sched: Remove the sched_class load_balance methods
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
9745512c 25
bf0f6f24 26/*
21805085 27 * Targeted preemption latency for CPU-bound tasks:
172e082a 28 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 37 */
172e082a 38unsigned int sysctl_sched_latency = 5000000ULL;
0bcdcf28 39unsigned int normalized_sysctl_sched_latency = 5000000ULL;
2bd8e6d4 40
1983a922
CE
41/*
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
2bd8e6d4 53/*
b2be5e96 54 * Minimal preemption granularity for CPU-bound tasks:
172e082a 55 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 56 */
172e082a 57unsigned int sysctl_sched_min_granularity = 1000000ULL;
0bcdcf28 58unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL;
21805085
PZ
59
60/*
b2be5e96
PZ
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
722aab0c 63static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
64
65/*
2bba22c5 66 * After fork, child runs first. If set to 0 (default) then
b2be5e96 67 * parent will (try to) run first.
21805085 68 */
2bba22c5 69unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 70
1799e35d
IM
71/*
72 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77unsigned int __read_mostly sysctl_sched_compat_yield;
78
bf0f6f24
IM
79/*
80 * SCHED_OTHER wake-up granularity.
172e082a 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
172e082a 87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 89
da84d961
IM
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
a4c2f00f
PZ
92static const struct sched_class fair_sched_class;
93
bf0f6f24
IM
94/**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
62160e3f 98#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 99
62160e3f 100/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
101static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102{
62160e3f 103 return cfs_rq->rq;
bf0f6f24
IM
104}
105
62160e3f
IM
106/* An entity is a task if it doesn't "own" a runqueue */
107#define entity_is_task(se) (!se->my_q)
bf0f6f24 108
8f48894f
PZ
109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111#ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113#endif
114 return container_of(se, struct task_struct, se);
115}
116
b758149c
PZ
117/* Walk up scheduling entities hierarchy */
118#define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
120
121static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122{
123 return p->se.cfs_rq;
124}
125
126/* runqueue on which this entity is (to be) queued */
127static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128{
129 return se->cfs_rq;
130}
131
132/* runqueue "owned" by this group */
133static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134{
135 return grp->my_q;
136}
137
138/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
140 */
141static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142{
143 return cfs_rq->tg->cfs_rq[this_cpu];
144}
145
146/* Iterate thr' all leaf cfs_rq's on a runqueue */
147#define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
149
150/* Do the two (enqueued) entities belong to the same group ? */
151static inline int
152is_same_group(struct sched_entity *se, struct sched_entity *pse)
153{
154 if (se->cfs_rq == pse->cfs_rq)
155 return 1;
156
157 return 0;
158}
159
160static inline struct sched_entity *parent_entity(struct sched_entity *se)
161{
162 return se->parent;
163}
164
464b7527
PZ
165/* return depth at which a sched entity is present in the hierarchy */
166static inline int depth_se(struct sched_entity *se)
167{
168 int depth = 0;
169
170 for_each_sched_entity(se)
171 depth++;
172
173 return depth;
174}
175
176static void
177find_matching_se(struct sched_entity **se, struct sched_entity **pse)
178{
179 int se_depth, pse_depth;
180
181 /*
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
185 * parent.
186 */
187
188 /* First walk up until both entities are at same depth */
189 se_depth = depth_se(*se);
190 pse_depth = depth_se(*pse);
191
192 while (se_depth > pse_depth) {
193 se_depth--;
194 *se = parent_entity(*se);
195 }
196
197 while (pse_depth > se_depth) {
198 pse_depth--;
199 *pse = parent_entity(*pse);
200 }
201
202 while (!is_same_group(*se, *pse)) {
203 *se = parent_entity(*se);
204 *pse = parent_entity(*pse);
205 }
206}
207
8f48894f
PZ
208#else /* !CONFIG_FAIR_GROUP_SCHED */
209
210static inline struct task_struct *task_of(struct sched_entity *se)
211{
212 return container_of(se, struct task_struct, se);
213}
bf0f6f24 214
62160e3f
IM
215static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
216{
217 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
218}
219
220#define entity_is_task(se) 1
221
b758149c
PZ
222#define for_each_sched_entity(se) \
223 for (; se; se = NULL)
bf0f6f24 224
b758149c 225static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 226{
b758149c 227 return &task_rq(p)->cfs;
bf0f6f24
IM
228}
229
b758149c
PZ
230static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
231{
232 struct task_struct *p = task_of(se);
233 struct rq *rq = task_rq(p);
234
235 return &rq->cfs;
236}
237
238/* runqueue "owned" by this group */
239static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
240{
241 return NULL;
242}
243
244static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
245{
246 return &cpu_rq(this_cpu)->cfs;
247}
248
249#define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
251
252static inline int
253is_same_group(struct sched_entity *se, struct sched_entity *pse)
254{
255 return 1;
256}
257
258static inline struct sched_entity *parent_entity(struct sched_entity *se)
259{
260 return NULL;
261}
262
464b7527
PZ
263static inline void
264find_matching_se(struct sched_entity **se, struct sched_entity **pse)
265{
266}
267
b758149c
PZ
268#endif /* CONFIG_FAIR_GROUP_SCHED */
269
bf0f6f24
IM
270
271/**************************************************************
272 * Scheduling class tree data structure manipulation methods:
273 */
274
0702e3eb 275static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 276{
368059a9
PZ
277 s64 delta = (s64)(vruntime - min_vruntime);
278 if (delta > 0)
02e0431a
PZ
279 min_vruntime = vruntime;
280
281 return min_vruntime;
282}
283
0702e3eb 284static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
285{
286 s64 delta = (s64)(vruntime - min_vruntime);
287 if (delta < 0)
288 min_vruntime = vruntime;
289
290 return min_vruntime;
291}
292
54fdc581
FC
293static inline int entity_before(struct sched_entity *a,
294 struct sched_entity *b)
295{
296 return (s64)(a->vruntime - b->vruntime) < 0;
297}
298
0702e3eb 299static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 300{
30cfdcfc 301 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
302}
303
1af5f730
PZ
304static void update_min_vruntime(struct cfs_rq *cfs_rq)
305{
306 u64 vruntime = cfs_rq->min_vruntime;
307
308 if (cfs_rq->curr)
309 vruntime = cfs_rq->curr->vruntime;
310
311 if (cfs_rq->rb_leftmost) {
312 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313 struct sched_entity,
314 run_node);
315
e17036da 316 if (!cfs_rq->curr)
1af5f730
PZ
317 vruntime = se->vruntime;
318 else
319 vruntime = min_vruntime(vruntime, se->vruntime);
320 }
321
322 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
323}
324
bf0f6f24
IM
325/*
326 * Enqueue an entity into the rb-tree:
327 */
0702e3eb 328static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
329{
330 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331 struct rb_node *parent = NULL;
332 struct sched_entity *entry;
9014623c 333 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
334 int leftmost = 1;
335
336 /*
337 * Find the right place in the rbtree:
338 */
339 while (*link) {
340 parent = *link;
341 entry = rb_entry(parent, struct sched_entity, run_node);
342 /*
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
345 */
9014623c 346 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
347 link = &parent->rb_left;
348 } else {
349 link = &parent->rb_right;
350 leftmost = 0;
351 }
352 }
353
354 /*
355 * Maintain a cache of leftmost tree entries (it is frequently
356 * used):
357 */
1af5f730 358 if (leftmost)
57cb499d 359 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
360
361 rb_link_node(&se->run_node, parent, link);
362 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
363}
364
0702e3eb 365static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 366{
3fe69747
PZ
367 if (cfs_rq->rb_leftmost == &se->run_node) {
368 struct rb_node *next_node;
3fe69747
PZ
369
370 next_node = rb_next(&se->run_node);
371 cfs_rq->rb_leftmost = next_node;
3fe69747 372 }
e9acbff6 373
bf0f6f24 374 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
375}
376
bf0f6f24
IM
377static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
378{
f4b6755f
PZ
379 struct rb_node *left = cfs_rq->rb_leftmost;
380
381 if (!left)
382 return NULL;
383
384 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
385}
386
f4b6755f 387static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 388{
7eee3e67 389 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 390
70eee74b
BS
391 if (!last)
392 return NULL;
7eee3e67
IM
393
394 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
395}
396
bf0f6f24
IM
397/**************************************************************
398 * Scheduling class statistics methods:
399 */
400
b2be5e96 401#ifdef CONFIG_SCHED_DEBUG
acb4a848 402int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 403 void __user *buffer, size_t *lenp,
b2be5e96
PZ
404 loff_t *ppos)
405{
8d65af78 406 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 407 int factor = get_update_sysctl_factor();
b2be5e96
PZ
408
409 if (ret || !write)
410 return ret;
411
412 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
413 sysctl_sched_min_granularity);
414
acb4a848
CE
415#define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity);
418 WRT_SYSCTL(sched_latency);
419 WRT_SYSCTL(sched_wakeup_granularity);
420 WRT_SYSCTL(sched_shares_ratelimit);
421#undef WRT_SYSCTL
422
b2be5e96
PZ
423 return 0;
424}
425#endif
647e7cac 426
a7be37ac 427/*
f9c0b095 428 * delta /= w
a7be37ac
PZ
429 */
430static inline unsigned long
431calc_delta_fair(unsigned long delta, struct sched_entity *se)
432{
f9c0b095
PZ
433 if (unlikely(se->load.weight != NICE_0_LOAD))
434 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
435
436 return delta;
437}
438
647e7cac
IM
439/*
440 * The idea is to set a period in which each task runs once.
441 *
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
444 *
445 * p = (nr <= nl) ? l : l*nr/nl
446 */
4d78e7b6
PZ
447static u64 __sched_period(unsigned long nr_running)
448{
449 u64 period = sysctl_sched_latency;
b2be5e96 450 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
451
452 if (unlikely(nr_running > nr_latency)) {
4bf0b771 453 period = sysctl_sched_min_granularity;
4d78e7b6 454 period *= nr_running;
4d78e7b6
PZ
455 }
456
457 return period;
458}
459
647e7cac
IM
460/*
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
463 *
f9c0b095 464 * s = p*P[w/rw]
647e7cac 465 */
6d0f0ebd 466static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 467{
0a582440 468 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 469
0a582440 470 for_each_sched_entity(se) {
6272d68c 471 struct load_weight *load;
3104bf03 472 struct load_weight lw;
6272d68c
LM
473
474 cfs_rq = cfs_rq_of(se);
475 load = &cfs_rq->load;
f9c0b095 476
0a582440 477 if (unlikely(!se->on_rq)) {
3104bf03 478 lw = cfs_rq->load;
0a582440
MG
479
480 update_load_add(&lw, se->load.weight);
481 load = &lw;
482 }
483 slice = calc_delta_mine(slice, se->load.weight, load);
484 }
485 return slice;
bf0f6f24
IM
486}
487
647e7cac 488/*
ac884dec 489 * We calculate the vruntime slice of a to be inserted task
647e7cac 490 *
f9c0b095 491 * vs = s/w
647e7cac 492 */
f9c0b095 493static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 494{
f9c0b095 495 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
496}
497
bf0f6f24
IM
498/*
499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
501 */
502static inline void
8ebc91d9
IM
503__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
504 unsigned long delta_exec)
bf0f6f24 505{
bbdba7c0 506 unsigned long delta_exec_weighted;
bf0f6f24 507
8179ca23 508 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
509
510 curr->sum_exec_runtime += delta_exec;
7a62eabc 511 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 512 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 513
e9acbff6 514 curr->vruntime += delta_exec_weighted;
1af5f730 515 update_min_vruntime(cfs_rq);
bf0f6f24
IM
516}
517
b7cc0896 518static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 519{
429d43bc 520 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 521 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
522 unsigned long delta_exec;
523
524 if (unlikely(!curr))
525 return;
526
527 /*
528 * Get the amount of time the current task was running
529 * since the last time we changed load (this cannot
530 * overflow on 32 bits):
531 */
8ebc91d9 532 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
533 if (!delta_exec)
534 return;
bf0f6f24 535
8ebc91d9
IM
536 __update_curr(cfs_rq, curr, delta_exec);
537 curr->exec_start = now;
d842de87
SV
538
539 if (entity_is_task(curr)) {
540 struct task_struct *curtask = task_of(curr);
541
f977bb49 542 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 543 cpuacct_charge(curtask, delta_exec);
f06febc9 544 account_group_exec_runtime(curtask, delta_exec);
d842de87 545 }
bf0f6f24
IM
546}
547
548static inline void
5870db5b 549update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 550{
d281918d 551 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
552}
553
bf0f6f24
IM
554/*
555 * Task is being enqueued - update stats:
556 */
d2417e5a 557static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 558{
bf0f6f24
IM
559 /*
560 * Are we enqueueing a waiting task? (for current tasks
561 * a dequeue/enqueue event is a NOP)
562 */
429d43bc 563 if (se != cfs_rq->curr)
5870db5b 564 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
565}
566
bf0f6f24 567static void
9ef0a961 568update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 569{
bbdba7c0
IM
570 schedstat_set(se->wait_max, max(se->wait_max,
571 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
572 schedstat_set(se->wait_count, se->wait_count + 1);
573 schedstat_set(se->wait_sum, se->wait_sum +
574 rq_of(cfs_rq)->clock - se->wait_start);
768d0c27
PZ
575#ifdef CONFIG_SCHEDSTATS
576 if (entity_is_task(se)) {
577 trace_sched_stat_wait(task_of(se),
578 rq_of(cfs_rq)->clock - se->wait_start);
579 }
580#endif
e1f84508 581 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
582}
583
584static inline void
19b6a2e3 585update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 586{
bf0f6f24
IM
587 /*
588 * Mark the end of the wait period if dequeueing a
589 * waiting task:
590 */
429d43bc 591 if (se != cfs_rq->curr)
9ef0a961 592 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
593}
594
595/*
596 * We are picking a new current task - update its stats:
597 */
598static inline void
79303e9e 599update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
600{
601 /*
602 * We are starting a new run period:
603 */
d281918d 604 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
605}
606
bf0f6f24
IM
607/**************************************************
608 * Scheduling class queueing methods:
609 */
610
c09595f6
PZ
611#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
612static void
613add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
614{
615 cfs_rq->task_weight += weight;
616}
617#else
618static inline void
619add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
620{
621}
622#endif
623
30cfdcfc
DA
624static void
625account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
626{
627 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
628 if (!parent_entity(se))
629 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 630 if (entity_is_task(se)) {
c09595f6 631 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
632 list_add(&se->group_node, &cfs_rq->tasks);
633 }
30cfdcfc
DA
634 cfs_rq->nr_running++;
635 se->on_rq = 1;
636}
637
638static void
639account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
640{
641 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
642 if (!parent_entity(se))
643 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 644 if (entity_is_task(se)) {
c09595f6 645 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
646 list_del_init(&se->group_node);
647 }
30cfdcfc
DA
648 cfs_rq->nr_running--;
649 se->on_rq = 0;
650}
651
2396af69 652static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 653{
bf0f6f24 654#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
655 struct task_struct *tsk = NULL;
656
657 if (entity_is_task(se))
658 tsk = task_of(se);
659
bf0f6f24 660 if (se->sleep_start) {
d281918d 661 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
662
663 if ((s64)delta < 0)
664 delta = 0;
665
666 if (unlikely(delta > se->sleep_max))
667 se->sleep_max = delta;
668
669 se->sleep_start = 0;
670 se->sum_sleep_runtime += delta;
9745512c 671
768d0c27 672 if (tsk) {
e414314c 673 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
674 trace_sched_stat_sleep(tsk, delta);
675 }
bf0f6f24
IM
676 }
677 if (se->block_start) {
d281918d 678 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
679
680 if ((s64)delta < 0)
681 delta = 0;
682
683 if (unlikely(delta > se->block_max))
684 se->block_max = delta;
685
686 se->block_start = 0;
687 se->sum_sleep_runtime += delta;
30084fbd 688
e414314c 689 if (tsk) {
8f0dfc34
AV
690 if (tsk->in_iowait) {
691 se->iowait_sum += delta;
692 se->iowait_count++;
768d0c27 693 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
694 }
695
e414314c
PZ
696 /*
697 * Blocking time is in units of nanosecs, so shift by
698 * 20 to get a milliseconds-range estimation of the
699 * amount of time that the task spent sleeping:
700 */
701 if (unlikely(prof_on == SLEEP_PROFILING)) {
702 profile_hits(SLEEP_PROFILING,
703 (void *)get_wchan(tsk),
704 delta >> 20);
705 }
706 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 707 }
bf0f6f24
IM
708 }
709#endif
710}
711
ddc97297
PZ
712static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
713{
714#ifdef CONFIG_SCHED_DEBUG
715 s64 d = se->vruntime - cfs_rq->min_vruntime;
716
717 if (d < 0)
718 d = -d;
719
720 if (d > 3*sysctl_sched_latency)
721 schedstat_inc(cfs_rq, nr_spread_over);
722#endif
723}
724
aeb73b04
PZ
725static void
726place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
727{
1af5f730 728 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 729
2cb8600e
PZ
730 /*
731 * The 'current' period is already promised to the current tasks,
732 * however the extra weight of the new task will slow them down a
733 * little, place the new task so that it fits in the slot that
734 * stays open at the end.
