sched: cleanup: rename task_grp to task_group
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
23/*
21805085
PZ
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
bf0f6f24 26 *
21805085
PZ
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
bf0f6f24
IM
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
21805085 35 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 36 */
2bd8e6d4
IM
37const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39/*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43const_debug unsigned int sysctl_sched_child_runs_first = 1;
21805085
PZ
44
45/*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
5f6d858e 49const_debug unsigned int sysctl_sched_nr_latency = 20;
bf0f6f24 50
1799e35d
IM
51/*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57unsigned int __read_mostly sysctl_sched_compat_yield;
58
bf0f6f24
IM
59/*
60 * SCHED_BATCH wake-up granularity.
155bb293 61 * (default: 10 msec, units: nanoseconds)
bf0f6f24
IM
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
155bb293 67const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
bf0f6f24
IM
68
69/*
70 * SCHED_OTHER wake-up granularity.
155bb293 71 * (default: 10 msec, units: nanoseconds)
bf0f6f24
IM
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
155bb293 77const_debug unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
bf0f6f24 78
bf0f6f24
IM
79/**************************************************************
80 * CFS operations on generic schedulable entities:
81 */
82
62160e3f 83#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 84
62160e3f 85/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
86static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
87{
62160e3f 88 return cfs_rq->rq;
bf0f6f24
IM
89}
90
62160e3f
IM
91/* An entity is a task if it doesn't "own" a runqueue */
92#define entity_is_task(se) (!se->my_q)
bf0f6f24 93
62160e3f 94#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 95
62160e3f
IM
96static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
97{
98 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
99}
100
101#define entity_is_task(se) 1
102
bf0f6f24
IM
103#endif /* CONFIG_FAIR_GROUP_SCHED */
104
105static inline struct task_struct *task_of(struct sched_entity *se)
106{
107 return container_of(se, struct task_struct, se);
108}
109
110
111/**************************************************************
112 * Scheduling class tree data structure manipulation methods:
113 */
114
02e0431a
PZ
115static inline u64
116max_vruntime(u64 min_vruntime, u64 vruntime)
117{
368059a9
PZ
118 s64 delta = (s64)(vruntime - min_vruntime);
119 if (delta > 0)
02e0431a
PZ
120 min_vruntime = vruntime;
121
122 return min_vruntime;
123}
124
b0ffd246
PZ
125static inline u64
126min_vruntime(u64 min_vruntime, u64 vruntime)
127{
128 s64 delta = (s64)(vruntime - min_vruntime);
129 if (delta < 0)
130 min_vruntime = vruntime;
131
132 return min_vruntime;
133}
134
02e0431a
PZ
135static inline s64
136entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 137{
30cfdcfc 138 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
139}
140
bf0f6f24
IM
141/*
142 * Enqueue an entity into the rb-tree:
143 */
19ccd97a 144static void
bf0f6f24
IM
145__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
146{
147 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
148 struct rb_node *parent = NULL;
149 struct sched_entity *entry;
9014623c 150 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
151 int leftmost = 1;
152
153 /*
154 * Find the right place in the rbtree:
155 */
156 while (*link) {
157 parent = *link;
158 entry = rb_entry(parent, struct sched_entity, run_node);
159 /*
160 * We dont care about collisions. Nodes with
161 * the same key stay together.
