sched: Move periodic share updates to entity_tick()
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
9745512c 25
bf0f6f24 26/*
21805085 27 * Targeted preemption latency for CPU-bound tasks:
864616ee 28 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 37 */
21406928
MG
38unsigned int sysctl_sched_latency = 6000000ULL;
39unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 40
1983a922
CE
41/*
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
2bd8e6d4 53/*
b2be5e96 54 * Minimal preemption granularity for CPU-bound tasks:
864616ee 55 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 56 */
0bf377bb
IM
57unsigned int sysctl_sched_min_granularity = 750000ULL;
58unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
59
60/*
b2be5e96
PZ
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
0bf377bb 63static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
64
65/*
2bba22c5 66 * After fork, child runs first. If set to 0 (default) then
b2be5e96 67 * parent will (try to) run first.
21805085 68 */
2bba22c5 69unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 70
1799e35d
IM
71/*
72 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77unsigned int __read_mostly sysctl_sched_compat_yield;
78
bf0f6f24
IM
79/*
80 * SCHED_OTHER wake-up granularity.
172e082a 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
172e082a 87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 89
da84d961
IM
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
a7a4f8a7
PT
92/*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
a4c2f00f
PZ
99static const struct sched_class fair_sched_class;
100
bf0f6f24
IM
101/**************************************************************
102 * CFS operations on generic schedulable entities:
103 */
104
62160e3f 105#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 106
62160e3f 107/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
108static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
109{
62160e3f 110 return cfs_rq->rq;
bf0f6f24
IM
111}
112
62160e3f
IM
113/* An entity is a task if it doesn't "own" a runqueue */
114#define entity_is_task(se) (!se->my_q)
bf0f6f24 115
8f48894f
PZ
116static inline struct task_struct *task_of(struct sched_entity *se)
117{
118#ifdef CONFIG_SCHED_DEBUG
119 WARN_ON_ONCE(!entity_is_task(se));
120#endif
121 return container_of(se, struct task_struct, se);
122}
123
b758149c
PZ
124/* Walk up scheduling entities hierarchy */
125#define for_each_sched_entity(se) \
126 for (; se; se = se->parent)
127
128static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
129{
130 return p->se.cfs_rq;
131}
132
133/* runqueue on which this entity is (to be) queued */
134static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
135{
136 return se->cfs_rq;
137}
138
139/* runqueue "owned" by this group */
140static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
141{
142 return grp->my_q;
143}
144
145/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
146 * another cpu ('this_cpu')
147 */
148static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
149{
150 return cfs_rq->tg->cfs_rq[this_cpu];
151}
152
3d4b47b4
PZ
153static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
154{
155 if (!cfs_rq->on_list) {
67e86250
PT
156 /*
157 * Ensure we either appear before our parent (if already
158 * enqueued) or force our parent to appear after us when it is
159 * enqueued. The fact that we always enqueue bottom-up
160 * reduces this to two cases.
161 */
162 if (cfs_rq->tg->parent &&
163 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
164 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
165 &rq_of(cfs_rq)->leaf_cfs_rq_list);
166 } else {
167 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 168 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 169 }
3d4b47b4
PZ
170
171 cfs_rq->on_list = 1;
172 }
173}
174
175static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
176{
177 if (cfs_rq->on_list) {
178 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
179 cfs_rq->on_list = 0;
180 }
181}
182
b758149c
PZ
183/* Iterate thr' all leaf cfs_rq's on a runqueue */
184#define for_each_leaf_cfs_rq(rq, cfs_rq) \
185 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
186
187/* Do the two (enqueued) entities belong to the same group ? */
188static inline int
189is_same_group(struct sched_entity *se, struct sched_entity *pse)
190{
191 if (se->cfs_rq == pse->cfs_rq)
192 return 1;
193
194 return 0;
195}
196
197static inline struct sched_entity *parent_entity(struct sched_entity *se)
198{
199 return se->parent;
200}
201
464b7527
PZ
202/* return depth at which a sched entity is present in the hierarchy */
203static inline int depth_se(struct sched_entity *se)
204{
205 int depth = 0;
206
207 for_each_sched_entity(se)
208 depth++;
209
210 return depth;
211}
212
213static void
214find_matching_se(struct sched_entity **se, struct sched_entity **pse)
215{
216 int se_depth, pse_depth;
217
218 /*
219 * preemption test can be made between sibling entities who are in the
220 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
221 * both tasks until we find their ancestors who are siblings of common
222 * parent.
223 */
224
225 /* First walk up until both entities are at same depth */
226 se_depth = depth_se(*se);
227 pse_depth = depth_se(*pse);
228
229 while (se_depth > pse_depth) {
230 se_depth--;
231 *se = parent_entity(*se);
232 }
233
234 while (pse_depth > se_depth) {
235 pse_depth--;
236 *pse = parent_entity(*pse);
237 }
238
239 while (!is_same_group(*se, *pse)) {
240 *se = parent_entity(*se);
241 *pse = parent_entity(*pse);
242 }
243}
244
8f48894f
PZ
245#else /* !CONFIG_FAIR_GROUP_SCHED */
246
247static inline struct task_struct *task_of(struct sched_entity *se)
248{
249 return container_of(se, struct task_struct, se);
250}
bf0f6f24 251
62160e3f
IM
252static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
253{
254 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
255}
256
257#define entity_is_task(se) 1
258
b758149c
PZ
259#define for_each_sched_entity(se) \
260 for (; se; se = NULL)
bf0f6f24 261
b758149c 262static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 263{
b758149c 264 return &task_rq(p)->cfs;
bf0f6f24
IM
265}
266
b758149c
PZ
267static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268{
269 struct task_struct *p = task_of(se);
270 struct rq *rq = task_rq(p);
271
272 return &rq->cfs;
273}
274
275/* runqueue "owned" by this group */
276static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
277{
278 return NULL;
279}
280
281static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
282{
283 return &cpu_rq(this_cpu)->cfs;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288}
289
290static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
291{
292}
293
b758149c
PZ
294#define for_each_leaf_cfs_rq(rq, cfs_rq) \
295 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
296
297static inline int
298is_same_group(struct sched_entity *se, struct sched_entity *pse)
299{
300 return 1;
301}
302
303static inline struct sched_entity *parent_entity(struct sched_entity *se)
304{
305 return NULL;
306}
307
464b7527
PZ
308static inline void
309find_matching_se(struct sched_entity **se, struct sched_entity **pse)
310{
311}
312
b758149c
PZ
313#endif /* CONFIG_FAIR_GROUP_SCHED */
314
bf0f6f24
IM
315
316/**************************************************************
317 * Scheduling class tree data structure manipulation methods:
318 */
319
0702e3eb 320static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 321{
368059a9
PZ
322 s64 delta = (s64)(vruntime - min_vruntime);
323 if (delta > 0)
02e0431a
PZ
324 min_vruntime = vruntime;
325
326 return min_vruntime;
327}
328
0702e3eb 329static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
330{
331 s64 delta = (s64)(vruntime - min_vruntime);
332 if (delta < 0)
333 min_vruntime = vruntime;
334
335 return min_vruntime;
336}
337
54fdc581
FC
338static inline int entity_before(struct sched_entity *a,
339 struct sched_entity *b)
340{
341 return (s64)(a->vruntime - b->vruntime) < 0;
342}
343
0702e3eb 344static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 345{
30cfdcfc 346 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
347}
348
1af5f730
PZ
349static void update_min_vruntime(struct cfs_rq *cfs_rq)
350{
351 u64 vruntime = cfs_rq->min_vruntime;
352
353 if (cfs_rq->curr)
354 vruntime = cfs_rq->curr->vruntime;
355
356 if (cfs_rq->rb_leftmost) {
357 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
358 struct sched_entity,
359 run_node);
360
e17036da 361 if (!cfs_rq->curr)
1af5f730
PZ
362 vruntime = se->vruntime;
363 else
364 vruntime = min_vruntime(vruntime, se->vruntime);
365 }
366
367 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
368}
369
bf0f6f24
IM
370/*
371 * Enqueue an entity into the rb-tree:
372 */
0702e3eb 373static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
374{
375 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
376 struct rb_node *parent = NULL;
377 struct sched_entity *entry;
9014623c 378 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
379 int leftmost = 1;
380
381 /*
382 * Find the right place in the rbtree:
383 */
384 while (*link) {
385 parent = *link;
386 entry = rb_entry(parent, struct sched_entity, run_node);
387 /*
388 * We dont care about collisions. Nodes with
389 * the same key stay together.
390 */
9014623c 391 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
392 link = &parent->rb_left;
393 } else {
394 link = &parent->rb_right;
395 leftmost = 0;
396 }
397 }
398
399 /*
400 * Maintain a cache of leftmost tree entries (it is frequently
401 * used):
402 */
1af5f730 403 if (leftmost)
57cb499d 404 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
405
406 rb_link_node(&se->run_node, parent, link);
407 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
408}
409
0702e3eb 410static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 411{
3fe69747
PZ
412 if (cfs_rq->rb_leftmost == &se->run_node) {
413 struct rb_node *next_node;
3fe69747
PZ
414
415 next_node = rb_next(&se->run_node);
416 cfs_rq->rb_leftmost = next_node;
3fe69747 417 }
e9acbff6 418
bf0f6f24 419 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
420}
421
bf0f6f24
IM
422static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
423{
f4b6755f
PZ
424 struct rb_node *left = cfs_rq->rb_leftmost;
425
426 if (!left)
427 return NULL;
428
429 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
430}
431
f4b6755f 432static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 433{
7eee3e67 434 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 435
70eee74b
BS
436 if (!last)
437 return NULL;
7eee3e67
IM
438
439 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
440}
441
bf0f6f24
IM
442/**************************************************************
443 * Scheduling class statistics methods:
444 */
445
b2be5e96 446#ifdef CONFIG_SCHED_DEBUG
acb4a848 447int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 448 void __user *buffer, size_t *lenp,
b2be5e96
PZ
449 loff_t *ppos)
450{
8d65af78 451 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 452 int factor = get_update_sysctl_factor();
b2be5e96
PZ
453
454 if (ret || !write)
455 return ret;
456
457 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
458 sysctl_sched_min_granularity);
459
acb4a848
CE
460#define WRT_SYSCTL(name) \
461 (normalized_sysctl_##name = sysctl_##name / (factor))
462 WRT_SYSCTL(sched_min_granularity);
463 WRT_SYSCTL(sched_latency);
464 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
465#undef WRT_SYSCTL
466
b2be5e96
PZ
467 return 0;
468}
469#endif
647e7cac 470
a7be37ac 471/*
f9c0b095 472 * delta /= w
a7be37ac
PZ
473 */
474static inline unsigned long
475calc_delta_fair(unsigned long delta, struct sched_entity *se)
476{
f9c0b095
PZ
477 if (unlikely(se->load.weight != NICE_0_LOAD))
478 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
479
480 return delta;
481}
482
647e7cac
IM
483/*
484 * The idea is to set a period in which each task runs once.
485 *
486 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
487 * this period because otherwise the slices get too small.
488 *
489 * p = (nr <= nl) ? l : l*nr/nl
490 */
4d78e7b6
PZ
491static u64 __sched_period(unsigned long nr_running)
492{
493 u64 period = sysctl_sched_latency;
b2be5e96 494 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
495
496 if (unlikely(nr_running > nr_latency)) {
4bf0b771 497 period = sysctl_sched_min_granularity;
4d78e7b6 498 period *= nr_running;
4d78e7b6
PZ
499 }
500
501 return period;
502}
503
647e7cac
IM
504/*
505 * We calculate the wall-time slice from the period by taking a part
506 * proportional to the weight.
507 *
f9c0b095 508 * s = p*P[w/rw]
647e7cac 509 */
6d0f0ebd 510static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 511{
0a582440 512 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 513
0a582440 514 for_each_sched_entity(se) {
6272d68c 515 struct load_weight *load;
3104bf03 516 struct load_weight lw;
6272d68c
LM
517
518 cfs_rq = cfs_rq_of(se);
519 load = &cfs_rq->load;
f9c0b095 520
0a582440 521 if (unlikely(!se->on_rq)) {
3104bf03 522 lw = cfs_rq->load;
0a582440
MG
523
524 update_load_add(&lw, se->load.weight);
525 load = &lw;
526 }
527 slice = calc_delta_mine(slice, se->load.weight, load);
528 }
529 return slice;
bf0f6f24
IM
530}
531
647e7cac 532/*
ac884dec 533 * We calculate the vruntime slice of a to be inserted task
647e7cac 534 *
f9c0b095 535 * vs = s/w
647e7cac 536 */
f9c0b095 537static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 538{
f9c0b095 539 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
540}
541
d6b55918 542static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
3b3d190e
PT
543static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta);
544
bf0f6f24
IM
545/*
546 * Update the current task's runtime statistics. Skip current tasks that
547 * are not in our scheduling class.
548 */
549static inline void
8ebc91d9
IM
550__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
551 unsigned long delta_exec)
bf0f6f24 552{
bbdba7c0 553 unsigned long delta_exec_weighted;
bf0f6f24 554
41acab88
LDM
555 schedstat_set(curr->statistics.exec_max,
556 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
557
558 curr->sum_exec_runtime += delta_exec;
7a62eabc 559 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 560 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 561
e9acbff6 562 curr->vruntime += delta_exec_weighted;
1af5f730 563 update_min_vruntime(cfs_rq);
3b3d190e 564
70caf8a6 565#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 566 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 567#endif
bf0f6f24
IM
568}
569
b7cc0896 570static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 571{
429d43bc 572 struct sched_entity *curr = cfs_rq->curr;
305e6835 573 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
574 unsigned long delta_exec;
575
576 if (unlikely(!curr))
577 return;
578
579 /*
580 * Get the amount of time the current task was running
581 * since the last time we changed load (this cannot
582 * overflow on 32 bits):
583 */
8ebc91d9 584 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
585 if (!delta_exec)
586 return;
bf0f6f24 587
8ebc91d9
IM
588 __update_curr(cfs_rq, curr, delta_exec);
589 curr->exec_start = now;
d842de87
SV
590
591 if (entity_is_task(curr)) {
592 struct task_struct *curtask = task_of(curr);
593
f977bb49 594 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 595 cpuacct_charge(curtask, delta_exec);
f06febc9 596 account_group_exec_runtime(curtask, delta_exec);
d842de87 597 }
bf0f6f24
IM
598}
599
600static inline void
5870db5b 601update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 602{
41acab88 603 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
604}
605
bf0f6f24
IM
606/*
607 * Task is being enqueued - update stats:
608 */
d2417e5a 609static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 610{
bf0f6f24
IM
611 /*
612 * Are we enqueueing a waiting task? (for current tasks
613 * a dequeue/enqueue event is a NOP)
614 */
429d43bc 615 if (se != cfs_rq->curr)
5870db5b 616 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
617}
618
bf0f6f24 619static void
9ef0a961 620update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 621{
41acab88
LDM
622 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
623 rq_of(cfs_rq)->clock - se->statistics.wait_start));
624 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
625 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
626 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
627#ifdef CONFIG_SCHEDSTATS
628 if (entity_is_task(se)) {
629 trace_sched_stat_wait(task_of(se),
41acab88 630 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
631 }
632#endif
41acab88 633 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
634}
635
636static inline void
19b6a2e3 637update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 638{
bf0f6f24
IM
639 /*
640 * Mark the end of the wait period if dequeueing a
641 * waiting task:
642 */
429d43bc 643 if (se != cfs_rq->curr)
9ef0a961 644 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
645}
646
647/*
648 * We are picking a new current task - update its stats:
649 */
650static inline void
79303e9e 651update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
652{
653 /*
654 * We are starting a new run period:
655 */
305e6835 656 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
657}
658
bf0f6f24
IM
659/**************************************************
660 * Scheduling class queueing methods:
661 */
662
c09595f6
PZ
663#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
664static void
665add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
666{
667 cfs_rq->task_weight += weight;
668}
669#else
670static inline void
671add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
672{
673}
674#endif
675
30cfdcfc
DA
676static void
677account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
678{
679 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
680 if (!parent_entity(se))
681 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 682 if (entity_is_task(se)) {
c09595f6 683 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
684 list_add(&se->group_node, &cfs_rq->tasks);
685 }
30cfdcfc 686 cfs_rq->nr_running++;
30cfdcfc
DA
687}
688
689static void
690account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
691{
692 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
693 if (!parent_entity(se))
694 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 695 if (entity_is_task(se)) {
c09595f6 696 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
697 list_del_init(&se->group_node);
698 }
30cfdcfc 699 cfs_rq->nr_running--;
30cfdcfc
DA
700}
701
2069dd75 702#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
d6b55918
PT
703static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
704 int global_update)
705{
706 struct task_group *tg = cfs_rq->tg;
707 long load_avg;
708
709 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
710 load_avg -= cfs_rq->load_contribution;
711
712 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
713 atomic_add(load_avg, &tg->load_weight);
714 cfs_rq->load_contribution += load_avg;
715 }
716}
717
718static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 719{
a7a4f8a7 720 u64 period = sysctl_sched_shares_window;
2069dd75 721 u64 now, delta;
e33078ba 722 unsigned long load = cfs_rq->load.weight;
2069dd75
PZ
723
724 if (!cfs_rq)
725 return;
726
727 now = rq_of(cfs_rq)->clock;
728 delta = now - cfs_rq->load_stamp;
729
e33078ba
PT
730 /* truncate load history at 4 idle periods */
731 if (cfs_rq->load_stamp > cfs_rq->load_last &&
732 now - cfs_rq->load_last > 4 * period) {
733 cfs_rq->load_period = 0;
734 cfs_rq->load_avg = 0;
735 }
736
2069dd75 737 cfs_rq->load_stamp = now;
3b3d190e 738 cfs_rq->load_unacc_exec_time = 0;
2069dd75 739 cfs_rq->load_period += delta;
e33078ba
PT
740 if (load) {
741 cfs_rq->load_last = now;
742 cfs_rq->load_avg += delta * load;
743 }
2069dd75 744
d6b55918
PT
745 /* consider updating load contribution on each fold or truncate */
746 if (global_update || cfs_rq->load_period > period
747 || !cfs_rq->load_period)
748 update_cfs_rq_load_contribution(cfs_rq, global_update);
749
2069dd75
PZ
750 while (cfs_rq->load_period > period) {
751 /*
752 * Inline assembly required to prevent the compiler
753 * optimising this loop into a divmod call.
