sched: remove precise CPU load calculations #2
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
2bd8e6d4
IM
23/*
24 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
25 */
26#ifdef CONFIG_SCHED_DEBUG
27# define const_debug __read_mostly
28#else
29# define const_debug static const
30#endif
31
bf0f6f24 32/*
21805085
PZ
33 * Targeted preemption latency for CPU-bound tasks:
34 * (default: 20ms, units: nanoseconds)
bf0f6f24 35 *
21805085
PZ
36 * NOTE: this latency value is not the same as the concept of
37 * 'timeslice length' - timeslices in CFS are of variable length.
38 * (to see the precise effective timeslice length of your workload,
39 * run vmstat and monitor the context-switches field)
bf0f6f24
IM
40 *
41 * On SMP systems the value of this is multiplied by the log2 of the
42 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
43 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
21805085 44 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 45 */
2bd8e6d4
IM
46const_debug unsigned int sysctl_sched_latency = 20000000ULL;
47
48/*
49 * After fork, child runs first. (default) If set to 0 then
50 * parent will (try to) run first.
51 */
52const_debug unsigned int sysctl_sched_child_runs_first = 1;
21805085
PZ
53
54/*
55 * Minimal preemption granularity for CPU-bound tasks:
56 * (default: 2 msec, units: nanoseconds)
57 */
172ac3db 58unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
bf0f6f24 59
1799e35d
IM
60/*
61 * sys_sched_yield() compat mode
62 *
63 * This option switches the agressive yield implementation of the
64 * old scheduler back on.
65 */
66unsigned int __read_mostly sysctl_sched_compat_yield;
67
bf0f6f24
IM
68/*
69 * SCHED_BATCH wake-up granularity.
71fd3714 70 * (default: 25 msec, units: nanoseconds)
bf0f6f24
IM
71 *
72 * This option delays the preemption effects of decoupled workloads
73 * and reduces their over-scheduling. Synchronous workloads will still
74 * have immediate wakeup/sleep latencies.
75 */
2bd8e6d4 76const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
bf0f6f24
IM
77
78/*
79 * SCHED_OTHER wake-up granularity.
80 * (default: 1 msec, units: nanoseconds)
81 *
82 * This option delays the preemption effects of decoupled workloads
83 * and reduces their over-scheduling. Synchronous workloads will still
84 * have immediate wakeup/sleep latencies.
85 */
2bd8e6d4 86const_debug unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 87
bf0f6f24
IM
88unsigned int sysctl_sched_runtime_limit __read_mostly;
89
90/*
91 * Debugging: various feature bits
92 */
93enum {
94 SCHED_FEAT_FAIR_SLEEPERS = 1,
95 SCHED_FEAT_SLEEPER_AVG = 2,
96 SCHED_FEAT_SLEEPER_LOAD_AVG = 4,
a25707f3
IM
97 SCHED_FEAT_START_DEBIT = 8,
98 SCHED_FEAT_SKIP_INITIAL = 16,
bf0f6f24
IM
99};
100
2bd8e6d4 101const_debug unsigned int sysctl_sched_features =
bf0f6f24 102 SCHED_FEAT_FAIR_SLEEPERS *1 |
5d2b3d36 103 SCHED_FEAT_SLEEPER_AVG *0 |
bf0f6f24 104 SCHED_FEAT_SLEEPER_LOAD_AVG *1 |
bf0f6f24
IM
105 SCHED_FEAT_START_DEBIT *1 |
106 SCHED_FEAT_SKIP_INITIAL *0;
107
108extern struct sched_class fair_sched_class;
109
110/**************************************************************
111 * CFS operations on generic schedulable entities:
112 */
113
114#ifdef CONFIG_FAIR_GROUP_SCHED
115
116/* cpu runqueue to which this cfs_rq is attached */
117static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
118{
119 return cfs_rq->rq;
120}
121
122/* currently running entity (if any) on this cfs_rq */
123static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
124{
125 return cfs_rq->curr;
126}
127
128/* An entity is a task if it doesn't "own" a runqueue */
129#define entity_is_task(se) (!se->my_q)
130
131static inline void
132set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se)
133{
134 cfs_rq->curr = se;
135}
136
137#else /* CONFIG_FAIR_GROUP_SCHED */
138
139static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
140{
141 return container_of(cfs_rq, struct rq, cfs);
142}
143
144static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
145{
146 struct rq *rq = rq_of(cfs_rq);
147
148 if (unlikely(rq->curr->sched_class != &fair_sched_class))
149 return NULL;
150
151 return &rq->curr->se;
152}
153
154#define entity_is_task(se) 1
155
156static inline void
157set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
158
159#endif /* CONFIG_FAIR_GROUP_SCHED */
160
161static inline struct task_struct *task_of(struct sched_entity *se)
162{
163 return container_of(se, struct task_struct, se);
164}
165
166
167/**************************************************************
168 * Scheduling class tree data structure manipulation methods:
169 */
170
171/*
172 * Enqueue an entity into the rb-tree:
173 */
174static inline void
175__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
176{
177 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
178 struct rb_node *parent = NULL;
179 struct sched_entity *entry;
180 s64 key = se->fair_key;
181 int leftmost = 1;
182
183 /*
184 * Find the right place in the rbtree:
185 */
186 while (*link) {
187 parent = *link;
188 entry = rb_entry(parent, struct sched_entity, run_node);
189 /*
190 * We dont care about collisions. Nodes with
191 * the same key stay together.