162 */
9014623c 163 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
164 link = &parent->rb_left;
165 } else {
166 link = &parent->rb_right;
167 leftmost = 0;
168 }
169 }
170
171 /*
172 * Maintain a cache of leftmost tree entries (it is frequently
173 * used):
174 */
175 if (leftmost)
57cb499d 176 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
177
178 rb_link_node(&se->run_node, parent, link);
179 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
180}
181
19ccd97a 182static void
bf0f6f24
IM
183__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
184{
185 if (cfs_rq->rb_leftmost == &se->run_node)
57cb499d 186 cfs_rq->rb_leftmost = rb_next(&se->run_node);
e9acbff6 187
bf0f6f24 188 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
189}
190
191static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
192{
193 return cfs_rq->rb_leftmost;
194}
195
196static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
197{
198 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
199}
200
aeb73b04
PZ
201static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
202{
203 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
204 struct sched_entity *se = NULL;
205 struct rb_node *parent;
206
207 while (*link) {
208 parent = *link;
209 se = rb_entry(parent, struct sched_entity, run_node);
210 link = &parent->rb_right;
211 }
212
213 return se;
214}
215
bf0f6f24
IM
216/**************************************************************
217 * Scheduling class statistics methods:
218 */
219
647e7cac
IM
220
221/*
222 * The idea is to set a period in which each task runs once.
223 *
224 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
225 * this period because otherwise the slices get too small.
226 *
227 * p = (nr <= nl) ? l : l*nr/nl
228 */
4d78e7b6
PZ
229static u64 __sched_period(unsigned long nr_running)
230{
231 u64 period = sysctl_sched_latency;
5f6d858e 232 unsigned long nr_latency = sysctl_sched_nr_latency;
4d78e7b6
PZ
233
234 if (unlikely(nr_running > nr_latency)) {
235 period *= nr_running;
236 do_div(period, nr_latency);
237 }
238
239 return period;
240}
241
647e7cac
IM
242/*
243 * We calculate the wall-time slice from the period by taking a part
244 * proportional to the weight.
245 *
246 * s = p*w/rw
247 */
6d0f0ebd 248static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 249{
647e7cac 250 u64 slice = __sched_period(cfs_rq->nr_running);
21805085 251
647e7cac
IM
252 slice *= se->load.weight;
253 do_div(slice, cfs_rq->load.weight);
21805085 254
647e7cac 255 return slice;
bf0f6f24
IM
256}
257
647e7cac
IM
258/*
259 * We calculate the vruntime slice.
260 *
261 * vs = s/w = p/rw
262 */
263static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
67e9fb2a 264{
647e7cac 265 u64 vslice = __sched_period(nr_running);
67e9fb2a 266
647e7cac 267 do_div(vslice, rq_weight);
67e9fb2a 268
647e7cac
IM
269 return vslice;
270}
5f6d858e 271
647e7cac
IM
272static u64 sched_vslice(struct cfs_rq *cfs_rq)
273{
274 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
275}
276
277static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
278{
279 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
280 cfs_rq->nr_running + 1);
67e9fb2a
PZ
281}
282
bf0f6f24
IM
283/*
284 * Update the current task's runtime statistics. Skip current tasks that
285 * are not in our scheduling class.
286 */
287static inline void
8ebc91d9
IM
288__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
289 unsigned long delta_exec)
bf0f6f24 290{
bbdba7c0 291 unsigned long delta_exec_weighted;
b0ffd246 292 u64 vruntime;
bf0f6f24 293
8179ca23 294 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
295
296 curr->sum_exec_runtime += delta_exec;
7a62eabc 297 schedstat_add(cfs_rq, exec_clock, delta_exec);
e9acbff6
IM
298 delta_exec_weighted = delta_exec;
299 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
300 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
301 &curr->load);
302 }
303 curr->vruntime += delta_exec_weighted;
02e0431a
PZ
304
305 /*
306 * maintain cfs_rq->min_vruntime to be a monotonic increasing
307 * value tracking the leftmost vruntime in the tree.
