_nr_running;
3058 if (sds->group_imb) {
3059 sds->busiest_load_per_task =
3060 min(sds->busiest_load_per_task, sds->avg_load);
3061 }
3062
1e3c88bd
PZ
3063 /*
3064 * In the presence of smp nice balancing, certain scenarios can have
3065 * max load less than avg load(as we skip the groups at or below
3066 * its cpu_power, while calculating max_load..)
3067 */
3068 if (sds->max_load < sds->avg_load) {
3069 *imbalance = 0;
3070 return fix_small_imbalance(sds, this_cpu, imbalance);
3071 }
3072
dd5feea1
SS
3073 if (!sds->group_imb) {
3074 /*
3075 * Don't want to pull so many tasks that a group would go idle.
3076 */
3077 load_above_capacity = (sds->busiest_nr_running -
3078 sds->busiest_group_capacity);
3079
1399fa78 3080 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 3081
9c3f75cb 3082 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
3083 }
3084
3085 /*
3086 * We're trying to get all the cpus to the average_load, so we don't
3087 * want to push ourselves above the average load, nor do we wish to
3088 * reduce the max loaded cpu below the average load. At the same time,
3089 * we also don't want to reduce the group load below the group capacity
3090 * (so that we can implement power-savings policies etc). Thus we look
3091 * for the minimum possible imbalance.
3092 * Be careful of negative numbers as they'll appear as very large values
3093 * with unsigned longs.
3094 */
3095 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
3096
3097 /* How much load to actually move to equalise the imbalance */
9c3f75cb
PZ
3098 *imbalance = min(max_pull * sds->busiest->sgp->power,
3099 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 3100 / SCHED_POWER_SCALE;
1e3c88bd
PZ
3101
3102 /*
3103 * if *imbalance is less than the average load per runnable task
25985edc 3104 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
3105 * a think about bumping its value to force at least one task to be
3106 * moved
3107 */
3108 if (*imbalance < sds->busiest_load_per_task)
3109 return fix_small_imbalance(sds, this_cpu, imbalance);
3110
3111}
fab47622 3112
1e3c88bd
PZ
3113/******* find_busiest_group() helpers end here *********************/
3114
3115/**
3116 * find_busiest_group - Returns the busiest group within the sched_domain
3117 * if there is an imbalance. If there isn't an imbalance, and
3118 * the user has opted for power-savings, it returns a group whose
3119 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3120 * such a group exists.
3121 *
3122 * Also calculates the amount of weighted load which should be moved
3123 * to restore balance.
3124 *
3125 * @sd: The sched_domain whose busiest group is to be returned.
3126 * @this_cpu: The cpu for which load balancing is currently being performed.
3127 * @imbalance: Variable which stores amount of weighted load which should
3128 * be moved to restore balance/put a group to idle.
3129 * @idle: The idle status of this_cpu.
1e3c88bd
PZ
3130 * @cpus: The set of CPUs under consideration for load-balancing.
3131 * @balance: Pointer to a variable indicating if this_cpu
3132 * is the appropriate cpu to perform load balancing at this_level.
3133 *
3134 * Returns: - the busiest group if imbalance exists.
3135 * - If no imbalance and user has opted for power-savings balance,
3136 * return the least loaded group whose CPUs can be
3137 * put to idle by rebalancing its tasks onto our group.
3138 */
3139static struct sched_group *
3140find_busiest_group(struct sched_domain *sd, int this_cpu,
3141 unsigned long *imbalance, enum cpu_idle_type idle,
46e49b38 3142 const struct cpumask *cpus, int *balance)
1e3c88bd
PZ
3143{
3144 struct sd_lb_stats sds;
3145
3146 memset(&sds, 0, sizeof(sds));
3147
3148 /*
3149 * Compute the various statistics relavent for load balancing at
3150 * this level.
3151 */
46e49b38 3152 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
1e3c88bd 3153
cc57aa8f
PZ
3154 /*
3155 * this_cpu is not the appropriate cpu to perform load balancing at
3156 * this level.
1e3c88bd 3157 */
8f190fb3 3158 if (!(*balance))
1e3c88bd
PZ
3159 goto ret;
3160
532cb4c4
MN
3161 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3162 check_asym_packing(sd, &sds, this_cpu, imbalance))
3163 return sds.busiest;
3164
cc57aa8f 3165 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
3166 if (!sds.busiest || sds.busiest_nr_running == 0)
3167 goto out_balanced;
3168
1399fa78 3169 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 3170
866ab43e
PZ
3171 /*
3172 * If the busiest group is imbalanced the below checks don't
3173 * work because they assumes all things are equal, which typically
3174 * isn't true due to cpus_allowed constraints and the like.
3175 */
3176 if (sds.group_imb)
3177 goto force_balance;
3178
cc57aa8f 3179 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
fab47622
NR
3180 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3181 !sds.busiest_has_capacity)
3182 goto force_balance;
3183
cc57aa8f
PZ
3184 /*
3185 * If the local group is more busy than the selected busiest group
3186 * don't try and pull any tasks.
3187 */
1e3c88bd
PZ
3188 if (sds.this_load >= sds.max_load)
3189 goto out_balanced;
3190
cc57aa8f
PZ
3191 /*
3192 * Don't pull any tasks if this group is already above the domain
3193 * average load.
3194 */
1e3c88bd
PZ
3195 if (sds.this_load >= sds.avg_load)
3196 goto out_balanced;
3197
c186fafe 3198 if (idle == CPU_IDLE) {
aae6d3dd
SS
3199 /*
3200 * This cpu is idle. If the busiest group load doesn't
3201 * have more tasks than the number of available cpu's and
3202 * there is no imbalance between this and busiest group
3203 * wrt to idle cpu's, it is balanced.