192 */
193 if (key - entry->fair_key < 0) {
194 link = &parent->rb_left;
195 } else {
196 link = &parent->rb_right;
197 leftmost = 0;
198 }
199 }
200
201 /*
202 * Maintain a cache of leftmost tree entries (it is frequently
203 * used):
204 */
205 if (leftmost)
206 cfs_rq->rb_leftmost = &se->run_node;
207
208 rb_link_node(&se->run_node, parent, link);
209 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
210 update_load_add(&cfs_rq->load, se->load.weight);
211 cfs_rq->nr_running++;
212 se->on_rq = 1;
a206c072
IM
213
214 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
bf0f6f24
IM
215}
216
217static inline void
218__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
219{
220 if (cfs_rq->rb_leftmost == &se->run_node)
221 cfs_rq->rb_leftmost = rb_next(&se->run_node);
222 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
223 update_load_sub(&cfs_rq->load, se->load.weight);
224 cfs_rq->nr_running--;
225 se->on_rq = 0;
a206c072
IM
226
227 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
bf0f6f24
IM
228}
229
230static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
231{
232 return cfs_rq->rb_leftmost;
233}
234
235static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
236{
237 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
238}
239
240/**************************************************************
241 * Scheduling class statistics methods:
242 */
243
21805085
PZ
244/*
245 * Calculate the preemption granularity needed to schedule every
246 * runnable task once per sysctl_sched_latency amount of time.
247 * (down to a sensible low limit on granularity)
248 *
249 * For example, if there are 2 tasks running and latency is 10 msecs,
250 * we switch tasks every 5 msecs. If we have 3 tasks running, we have
251 * to switch tasks every 3.33 msecs to get a 10 msecs observed latency
252 * for each task. We do finer and finer scheduling up to until we
253 * reach the minimum granularity value.
254 *
255 * To achieve this we use the following dynamic-granularity rule:
256 *
257 * gran = lat/nr - lat/nr/nr
258 *
259 * This comes out of the following equations:
260 *
261 * kA1 + gran = kB1
262 * kB2 + gran = kA2
263 * kA2 = kA1
264 * kB2 = kB1 - d + d/nr
265 * lat = d * nr
266 *
267 * Where 'k' is key, 'A' is task A (waiting), 'B' is task B (running),
268 * '1' is start of time, '2' is end of time, 'd' is delay between
269 * 1 and 2 (during which task B was running), 'nr' is number of tasks
270 * running, 'lat' is the the period of each task. ('lat' is the
271 * sched_latency that we aim for.)
272 */
273static long
274sched_granularity(struct cfs_rq *cfs_rq)
275{
276 unsigned int gran = sysctl_sched_latency;
277 unsigned int nr = cfs_rq->nr_running;
278
279 if (nr > 1) {
280 gran = gran/nr - gran/nr/nr;
172ac3db 281 gran = max(gran, sysctl_sched_min_granularity);
21805085
PZ
282 }
283
284 return gran;
285}
286
bf0f6f24
IM
287/*
288 * We rescale the rescheduling granularity of tasks according to their
289 * nice level, but only linearly, not exponentially:
290 */
291static long
292niced_granularity(struct sched_entity *curr, unsigned long granularity)
293{
294 u64 tmp;
295
7cff8cf6
IM
296 if (likely(curr->load.weight == NICE_0_LOAD))
297 return granularity;
bf0f6f24 298 /*
7cff8cf6 299 * Positive nice levels get the same granularity as nice-0:
bf0f6f24 300 */
7cff8cf6
IM
301 if (likely(curr->load.weight < NICE_0_LOAD)) {
302 tmp = curr->load.weight * (u64)granularity;
303 return (long) (tmp >> NICE_0_SHIFT);
304 }
bf0f6f24 305 /*
7cff8cf6 306 * Negative nice level tasks get linearly finer
bf0f6f24
IM
307 * granularity:
308 */
7cff8cf6 309 tmp = curr->load.inv_weight * (u64)granularity;
bf0f6f24
IM
310
311 /*
312 * It will always fit into 'long':
313 */
a0dc7260 314 return (long) (tmp >> (WMULT_SHIFT-NICE_0_SHIFT));
bf0f6f24
IM
315}
316
317static inline void
318limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
319{
320 long limit = sysctl_sched_runtime_limit;
321
322 /*
323 * Niced tasks have the same history dynamic range as
324 * non-niced tasks:
325 */
326 if (unlikely(se->wait_runtime > limit)) {
327 se->wait_runtime = limit;
328 schedstat_inc(se, wait_runtime_overruns);
329 schedstat_inc(cfs_rq, wait_runtime_overruns);
330 }
331 if (unlikely(se->wait_runtime < -limit)) {
332 se->wait_runtime = -limit;
333 schedstat_inc(se, wait_runtime_underruns);
334 schedstat_inc(cfs_rq, wait_runtime_underruns);
335 }
336}
337
338static inline void
339__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
340{
341 se->wait_runtime += delta;
342 schedstat_add(se, sum_wait_runtime, delta);
343 limit_wait_runtime(cfs_rq, se);
344}
345
346static void
347add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
348{
349 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
350 __add_wait_runtime(cfs_rq, se, delta);
351 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
352}
353
354/*
355 * Update the current task's runtime statistics. Skip current tasks that
356 * are not in our scheduling class.