308 */
309 if (first_fair(cfs_rq)) {
b0ffd246
PZ
310 vruntime = min_vruntime(curr->vruntime,
311 __pick_next_entity(cfs_rq)->vruntime);
02e0431a 312 } else
b0ffd246 313 vruntime = curr->vruntime;
02e0431a
PZ
314
315 cfs_rq->min_vruntime =
b0ffd246 316 max_vruntime(cfs_rq->min_vruntime, vruntime);
bf0f6f24
IM
317}
318
b7cc0896 319static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 320{
429d43bc 321 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 322 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
323 unsigned long delta_exec;
324
325 if (unlikely(!curr))
326 return;
327
328 /*
329 * Get the amount of time the current task was running
330 * since the last time we changed load (this cannot
331 * overflow on 32 bits):
332 */
8ebc91d9 333 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 334
8ebc91d9
IM
335 __update_curr(cfs_rq, curr, delta_exec);
336 curr->exec_start = now;
bf0f6f24
IM
337}
338
339static inline void
5870db5b 340update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 341{
d281918d 342 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
343}
344
bf0f6f24
IM
345/*
346 * Task is being enqueued - update stats:
347 */
d2417e5a 348static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 349{
bf0f6f24
IM
350 /*
351 * Are we enqueueing a waiting task? (for current tasks
352 * a dequeue/enqueue event is a NOP)
353 */
429d43bc 354 if (se != cfs_rq->curr)
5870db5b 355 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
356}
357
bf0f6f24 358static void
9ef0a961 359update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 360{
bbdba7c0
IM
361 schedstat_set(se->wait_max, max(se->wait_max,
362 rq_of(cfs_rq)->clock - se->wait_start));
6cfb0d5d 363 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
364}
365
366static inline void
19b6a2e3 367update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 368{
bf0f6f24
IM
369 /*
370 * Mark the end of the wait period if dequeueing a
371 * waiting task:
372 */
429d43bc 373 if (se != cfs_rq->curr)
9ef0a961 374 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
375}
376
377/*
378 * We are picking a new current task - update its stats:
379 */
380static inline void
79303e9e 381update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
382{
383 /*
384 * We are starting a new run period:
385 */
d281918d 386 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
387}
388
389/*
390 * We are descheduling a task - update its stats:
391 */
392static inline void
c7e9b5b2 393update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
394{
395 se->exec_start = 0;
396}
397
398/**************************************************
399 * Scheduling class queueing methods:
400 */
401
30cfdcfc
DA
402static void
403account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
404{
405 update_load_add(&cfs_rq->load, se->load.weight);
406 cfs_rq->nr_running++;
407 se->on_rq = 1;
408}
409
410static void
411account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
412{
413 update_load_sub(&cfs_rq->load, se->load.weight);
414 cfs_rq->nr_running--;
415 se->on_rq = 0;
416}
417
2396af69 418static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 419{
bf0f6f24
IM
420#ifdef CONFIG_SCHEDSTATS
421 if (se->sleep_start) {
d281918d 422 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
423
424 if ((s64)delta < 0)
425 delta = 0;
426
427 if (unlikely(delta > se->sleep_max))
428 se->sleep_max = delta;
429
430 se->sleep_start = 0;
431 se->sum_sleep_runtime += delta;
432 }
433 if (se->block_start) {
d281918d 434 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
435
436 if ((s64)delta < 0)
437 delta = 0;
438
439 if (unlikely(delta > se->block_max))
440 se->block_max = delta;
441
442 se->block_start = 0;
443 se->sum_sleep_runtime += delta;
30084fbd
IM
444
445 /*