735 */
94dfb5e7 736 if (initial && sched_feat(START_DEBIT))
f9c0b095 737 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 738
a2e7a7eb
MG
739 /* sleeps up to a single latency don't count. */
740 if (!initial && sched_feat(FAIR_SLEEPERS)) {
741 unsigned long thresh = sysctl_sched_latency;
a7be37ac 742
a2e7a7eb
MG
743 /*
744 * Convert the sleeper threshold into virtual time.
745 * SCHED_IDLE is a special sub-class. We care about
746 * fairness only relative to other SCHED_IDLE tasks,
747 * all of which have the same weight.
748 */
749 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
750 task_of(se)->policy != SCHED_IDLE))
751 thresh = calc_delta_fair(thresh, se);
a7be37ac 752
a2e7a7eb
MG
753 /*
754 * Halve their sleep time's effect, to allow
755 * for a gentler effect of sleepers:
756 */
757 if (sched_feat(GENTLE_FAIR_SLEEPERS))
758 thresh >>= 1;
51e0304c 759
a2e7a7eb 760 vruntime -= thresh;
aeb73b04
PZ
761 }
762
b5d9d734
MG
763 /* ensure we never gain time by being placed backwards. */
764 vruntime = max_vruntime(se->vruntime, vruntime);
765
67e9fb2a 766 se->vruntime = vruntime;
aeb73b04
PZ
767}
768
88ec22d3
PZ
769#define ENQUEUE_WAKEUP 1
770#define ENQUEUE_MIGRATE 2
771
bf0f6f24 772static void
88ec22d3 773enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 774{
88ec22d3
PZ
775 /*
776 * Update the normalized vruntime before updating min_vruntime
777 * through callig update_curr().
778 */
779 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE))
780 se->vruntime += cfs_rq->min_vruntime;
781
bf0f6f24 782 /*
a2a2d680 783 * Update run-time statistics of the 'current'.
bf0f6f24 784 */
b7cc0896 785 update_curr(cfs_rq);
a992241d 786 account_entity_enqueue(cfs_rq, se);
bf0f6f24 787
88ec22d3 788 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 789 place_entity(cfs_rq, se, 0);
2396af69 790 enqueue_sleeper(cfs_rq, se);
e9acbff6 791 }
bf0f6f24 792
d2417e5a 793 update_stats_enqueue(cfs_rq, se);
ddc97297 794 check_spread(cfs_rq, se);
83b699ed
SV
795 if (se != cfs_rq->curr)
796 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
797}
798
a571bbea 799static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2002c695 800{
de69a80b 801 if (!se || cfs_rq->last == se)
2002c695
PZ
802 cfs_rq->last = NULL;
803
de69a80b 804 if (!se || cfs_rq->next == se)
2002c695
PZ
805 cfs_rq->next = NULL;
806}
807
a571bbea
PZ
808static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
809{
810 for_each_sched_entity(se)
811 __clear_buddies(cfs_rq_of(se), se);
812}
813
bf0f6f24 814static void
525c2716 815dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 816{
a2a2d680
DA
817 /*
818 * Update run-time statistics of the 'current'.
819 */
820 update_curr(cfs_rq);
821
19b6a2e3 822 update_stats_dequeue(cfs_rq, se);
db36cc7d 823 if (sleep) {
67e9fb2a 824#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
825 if (entity_is_task(se)) {
826 struct task_struct *tsk = task_of(se);
827
828 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 829 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 830 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 831 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 832 }
db36cc7d 833#endif
67e9fb2a
PZ
834 }
835
2002c695 836 clear_buddies(cfs_rq, se);
4793241b 837
83b699ed 838 if (se != cfs_rq->curr)
30cfdcfc
DA
839 __dequeue_entity(cfs_rq, se);
840 account_entity_dequeue(cfs_rq, se);
1af5f730 841 update_min_vruntime(cfs_rq);
88ec22d3
PZ
842
843 /*
844 * Normalize the entity after updating the min_vruntime because the
845 * update can refer to the ->curr item and we need to reflect this
846 * movement in our normalized position.
847 */
848 if (!sleep)
849 se->vruntime -= cfs_rq->min_vruntime;
bf0f6f24
IM
850}
851
852/*
853 * Preempt the current task with a newly woken task if needed:
854 */
7c92e54f 855static void
2e09bf55 856check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 857{
11697830
PZ
858 unsigned long ideal_runtime, delta_exec;
859
6d0f0ebd 860 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 861 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 862 if (delta_exec > ideal_runtime) {
bf0f6f24 863 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
864 /*
865 * The current task ran long enough, ensure it doesn't get
866 * re-elected due to buddy favours.
867 */
868 clear_buddies(cfs_rq, curr);
f685ceac
MG
869 return;
870 }
871
872 /*
873 * Ensure that a task that missed wakeup preemption by a
874 * narrow margin doesn't have to wait for a full slice.
875 * This also mitigates buddy induced latencies under load.
876 */
877 if (!sched_feat(WAKEUP_PREEMPT))
878 return;
879
880 if (delta_exec < sysctl_sched_min_granularity)
881 return;
882
883 if (cfs_rq->nr_running > 1) {
884 struct sched_entity *se = __pick_next_entity(cfs_rq);
885 s64 delta = curr->vruntime - se->vruntime;
886
887 if (delta > ideal_runtime)
888 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5 889 }
bf0f6f24
IM
890}
891
83b699ed 892static void
8494f412 893set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 894{
83b699ed
SV
895 /* 'current' is not kept within the tree. */
896 if (se->on_rq) {
897 /*
898 * Any task has to be enqueued before it get to execute on
899 * a CPU. So account for the time it spent waiting on the
900 * runqueue.
901 */
902 update_stats_wait_end(cfs_rq, se);
903 __dequeue_entity(cfs_rq, se);
904 }
905
79303e9e 906 update_stats_curr_start(cfs_rq, se);
429d43bc 907 cfs_rq->curr = se;
eba1ed4b
IM
908#ifdef CONFIG_SCHEDSTATS
909 /*
910 * Track our maximum slice length, if the CPU's load is at
911 * least twice that of our own weight (i.e. dont track it
912 * when there are only lesser-weight tasks around):
913 */
495eca49 914 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
915 se->slice_max = max(se->slice_max,
916 se->sum_exec_runtime - se->prev_sum_exec_runtime);
917 }
918#endif
4a55b450 919 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
920}
921
3f3a4904
PZ
922static int
923wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
924
f4b6755f 925static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 926{
f4b6755f 927 struct sched_entity *se = __pick_next_entity(cfs_rq);
f685ceac 928 struct sched_entity *left = se;
f4b6755f 929
f685ceac
MG
930 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
931 se = cfs_rq->next;
aa2ac252 932
f685ceac
MG
933 /*
934 * Prefer last buddy, try to return the CPU to a preempted task.
935 */
936 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
937 se = cfs_rq->last;
938
939 clear_buddies(cfs_rq, se);
4793241b
PZ
940
941 return se;
aa2ac252
PZ
942}
943
ab6cde26 944static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
945{
946 /*
947 * If still on the runqueue then deactivate_task()
948 * was not called and update_curr() has to be done:
949 */
950 if (prev->on_rq)
b7cc0896 951 update_curr(cfs_rq);
bf0f6f24 952
ddc97297 953 check_spread(cfs_rq, prev);
30cfdcfc 954 if (prev->on_rq) {
5870db5b 955 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
956 /* Put 'current' back into the tree. */
957 __enqueue_entity(cfs_rq, prev);
958 }
429d43bc 959 cfs_rq->curr = NULL;
bf0f6f24
IM
960}
961
8f4d37ec
PZ
962static void
963entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 964{
bf0f6f24 965 /*
30cfdcfc 966 * Update run-time statistics of the 'current'.
bf0f6f24 967 */
30cfdcfc 968 update_curr(cfs_rq);
bf0f6f24 969
8f4d37ec
PZ
970#ifdef CONFIG_SCHED_HRTICK
971 /*
972 * queued ticks are scheduled to match the slice, so don't bother
973 * validating it and just reschedule.
974 */
983ed7a6
HH
975 if (queued) {
976 resched_task(rq_of(cfs_rq)->curr);
977 return;
978 }
8f4d37ec
PZ
979 /*
980 * don't let the period tick interfere with the hrtick preemption
981 */
982 if (!sched_feat(DOUBLE_TICK) &&
983 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
984 return;
985#endif
986
ce6c1311 987 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 988 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
989}
990
991/**************************************************
992 * CFS operations on tasks:
993 */
994
8f4d37ec
PZ
995#ifdef CONFIG_SCHED_HRTICK
996static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
997{
8f4d37ec
PZ
998 struct sched_entity *se = &p->se;
999 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1000
1001 WARN_ON(task_rq(p) != rq);
1002
1003 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1004 u64 slice = sched_slice(cfs_rq, se);
1005 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1006 s64 delta = slice - ran;
1007
1008 if (delta < 0) {
1009 if (rq->curr == p)
1010 resched_task(p);
1011 return;
1012 }
1013
1014 /*
1015 * Don't schedule slices shorter than 10000ns, that just
1016 * doesn't make sense. Rely on vruntime for fairness.
1017 */
31656519 1018 if (rq->curr != p)
157124c1 1019 delta = max_t(s64, 10000LL, delta);
8f4d37ec 1020
31656519 1021 hrtick_start(rq, delta);
8f4d37ec
PZ
1022 }
1023}
a4c2f00f
PZ
1024
1025/*
1026 * called from enqueue/dequeue and updates the hrtick when the
1027 * current task is from our class and nr_running is low enough
1028 * to matter.
1029 */
1030static void hrtick_update(struct rq *rq)
1031{
1032 struct task_struct *curr = rq->curr;
1033
1034 if (curr->sched_class != &fair_sched_class)
1035 return;
1036
1037 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1038 hrtick_start_fair(rq, curr);
1039}
55e12e5e 1040#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1041static inline void
1042hrtick_start_fair(struct rq *rq, struct task_struct *p)
1043{
1044}
a4c2f00f
PZ
1045
1046static inline void hrtick_update(struct rq *rq)
1047{
1048}
8f4d37ec
PZ
1049#endif
1050
bf0f6f24
IM
1051/*
1052 * The enqueue_task method is called before nr_running is
1053 * increased. Here we update the fair scheduling stats and
1054 * then put the task into the rbtree:
1055 */
fd390f6a 1056static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
1057{
1058 struct cfs_rq *cfs_rq;
62fb1851 1059 struct sched_entity *se = &p->se;
88ec22d3
PZ
1060 int flags = 0;
1061
1062 if (wakeup)
1063 flags |= ENQUEUE_WAKEUP;
1064 if (p->state == TASK_WAKING)
1065 flags |= ENQUEUE_MIGRATE;
bf0f6f24
IM
1066
1067 for_each_sched_entity(se) {
62fb1851 1068 if (se->on_rq)
bf0f6f24
IM
1069 break;
1070 cfs_rq = cfs_rq_of(se);
88ec22d3
PZ
1071 enqueue_entity(cfs_rq, se, flags);
1072 flags = ENQUEUE_WAKEUP;
bf0f6f24 1073 }
8f4d37ec 1074
a4c2f00f 1075 hrtick_update(rq);
bf0f6f24
IM
1076}
1077
1078/*
1079 * The dequeue_task method is called before nr_running is
1080 * decreased. We remove the task from the rbtree and
1081 * update the fair scheduling stats:
1082 */
f02231e5 1083static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
1084{
1085 struct cfs_rq *cfs_rq;
62fb1851 1086 struct sched_entity *se = &p->se;
bf0f6f24
IM
1087
1088 for_each_sched_entity(se) {
1089 cfs_rq = cfs_rq_of(se);
525c2716 1090 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 1091 /* Don't dequeue parent if it has other entities besides us */
62fb1851 1092 if (cfs_rq->load.weight)
bf0f6f24 1093 break;
b9fa3df3 1094 sleep = 1;
bf0f6f24 1095 }
8f4d37ec 1096
a4c2f00f 1097 hrtick_update(rq);
bf0f6f24
IM
1098}
1099
1100/*
1799e35d
IM
1101 * sched_yield() support is very simple - we dequeue and enqueue.
1102 *
1103 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 1104 */
4530d7ab 1105static void yield_task_fair(struct rq *rq)
bf0f6f24 1106{
db292ca3
IM
1107 struct task_struct *curr = rq->curr;
1108 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1109 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
1110
1111 /*
1799e35d
IM
1112 * Are we the only task in the tree?