3204 */
c186fafe 3205 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
3206 sds.busiest_nr_running <= sds.busiest_group_weight)
3207 goto out_balanced;
c186fafe
PZ
3208 } else {
3209 /*
3210 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3211 * imbalance_pct to be conservative.
3212 */
3213 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3214 goto out_balanced;
aae6d3dd 3215 }
1e3c88bd 3216
fab47622 3217force_balance:
1e3c88bd
PZ
3218 /* Looks like there is an imbalance. Compute it */
3219 calculate_imbalance(&sds, this_cpu, imbalance);
3220 return sds.busiest;
3221
3222out_balanced:
3223 /*
3224 * There is no obvious imbalance. But check if we can do some balancing
3225 * to save power.
3226 */
3227 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3228 return sds.busiest;
3229ret:
3230 *imbalance = 0;
3231 return NULL;
3232}
3233
3234/*
3235 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3236 */
3237static struct rq *
9d5efe05
SV
3238find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3239 enum cpu_idle_type idle, unsigned long imbalance,
3240 const struct cpumask *cpus)
1e3c88bd
PZ
3241{
3242 struct rq *busiest = NULL, *rq;
3243 unsigned long max_load = 0;
3244 int i;
3245
3246 for_each_cpu(i, sched_group_cpus(group)) {
3247 unsigned long power = power_of(i);
1399fa78
NR
3248 unsigned long capacity = DIV_ROUND_CLOSEST(power,
3249 SCHED_POWER_SCALE);
1e3c88bd
PZ
3250 unsigned long wl;
3251
9d5efe05
SV
3252 if (!capacity)
3253 capacity = fix_small_capacity(sd, group);
3254
1e3c88bd
PZ
3255 if (!cpumask_test_cpu(i, cpus))
3256 continue;
3257
3258 rq = cpu_rq(i);
6e40f5bb 3259 wl = weighted_cpuload(i);
1e3c88bd 3260
6e40f5bb
TG
3261 /*
3262 * When comparing with imbalance, use weighted_cpuload()
3263 * which is not scaled with the cpu power.
3264 */
1e3c88bd
PZ
3265 if (capacity && rq->nr_running == 1 && wl > imbalance)
3266 continue;
3267
6e40f5bb
TG
3268 /*
3269 * For the load comparisons with the other cpu's, consider
3270 * the weighted_cpuload() scaled with the cpu power, so that
3271 * the load can be moved away from the cpu that is potentially
3272 * running at a lower capacity.
3273 */
1399fa78 3274 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 3275
1e3c88bd
PZ
3276 if (wl > max_load) {
3277 max_load = wl;
3278 busiest = rq;
3279 }
3280 }
3281
3282 return busiest;
3283}
3284
3285/*
3286 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3287 * so long as it is large enough.
3288 */
3289#define MAX_PINNED_INTERVAL 512
3290
3291/* Working cpumask for load_balance and load_balance_newidle. */
3292static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3293
46e49b38 3294static int need_active_balance(struct sched_domain *sd, int idle,
532cb4c4 3295 int busiest_cpu, int this_cpu)
1af3ed3d
PZ
3296{
3297 if (idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
3298
3299 /*
3300 * ASYM_PACKING needs to force migrate tasks from busy but
3301 * higher numbered CPUs in order to pack all tasks in the
3302 * lowest numbered CPUs.
3303 */
3304 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3305 return 1;
3306
1af3ed3d
PZ
3307 /*
3308 * The only task running in a non-idle cpu can be moved to this
3309 * cpu in an attempt to completely freeup the other CPU
3310 * package.
3311 *
3312 * The package power saving logic comes from
3313 * find_busiest_group(). If there are no imbalance, then
3314 * f_b_g() will return NULL. However when sched_mc={1,2} then
3315 * f_b_g() will select a group from which a running task may be
3316 * pulled to this cpu in order to make the other package idle.
3317 * If there is no opportunity to make a package idle and if
3318 * there are no imbalance, then f_b_g() will return NULL and no
3319 * action will be taken in load_balance_newidle().
3320 *
3321 * Under normal task pull operation due to imbalance, there
3322 * will be more than one task in the source run queue and
3323 * move_tasks() will succeed. ld_moved will be true and this
3324 * active balance code will not be triggered.
3325 */
1af3ed3d
PZ
3326 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3327 return 0;
3328 }
3329
3330 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3331}
3332
969c7921
TH
3333static int active_load_balance_cpu_stop(void *data);
3334
1e3c88bd
PZ
3335/*
3336 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3337 * tasks if there is an imbalance.
3338 */
3339static int load_balance(int this_cpu, struct rq *this_rq,
3340 struct sched_domain *sd, enum cpu_idle_type idle,
3341 int *balance)
3342{
46e49b38 3343 int ld_moved, all_pinned = 0, active_balance = 0;
1e3c88bd
PZ
3344 struct sched_group *group;
3345 unsigned long imbalance;
3346 struct rq *busiest;
3347 unsigned long flags;
3348 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3349
3350 cpumask_copy(cpus, cpu_active_mask);
3351
1e3c88bd
PZ
3352 schedstat_inc(sd, lb_count[idle]);
3353
3354redo:
46e49b38 3355 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
1e3c88bd
PZ
3356 cpus, balance);
3357
3358 if (*balance == 0)
3359 goto out_balanced;
3360
3361 if (!group) {
3362 schedstat_inc(sd, lb_nobusyg[idle]);
3363 goto out_balanced;
3364 }
3365
9d5efe05 3366 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
1e3c88bd
PZ
3367 if (!busiest) {
3368 schedstat_inc(sd, lb_nobusyq[idle]);
3369 goto out_balanced;
3370 }
3371
3372 BUG_ON(busiest == this_rq);
3373
3374 schedstat_add(sd, lb_imbalance[idle], imbalance);
3375
3376 ld_moved = 0;
3377 if (busiest->nr_running > 1) {
3378 /*
3379 * Attempt to move tasks. If find_busiest_group has found
3380 * an imbalance but busiest->nr_running <= 1, the group is
3381 * still unbalanced. ld_moved simply stays zero, so it is
3382 * correctly treated as an imbalance.