754 * See __iter_div_u64_rem() for another example of this.
755 */
756 asm("" : "+rm" (cfs_rq->load_period));
757 cfs_rq->load_period /= 2;
758 cfs_rq->load_avg /= 2;
759 }
3d4b47b4 760
e33078ba
PT
761 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
762 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
763}
764
765static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
766 unsigned long weight)
767{
768 if (se->on_rq)
769 account_entity_dequeue(cfs_rq, se);
770
771 update_load_set(&se->load, weight);
772
773 if (se->on_rq)
774 account_entity_enqueue(cfs_rq, se);
775}
776
f0d7442a 777static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
2069dd75
PZ
778{
779 struct task_group *tg;
780 struct sched_entity *se;
781 long load_weight, load, shares;
782
783 if (!cfs_rq)
784 return;
785
786 tg = cfs_rq->tg;
787 se = tg->se[cpu_of(rq_of(cfs_rq))];
788 if (!se)
789 return;
790
f0d7442a 791 load = cfs_rq->load.weight + weight_delta;
2069dd75
PZ
792
793 load_weight = atomic_read(&tg->load_weight);
794 load_weight -= cfs_rq->load_contribution;
795 load_weight += load;
796
797 shares = (tg->shares * load);
798 if (load_weight)
799 shares /= load_weight;
800
801 if (shares < MIN_SHARES)
802 shares = MIN_SHARES;
803 if (shares > tg->shares)
804 shares = tg->shares;
805
806 reweight_entity(cfs_rq_of(se), se, shares);
807}
43365bd7
PT
808
809static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
810{
811 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
812 update_cfs_load(cfs_rq, 0);
813 update_cfs_shares(cfs_rq, 0);
814 }
815}
2069dd75 816#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 817static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
818{
819}
820
f0d7442a 821static inline void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
2069dd75
PZ
822{
823}
43365bd7
PT
824
825static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
826{
827}
2069dd75
PZ
828#endif /* CONFIG_FAIR_GROUP_SCHED */
829
2396af69 830static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 831{
bf0f6f24 832#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
833 struct task_struct *tsk = NULL;
834
835 if (entity_is_task(se))
836 tsk = task_of(se);
837
41acab88
LDM
838 if (se->statistics.sleep_start) {
839 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
840
841 if ((s64)delta < 0)
842 delta = 0;
843
41acab88
LDM
844 if (unlikely(delta > se->statistics.sleep_max))
845 se->statistics.sleep_max = delta;
bf0f6f24 846
41acab88
LDM
847 se->statistics.sleep_start = 0;
848 se->statistics.sum_sleep_runtime += delta;
9745512c 849
768d0c27 850 if (tsk) {
e414314c 851 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
852 trace_sched_stat_sleep(tsk, delta);
853 }
bf0f6f24 854 }
41acab88
LDM
855 if (se->statistics.block_start) {
856 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
857
858 if ((s64)delta < 0)
859 delta = 0;
860
41acab88
LDM
861 if (unlikely(delta > se->statistics.block_max))
862 se->statistics.block_max = delta;
bf0f6f24 863
41acab88
LDM
864 se->statistics.block_start = 0;
865 se->statistics.sum_sleep_runtime += delta;
30084fbd 866
e414314c 867 if (tsk) {
8f0dfc34 868 if (tsk->in_iowait) {
41acab88
LDM
869 se->statistics.iowait_sum += delta;
870 se->statistics.iowait_count++;
768d0c27 871 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
872 }
873
e414314c
PZ
874 /*
875 * Blocking time is in units of nanosecs, so shift by
876 * 20 to get a milliseconds-range estimation of the
877 * amount of time that the task spent sleeping:
878 */
879 if (unlikely(prof_on == SLEEP_PROFILING)) {
880 profile_hits(SLEEP_PROFILING,
881 (void *)get_wchan(tsk),
882 delta >> 20);
883 }
884 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 885 }
bf0f6f24
IM
886 }
887#endif
888}
889
ddc97297
PZ
890static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
891{
892#ifdef CONFIG_SCHED_DEBUG
893 s64 d = se->vruntime - cfs_rq->min_vruntime;
894
895 if (d < 0)
896 d = -d;
897
898 if (d > 3*sysctl_sched_latency)
899 schedstat_inc(cfs_rq, nr_spread_over);
900#endif
901}
902
aeb73b04
PZ
903static void
904place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
905{
1af5f730 906 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 907
2cb8600e
PZ
908 /*
909 * The 'current' period is already promised to the current tasks,
910 * however the extra weight of the new task will slow them down a
911 * little, place the new task so that it fits in the slot that
912 * stays open at the end.
913 */
94dfb5e7 914 if (initial && sched_feat(START_DEBIT))
f9c0b095 915 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 916
a2e7a7eb 917 /* sleeps up to a single latency don't count. */
5ca9880c 918 if (!initial) {
a2e7a7eb 919 unsigned long thresh = sysctl_sched_latency;
a7be37ac 920
a2e7a7eb
MG
921 /*
922 * Halve their sleep time's effect, to allow
923 * for a gentler effect of sleepers:
924 */
925 if (sched_feat(GENTLE_FAIR_SLEEPERS))
926 thresh >>= 1;
51e0304c 927
a2e7a7eb 928 vruntime -= thresh;
aeb73b04
PZ
929 }
930
b5d9d734
MG
931 /* ensure we never gain time by being placed backwards. */
932 vruntime = max_vruntime(se->vruntime, vruntime);
933
67e9fb2a 934 se->vruntime = vruntime;
aeb73b04
PZ
935}
936
bf0f6f24 937static void
88ec22d3 938enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 939{
88ec22d3
PZ
940 /*
941 * Update the normalized vruntime before updating min_vruntime
942 * through callig update_curr().
943 */
371fd7e7 944 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
945 se->vruntime += cfs_rq->min_vruntime;
946
bf0f6f24 947 /*
a2a2d680 948 * Update run-time statistics of the 'current'.
bf0f6f24 949 */
b7cc0896 950 update_curr(cfs_rq);
d6b55918 951 update_cfs_load(cfs_rq, 0);
f0d7442a 952 update_cfs_shares(cfs_rq, se->load.weight);
a992241d 953 account_entity_enqueue(cfs_rq, se);
bf0f6f24 954
88ec22d3 955 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 956 place_entity(cfs_rq, se, 0);
2396af69 957 enqueue_sleeper(cfs_rq, se);
e9acbff6 958 }
bf0f6f24 959
d2417e5a 960 update_stats_enqueue(cfs_rq, se);
ddc97297 961 check_spread(cfs_rq, se);
83b699ed
SV
962 if (se != cfs_rq->curr)
963 __enqueue_entity(cfs_rq, se);
2069dd75 964 se->on_rq = 1;
3d4b47b4
PZ
965
966 if (cfs_rq->nr_running == 1)
967 list_add_leaf_cfs_rq(cfs_rq);
bf0f6f24
IM
968}
969
a571bbea 970static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2002c695 971{
de69a80b 972 if (!se || cfs_rq->last == se)
2002c695
PZ
973 cfs_rq->last = NULL;
974
de69a80b 975 if (!se || cfs_rq->next == se)
2002c695
PZ
976 cfs_rq->next = NULL;
977}
978
a571bbea
PZ
979static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
980{
981 for_each_sched_entity(se)
982 __clear_buddies(cfs_rq_of(se), se);
983}
984
bf0f6f24 985static void
371fd7e7 986dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 987{
a2a2d680
DA
988 /*
989 * Update run-time statistics of the 'current'.
990 */
991 update_curr(cfs_rq);
992
19b6a2e3 993 update_stats_dequeue(cfs_rq, se);
371fd7e7 994 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 995#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
996 if (entity_is_task(se)) {
997 struct task_struct *tsk = task_of(se);
998
999 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1000 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1001 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1002 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1003 }
db36cc7d 1004#endif
67e9fb2a
PZ
1005 }
1006
2002c695 1007 clear_buddies(cfs_rq, se);
4793241b 1008
83b699ed 1009 if (se != cfs_rq->curr)
30cfdcfc 1010 __dequeue_entity(cfs_rq, se);
2069dd75 1011 se->on_rq = 0;
d6b55918 1012 update_cfs_load(cfs_rq, 0);
30cfdcfc 1013 account_entity_dequeue(cfs_rq, se);
1af5f730 1014 update_min_vruntime(cfs_rq);
f0d7442a 1015 update_cfs_shares(cfs_rq, 0);
88ec22d3
PZ
1016
1017 /*
1018 * Normalize the entity after updating the min_vruntime because the
1019 * update can refer to the ->curr item and we need to reflect this
1020 * movement in our normalized position.
1021 */
371fd7e7 1022 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1023 se->vruntime -= cfs_rq->min_vruntime;
bf0f6f24
IM
1024}
1025
1026/*
1027 * Preempt the current task with a newly woken task if needed:
1028 */
7c92e54f 1029static void
2e09bf55 1030check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1031{
11697830
PZ
1032 unsigned long ideal_runtime, delta_exec;
1033
6d0f0ebd 1034 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1035 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1036 if (delta_exec > ideal_runtime) {
bf0f6f24 1037 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1038 /*
1039 * The current task ran long enough, ensure it doesn't get
1040 * re-elected due to buddy favours.
1041 */
1042 clear_buddies(cfs_rq, curr);
f685ceac
MG
1043 return;
1044 }
1045
1046 /*
1047 * Ensure that a task that missed wakeup preemption by a
1048 * narrow margin doesn't have to wait for a full slice.
1049 * This also mitigates buddy induced latencies under load.
1050 */
1051 if (!sched_feat(WAKEUP_PREEMPT))
1052 return;
1053
1054 if (delta_exec < sysctl_sched_min_granularity)
1055 return;
1056
1057 if (cfs_rq->nr_running > 1) {
1058 struct sched_entity *se = __pick_next_entity(cfs_rq);
1059 s64 delta = curr->vruntime - se->vruntime;
1060
1061 if (delta > ideal_runtime)
1062 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5 1063 }
bf0f6f24
IM
1064}
1065
83b699ed 1066static void
8494f412 1067set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1068{
83b699ed
SV
1069 /* 'current' is not kept within the tree. */
1070 if (se->on_rq) {
1071 /*
1072 * Any task has to be enqueued before it get to execute on
1073 * a CPU. So account for the time it spent waiting on the
1074 * runqueue.
1075 */
1076 update_stats_wait_end(cfs_rq, se);
1077 __dequeue_entity(cfs_rq, se);
1078 }
1079
79303e9e 1080 update_stats_curr_start(cfs_rq, se);
429d43bc 1081 cfs_rq->curr = se;
eba1ed4b
IM
1082#ifdef CONFIG_SCHEDSTATS
1083 /*
1084 * Track our maximum slice length, if the CPU's load is at
1085 * least twice that of our own weight (i.e. dont track it
1086 * when there are only lesser-weight tasks around):
1087 */
495eca49 1088 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1089 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1090 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1091 }
1092#endif
4a55b450 1093 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1094}
1095
3f3a4904
PZ
1096static int
1097wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1098
f4b6755f 1099static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1100{
f4b6755f 1101 struct sched_entity *se = __pick_next_entity(cfs_rq);
f685ceac 1102 struct sched_entity *left = se;
f4b6755f 1103
f685ceac
MG
1104 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1105 se = cfs_rq->next;
aa2ac252 1106
f685ceac
MG
1107 /*
1108 * Prefer last buddy, try to return the CPU to a preempted task.
1109 */
1110 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1111 se = cfs_rq->last;
1112
1113 clear_buddies(cfs_rq, se);
4793241b
PZ
1114
1115 return se;
aa2ac252
PZ
1116}
1117
ab6cde26 1118static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1119{
1120 /*
1121 * If still on the runqueue then deactivate_task()
1122 * was not called and update_curr() has to be done:
1123 */
1124 if (prev->on_rq)
b7cc0896 1125 update_curr(cfs_rq);
bf0f6f24 1126
ddc97297 1127 check_spread(cfs_rq, prev);
30cfdcfc 1128 if (prev->on_rq) {
5870db5b 1129 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1130 /* Put 'current' back into the tree. */
1131 __enqueue_entity(cfs_rq, prev);
1132 }
429d43bc 1133 cfs_rq->curr = NULL;
bf0f6f24
IM
1134}
1135
8f4d37ec
PZ
1136static void
1137entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1138{
bf0f6f24 1139 /*
30cfdcfc 1140 * Update run-time statistics of the 'current'.
bf0f6f24 1141 */
30cfdcfc 1142 update_curr(cfs_rq);
bf0f6f24 1143
43365bd7
PT
1144 /*
1145 * Update share accounting for long-running entities.
1146 */
1147 update_entity_shares_tick(cfs_rq);
1148
8f4d37ec
PZ
1149#ifdef CONFIG_SCHED_HRTICK
1150 /*
1151 * queued ticks are scheduled to match the slice, so don't bother
1152 * validating it and just reschedule.
1153 */
983ed7a6
HH
1154 if (queued) {
1155 resched_task(rq_of(cfs_rq)->curr);
1156 return;
1157 }
8f4d37ec
PZ
1158 /*
1159 * don't let the period tick interfere with the hrtick preemption
1160 */
1161 if (!sched_feat(DOUBLE_TICK) &&
1162 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1163 return;
1164#endif
1165
ce6c1311 1166 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 1167 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1168}
1169
1170/**************************************************
1171 * CFS operations on tasks:
1172 */
1173
8f4d37ec
PZ
1174#ifdef CONFIG_SCHED_HRTICK
1175static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1176{
8f4d37ec
PZ
1177 struct sched_entity *se = &p->se;
1178 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1179
1180 WARN_ON(task_rq(p) != rq);
1181
1182 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1183 u64 slice = sched_slice(cfs_rq, se);
1184 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1185 s64 delta = slice - ran;
1186
1187 if (delta < 0) {
1188 if (rq->curr == p)
1189 resched_task(p);
1190 return;
1191 }
1192
1193 /*
1194 * Don't schedule slices shorter than 10000ns, that just
1195 * doesn't make sense. Rely on vruntime for fairness.
1196 */
31656519 1197 if (rq->curr != p)
157124c1 1198 delta = max_t(s64, 10000LL, delta);
8f4d37ec 1199
31656519 1200 hrtick_start(rq, delta);
8f4d37ec
PZ
1201 }
1202}
a4c2f00f
PZ
1203
1204/*
1205 * called from enqueue/dequeue and updates the hrtick when the
1206 * current task is from our class and nr_running is low enough
1207 * to matter.