357 */
358static inline void
8ebc91d9
IM
359__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
360 unsigned long delta_exec)
bf0f6f24 361{
8ebc91d9 362 unsigned long delta, delta_fair, delta_mine;
bf0f6f24
IM
363 struct load_weight *lw = &cfs_rq->load;
364 unsigned long load = lw->weight;
365
8179ca23 366 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
367
368 curr->sum_exec_runtime += delta_exec;
369 cfs_rq->exec_clock += delta_exec;
370
fd8bb43e
IM
371 if (unlikely(!load))
372 return;
373
bf0f6f24
IM
374 delta_fair = calc_delta_fair(delta_exec, lw);
375 delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
376
5f01d519 377 if (cfs_rq->sleeper_bonus > sysctl_sched_min_granularity) {
ea0aa3b2 378 delta = min((u64)delta_mine, cfs_rq->sleeper_bonus);
b2133c8b
IM
379 delta = min(delta, (unsigned long)(
380 (long)sysctl_sched_runtime_limit - curr->wait_runtime));
bf0f6f24
IM
381 cfs_rq->sleeper_bonus -= delta;
382 delta_mine -= delta;
383 }
384
385 cfs_rq->fair_clock += delta_fair;
386 /*
387 * We executed delta_exec amount of time on the CPU,
388 * but we were only entitled to delta_mine amount of
389 * time during that period (if nr_running == 1 then
390 * the two values are equal)
391 * [Note: delta_mine - delta_exec is negative]:
392 */
393 add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
394}
395
b7cc0896 396static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24
IM
397{
398 struct sched_entity *curr = cfs_rq_curr(cfs_rq);
8ebc91d9 399 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
400 unsigned long delta_exec;
401
402 if (unlikely(!curr))
403 return;
404
405 /*
406 * Get the amount of time the current task was running
407 * since the last time we changed load (this cannot
408 * overflow on 32 bits):
409 */
8ebc91d9 410 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 411
8ebc91d9
IM
412 __update_curr(cfs_rq, curr, delta_exec);
413 curr->exec_start = now;
bf0f6f24
IM
414}
415
416static inline void
5870db5b 417update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
418{
419 se->wait_start_fair = cfs_rq->fair_clock;
d281918d 420 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
421}
422
423/*
424 * We calculate fair deltas here, so protect against the random effects
425 * of a multiplication overflow by capping it to the runtime limit:
426 */
427#if BITS_PER_LONG == 32
428static inline unsigned long
429calc_weighted(unsigned long delta, unsigned long weight, int shift)
430{
431 u64 tmp = (u64)delta * weight >> shift;
432
433 if (unlikely(tmp > sysctl_sched_runtime_limit*2))
434 return sysctl_sched_runtime_limit*2;
435 return tmp;
436}
437#else
438static inline unsigned long
439calc_weighted(unsigned long delta, unsigned long weight, int shift)
440{
441 return delta * weight >> shift;
442}
443#endif
444
445/*
446 * Task is being enqueued - update stats:
447 */
d2417e5a 448static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
449{
450 s64 key;
451
452 /*
453 * Are we enqueueing a waiting task? (for current tasks
454 * a dequeue/enqueue event is a NOP)
455 */
456 if (se != cfs_rq_curr(cfs_rq))
5870db5b 457 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
458 /*
459 * Update the key:
460 */
461 key = cfs_rq->fair_clock;
462
463 /*
464 * Optimize the common nice 0 case:
465 */
466 if (likely(se->load.weight == NICE_0_LOAD)) {
467 key -= se->wait_runtime;
468 } else {
469 u64 tmp;
470
471 if (se->wait_runtime < 0) {
472 tmp = -se->wait_runtime;
473 key += (tmp * se->load.inv_weight) >>
474 (WMULT_SHIFT - NICE_0_SHIFT);
475 } else {
476 tmp = se->wait_runtime;
a69edb55
IM
477 key -= (tmp * se->load.inv_weight) >>
478 (WMULT_SHIFT - NICE_0_SHIFT);
bf0f6f24
IM
479 }
480 }
481
482 se->fair_key = key;
483}
484
485/*
486 * Note: must be called with a freshly updated rq->fair_clock.