3383 */
b30aef17 3384 all_pinned = 1;
1e3c88bd
PZ
3385 local_irq_save(flags);
3386 double_rq_lock(this_rq, busiest);
3387 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3388 imbalance, sd, idle, &all_pinned);
3389 double_rq_unlock(this_rq, busiest);
3390 local_irq_restore(flags);
3391
3392 /*
3393 * some other cpu did the load balance for us.
3394 */
3395 if (ld_moved && this_cpu != smp_processor_id())
3396 resched_cpu(this_cpu);
3397
3398 /* All tasks on this runqueue were pinned by CPU affinity */
3399 if (unlikely(all_pinned)) {
3400 cpumask_clear_cpu(cpu_of(busiest), cpus);
3401 if (!cpumask_empty(cpus))
3402 goto redo;
3403 goto out_balanced;
3404 }
3405 }
3406
3407 if (!ld_moved) {
3408 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
3409 /*
3410 * Increment the failure counter only on periodic balance.
3411 * We do not want newidle balance, which can be very
3412 * frequent, pollute the failure counter causing
3413 * excessive cache_hot migrations and active balances.
3414 */
3415 if (idle != CPU_NEWLY_IDLE)
3416 sd->nr_balance_failed++;
1e3c88bd 3417
46e49b38 3418 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
1e3c88bd
PZ
3419 raw_spin_lock_irqsave(&busiest->lock, flags);
3420
969c7921
TH
3421 /* don't kick the active_load_balance_cpu_stop,
3422 * if the curr task on busiest cpu can't be
3423 * moved to this_cpu
1e3c88bd
PZ
3424 */
3425 if (!cpumask_test_cpu(this_cpu,
3426 &busiest->curr->cpus_allowed)) {
3427 raw_spin_unlock_irqrestore(&busiest->lock,
3428 flags);
3429 all_pinned = 1;
3430 goto out_one_pinned;
3431 }
3432
969c7921
TH
3433 /*
3434 * ->active_balance synchronizes accesses to
3435 * ->active_balance_work. Once set, it's cleared
3436 * only after active load balance is finished.
3437 */
1e3c88bd
PZ
3438 if (!busiest->active_balance) {
3439 busiest->active_balance = 1;
3440 busiest->push_cpu = this_cpu;
3441 active_balance = 1;
3442 }
3443 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 3444
1e3c88bd 3445 if (active_balance)
969c7921
TH
3446 stop_one_cpu_nowait(cpu_of(busiest),
3447 active_load_balance_cpu_stop, busiest,
3448 &busiest->active_balance_work);
1e3c88bd
PZ
3449
3450 /*
3451 * We've kicked active balancing, reset the failure
3452 * counter.
3453 */
3454 sd->nr_balance_failed = sd->cache_nice_tries+1;
3455 }
3456 } else
3457 sd->nr_balance_failed = 0;
3458
3459 if (likely(!active_balance)) {
3460 /* We were unbalanced, so reset the balancing interval */
3461 sd->balance_interval = sd->min_interval;
3462 } else {
3463 /*
3464 * If we've begun active balancing, start to back off. This
3465 * case may not be covered by the all_pinned logic if there
3466 * is only 1 task on the busy runqueue (because we don't call
3467 * move_tasks).
3468 */
3469 if (sd->balance_interval < sd->max_interval)
3470 sd->balance_interval *= 2;
3471 }
3472
1e3c88bd
PZ
3473 goto out;
3474
3475out_balanced:
3476 schedstat_inc(sd, lb_balanced[idle]);
3477
3478 sd->nr_balance_failed = 0;
3479
3480out_one_pinned:
3481 /* tune up the balancing interval */
3482 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3483 (sd->balance_interval < sd->max_interval))
3484 sd->balance_interval *= 2;
3485
46e49b38 3486 ld_moved = 0;
1e3c88bd 3487out:
1e3c88bd
PZ
3488 return ld_moved;
3489}
3490
1e3c88bd
PZ
3491/*
3492 * idle_balance is called by schedule() if this_cpu is about to become
3493 * idle. Attempts to pull tasks from other CPUs.
3494 */
3495static void idle_balance(int this_cpu, struct rq *this_rq)
3496{
3497 struct sched_domain *sd;
3498 int pulled_task = 0;
3499 unsigned long next_balance = jiffies + HZ;
3500
3501 this_rq->idle_stamp = this_rq->clock;
3502
3503 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3504 return;
3505
f492e12e
PZ
3506 /*
3507 * Drop the rq->lock, but keep IRQ/preempt disabled.