1208 */
1209static void hrtick_update(struct rq *rq)
1210{
1211 struct task_struct *curr = rq->curr;
1212
1213 if (curr->sched_class != &fair_sched_class)
1214 return;
1215
1216 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1217 hrtick_start_fair(rq, curr);
1218}
55e12e5e 1219#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1220static inline void
1221hrtick_start_fair(struct rq *rq, struct task_struct *p)
1222{
1223}
a4c2f00f
PZ
1224
1225static inline void hrtick_update(struct rq *rq)
1226{
1227}
8f4d37ec
PZ
1228#endif
1229
bf0f6f24
IM
1230/*
1231 * The enqueue_task method is called before nr_running is
1232 * increased. Here we update the fair scheduling stats and
1233 * then put the task into the rbtree:
1234 */
ea87bb78 1235static void
371fd7e7 1236enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1237{
1238 struct cfs_rq *cfs_rq;
62fb1851 1239 struct sched_entity *se = &p->se;
bf0f6f24
IM
1240
1241 for_each_sched_entity(se) {
62fb1851 1242 if (se->on_rq)
bf0f6f24
IM
1243 break;
1244 cfs_rq = cfs_rq_of(se);
88ec22d3
PZ
1245 enqueue_entity(cfs_rq, se, flags);
1246 flags = ENQUEUE_WAKEUP;
bf0f6f24 1247 }
8f4d37ec 1248
2069dd75
PZ
1249 for_each_sched_entity(se) {
1250 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1251
d6b55918 1252 update_cfs_load(cfs_rq, 0);
f0d7442a 1253 update_cfs_shares(cfs_rq, 0);
2069dd75
PZ
1254 }
1255
a4c2f00f 1256 hrtick_update(rq);
bf0f6f24
IM
1257}
1258
1259/*
1260 * The dequeue_task method is called before nr_running is
1261 * decreased. We remove the task from the rbtree and
1262 * update the fair scheduling stats:
1263 */
371fd7e7 1264static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1265{
1266 struct cfs_rq *cfs_rq;
62fb1851 1267 struct sched_entity *se = &p->se;
bf0f6f24
IM
1268
1269 for_each_sched_entity(se) {
1270 cfs_rq = cfs_rq_of(se);
371fd7e7 1271 dequeue_entity(cfs_rq, se, flags);
2069dd75 1272
bf0f6f24 1273 /* Don't dequeue parent if it has other entities besides us */
62fb1851 1274 if (cfs_rq->load.weight)
bf0f6f24 1275 break;
371fd7e7 1276 flags |= DEQUEUE_SLEEP;
bf0f6f24 1277 }
8f4d37ec 1278
2069dd75
PZ
1279 for_each_sched_entity(se) {
1280 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1281
d6b55918 1282 update_cfs_load(cfs_rq, 0);
f0d7442a 1283 update_cfs_shares(cfs_rq, 0);
2069dd75
PZ
1284 }
1285
a4c2f00f 1286 hrtick_update(rq);
bf0f6f24
IM
1287}
1288
1289/*
1799e35d
IM
1290 * sched_yield() support is very simple - we dequeue and enqueue.
1291 *
1292 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 1293 */
4530d7ab 1294static void yield_task_fair(struct rq *rq)
bf0f6f24 1295{
db292ca3
IM
1296 struct task_struct *curr = rq->curr;
1297 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1298 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
1299
1300 /*
1799e35d
IM
1301 * Are we the only task in the tree?
1302 */
1303 if (unlikely(cfs_rq->nr_running == 1))
1304 return;
1305
2002c695
PZ
1306 clear_buddies(cfs_rq, se);
1307
db292ca3 1308 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 1309 update_rq_clock(rq);
1799e35d 1310 /*
a2a2d680 1311 * Update run-time statistics of the 'current'.
1799e35d 1312 */
2b1e315d 1313 update_curr(cfs_rq);
1799e35d
IM
1314
1315 return;
1316 }
1317 /*
1318 * Find the rightmost entry in the rbtree:
bf0f6f24 1319 */
2b1e315d 1320 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1321 /*
1322 * Already in the rightmost position?
1323 */
54fdc581 1324 if (unlikely(!rightmost || entity_before(rightmost, se)))
1799e35d
IM
1325 return;
1326
1327 /*
1328 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1329 * Upon rescheduling, sched_class::put_prev_task() will place
1330 * 'current' within the tree based on its new key value.
1799e35d 1331 */
30cfdcfc 1332 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1333}
1334
e7693a36 1335#ifdef CONFIG_SMP
098fb9db 1336
88ec22d3
PZ
1337static void task_waking_fair(struct rq *rq, struct task_struct *p)
1338{
1339 struct sched_entity *se = &p->se;
1340 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1341
1342 se->vruntime -= cfs_rq->min_vruntime;
1343}
1344
bb3469ac 1345#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1346/*
1347 * effective_load() calculates the load change as seen from the root_task_group
1348 *
1349 * Adding load to a group doesn't make a group heavier, but can cause movement
1350 * of group shares between cpus. Assuming the shares were perfectly aligned one
1351 * can calculate the shift in shares.
f5bfb7d9 1352 */
2069dd75 1353static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 1354{
4be9daaa 1355 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1356
1357 if (!tg->parent)
1358 return wl;
1359
4be9daaa 1360 for_each_sched_entity(se) {
cb5ef42a 1361 long S, rw, s, a, b;
4be9daaa
PZ
1362
1363 S = se->my_q->tg->shares;
2069dd75
PZ
1364 s = se->load.weight;
1365 rw = se->my_q->load.weight;
bb3469ac 1366
cb5ef42a
PZ
1367 a = S*(rw + wl);
1368 b = S*rw + s*wg;
4be9daaa 1369
940959e9
PZ
1370 wl = s*(a-b);
1371
1372 if (likely(b))
1373 wl /= b;
1374
83378269
PZ
1375 /*
1376 * Assume the group is already running and will
1377 * thus already be accounted for in the weight.
1378 *
1379 * That is, moving shares between CPUs, does not
1380 * alter the group weight.
1381 */
4be9daaa 1382 wg = 0;
4be9daaa 1383 }
bb3469ac 1384
4be9daaa 1385 return wl;
bb3469ac 1386}
4be9daaa 1387
bb3469ac 1388#else
4be9daaa 1389
83378269
PZ
1390static inline unsigned long effective_load(struct task_group *tg, int cpu,
1391 unsigned long wl, unsigned long wg)
4be9daaa 1392{
83378269 1393 return wl;
bb3469ac 1394}
4be9daaa 1395
bb3469ac
PZ
1396#endif
1397
c88d5910 1398static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1399{
c88d5910
PZ
1400 unsigned long this_load, load;
1401 int idx, this_cpu, prev_cpu;
098fb9db 1402 unsigned long tl_per_task;
c88d5910 1403 struct task_group *tg;
83378269 1404 unsigned long weight;
b3137bc8 1405 int balanced;
098fb9db 1406
c88d5910
PZ
1407 idx = sd->wake_idx;
1408 this_cpu = smp_processor_id();
1409 prev_cpu = task_cpu(p);
1410 load = source_load(prev_cpu, idx);
1411 this_load = target_load(this_cpu, idx);
098fb9db 1412
b3137bc8
MG
1413 /*
1414 * If sync wakeup then subtract the (maximum possible)
1415 * effect of the currently running task from the load
1416 * of the current CPU:
1417 */
f3b577de 1418 rcu_read_lock();
83378269
PZ
1419 if (sync) {
1420 tg = task_group(current);
1421 weight = current->se.load.weight;
1422
c88d5910 1423 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1424 load += effective_load(tg, prev_cpu, 0, -weight);
1425 }
b3137bc8 1426
83378269
PZ
1427 tg = task_group(p);
1428 weight = p->se.load.weight;
b3137bc8 1429
71a29aa7
PZ
1430 /*
1431 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
1432 * due to the sync cause above having dropped this_load to 0, we'll
1433 * always have an imbalance, but there's really nothing you can do
1434 * about that, so that's good too.
71a29aa7
PZ
1435 *
1436 * Otherwise check if either cpus are near enough in load to allow this
1437 * task to be woken on this_cpu.
1438 */
e51fd5e2
PZ
1439 if (this_load) {
1440 unsigned long this_eff_load, prev_eff_load;
1441
1442 this_eff_load = 100;
1443 this_eff_load *= power_of(prev_cpu);
1444 this_eff_load *= this_load +
1445 effective_load(tg, this_cpu, weight, weight);
1446
1447 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1448 prev_eff_load *= power_of(this_cpu);
1449 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1450
1451 balanced = this_eff_load <= prev_eff_load;
1452 } else
1453 balanced = true;
f3b577de 1454 rcu_read_unlock();
b3137bc8 1455
098fb9db 1456 /*
4ae7d5ce
IM
1457 * If the currently running task will sleep within
1458 * a reasonable amount of time then attract this newly
1459 * woken task:
098fb9db 1460 */
2fb7635c
PZ
1461 if (sync && balanced)
1462 return 1;
098fb9db 1463
41acab88 1464 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
1465 tl_per_task = cpu_avg_load_per_task(this_cpu);
1466
c88d5910
PZ
1467 if (balanced ||
1468 (this_load <= load &&
1469 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
1470 /*
1471 * This domain has SD_WAKE_AFFINE and
1472 * p is cache cold in this domain, and
1473 * there is no bad imbalance.
1474 */
c88d5910 1475 schedstat_inc(sd, ttwu_move_affine);
41acab88 1476 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
1477
1478 return 1;
1479 }
1480 return 0;
1481}
1482
aaee1203
PZ
1483/*
1484 * find_idlest_group finds and returns the least busy CPU group within the
1485 * domain.
1486 */
1487static struct sched_group *
78e7ed53 1488find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 1489 int this_cpu, int load_idx)
e7693a36 1490{
b3bd3de6 1491 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 1492 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 1493 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 1494
aaee1203
PZ
1495 do {
1496 unsigned long load, avg_load;
1497 int local_group;
1498 int i;
e7693a36 1499
aaee1203
PZ
1500 /* Skip over this group if it has no CPUs allowed */
1501 if (!cpumask_intersects(sched_group_cpus(group),
1502 &p->cpus_allowed))
1503 continue;
1504
1505 local_group = cpumask_test_cpu(this_cpu,
1506 sched_group_cpus(group));
1507
1508 /* Tally up the load of all CPUs in the group */
1509 avg_load = 0;
1510
1511 for_each_cpu(i, sched_group_cpus(group)) {
1512 /* Bias balancing toward cpus of our domain */
1513 if (local_group)
1514 load = source_load(i, load_idx);
1515 else
1516 load = target_load(i, load_idx);
1517
1518 avg_load += load;
1519 }
1520
1521 /* Adjust by relative CPU power of the group */
1522 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1523
1524 if (local_group) {
1525 this_load = avg_load;
aaee1203
PZ
1526 } else if (avg_load < min_load) {
1527 min_load = avg_load;
1528 idlest = group;
1529 }
1530 } while (group = group->next, group != sd->groups);
1531
1532 if (!idlest || 100*this_load < imbalance*min_load)
1533 return NULL;
1534 return idlest;
1535}
1536
1537/*
1538 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1539 */
1540static int
1541find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1542{
1543 unsigned long load, min_load = ULONG_MAX;
1544 int idlest = -1;
1545 int i;
1546
1547 /* Traverse only the allowed CPUs */
1548 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1549 load = weighted_cpuload(i);
1550
1551 if (load < min_load || (load == min_load && i == this_cpu)) {
1552 min_load = load;
1553 idlest = i;
e7693a36
GH
1554 }
1555 }
1556
aaee1203
PZ
1557 return idlest;
1558}
e7693a36 1559
a50bde51
PZ
1560/*
1561 * Try and locate an idle CPU in the sched_domain.
1562 */
99bd5e2f 1563static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
1564{
1565 int cpu = smp_processor_id();
1566 int prev_cpu = task_cpu(p);
99bd5e2f 1567 struct sched_domain *sd;
a50bde51
PZ
1568 int i;
1569
1570 /*
99bd5e2f
SS
1571 * If the task is going to be woken-up on this cpu and if it is
1572 * already idle, then it is the right target.
a50bde51 1573 */
99bd5e2f
SS
1574 if (target == cpu && idle_cpu(cpu))
1575 return cpu;
1576
1577 /*
1578 * If the task is going to be woken-up on the cpu where it previously
1579 * ran and if it is currently idle, then it the right target.
1580 */
1581 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 1582 return prev_cpu;
a50bde51
PZ
1583
1584 /*
99bd5e2f 1585 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 1586 */
99bd5e2f
SS
1587 for_each_domain(target, sd) {
1588 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
fe3bcfe1 1589 break;
99bd5e2f
SS
1590
1591 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1592 if (idle_cpu(i)) {
1593 target = i;
1594 break;
1595 }
a50bde51 1596 }
99bd5e2f
SS
1597
1598 /*
1599 * Lets stop looking for an idle sibling when we reached
1600 * the domain that spans the current cpu and prev_cpu.
1601 */
1602 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1603 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1604 break;
a50bde51
PZ
1605 }
1606
1607 return target;
1608}
1609
aaee1203
PZ
1610/*
1611 * sched_balance_self: balance the current task (running on cpu) in domains
1612 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1613 * SD_BALANCE_EXEC.
1614 *
1615 * Balance, ie. select the least loaded group.
1616 *
1617 * Returns the target CPU number, or the same CPU if no balancing is needed.
1618 *
1619 * preempt must be disabled.
1620 */
0017d735
PZ
1621static int
1622select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 1623{
29cd8bae 1624 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
1625 int cpu = smp_processor_id();
1626 int prev_cpu = task_cpu(p);
1627 int new_cpu = cpu;
99bd5e2f 1628 int want_affine = 0;
29cd8bae 1629 int want_sd = 1;
5158f4e4 1630 int sync = wake_flags & WF_SYNC;
c88d5910 1631
0763a660 1632 if (sd_flag & SD_BALANCE_WAKE) {
beac4c7e 1633 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
c88d5910
PZ
1634 want_affine = 1;
1635 new_cpu = prev_cpu;
1636 }
aaee1203
PZ
1637
1638 for_each_domain(cpu, tmp) {
e4f42888
PZ
1639 if (!(tmp->flags & SD_LOAD_BALANCE))
1640 continue;
1641
aaee1203 1642 /*
ae154be1
PZ
1643 * If power savings logic is enabled for a domain, see if we
1644 * are not overloaded, if so, don't balance wider.
aaee1203 1645 */
59abf026 1646 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
1647 unsigned long power = 0;
1648 unsigned long nr_running = 0;
1649 unsigned long capacity;
1650 int i;
1651
1652 for_each_cpu(i, sched_domain_span(tmp)) {
1653 power += power_of(i);
1654 nr_running += cpu_rq(i)->cfs.nr_running;
1655 }
1656
1657 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1658
59abf026
PZ
1659 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1660 nr_running /= 2;
1661
1662 if (nr_running < capacity)
29cd8bae 1663 want_sd = 0;
ae154be1 1664 }
aaee1203 1665
fe3bcfe1 1666 /*
99bd5e2f
SS
1667 * If both cpu and prev_cpu are part of this domain,
1668 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 1669 */
99bd5e2f
SS
1670 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1671 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1672 affine_sd = tmp;
1673 want_affine = 0;
c88d5910
PZ
1674 }
1675
29cd8bae
PZ
1676 if (!want_sd && !want_affine)
1677 break;
1678
0763a660 1679 if (!(tmp->flags & sd_flag))
c88d5910
PZ
1680 continue;
1681
29cd8bae
PZ
1682 if (want_sd)
1683 sd = tmp;
1684 }
1685
8b911acd 1686 if (affine_sd) {
99bd5e2f
SS
1687 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1688 return select_idle_sibling(p, cpu);
1689 else
1690 return select_idle_sibling(p, prev_cpu);
8b911acd 1691 }
e7693a36 1692
aaee1203 1693 while (sd) {
5158f4e4 1694 int load_idx = sd->forkexec_idx;
aaee1203 1695 struct sched_group *group;
c88d5910 1696 int weight;
098fb9db 1697
0763a660 1698 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
1699 sd = sd->child;
1700 continue;
1701 }
098fb9db 1702
5158f4e4
PZ
1703 if (sd_flag & SD_BALANCE_WAKE)
1704 load_idx = sd->wake_idx;
098fb9db 1705
5158f4e4 1706 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
1707 if (!group) {
1708 sd = sd->child;
1709 continue;
1710 }
4ae7d5ce 1711
d7c33c49 1712 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
1713 if (new_cpu == -1 || new_cpu == cpu) {
1714 /* Now try balancing at a lower domain level of cpu */
1715 sd = sd->child;
1716 continue;
e7693a36 1717 }
aaee1203
PZ
1718
1719 /* Now try balancing at a lower domain level of new_cpu */
1720 cpu = new_cpu;
669c55e9 1721 weight = sd->span_weight;
aaee1203
PZ
1722 sd = NULL;
1723 for_each_domain(cpu, tmp) {
669c55e9 1724 if (weight <= tmp->span_weight)
aaee1203 1725 break;
0763a660 1726 if (tmp->flags & sd_flag)
aaee1203
PZ
1727 sd = tmp;
1728 }
1729 /* while loop will break here if sd == NULL */
e7693a36
GH
1730 }
1731
c88d5910 1732 return new_cpu;
e7693a36
GH
1733}
1734#endif /* CONFIG_SMP */
1735
e52fb7c0
PZ
1736static unsigned long
1737wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1738{
1739 unsigned long gran = sysctl_sched_wakeup_granularity;
1740
1741 /*
e52fb7c0
PZ
1742 * Since its curr running now, convert the gran from real-time
1743 * to virtual-time in his units.