1113 */
1114 if (unlikely(cfs_rq->nr_running == 1))
1115 return;
1116
2002c695
PZ
1117 clear_buddies(cfs_rq, se);
1118
db292ca3 1119 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 1120 update_rq_clock(rq);
1799e35d 1121 /*
a2a2d680 1122 * Update run-time statistics of the 'current'.
1799e35d 1123 */
2b1e315d 1124 update_curr(cfs_rq);
1799e35d
IM
1125
1126 return;
1127 }
1128 /*
1129 * Find the rightmost entry in the rbtree:
bf0f6f24 1130 */
2b1e315d 1131 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1132 /*
1133 * Already in the rightmost position?
1134 */
54fdc581 1135 if (unlikely(!rightmost || entity_before(rightmost, se)))
1799e35d
IM
1136 return;
1137
1138 /*
1139 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1140 * Upon rescheduling, sched_class::put_prev_task() will place
1141 * 'current' within the tree based on its new key value.
1799e35d 1142 */
30cfdcfc 1143 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1144}
1145
e7693a36 1146#ifdef CONFIG_SMP
098fb9db 1147
88ec22d3
PZ
1148static void task_waking_fair(struct rq *rq, struct task_struct *p)
1149{
1150 struct sched_entity *se = &p->se;
1151 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1152
1153 se->vruntime -= cfs_rq->min_vruntime;
1154}
1155
bb3469ac 1156#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1157/*
1158 * effective_load() calculates the load change as seen from the root_task_group
1159 *
1160 * Adding load to a group doesn't make a group heavier, but can cause movement
1161 * of group shares between cpus. Assuming the shares were perfectly aligned one
1162 * can calculate the shift in shares.
1163 *
1164 * The problem is that perfectly aligning the shares is rather expensive, hence
1165 * we try to avoid doing that too often - see update_shares(), which ratelimits
1166 * this change.
1167 *
1168 * We compensate this by not only taking the current delta into account, but
1169 * also considering the delta between when the shares were last adjusted and
1170 * now.
1171 *
1172 * We still saw a performance dip, some tracing learned us that between
1173 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1174 * significantly. Therefore try to bias the error in direction of failing
1175 * the affine wakeup.
1176 *
1177 */
f1d239f7
PZ
1178static long effective_load(struct task_group *tg, int cpu,
1179 long wl, long wg)
bb3469ac 1180{
4be9daaa 1181 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1182
1183 if (!tg->parent)
1184 return wl;
1185
f5bfb7d9
PZ
1186 /*
1187 * By not taking the decrease of shares on the other cpu into
1188 * account our error leans towards reducing the affine wakeups.
1189 */
1190 if (!wl && sched_feat(ASYM_EFF_LOAD))
1191 return wl;
1192
4be9daaa 1193 for_each_sched_entity(se) {
cb5ef42a 1194 long S, rw, s, a, b;
940959e9
PZ
1195 long more_w;
1196
1197 /*
1198 * Instead of using this increment, also add the difference
1199 * between when the shares were last updated and now.
1200 */
1201 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1202 wl += more_w;
1203 wg += more_w;
4be9daaa
PZ
1204
1205 S = se->my_q->tg->shares;
1206 s = se->my_q->shares;
f1d239f7 1207 rw = se->my_q->rq_weight;
bb3469ac 1208
cb5ef42a
PZ
1209 a = S*(rw + wl);
1210 b = S*rw + s*wg;
4be9daaa 1211
940959e9
PZ
1212 wl = s*(a-b);
1213
1214 if (likely(b))
1215 wl /= b;
1216
83378269
PZ
1217 /*
1218 * Assume the group is already running and will
1219 * thus already be accounted for in the weight.
1220 *
1221 * That is, moving shares between CPUs, does not
1222 * alter the group weight.
1223 */
4be9daaa 1224 wg = 0;
4be9daaa 1225 }
bb3469ac 1226
4be9daaa 1227 return wl;
bb3469ac 1228}
4be9daaa 1229
bb3469ac 1230#else
4be9daaa 1231
83378269
PZ
1232static inline unsigned long effective_load(struct task_group *tg, int cpu,
1233 unsigned long wl, unsigned long wg)
4be9daaa 1234{
83378269 1235 return wl;
bb3469ac 1236}
4be9daaa 1237
bb3469ac
PZ
1238#endif
1239
c88d5910 1240static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1241{
c88d5910
PZ
1242 struct task_struct *curr = current;
1243 unsigned long this_load, load;
1244 int idx, this_cpu, prev_cpu;
098fb9db 1245 unsigned long tl_per_task;
c88d5910
PZ
1246 unsigned int imbalance;
1247 struct task_group *tg;
83378269 1248 unsigned long weight;
b3137bc8 1249 int balanced;
098fb9db 1250
c88d5910
PZ
1251 idx = sd->wake_idx;
1252 this_cpu = smp_processor_id();
1253 prev_cpu = task_cpu(p);
1254 load = source_load(prev_cpu, idx);
1255 this_load = target_load(this_cpu, idx);
098fb9db 1256
e69b0f1b
PZ
1257 if (sync) {
1258 if (sched_feat(SYNC_LESS) &&
1259 (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1260 p->se.avg_overlap > sysctl_sched_migration_cost))
1261 sync = 0;
1262 } else {
1263 if (sched_feat(SYNC_MORE) &&
1264 (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1265 p->se.avg_overlap < sysctl_sched_migration_cost))
1266 sync = 1;
1267 }
fc631c82 1268
b3137bc8
MG
1269 /*
1270 * If sync wakeup then subtract the (maximum possible)
1271 * effect of the currently running task from the load
1272 * of the current CPU:
1273 */
83378269
PZ
1274 if (sync) {
1275 tg = task_group(current);
1276 weight = current->se.load.weight;
1277
c88d5910 1278 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1279 load += effective_load(tg, prev_cpu, 0, -weight);
1280 }
b3137bc8 1281
83378269
PZ
1282 tg = task_group(p);
1283 weight = p->se.load.weight;
b3137bc8 1284
c88d5910
PZ
1285 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1286
71a29aa7
PZ
1287 /*
1288 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
1289 * due to the sync cause above having dropped this_load to 0, we'll
1290 * always have an imbalance, but there's really nothing you can do
1291 * about that, so that's good too.
71a29aa7
PZ
1292 *
1293 * Otherwise check if either cpus are near enough in load to allow this
1294 * task to be woken on this_cpu.
1295 */
c88d5910
PZ
1296 balanced = !this_load ||
1297 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
83378269 1298 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1299
098fb9db 1300 /*
4ae7d5ce
IM
1301 * If the currently running task will sleep within
1302 * a reasonable amount of time then attract this newly
1303 * woken task:
098fb9db 1304 */
2fb7635c
PZ
1305 if (sync && balanced)
1306 return 1;
098fb9db
IM
1307
1308 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1309 tl_per_task = cpu_avg_load_per_task(this_cpu);
1310
c88d5910
PZ
1311 if (balanced ||
1312 (this_load <= load &&
1313 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
1314 /*
1315 * This domain has SD_WAKE_AFFINE and
1316 * p is cache cold in this domain, and
1317 * there is no bad imbalance.
1318 */
c88d5910 1319 schedstat_inc(sd, ttwu_move_affine);
098fb9db
IM
1320 schedstat_inc(p, se.nr_wakeups_affine);
1321
1322 return 1;
1323 }
1324 return 0;
1325}
1326
aaee1203
PZ
1327/*
1328 * find_idlest_group finds and returns the least busy CPU group within the
1329 * domain.
1330 */
1331static struct sched_group *
78e7ed53 1332find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 1333 int this_cpu, int load_idx)
e7693a36 1334{
aaee1203
PZ
1335 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1336 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 1337 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 1338
aaee1203
PZ
1339 do {
1340 unsigned long load, avg_load;
1341 int local_group;
1342 int i;
e7693a36 1343
aaee1203
PZ
1344 /* Skip over this group if it has no CPUs allowed */
1345 if (!cpumask_intersects(sched_group_cpus(group),
1346 &p->cpus_allowed))
1347 continue;
1348
1349 local_group = cpumask_test_cpu(this_cpu,
1350 sched_group_cpus(group));
1351
1352 /* Tally up the load of all CPUs in the group */
1353 avg_load = 0;
1354
1355 for_each_cpu(i, sched_group_cpus(group)) {
1356 /* Bias balancing toward cpus of our domain */
1357 if (local_group)
1358 load = source_load(i, load_idx);
1359 else
1360 load = target_load(i, load_idx);
1361
1362 avg_load += load;
1363 }
1364
1365 /* Adjust by relative CPU power of the group */
1366 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1367
1368 if (local_group) {
1369 this_load = avg_load;
1370 this = group;
1371 } else if (avg_load < min_load) {
1372 min_load = avg_load;
1373 idlest = group;
1374 }
1375 } while (group = group->next, group != sd->groups);
1376
1377 if (!idlest || 100*this_load < imbalance*min_load)
1378 return NULL;
1379 return idlest;
1380}
1381
1382/*
1383 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1384 */
1385static int
1386find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1387{
1388 unsigned long load, min_load = ULONG_MAX;
1389 int idlest = -1;
1390 int i;
1391
1392 /* Traverse only the allowed CPUs */
1393 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1394 load = weighted_cpuload(i);
1395
1396 if (load < min_load || (load == min_load && i == this_cpu)) {
1397 min_load = load;
1398 idlest = i;
e7693a36
GH
1399 }
1400 }
1401
aaee1203
PZ
1402 return idlest;
1403}
e7693a36 1404
a50bde51
PZ
1405/*
1406 * Try and locate an idle CPU in the sched_domain.
1407 */
1408static int
1409select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1410{
1411 int cpu = smp_processor_id();
1412 int prev_cpu = task_cpu(p);
1413 int i;
1414
1415 /*
1416 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
1417 * test in select_task_rq_fair) and the prev_cpu is idle then that's
1418 * always a better target than the current cpu.
1419 */
fe3bcfe1
PZ
1420 if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
1421 return prev_cpu;
a50bde51
PZ
1422
1423 /*
1424 * Otherwise, iterate the domain and find an elegible idle cpu.
1425 */
fe3bcfe1
PZ
1426 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1427 if (!cpu_rq(i)->cfs.nr_running) {
1428 target = i;
1429 break;
a50bde51
PZ
1430 }
1431 }
1432
1433 return target;
1434}
1435
aaee1203
PZ
1436/*
1437 * sched_balance_self: balance the current task (running on cpu) in domains
1438 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1439 * SD_BALANCE_EXEC.
1440 *
1441 * Balance, ie. select the least loaded group.
1442 *
1443 * Returns the target CPU number, or the same CPU if no balancing is needed.
1444 *
1445 * preempt must be disabled.
1446 */
5158f4e4 1447static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 1448{
29cd8bae 1449 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
1450 int cpu = smp_processor_id();
1451 int prev_cpu = task_cpu(p);
1452 int new_cpu = cpu;
1453 int want_affine = 0;
29cd8bae 1454 int want_sd = 1;
5158f4e4 1455 int sync = wake_flags & WF_SYNC;
c88d5910 1456
0763a660 1457 if (sd_flag & SD_BALANCE_WAKE) {
3f04e8cd
MG
1458 if (sched_feat(AFFINE_WAKEUPS) &&
1459 cpumask_test_cpu(cpu, &p->cpus_allowed))
c88d5910
PZ
1460 want_affine = 1;
1461 new_cpu = prev_cpu;
1462 }
aaee1203
PZ
1463
1464 for_each_domain(cpu, tmp) {
e4f42888
PZ
1465 if (!(tmp->flags & SD_LOAD_BALANCE))
1466 continue;
1467
aaee1203 1468 /*
ae154be1
PZ
1469 * If power savings logic is enabled for a domain, see if we
1470 * are not overloaded, if so, don't balance wider.
aaee1203 1471 */
59abf026 1472 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
1473 unsigned long power = 0;
1474 unsigned long nr_running = 0;
1475 unsigned long capacity;
1476 int i;
1477
1478 for_each_cpu(i, sched_domain_span(tmp)) {
1479 power += power_of(i);
1480 nr_running += cpu_rq(i)->cfs.nr_running;
1481 }
1482
1483 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1484
59abf026
PZ
1485 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1486 nr_running /= 2;
1487
1488 if (nr_running < capacity)
29cd8bae 1489 want_sd = 0;
ae154be1 1490 }
aaee1203 1491
fe3bcfe1
PZ
1492 /*
1493 * While iterating the domains looking for a spanning
1494 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
1495 * in cache sharing domains along the way.
1496 */
1497 if (want_affine) {
a50bde51 1498 int target = -1;
c88d5910 1499
a50bde51
PZ
1500 /*
1501 * If both cpu and prev_cpu are part of this domain,
1502 * cpu is a valid SD_WAKE_AFFINE target.
1503 */
a1f84a3a 1504 if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
a50bde51 1505 target = cpu;
a1f84a3a
MG
1506
1507 /*
a50bde51
PZ
1508 * If there's an idle sibling in this domain, make that
1509 * the wake_affine target instead of the current cpu.
a1f84a3a 1510 */
a50bde51
PZ
1511 if (tmp->flags & SD_PREFER_SIBLING)
1512 target = select_idle_sibling(p, tmp, target);
a1f84a3a 1513
a50bde51 1514 if (target >= 0) {
fe3bcfe1
PZ
1515 if (tmp->flags & SD_WAKE_AFFINE) {
1516 affine_sd = tmp;
1517 want_affine = 0;
1518 }
a50bde51 1519 cpu = target;
a1f84a3a 1520 }
c88d5910
PZ
1521 }
1522
29cd8bae
PZ
1523 if (!want_sd && !want_affine)
1524 break;
1525
0763a660 1526 if (!(tmp->flags & sd_flag))
c88d5910
PZ
1527 continue;
1528
29cd8bae
PZ
1529 if (want_sd)
1530 sd = tmp;
1531 }
1532
1533 if (sched_feat(LB_SHARES_UPDATE)) {
1534 /*
1535 * Pick the largest domain to update shares over
1536 */
1537 tmp = sd;
1538 if (affine_sd && (!tmp ||
1539 cpumask_weight(sched_domain_span(affine_sd)) >
1540 cpumask_weight(sched_domain_span(sd))))
1541 tmp = affine_sd;
1542
1543 if (tmp)
1544 update_shares(tmp);
c88d5910 1545 }
aaee1203 1546
fb58bac5
PZ
1547 if (affine_sd && wake_affine(affine_sd, p, sync))
1548 return cpu;
e7693a36 1549
aaee1203 1550 while (sd) {
5158f4e4 1551 int load_idx = sd->forkexec_idx;
aaee1203 1552 struct sched_group *group;
c88d5910 1553 int weight;
098fb9db 1554
0763a660 1555 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
1556 sd = sd->child;
1557 continue;
1558 }
098fb9db 1559
5158f4e4
PZ
1560 if (sd_flag & SD_BALANCE_WAKE)
1561 load_idx = sd->wake_idx;
098fb9db 1562
5158f4e4 1563 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
1564 if (!group) {
1565 sd = sd->child;
1566 continue;
1567 }
4ae7d5ce 1568
d7c33c49 1569 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
1570 if (new_cpu == -1 || new_cpu == cpu) {
1571 /* Now try balancing at a lower domain level of cpu */
1572 sd = sd->child;
1573 continue;
e7693a36 1574 }
aaee1203
PZ
1575
1576 /* Now try balancing at a lower domain level of new_cpu */
1577 cpu = new_cpu;
1578 weight = cpumask_weight(sched_domain_span(sd));
1579 sd = NULL;
1580 for_each_domain(cpu, tmp) {
1581 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1582 break;
0763a660 1583 if (tmp->flags & sd_flag)
aaee1203
PZ
1584 sd = tmp;
1585 }
1586 /* while loop will break here if sd == NULL */
e7693a36
GH
1587 }
1588
c88d5910 1589 return new_cpu;
e7693a36
GH
1590}
1591#endif /* CONFIG_SMP */
1592
e52fb7c0
PZ
1593/*
1594 * Adaptive granularity
1595 *
1596 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1597 * with the limit of wakeup_gran -- when it never does a wakeup.