3508 */
3509 raw_spin_unlock(&this_rq->lock);
3510
c66eaf61 3511 update_shares(this_cpu);
dce840a0 3512 rcu_read_lock();
1e3c88bd
PZ
3513 for_each_domain(this_cpu, sd) {
3514 unsigned long interval;
f492e12e 3515 int balance = 1;
1e3c88bd
PZ
3516
3517 if (!(sd->flags & SD_LOAD_BALANCE))
3518 continue;
3519
f492e12e 3520 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 3521 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
3522 pulled_task = load_balance(this_cpu, this_rq,
3523 sd, CPU_NEWLY_IDLE, &balance);
3524 }
1e3c88bd
PZ
3525
3526 interval = msecs_to_jiffies(sd->balance_interval);
3527 if (time_after(next_balance, sd->last_balance + interval))
3528 next_balance = sd->last_balance + interval;
d5ad140b
NR
3529 if (pulled_task) {
3530 this_rq->idle_stamp = 0;
1e3c88bd 3531 break;
d5ad140b 3532 }
1e3c88bd 3533 }
dce840a0 3534 rcu_read_unlock();
f492e12e
PZ
3535
3536 raw_spin_lock(&this_rq->lock);
3537
1e3c88bd
PZ
3538 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3539 /*
3540 * We are going idle. next_balance may be set based on
3541 * a busy processor. So reset next_balance.
3542 */
3543 this_rq->next_balance = next_balance;
3544 }
3545}
3546
3547/*
969c7921
TH
3548 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3549 * running tasks off the busiest CPU onto idle CPUs. It requires at
3550 * least 1 task to be running on each physical CPU where possible, and
3551 * avoids physical / logical imbalances.
1e3c88bd 3552 */
969c7921 3553static int active_load_balance_cpu_stop(void *data)
1e3c88bd 3554{
969c7921
TH
3555 struct rq *busiest_rq = data;
3556 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 3557 int target_cpu = busiest_rq->push_cpu;
969c7921 3558 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 3559 struct sched_domain *sd;
969c7921
TH
3560
3561 raw_spin_lock_irq(&busiest_rq->lock);
3562
3563 /* make sure the requested cpu hasn't gone down in the meantime */
3564 if (unlikely(busiest_cpu != smp_processor_id() ||
3565 !busiest_rq->active_balance))
3566 goto out_unlock;
1e3c88bd
PZ
3567
3568 /* Is there any task to move? */
3569 if (busiest_rq->nr_running <= 1)
969c7921 3570 goto out_unlock;
1e3c88bd
PZ
3571
3572 /*
3573 * This condition is "impossible", if it occurs
3574 * we need to fix it. Originally reported by
3575 * Bjorn Helgaas on a 128-cpu setup.
3576 */
3577 BUG_ON(busiest_rq == target_rq);
3578
3579 /* move a task from busiest_rq to target_rq */
3580 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
3581
3582 /* Search for an sd spanning us and the target CPU. */
dce840a0 3583 rcu_read_lock();
1e3c88bd
PZ
3584 for_each_domain(target_cpu, sd) {
3585 if ((sd->flags & SD_LOAD_BALANCE) &&
3586 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3587 break;
3588 }
3589
3590 if (likely(sd)) {
3591 schedstat_inc(sd, alb_count);
3592
3593 if (move_one_task(target_rq, target_cpu, busiest_rq,
3594 sd, CPU_IDLE))
3595 schedstat_inc(sd, alb_pushed);
3596 else
3597 schedstat_inc(sd, alb_failed);
3598 }
dce840a0 3599 rcu_read_unlock();
1e3c88bd 3600 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
3601out_unlock:
3602 busiest_rq->active_balance = 0;
3603 raw_spin_unlock_irq(&busiest_rq->lock);
3604 return 0;
1e3c88bd
PZ
3605}
3606
3607#ifdef CONFIG_NO_HZ
83cd4fe2
VP
3608
3609static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3610
3611static void trigger_sched_softirq(void *data)
3612{
3613 raise_softirq_irqoff(SCHED_SOFTIRQ);
3614}
3615
3616static inline void init_sched_softirq_csd(struct call_single_data *csd)
3617{
3618 csd->func = trigger_sched_softirq;
3619 csd->info = NULL;
3620 csd->flags = 0;
3621 csd->priv = 0;
3622}
3623
3624/*
3625 * idle load balancing details
3626 * - One of the idle CPUs nominates itself as idle load_balancer, while
3627 * entering idle.
3628 * - This idle load balancer CPU will also go into tickless mode when
3629 * it is idle, just like all other idle CPUs
3630 * - When one of the busy CPUs notice that there may be an idle rebalancing
3631 * needed, they will kick the idle load balancer, which then does idle
3632 * load balancing for all the idle CPUs.
3633 */
1e3c88bd
PZ
3634static struct {
3635 atomic_t load_balancer;
83cd4fe2
VP
3636 atomic_t first_pick_cpu;
3637 atomic_t second_pick_cpu;
3638 cpumask_var_t idle_cpus_mask;
3639 cpumask_var_t grp_idle_mask;
3640 unsigned long next_balance; /* in jiffy units */
3641} nohz ____cacheline_aligned;
1e3c88bd
PZ
3642
3643int get_nohz_load_balancer(void)
3644{
3645 return atomic_read(&nohz.load_balancer);
3646}
3647
3648#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3649/**
3650 * lowest_flag_domain - Return lowest sched_domain containing flag.
3651 * @cpu: The cpu whose lowest level of sched domain is to
3652 * be returned.
3653 * @flag: The flag to check for the lowest sched_domain
3654 * for the given cpu.
3655 *
3656 * Returns the lowest sched_domain of a cpu which contains the given flag.
3657 */
3658static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3659{
3660 struct sched_domain *sd;
3661
3662 for_each_domain(cpu, sd)
08354716 3663 if (sd->flags & flag)
1e3c88bd
PZ
3664 break;
3665
3666 return sd;
3667}
3668
3669/**
3670 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3671 * @cpu: The cpu whose domains we're iterating over.
3672 * @sd: variable holding the value of the power_savings_sd
3673 * for cpu.