13814d42
MG
1744 *
1745 * By using 'se' instead of 'curr' we penalize light tasks, so
1746 * they get preempted easier. That is, if 'se' < 'curr' then
1747 * the resulting gran will be larger, therefore penalizing the
1748 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1749 * be smaller, again penalizing the lighter task.
1750 *
1751 * This is especially important for buddies when the leftmost
1752 * task is higher priority than the buddy.
0bbd3336 1753 */
13814d42
MG
1754 if (unlikely(se->load.weight != NICE_0_LOAD))
1755 gran = calc_delta_fair(gran, se);
0bbd3336
PZ
1756
1757 return gran;
1758}
1759
464b7527
PZ
1760/*
1761 * Should 'se' preempt 'curr'.
1762 *
1763 * |s1
1764 * |s2
1765 * |s3
1766 * g
1767 * |<--->|c
1768 *
1769 * w(c, s1) = -1
1770 * w(c, s2) = 0
1771 * w(c, s3) = 1
1772 *
1773 */
1774static int
1775wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1776{
1777 s64 gran, vdiff = curr->vruntime - se->vruntime;
1778
1779 if (vdiff <= 0)
1780 return -1;
1781
e52fb7c0 1782 gran = wakeup_gran(curr, se);
464b7527
PZ
1783 if (vdiff > gran)
1784 return 1;
1785
1786 return 0;
1787}
1788
02479099
PZ
1789static void set_last_buddy(struct sched_entity *se)
1790{
6bc912b7
PZ
1791 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1792 for_each_sched_entity(se)
1793 cfs_rq_of(se)->last = se;
1794 }
02479099
PZ
1795}
1796
1797static void set_next_buddy(struct sched_entity *se)
1798{
6bc912b7
PZ
1799 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1800 for_each_sched_entity(se)
1801 cfs_rq_of(se)->next = se;
1802 }
02479099
PZ
1803}
1804
bf0f6f24
IM
1805/*
1806 * Preempt the current task with a newly woken task if needed:
1807 */
5a9b86f6 1808static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
1809{
1810 struct task_struct *curr = rq->curr;
8651a86c 1811 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1812 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 1813 int scale = cfs_rq->nr_running >= sched_nr_latency;
bf0f6f24 1814
4ae7d5ce
IM
1815 if (unlikely(se == pse))
1816 return;
1817
f685ceac 1818 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
3cb63d52 1819 set_next_buddy(pse);
57fdc26d 1820
aec0a514
BR
1821 /*
1822 * We can come here with TIF_NEED_RESCHED already set from new task
1823 * wake up path.
1824 */
1825 if (test_tsk_need_resched(curr))
1826 return;
1827
91c234b4 1828 /*
6bc912b7 1829 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1830 * the tick):
1831 */
6bc912b7 1832 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1833 return;
bf0f6f24 1834
6bc912b7 1835 /* Idle tasks are by definition preempted by everybody. */
3a7e73a2
PZ
1836 if (unlikely(curr->policy == SCHED_IDLE))
1837 goto preempt;
bf0f6f24 1838
ad4b78bb
PZ
1839 if (!sched_feat(WAKEUP_PREEMPT))
1840 return;
1841
3a7e73a2 1842 update_curr(cfs_rq);
464b7527 1843 find_matching_se(&se, &pse);
002f128b 1844 BUG_ON(!pse);
3a7e73a2
PZ
1845 if (wakeup_preempt_entity(se, pse) == 1)
1846 goto preempt;
464b7527 1847
3a7e73a2 1848 return;
a65ac745 1849
3a7e73a2
PZ
1850preempt:
1851 resched_task(curr);
1852 /*
1853 * Only set the backward buddy when the current task is still
1854 * on the rq. This can happen when a wakeup gets interleaved
1855 * with schedule on the ->pre_schedule() or idle_balance()
1856 * point, either of which can * drop the rq lock.
1857 *
1858 * Also, during early boot the idle thread is in the fair class,
1859 * for obvious reasons its a bad idea to schedule back to it.
1860 */
1861 if (unlikely(!se->on_rq || curr == rq->idle))
1862 return;
1863
1864 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1865 set_last_buddy(se);
bf0f6f24
IM
1866}
1867
fb8d4724 1868static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1869{
8f4d37ec 1870 struct task_struct *p;
bf0f6f24
IM
1871 struct cfs_rq *cfs_rq = &rq->cfs;
1872 struct sched_entity *se;
1873
36ace27e 1874 if (!cfs_rq->nr_running)
bf0f6f24
IM
1875 return NULL;
1876
1877 do {
9948f4b2 1878 se = pick_next_entity(cfs_rq);
f4b6755f 1879 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1880 cfs_rq = group_cfs_rq(se);
1881 } while (cfs_rq);
1882
8f4d37ec
PZ
1883 p = task_of(se);
1884 hrtick_start_fair(rq, p);
1885
1886 return p;
bf0f6f24
IM
1887}
1888
1889/*
1890 * Account for a descheduled task:
1891 */
31ee529c 1892static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1893{
1894 struct sched_entity *se = &prev->se;
1895 struct cfs_rq *cfs_rq;
1896
1897 for_each_sched_entity(se) {
1898 cfs_rq = cfs_rq_of(se);
ab6cde26 1899 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1900 }
1901}
1902
681f3e68 1903#ifdef CONFIG_SMP
bf0f6f24
IM
1904/**************************************************
1905 * Fair scheduling class load-balancing methods:
1906 */
1907
1e3c88bd
PZ
1908/*
1909 * pull_task - move a task from a remote runqueue to the local runqueue.
1910 * Both runqueues must be locked.
1911 */
1912static void pull_task(struct rq *src_rq, struct task_struct *p,
1913 struct rq *this_rq, int this_cpu)
1914{
1915 deactivate_task(src_rq, p, 0);
1916 set_task_cpu(p, this_cpu);
1917 activate_task(this_rq, p, 0);
1918 check_preempt_curr(this_rq, p, 0);
1919}
1920
1921/*
1922 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1923 */
1924static
1925int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1926 struct sched_domain *sd, enum cpu_idle_type idle,
1927 int *all_pinned)
1928{
1929 int tsk_cache_hot = 0;
1930 /*
1931 * We do not migrate tasks that are:
1932 * 1) running (obviously), or
1933 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1934 * 3) are cache-hot on their current CPU.
1935 */
1936 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
41acab88 1937 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
1938 return 0;
1939 }
1940 *all_pinned = 0;
1941
1942 if (task_running(rq, p)) {
41acab88 1943 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
1944 return 0;
1945 }
1946
1947 /*
1948 * Aggressive migration if:
1949 * 1) task is cache cold, or
1950 * 2) too many balance attempts have failed.
1951 */
1952
305e6835 1953 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1e3c88bd
PZ
1954 if (!tsk_cache_hot ||
1955 sd->nr_balance_failed > sd->cache_nice_tries) {
1956#ifdef CONFIG_SCHEDSTATS
1957 if (tsk_cache_hot) {
1958 schedstat_inc(sd, lb_hot_gained[idle]);
41acab88 1959 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
1960 }
1961#endif
1962 return 1;
1963 }
1964
1965 if (tsk_cache_hot) {
41acab88 1966 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
1967 return 0;
1968 }
1969 return 1;
1970}
1971
897c395f
PZ
1972/*
1973 * move_one_task tries to move exactly one task from busiest to this_rq, as
1974 * part of active balancing operations within "domain".
1975 * Returns 1 if successful and 0 otherwise.
1976 *
1977 * Called with both runqueues locked.
1978 */
1979static int
1980move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1981 struct sched_domain *sd, enum cpu_idle_type idle)
1982{
1983 struct task_struct *p, *n;
1984 struct cfs_rq *cfs_rq;
1985 int pinned = 0;
1986
1987 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1988 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1989
1990 if (!can_migrate_task(p, busiest, this_cpu,
1991 sd, idle, &pinned))
1992 continue;
1993
1994 pull_task(busiest, p, this_rq, this_cpu);
1995 /*
1996 * Right now, this is only the second place pull_task()
1997 * is called, so we can safely collect pull_task()
1998 * stats here rather than inside pull_task().
1999 */
2000 schedstat_inc(sd, lb_gained[idle]);
2001 return 1;
2002 }
2003 }
2004
2005 return 0;
2006}
2007
1e3c88bd
PZ
2008static unsigned long
2009balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2010 unsigned long max_load_move, struct sched_domain *sd,
2011 enum cpu_idle_type idle, int *all_pinned,
ee00e66f 2012 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1e3c88bd
PZ
2013{
2014 int loops = 0, pulled = 0, pinned = 0;
1e3c88bd 2015 long rem_load_move = max_load_move;
ee00e66f 2016 struct task_struct *p, *n;
1e3c88bd
PZ
2017
2018 if (max_load_move == 0)
2019 goto out;
2020
2021 pinned = 1;
2022
ee00e66f
PZ
2023 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2024 if (loops++ > sysctl_sched_nr_migrate)
2025 break;
1e3c88bd 2026
ee00e66f
PZ
2027 if ((p->se.load.weight >> 1) > rem_load_move ||
2028 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
2029 continue;
1e3c88bd 2030
ee00e66f
PZ
2031 pull_task(busiest, p, this_rq, this_cpu);
2032 pulled++;
2033 rem_load_move -= p->se.load.weight;
1e3c88bd
PZ
2034
2035#ifdef CONFIG_PREEMPT
ee00e66f
PZ
2036 /*
2037 * NEWIDLE balancing is a source of latency, so preemptible
2038 * kernels will stop after the first task is pulled to minimize
2039 * the critical section.
2040 */
2041 if (idle == CPU_NEWLY_IDLE)
2042 break;
1e3c88bd
PZ
2043#endif
2044
ee00e66f
PZ
2045 /*
2046 * We only want to steal up to the prescribed amount of
2047 * weighted load.
2048 */
2049 if (rem_load_move <= 0)
2050 break;
2051
1e3c88bd
PZ
2052 if (p->prio < *this_best_prio)
2053 *this_best_prio = p->prio;
1e3c88bd
PZ
2054 }
2055out:
2056 /*
2057 * Right now, this is one of only two places pull_task() is called,
2058 * so we can safely collect pull_task() stats here rather than
2059 * inside pull_task().
2060 */
2061 schedstat_add(sd, lb_gained[idle], pulled);
2062
2063 if (all_pinned)
2064 *all_pinned = pinned;
2065
2066 return max_load_move - rem_load_move;
2067}
2068
230059de 2069#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
2070/*
2071 * update tg->load_weight by folding this cpu's load_avg
2072 */
67e86250 2073static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
2074{
2075 struct cfs_rq *cfs_rq;
2076 unsigned long flags;
2077 struct rq *rq;
9e3081ca
PZ
2078
2079 if (!tg->se[cpu])
2080 return 0;
2081
2082 rq = cpu_rq(cpu);
2083 cfs_rq = tg->cfs_rq[cpu];
2084
2085 raw_spin_lock_irqsave(&rq->lock, flags);
2086
2087 update_rq_clock(rq);
d6b55918 2088 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
2089
2090 /*
2091 * We need to update shares after updating tg->load_weight in
2092 * order to adjust the weight of groups with long running tasks.
2093 */
f0d7442a 2094 update_cfs_shares(cfs_rq, 0);
9e3081ca
PZ
2095
2096 raw_spin_unlock_irqrestore(&rq->lock, flags);
2097
2098 return 0;
2099}
2100
2101static void update_shares(int cpu)
2102{
2103 struct cfs_rq *cfs_rq;
2104 struct rq *rq = cpu_rq(cpu);
2105
2106 rcu_read_lock();
67e86250
PT
2107 for_each_leaf_cfs_rq(rq, cfs_rq)
2108 update_shares_cpu(cfs_rq->tg, cpu);
9e3081ca
PZ
2109 rcu_read_unlock();
2110}
2111
230059de
PZ
2112static unsigned long
2113load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2114 unsigned long max_load_move,
2115 struct sched_domain *sd, enum cpu_idle_type idle,
2116 int *all_pinned, int *this_best_prio)
2117{
2118 long rem_load_move = max_load_move;
2119 int busiest_cpu = cpu_of(busiest);
2120 struct task_group *tg;
2121
2122 rcu_read_lock();
2123 update_h_load(busiest_cpu);
2124
2125 list_for_each_entry_rcu(tg, &task_groups, list) {
2126 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
2127 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2128 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2129 u64 rem_load, moved_load;
2130
2131 /*
2132 * empty group
2133 */
2134 if (!busiest_cfs_rq->task_weight)
2135 continue;
2136
2137 rem_load = (u64)rem_load_move * busiest_weight;
2138 rem_load = div_u64(rem_load, busiest_h_load + 1);
2139
2140 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2141 rem_load, sd, idle, all_pinned, this_best_prio,
2142 busiest_cfs_rq);
2143
2144 if (!moved_load)
2145 continue;
2146
2147 moved_load *= busiest_h_load;
2148 moved_load = div_u64(moved_load, busiest_weight + 1);
2149
2150 rem_load_move -= moved_load;
2151 if (rem_load_move < 0)
2152 break;
2153 }
2154 rcu_read_unlock();
2155
2156 return max_load_move - rem_load_move;
2157}
2158#else
9e3081ca
PZ
2159static inline void update_shares(int cpu)
2160{
2161}
2162
230059de
PZ
2163static unsigned long
2164load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2165 unsigned long max_load_move,
2166 struct sched_domain *sd, enum cpu_idle_type idle,
2167 int *all_pinned, int *this_best_prio)
2168{
2169 return balance_tasks(this_rq, this_cpu, busiest,
2170 max_load_move, sd, idle, all_pinned,
2171 this_best_prio, &busiest->cfs);
2172}
2173#endif
2174
1e3c88bd
PZ
2175/*
2176 * move_tasks tries to move up to max_load_move weighted load from busiest to
2177 * this_rq, as part of a balancing operation within domain "sd".
2178 * Returns 1 if successful and 0 otherwise.
2179 *
2180 * Called with both runqueues locked.
2181 */
2182static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2183 unsigned long max_load_move,
2184 struct sched_domain *sd, enum cpu_idle_type idle,
2185 int *all_pinned)
2186{
3d45fd80 2187 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
2188 int this_best_prio = this_rq->curr->prio;
2189
2190 do {
3d45fd80 2191 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd
PZ
2192 max_load_move - total_load_moved,
2193 sd, idle, all_pinned, &this_best_prio);
3d45fd80
PZ
2194
2195 total_load_moved += load_moved;
1e3c88bd
PZ
2196
2197#ifdef CONFIG_PREEMPT
2198 /*
2199 * NEWIDLE balancing is a source of latency, so preemptible
2200 * kernels will stop after the first task is pulled to minimize
2201 * the critical section.
2202 */
2203 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2204 break;
baa8c110
PZ
2205
2206 if (raw_spin_is_contended(&this_rq->lock) ||
2207 raw_spin_is_contended(&busiest->lock))
2208 break;
1e3c88bd 2209#endif
3d45fd80 2210 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
2211
2212 return total_load_moved > 0;
2213}
2214
1e3c88bd
PZ
2215/********** Helpers for find_busiest_group ************************/
2216/*
2217 * sd_lb_stats - Structure to store the statistics of a sched_domain
2218 * during load balancing.