446 * Blocking time is in units of nanosecs, so shift by 20 to
447 * get a milliseconds-range estimation of the amount of
448 * time that the task spent sleeping:
449 */
450 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf
IM
451 struct task_struct *tsk = task_of(se);
452
30084fbd
IM
453 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
454 delta >> 20);
455 }
bf0f6f24
IM
456 }
457#endif
458}
459
ddc97297
PZ
460static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
461{
462#ifdef CONFIG_SCHED_DEBUG
463 s64 d = se->vruntime - cfs_rq->min_vruntime;
464
465 if (d < 0)
466 d = -d;
467
468 if (d > 3*sysctl_sched_latency)
469 schedstat_inc(cfs_rq, nr_spread_over);
470#endif
471}
472
aeb73b04
PZ
473static void
474place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
475{
67e9fb2a 476 u64 vruntime;
aeb73b04 477
67e9fb2a 478 vruntime = cfs_rq->min_vruntime;
94dfb5e7 479
06877c33 480 if (sched_feat(TREE_AVG)) {
94dfb5e7
PZ
481 struct sched_entity *last = __pick_last_entity(cfs_rq);
482 if (last) {
67e9fb2a
PZ
483 vruntime += last->vruntime;
484 vruntime >>= 1;
94dfb5e7 485 }
67e9fb2a 486 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
647e7cac 487 vruntime += sched_vslice(cfs_rq)/2;
94dfb5e7
PZ
488
489 if (initial && sched_feat(START_DEBIT))
647e7cac 490 vruntime += sched_vslice_add(cfs_rq, se);
aeb73b04 491
8465e792 492 if (!initial) {
94359f05
IM
493 if (sched_feat(NEW_FAIR_SLEEPERS))
494 vruntime -= sysctl_sched_latency;
495
b8487b92 496 vruntime = max_t(s64, vruntime, se->vruntime);
aeb73b04
PZ
497 }
498
67e9fb2a
PZ
499 se->vruntime = vruntime;
500
aeb73b04
PZ
501}
502
bf0f6f24 503static void
83b699ed 504enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
505{
506 /*
a2a2d680 507 * Update run-time statistics of the 'current'.
bf0f6f24 508 */
b7cc0896 509 update_curr(cfs_rq);
bf0f6f24 510
e9acbff6 511 if (wakeup) {
aeb73b04 512 place_entity(cfs_rq, se, 0);
2396af69 513 enqueue_sleeper(cfs_rq, se);
e9acbff6 514 }
bf0f6f24 515
d2417e5a 516 update_stats_enqueue(cfs_rq, se);
ddc97297 517 check_spread(cfs_rq, se);
83b699ed
SV
518 if (se != cfs_rq->curr)
519 __enqueue_entity(cfs_rq, se);
30cfdcfc 520 account_entity_enqueue(cfs_rq, se);
bf0f6f24
IM
521}
522
523static void
525c2716 524dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 525{
a2a2d680
DA
526 /*
527 * Update run-time statistics of the 'current'.
528 */
529 update_curr(cfs_rq);
530
19b6a2e3 531 update_stats_dequeue(cfs_rq, se);
db36cc7d 532 if (sleep) {
67e9fb2a 533#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
534 if (entity_is_task(se)) {
535 struct task_struct *tsk = task_of(se);
536
537 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 538 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 539 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 540 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 541 }
db36cc7d 542#endif
67e9fb2a
PZ
543 }
544
83b699ed 545 if (se != cfs_rq->curr)
30cfdcfc
DA
546 __dequeue_entity(cfs_rq, se);
547 account_entity_dequeue(cfs_rq, se);
bf0f6f24
IM
548}
549
550/*
551 * Preempt the current task with a newly woken task if needed:
552 */
7c92e54f 553static void
2e09bf55 554check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 555{
11697830
PZ
556 unsigned long ideal_runtime, delta_exec;
557
6d0f0ebd 558 ideal_runtime = sched_slice(cfs_rq, curr);
11697830
PZ
559 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
560 if (delta_exec > ideal_runtime)
bf0f6f24
IM
561 resched_task(rq_of(cfs_rq)->curr);
562}
563
83b699ed 564static void
8494f412 565set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 566{
83b699ed
SV
567 /* 'current' is not kept within the tree. */
568 if (se->on_rq) {
569 /*
570 * Any task has to be enqueued before it get to execute on
571 * a CPU. So account for the time it spent waiting on the
572 * runqueue.