487 */
488static inline void
8ebc91d9
IM
489__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se,
490 unsigned long delta_fair)
bf0f6f24 491{
d281918d
IM
492 schedstat_set(se->wait_max, max(se->wait_max,
493 rq_of(cfs_rq)->clock - se->wait_start));
bf0f6f24
IM
494
495 if (unlikely(se->load.weight != NICE_0_LOAD))
496 delta_fair = calc_weighted(delta_fair, se->load.weight,
497 NICE_0_SHIFT);
498
499 add_wait_runtime(cfs_rq, se, delta_fair);
500}
501
502static void
9ef0a961 503update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
504{
505 unsigned long delta_fair;
506
b77d69db
IM
507 if (unlikely(!se->wait_start_fair))
508 return;
509
bf0f6f24
IM
510 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
511 (u64)(cfs_rq->fair_clock - se->wait_start_fair));
512
8ebc91d9 513 __update_stats_wait_end(cfs_rq, se, delta_fair);
bf0f6f24
IM
514
515 se->wait_start_fair = 0;
6cfb0d5d 516 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
517}
518
519static inline void
19b6a2e3 520update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 521{
b7cc0896 522 update_curr(cfs_rq);
bf0f6f24
IM
523 /*
524 * Mark the end of the wait period if dequeueing a
525 * waiting task:
526 */
527 if (se != cfs_rq_curr(cfs_rq))
9ef0a961 528 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
529}
530
531/*
532 * We are picking a new current task - update its stats:
533 */
534static inline void
79303e9e 535update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
536{
537 /*
538 * We are starting a new run period:
539 */
d281918d 540 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
541}
542
543/*
544 * We are descheduling a task - update its stats:
545 */
546static inline void
c7e9b5b2 547update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
548{
549 se->exec_start = 0;
550}
551
552/**************************************************
553 * Scheduling class queueing methods:
554 */
555
8ebc91d9
IM
556static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se,
557 unsigned long delta_fair)
bf0f6f24 558{
8ebc91d9 559 unsigned long load = cfs_rq->load.weight;
bf0f6f24
IM
560 long prev_runtime;
561
b2133c8b
IM
562 /*
563 * Do not boost sleepers if there's too much bonus 'in flight'
564 * already:
565 */
566 if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit))
567 return;
568
bf0f6f24
IM
569 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG)
570 load = rq_of(cfs_rq)->cpu_load[2];
571
bf0f6f24
IM
572 /*
573 * Fix up delta_fair with the effect of us running
574 * during the whole sleep period:
575 */
576 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG)
577 delta_fair = div64_likely32((u64)delta_fair * load,
578 load + se->load.weight);
579
580 if (unlikely(se->load.weight != NICE_0_LOAD))
581 delta_fair = calc_weighted(delta_fair, se->load.weight,
582 NICE_0_SHIFT);
583
584 prev_runtime = se->wait_runtime;
585 __add_wait_runtime(cfs_rq, se, delta_fair);
586 delta_fair = se->wait_runtime - prev_runtime;
587
588 /*
589 * Track the amount of bonus we've given to sleepers:
590 */
591 cfs_rq->sleeper_bonus += delta_fair;
bf0f6f24
IM
592}
593
2396af69 594static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
595{
596 struct task_struct *tsk = task_of(se);
597 unsigned long delta_fair;
598
599 if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
600 !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS))
601 return;
602
603 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
604 (u64)(cfs_rq->fair_clock - se->sleep_start_fair));
605
8ebc91d9 606 __enqueue_sleeper(cfs_rq, se, delta_fair);
bf0f6f24
IM
607
608 se->sleep_start_fair = 0;
609
610#ifdef CONFIG_SCHEDSTATS
611 if (se->sleep_start) {
d281918d 612 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
613
614 if ((s64)delta < 0)
615 delta = 0;
616
617 if (unlikely(delta > se->sleep_max))
618 se->sleep_max = delta;
619
620 se->sleep_start = 0;
621 se->sum_sleep_runtime += delta;
622 }
623 if (se->block_start) {
d281918d 624 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
625
626 if ((s64)delta < 0)
627 delta = 0;
628
629 if (unlikely(delta > se->block_max))
630 se->block_max = delta;
631
632 se->block_start = 0;
633 se->sum_sleep_runtime += delta;
30084fbd
IM
634
635 /*
636 * Blocking time is in units of nanosecs, so shift by 20 to
637 * get a milliseconds-range estimation of the amount of
638 * time that the task spent sleeping:
639 */
640 if (unlikely(prof_on == SLEEP_PROFILING)) {
641 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
642 delta >> 20);
643 }
bf0f6f24
IM
644 }
645#endif
646}
647
648static void
668031ca 649enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
650{
651 /*
652 * Update the fair clock.