2219 */
2220struct sd_lb_stats {
2221 struct sched_group *busiest; /* Busiest group in this sd */
2222 struct sched_group *this; /* Local group in this sd */
2223 unsigned long total_load; /* Total load of all groups in sd */
2224 unsigned long total_pwr; /* Total power of all groups in sd */
2225 unsigned long avg_load; /* Average load across all groups in sd */
2226
2227 /** Statistics of this group */
2228 unsigned long this_load;
2229 unsigned long this_load_per_task;
2230 unsigned long this_nr_running;
fab47622 2231 unsigned long this_has_capacity;
aae6d3dd 2232 unsigned int this_idle_cpus;
1e3c88bd
PZ
2233
2234 /* Statistics of the busiest group */
aae6d3dd 2235 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
2236 unsigned long max_load;
2237 unsigned long busiest_load_per_task;
2238 unsigned long busiest_nr_running;
dd5feea1 2239 unsigned long busiest_group_capacity;
fab47622 2240 unsigned long busiest_has_capacity;
aae6d3dd 2241 unsigned int busiest_group_weight;
1e3c88bd
PZ
2242
2243 int group_imb; /* Is there imbalance in this sd */
2244#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2245 int power_savings_balance; /* Is powersave balance needed for this sd */
2246 struct sched_group *group_min; /* Least loaded group in sd */
2247 struct sched_group *group_leader; /* Group which relieves group_min */
2248 unsigned long min_load_per_task; /* load_per_task in group_min */
2249 unsigned long leader_nr_running; /* Nr running of group_leader */
2250 unsigned long min_nr_running; /* Nr running of group_min */
2251#endif
2252};
2253
2254/*
2255 * sg_lb_stats - stats of a sched_group required for load_balancing
2256 */
2257struct sg_lb_stats {
2258 unsigned long avg_load; /*Avg load across the CPUs of the group */
2259 unsigned long group_load; /* Total load over the CPUs of the group */
2260 unsigned long sum_nr_running; /* Nr tasks running in the group */
2261 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2262 unsigned long group_capacity;
aae6d3dd
SS
2263 unsigned long idle_cpus;
2264 unsigned long group_weight;
1e3c88bd 2265 int group_imb; /* Is there an imbalance in the group ? */
fab47622 2266 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
2267};
2268
2269/**
2270 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2271 * @group: The group whose first cpu is to be returned.
2272 */
2273static inline unsigned int group_first_cpu(struct sched_group *group)
2274{
2275 return cpumask_first(sched_group_cpus(group));
2276}
2277
2278/**
2279 * get_sd_load_idx - Obtain the load index for a given sched domain.
2280 * @sd: The sched_domain whose load_idx is to be obtained.
2281 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2282 */
2283static inline int get_sd_load_idx(struct sched_domain *sd,
2284 enum cpu_idle_type idle)
2285{
2286 int load_idx;
2287
2288 switch (idle) {
2289 case CPU_NOT_IDLE:
2290 load_idx = sd->busy_idx;
2291 break;
2292
2293 case CPU_NEWLY_IDLE:
2294 load_idx = sd->newidle_idx;
2295 break;
2296 default:
2297 load_idx = sd->idle_idx;
2298 break;
2299 }
2300
2301 return load_idx;
2302}
2303
2304
2305#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2306/**
2307 * init_sd_power_savings_stats - Initialize power savings statistics for
2308 * the given sched_domain, during load balancing.
2309 *
2310 * @sd: Sched domain whose power-savings statistics are to be initialized.
2311 * @sds: Variable containing the statistics for sd.
2312 * @idle: Idle status of the CPU at which we're performing load-balancing.
2313 */
2314static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2315 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2316{
2317 /*
2318 * Busy processors will not participate in power savings
2319 * balance.
2320 */
2321 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2322 sds->power_savings_balance = 0;
2323 else {
2324 sds->power_savings_balance = 1;
2325 sds->min_nr_running = ULONG_MAX;
2326 sds->leader_nr_running = 0;
2327 }
2328}
2329
2330/**
2331 * update_sd_power_savings_stats - Update the power saving stats for a
2332 * sched_domain while performing load balancing.
2333 *
2334 * @group: sched_group belonging to the sched_domain under consideration.
2335 * @sds: Variable containing the statistics of the sched_domain
2336 * @local_group: Does group contain the CPU for which we're performing
2337 * load balancing ?
2338 * @sgs: Variable containing the statistics of the group.
2339 */
2340static inline void update_sd_power_savings_stats(struct sched_group *group,
2341 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2342{
2343
2344 if (!sds->power_savings_balance)
2345 return;
2346
2347 /*
2348 * If the local group is idle or completely loaded
2349 * no need to do power savings balance at this domain
2350 */
2351 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2352 !sds->this_nr_running))
2353 sds->power_savings_balance = 0;
2354
2355 /*
2356 * If a group is already running at full capacity or idle,
2357 * don't include that group in power savings calculations
2358 */
2359 if (!sds->power_savings_balance ||
2360 sgs->sum_nr_running >= sgs->group_capacity ||
2361 !sgs->sum_nr_running)
2362 return;
2363
2364 /*
2365 * Calculate the group which has the least non-idle load.
2366 * This is the group from where we need to pick up the load
2367 * for saving power
2368 */
2369 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2370 (sgs->sum_nr_running == sds->min_nr_running &&
2371 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2372 sds->group_min = group;
2373 sds->min_nr_running = sgs->sum_nr_running;
2374 sds->min_load_per_task = sgs->sum_weighted_load /
2375 sgs->sum_nr_running;
2376 }
2377
2378 /*
2379 * Calculate the group which is almost near its
2380 * capacity but still has some space to pick up some load
2381 * from other group and save more power
2382 */
2383 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2384 return;
2385
2386 if (sgs->sum_nr_running > sds->leader_nr_running ||
2387 (sgs->sum_nr_running == sds->leader_nr_running &&
2388 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2389 sds->group_leader = group;
2390 sds->leader_nr_running = sgs->sum_nr_running;
2391 }
2392}
2393
2394/**
2395 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2396 * @sds: Variable containing the statistics of the sched_domain
2397 * under consideration.
2398 * @this_cpu: Cpu at which we're currently performing load-balancing.
2399 * @imbalance: Variable to store the imbalance.
2400 *
2401 * Description:
2402 * Check if we have potential to perform some power-savings balance.
2403 * If yes, set the busiest group to be the least loaded group in the
2404 * sched_domain, so that it's CPUs can be put to idle.
2405 *
2406 * Returns 1 if there is potential to perform power-savings balance.
2407 * Else returns 0.
2408 */
2409static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2410 int this_cpu, unsigned long *imbalance)
2411{
2412 if (!sds->power_savings_balance)
2413 return 0;
2414
2415 if (sds->this != sds->group_leader ||
2416 sds->group_leader == sds->group_min)
2417 return 0;
2418
2419 *imbalance = sds->min_load_per_task;
2420 sds->busiest = sds->group_min;
2421
2422 return 1;
2423
2424}
2425#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2426static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2427 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2428{
2429 return;
2430}
2431
2432static inline void update_sd_power_savings_stats(struct sched_group *group,
2433 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2434{
2435 return;
2436}
2437
2438static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2439 int this_cpu, unsigned long *imbalance)
2440{
2441 return 0;
2442}
2443#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2444
2445
2446unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2447{
2448 return SCHED_LOAD_SCALE;
2449}
2450
2451unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2452{
2453 return default_scale_freq_power(sd, cpu);
2454}
2455
2456unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2457{
669c55e9 2458 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
2459 unsigned long smt_gain = sd->smt_gain;
2460
2461 smt_gain /= weight;
2462
2463 return smt_gain;
2464}
2465
2466unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2467{
2468 return default_scale_smt_power(sd, cpu);
2469}
2470
2471unsigned long scale_rt_power(int cpu)
2472{
2473 struct rq *rq = cpu_rq(cpu);
2474 u64 total, available;
2475
1e3c88bd 2476 total = sched_avg_period() + (rq->clock - rq->age_stamp);
aa483808
VP
2477
2478 if (unlikely(total < rq->rt_avg)) {
2479 /* Ensures that power won't end up being negative */
2480 available = 0;
2481 } else {
2482 available = total - rq->rt_avg;
2483 }
1e3c88bd
PZ
2484
2485 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2486 total = SCHED_LOAD_SCALE;
2487
2488 total >>= SCHED_LOAD_SHIFT;
2489
2490 return div_u64(available, total);
2491}
2492
2493static void update_cpu_power(struct sched_domain *sd, int cpu)
2494{
669c55e9 2495 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
2496 unsigned long power = SCHED_LOAD_SCALE;
2497 struct sched_group *sdg = sd->groups;
2498
1e3c88bd
PZ
2499 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2500 if (sched_feat(ARCH_POWER))
2501 power *= arch_scale_smt_power(sd, cpu);
2502 else
2503 power *= default_scale_smt_power(sd, cpu);
2504
2505 power >>= SCHED_LOAD_SHIFT;
2506 }
2507
9d5efe05
SV
2508 sdg->cpu_power_orig = power;
2509
2510 if (sched_feat(ARCH_POWER))
2511 power *= arch_scale_freq_power(sd, cpu);
2512 else
2513 power *= default_scale_freq_power(sd, cpu);
2514
2515 power >>= SCHED_LOAD_SHIFT;
2516
1e3c88bd
PZ
2517 power *= scale_rt_power(cpu);
2518 power >>= SCHED_LOAD_SHIFT;
2519
2520 if (!power)
2521 power = 1;
2522
e51fd5e2 2523 cpu_rq(cpu)->cpu_power = power;
1e3c88bd
PZ
2524 sdg->cpu_power = power;
2525}
2526
2527static void update_group_power(struct sched_domain *sd, int cpu)
2528{
2529 struct sched_domain *child = sd->child;
2530 struct sched_group *group, *sdg = sd->groups;
2531 unsigned long power;
2532
2533 if (!child) {
2534 update_cpu_power(sd, cpu);
2535 return;
2536 }
2537
2538 power = 0;
2539
2540 group = child->groups;
2541 do {
2542 power += group->cpu_power;
2543 group = group->next;
2544 } while (group != child->groups);
2545
2546 sdg->cpu_power = power;
2547}
2548
9d5efe05
SV
2549/*
2550 * Try and fix up capacity for tiny siblings, this is needed when
2551 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2552 * which on its own isn't powerful enough.
2553 *
2554 * See update_sd_pick_busiest() and check_asym_packing().
2555 */
2556static inline int
2557fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2558{
2559 /*
2560 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2561 */
2562 if (sd->level != SD_LV_SIBLING)
2563 return 0;
2564
2565 /*
2566 * If ~90% of the cpu_power is still there, we're good.
2567 */
694f5a11 2568 if (group->cpu_power * 32 > group->cpu_power_orig * 29)
9d5efe05
SV
2569 return 1;
2570
2571 return 0;
2572}
2573
1e3c88bd
PZ
2574/**
2575 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2576 * @sd: The sched_domain whose statistics are to be updated.
2577 * @group: sched_group whose statistics are to be updated.
2578 * @this_cpu: Cpu for which load balance is currently performed.
2579 * @idle: Idle status of this_cpu
2580 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2581 * @sd_idle: Idle status of the sched_domain containing group.
2582 * @local_group: Does group contain this_cpu.
2583 * @cpus: Set of cpus considered for load balancing.
2584 * @balance: Should we balance.
2585 * @sgs: variable to hold the statistics for this group.
2586 */
2587static inline void update_sg_lb_stats(struct sched_domain *sd,
2588 struct sched_group *group, int this_cpu,
2589 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2590 int local_group, const struct cpumask *cpus,
2591 int *balance, struct sg_lb_stats *sgs)
2592{
2582f0eb 2593 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
1e3c88bd
PZ
2594 int i;
2595 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 2596 unsigned long avg_load_per_task = 0;
1e3c88bd 2597
871e35bc 2598 if (local_group)
1e3c88bd 2599 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
2600
2601 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
2602 max_cpu_load = 0;
2603 min_cpu_load = ~0UL;
2582f0eb 2604 max_nr_running = 0;
1e3c88bd
PZ
2605
2606 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2607 struct rq *rq = cpu_rq(i);
2608
2609 if (*sd_idle && rq->nr_running)
2610 *sd_idle = 0;
2611
2612 /* Bias balancing toward cpus of our domain */
2613 if (local_group) {
2614 if (idle_cpu(i) && !first_idle_cpu) {
2615 first_idle_cpu = 1;
2616 balance_cpu = i;
2617 }
2618
2619 load = target_load(i, load_idx);
2620 } else {
2621 load = source_load(i, load_idx);
2582f0eb 2622 if (load > max_cpu_load) {
1e3c88bd 2623 max_cpu_load = load;
2582f0eb
NR
2624 max_nr_running = rq->nr_running;
2625 }
1e3c88bd
PZ
2626 if (min_cpu_load > load)
2627 min_cpu_load = load;
2628 }
2629
2630 sgs->group_load += load;
2631 sgs->sum_nr_running += rq->nr_running;
2632 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
2633 if (idle_cpu(i))
2634 sgs->idle_cpus++;
1e3c88bd
PZ
2635 }
2636
2637 /*
2638 * First idle cpu or the first cpu(busiest) in this sched group
2639 * is eligible for doing load balancing at this and above
2640 * domains. In the newly idle case, we will allow all the cpu's
2641 * to do the newly idle load balance.
2642 */
bbc8cb5b
PZ
2643 if (idle != CPU_NEWLY_IDLE && local_group) {
2644 if (balance_cpu != this_cpu) {
2645 *balance = 0;
2646 return;
2647 }
2648 update_group_power(sd, this_cpu);
1e3c88bd
PZ
2649 }
2650
2651 /* Adjust by relative CPU power of the group */
2652 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2653
1e3c88bd
PZ
2654 /*
2655 * Consider the group unbalanced when the imbalance is larger
2656 * than the average weight of two tasks.
2657 *
2658 * APZ: with cgroup the avg task weight can vary wildly and
2659 * might not be a suitable number - should we keep a
2660 * normalized nr_running number somewhere that negates
2661 * the hierarchy?
2662 */
dd5feea1
SS
2663 if (sgs->sum_nr_running)
2664 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 2665
2582f0eb 2666 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
1e3c88bd
PZ
2667 sgs->group_imb = 1;
2668
2582f0eb 2669 sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
9d5efe05
SV
2670 if (!sgs->group_capacity)
2671 sgs->group_capacity = fix_small_capacity(sd, group);
aae6d3dd 2672 sgs->group_weight = group->group_weight;
fab47622
NR
2673
2674 if (sgs->group_capacity > sgs->sum_nr_running)
2675 sgs->group_has_capacity = 1;
1e3c88bd
PZ
2676}
2677
532cb4c4
MN
2678/**
2679 * update_sd_pick_busiest - return 1 on busiest group
2680 * @sd: sched_domain whose statistics are to be checked
2681 * @sds: sched_domain statistics
2682 * @sg: sched_group candidate to be checked for being the busiest
b6b12294
MN
2683 * @sgs: sched_group statistics
2684 * @this_cpu: the current cpu
532cb4c4
MN
2685 *
2686 * Determine if @sg is a busier group than the previously selected
2687 * busiest group.
2688 */
2689static bool update_sd_pick_busiest(struct sched_domain *sd,
2690 struct sd_lb_stats *sds,
2691 struct sched_group *sg,
2692 struct sg_lb_stats *sgs,
2693 int this_cpu)
2694{
2695 if (sgs->avg_load <= sds->max_load)
2696 return false;
2697
2698 if (sgs->sum_nr_running > sgs->group_capacity)
2699 return true;
2700
2701 if (sgs->group_imb)
2702 return true;
2703
2704 /*
2705 * ASYM_PACKING needs to move all the work to the lowest
2706 * numbered CPUs in the group, therefore mark all groups
2707 * higher than ourself as busy.
2708 */
2709 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2710 this_cpu < group_first_cpu(sg)) {
2711 if (!sds->busiest)
2712 return true;
2713
2714 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2715 return true;
2716 }
2717
2718 return false;
2719}
2720
1e3c88bd
PZ
2721/**
2722 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2723 * @sd: sched_domain whose statistics are to be updated.
2724 * @this_cpu: Cpu for which load balance is currently performed.
2725 * @idle: Idle status of this_cpu
532cb4c4 2726 * @sd_idle: Idle status of the sched_domain containing sg.