1598 *
1599 * So the smaller avg_wakeup is the faster we want this task to preempt,
1600 * but we don't want to treat the preemptee unfairly and therefore allow it
1601 * to run for at least the amount of time we'd like to run.
1602 *
1603 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1604 *
1605 * NOTE: we use *nr_running to scale with load, this nicely matches the
1606 * degrading latency on load.
1607 */
1608static unsigned long
1609adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1610{
1611 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1612 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1613 u64 gran = 0;
1614
1615 if (this_run < expected_wakeup)
1616 gran = expected_wakeup - this_run;
1617
1618 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1619}
1620
1621static unsigned long
1622wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1623{
1624 unsigned long gran = sysctl_sched_wakeup_granularity;
1625
e52fb7c0
PZ
1626 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1627 gran = adaptive_gran(curr, se);
1628
0bbd3336 1629 /*
e52fb7c0
PZ
1630 * Since its curr running now, convert the gran from real-time
1631 * to virtual-time in his units.
0bbd3336 1632 */
e52fb7c0
PZ
1633 if (sched_feat(ASYM_GRAN)) {
1634 /*
1635 * By using 'se' instead of 'curr' we penalize light tasks, so
1636 * they get preempted easier. That is, if 'se' < 'curr' then
1637 * the resulting gran will be larger, therefore penalizing the
1638 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1639 * be smaller, again penalizing the lighter task.
1640 *
1641 * This is especially important for buddies when the leftmost
1642 * task is higher priority than the buddy.
1643 */
1644 if (unlikely(se->load.weight != NICE_0_LOAD))
1645 gran = calc_delta_fair(gran, se);
1646 } else {
1647 if (unlikely(curr->load.weight != NICE_0_LOAD))
1648 gran = calc_delta_fair(gran, curr);
1649 }
0bbd3336
PZ
1650
1651 return gran;
1652}
1653
464b7527
PZ
1654/*
1655 * Should 'se' preempt 'curr'.
1656 *
1657 * |s1
1658 * |s2
1659 * |s3
1660 * g
1661 * |<--->|c
1662 *
1663 * w(c, s1) = -1
1664 * w(c, s2) = 0
1665 * w(c, s3) = 1
1666 *
1667 */
1668static int
1669wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1670{
1671 s64 gran, vdiff = curr->vruntime - se->vruntime;
1672
1673 if (vdiff <= 0)
1674 return -1;
1675
e52fb7c0 1676 gran = wakeup_gran(curr, se);
464b7527
PZ
1677 if (vdiff > gran)
1678 return 1;
1679
1680 return 0;
1681}
1682
02479099
PZ
1683static void set_last_buddy(struct sched_entity *se)
1684{
6bc912b7
PZ
1685 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1686 for_each_sched_entity(se)
1687 cfs_rq_of(se)->last = se;
1688 }
02479099
PZ
1689}
1690
1691static void set_next_buddy(struct sched_entity *se)
1692{
6bc912b7
PZ
1693 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1694 for_each_sched_entity(se)
1695 cfs_rq_of(se)->next = se;
1696 }
02479099
PZ
1697}
1698
bf0f6f24
IM
1699/*
1700 * Preempt the current task with a newly woken task if needed:
1701 */
5a9b86f6 1702static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
1703{
1704 struct task_struct *curr = rq->curr;
8651a86c 1705 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1706 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5a9b86f6 1707 int sync = wake_flags & WF_SYNC;
f685ceac 1708 int scale = cfs_rq->nr_running >= sched_nr_latency;
bf0f6f24 1709
3a7e73a2
PZ
1710 if (unlikely(rt_prio(p->prio)))
1711 goto preempt;
aa2ac252 1712
d95f98d0
PZ
1713 if (unlikely(p->sched_class != &fair_sched_class))
1714 return;
1715
4ae7d5ce
IM
1716 if (unlikely(se == pse))
1717 return;
1718
f685ceac 1719 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
3cb63d52 1720 set_next_buddy(pse);
57fdc26d 1721
aec0a514
BR
1722 /*
1723 * We can come here with TIF_NEED_RESCHED already set from new task
1724 * wake up path.
1725 */
1726 if (test_tsk_need_resched(curr))
1727 return;
1728
91c234b4 1729 /*
6bc912b7 1730 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1731 * the tick):
1732 */
6bc912b7 1733 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1734 return;
bf0f6f24 1735
6bc912b7 1736 /* Idle tasks are by definition preempted by everybody. */
3a7e73a2
PZ
1737 if (unlikely(curr->policy == SCHED_IDLE))
1738 goto preempt;
bf0f6f24 1739
3a7e73a2
PZ
1740 if (sched_feat(WAKEUP_SYNC) && sync)
1741 goto preempt;
15afe09b 1742
3a7e73a2
PZ
1743 if (sched_feat(WAKEUP_OVERLAP) &&
1744 se->avg_overlap < sysctl_sched_migration_cost &&
1745 pse->avg_overlap < sysctl_sched_migration_cost)
1746 goto preempt;
1747
ad4b78bb
PZ
1748 if (!sched_feat(WAKEUP_PREEMPT))
1749 return;
1750
3a7e73a2 1751 update_curr(cfs_rq);
464b7527 1752 find_matching_se(&se, &pse);
002f128b 1753 BUG_ON(!pse);
3a7e73a2
PZ
1754 if (wakeup_preempt_entity(se, pse) == 1)
1755 goto preempt;
464b7527 1756
3a7e73a2 1757 return;
a65ac745 1758
3a7e73a2
PZ
1759preempt:
1760 resched_task(curr);
1761 /*
1762 * Only set the backward buddy when the current task is still
1763 * on the rq. This can happen when a wakeup gets interleaved
1764 * with schedule on the ->pre_schedule() or idle_balance()
1765 * point, either of which can * drop the rq lock.
1766 *
1767 * Also, during early boot the idle thread is in the fair class,
1768 * for obvious reasons its a bad idea to schedule back to it.
1769 */
1770 if (unlikely(!se->on_rq || curr == rq->idle))
1771 return;
1772
1773 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1774 set_last_buddy(se);
bf0f6f24
IM
1775}
1776
fb8d4724 1777static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1778{
8f4d37ec 1779 struct task_struct *p;
bf0f6f24
IM
1780 struct cfs_rq *cfs_rq = &rq->cfs;
1781 struct sched_entity *se;
1782
36ace27e 1783 if (!cfs_rq->nr_running)
bf0f6f24
IM
1784 return NULL;
1785
1786 do {
9948f4b2 1787 se = pick_next_entity(cfs_rq);
f4b6755f 1788 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1789 cfs_rq = group_cfs_rq(se);
1790 } while (cfs_rq);
1791
8f4d37ec
PZ
1792 p = task_of(se);
1793 hrtick_start_fair(rq, p);
1794
1795 return p;
bf0f6f24
IM
1796}
1797
1798/*
1799 * Account for a descheduled task:
1800 */
31ee529c 1801static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1802{
1803 struct sched_entity *se = &prev->se;
1804 struct cfs_rq *cfs_rq;
1805
1806 for_each_sched_entity(se) {
1807 cfs_rq = cfs_rq_of(se);
ab6cde26 1808 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1809 }
1810}
1811
681f3e68 1812#ifdef CONFIG_SMP
bf0f6f24
IM
1813/**************************************************
1814 * Fair scheduling class load-balancing methods:
1815 */
1816
1817/*
1818 * Load-balancing iterator. Note: while the runqueue stays locked
1819 * during the whole iteration, the current task might be
1820 * dequeued so the iterator has to be dequeue-safe. Here we
1821 * achieve that by always pre-iterating before returning
1822 * the current task:
1823 */
a9957449 1824static struct task_struct *
4a55bd5e 1825__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1826{
354d60c2
DG
1827 struct task_struct *p = NULL;
1828 struct sched_entity *se;
bf0f6f24 1829
77ae6513
MG
1830 if (next == &cfs_rq->tasks)
1831 return NULL;
1832
b87f1724
BR
1833 se = list_entry(next, struct sched_entity, group_node);
1834 p = task_of(se);
1835 cfs_rq->balance_iterator = next->next;
77ae6513 1836
bf0f6f24
IM
1837 return p;
1838}
1839
1840static struct task_struct *load_balance_start_fair(void *arg)
1841{
1842 struct cfs_rq *cfs_rq = arg;
1843
4a55bd5e 1844 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1845}
1846
1847static struct task_struct *load_balance_next_fair(void *arg)
1848{
1849 struct cfs_rq *cfs_rq = arg;
1850
4a55bd5e 1851 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1852}
1853
3d45fd80
PZ
1854/*
1855 * runqueue iterator, to support SMP load-balancing between different
1856 * scheduling classes, without having to expose their internal data
1857 * structures to the load-balancing proper:
1858 */
1859struct rq_iterator {
1860 void *arg;
1861 struct task_struct *(*start)(void *);
1862 struct task_struct *(*next)(void *);
1863};
1864
1865static unsigned long
1866balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1867 unsigned long max_load_move, struct sched_domain *sd,
1868 enum cpu_idle_type idle, int *all_pinned,
1869 int *this_best_prio, struct rq_iterator *iterator);
1870
1871
c09595f6
PZ
1872static unsigned long
1873__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1874 unsigned long max_load_move, struct sched_domain *sd,
1875 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1876 struct cfs_rq *cfs_rq)
62fb1851 1877{
c09595f6 1878 struct rq_iterator cfs_rq_iterator;
62fb1851 1879
c09595f6
PZ
1880 cfs_rq_iterator.start = load_balance_start_fair;
1881 cfs_rq_iterator.next = load_balance_next_fair;
1882 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1883
c09595f6
PZ
1884 return balance_tasks(this_rq, this_cpu, busiest,
1885 max_load_move, sd, idle, all_pinned,
1886 this_best_prio, &cfs_rq_iterator);
62fb1851 1887}
62fb1851 1888
c09595f6 1889#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1890static unsigned long
bf0f6f24 1891load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1892 unsigned long max_load_move,
a4ac01c3
PW
1893 struct sched_domain *sd, enum cpu_idle_type idle,
1894 int *all_pinned, int *this_best_prio)
bf0f6f24 1895{
bf0f6f24 1896 long rem_load_move = max_load_move;
c09595f6
PZ
1897 int busiest_cpu = cpu_of(busiest);
1898 struct task_group *tg;
18d95a28 1899
c09595f6 1900 rcu_read_lock();
c8cba857 1901 update_h_load(busiest_cpu);
18d95a28 1902
caea8a03 1903 list_for_each_entry_rcu(tg, &task_groups, list) {
c8cba857 1904 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1905 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1906 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
243e0e7b 1907 u64 rem_load, moved_load;
18d95a28 1908
c09595f6
PZ
1909 /*
1910 * empty group
1911 */
c8cba857 1912 if (!busiest_cfs_rq->task_weight)
bf0f6f24
IM
1913 continue;
1914
243e0e7b
SV
1915 rem_load = (u64)rem_load_move * busiest_weight;
1916 rem_load = div_u64(rem_load, busiest_h_load + 1);
bf0f6f24 1917
c09595f6 1918 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1919 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6 1920 tg->cfs_rq[busiest_cpu]);
bf0f6f24 1921
c09595f6 1922 if (!moved_load)
bf0f6f24
IM
1923 continue;
1924
42a3ac7d 1925 moved_load *= busiest_h_load;
243e0e7b 1926 moved_load = div_u64(moved_load, busiest_weight + 1);
bf0f6f24 1927
c09595f6
PZ
1928 rem_load_move -= moved_load;
1929 if (rem_load_move < 0)
bf0f6f24
IM
1930 break;
1931 }
c09595f6 1932 rcu_read_unlock();
bf0f6f24 1933
43010659 1934 return max_load_move - rem_load_move;
bf0f6f24 1935}
c09595f6
PZ
1936#else
1937static unsigned long
1938load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1939 unsigned long max_load_move,
1940 struct sched_domain *sd, enum cpu_idle_type idle,
1941 int *all_pinned, int *this_best_prio)
1942{
1943 return __load_balance_fair(this_rq, this_cpu, busiest,
1944 max_load_move, sd, idle, all_pinned,
1945 this_best_prio, &busiest->cfs);
1946}
1947#endif
bf0f6f24 1948
e1d1484f 1949static int
3d45fd80
PZ
1950iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1951 struct sched_domain *sd, enum cpu_idle_type idle,
1952 struct rq_iterator *iterator);
1953
1954/*
1955 * move_one_task tries to move exactly one task from busiest to this_rq, as
1956 * part of active balancing operations within "domain".
1957 * Returns 1 if successful and 0 otherwise.
1958 *
1959 * Called with both runqueues locked.
1960 */
1961static int
1962move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1963 struct sched_domain *sd, enum cpu_idle_type idle)
e1d1484f
PW
1964{
1965 struct cfs_rq *busy_cfs_rq;
1966 struct rq_iterator cfs_rq_iterator;
1967
1968 cfs_rq_iterator.start = load_balance_start_fair;
1969 cfs_rq_iterator.next = load_balance_next_fair;
1970
1971 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1972 /*
1973 * pass busy_cfs_rq argument into
1974 * load_balance_[start|next]_fair iterators
1975 */
1976 cfs_rq_iterator.arg = busy_cfs_rq;
1977 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1978 &cfs_rq_iterator))
1979 return 1;
1980 }
1981
1982 return 0;
1983}
0bcdcf28 1984
1e3c88bd
PZ
1985/*
1986 * pull_task - move a task from a remote runqueue to the local runqueue.
1987 * Both runqueues must be locked.