653 */
b7cc0896 654 update_curr(cfs_rq);
bf0f6f24
IM
655
656 if (wakeup)
2396af69 657 enqueue_sleeper(cfs_rq, se);
bf0f6f24 658
d2417e5a 659 update_stats_enqueue(cfs_rq, se);
bf0f6f24
IM
660 __enqueue_entity(cfs_rq, se);
661}
662
663static void
525c2716 664dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 665{
19b6a2e3 666 update_stats_dequeue(cfs_rq, se);
bf0f6f24
IM
667 if (sleep) {
668 se->sleep_start_fair = cfs_rq->fair_clock;
669#ifdef CONFIG_SCHEDSTATS
670 if (entity_is_task(se)) {
671 struct task_struct *tsk = task_of(se);
672
673 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 674 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 675 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 676 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 677 }
bf0f6f24
IM
678#endif
679 }
680 __dequeue_entity(cfs_rq, se);
681}
682
683/*
684 * Preempt the current task with a newly woken task if needed:
685 */
7c92e54f 686static void
bf0f6f24
IM
687__check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
688 struct sched_entity *curr, unsigned long granularity)
689{
690 s64 __delta = curr->fair_key - se->fair_key;
11697830
PZ
691 unsigned long ideal_runtime, delta_exec;
692
693 /*
694 * ideal_runtime is compared against sum_exec_runtime, which is
695 * walltime, hence do not scale.
696 */
697 ideal_runtime = max(sysctl_sched_latency / cfs_rq->nr_running,
698 (unsigned long)sysctl_sched_min_granularity);
699
700 /*
701 * If we executed more than what the latency constraint suggests,
702 * reduce the rescheduling granularity. This way the total latency
703 * of how much a task is not scheduled converges to
704 * sysctl_sched_latency:
705 */
706 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
707 if (delta_exec > ideal_runtime)
708 granularity = 0;
bf0f6f24
IM
709
710 /*
711 * Take scheduling granularity into account - do not
712 * preempt the current task unless the best task has
713 * a larger than sched_granularity fairness advantage:
11697830
PZ
714 *
715 * scale granularity as key space is in fair_clock.
bf0f6f24 716 */
4a55b450 717 if (__delta > niced_granularity(curr, granularity))
bf0f6f24
IM
718 resched_task(rq_of(cfs_rq)->curr);
719}
720
721static inline void
8494f412 722set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
723{
724 /*
725 * Any task has to be enqueued before it get to execute on
726 * a CPU. So account for the time it spent waiting on the
727 * runqueue. (note, here we rely on pick_next_task() having
728 * done a put_prev_task_fair() shortly before this, which
729 * updated rq->fair_clock - used by update_stats_wait_end())
730 */
9ef0a961 731 update_stats_wait_end(cfs_rq, se);
79303e9e 732 update_stats_curr_start(cfs_rq, se);
bf0f6f24 733 set_cfs_rq_curr(cfs_rq, se);
eba1ed4b
IM
734#ifdef CONFIG_SCHEDSTATS
735 /*
736 * Track our maximum slice length, if the CPU's load is at
737 * least twice that of our own weight (i.e. dont track it
738 * when there are only lesser-weight tasks around):
739 */
740 if (rq_of(cfs_rq)->ls.load.weight >= 2*se->load.weight) {
741 se->slice_max = max(se->slice_max,
742 se->sum_exec_runtime - se->prev_sum_exec_runtime);
743 }
744#endif
4a55b450 745 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
746}
747
9948f4b2 748static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24
IM
749{
750 struct sched_entity *se = __pick_next_entity(cfs_rq);
751
8494f412 752 set_next_entity(cfs_rq, se);
bf0f6f24
IM
753
754 return se;
755}
756
ab6cde26 757static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
758{
759 /*
760 * If still on the runqueue then deactivate_task()
761 * was not called and update_curr() has to be done:
762 */
763 if (prev->on_rq)
b7cc0896 764 update_curr(cfs_rq);
bf0f6f24 765
c7e9b5b2 766 update_stats_curr_end(cfs_rq, prev);
bf0f6f24
IM
767
768 if (prev->on_rq)
5870db5b 769 update_stats_wait_start(cfs_rq, prev);
bf0f6f24
IM
770 set_cfs_rq_curr(cfs_rq, NULL);
771}
772
773static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
774{
bf0f6f24 775 struct sched_entity *next;
c1b3da3e 776
bf0f6f24
IM
777 /*
778 * Dequeue and enqueue the task to update its
779 * position within the tree:
780 */
525c2716 781 dequeue_entity(cfs_rq, curr, 0);
668031ca 782 enqueue_entity(cfs_rq, curr, 0);
bf0f6f24
IM
783
784 /*
785 * Reschedule if another task tops the current one.