3674 * @flag: The flag to filter the sched_domains to be iterated.
3675 *
3676 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3677 * set, starting from the lowest sched_domain to the highest.
3678 */
3679#define for_each_flag_domain(cpu, sd, flag) \
3680 for (sd = lowest_flag_domain(cpu, flag); \
3681 (sd && (sd->flags & flag)); sd = sd->parent)
3682
3683/**
3684 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3685 * @ilb_group: group to be checked for semi-idleness
3686 *
3687 * Returns: 1 if the group is semi-idle. 0 otherwise.
3688 *
3689 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3690 * and atleast one non-idle CPU. This helper function checks if the given
3691 * sched_group is semi-idle or not.
3692 */
3693static inline int is_semi_idle_group(struct sched_group *ilb_group)
3694{
83cd4fe2 3695 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
1e3c88bd
PZ
3696 sched_group_cpus(ilb_group));
3697
3698 /*
3699 * A sched_group is semi-idle when it has atleast one busy cpu
3700 * and atleast one idle cpu.
3701 */
83cd4fe2 3702 if (cpumask_empty(nohz.grp_idle_mask))
1e3c88bd
PZ
3703 return 0;
3704
83cd4fe2 3705 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
1e3c88bd
PZ
3706 return 0;
3707
3708 return 1;
3709}
3710/**
3711 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3712 * @cpu: The cpu which is nominating a new idle_load_balancer.
3713 *
3714 * Returns: Returns the id of the idle load balancer if it exists,
3715 * Else, returns >= nr_cpu_ids.
3716 *
3717 * This algorithm picks the idle load balancer such that it belongs to a
3718 * semi-idle powersavings sched_domain. The idea is to try and avoid
3719 * completely idle packages/cores just for the purpose of idle load balancing
3720 * when there are other idle cpu's which are better suited for that job.
3721 */
3722static int find_new_ilb(int cpu)
3723{
3724 struct sched_domain *sd;
3725 struct sched_group *ilb_group;
dce840a0 3726 int ilb = nr_cpu_ids;
1e3c88bd
PZ
3727
3728 /*
3729 * Have idle load balancer selection from semi-idle packages only
3730 * when power-aware load balancing is enabled
3731 */
3732 if (!(sched_smt_power_savings || sched_mc_power_savings))
3733 goto out_done;
3734
3735 /*
3736 * Optimize for the case when we have no idle CPUs or only one
3737 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3738 */
83cd4fe2 3739 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
1e3c88bd
PZ
3740 goto out_done;
3741
dce840a0 3742 rcu_read_lock();
1e3c88bd
PZ
3743 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3744 ilb_group = sd->groups;
3745
3746 do {
dce840a0
PZ
3747 if (is_semi_idle_group(ilb_group)) {
3748 ilb = cpumask_first(nohz.grp_idle_mask);
3749 goto unlock;
3750 }
1e3c88bd
PZ
3751
3752 ilb_group = ilb_group->next;
3753
3754 } while (ilb_group != sd->groups);
3755 }
dce840a0
PZ
3756unlock:
3757 rcu_read_unlock();
1e3c88bd
PZ
3758
3759out_done:
dce840a0 3760 return ilb;
1e3c88bd
PZ
3761}
3762#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3763static inline int find_new_ilb(int call_cpu)
3764{
83cd4fe2 3765 return nr_cpu_ids;
1e3c88bd
PZ
3766}
3767#endif
3768
83cd4fe2
VP
3769/*
3770 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3771 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3772 * CPU (if there is one).
3773 */
3774static void nohz_balancer_kick(int cpu)
3775{
3776 int ilb_cpu;
3777
3778 nohz.next_balance++;
3779
3780 ilb_cpu = get_nohz_load_balancer();
3781
3782 if (ilb_cpu >= nr_cpu_ids) {
3783 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3784 if (ilb_cpu >= nr_cpu_ids)
3785 return;
3786 }
3787
3788 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3789 struct call_single_data *cp;
3790
3791 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3792 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3793 __smp_call_function_single(ilb_cpu, cp, 0);
3794 }
3795 return;
3796}
3797
1e3c88bd
PZ
3798/*
3799 * This routine will try to nominate the ilb (idle load balancing)
3800 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
83cd4fe2 3801 * load balancing on behalf of all those cpus.
1e3c88bd 3802 *
83cd4fe2
VP
3803 * When the ilb owner becomes busy, we will not have new ilb owner until some
3804 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3805 * idle load balancing by kicking one of the idle CPUs.
1e3c88bd 3806 *
83cd4fe2
VP
3807 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3808 * ilb owner CPU in future (when there is a need for idle load balancing on
3809 * behalf of all idle CPUs).
1e3c88bd 3810 */
83cd4fe2 3811void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
3812{
3813 int cpu = smp_processor_id();
3814
3815 if (stop_tick) {
1e3c88bd
PZ
3816 if (!cpu_active(cpu)) {
3817 if (atomic_read(&nohz.load_balancer) != cpu)
83cd4fe2 3818 return;
1e3c88bd
PZ
3819
3820 /*
3821 * If we are going offline and still the leader,
3822 * give up!
3823 */
83cd4fe2
VP
3824 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3825 nr_cpu_ids) != cpu)
1e3c88bd
PZ
3826 BUG();
3827
83cd4fe2 3828 return;
1e3c88bd
PZ
3829 }
3830
83cd4fe2 3831 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd 3832
83cd4fe2
VP
3833 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3834 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3835 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3836 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
1e3c88bd 3837
83cd4fe2 3838 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
1e3c88bd
PZ
3839 int new_ilb;
3840
83cd4fe2
VP
3841 /* make me the ilb owner */
3842 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3843 cpu) != nr_cpu_ids)
3844 return;
3845
1e3c88bd
PZ
3846 /*
3847 * Check to see if there is a more power-efficient
3848 * ilb.