1988 */
1989static void pull_task(struct rq *src_rq, struct task_struct *p,
1990 struct rq *this_rq, int this_cpu)
1991{
1992 deactivate_task(src_rq, p, 0);
1993 set_task_cpu(p, this_cpu);
1994 activate_task(this_rq, p, 0);
1995 check_preempt_curr(this_rq, p, 0);
1996}
1997
1998/*
1999 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2000 */
2001static
2002int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2003 struct sched_domain *sd, enum cpu_idle_type idle,
2004 int *all_pinned)
2005{
2006 int tsk_cache_hot = 0;
2007 /*
2008 * We do not migrate tasks that are:
2009 * 1) running (obviously), or
2010 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2011 * 3) are cache-hot on their current CPU.
2012 */
2013 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2014 schedstat_inc(p, se.nr_failed_migrations_affine);
2015 return 0;
2016 }
2017 *all_pinned = 0;
2018
2019 if (task_running(rq, p)) {
2020 schedstat_inc(p, se.nr_failed_migrations_running);
2021 return 0;
2022 }
2023
2024 /*
2025 * Aggressive migration if:
2026 * 1) task is cache cold, or
2027 * 2) too many balance attempts have failed.
2028 */
2029
2030 tsk_cache_hot = task_hot(p, rq->clock, sd);
2031 if (!tsk_cache_hot ||
2032 sd->nr_balance_failed > sd->cache_nice_tries) {
2033#ifdef CONFIG_SCHEDSTATS
2034 if (tsk_cache_hot) {
2035 schedstat_inc(sd, lb_hot_gained[idle]);
2036 schedstat_inc(p, se.nr_forced_migrations);
2037 }
2038#endif
2039 return 1;
2040 }
2041
2042 if (tsk_cache_hot) {
2043 schedstat_inc(p, se.nr_failed_migrations_hot);
2044 return 0;
2045 }
2046 return 1;
2047}
2048
2049static unsigned long
2050balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2051 unsigned long max_load_move, struct sched_domain *sd,
2052 enum cpu_idle_type idle, int *all_pinned,
2053 int *this_best_prio, struct rq_iterator *iterator)
2054{
2055 int loops = 0, pulled = 0, pinned = 0;
2056 struct task_struct *p;
2057 long rem_load_move = max_load_move;
2058
2059 if (max_load_move == 0)
2060 goto out;
2061
2062 pinned = 1;
2063
2064 /*
2065 * Start the load-balancing iterator:
2066 */
2067 p = iterator->start(iterator->arg);
2068next:
2069 if (!p || loops++ > sysctl_sched_nr_migrate)
2070 goto out;
2071
2072 if ((p->se.load.weight >> 1) > rem_load_move ||
2073 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2074 p = iterator->next(iterator->arg);
2075 goto next;
2076 }
2077
2078 pull_task(busiest, p, this_rq, this_cpu);
2079 pulled++;
2080 rem_load_move -= p->se.load.weight;
2081
2082#ifdef CONFIG_PREEMPT
2083 /*
2084 * NEWIDLE balancing is a source of latency, so preemptible kernels
2085 * will stop after the first task is pulled to minimize the critical
2086 * section.
2087 */
2088 if (idle == CPU_NEWLY_IDLE)
2089 goto out;
2090#endif
2091
2092 /*
2093 * We only want to steal up to the prescribed amount of weighted load.
2094 */
2095 if (rem_load_move > 0) {
2096 if (p->prio < *this_best_prio)
2097 *this_best_prio = p->prio;
2098 p = iterator->next(iterator->arg);
2099 goto next;
2100 }
2101out:
2102 /*
2103 * Right now, this is one of only two places pull_task() is called,
2104 * so we can safely collect pull_task() stats here rather than
2105 * inside pull_task().
2106 */
2107 schedstat_add(sd, lb_gained[idle], pulled);
2108
2109 if (all_pinned)
2110 *all_pinned = pinned;
2111
2112 return max_load_move - rem_load_move;
2113}
2114
2115/*
2116 * move_tasks tries to move up to max_load_move weighted load from busiest to
2117 * this_rq, as part of a balancing operation within domain "sd".
2118 * Returns 1 if successful and 0 otherwise.
2119 *
2120 * Called with both runqueues locked.
2121 */
2122static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2123 unsigned long max_load_move,
2124 struct sched_domain *sd, enum cpu_idle_type idle,
2125 int *all_pinned)
2126{
3d45fd80 2127 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
2128 int this_best_prio = this_rq->curr->prio;
2129
2130 do {
3d45fd80 2131 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd
PZ
2132 max_load_move - total_load_moved,
2133 sd, idle, all_pinned, &this_best_prio);
3d45fd80
PZ
2134
2135 total_load_moved += load_moved;
1e3c88bd
PZ
2136
2137#ifdef CONFIG_PREEMPT
2138 /*
2139 * NEWIDLE balancing is a source of latency, so preemptible
2140 * kernels will stop after the first task is pulled to minimize
2141 * the critical section.
2142 */
2143 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2144 break;
2145#endif
3d45fd80 2146 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
2147
2148 return total_load_moved > 0;
2149}
2150
2151static int
2152iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2153 struct sched_domain *sd, enum cpu_idle_type idle,
2154 struct rq_iterator *iterator)
2155{
2156 struct task_struct *p = iterator->start(iterator->arg);
2157 int pinned = 0;
2158
2159 while (p) {
2160 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2161 pull_task(busiest, p, this_rq, this_cpu);
2162 /*
2163 * Right now, this is only the second place pull_task()
2164 * is called, so we can safely collect pull_task()
2165 * stats here rather than inside pull_task().
2166 */
2167 schedstat_inc(sd, lb_gained[idle]);
2168
2169 return 1;
2170 }
2171 p = iterator->next(iterator->arg);
2172 }
2173
2174 return 0;
2175}
2176
1e3c88bd
PZ
2177/********** Helpers for find_busiest_group ************************/
2178/*
2179 * sd_lb_stats - Structure to store the statistics of a sched_domain
2180 * during load balancing.
2181 */
2182struct sd_lb_stats {
2183 struct sched_group *busiest; /* Busiest group in this sd */
2184 struct sched_group *this; /* Local group in this sd */
2185 unsigned long total_load; /* Total load of all groups in sd */
2186 unsigned long total_pwr; /* Total power of all groups in sd */
2187 unsigned long avg_load; /* Average load across all groups in sd */
2188
2189 /** Statistics of this group */
2190 unsigned long this_load;
2191 unsigned long this_load_per_task;
2192 unsigned long this_nr_running;
2193
2194 /* Statistics of the busiest group */
2195 unsigned long max_load;
2196 unsigned long busiest_load_per_task;
2197 unsigned long busiest_nr_running;
2198
2199 int group_imb; /* Is there imbalance in this sd */
2200#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2201 int power_savings_balance; /* Is powersave balance needed for this sd */
2202 struct sched_group *group_min; /* Least loaded group in sd */
2203 struct sched_group *group_leader; /* Group which relieves group_min */
2204 unsigned long min_load_per_task; /* load_per_task in group_min */
2205 unsigned long leader_nr_running; /* Nr running of group_leader */
2206 unsigned long min_nr_running; /* Nr running of group_min */
2207#endif
2208};
2209
2210/*
2211 * sg_lb_stats - stats of a sched_group required for load_balancing
2212 */
2213struct sg_lb_stats {
2214 unsigned long avg_load; /*Avg load across the CPUs of the group */
2215 unsigned long group_load; /* Total load over the CPUs of the group */
2216 unsigned long sum_nr_running; /* Nr tasks running in the group */
2217 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2218 unsigned long group_capacity;
2219 int group_imb; /* Is there an imbalance in the group ? */
2220};
2221
2222/**
2223 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2224 * @group: The group whose first cpu is to be returned.
2225 */
2226static inline unsigned int group_first_cpu(struct sched_group *group)
2227{
2228 return cpumask_first(sched_group_cpus(group));
2229}
2230
2231/**
2232 * get_sd_load_idx - Obtain the load index for a given sched domain.
2233 * @sd: The sched_domain whose load_idx is to be obtained.
2234 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2235 */
2236static inline int get_sd_load_idx(struct sched_domain *sd,
2237 enum cpu_idle_type idle)
2238{
2239 int load_idx;
2240
2241 switch (idle) {
2242 case CPU_NOT_IDLE:
2243 load_idx = sd->busy_idx;
2244 break;
2245
2246 case CPU_NEWLY_IDLE:
2247 load_idx = sd->newidle_idx;
2248 break;
2249 default:
2250 load_idx = sd->idle_idx;
2251 break;
2252 }
2253
2254 return load_idx;
2255}
2256
2257
2258#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2259/**
2260 * init_sd_power_savings_stats - Initialize power savings statistics for
2261 * the given sched_domain, during load balancing.
2262 *
2263 * @sd: Sched domain whose power-savings statistics are to be initialized.
2264 * @sds: Variable containing the statistics for sd.
2265 * @idle: Idle status of the CPU at which we're performing load-balancing.
2266 */
2267static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2268 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2269{
2270 /*
2271 * Busy processors will not participate in power savings
2272 * balance.
2273 */
2274 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2275 sds->power_savings_balance = 0;
2276 else {
2277 sds->power_savings_balance = 1;
2278 sds->min_nr_running = ULONG_MAX;
2279 sds->leader_nr_running = 0;
2280 }
2281}
2282
2283/**
2284 * update_sd_power_savings_stats - Update the power saving stats for a
2285 * sched_domain while performing load balancing.
2286 *
2287 * @group: sched_group belonging to the sched_domain under consideration.
2288 * @sds: Variable containing the statistics of the sched_domain
2289 * @local_group: Does group contain the CPU for which we're performing
2290 * load balancing ?
2291 * @sgs: Variable containing the statistics of the group.
2292 */
2293static inline void update_sd_power_savings_stats(struct sched_group *group,
2294 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2295{
2296
2297 if (!sds->power_savings_balance)
2298 return;
2299
2300 /*
2301 * If the local group is idle or completely loaded
2302 * no need to do power savings balance at this domain
2303 */
2304 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2305 !sds->this_nr_running))
2306 sds->power_savings_balance = 0;
2307
2308 /*
2309 * If a group is already running at full capacity or idle,
2310 * don't include that group in power savings calculations
2311 */
2312 if (!sds->power_savings_balance ||
2313 sgs->sum_nr_running >= sgs->group_capacity ||
2314 !sgs->sum_nr_running)
2315 return;
2316
2317 /*
2318 * Calculate the group which has the least non-idle load.
2319 * This is the group from where we need to pick up the load
2320 * for saving power
2321 */
2322 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2323 (sgs->sum_nr_running == sds->min_nr_running &&
2324 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2325 sds->group_min = group;
2326 sds->min_nr_running = sgs->sum_nr_running;
2327 sds->min_load_per_task = sgs->sum_weighted_load /
2328 sgs->sum_nr_running;
2329 }
2330
2331 /*
2332 * Calculate the group which is almost near its
2333 * capacity but still has some space to pick up some load
2334 * from other group and save more power
2335 */
2336 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2337 return;
2338
2339 if (sgs->sum_nr_running > sds->leader_nr_running ||
2340 (sgs->sum_nr_running == sds->leader_nr_running &&
2341 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2342 sds->group_leader = group;
2343 sds->leader_nr_running = sgs->sum_nr_running;
2344 }
2345}
2346
2347/**
2348 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2349 * @sds: Variable containing the statistics of the sched_domain
2350 * under consideration.
2351 * @this_cpu: Cpu at which we're currently performing load-balancing.
2352 * @imbalance: Variable to store the imbalance.
2353 *
2354 * Description:
2355 * Check if we have potential to perform some power-savings balance.
2356 * If yes, set the busiest group to be the least loaded group in the
2357 * sched_domain, so that it's CPUs can be put to idle.
2358 *
2359 * Returns 1 if there is potential to perform power-savings balance.
2360 * Else returns 0.
2361 */
2362static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2363 int this_cpu, unsigned long *imbalance)
2364{
2365 if (!sds->power_savings_balance)
2366 return 0;
2367
2368 if (sds->this != sds->group_leader ||
2369 sds->group_leader == sds->group_min)
2370 return 0;
2371
2372 *imbalance = sds->min_load_per_task;
2373 sds->busiest = sds->group_min;
2374
2375 return 1;
2376
2377}
2378#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2379static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2380 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2381{
2382 return;
2383}
2384
2385static inline void update_sd_power_savings_stats(struct sched_group *group,
2386 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2387{
2388 return;
2389}
2390
2391static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2392 int this_cpu, unsigned long *imbalance)
2393{
2394 return 0;
2395}
2396#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2397
2398
2399unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2400{
2401 return SCHED_LOAD_SCALE;
2402}
2403
2404unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2405{
2406 return default_scale_freq_power(sd, cpu);
2407}
2408
2409unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2410{
2411 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2412 unsigned long smt_gain = sd->smt_gain;
2413
2414 smt_gain /= weight;
2415
2416 return smt_gain;
2417}
2418
2419unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2420{
2421 return default_scale_smt_power(sd, cpu);
2422}
2423
2424unsigned long scale_rt_power(int cpu)
2425{
2426 struct rq *rq = cpu_rq(cpu);
2427 u64 total, available;
2428
2429 sched_avg_update(rq);
2430
2431 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2432 available = total - rq->rt_avg;
2433
2434 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2435 total = SCHED_LOAD_SCALE;
2436
2437 total >>= SCHED_LOAD_SHIFT;
2438
2439 return div_u64(available, total);
2440}
2441
2442static void update_cpu_power(struct sched_domain *sd, int cpu)
2443{
2444 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2445 unsigned long power = SCHED_LOAD_SCALE;
2446 struct sched_group *sdg = sd->groups;
2447
2448 if (sched_feat(ARCH_POWER))
2449 power *= arch_scale_freq_power(sd, cpu);
2450 else
2451 power *= default_scale_freq_power(sd, cpu);
2452
2453 power >>= SCHED_LOAD_SHIFT;
2454
2455 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2456 if (sched_feat(ARCH_POWER))
2457 power *= arch_scale_smt_power(sd, cpu);
2458 else
2459 power *= default_scale_smt_power(sd, cpu);
2460
2461 power >>= SCHED_LOAD_SHIFT;
2462 }
2463
2464 power *= scale_rt_power(cpu);
2465 power >>= SCHED_LOAD_SHIFT;
2466
2467 if (!power)
2468 power = 1;
2469
2470 sdg->cpu_power = power;
2471}
2472
2473static void update_group_power(struct sched_domain *sd, int cpu)
2474{
2475 struct sched_domain *child = sd->child;
2476 struct sched_group *group, *sdg = sd->groups;
2477 unsigned long power;
2478
2479 if (!child) {
2480 update_cpu_power(sd, cpu);
2481 return;
2482 }
2483
2484 power = 0;
2485
2486 group = child->groups;
2487 do {
2488 power += group->cpu_power;
2489 group = group->next;
2490 } while (group != child->groups);
2491
2492 sdg->cpu_power = power;
2493}
2494
2495/**
2496 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2497 * @sd: The sched_domain whose statistics are to be updated.