786 */
787 next = __pick_next_entity(cfs_rq);
788 if (next == curr)
789 return;
790
11697830
PZ
791 __check_preempt_curr_fair(cfs_rq, next, curr,
792 sched_granularity(cfs_rq));
bf0f6f24
IM
793}
794
795/**************************************************
796 * CFS operations on tasks:
797 */
798
799#ifdef CONFIG_FAIR_GROUP_SCHED
800
801/* Walk up scheduling entities hierarchy */
802#define for_each_sched_entity(se) \
803 for (; se; se = se->parent)
804
805static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
806{
807 return p->se.cfs_rq;
808}
809
810/* runqueue on which this entity is (to be) queued */
811static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
812{
813 return se->cfs_rq;
814}
815
816/* runqueue "owned" by this group */
817static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
818{
819 return grp->my_q;
820}
821
822/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
823 * another cpu ('this_cpu')
824 */
825static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
826{
827 /* A later patch will take group into account */
828 return &cpu_rq(this_cpu)->cfs;
829}
830
831/* Iterate thr' all leaf cfs_rq's on a runqueue */
832#define for_each_leaf_cfs_rq(rq, cfs_rq) \
833 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
834
835/* Do the two (enqueued) tasks belong to the same group ? */
836static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
837{
838 if (curr->se.cfs_rq == p->se.cfs_rq)
839 return 1;
840
841 return 0;
842}
843
844#else /* CONFIG_FAIR_GROUP_SCHED */
845
846#define for_each_sched_entity(se) \
847 for (; se; se = NULL)
848
849static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
850{
851 return &task_rq(p)->cfs;
852}
853
854static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
855{
856 struct task_struct *p = task_of(se);
857 struct rq *rq = task_rq(p);
858
859 return &rq->cfs;
860}
861
862/* runqueue "owned" by this group */
863static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
864{
865 return NULL;
866}
867
868static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
869{
870 return &cpu_rq(this_cpu)->cfs;
871}
872
873#define for_each_leaf_cfs_rq(rq, cfs_rq) \
874 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
875
876static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
877{
878 return 1;
879}
880
881#endif /* CONFIG_FAIR_GROUP_SCHED */
882
883/*
884 * The enqueue_task method is called before nr_running is
885 * increased. Here we update the fair scheduling stats and
886 * then put the task into the rbtree:
887 */
fd390f6a 888static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
889{
890 struct cfs_rq *cfs_rq;
891 struct sched_entity *se = &p->se;
892
893 for_each_sched_entity(se) {
894 if (se->on_rq)
895 break;
896 cfs_rq = cfs_rq_of(se);
668031ca 897 enqueue_entity(cfs_rq, se, wakeup);
bf0f6f24
IM
898 }
899}
900
901/*
902 * The dequeue_task method is called before nr_running is
903 * decreased. We remove the task from the rbtree and
904 * update the fair scheduling stats:
905 */
f02231e5 906static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
907{
908 struct cfs_rq *cfs_rq;
909 struct sched_entity *se = &p->se;
910
911 for_each_sched_entity(se) {
912 cfs_rq = cfs_rq_of(se);
525c2716 913 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24
IM
914 /* Don't dequeue parent if it has other entities besides us */
915 if (cfs_rq->load.weight)
916 break;
917 }
918}
919
920/*
1799e35d
IM
921 * sched_yield() support is very simple - we dequeue and enqueue.
922 *
923 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24
IM
924 */
925static void yield_task_fair(struct rq *rq, struct task_struct *p)
926{
927 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1799e35d
IM
928 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
929 struct sched_entity *rightmost, *se = &p->se;
930 struct rb_node *parent;
bf0f6f24
IM
931
932 /*
1799e35d
IM
933 * Are we the only task in the tree?
934 */
935 if (unlikely(cfs_rq->nr_running == 1))
936 return;
937
938 if (likely(!sysctl_sched_compat_yield)) {
939 __update_rq_clock(rq);
940 /*
941 * Dequeue and enqueue the task to update its
942 * position within the tree:
943 */
944 dequeue_entity(cfs_rq, &p->se, 0);
945 enqueue_entity(cfs_rq, &p->se, 0);
946
947 return;
948 }
949 /*
950 * Find the rightmost entry in the rbtree:
bf0f6f24 951 */
1799e35d
IM
952 do {
953 parent = *link;
954 link = &parent->rb_right;
955 } while (*link);
956
957 rightmost = rb_entry(parent, struct sched_entity, run_node);
958 /*
959 * Already in the rightmost position?