1e3c88bd
PZ
2727 * @cpus: Set of cpus considered for load balancing.
2728 * @balance: Should we balance.
2729 * @sds: variable to hold the statistics for this sched_domain.
2730 */
2731static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2732 enum cpu_idle_type idle, int *sd_idle,
2733 const struct cpumask *cpus, int *balance,
2734 struct sd_lb_stats *sds)
2735{
2736 struct sched_domain *child = sd->child;
532cb4c4 2737 struct sched_group *sg = sd->groups;
1e3c88bd
PZ
2738 struct sg_lb_stats sgs;
2739 int load_idx, prefer_sibling = 0;
2740
2741 if (child && child->flags & SD_PREFER_SIBLING)
2742 prefer_sibling = 1;
2743
2744 init_sd_power_savings_stats(sd, sds, idle);
2745 load_idx = get_sd_load_idx(sd, idle);
2746
2747 do {
2748 int local_group;
2749
532cb4c4 2750 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
1e3c88bd 2751 memset(&sgs, 0, sizeof(sgs));
532cb4c4 2752 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
1e3c88bd
PZ
2753 local_group, cpus, balance, &sgs);
2754
8f190fb3 2755 if (local_group && !(*balance))
1e3c88bd
PZ
2756 return;
2757
2758 sds->total_load += sgs.group_load;
532cb4c4 2759 sds->total_pwr += sg->cpu_power;
1e3c88bd
PZ
2760
2761 /*
2762 * In case the child domain prefers tasks go to siblings
532cb4c4 2763 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
2764 * and move all the excess tasks away. We lower the capacity
2765 * of a group only if the local group has the capacity to fit
2766 * these excess tasks, i.e. nr_running < group_capacity. The
2767 * extra check prevents the case where you always pull from the
2768 * heaviest group when it is already under-utilized (possible
2769 * with a large weight task outweighs the tasks on the system).
1e3c88bd 2770 */
75dd321d 2771 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
2772 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2773
2774 if (local_group) {
2775 sds->this_load = sgs.avg_load;
532cb4c4 2776 sds->this = sg;
1e3c88bd
PZ
2777 sds->this_nr_running = sgs.sum_nr_running;
2778 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 2779 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 2780 sds->this_idle_cpus = sgs.idle_cpus;
532cb4c4 2781 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
1e3c88bd 2782 sds->max_load = sgs.avg_load;
532cb4c4 2783 sds->busiest = sg;
1e3c88bd 2784 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 2785 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 2786 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 2787 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 2788 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 2789 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
2790 sds->group_imb = sgs.group_imb;
2791 }
2792
532cb4c4
MN
2793 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2794 sg = sg->next;
2795 } while (sg != sd->groups);
2796}
2797
2ec57d44 2798int __weak arch_sd_sibling_asym_packing(void)
532cb4c4
MN
2799{
2800 return 0*SD_ASYM_PACKING;
2801}
2802
2803/**
2804 * check_asym_packing - Check to see if the group is packed into the
2805 * sched doman.
2806 *
2807 * This is primarily intended to used at the sibling level. Some
2808 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2809 * case of POWER7, it can move to lower SMT modes only when higher
2810 * threads are idle. When in lower SMT modes, the threads will
2811 * perform better since they share less core resources. Hence when we
2812 * have idle threads, we want them to be the higher ones.
2813 *
2814 * This packing function is run on idle threads. It checks to see if
2815 * the busiest CPU in this domain (core in the P7 case) has a higher
2816 * CPU number than the packing function is being run on. Here we are
2817 * assuming lower CPU number will be equivalent to lower a SMT thread
2818 * number.
2819 *
b6b12294
MN
2820 * Returns 1 when packing is required and a task should be moved to
2821 * this CPU. The amount of the imbalance is returned in *imbalance.
2822 *
532cb4c4
MN
2823 * @sd: The sched_domain whose packing is to be checked.
2824 * @sds: Statistics of the sched_domain which is to be packed
2825 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2826 * @imbalance: returns amount of imbalanced due to packing.
532cb4c4
MN
2827 */
2828static int check_asym_packing(struct sched_domain *sd,
2829 struct sd_lb_stats *sds,
2830 int this_cpu, unsigned long *imbalance)
2831{
2832 int busiest_cpu;
2833
2834 if (!(sd->flags & SD_ASYM_PACKING))
2835 return 0;
2836
2837 if (!sds->busiest)
2838 return 0;
2839
2840 busiest_cpu = group_first_cpu(sds->busiest);
2841 if (this_cpu > busiest_cpu)
2842 return 0;
2843
2844 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2845 SCHED_LOAD_SCALE);
2846 return 1;
1e3c88bd
PZ
2847}
2848
2849/**
2850 * fix_small_imbalance - Calculate the minor imbalance that exists
2851 * amongst the groups of a sched_domain, during
2852 * load balancing.
2853 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2854 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2855 * @imbalance: Variable to store the imbalance.
2856 */
2857static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2858 int this_cpu, unsigned long *imbalance)
2859{
2860 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2861 unsigned int imbn = 2;
dd5feea1 2862 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
2863
2864 if (sds->this_nr_running) {
2865 sds->this_load_per_task /= sds->this_nr_running;
2866 if (sds->busiest_load_per_task >
2867 sds->this_load_per_task)
2868 imbn = 1;
2869 } else
2870 sds->this_load_per_task =
2871 cpu_avg_load_per_task(this_cpu);
2872
dd5feea1
SS
2873 scaled_busy_load_per_task = sds->busiest_load_per_task
2874 * SCHED_LOAD_SCALE;
2875 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2876
2877 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2878 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
2879 *imbalance = sds->busiest_load_per_task;
2880 return;
2881 }
2882
2883 /*
2884 * OK, we don't have enough imbalance to justify moving tasks,
2885 * however we may be able to increase total CPU power used by
2886 * moving them.
2887 */
2888
2889 pwr_now += sds->busiest->cpu_power *
2890 min(sds->busiest_load_per_task, sds->max_load);
2891 pwr_now += sds->this->cpu_power *
2892 min(sds->this_load_per_task, sds->this_load);
2893 pwr_now /= SCHED_LOAD_SCALE;
2894
2895 /* Amount of load we'd subtract */
2896 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2897 sds->busiest->cpu_power;
2898 if (sds->max_load > tmp)
2899 pwr_move += sds->busiest->cpu_power *
2900 min(sds->busiest_load_per_task, sds->max_load - tmp);
2901
2902 /* Amount of load we'd add */
2903 if (sds->max_load * sds->busiest->cpu_power <
2904 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2905 tmp = (sds->max_load * sds->busiest->cpu_power) /
2906 sds->this->cpu_power;
2907 else
2908 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2909 sds->this->cpu_power;
2910 pwr_move += sds->this->cpu_power *
2911 min(sds->this_load_per_task, sds->this_load + tmp);
2912 pwr_move /= SCHED_LOAD_SCALE;
2913
2914 /* Move if we gain throughput */
2915 if (pwr_move > pwr_now)
2916 *imbalance = sds->busiest_load_per_task;
2917}
2918
2919/**
2920 * calculate_imbalance - Calculate the amount of imbalance present within the
2921 * groups of a given sched_domain during load balance.
2922 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2923 * @this_cpu: Cpu for which currently load balance is being performed.
2924 * @imbalance: The variable to store the imbalance.
2925 */
2926static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2927 unsigned long *imbalance)
2928{
dd5feea1
SS
2929 unsigned long max_pull, load_above_capacity = ~0UL;
2930
2931 sds->busiest_load_per_task /= sds->busiest_nr_running;
2932 if (sds->group_imb) {
2933 sds->busiest_load_per_task =
2934 min(sds->busiest_load_per_task, sds->avg_load);
2935 }
2936
1e3c88bd
PZ
2937 /*
2938 * In the presence of smp nice balancing, certain scenarios can have
2939 * max load less than avg load(as we skip the groups at or below
2940 * its cpu_power, while calculating max_load..)
2941 */
2942 if (sds->max_load < sds->avg_load) {
2943 *imbalance = 0;
2944 return fix_small_imbalance(sds, this_cpu, imbalance);
2945 }
2946
dd5feea1
SS
2947 if (!sds->group_imb) {
2948 /*
2949 * Don't want to pull so many tasks that a group would go idle.
2950 */
2951 load_above_capacity = (sds->busiest_nr_running -
2952 sds->busiest_group_capacity);
2953
2954 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2955
2956 load_above_capacity /= sds->busiest->cpu_power;
2957 }
2958
2959 /*
2960 * We're trying to get all the cpus to the average_load, so we don't
2961 * want to push ourselves above the average load, nor do we wish to
2962 * reduce the max loaded cpu below the average load. At the same time,
2963 * we also don't want to reduce the group load below the group capacity
2964 * (so that we can implement power-savings policies etc). Thus we look
2965 * for the minimum possible imbalance.
2966 * Be careful of negative numbers as they'll appear as very large values
2967 * with unsigned longs.
2968 */
2969 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
2970
2971 /* How much load to actually move to equalise the imbalance */
2972 *imbalance = min(max_pull * sds->busiest->cpu_power,
2973 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2974 / SCHED_LOAD_SCALE;
2975
2976 /*
2977 * if *imbalance is less than the average load per runnable task
2978 * there is no gaurantee that any tasks will be moved so we'll have
2979 * a think about bumping its value to force at least one task to be
2980 * moved
2981 */
2982 if (*imbalance < sds->busiest_load_per_task)
2983 return fix_small_imbalance(sds, this_cpu, imbalance);
2984
2985}
fab47622 2986
1e3c88bd
PZ
2987/******* find_busiest_group() helpers end here *********************/
2988
2989/**
2990 * find_busiest_group - Returns the busiest group within the sched_domain
2991 * if there is an imbalance. If there isn't an imbalance, and
2992 * the user has opted for power-savings, it returns a group whose
2993 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2994 * such a group exists.
2995 *
2996 * Also calculates the amount of weighted load which should be moved
2997 * to restore balance.
2998 *
2999 * @sd: The sched_domain whose busiest group is to be returned.
3000 * @this_cpu: The cpu for which load balancing is currently being performed.
3001 * @imbalance: Variable which stores amount of weighted load which should
3002 * be moved to restore balance/put a group to idle.
3003 * @idle: The idle status of this_cpu.
3004 * @sd_idle: The idleness of sd
3005 * @cpus: The set of CPUs under consideration for load-balancing.
3006 * @balance: Pointer to a variable indicating if this_cpu
3007 * is the appropriate cpu to perform load balancing at this_level.
3008 *
3009 * Returns: - the busiest group if imbalance exists.
3010 * - If no imbalance and user has opted for power-savings balance,
3011 * return the least loaded group whose CPUs can be
3012 * put to idle by rebalancing its tasks onto our group.
3013 */
3014static struct sched_group *
3015find_busiest_group(struct sched_domain *sd, int this_cpu,
3016 unsigned long *imbalance, enum cpu_idle_type idle,
3017 int *sd_idle, const struct cpumask *cpus, int *balance)
3018{
3019 struct sd_lb_stats sds;
3020
3021 memset(&sds, 0, sizeof(sds));
3022
3023 /*
3024 * Compute the various statistics relavent for load balancing at
3025 * this level.
3026 */
3027 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3028 balance, &sds);
3029
3030 /* Cases where imbalance does not exist from POV of this_cpu */
3031 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3032 * at this level.
3033 * 2) There is no busy sibling group to pull from.
3034 * 3) This group is the busiest group.
3035 * 4) This group is more busy than the avg busieness at this
3036 * sched_domain.
3037 * 5) The imbalance is within the specified limit.
fab47622
NR
3038 *
3039 * Note: when doing newidle balance, if the local group has excess
3040 * capacity (i.e. nr_running < group_capacity) and the busiest group
3041 * does not have any capacity, we force a load balance to pull tasks
3042 * to the local group. In this case, we skip past checks 3, 4 and 5.
1e3c88bd 3043 */
8f190fb3 3044 if (!(*balance))
1e3c88bd
PZ
3045 goto ret;
3046
532cb4c4
MN
3047 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3048 check_asym_packing(sd, &sds, this_cpu, imbalance))
3049 return sds.busiest;
3050
1e3c88bd
PZ
3051 if (!sds.busiest || sds.busiest_nr_running == 0)
3052 goto out_balanced;
3053
fab47622
NR
3054 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3055 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3056 !sds.busiest_has_capacity)
3057 goto force_balance;
3058
1e3c88bd
PZ
3059 if (sds.this_load >= sds.max_load)
3060 goto out_balanced;
3061
3062 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3063
3064 if (sds.this_load >= sds.avg_load)
3065 goto out_balanced;
3066
aae6d3dd
SS
3067 /*
3068 * In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative.
3069 * And to check for busy balance use !idle_cpu instead of
3070 * CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE
3071 * even when they are idle.
3072 */
3073 if (idle == CPU_NEWLY_IDLE || !idle_cpu(this_cpu)) {
3074 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3075 goto out_balanced;
3076 } else {
3077 /*
3078 * This cpu is idle. If the busiest group load doesn't
3079 * have more tasks than the number of available cpu's and
3080 * there is no imbalance between this and busiest group
3081 * wrt to idle cpu's, it is balanced.
3082 */
3083 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
3084 sds.busiest_nr_running <= sds.busiest_group_weight)
3085 goto out_balanced;
3086 }
1e3c88bd 3087
fab47622 3088force_balance:
1e3c88bd
PZ
3089 /* Looks like there is an imbalance. Compute it */
3090 calculate_imbalance(&sds, this_cpu, imbalance);
3091 return sds.busiest;
3092
3093out_balanced:
3094 /*
3095 * There is no obvious imbalance. But check if we can do some balancing
3096 * to save power.
3097 */
3098 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3099 return sds.busiest;
3100ret:
3101 *imbalance = 0;
3102 return NULL;
3103}
3104
3105/*
3106 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3107 */
3108static struct rq *
9d5efe05
SV
3109find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3110 enum cpu_idle_type idle, unsigned long imbalance,
3111 const struct cpumask *cpus)
1e3c88bd
PZ
3112{
3113 struct rq *busiest = NULL, *rq;
3114 unsigned long max_load = 0;
3115 int i;
3116
3117 for_each_cpu(i, sched_group_cpus(group)) {
3118 unsigned long power = power_of(i);
3119 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
3120 unsigned long wl;
3121
9d5efe05
SV
3122 if (!capacity)
3123 capacity = fix_small_capacity(sd, group);
3124
1e3c88bd
PZ
3125 if (!cpumask_test_cpu(i, cpus))
3126 continue;
3127
3128 rq = cpu_rq(i);
6e40f5bb 3129 wl = weighted_cpuload(i);
1e3c88bd 3130
6e40f5bb
TG
3131 /*
3132 * When comparing with imbalance, use weighted_cpuload()
3133 * which is not scaled with the cpu power.
3134 */
1e3c88bd
PZ
3135 if (capacity && rq->nr_running == 1 && wl > imbalance)
3136 continue;
3137
6e40f5bb
TG
3138 /*
3139 * For the load comparisons with the other cpu's, consider
3140 * the weighted_cpuload() scaled with the cpu power, so that
3141 * the load can be moved away from the cpu that is potentially
3142 * running at a lower capacity.
3143 */
3144 wl = (wl * SCHED_LOAD_SCALE) / power;
3145
1e3c88bd
PZ
3146 if (wl > max_load) {
3147 max_load = wl;
3148 busiest = rq;
3149 }
3150 }
3151
3152 return busiest;
3153}
3154
3155/*
3156 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3157 * so long as it is large enough.
3158 */
3159#define MAX_PINNED_INTERVAL 512
3160
3161/* Working cpumask for load_balance and load_balance_newidle. */
3162static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3163
532cb4c4
MN
3164static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
3165 int busiest_cpu, int this_cpu)
1af3ed3d
PZ
3166{
3167 if (idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
3168
3169 /*
3170 * ASYM_PACKING needs to force migrate tasks from busy but
3171 * higher numbered CPUs in order to pack all tasks in the
3172 * lowest numbered CPUs.
3173 */
3174 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3175 return 1;
3176
1af3ed3d
PZ
3177 /*
3178 * The only task running in a non-idle cpu can be moved to this
3179 * cpu in an attempt to completely freeup the other CPU
3180 * package.
3181 *
3182 * The package power saving logic comes from
3183 * find_busiest_group(). If there are no imbalance, then
3184 * f_b_g() will return NULL. However when sched_mc={1,2} then
3185 * f_b_g() will select a group from which a running task may be
3186 * pulled to this cpu in order to make the other package idle.