2498 * @group: sched_group whose statistics are to be updated.
2499 * @this_cpu: Cpu for which load balance is currently performed.
2500 * @idle: Idle status of this_cpu
2501 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2502 * @sd_idle: Idle status of the sched_domain containing group.
2503 * @local_group: Does group contain this_cpu.
2504 * @cpus: Set of cpus considered for load balancing.
2505 * @balance: Should we balance.
2506 * @sgs: variable to hold the statistics for this group.
2507 */
2508static inline void update_sg_lb_stats(struct sched_domain *sd,
2509 struct sched_group *group, int this_cpu,
2510 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2511 int local_group, const struct cpumask *cpus,
2512 int *balance, struct sg_lb_stats *sgs)
2513{
2514 unsigned long load, max_cpu_load, min_cpu_load;
2515 int i;
2516 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2517 unsigned long sum_avg_load_per_task;
2518 unsigned long avg_load_per_task;
2519
2520 if (local_group) {
2521 balance_cpu = group_first_cpu(group);
2522 if (balance_cpu == this_cpu)
2523 update_group_power(sd, this_cpu);
2524 }
2525
2526 /* Tally up the load of all CPUs in the group */
2527 sum_avg_load_per_task = avg_load_per_task = 0;
2528 max_cpu_load = 0;
2529 min_cpu_load = ~0UL;
2530
2531 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2532 struct rq *rq = cpu_rq(i);
2533
2534 if (*sd_idle && rq->nr_running)
2535 *sd_idle = 0;
2536
2537 /* Bias balancing toward cpus of our domain */
2538 if (local_group) {
2539 if (idle_cpu(i) && !first_idle_cpu) {
2540 first_idle_cpu = 1;
2541 balance_cpu = i;
2542 }
2543
2544 load = target_load(i, load_idx);
2545 } else {
2546 load = source_load(i, load_idx);
2547 if (load > max_cpu_load)
2548 max_cpu_load = load;
2549 if (min_cpu_load > load)
2550 min_cpu_load = load;
2551 }
2552
2553 sgs->group_load += load;
2554 sgs->sum_nr_running += rq->nr_running;
2555 sgs->sum_weighted_load += weighted_cpuload(i);
2556
2557 sum_avg_load_per_task += cpu_avg_load_per_task(i);
2558 }
2559
2560 /*
2561 * First idle cpu or the first cpu(busiest) in this sched group
2562 * is eligible for doing load balancing at this and above
2563 * domains. In the newly idle case, we will allow all the cpu's
2564 * to do the newly idle load balance.
2565 */
2566 if (idle != CPU_NEWLY_IDLE && local_group &&
2567 balance_cpu != this_cpu && balance) {
2568 *balance = 0;
2569 return;
2570 }
2571
2572 /* Adjust by relative CPU power of the group */
2573 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2574
2575
2576 /*
2577 * Consider the group unbalanced when the imbalance is larger
2578 * than the average weight of two tasks.
2579 *
2580 * APZ: with cgroup the avg task weight can vary wildly and
2581 * might not be a suitable number - should we keep a
2582 * normalized nr_running number somewhere that negates
2583 * the hierarchy?
2584 */
2585 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
2586 group->cpu_power;
2587
2588 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
2589 sgs->group_imb = 1;
2590
2591 sgs->group_capacity =
2592 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2593}
2594
2595/**
2596 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2597 * @sd: sched_domain whose statistics are to be updated.
2598 * @this_cpu: Cpu for which load balance is currently performed.
2599 * @idle: Idle status of this_cpu
2600 * @sd_idle: Idle status of the sched_domain containing group.
2601 * @cpus: Set of cpus considered for load balancing.
2602 * @balance: Should we balance.
2603 * @sds: variable to hold the statistics for this sched_domain.
2604 */
2605static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2606 enum cpu_idle_type idle, int *sd_idle,
2607 const struct cpumask *cpus, int *balance,
2608 struct sd_lb_stats *sds)
2609{
2610 struct sched_domain *child = sd->child;
2611 struct sched_group *group = sd->groups;
2612 struct sg_lb_stats sgs;
2613 int load_idx, prefer_sibling = 0;
2614
2615 if (child && child->flags & SD_PREFER_SIBLING)
2616 prefer_sibling = 1;
2617
2618 init_sd_power_savings_stats(sd, sds, idle);
2619 load_idx = get_sd_load_idx(sd, idle);
2620
2621 do {
2622 int local_group;
2623
2624 local_group = cpumask_test_cpu(this_cpu,
2625 sched_group_cpus(group));
2626 memset(&sgs, 0, sizeof(sgs));
2627 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
2628 local_group, cpus, balance, &sgs);
2629
2630 if (local_group && balance && !(*balance))
2631 return;
2632
2633 sds->total_load += sgs.group_load;
2634 sds->total_pwr += group->cpu_power;
2635
2636 /*
2637 * In case the child domain prefers tasks go to siblings
2638 * first, lower the group capacity to one so that we'll try
2639 * and move all the excess tasks away.
2640 */
2641 if (prefer_sibling)
2642 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2643
2644 if (local_group) {
2645 sds->this_load = sgs.avg_load;
2646 sds->this = group;
2647 sds->this_nr_running = sgs.sum_nr_running;
2648 sds->this_load_per_task = sgs.sum_weighted_load;
2649 } else if (sgs.avg_load > sds->max_load &&
2650 (sgs.sum_nr_running > sgs.group_capacity ||
2651 sgs.group_imb)) {
2652 sds->max_load = sgs.avg_load;
2653 sds->busiest = group;
2654 sds->busiest_nr_running = sgs.sum_nr_running;
2655 sds->busiest_load_per_task = sgs.sum_weighted_load;
2656 sds->group_imb = sgs.group_imb;
2657 }
2658
2659 update_sd_power_savings_stats(group, sds, local_group, &sgs);
2660 group = group->next;
2661 } while (group != sd->groups);
2662}
2663
2664/**
2665 * fix_small_imbalance - Calculate the minor imbalance that exists
2666 * amongst the groups of a sched_domain, during
2667 * load balancing.
2668 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2669 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2670 * @imbalance: Variable to store the imbalance.
2671 */
2672static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2673 int this_cpu, unsigned long *imbalance)
2674{
2675 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2676 unsigned int imbn = 2;
2677
2678 if (sds->this_nr_running) {
2679 sds->this_load_per_task /= sds->this_nr_running;
2680 if (sds->busiest_load_per_task >
2681 sds->this_load_per_task)
2682 imbn = 1;
2683 } else
2684 sds->this_load_per_task =
2685 cpu_avg_load_per_task(this_cpu);
2686
2687 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
2688 sds->busiest_load_per_task * imbn) {
2689 *imbalance = sds->busiest_load_per_task;
2690 return;
2691 }
2692
2693 /*
2694 * OK, we don't have enough imbalance to justify moving tasks,
2695 * however we may be able to increase total CPU power used by
2696 * moving them.
2697 */
2698
2699 pwr_now += sds->busiest->cpu_power *
2700 min(sds->busiest_load_per_task, sds->max_load);
2701 pwr_now += sds->this->cpu_power *
2702 min(sds->this_load_per_task, sds->this_load);
2703 pwr_now /= SCHED_LOAD_SCALE;
2704
2705 /* Amount of load we'd subtract */
2706 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2707 sds->busiest->cpu_power;
2708 if (sds->max_load > tmp)
2709 pwr_move += sds->busiest->cpu_power *
2710 min(sds->busiest_load_per_task, sds->max_load - tmp);
2711
2712 /* Amount of load we'd add */
2713 if (sds->max_load * sds->busiest->cpu_power <
2714 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2715 tmp = (sds->max_load * sds->busiest->cpu_power) /
2716 sds->this->cpu_power;
2717 else
2718 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2719 sds->this->cpu_power;
2720 pwr_move += sds->this->cpu_power *
2721 min(sds->this_load_per_task, sds->this_load + tmp);
2722 pwr_move /= SCHED_LOAD_SCALE;
2723
2724 /* Move if we gain throughput */
2725 if (pwr_move > pwr_now)
2726 *imbalance = sds->busiest_load_per_task;
2727}
2728
2729/**
2730 * calculate_imbalance - Calculate the amount of imbalance present within the
2731 * groups of a given sched_domain during load balance.
2732 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2733 * @this_cpu: Cpu for which currently load balance is being performed.
2734 * @imbalance: The variable to store the imbalance.
2735 */
2736static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2737 unsigned long *imbalance)
2738{
2739 unsigned long max_pull;
2740 /*
2741 * In the presence of smp nice balancing, certain scenarios can have
2742 * max load less than avg load(as we skip the groups at or below
2743 * its cpu_power, while calculating max_load..)
2744 */
2745 if (sds->max_load < sds->avg_load) {
2746 *imbalance = 0;
2747 return fix_small_imbalance(sds, this_cpu, imbalance);
2748 }
2749
2750 /* Don't want to pull so many tasks that a group would go idle */
2751 max_pull = min(sds->max_load - sds->avg_load,
2752 sds->max_load - sds->busiest_load_per_task);
2753
2754 /* How much load to actually move to equalise the imbalance */
2755 *imbalance = min(max_pull * sds->busiest->cpu_power,
2756 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2757 / SCHED_LOAD_SCALE;
2758
2759 /*
2760 * if *imbalance is less than the average load per runnable task
2761 * there is no gaurantee that any tasks will be moved so we'll have
2762 * a think about bumping its value to force at least one task to be
2763 * moved
2764 */
2765 if (*imbalance < sds->busiest_load_per_task)
2766 return fix_small_imbalance(sds, this_cpu, imbalance);
2767
2768}
2769/******* find_busiest_group() helpers end here *********************/
2770
2771/**
2772 * find_busiest_group - Returns the busiest group within the sched_domain
2773 * if there is an imbalance. If there isn't an imbalance, and
2774 * the user has opted for power-savings, it returns a group whose
2775 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2776 * such a group exists.
2777 *
2778 * Also calculates the amount of weighted load which should be moved
2779 * to restore balance.
2780 *
2781 * @sd: The sched_domain whose busiest group is to be returned.
2782 * @this_cpu: The cpu for which load balancing is currently being performed.
2783 * @imbalance: Variable which stores amount of weighted load which should
2784 * be moved to restore balance/put a group to idle.
2785 * @idle: The idle status of this_cpu.
2786 * @sd_idle: The idleness of sd
2787 * @cpus: The set of CPUs under consideration for load-balancing.
2788 * @balance: Pointer to a variable indicating if this_cpu
2789 * is the appropriate cpu to perform load balancing at this_level.
2790 *
2791 * Returns: - the busiest group if imbalance exists.
2792 * - If no imbalance and user has opted for power-savings balance,
2793 * return the least loaded group whose CPUs can be
2794 * put to idle by rebalancing its tasks onto our group.
2795 */
2796static struct sched_group *
2797find_busiest_group(struct sched_domain *sd, int this_cpu,
2798 unsigned long *imbalance, enum cpu_idle_type idle,
2799 int *sd_idle, const struct cpumask *cpus, int *balance)
2800{
2801 struct sd_lb_stats sds;
2802
2803 memset(&sds, 0, sizeof(sds));
2804
2805 /*
2806 * Compute the various statistics relavent for load balancing at
2807 * this level.
2808 */
2809 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2810 balance, &sds);
2811
2812 /* Cases where imbalance does not exist from POV of this_cpu */
2813 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2814 * at this level.
2815 * 2) There is no busy sibling group to pull from.
2816 * 3) This group is the busiest group.
2817 * 4) This group is more busy than the avg busieness at this
2818 * sched_domain.
2819 * 5) The imbalance is within the specified limit.
2820 * 6) Any rebalance would lead to ping-pong
2821 */
2822 if (balance && !(*balance))
2823 goto ret;
2824
2825 if (!sds.busiest || sds.busiest_nr_running == 0)
2826 goto out_balanced;
2827
2828 if (sds.this_load >= sds.max_load)
2829 goto out_balanced;
2830
2831 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
2832
2833 if (sds.this_load >= sds.avg_load)
2834 goto out_balanced;
2835
2836 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
2837 goto out_balanced;
2838
2839 sds.busiest_load_per_task /= sds.busiest_nr_running;
2840 if (sds.group_imb)
2841 sds.busiest_load_per_task =
2842 min(sds.busiest_load_per_task, sds.avg_load);
2843
2844 /*
2845 * We're trying to get all the cpus to the average_load, so we don't
2846 * want to push ourselves above the average load, nor do we wish to
2847 * reduce the max loaded cpu below the average load, as either of these
2848 * actions would just result in more rebalancing later, and ping-pong
2849 * tasks around. Thus we look for the minimum possible imbalance.
2850 * Negative imbalances (*we* are more loaded than anyone else) will
2851 * be counted as no imbalance for these purposes -- we can't fix that
2852 * by pulling tasks to us. Be careful of negative numbers as they'll
2853 * appear as very large values with unsigned longs.
2854 */
2855 if (sds.max_load <= sds.busiest_load_per_task)
2856 goto out_balanced;
2857
2858 /* Looks like there is an imbalance. Compute it */
2859 calculate_imbalance(&sds, this_cpu, imbalance);
2860 return sds.busiest;
2861
2862out_balanced:
2863 /*
2864 * There is no obvious imbalance. But check if we can do some balancing
2865 * to save power.
2866 */
2867 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
2868 return sds.busiest;
2869ret:
2870 *imbalance = 0;
2871 return NULL;
2872}
2873
2874/*
2875 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2876 */
2877static struct rq *
2878find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2879 unsigned long imbalance, const struct cpumask *cpus)
2880{
2881 struct rq *busiest = NULL, *rq;
2882 unsigned long max_load = 0;
2883 int i;
2884
2885 for_each_cpu(i, sched_group_cpus(group)) {
2886 unsigned long power = power_of(i);
2887 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
2888 unsigned long wl;
2889
2890 if (!cpumask_test_cpu(i, cpus))
2891 continue;
2892
2893 rq = cpu_rq(i);
2894 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
2895 wl /= power;
2896
2897 if (capacity && rq->nr_running == 1 && wl > imbalance)
2898 continue;
2899
2900 if (wl > max_load) {
2901 max_load = wl;
2902 busiest = rq;
2903 }
2904 }
2905
2906 return busiest;
2907}
2908
2909/*
2910 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2911 * so long as it is large enough.
2912 */
2913#define MAX_PINNED_INTERVAL 512
2914
2915/* Working cpumask for load_balance and load_balance_newidle. */
2916static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
2917
2918/*
2919 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2920 * tasks if there is an imbalance.