573 */
574 update_stats_wait_end(cfs_rq, se);
575 __dequeue_entity(cfs_rq, se);
576 }
577
79303e9e 578 update_stats_curr_start(cfs_rq, se);
429d43bc 579 cfs_rq->curr = se;
eba1ed4b
IM
580#ifdef CONFIG_SCHEDSTATS
581 /*
582 * Track our maximum slice length, if the CPU's load is at
583 * least twice that of our own weight (i.e. dont track it
584 * when there are only lesser-weight tasks around):
585 */
495eca49 586 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
587 se->slice_max = max(se->slice_max,
588 se->sum_exec_runtime - se->prev_sum_exec_runtime);
589 }
590#endif
4a55b450 591 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
592}
593
9948f4b2 594static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24 595{
08ec3df5 596 struct sched_entity *se = NULL;
bf0f6f24 597
08ec3df5
DA
598 if (first_fair(cfs_rq)) {
599 se = __pick_next_entity(cfs_rq);
600 set_next_entity(cfs_rq, se);
601 }
bf0f6f24
IM
602
603 return se;
604}
605
ab6cde26 606static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
607{
608 /*
609 * If still on the runqueue then deactivate_task()
610 * was not called and update_curr() has to be done:
611 */
612 if (prev->on_rq)
b7cc0896 613 update_curr(cfs_rq);
bf0f6f24 614
c7e9b5b2 615 update_stats_curr_end(cfs_rq, prev);
bf0f6f24 616
ddc97297 617 check_spread(cfs_rq, prev);
30cfdcfc 618 if (prev->on_rq) {
5870db5b 619 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
620 /* Put 'current' back into the tree. */
621 __enqueue_entity(cfs_rq, prev);
622 }
429d43bc 623 cfs_rq->curr = NULL;
bf0f6f24
IM
624}
625
626static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
627{
bf0f6f24 628 /*
30cfdcfc 629 * Update run-time statistics of the 'current'.
bf0f6f24 630 */
30cfdcfc 631 update_curr(cfs_rq);
bf0f6f24 632
2e09bf55
IM
633 if (cfs_rq->nr_running > 1)
634 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
635}
636
637/**************************************************
638 * CFS operations on tasks:
639 */
640
641#ifdef CONFIG_FAIR_GROUP_SCHED
642
643/* Walk up scheduling entities hierarchy */
644#define for_each_sched_entity(se) \
645 for (; se; se = se->parent)
646
647static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
648{
649 return p->se.cfs_rq;
650}
651
652/* runqueue on which this entity is (to be) queued */
653static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
654{
655 return se->cfs_rq;
656}
657
658/* runqueue "owned" by this group */
659static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
660{
661 return grp->my_q;
662}
663
664/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
665 * another cpu ('this_cpu')
666 */
667static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
668{
29f59db3 669 return cfs_rq->tg->cfs_rq[this_cpu];
bf0f6f24
IM
670}
671
672/* Iterate thr' all leaf cfs_rq's on a runqueue */
673#define for_each_leaf_cfs_rq(rq, cfs_rq) \
674 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
675
fad095a7
SV
676/* Do the two (enqueued) entities belong to the same group ? */
677static inline int
678is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24 679{
fad095a7 680 if (se->cfs_rq == pse->cfs_rq)
bf0f6f24
IM
681 return 1;
682
683 return 0;
684}
685
fad095a7
SV
686static inline struct sched_entity *parent_entity(struct sched_entity *se)
687{
688 return se->parent;
689}
690
bf0f6f24
IM
691#else /* CONFIG_FAIR_GROUP_SCHED */