3849 */
3850 new_ilb = find_new_ilb(cpu);
3851 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
83cd4fe2 3852 atomic_set(&nohz.load_balancer, nr_cpu_ids);
1e3c88bd 3853 resched_cpu(new_ilb);
83cd4fe2 3854 return;
1e3c88bd 3855 }
83cd4fe2 3856 return;
1e3c88bd
PZ
3857 }
3858 } else {
83cd4fe2
VP
3859 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3860 return;
1e3c88bd 3861
83cd4fe2 3862 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd
PZ
3863
3864 if (atomic_read(&nohz.load_balancer) == cpu)
83cd4fe2
VP
3865 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3866 nr_cpu_ids) != cpu)
1e3c88bd
PZ
3867 BUG();
3868 }
83cd4fe2 3869 return;
1e3c88bd
PZ
3870}
3871#endif
3872
3873static DEFINE_SPINLOCK(balancing);
3874
49c022e6
PZ
3875static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3876
3877/*
3878 * Scale the max load_balance interval with the number of CPUs in the system.
3879 * This trades load-balance latency on larger machines for less cross talk.
3880 */
3881static void update_max_interval(void)
3882{
3883 max_load_balance_interval = HZ*num_online_cpus()/10;
3884}
3885
1e3c88bd
PZ
3886/*
3887 * It checks each scheduling domain to see if it is due to be balanced,
3888 * and initiates a balancing operation if so.
3889 *
3890 * Balancing parameters are set up in arch_init_sched_domains.
3891 */
3892static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3893{
3894 int balance = 1;
3895 struct rq *rq = cpu_rq(cpu);
3896 unsigned long interval;
3897 struct sched_domain *sd;
3898 /* Earliest time when we have to do rebalance again */
3899 unsigned long next_balance = jiffies + 60*HZ;
3900 int update_next_balance = 0;
3901 int need_serialize;
3902
2069dd75
PZ
3903 update_shares(cpu);
3904
dce840a0 3905 rcu_read_lock();
1e3c88bd
PZ
3906 for_each_domain(cpu, sd) {
3907 if (!(sd->flags & SD_LOAD_BALANCE))
3908 continue;
3909
3910 interval = sd->balance_interval;
3911 if (idle != CPU_IDLE)
3912 interval *= sd->busy_factor;
3913
3914 /* scale ms to jiffies */
3915 interval = msecs_to_jiffies(interval);
49c022e6 3916 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
3917
3918 need_serialize = sd->flags & SD_SERIALIZE;
3919
3920 if (need_serialize) {
3921 if (!spin_trylock(&balancing))
3922 goto out;
3923 }
3924
3925 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3926 if (load_balance(cpu, rq, sd, idle, &balance)) {
3927 /*
3928 * We've pulled tasks over so either we're no
c186fafe 3929 * longer idle.
1e3c88bd
PZ
3930 */
3931 idle = CPU_NOT_IDLE;
3932 }
3933 sd->last_balance = jiffies;
3934 }
3935 if (need_serialize)
3936 spin_unlock(&balancing);
3937out:
3938 if (time_after(next_balance, sd->last_balance + interval)) {
3939 next_balance = sd->last_balance + interval;
3940 update_next_balance = 1;
3941 }
3942
3943 /*
3944 * Stop the load balance at this level. There is another
3945 * CPU in our sched group which is doing load balancing more
3946 * actively.
3947 */
3948 if (!balance)
3949 break;
3950 }
dce840a0 3951 rcu_read_unlock();
1e3c88bd
PZ
3952
3953 /*
3954 * next_balance will be updated only when there is a need.
3955 * When the cpu is attached to null domain for ex, it will not be
3956 * updated.
3957 */
3958 if (likely(update_next_balance))
3959 rq->next_balance = next_balance;
3960}
3961
83cd4fe2 3962#ifdef CONFIG_NO_HZ
1e3c88bd 3963/*
83cd4fe2 3964 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
3965 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3966 */
83cd4fe2
VP
3967static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3968{
3969 struct rq *this_rq = cpu_rq(this_cpu);
3970 struct rq *rq;
3971 int balance_cpu;
3972
3973 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3974 return;
3975
3976 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3977 if (balance_cpu == this_cpu)
3978 continue;
3979
3980 /*
3981 * If this cpu gets work to do, stop the load balancing
3982 * work being done for other cpus. Next load
3983 * balancing owner will pick it up.
3984 */
3985 if (need_resched()) {
3986 this_rq->nohz_balance_kick = 0;
3987 break;
3988 }
3989
3990 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 3991 update_rq_clock(this_rq);
83cd4fe2
VP
3992 update_cpu_load(this_rq);
3993 raw_spin_unlock_irq(&this_rq->lock);
3994
3995 rebalance_domains(balance_cpu, CPU_IDLE);
3996
3997 rq = cpu_rq(balance_cpu);
3998 if (time_after(this_rq->next_balance, rq->next_balance))
3999 this_rq->next_balance = rq->next_balance;
4000 }
4001 nohz.next_balance = this_rq->next_balance;
4002 this_rq->nohz_balance_kick = 0;
4003}
4004
4005/*
4006 * Current heuristic for kicking the idle load balancer
4007 * - first_pick_cpu is the one of the busy CPUs. It will kick
4008 * idle load balancer when it has more than one process active. This
4009 * eliminates the need for idle load balancing altogether when we have
4010 * only one running process in the system (common case).