2921 */
2922static int load_balance(int this_cpu, struct rq *this_rq,
2923 struct sched_domain *sd, enum cpu_idle_type idle,
2924 int *balance)
2925{
2926 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2927 struct sched_group *group;
2928 unsigned long imbalance;
2929 struct rq *busiest;
2930 unsigned long flags;
2931 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
2932
2933 cpumask_copy(cpus, cpu_active_mask);
2934
2935 /*
2936 * When power savings policy is enabled for the parent domain, idle
2937 * sibling can pick up load irrespective of busy siblings. In this case,
2938 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2939 * portraying it as CPU_NOT_IDLE.
2940 */
2941 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2942 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2943 sd_idle = 1;
2944
2945 schedstat_inc(sd, lb_count[idle]);
2946
2947redo:
2948 update_shares(sd);
2949 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2950 cpus, balance);
2951
2952 if (*balance == 0)
2953 goto out_balanced;
2954
2955 if (!group) {
2956 schedstat_inc(sd, lb_nobusyg[idle]);
2957 goto out_balanced;
2958 }
2959
2960 busiest = find_busiest_queue(group, idle, imbalance, cpus);
2961 if (!busiest) {
2962 schedstat_inc(sd, lb_nobusyq[idle]);
2963 goto out_balanced;
2964 }
2965
2966 BUG_ON(busiest == this_rq);
2967
2968 schedstat_add(sd, lb_imbalance[idle], imbalance);
2969
2970 ld_moved = 0;
2971 if (busiest->nr_running > 1) {
2972 /*
2973 * Attempt to move tasks. If find_busiest_group has found
2974 * an imbalance but busiest->nr_running <= 1, the group is
2975 * still unbalanced. ld_moved simply stays zero, so it is
2976 * correctly treated as an imbalance.
2977 */
2978 local_irq_save(flags);
2979 double_rq_lock(this_rq, busiest);
2980 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2981 imbalance, sd, idle, &all_pinned);
2982 double_rq_unlock(this_rq, busiest);
2983 local_irq_restore(flags);
2984
2985 /*
2986 * some other cpu did the load balance for us.
2987 */
2988 if (ld_moved && this_cpu != smp_processor_id())
2989 resched_cpu(this_cpu);
2990
2991 /* All tasks on this runqueue were pinned by CPU affinity */
2992 if (unlikely(all_pinned)) {
2993 cpumask_clear_cpu(cpu_of(busiest), cpus);
2994 if (!cpumask_empty(cpus))
2995 goto redo;
2996 goto out_balanced;
2997 }
2998 }
2999
3000 if (!ld_moved) {
3001 schedstat_inc(sd, lb_failed[idle]);
3002 sd->nr_balance_failed++;
3003
3004 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3005
3006 raw_spin_lock_irqsave(&busiest->lock, flags);
3007
3008 /* don't kick the migration_thread, if the curr
3009 * task on busiest cpu can't be moved to this_cpu
3010 */
3011 if (!cpumask_test_cpu(this_cpu,
3012 &busiest->curr->cpus_allowed)) {
3013 raw_spin_unlock_irqrestore(&busiest->lock,
3014 flags);
3015 all_pinned = 1;
3016 goto out_one_pinned;
3017 }
3018
3019 if (!busiest->active_balance) {
3020 busiest->active_balance = 1;
3021 busiest->push_cpu = this_cpu;
3022 active_balance = 1;
3023 }
3024 raw_spin_unlock_irqrestore(&busiest->lock, flags);
3025 if (active_balance)
3026 wake_up_process(busiest->migration_thread);
3027
3028 /*
3029 * We've kicked active balancing, reset the failure
3030 * counter.
3031 */
3032 sd->nr_balance_failed = sd->cache_nice_tries+1;
3033 }
3034 } else
3035 sd->nr_balance_failed = 0;
3036
3037 if (likely(!active_balance)) {
3038 /* We were unbalanced, so reset the balancing interval */
3039 sd->balance_interval = sd->min_interval;
3040 } else {
3041 /*
3042 * If we've begun active balancing, start to back off. This
3043 * case may not be covered by the all_pinned logic if there
3044 * is only 1 task on the busy runqueue (because we don't call
3045 * move_tasks).
3046 */
3047 if (sd->balance_interval < sd->max_interval)
3048 sd->balance_interval *= 2;
3049 }
3050
3051 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3052 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3053 ld_moved = -1;
3054
3055 goto out;
3056
3057out_balanced:
3058 schedstat_inc(sd, lb_balanced[idle]);
3059
3060 sd->nr_balance_failed = 0;
3061
3062out_one_pinned:
3063 /* tune up the balancing interval */
3064 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3065 (sd->balance_interval < sd->max_interval))
3066 sd->balance_interval *= 2;
3067
3068 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3069 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3070 ld_moved = -1;
3071 else
3072 ld_moved = 0;
3073out:
3074 if (ld_moved)
3075 update_shares(sd);
3076 return ld_moved;
3077}
3078
3079/*
3080 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3081 * tasks if there is an imbalance.
3082 *
3083 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3084 * this_rq is locked.
3085 */
3086static int
3087load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
3088{
3089 struct sched_group *group;
3090 struct rq *busiest = NULL;
3091 unsigned long imbalance;
3092 int ld_moved = 0;
3093 int sd_idle = 0;
3094 int all_pinned = 0;
3095 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3096
3097 cpumask_copy(cpus, cpu_active_mask);
3098
3099 /*
3100 * When power savings policy is enabled for the parent domain, idle
3101 * sibling can pick up load irrespective of busy siblings. In this case,
3102 * let the state of idle sibling percolate up as IDLE, instead of
3103 * portraying it as CPU_NOT_IDLE.
3104 */
3105 if (sd->flags & SD_SHARE_CPUPOWER &&
3106 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3107 sd_idle = 1;
3108
3109 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3110redo:
3111 update_shares_locked(this_rq, sd);
3112 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3113 &sd_idle, cpus, NULL);
3114 if (!group) {
3115 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3116 goto out_balanced;
3117 }
3118
3119 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3120 if (!busiest) {
3121 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3122 goto out_balanced;
3123 }
3124
3125 BUG_ON(busiest == this_rq);
3126
3127 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3128
3129 ld_moved = 0;
3130 if (busiest->nr_running > 1) {
3131 /* Attempt to move tasks */
3132 double_lock_balance(this_rq, busiest);
3133 /* this_rq->clock is already updated */
3134 update_rq_clock(busiest);
3135 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3136 imbalance, sd, CPU_NEWLY_IDLE,
3137 &all_pinned);
3138 double_unlock_balance(this_rq, busiest);
3139
3140 if (unlikely(all_pinned)) {
3141 cpumask_clear_cpu(cpu_of(busiest), cpus);
3142 if (!cpumask_empty(cpus))
3143 goto redo;
3144 }
3145 }
3146
3147 if (!ld_moved) {
3148 int active_balance = 0;
3149
3150 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3151 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3152 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3153 return -1;
3154
3155 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3156 return -1;
3157
3158 if (sd->nr_balance_failed++ < 2)
3159 return -1;
3160
3161 /*
3162 * The only task running in a non-idle cpu can be moved to this
3163 * cpu in an attempt to completely freeup the other CPU
3164 * package. The same method used to move task in load_balance()
3165 * have been extended for load_balance_newidle() to speedup
3166 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3167 *
3168 * The package power saving logic comes from
3169 * find_busiest_group(). If there are no imbalance, then
3170 * f_b_g() will return NULL. However when sched_mc={1,2} then
3171 * f_b_g() will select a group from which a running task may be
3172 * pulled to this cpu in order to make the other package idle.
3173 * If there is no opportunity to make a package idle and if
3174 * there are no imbalance, then f_b_g() will return NULL and no
3175 * action will be taken in load_balance_newidle().
3176 *
3177 * Under normal task pull operation due to imbalance, there
3178 * will be more than one task in the source run queue and
3179 * move_tasks() will succeed. ld_moved will be true and this
3180 * active balance code will not be triggered.
3181 */
3182
3183 /* Lock busiest in correct order while this_rq is held */
3184 double_lock_balance(this_rq, busiest);
3185
3186 /*
3187 * don't kick the migration_thread, if the curr
3188 * task on busiest cpu can't be moved to this_cpu
3189 */
3190 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3191 double_unlock_balance(this_rq, busiest);
3192 all_pinned = 1;
3193 return ld_moved;
3194 }
3195
3196 if (!busiest->active_balance) {
3197 busiest->active_balance = 1;
3198 busiest->push_cpu = this_cpu;
3199 active_balance = 1;
3200 }
3201
3202 double_unlock_balance(this_rq, busiest);
3203 /*
3204 * Should not call ttwu while holding a rq->lock
3205 */
3206 raw_spin_unlock(&this_rq->lock);
3207 if (active_balance)
3208 wake_up_process(busiest->migration_thread);
3209 raw_spin_lock(&this_rq->lock);
3210
3211 } else
3212 sd->nr_balance_failed = 0;
3213
3214 update_shares_locked(this_rq, sd);
3215 return ld_moved;
3216
3217out_balanced:
3218 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3219 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3220 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3221 return -1;
3222 sd->nr_balance_failed = 0;
3223
3224 return 0;
3225}
3226
3227/*
3228 * idle_balance is called by schedule() if this_cpu is about to become
3229 * idle. Attempts to pull tasks from other CPUs.
3230 */
3231static void idle_balance(int this_cpu, struct rq *this_rq)
3232{
3233 struct sched_domain *sd;
3234 int pulled_task = 0;
3235 unsigned long next_balance = jiffies + HZ;
3236
3237 this_rq->idle_stamp = this_rq->clock;
3238
3239 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3240 return;
3241
3242 for_each_domain(this_cpu, sd) {
3243 unsigned long interval;
3244
3245 if (!(sd->flags & SD_LOAD_BALANCE))
3246 continue;
3247
3248 if (sd->flags & SD_BALANCE_NEWIDLE)
3249 /* If we've pulled tasks over stop searching: */
3250 pulled_task = load_balance_newidle(this_cpu, this_rq,
3251 sd);
3252
3253 interval = msecs_to_jiffies(sd->balance_interval);
3254 if (time_after(next_balance, sd->last_balance + interval))
3255 next_balance = sd->last_balance + interval;
3256 if (pulled_task) {
3257 this_rq->idle_stamp = 0;
3258 break;
3259 }
3260 }
3261 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3262 /*
3263 * We are going idle. next_balance may be set based on
3264 * a busy processor. So reset next_balance.
3265 */
3266 this_rq->next_balance = next_balance;
3267 }
3268}
3269
3270/*
3271 * active_load_balance is run by migration threads. It pushes running tasks
3272 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3273 * running on each physical CPU where possible, and avoids physical /
3274 * logical imbalances.
3275 *
3276 * Called with busiest_rq locked.
3277 */
3278static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3279{
3280 int target_cpu = busiest_rq->push_cpu;
3281 struct sched_domain *sd;
3282 struct rq *target_rq;
3283
3284 /* Is there any task to move? */
3285 if (busiest_rq->nr_running <= 1)
3286 return;
3287
3288 target_rq = cpu_rq(target_cpu);
3289
3290 /*
3291 * This condition is "impossible", if it occurs
3292 * we need to fix it. Originally reported by
3293 * Bjorn Helgaas on a 128-cpu setup.
3294 */
3295 BUG_ON(busiest_rq == target_rq);
3296
3297 /* move a task from busiest_rq to target_rq */
3298 double_lock_balance(busiest_rq, target_rq);
3299 update_rq_clock(busiest_rq);
3300 update_rq_clock(target_rq);
3301
3302 /* Search for an sd spanning us and the target CPU. */
3303 for_each_domain(target_cpu, sd) {
3304 if ((sd->flags & SD_LOAD_BALANCE) &&
3305 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3306 break;
3307 }
3308
3309 if (likely(sd)) {
3310 schedstat_inc(sd, alb_count);
3311
3312 if (move_one_task(target_rq, target_cpu, busiest_rq,
3313 sd, CPU_IDLE))
3314 schedstat_inc(sd, alb_pushed);
3315 else
3316 schedstat_inc(sd, alb_failed);
3317 }
3318 double_unlock_balance(busiest_rq, target_rq);
3319}
3320
3321#ifdef CONFIG_NO_HZ
3322static struct {
3323 atomic_t load_balancer;
3324 cpumask_var_t cpu_mask;
3325 cpumask_var_t ilb_grp_nohz_mask;
3326} nohz ____cacheline_aligned = {
3327 .load_balancer = ATOMIC_INIT(-1),
3328};
3329
3330int get_nohz_load_balancer(void)
3331{
3332 return atomic_read(&nohz.load_balancer);
3333}
3334
3335#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3336/**
3337 * lowest_flag_domain - Return lowest sched_domain containing flag.
3338 * @cpu: The cpu whose lowest level of sched domain is to
3339 * be returned.
3340 * @flag: The flag to check for the lowest sched_domain
3341 * for the given cpu.
3342 *
3343 * Returns the lowest sched_domain of a cpu which contains the given flag.
3344 */
3345static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3346{
3347 struct sched_domain *sd;
3348
3349 for_each_domain(cpu, sd)
3350 if (sd && (sd->flags & flag))
3351 break;
3352
3353 return sd;
3354}
3355
3356/**
3357 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3358 * @cpu: The cpu whose domains we're iterating over.
3359 * @sd: variable holding the value of the power_savings_sd
3360 * for cpu.
3361 * @flag: The flag to filter the sched_domains to be iterated.
3362 *
3363 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3364 * set, starting from the lowest sched_domain to the highest.
3365 */
3366#define for_each_flag_domain(cpu, sd, flag) \
3367 for (sd = lowest_flag_domain(cpu, flag); \
3368 (sd && (sd->flags & flag)); sd = sd->parent)
3369
3370/**
3371 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3372 * @ilb_group: group to be checked for semi-idleness
3373 *
3374 * Returns: 1 if the group is semi-idle. 0 otherwise.
3375 *
3376 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3377 * and atleast one non-idle CPU. This helper function checks if the given
3378 * sched_group is semi-idle or not.
3379 */
3380static inline int is_semi_idle_group(struct sched_group *ilb_group)
3381{
3382 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
3383 sched_group_cpus(ilb_group));
3384
3385 /*
3386 * A sched_group is semi-idle when it has atleast one busy cpu
3387 * and atleast one idle cpu.
3388 */
3389 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
3390 return 0;
3391
3392 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
3393 return 0;
3394
3395 return 1;
3396}
3397/**
3398 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3399 * @cpu: The cpu which is nominating a new idle_load_balancer.
3400 *
3401 * Returns: Returns the id of the idle load balancer if it exists,
3402 * Else, returns >= nr_cpu_ids.
3403 *
3404 * This algorithm picks the idle load balancer such that it belongs to a
3405 * semi-idle powersavings sched_domain. The idea is to try and avoid
3406 * completely idle packages/cores just for the purpose of idle load balancing
3407 * when there are other idle cpu's which are better suited for that job.