692
693#define for_each_sched_entity(se) \
694 for (; se; se = NULL)
695
696static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
697{
698 return &task_rq(p)->cfs;
699}
700
701static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
702{
703 struct task_struct *p = task_of(se);
704 struct rq *rq = task_rq(p);
705
706 return &rq->cfs;
707}
708
709/* runqueue "owned" by this group */
710static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
711{
712 return NULL;
713}
714
715static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
716{
717 return &cpu_rq(this_cpu)->cfs;
718}
719
720#define for_each_leaf_cfs_rq(rq, cfs_rq) \
721 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
722
fad095a7
SV
723static inline int
724is_same_group(struct sched_entity *se, struct sched_entity *pse)
bf0f6f24
IM
725{
726 return 1;
727}
728
fad095a7
SV
729static inline struct sched_entity *parent_entity(struct sched_entity *se)
730{
731 return NULL;
732}
733
bf0f6f24
IM
734#endif /* CONFIG_FAIR_GROUP_SCHED */
735
736/*
737 * The enqueue_task method is called before nr_running is
738 * increased. Here we update the fair scheduling stats and
739 * then put the task into the rbtree:
740 */
fd390f6a 741static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
742{
743 struct cfs_rq *cfs_rq;
744 struct sched_entity *se = &p->se;
745
746 for_each_sched_entity(se) {
747 if (se->on_rq)
748 break;
749 cfs_rq = cfs_rq_of(se);
83b699ed 750 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 751 wakeup = 1;
bf0f6f24
IM
752 }
753}
754
755/*
756 * The dequeue_task method is called before nr_running is
757 * decreased. We remove the task from the rbtree and
758 * update the fair scheduling stats:
759 */
f02231e5 760static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
761{
762 struct cfs_rq *cfs_rq;
763 struct sched_entity *se = &p->se;
764
765 for_each_sched_entity(se) {
766 cfs_rq = cfs_rq_of(se);
525c2716 767 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24
IM
768 /* Don't dequeue parent if it has other entities besides us */
769 if (cfs_rq->load.weight)
770 break;
b9fa3df3 771 sleep = 1;
bf0f6f24
IM
772 }
773}
774
775/*
1799e35d
IM
776 * sched_yield() support is very simple - we dequeue and enqueue.
777 *
778 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 779 */
4530d7ab 780static void yield_task_fair(struct rq *rq)
bf0f6f24 781{
72ea22f8 782 struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
4530d7ab 783 struct sched_entity *rightmost, *se = &rq->curr->se;
bf0f6f24
IM
784
785 /*
1799e35d
IM
786 * Are we the only task in the tree?
787 */
788 if (unlikely(cfs_rq->nr_running == 1))
789 return;
790
791 if (likely(!sysctl_sched_compat_yield)) {
792 __update_rq_clock(rq);
793 /*
a2a2d680 794 * Update run-time statistics of the 'current'.
1799e35d 795 */
2b1e315d 796 update_curr(cfs_rq);
1799e35d
IM
797
798 return;
799 }
800 /*
801 * Find the rightmost entry in the rbtree:
bf0f6f24 802 */
2b1e315d 803 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
804 /*
805 * Already in the rightmost position?
806 */
2b1e315d 807 if (unlikely(rightmost->vruntime < se->vruntime))
1799e35d
IM
808 return;
809
810 /*
811 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
812 * Upon rescheduling, sched_class::put_prev_task() will place
813 * 'current' within the tree based on its new key value.