960 */
961 if (unlikely(rightmost == se))
962 return;
963
964 /*
965 * Minimally necessary key value to be last in the tree:
966 */
967 se->fair_key = rightmost->fair_key + 1;
968
969 if (cfs_rq->rb_leftmost == &se->run_node)
970 cfs_rq->rb_leftmost = rb_next(&se->run_node);
971 /*
972 * Relink the task to the rightmost position:
973 */
974 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
975 rb_link_node(&se->run_node, parent, link);
976 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
977}
978
979/*
980 * Preempt the current task with a newly woken task if needed:
981 */
982static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
983{
984 struct task_struct *curr = rq->curr;
985 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
986 unsigned long gran;
987
988 if (unlikely(rt_prio(p->prio))) {
a8e504d2 989 update_rq_clock(rq);
b7cc0896 990 update_curr(cfs_rq);
bf0f6f24
IM
991 resched_task(curr);
992 return;
993 }
994
995 gran = sysctl_sched_wakeup_granularity;
996 /*
997 * Batch tasks prefer throughput over latency:
998 */
999 if (unlikely(p->policy == SCHED_BATCH))
1000 gran = sysctl_sched_batch_wakeup_granularity;
1001
1002 if (is_same_group(curr, p))
1003 __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
1004}
1005
fb8d4724 1006static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24
IM
1007{
1008 struct cfs_rq *cfs_rq = &rq->cfs;
1009 struct sched_entity *se;
1010
1011 if (unlikely(!cfs_rq->nr_running))
1012 return NULL;
1013
1014 do {
9948f4b2 1015 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
1016 cfs_rq = group_cfs_rq(se);
1017 } while (cfs_rq);
1018
1019 return task_of(se);
1020}
1021
1022/*
1023 * Account for a descheduled task:
1024 */
31ee529c 1025static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1026{
1027 struct sched_entity *se = &prev->se;
1028 struct cfs_rq *cfs_rq;
1029
1030 for_each_sched_entity(se) {
1031 cfs_rq = cfs_rq_of(se);
ab6cde26 1032 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1033 }
1034}
1035
1036/**************************************************
1037 * Fair scheduling class load-balancing methods:
1038 */
1039
1040/*
1041 * Load-balancing iterator. Note: while the runqueue stays locked
1042 * during the whole iteration, the current task might be
1043 * dequeued so the iterator has to be dequeue-safe. Here we
1044 * achieve that by always pre-iterating before returning
1045 * the current task:
1046 */
1047static inline struct task_struct *
1048__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1049{
1050 struct task_struct *p;
1051
1052 if (!curr)
1053 return NULL;
1054
1055 p = rb_entry(curr, struct task_struct, se.run_node);
1056 cfs_rq->rb_load_balance_curr = rb_next(curr);
1057
1058 return p;
1059}
1060
1061static struct task_struct *load_balance_start_fair(void *arg)
1062{
1063 struct cfs_rq *cfs_rq = arg;
1064
1065 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1066}
1067
1068static struct task_struct *load_balance_next_fair(void *arg)
1069{
1070 struct cfs_rq *cfs_rq = arg;
1071
1072 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1073}
1074
a4ac01c3 1075#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24
IM
1076static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1077{
1078 struct sched_entity *curr;
1079 struct task_struct *p;
1080
1081 if (!cfs_rq->nr_running)
1082 return MAX_PRIO;
1083
1084 curr = __pick_next_entity(cfs_rq);
1085 p = task_of(curr);
1086
1087 return p->prio;
1088}
a4ac01c3 1089#endif
bf0f6f24 1090
43010659 1091static unsigned long
bf0f6f24 1092load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
a4ac01c3
PW
1093 unsigned long max_nr_move, unsigned long max_load_move,
1094 struct sched_domain *sd, enum cpu_idle_type idle,
1095 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
1096{
1097 struct cfs_rq *busy_cfs_rq;
1098 unsigned long load_moved, total_nr_moved = 0, nr_moved;
1099 long rem_load_move = max_load_move;
1100 struct rq_iterator cfs_rq_iterator;
1101
1102 cfs_rq_iterator.start = load_balance_start_fair;
1103 cfs_rq_iterator.next = load_balance_next_fair;
1104
1105 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 1106#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 1107 struct cfs_rq *this_cfs_rq;
e56f31aa 1108 long imbalance;
bf0f6f24 1109 unsigned long maxload;
bf0f6f24
IM
1110
1111 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