4011 * - If there are more than one busy CPU, idle load balancer may have
4012 * to run for active_load_balance to happen (i.e., two busy CPUs are
4013 * SMT or core siblings and can run better if they move to different
4014 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
4015 * which will kick idle load balancer as soon as it has any load.
4016 */
4017static inline int nohz_kick_needed(struct rq *rq, int cpu)
4018{
4019 unsigned long now = jiffies;
4020 int ret;
4021 int first_pick_cpu, second_pick_cpu;
4022
4023 if (time_before(now, nohz.next_balance))
4024 return 0;
4025
f6c3f168 4026 if (rq->idle_at_tick)
83cd4fe2
VP
4027 return 0;
4028
4029 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
4030 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
4031
4032 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
4033 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
4034 return 0;
4035
4036 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
4037 if (ret == nr_cpu_ids || ret == cpu) {
4038 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
4039 if (rq->nr_running > 1)
4040 return 1;
4041 } else {
4042 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
4043 if (ret == nr_cpu_ids || ret == cpu) {
4044 if (rq->nr_running)
4045 return 1;
4046 }
4047 }
4048 return 0;
4049}
4050#else
4051static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
4052#endif
4053
4054/*
4055 * run_rebalance_domains is triggered when needed from the scheduler tick.
4056 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4057 */
1e3c88bd
PZ
4058static void run_rebalance_domains(struct softirq_action *h)
4059{
4060 int this_cpu = smp_processor_id();
4061 struct rq *this_rq = cpu_rq(this_cpu);
4062 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4063 CPU_IDLE : CPU_NOT_IDLE;
4064
4065 rebalance_domains(this_cpu, idle);
4066
1e3c88bd 4067 /*
83cd4fe2 4068 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
4069 * balancing on behalf of the other idle cpus whose ticks are
4070 * stopped.
4071 */
83cd4fe2 4072 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
4073}
4074
4075static inline int on_null_domain(int cpu)
4076{
90a6501f 4077 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
4078}
4079
4080/*
4081 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd
PZ
4082 */
4083static inline void trigger_load_balance(struct rq *rq, int cpu)
4084{
1e3c88bd
PZ
4085 /* Don't need to rebalance while attached to NULL domain */
4086 if (time_after_eq(jiffies, rq->next_balance) &&
4087 likely(!on_null_domain(cpu)))
4088 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2
VP
4089#ifdef CONFIG_NO_HZ
4090 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4091 nohz_balancer_kick(cpu);
4092#endif
1e3c88bd
PZ
4093}
4094
0bcdcf28
CE
4095static void rq_online_fair(struct rq *rq)
4096{
4097 update_sysctl();
4098}
4099
4100static void rq_offline_fair(struct rq *rq)
4101{
4102 update_sysctl();
4103}
4104
1e3c88bd
PZ
4105#else /* CONFIG_SMP */
4106
4107/*
4108 * on UP we do not need to balance between CPUs:
4109 */
4110static inline void idle_balance(int cpu, struct rq *rq)
4111{
4112}
4113
55e12e5e 4114#endif /* CONFIG_SMP */
e1d1484f 4115
bf0f6f24
IM
4116/*
4117 * scheduler tick hitting a task of our scheduling class:
4118 */
8f4d37ec 4119static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
4120{
4121 struct cfs_rq *cfs_rq;
4122 struct sched_entity *se = &curr->se;
4123
4124 for_each_sched_entity(se) {
4125 cfs_rq = cfs_rq_of(se);
8f4d37ec 4126 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
4127 }
4128}
4129
4130/*
cd29fe6f
PZ
4131 * called on fork with the child task as argument from the parent's context
4132 * - child not yet on the tasklist
4133 * - preemption disabled
bf0f6f24 4134 */
cd29fe6f 4135static void task_fork_fair(struct task_struct *p)
bf0f6f24 4136{
cd29fe6f 4137 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 4138 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 4139 int this_cpu = smp_processor_id();
cd29fe6f
PZ
4140 struct rq *rq = this_rq();
4141 unsigned long flags;
4142
05fa785c 4143 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 4144
861d034e
PZ
4145 update_rq_clock(rq);
4146
b0a0f667
PM
4147 if (unlikely(task_cpu(p) != this_cpu)) {
4148 rcu_read_lock();
cd29fe6f 4149 __set_task_cpu(p, this_cpu);
b0a0f667
PM
4150 rcu_read_unlock();
4151 }
bf0f6f24 4152
7109c442 4153 update_curr(cfs_rq);
cd29fe6f 4154
b5d9d734
MG
4155 if (curr)
4156 se->vruntime = curr->vruntime;
aeb73b04 4157 place_entity(cfs_rq, se, 1);
4d78e7b6 4158
cd29fe6f 4159 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 4160 /*
edcb60a3
IM
4161 * Upon rescheduling, sched_class::put_prev_task() will place
4162 * 'current' within the tree based on its new key value.
4163 */
4d78e7b6 4164 swap(curr->vruntime, se->vruntime);
aec0a514 4165 resched_task(rq->curr);
4d78e7b6 4166 }
bf0f6f24 4167
88ec22d3
PZ
4168 se->vruntime -= cfs_rq->min_vruntime;
4169
05fa785c 4170 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
4171}
4172
cb469845
SR
4173/*
4174 * Priority of the task has changed. Check to see if we preempt
4175 * the current task.