1799e35d 814 */
30cfdcfc 815 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
816}
817
818/*
819 * Preempt the current task with a newly woken task if needed:
820 */
2e09bf55 821static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
822{
823 struct task_struct *curr = rq->curr;
fad095a7 824 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8651a86c 825 struct sched_entity *se = &curr->se, *pse = &p->se;
fad095a7 826 s64 delta;
bf0f6f24
IM
827
828 if (unlikely(rt_prio(p->prio))) {
a8e504d2 829 update_rq_clock(rq);
b7cc0896 830 update_curr(cfs_rq);
bf0f6f24
IM
831 resched_task(curr);
832 return;
833 }
834
fad095a7
SV
835 while (!is_same_group(se, pse)) {
836 se = parent_entity(se);
837 pse = parent_entity(pse);
838 }
8651a86c 839
fad095a7 840 delta = se->vruntime - pse->vruntime;
8651a86c 841
fad095a7
SV
842 if (delta > (s64)sysctl_sched_wakeup_granularity)
843 resched_task(curr);
bf0f6f24
IM
844}
845
fb8d4724 846static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24
IM
847{
848 struct cfs_rq *cfs_rq = &rq->cfs;
849 struct sched_entity *se;
850
851 if (unlikely(!cfs_rq->nr_running))
852 return NULL;
853
854 do {
9948f4b2 855 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
856 cfs_rq = group_cfs_rq(se);
857 } while (cfs_rq);
858
859 return task_of(se);
860}
861
862/*
863 * Account for a descheduled task:
864 */
31ee529c 865static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
866{
867 struct sched_entity *se = &prev->se;
868 struct cfs_rq *cfs_rq;
869
870 for_each_sched_entity(se) {
871 cfs_rq = cfs_rq_of(se);
ab6cde26 872 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
873 }
874}
875
876/**************************************************
877 * Fair scheduling class load-balancing methods:
878 */
879
880/*
881 * Load-balancing iterator. Note: while the runqueue stays locked
882 * during the whole iteration, the current task might be
883 * dequeued so the iterator has to be dequeue-safe. Here we
884 * achieve that by always pre-iterating before returning
885 * the current task:
886 */
a9957449 887static struct task_struct *
bf0f6f24
IM
888__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
889{
890 struct task_struct *p;
891
892 if (!curr)
893 return NULL;
894
895 p = rb_entry(curr, struct task_struct, se.run_node);
896 cfs_rq->rb_load_balance_curr = rb_next(curr);
897
898 return p;
899}
900
901static struct task_struct *load_balance_start_fair(void *arg)
902{
903 struct cfs_rq *cfs_rq = arg;
904
905 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
906}
907
908static struct task_struct *load_balance_next_fair(void *arg)
909{
910 struct cfs_rq *cfs_rq = arg;
911
912 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
913}
914
a4ac01c3 915#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24
IM
916static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
917{
918 struct sched_entity *curr;
919 struct task_struct *p;
920
921 if (!cfs_rq->nr_running)
922 return MAX_PRIO;
923
9b5b7751
SV
924 curr = cfs_rq->curr;
925 if (!curr)
926 curr = __pick_next_entity(cfs_rq);
927
bf0f6f24
IM
928 p = task_of(curr);
929
930 return p->prio;
931}
a4ac01c3 932#endif
bf0f6f24 933
43010659 934static unsigned long
bf0f6f24 935load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
a4ac01c3
PW
936 unsigned long max_nr_move, unsigned long max_load_move,
937 struct sched_domain *sd, enum cpu_idle_type idle,
938 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
939{
940 struct cfs_rq *busy_cfs_rq;
941 unsigned long load_moved, total_nr_moved = 0, nr_moved;
942 long rem_load_move = max_load_move;
943 struct rq_iterator cfs_rq_iterator;
944
945 cfs_rq_iterator.start = load_balance_start_fair;
946 cfs_rq_iterator.next = load_balance_next_fair;
947
948 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 949#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 950 struct cfs_rq *this_cfs_rq;
e56f31aa 951 long imbalance;
bf0f6f24 952 unsigned long maxload;
bf0f6f24
IM
953
954 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
955
e56f31aa 956 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
bf0f6f24
IM
957 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
958 if (imbalance <= 0)
959 continue;
960
961 /* Don't pull more than imbalance/2 */
962 imbalance /= 2;
963 maxload = min(rem_load_move, imbalance);
964
a4ac01c3
PW
965 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
966#else
e56f31aa 967# define maxload rem_load_move
a4ac01c3 968#endif
bf0f6f24
IM
969 /* pass busy_cfs_rq argument into
970 * load_balance_[start|next]_fair iterators
971 */
972 cfs_rq_iterator.arg = busy_cfs_rq;
973 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
974 max_nr_move, maxload, sd, idle, all_pinned,
a4ac01c3 975 &load_moved, this_best_prio, &cfs_rq_iterator);
bf0f6f24
IM
976
977 total_nr_moved += nr_moved;
978 max_nr_move -= nr_moved;
979 rem_load_move -= load_moved;
980
981 if (max_nr_move <= 0 || rem_load_move <= 0)
982 break;
983 }
984
43010659 985 return max_load_move - rem_load_move;
bf0f6f24
IM
986}
987
988/*
989 * scheduler tick hitting a task of our scheduling class:
990 */
991static void task_tick_fair(struct rq *rq, struct task_struct *curr)
992{
993 struct cfs_rq *cfs_rq;
994 struct sched_entity *se = &curr->se;
995
996 for_each_sched_entity(se) {
997 cfs_rq = cfs_rq_of(se);
998 entity_tick(cfs_rq, se);
999 }
1000}
1001
4d78e7b6
PZ
1002#define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1003
bf0f6f24
IM
1004/*
1005 * Share the fairness runtime between parent and child, thus the
1006 * total amount of pressure for CPU stays equal - new tasks
1007 * get a chance to run but frequent forkers are not allowed to
1008 * monopolize the CPU. Note: the parent runqueue is locked,
1009 * the child is not running yet.