1112
e56f31aa 1113 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
bf0f6f24
IM
1114 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1115 if (imbalance <= 0)
1116 continue;
1117
1118 /* Don't pull more than imbalance/2 */
1119 imbalance /= 2;
1120 maxload = min(rem_load_move, imbalance);
1121
a4ac01c3
PW
1122 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
1123#else
e56f31aa 1124# define maxload rem_load_move
a4ac01c3 1125#endif
bf0f6f24
IM
1126 /* pass busy_cfs_rq argument into
1127 * load_balance_[start|next]_fair iterators
1128 */
1129 cfs_rq_iterator.arg = busy_cfs_rq;
1130 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
1131 max_nr_move, maxload, sd, idle, all_pinned,
a4ac01c3 1132 &load_moved, this_best_prio, &cfs_rq_iterator);
bf0f6f24
IM
1133
1134 total_nr_moved += nr_moved;
1135 max_nr_move -= nr_moved;
1136 rem_load_move -= load_moved;
1137
1138 if (max_nr_move <= 0 || rem_load_move <= 0)
1139 break;
1140 }
1141
43010659 1142 return max_load_move - rem_load_move;
bf0f6f24
IM
1143}
1144
1145/*
1146 * scheduler tick hitting a task of our scheduling class:
1147 */
1148static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1149{
1150 struct cfs_rq *cfs_rq;
1151 struct sched_entity *se = &curr->se;
1152
1153 for_each_sched_entity(se) {
1154 cfs_rq = cfs_rq_of(se);
1155 entity_tick(cfs_rq, se);
1156 }
1157}
1158
1159/*
1160 * Share the fairness runtime between parent and child, thus the
1161 * total amount of pressure for CPU stays equal - new tasks
1162 * get a chance to run but frequent forkers are not allowed to
1163 * monopolize the CPU. Note: the parent runqueue is locked,
1164 * the child is not running yet.
1165 */
ee0827d8 1166static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1167{
1168 struct cfs_rq *cfs_rq = task_cfs_rq(p);
7109c442 1169 struct sched_entity *se = &p->se, *curr = cfs_rq_curr(cfs_rq);
bf0f6f24
IM
1170
1171 sched_info_queued(p);
1172
7109c442 1173 update_curr(cfs_rq);
d2417e5a 1174 update_stats_enqueue(cfs_rq, se);
bf0f6f24
IM
1175 /*
1176 * Child runs first: we let it run before the parent
1177 * until it reschedules once. We set up the key so that
1178 * it will preempt the parent:
1179 */
9f508f82 1180 se->fair_key = curr->fair_key -
7109c442 1181 niced_granularity(curr, sched_granularity(cfs_rq)) - 1;
bf0f6f24
IM
1182 /*
1183 * The first wait is dominated by the child-runs-first logic,
1184 * so do not credit it with that waiting time yet:
1185 */
1186 if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL)
9f508f82 1187 se->wait_start_fair = 0;
bf0f6f24
IM
1188
1189 /*
1190 * The statistical average of wait_runtime is about
1191 * -granularity/2, so initialize the task with that:
1192 */
a206c072 1193 if (sysctl_sched_features & SCHED_FEAT_START_DEBIT)
9f508f82 1194 se->wait_runtime = -(sched_granularity(cfs_rq) / 2);
bf0f6f24
IM
1195
1196 __enqueue_entity(cfs_rq, se);
bb61c210 1197 resched_task(rq->curr);
bf0f6f24
IM
1198}
1199
1200#ifdef CONFIG_FAIR_GROUP_SCHED
1201/* Account for a task changing its policy or group.
1202 *
1203 * This routine is mostly called to set cfs_rq->curr field when a task
1204 * migrates between groups/classes.
1205 */
1206static void set_curr_task_fair(struct rq *rq)
1207{
7c6c16f3 1208 struct sched_entity *se = &rq->curr->se;
a8e504d2 1209
c3b64f1e
IM
1210 for_each_sched_entity(se)
1211 set_next_entity(cfs_rq_of(se), se);
bf0f6f24
IM
1212}
1213#else
1214static void set_curr_task_fair(struct rq *rq)
1215{
1216}
1217#endif
1218
1219/*
1220 * All the scheduling class methods:
1221 */
1222struct sched_class fair_sched_class __read_mostly = {
1223 .enqueue_task = enqueue_task_fair,
1224 .dequeue_task = dequeue_task_fair,
1225 .yield_task = yield_task_fair,
1226
1227 .check_preempt_curr = check_preempt_curr_fair,
1228
1229 .pick_next_task = pick_next_task_fair,
1230 .put_prev_task = put_prev_task_fair,
1231
1232 .load_balance = load_balance_fair,
1233
1234 .set_curr_task = set_curr_task_fair,
1235 .task_tick = task_tick_fair,
1236 .task_new = task_new_fair,
1237};
1238
1239#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1240static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1241{
bf0f6f24
IM
1242 struct cfs_rq *cfs_rq;
1243
c3b64f1e 1244 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1245 print_cfs_rq(m, cpu, cfs_rq);
bf0f6f24
IM
1246}
1247#endif