4176 */
da7a735e
PZ
4177static void
4178prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 4179{
da7a735e
PZ
4180 if (!p->se.on_rq)
4181 return;
4182
cb469845
SR
4183 /*
4184 * Reschedule if we are currently running on this runqueue and
4185 * our priority decreased, or if we are not currently running on
4186 * this runqueue and our priority is higher than the current's
4187 */
da7a735e 4188 if (rq->curr == p) {
cb469845
SR
4189 if (p->prio > oldprio)
4190 resched_task(rq->curr);
4191 } else
15afe09b 4192 check_preempt_curr(rq, p, 0);
cb469845
SR
4193}
4194
da7a735e
PZ
4195static void switched_from_fair(struct rq *rq, struct task_struct *p)
4196{
4197 struct sched_entity *se = &p->se;
4198 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4199
4200 /*
4201 * Ensure the task's vruntime is normalized, so that when its
4202 * switched back to the fair class the enqueue_entity(.flags=0) will
4203 * do the right thing.
4204 *
4205 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4206 * have normalized the vruntime, if it was !on_rq, then only when
4207 * the task is sleeping will it still have non-normalized vruntime.
4208 */
4209 if (!se->on_rq && p->state != TASK_RUNNING) {
4210 /*
4211 * Fix up our vruntime so that the current sleep doesn't
4212 * cause 'unlimited' sleep bonus.
4213 */
4214 place_entity(cfs_rq, se, 0);
4215 se->vruntime -= cfs_rq->min_vruntime;
4216 }
4217}
4218
cb469845
SR
4219/*
4220 * We switched to the sched_fair class.
4221 */
da7a735e 4222static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 4223{
da7a735e
PZ
4224 if (!p->se.on_rq)
4225 return;
4226
cb469845
SR
4227 /*
4228 * We were most likely switched from sched_rt, so
4229 * kick off the schedule if running, otherwise just see
4230 * if we can still preempt the current task.
4231 */
da7a735e 4232 if (rq->curr == p)
cb469845
SR
4233 resched_task(rq->curr);
4234 else
15afe09b 4235 check_preempt_curr(rq, p, 0);
cb469845
SR
4236}
4237
83b699ed
SV
4238/* Account for a task changing its policy or group.
4239 *
4240 * This routine is mostly called to set cfs_rq->curr field when a task
4241 * migrates between groups/classes.
4242 */
4243static void set_curr_task_fair(struct rq *rq)
4244{
4245 struct sched_entity *se = &rq->curr->se;
4246
4247 for_each_sched_entity(se)
4248 set_next_entity(cfs_rq_of(se), se);
4249}
4250
810b3817 4251#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4252static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 4253{
b2b5ce02
PZ
4254 /*
4255 * If the task was not on the rq at the time of this cgroup movement
4256 * it must have been asleep, sleeping tasks keep their ->vruntime
4257 * absolute on their old rq until wakeup (needed for the fair sleeper
4258 * bonus in place_entity()).
4259 *
4260 * If it was on the rq, we've just 'preempted' it, which does convert
4261 * ->vruntime to a relative base.
4262 *
4263 * Make sure both cases convert their relative position when migrating
4264 * to another cgroup's rq. This does somewhat interfere with the
4265 * fair sleeper stuff for the first placement, but who cares.
4266 */
4267 if (!on_rq)
4268 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4269 set_task_rq(p, task_cpu(p));
88ec22d3 4270 if (!on_rq)
b2b5ce02 4271 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817
PZ
4272}
4273#endif
4274
6d686f45 4275static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
4276{
4277 struct sched_entity *se = &task->se;
0d721cea
PW
4278 unsigned int rr_interval = 0;
4279
4280 /*
4281 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4282 * idle runqueue:
4283 */
0d721cea
PW
4284 if (rq->cfs.load.weight)
4285 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
4286
4287 return rr_interval;
4288}
4289
bf0f6f24
IM
4290/*
4291 * All the scheduling class methods:
4292 */
5522d5d5
IM
4293static const struct sched_class fair_sched_class = {
4294 .next = &idle_sched_class,
bf0f6f24
IM
4295 .enqueue_task = enqueue_task_fair,
4296 .dequeue_task = dequeue_task_fair,
4297 .yield_task = yield_task_fair,
d95f4122 4298 .yield_to_task = yield_to_task_fair,
bf0f6f24 4299
2e09bf55 4300 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
4301
4302 .pick_next_task = pick_next_task_fair,
4303 .put_prev_task = put_prev_task_fair,
4304
681f3e68 4305#ifdef CONFIG_SMP
4ce72a2c
LZ
4306 .select_task_rq = select_task_rq_fair,
4307
0bcdcf28
CE
4308 .rq_online = rq_online_fair,
4309 .rq_offline = rq_offline_fair,
88ec22d3
PZ
4310
4311 .task_waking = task_waking_fair,
681f3e68 4312#endif
bf0f6f24 4313
83b699ed 4314 .set_curr_task = set_curr_task_fair,
bf0f6f24 4315 .task_tick = task_tick_fair,
cd29fe6f 4316 .task_fork = task_fork_fair,
cb469845
SR
4317
4318 .prio_changed = prio_changed_fair,
da7a735e 4319 .switched_from = switched_from_fair,
cb469845 4320 .switched_to = switched_to_fair,
810b3817 4321
0d721cea
PW
4322 .get_rr_interval = get_rr_interval_fair,
4323
810b3817 4324#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4325 .task_move_group = task_move_group_fair,
810b3817 4326#endif
bf0f6f24
IM
4327};
4328
4329#ifdef CONFIG_SCHED_DEBUG
5cef9eca 4330static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 4331{
bf0f6f24
IM
4332 struct cfs_rq *cfs_rq;
4333
5973e5b9 4334 rcu_read_lock();
c3b64f1e 4335 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 4336 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 4337 rcu_read_unlock();
bf0f6f24
IM
4338}
4339#endif