3187 * If there is no opportunity to make a package idle and if
3188 * there are no imbalance, then f_b_g() will return NULL and no
3189 * action will be taken in load_balance_newidle().
3190 *
3191 * Under normal task pull operation due to imbalance, there
3192 * will be more than one task in the source run queue and
3193 * move_tasks() will succeed. ld_moved will be true and this
3194 * active balance code will not be triggered.
3195 */
3196 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3197 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3198 return 0;
3199
3200 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3201 return 0;
3202 }
3203
3204 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3205}
3206
969c7921
TH
3207static int active_load_balance_cpu_stop(void *data);
3208
1e3c88bd
PZ
3209/*
3210 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3211 * tasks if there is an imbalance.
3212 */
3213static int load_balance(int this_cpu, struct rq *this_rq,
3214 struct sched_domain *sd, enum cpu_idle_type idle,
3215 int *balance)
3216{
3217 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3218 struct sched_group *group;
3219 unsigned long imbalance;
3220 struct rq *busiest;
3221 unsigned long flags;
3222 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3223
3224 cpumask_copy(cpus, cpu_active_mask);
3225
3226 /*
3227 * When power savings policy is enabled for the parent domain, idle
3228 * sibling can pick up load irrespective of busy siblings. In this case,
3229 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3230 * portraying it as CPU_NOT_IDLE.
3231 */
3232 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3233 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3234 sd_idle = 1;
3235
3236 schedstat_inc(sd, lb_count[idle]);
3237
3238redo:
1e3c88bd
PZ
3239 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3240 cpus, balance);
3241
3242 if (*balance == 0)
3243 goto out_balanced;
3244
3245 if (!group) {
3246 schedstat_inc(sd, lb_nobusyg[idle]);
3247 goto out_balanced;
3248 }
3249
9d5efe05 3250 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
1e3c88bd
PZ
3251 if (!busiest) {
3252 schedstat_inc(sd, lb_nobusyq[idle]);
3253 goto out_balanced;
3254 }
3255
3256 BUG_ON(busiest == this_rq);
3257
3258 schedstat_add(sd, lb_imbalance[idle], imbalance);
3259
3260 ld_moved = 0;
3261 if (busiest->nr_running > 1) {
3262 /*
3263 * Attempt to move tasks. If find_busiest_group has found
3264 * an imbalance but busiest->nr_running <= 1, the group is
3265 * still unbalanced. ld_moved simply stays zero, so it is
3266 * correctly treated as an imbalance.
3267 */
3268 local_irq_save(flags);
3269 double_rq_lock(this_rq, busiest);
3270 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3271 imbalance, sd, idle, &all_pinned);
3272 double_rq_unlock(this_rq, busiest);
3273 local_irq_restore(flags);
3274
3275 /*
3276 * some other cpu did the load balance for us.
3277 */
3278 if (ld_moved && this_cpu != smp_processor_id())
3279 resched_cpu(this_cpu);
3280
3281 /* All tasks on this runqueue were pinned by CPU affinity */
3282 if (unlikely(all_pinned)) {
3283 cpumask_clear_cpu(cpu_of(busiest), cpus);
3284 if (!cpumask_empty(cpus))
3285 goto redo;
3286 goto out_balanced;
3287 }
3288 }
3289
3290 if (!ld_moved) {
3291 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
3292 /*
3293 * Increment the failure counter only on periodic balance.
3294 * We do not want newidle balance, which can be very
3295 * frequent, pollute the failure counter causing
3296 * excessive cache_hot migrations and active balances.
3297 */
3298 if (idle != CPU_NEWLY_IDLE)
3299 sd->nr_balance_failed++;
1e3c88bd 3300
532cb4c4
MN
3301 if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
3302 this_cpu)) {
1e3c88bd
PZ
3303 raw_spin_lock_irqsave(&busiest->lock, flags);
3304
969c7921
TH
3305 /* don't kick the active_load_balance_cpu_stop,
3306 * if the curr task on busiest cpu can't be
3307 * moved to this_cpu
1e3c88bd
PZ
3308 */
3309 if (!cpumask_test_cpu(this_cpu,
3310 &busiest->curr->cpus_allowed)) {
3311 raw_spin_unlock_irqrestore(&busiest->lock,
3312 flags);
3313 all_pinned = 1;
3314 goto out_one_pinned;
3315 }
3316
969c7921
TH
3317 /*
3318 * ->active_balance synchronizes accesses to
3319 * ->active_balance_work. Once set, it's cleared
3320 * only after active load balance is finished.
3321 */
1e3c88bd
PZ
3322 if (!busiest->active_balance) {
3323 busiest->active_balance = 1;
3324 busiest->push_cpu = this_cpu;
3325 active_balance = 1;
3326 }
3327 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 3328
1e3c88bd 3329 if (active_balance)
969c7921
TH
3330 stop_one_cpu_nowait(cpu_of(busiest),
3331 active_load_balance_cpu_stop, busiest,
3332 &busiest->active_balance_work);
1e3c88bd
PZ
3333
3334 /*
3335 * We've kicked active balancing, reset the failure
3336 * counter.
3337 */
3338 sd->nr_balance_failed = sd->cache_nice_tries+1;
3339 }
3340 } else
3341 sd->nr_balance_failed = 0;
3342
3343 if (likely(!active_balance)) {
3344 /* We were unbalanced, so reset the balancing interval */
3345 sd->balance_interval = sd->min_interval;
3346 } else {
3347 /*
3348 * If we've begun active balancing, start to back off. This
3349 * case may not be covered by the all_pinned logic if there
3350 * is only 1 task on the busy runqueue (because we don't call
3351 * move_tasks).
3352 */
3353 if (sd->balance_interval < sd->max_interval)
3354 sd->balance_interval *= 2;
3355 }
3356
3357 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3358 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3359 ld_moved = -1;
3360
3361 goto out;
3362
3363out_balanced:
3364 schedstat_inc(sd, lb_balanced[idle]);
3365
3366 sd->nr_balance_failed = 0;
3367
3368out_one_pinned:
3369 /* tune up the balancing interval */
3370 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3371 (sd->balance_interval < sd->max_interval))
3372 sd->balance_interval *= 2;
3373
3374 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3375 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3376 ld_moved = -1;
3377 else
3378 ld_moved = 0;
3379out:
1e3c88bd
PZ
3380 return ld_moved;
3381}
3382
1e3c88bd
PZ
3383/*
3384 * idle_balance is called by schedule() if this_cpu is about to become
3385 * idle. Attempts to pull tasks from other CPUs.
3386 */
3387static void idle_balance(int this_cpu, struct rq *this_rq)
3388{
3389 struct sched_domain *sd;
3390 int pulled_task = 0;
3391 unsigned long next_balance = jiffies + HZ;
3392
3393 this_rq->idle_stamp = this_rq->clock;
3394
3395 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3396 return;
3397
f492e12e
PZ
3398 /*
3399 * Drop the rq->lock, but keep IRQ/preempt disabled.
3400 */
3401 raw_spin_unlock(&this_rq->lock);
3402
c66eaf61 3403 update_shares(this_cpu);
1e3c88bd
PZ
3404 for_each_domain(this_cpu, sd) {
3405 unsigned long interval;
f492e12e 3406 int balance = 1;
1e3c88bd
PZ
3407
3408 if (!(sd->flags & SD_LOAD_BALANCE))
3409 continue;
3410
f492e12e 3411 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 3412 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
3413 pulled_task = load_balance(this_cpu, this_rq,
3414 sd, CPU_NEWLY_IDLE, &balance);
3415 }
1e3c88bd
PZ
3416
3417 interval = msecs_to_jiffies(sd->balance_interval);
3418 if (time_after(next_balance, sd->last_balance + interval))
3419 next_balance = sd->last_balance + interval;
d5ad140b
NR
3420 if (pulled_task) {
3421 this_rq->idle_stamp = 0;
1e3c88bd 3422 break;
d5ad140b 3423 }
1e3c88bd 3424 }
f492e12e
PZ
3425
3426 raw_spin_lock(&this_rq->lock);
3427
1e3c88bd
PZ
3428 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3429 /*
3430 * We are going idle. next_balance may be set based on
3431 * a busy processor. So reset next_balance.
3432 */
3433 this_rq->next_balance = next_balance;
3434 }
3435}
3436
3437/*
969c7921
TH
3438 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3439 * running tasks off the busiest CPU onto idle CPUs. It requires at
3440 * least 1 task to be running on each physical CPU where possible, and
3441 * avoids physical / logical imbalances.
1e3c88bd 3442 */
969c7921 3443static int active_load_balance_cpu_stop(void *data)
1e3c88bd 3444{
969c7921
TH
3445 struct rq *busiest_rq = data;
3446 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 3447 int target_cpu = busiest_rq->push_cpu;
969c7921 3448 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 3449 struct sched_domain *sd;
969c7921
TH
3450
3451 raw_spin_lock_irq(&busiest_rq->lock);
3452
3453 /* make sure the requested cpu hasn't gone down in the meantime */
3454 if (unlikely(busiest_cpu != smp_processor_id() ||
3455 !busiest_rq->active_balance))
3456 goto out_unlock;
1e3c88bd
PZ
3457
3458 /* Is there any task to move? */
3459 if (busiest_rq->nr_running <= 1)
969c7921 3460 goto out_unlock;
1e3c88bd
PZ
3461
3462 /*
3463 * This condition is "impossible", if it occurs
3464 * we need to fix it. Originally reported by
3465 * Bjorn Helgaas on a 128-cpu setup.
3466 */
3467 BUG_ON(busiest_rq == target_rq);
3468
3469 /* move a task from busiest_rq to target_rq */
3470 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
3471
3472 /* Search for an sd spanning us and the target CPU. */
3473 for_each_domain(target_cpu, sd) {
3474 if ((sd->flags & SD_LOAD_BALANCE) &&
3475 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3476 break;
3477 }
3478
3479 if (likely(sd)) {
3480 schedstat_inc(sd, alb_count);
3481
3482 if (move_one_task(target_rq, target_cpu, busiest_rq,
3483 sd, CPU_IDLE))
3484 schedstat_inc(sd, alb_pushed);
3485 else
3486 schedstat_inc(sd, alb_failed);
3487 }
3488 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
3489out_unlock:
3490 busiest_rq->active_balance = 0;
3491 raw_spin_unlock_irq(&busiest_rq->lock);
3492 return 0;
1e3c88bd
PZ
3493}
3494
3495#ifdef CONFIG_NO_HZ
83cd4fe2
VP
3496
3497static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3498
3499static void trigger_sched_softirq(void *data)
3500{
3501 raise_softirq_irqoff(SCHED_SOFTIRQ);
3502}
3503
3504static inline void init_sched_softirq_csd(struct call_single_data *csd)
3505{
3506 csd->func = trigger_sched_softirq;
3507 csd->info = NULL;
3508 csd->flags = 0;
3509 csd->priv = 0;
3510}
3511
3512/*
3513 * idle load balancing details
3514 * - One of the idle CPUs nominates itself as idle load_balancer, while
3515 * entering idle.
3516 * - This idle load balancer CPU will also go into tickless mode when
3517 * it is idle, just like all other idle CPUs
3518 * - When one of the busy CPUs notice that there may be an idle rebalancing
3519 * needed, they will kick the idle load balancer, which then does idle
3520 * load balancing for all the idle CPUs.
3521 */
1e3c88bd
PZ
3522static struct {
3523 atomic_t load_balancer;
83cd4fe2
VP
3524 atomic_t first_pick_cpu;
3525 atomic_t second_pick_cpu;
3526 cpumask_var_t idle_cpus_mask;
3527 cpumask_var_t grp_idle_mask;
3528 unsigned long next_balance; /* in jiffy units */
3529} nohz ____cacheline_aligned;
1e3c88bd
PZ
3530
3531int get_nohz_load_balancer(void)
3532{
3533 return atomic_read(&nohz.load_balancer);
3534}
3535
3536#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3537/**
3538 * lowest_flag_domain - Return lowest sched_domain containing flag.
3539 * @cpu: The cpu whose lowest level of sched domain is to
3540 * be returned.
3541 * @flag: The flag to check for the lowest sched_domain
3542 * for the given cpu.
3543 *
3544 * Returns the lowest sched_domain of a cpu which contains the given flag.
3545 */
3546static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3547{
3548 struct sched_domain *sd;
3549
3550 for_each_domain(cpu, sd)
3551 if (sd && (sd->flags & flag))
3552 break;
3553
3554 return sd;
3555}
3556
3557/**
3558 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3559 * @cpu: The cpu whose domains we're iterating over.
3560 * @sd: variable holding the value of the power_savings_sd
3561 * for cpu.
3562 * @flag: The flag to filter the sched_domains to be iterated.
3563 *
3564 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3565 * set, starting from the lowest sched_domain to the highest.
3566 */
3567#define for_each_flag_domain(cpu, sd, flag) \
3568 for (sd = lowest_flag_domain(cpu, flag); \
3569 (sd && (sd->flags & flag)); sd = sd->parent)
3570
3571/**
3572 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3573 * @ilb_group: group to be checked for semi-idleness
3574 *
3575 * Returns: 1 if the group is semi-idle. 0 otherwise.
3576 *
3577 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3578 * and atleast one non-idle CPU. This helper function checks if the given
3579 * sched_group is semi-idle or not.
3580 */
3581static inline int is_semi_idle_group(struct sched_group *ilb_group)
3582{
83cd4fe2 3583 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
1e3c88bd
PZ
3584 sched_group_cpus(ilb_group));
3585
3586 /*
3587 * A sched_group is semi-idle when it has atleast one busy cpu
3588 * and atleast one idle cpu.
3589 */
83cd4fe2 3590 if (cpumask_empty(nohz.grp_idle_mask))
1e3c88bd
PZ
3591 return 0;
3592
83cd4fe2 3593 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
1e3c88bd
PZ
3594 return 0;
3595
3596 return 1;
3597}
3598/**
3599 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3600 * @cpu: The cpu which is nominating a new idle_load_balancer.
3601 *
3602 * Returns: Returns the id of the idle load balancer if it exists,
3603 * Else, returns >= nr_cpu_ids.
3604 *
3605 * This algorithm picks the idle load balancer such that it belongs to a
3606 * semi-idle powersavings sched_domain. The idea is to try and avoid
3607 * completely idle packages/cores just for the purpose of idle load balancing
3608 * when there are other idle cpu's which are better suited for that job.
3609 */
3610static int find_new_ilb(int cpu)
3611{
3612 struct sched_domain *sd;
3613 struct sched_group *ilb_group;
3614
3615 /*
3616 * Have idle load balancer selection from semi-idle packages only
3617 * when power-aware load balancing is enabled
3618 */
3619 if (!(sched_smt_power_savings || sched_mc_power_savings))
3620 goto out_done;
3621
3622 /*
3623 * Optimize for the case when we have no idle CPUs or only one
3624 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3625 */
83cd4fe2 3626 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
1e3c88bd
PZ
3627 goto out_done;
3628
3629 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3630 ilb_group = sd->groups;
3631
3632 do {
3633 if (is_semi_idle_group(ilb_group))
83cd4fe2 3634 return cpumask_first(nohz.grp_idle_mask);
1e3c88bd
PZ
3635
3636 ilb_group = ilb_group->next;
3637
3638 } while (ilb_group != sd->groups);
3639 }
3640
3641out_done:
83cd4fe2 3642 return nr_cpu_ids;
1e3c88bd
PZ
3643}
3644#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3645static inline int find_new_ilb(int call_cpu)
3646{
83cd4fe2 3647 return nr_cpu_ids;
1e3c88bd
PZ
3648}
3649#endif
3650
83cd4fe2
VP
3651/*
3652 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3653 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3654 * CPU (if there is one).
3655 */
3656static void nohz_balancer_kick(int cpu)
3657{
3658 int ilb_cpu;
3659
3660 nohz.next_balance++;
3661
3662 ilb_cpu = get_nohz_load_balancer();
3663
3664 if (ilb_cpu >= nr_cpu_ids) {
3665 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3666 if (ilb_cpu >= nr_cpu_ids)
3667 return;
3668 }
3669
3670 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3671 struct call_single_data *cp;
3672
3673 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3674 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3675 __smp_call_function_single(ilb_cpu, cp, 0);
3676 }
3677 return;
3678}
3679
1e3c88bd
PZ
3680/*
3681 * This routine will try to nominate the ilb (idle load balancing)
3682 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
83cd4fe2 3683 * load balancing on behalf of all those cpus.