1010 */
ee0827d8 1011static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1012{
1013 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1014 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
bf0f6f24
IM
1015
1016 sched_info_queued(p);
1017
7109c442 1018 update_curr(cfs_rq);
aeb73b04 1019 place_entity(cfs_rq, se, 1);
4d78e7b6 1020
4d78e7b6
PZ
1021 if (sysctl_sched_child_runs_first &&
1022 curr->vruntime < se->vruntime) {
87fefa38 1023 /*
edcb60a3
IM
1024 * Upon rescheduling, sched_class::put_prev_task() will place
1025 * 'current' within the tree based on its new key value.
1026 */
4d78e7b6 1027 swap(curr->vruntime, se->vruntime);
4d78e7b6 1028 }
bf0f6f24 1029
e9acbff6 1030 update_stats_enqueue(cfs_rq, se);
ddc97297
PZ
1031 check_spread(cfs_rq, se);
1032 check_spread(cfs_rq, curr);
bf0f6f24 1033 __enqueue_entity(cfs_rq, se);
30cfdcfc 1034 account_entity_enqueue(cfs_rq, se);
bb61c210 1035 resched_task(rq->curr);
bf0f6f24
IM
1036}
1037
83b699ed
SV
1038/* Account for a task changing its policy or group.
1039 *
1040 * This routine is mostly called to set cfs_rq->curr field when a task
1041 * migrates between groups/classes.
1042 */
1043static void set_curr_task_fair(struct rq *rq)
1044{
1045 struct sched_entity *se = &rq->curr->se;
1046
1047 for_each_sched_entity(se)
1048 set_next_entity(cfs_rq_of(se), se);
1049}
1050
bf0f6f24
IM
1051/*
1052 * All the scheduling class methods:
1053 */
5522d5d5
IM
1054static const struct sched_class fair_sched_class = {
1055 .next = &idle_sched_class,
bf0f6f24
IM
1056 .enqueue_task = enqueue_task_fair,
1057 .dequeue_task = dequeue_task_fair,
1058 .yield_task = yield_task_fair,
1059
2e09bf55 1060 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1061
1062 .pick_next_task = pick_next_task_fair,
1063 .put_prev_task = put_prev_task_fair,
1064
1065 .load_balance = load_balance_fair,
1066
83b699ed 1067 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1068 .task_tick = task_tick_fair,
1069 .task_new = task_new_fair,
1070};
1071
1072#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1073static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1074{
bf0f6f24
IM
1075 struct cfs_rq *cfs_rq;
1076
75c28ace
SV
1077#ifdef CONFIG_FAIR_GROUP_SCHED
1078 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1079#endif
c3b64f1e 1080 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1081 print_cfs_rq(m, cpu, cfs_rq);
bf0f6f24
IM
1082}
1083#endif