1e3c88bd 3684 *
83cd4fe2
VP
3685 * When the ilb owner becomes busy, we will not have new ilb owner until some
3686 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3687 * idle load balancing by kicking one of the idle CPUs.
1e3c88bd 3688 *
83cd4fe2
VP
3689 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3690 * ilb owner CPU in future (when there is a need for idle load balancing on
3691 * behalf of all idle CPUs).
1e3c88bd 3692 */
83cd4fe2 3693void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
3694{
3695 int cpu = smp_processor_id();
3696
3697 if (stop_tick) {
1e3c88bd
PZ
3698 if (!cpu_active(cpu)) {
3699 if (atomic_read(&nohz.load_balancer) != cpu)
83cd4fe2 3700 return;
1e3c88bd
PZ
3701
3702 /*
3703 * If we are going offline and still the leader,
3704 * give up!
3705 */
83cd4fe2
VP
3706 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3707 nr_cpu_ids) != cpu)
1e3c88bd
PZ
3708 BUG();
3709
83cd4fe2 3710 return;
1e3c88bd
PZ
3711 }
3712
83cd4fe2 3713 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd 3714
83cd4fe2
VP
3715 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3716 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3717 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3718 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
1e3c88bd 3719
83cd4fe2 3720 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
1e3c88bd
PZ
3721 int new_ilb;
3722
83cd4fe2
VP
3723 /* make me the ilb owner */
3724 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3725 cpu) != nr_cpu_ids)
3726 return;
3727
1e3c88bd
PZ
3728 /*
3729 * Check to see if there is a more power-efficient
3730 * ilb.
3731 */
3732 new_ilb = find_new_ilb(cpu);
3733 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
83cd4fe2 3734 atomic_set(&nohz.load_balancer, nr_cpu_ids);
1e3c88bd 3735 resched_cpu(new_ilb);
83cd4fe2 3736 return;
1e3c88bd 3737 }
83cd4fe2 3738 return;
1e3c88bd
PZ
3739 }
3740 } else {
83cd4fe2
VP
3741 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3742 return;
1e3c88bd 3743
83cd4fe2 3744 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd
PZ
3745
3746 if (atomic_read(&nohz.load_balancer) == cpu)
83cd4fe2
VP
3747 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3748 nr_cpu_ids) != cpu)
1e3c88bd
PZ
3749 BUG();
3750 }
83cd4fe2 3751 return;
1e3c88bd
PZ
3752}
3753#endif
3754
3755static DEFINE_SPINLOCK(balancing);
3756
3757/*
3758 * It checks each scheduling domain to see if it is due to be balanced,
3759 * and initiates a balancing operation if so.
3760 *
3761 * Balancing parameters are set up in arch_init_sched_domains.
3762 */
3763static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3764{
3765 int balance = 1;
3766 struct rq *rq = cpu_rq(cpu);
3767 unsigned long interval;
3768 struct sched_domain *sd;
3769 /* Earliest time when we have to do rebalance again */
3770 unsigned long next_balance = jiffies + 60*HZ;
3771 int update_next_balance = 0;
3772 int need_serialize;
3773
2069dd75
PZ
3774 update_shares(cpu);
3775
1e3c88bd
PZ
3776 for_each_domain(cpu, sd) {
3777 if (!(sd->flags & SD_LOAD_BALANCE))
3778 continue;
3779
3780 interval = sd->balance_interval;
3781 if (idle != CPU_IDLE)
3782 interval *= sd->busy_factor;
3783
3784 /* scale ms to jiffies */
3785 interval = msecs_to_jiffies(interval);
3786 if (unlikely(!interval))
3787 interval = 1;
3788 if (interval > HZ*NR_CPUS/10)
3789 interval = HZ*NR_CPUS/10;
3790
3791 need_serialize = sd->flags & SD_SERIALIZE;
3792
3793 if (need_serialize) {
3794 if (!spin_trylock(&balancing))
3795 goto out;
3796 }
3797
3798 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3799 if (load_balance(cpu, rq, sd, idle, &balance)) {
3800 /*
3801 * We've pulled tasks over so either we're no
3802 * longer idle, or one of our SMT siblings is
3803 * not idle.
3804 */
3805 idle = CPU_NOT_IDLE;
3806 }
3807 sd->last_balance = jiffies;
3808 }
3809 if (need_serialize)
3810 spin_unlock(&balancing);
3811out:
3812 if (time_after(next_balance, sd->last_balance + interval)) {
3813 next_balance = sd->last_balance + interval;
3814 update_next_balance = 1;
3815 }
3816
3817 /*
3818 * Stop the load balance at this level. There is another
3819 * CPU in our sched group which is doing load balancing more
3820 * actively.
3821 */
3822 if (!balance)
3823 break;
3824 }
3825
3826 /*
3827 * next_balance will be updated only when there is a need.
3828 * When the cpu is attached to null domain for ex, it will not be
3829 * updated.
3830 */
3831 if (likely(update_next_balance))
3832 rq->next_balance = next_balance;
3833}
3834
83cd4fe2 3835#ifdef CONFIG_NO_HZ
1e3c88bd 3836/*
83cd4fe2 3837 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
3838 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3839 */
83cd4fe2
VP
3840static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3841{
3842 struct rq *this_rq = cpu_rq(this_cpu);
3843 struct rq *rq;
3844 int balance_cpu;
3845
3846 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3847 return;
3848
3849 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3850 if (balance_cpu == this_cpu)
3851 continue;
3852
3853 /*
3854 * If this cpu gets work to do, stop the load balancing
3855 * work being done for other cpus. Next load
3856 * balancing owner will pick it up.
3857 */
3858 if (need_resched()) {
3859 this_rq->nohz_balance_kick = 0;
3860 break;
3861 }
3862
3863 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 3864 update_rq_clock(this_rq);
83cd4fe2
VP
3865 update_cpu_load(this_rq);
3866 raw_spin_unlock_irq(&this_rq->lock);
3867
3868 rebalance_domains(balance_cpu, CPU_IDLE);
3869
3870 rq = cpu_rq(balance_cpu);
3871 if (time_after(this_rq->next_balance, rq->next_balance))
3872 this_rq->next_balance = rq->next_balance;
3873 }
3874 nohz.next_balance = this_rq->next_balance;
3875 this_rq->nohz_balance_kick = 0;
3876}
3877
3878/*
3879 * Current heuristic for kicking the idle load balancer
3880 * - first_pick_cpu is the one of the busy CPUs. It will kick
3881 * idle load balancer when it has more than one process active. This
3882 * eliminates the need for idle load balancing altogether when we have
3883 * only one running process in the system (common case).
3884 * - If there are more than one busy CPU, idle load balancer may have
3885 * to run for active_load_balance to happen (i.e., two busy CPUs are
3886 * SMT or core siblings and can run better if they move to different
3887 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3888 * which will kick idle load balancer as soon as it has any load.
3889 */
3890static inline int nohz_kick_needed(struct rq *rq, int cpu)
3891{
3892 unsigned long now = jiffies;
3893 int ret;
3894 int first_pick_cpu, second_pick_cpu;
3895
3896 if (time_before(now, nohz.next_balance))
3897 return 0;
3898
f6c3f168 3899 if (rq->idle_at_tick)
83cd4fe2
VP
3900 return 0;
3901
3902 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3903 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3904
3905 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3906 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3907 return 0;
3908
3909 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3910 if (ret == nr_cpu_ids || ret == cpu) {
3911 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3912 if (rq->nr_running > 1)
3913 return 1;
3914 } else {
3915 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3916 if (ret == nr_cpu_ids || ret == cpu) {
3917 if (rq->nr_running)
3918 return 1;
3919 }
3920 }
3921 return 0;
3922}
3923#else
3924static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3925#endif
3926
3927/*
3928 * run_rebalance_domains is triggered when needed from the scheduler tick.
3929 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
3930 */
1e3c88bd
PZ
3931static void run_rebalance_domains(struct softirq_action *h)
3932{
3933 int this_cpu = smp_processor_id();
3934 struct rq *this_rq = cpu_rq(this_cpu);
3935 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3936 CPU_IDLE : CPU_NOT_IDLE;
3937
3938 rebalance_domains(this_cpu, idle);
3939
1e3c88bd 3940 /*
83cd4fe2 3941 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
3942 * balancing on behalf of the other idle cpus whose ticks are
3943 * stopped.
3944 */
83cd4fe2 3945 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
3946}
3947
3948static inline int on_null_domain(int cpu)
3949{
90a6501f 3950 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
3951}
3952
3953/*
3954 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd
PZ
3955 */
3956static inline void trigger_load_balance(struct rq *rq, int cpu)
3957{
1e3c88bd
PZ
3958 /* Don't need to rebalance while attached to NULL domain */
3959 if (time_after_eq(jiffies, rq->next_balance) &&
3960 likely(!on_null_domain(cpu)))
3961 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2
VP
3962#ifdef CONFIG_NO_HZ
3963 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
3964 nohz_balancer_kick(cpu);
3965#endif
1e3c88bd
PZ
3966}
3967
0bcdcf28
CE
3968static void rq_online_fair(struct rq *rq)
3969{
3970 update_sysctl();
3971}
3972
3973static void rq_offline_fair(struct rq *rq)
3974{
3975 update_sysctl();
3976}
3977
1e3c88bd
PZ
3978#else /* CONFIG_SMP */
3979
3980/*
3981 * on UP we do not need to balance between CPUs:
3982 */
3983static inline void idle_balance(int cpu, struct rq *rq)
3984{
3985}
3986
55e12e5e 3987#endif /* CONFIG_SMP */
e1d1484f 3988
bf0f6f24
IM
3989/*
3990 * scheduler tick hitting a task of our scheduling class:
3991 */
8f4d37ec 3992static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
3993{
3994 struct cfs_rq *cfs_rq;
3995 struct sched_entity *se = &curr->se;
3996
3997 for_each_sched_entity(se) {
3998 cfs_rq = cfs_rq_of(se);
8f4d37ec 3999 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
4000 }
4001}
4002
4003/*
cd29fe6f
PZ
4004 * called on fork with the child task as argument from the parent's context
4005 * - child not yet on the tasklist
4006 * - preemption disabled
bf0f6f24 4007 */
cd29fe6f 4008static void task_fork_fair(struct task_struct *p)
bf0f6f24 4009{
cd29fe6f 4010 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 4011 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 4012 int this_cpu = smp_processor_id();
cd29fe6f
PZ
4013 struct rq *rq = this_rq();
4014 unsigned long flags;
4015
05fa785c 4016 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 4017
861d034e
PZ
4018 update_rq_clock(rq);
4019
b0a0f667
PM
4020 if (unlikely(task_cpu(p) != this_cpu)) {
4021 rcu_read_lock();
cd29fe6f 4022 __set_task_cpu(p, this_cpu);
b0a0f667
PM
4023 rcu_read_unlock();
4024 }
bf0f6f24 4025
7109c442 4026 update_curr(cfs_rq);
cd29fe6f 4027
b5d9d734
MG
4028 if (curr)
4029 se->vruntime = curr->vruntime;
aeb73b04 4030 place_entity(cfs_rq, se, 1);
4d78e7b6 4031
cd29fe6f 4032 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 4033 /*
edcb60a3
IM
4034 * Upon rescheduling, sched_class::put_prev_task() will place
4035 * 'current' within the tree based on its new key value.
4036 */
4d78e7b6 4037 swap(curr->vruntime, se->vruntime);
aec0a514 4038 resched_task(rq->curr);
4d78e7b6 4039 }
bf0f6f24 4040
88ec22d3
PZ
4041 se->vruntime -= cfs_rq->min_vruntime;
4042
05fa785c 4043 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
4044}
4045
cb469845
SR
4046/*
4047 * Priority of the task has changed. Check to see if we preempt
4048 * the current task.
4049 */
4050static void prio_changed_fair(struct rq *rq, struct task_struct *p,
4051 int oldprio, int running)
4052{
4053 /*
4054 * Reschedule if we are currently running on this runqueue and
4055 * our priority decreased, or if we are not currently running on
4056 * this runqueue and our priority is higher than the current's
4057 */
4058 if (running) {
4059 if (p->prio > oldprio)
4060 resched_task(rq->curr);
4061 } else
15afe09b 4062 check_preempt_curr(rq, p, 0);
cb469845
SR
4063}
4064
4065/*
4066 * We switched to the sched_fair class.
4067 */
4068static void switched_to_fair(struct rq *rq, struct task_struct *p,
4069 int running)
4070{
4071 /*
4072 * We were most likely switched from sched_rt, so
4073 * kick off the schedule if running, otherwise just see
4074 * if we can still preempt the current task.
4075 */
4076 if (running)
4077 resched_task(rq->curr);
4078 else
15afe09b 4079 check_preempt_curr(rq, p, 0);
cb469845
SR
4080}
4081
83b699ed
SV
4082/* Account for a task changing its policy or group.
4083 *
4084 * This routine is mostly called to set cfs_rq->curr field when a task
4085 * migrates between groups/classes.
4086 */
4087static void set_curr_task_fair(struct rq *rq)
4088{
4089 struct sched_entity *se = &rq->curr->se;
4090
4091 for_each_sched_entity(se)
4092 set_next_entity(cfs_rq_of(se), se);
4093}
4094
810b3817 4095#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4096static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 4097{
b2b5ce02
PZ
4098 /*
4099 * If the task was not on the rq at the time of this cgroup movement
4100 * it must have been asleep, sleeping tasks keep their ->vruntime
4101 * absolute on their old rq until wakeup (needed for the fair sleeper
4102 * bonus in place_entity()).
4103 *
4104 * If it was on the rq, we've just 'preempted' it, which does convert
4105 * ->vruntime to a relative base.
4106 *
4107 * Make sure both cases convert their relative position when migrating
4108 * to another cgroup's rq. This does somewhat interfere with the
4109 * fair sleeper stuff for the first placement, but who cares.
4110 */
4111 if (!on_rq)
4112 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4113 set_task_rq(p, task_cpu(p));
88ec22d3 4114 if (!on_rq)
b2b5ce02 4115 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817
PZ
4116}
4117#endif
4118
6d686f45 4119static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
4120{
4121 struct sched_entity *se = &task->se;
0d721cea
PW
4122 unsigned int rr_interval = 0;
4123
4124 /*
4125 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4126 * idle runqueue:
4127 */
0d721cea
PW
4128 if (rq->cfs.load.weight)
4129 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
4130
4131 return rr_interval;
4132}
4133
bf0f6f24
IM
4134/*
4135 * All the scheduling class methods:
4136 */
5522d5d5
IM
4137static const struct sched_class fair_sched_class = {
4138 .next = &idle_sched_class,
bf0f6f24
IM
4139 .enqueue_task = enqueue_task_fair,
4140 .dequeue_task = dequeue_task_fair,
4141 .yield_task = yield_task_fair,
4142
2e09bf55 4143 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
4144
4145 .pick_next_task = pick_next_task_fair,
4146 .put_prev_task = put_prev_task_fair,
4147
681f3e68 4148#ifdef CONFIG_SMP
4ce72a2c
LZ
4149 .select_task_rq = select_task_rq_fair,
4150
0bcdcf28
CE
4151 .rq_online = rq_online_fair,
4152 .rq_offline = rq_offline_fair,
88ec22d3
PZ
4153
4154 .task_waking = task_waking_fair,
681f3e68 4155#endif
bf0f6f24 4156
83b699ed 4157 .set_curr_task = set_curr_task_fair,
bf0f6f24 4158 .task_tick = task_tick_fair,
cd29fe6f 4159 .task_fork = task_fork_fair,
cb469845
SR
4160
4161 .prio_changed = prio_changed_fair,
4162 .switched_to = switched_to_fair,
810b3817 4163
0d721cea
PW
4164 .get_rr_interval = get_rr_interval_fair,
4165
810b3817 4166#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4167 .task_move_group = task_move_group_fair,
810b3817 4168#endif
bf0f6f24
IM
4169};
4170
4171#ifdef CONFIG_SCHED_DEBUG
5cef9eca 4172static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 4173{
bf0f6f24
IM
4174 struct cfs_rq *cfs_rq;
4175
5973e5b9 4176 rcu_read_lock();
c3b64f1e 4177 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 4178 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 4179 rcu_read_unlock();
bf0f6f24
IM
4180}
4181#endif