3408 */
3409static int find_new_ilb(int cpu)
3410{
3411 struct sched_domain *sd;
3412 struct sched_group *ilb_group;
3413
3414 /*
3415 * Have idle load balancer selection from semi-idle packages only
3416 * when power-aware load balancing is enabled
3417 */
3418 if (!(sched_smt_power_savings || sched_mc_power_savings))
3419 goto out_done;
3420
3421 /*
3422 * Optimize for the case when we have no idle CPUs or only one
3423 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3424 */
3425 if (cpumask_weight(nohz.cpu_mask) < 2)
3426 goto out_done;
3427
3428 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3429 ilb_group = sd->groups;
3430
3431 do {
3432 if (is_semi_idle_group(ilb_group))
3433 return cpumask_first(nohz.ilb_grp_nohz_mask);
3434
3435 ilb_group = ilb_group->next;
3436
3437 } while (ilb_group != sd->groups);
3438 }
3439
3440out_done:
3441 return cpumask_first(nohz.cpu_mask);
3442}
3443#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3444static inline int find_new_ilb(int call_cpu)
3445{
3446 return cpumask_first(nohz.cpu_mask);
3447}
3448#endif
3449
3450/*
3451 * This routine will try to nominate the ilb (idle load balancing)
3452 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3453 * load balancing on behalf of all those cpus. If all the cpus in the system
3454 * go into this tickless mode, then there will be no ilb owner (as there is
3455 * no need for one) and all the cpus will sleep till the next wakeup event
3456 * arrives...
3457 *
3458 * For the ilb owner, tick is not stopped. And this tick will be used
3459 * for idle load balancing. ilb owner will still be part of
3460 * nohz.cpu_mask..
3461 *
3462 * While stopping the tick, this cpu will become the ilb owner if there
3463 * is no other owner. And will be the owner till that cpu becomes busy
3464 * or if all cpus in the system stop their ticks at which point
3465 * there is no need for ilb owner.
3466 *
3467 * When the ilb owner becomes busy, it nominates another owner, during the
3468 * next busy scheduler_tick()
3469 */
3470int select_nohz_load_balancer(int stop_tick)
3471{
3472 int cpu = smp_processor_id();
3473
3474 if (stop_tick) {
3475 cpu_rq(cpu)->in_nohz_recently = 1;
3476
3477 if (!cpu_active(cpu)) {
3478 if (atomic_read(&nohz.load_balancer) != cpu)
3479 return 0;
3480
3481 /*
3482 * If we are going offline and still the leader,
3483 * give up!
3484 */
3485 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3486 BUG();
3487
3488 return 0;
3489 }
3490
3491 cpumask_set_cpu(cpu, nohz.cpu_mask);
3492
3493 /* time for ilb owner also to sleep */
3494 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
3495 if (atomic_read(&nohz.load_balancer) == cpu)
3496 atomic_set(&nohz.load_balancer, -1);
3497 return 0;
3498 }
3499
3500 if (atomic_read(&nohz.load_balancer) == -1) {
3501 /* make me the ilb owner */
3502 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3503 return 1;
3504 } else if (atomic_read(&nohz.load_balancer) == cpu) {
3505 int new_ilb;
3506
3507 if (!(sched_smt_power_savings ||
3508 sched_mc_power_savings))
3509 return 1;
3510 /*
3511 * Check to see if there is a more power-efficient
3512 * ilb.
3513 */
3514 new_ilb = find_new_ilb(cpu);
3515 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3516 atomic_set(&nohz.load_balancer, -1);
3517 resched_cpu(new_ilb);
3518 return 0;
3519 }
3520 return 1;
3521 }
3522 } else {
3523 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3524 return 0;
3525
3526 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3527
3528 if (atomic_read(&nohz.load_balancer) == cpu)
3529 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3530 BUG();
3531 }
3532 return 0;
3533}
3534#endif
3535
3536static DEFINE_SPINLOCK(balancing);
3537
3538/*
3539 * It checks each scheduling domain to see if it is due to be balanced,
3540 * and initiates a balancing operation if so.
3541 *
3542 * Balancing parameters are set up in arch_init_sched_domains.
3543 */
3544static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3545{
3546 int balance = 1;
3547 struct rq *rq = cpu_rq(cpu);
3548 unsigned long interval;
3549 struct sched_domain *sd;
3550 /* Earliest time when we have to do rebalance again */
3551 unsigned long next_balance = jiffies + 60*HZ;
3552 int update_next_balance = 0;
3553 int need_serialize;
3554
3555 for_each_domain(cpu, sd) {
3556 if (!(sd->flags & SD_LOAD_BALANCE))
3557 continue;
3558
3559 interval = sd->balance_interval;
3560 if (idle != CPU_IDLE)
3561 interval *= sd->busy_factor;
3562
3563 /* scale ms to jiffies */
3564 interval = msecs_to_jiffies(interval);
3565 if (unlikely(!interval))
3566 interval = 1;
3567 if (interval > HZ*NR_CPUS/10)
3568 interval = HZ*NR_CPUS/10;
3569
3570 need_serialize = sd->flags & SD_SERIALIZE;
3571
3572 if (need_serialize) {
3573 if (!spin_trylock(&balancing))
3574 goto out;
3575 }
3576
3577 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3578 if (load_balance(cpu, rq, sd, idle, &balance)) {
3579 /*
3580 * We've pulled tasks over so either we're no
3581 * longer idle, or one of our SMT siblings is
3582 * not idle.
3583 */
3584 idle = CPU_NOT_IDLE;
3585 }
3586 sd->last_balance = jiffies;
3587 }
3588 if (need_serialize)
3589 spin_unlock(&balancing);
3590out:
3591 if (time_after(next_balance, sd->last_balance + interval)) {
3592 next_balance = sd->last_balance + interval;
3593 update_next_balance = 1;
3594 }
3595
3596 /*
3597 * Stop the load balance at this level. There is another
3598 * CPU in our sched group which is doing load balancing more
3599 * actively.
3600 */
3601 if (!balance)
3602 break;
3603 }
3604
3605 /*
3606 * next_balance will be updated only when there is a need.
3607 * When the cpu is attached to null domain for ex, it will not be
3608 * updated.
3609 */
3610 if (likely(update_next_balance))
3611 rq->next_balance = next_balance;
3612}
3613
3614/*
3615 * run_rebalance_domains is triggered when needed from the scheduler tick.
3616 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3617 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3618 */
3619static void run_rebalance_domains(struct softirq_action *h)
3620{
3621 int this_cpu = smp_processor_id();
3622 struct rq *this_rq = cpu_rq(this_cpu);
3623 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3624 CPU_IDLE : CPU_NOT_IDLE;
3625
3626 rebalance_domains(this_cpu, idle);
3627
3628#ifdef CONFIG_NO_HZ
3629 /*
3630 * If this cpu is the owner for idle load balancing, then do the
3631 * balancing on behalf of the other idle cpus whose ticks are
3632 * stopped.
3633 */
3634 if (this_rq->idle_at_tick &&
3635 atomic_read(&nohz.load_balancer) == this_cpu) {
3636 struct rq *rq;
3637 int balance_cpu;
3638
3639 for_each_cpu(balance_cpu, nohz.cpu_mask) {
3640 if (balance_cpu == this_cpu)
3641 continue;
3642
3643 /*
3644 * If this cpu gets work to do, stop the load balancing
3645 * work being done for other cpus. Next load
3646 * balancing owner will pick it up.
3647 */
3648 if (need_resched())
3649 break;
3650
3651 rebalance_domains(balance_cpu, CPU_IDLE);
3652
3653 rq = cpu_rq(balance_cpu);
3654 if (time_after(this_rq->next_balance, rq->next_balance))
3655 this_rq->next_balance = rq->next_balance;
3656 }
3657 }
3658#endif
3659}
3660
3661static inline int on_null_domain(int cpu)
3662{
3663 return !rcu_dereference(cpu_rq(cpu)->sd);
3664}
3665
3666/*
3667 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3668 *
3669 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3670 * idle load balancing owner or decide to stop the periodic load balancing,
3671 * if the whole system is idle.
3672 */
3673static inline void trigger_load_balance(struct rq *rq, int cpu)
3674{
3675#ifdef CONFIG_NO_HZ
3676 /*
3677 * If we were in the nohz mode recently and busy at the current
3678 * scheduler tick, then check if we need to nominate new idle
3679 * load balancer.
3680 */
3681 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3682 rq->in_nohz_recently = 0;
3683
3684 if (atomic_read(&nohz.load_balancer) == cpu) {
3685 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3686 atomic_set(&nohz.load_balancer, -1);
3687 }
3688
3689 if (atomic_read(&nohz.load_balancer) == -1) {
3690 int ilb = find_new_ilb(cpu);
3691
3692 if (ilb < nr_cpu_ids)
3693 resched_cpu(ilb);
3694 }
3695 }
3696
3697 /*
3698 * If this cpu is idle and doing idle load balancing for all the
3699 * cpus with ticks stopped, is it time for that to stop?
3700 */
3701 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3702 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3703 resched_cpu(cpu);
3704 return;
3705 }
3706
3707 /*
3708 * If this cpu is idle and the idle load balancing is done by
3709 * someone else, then no need raise the SCHED_SOFTIRQ
3710 */
3711 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3712 cpumask_test_cpu(cpu, nohz.cpu_mask))
3713 return;
3714#endif
3715 /* Don't need to rebalance while attached to NULL domain */
3716 if (time_after_eq(jiffies, rq->next_balance) &&
3717 likely(!on_null_domain(cpu)))
3718 raise_softirq(SCHED_SOFTIRQ);
3719}
3720
0bcdcf28
CE
3721static void rq_online_fair(struct rq *rq)
3722{
3723 update_sysctl();
3724}
3725
3726static void rq_offline_fair(struct rq *rq)
3727{
3728 update_sysctl();
3729}
3730
1e3c88bd
PZ
3731#else /* CONFIG_SMP */
3732
3733/*
3734 * on UP we do not need to balance between CPUs:
3735 */
3736static inline void idle_balance(int cpu, struct rq *rq)
3737{
3738}
3739
55e12e5e 3740#endif /* CONFIG_SMP */
e1d1484f 3741
bf0f6f24
IM
3742/*
3743 * scheduler tick hitting a task of our scheduling class:
3744 */
8f4d37ec 3745static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
3746{
3747 struct cfs_rq *cfs_rq;
3748 struct sched_entity *se = &curr->se;
3749
3750 for_each_sched_entity(se) {
3751 cfs_rq = cfs_rq_of(se);
8f4d37ec 3752 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
3753 }
3754}
3755
3756/*
cd29fe6f
PZ
3757 * called on fork with the child task as argument from the parent's context
3758 * - child not yet on the tasklist
3759 * - preemption disabled
bf0f6f24 3760 */
cd29fe6f 3761static void task_fork_fair(struct task_struct *p)
bf0f6f24 3762{
cd29fe6f 3763 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 3764 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 3765 int this_cpu = smp_processor_id();
cd29fe6f
PZ
3766 struct rq *rq = this_rq();
3767 unsigned long flags;
3768
05fa785c 3769 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 3770
cd29fe6f
PZ
3771 if (unlikely(task_cpu(p) != this_cpu))
3772 __set_task_cpu(p, this_cpu);
bf0f6f24 3773
7109c442 3774 update_curr(cfs_rq);
cd29fe6f 3775
b5d9d734
MG
3776 if (curr)
3777 se->vruntime = curr->vruntime;
aeb73b04 3778 place_entity(cfs_rq, se, 1);
4d78e7b6 3779
cd29fe6f 3780 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 3781 /*
edcb60a3
IM
3782 * Upon rescheduling, sched_class::put_prev_task() will place
3783 * 'current' within the tree based on its new key value.
3784 */
4d78e7b6 3785 swap(curr->vruntime, se->vruntime);
aec0a514 3786 resched_task(rq->curr);
4d78e7b6 3787 }
bf0f6f24 3788
88ec22d3
PZ
3789 se->vruntime -= cfs_rq->min_vruntime;
3790
05fa785c 3791 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
3792}
3793
cb469845
SR
3794/*
3795 * Priority of the task has changed. Check to see if we preempt
3796 * the current task.
3797 */
3798static void prio_changed_fair(struct rq *rq, struct task_struct *p,
3799 int oldprio, int running)
3800{
3801 /*
3802 * Reschedule if we are currently running on this runqueue and
3803 * our priority decreased, or if we are not currently running on
3804 * this runqueue and our priority is higher than the current's
3805 */
3806 if (running) {
3807 if (p->prio > oldprio)
3808 resched_task(rq->curr);
3809 } else
15afe09b 3810 check_preempt_curr(rq, p, 0);
cb469845
SR
3811}
3812
3813/*
3814 * We switched to the sched_fair class.
3815 */
3816static void switched_to_fair(struct rq *rq, struct task_struct *p,
3817 int running)
3818{
3819 /*
3820 * We were most likely switched from sched_rt, so
3821 * kick off the schedule if running, otherwise just see
3822 * if we can still preempt the current task.
3823 */
3824 if (running)
3825 resched_task(rq->curr);
3826 else
15afe09b 3827 check_preempt_curr(rq, p, 0);
cb469845
SR
3828}
3829
83b699ed
SV
3830/* Account for a task changing its policy or group.
3831 *
3832 * This routine is mostly called to set cfs_rq->curr field when a task
3833 * migrates between groups/classes.
3834 */
3835static void set_curr_task_fair(struct rq *rq)
3836{
3837 struct sched_entity *se = &rq->curr->se;
3838
3839 for_each_sched_entity(se)
3840 set_next_entity(cfs_rq_of(se), se);
3841}
3842
810b3817 3843#ifdef CONFIG_FAIR_GROUP_SCHED
88ec22d3 3844static void moved_group_fair(struct task_struct *p, int on_rq)
810b3817
PZ
3845{
3846 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3847
3848 update_curr(cfs_rq);
88ec22d3
PZ
3849 if (!on_rq)
3850 place_entity(cfs_rq, &p->se, 1);
810b3817
PZ
3851}
3852#endif
3853
6d686f45 3854static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
3855{
3856 struct sched_entity *se = &task->se;
0d721cea
PW
3857 unsigned int rr_interval = 0;
3858
3859 /*
3860 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
3861 * idle runqueue:
3862 */
0d721cea
PW
3863 if (rq->cfs.load.weight)
3864 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
3865
3866 return rr_interval;
3867}
3868
bf0f6f24
IM
3869/*
3870 * All the scheduling class methods:
3871 */
5522d5d5
IM
3872static const struct sched_class fair_sched_class = {
3873 .next = &idle_sched_class,
bf0f6f24
IM
3874 .enqueue_task = enqueue_task_fair,
3875 .dequeue_task = dequeue_task_fair,
3876 .yield_task = yield_task_fair,
3877
2e09bf55 3878 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
3879
3880 .pick_next_task = pick_next_task_fair,
3881 .put_prev_task = put_prev_task_fair,
3882
681f3e68 3883#ifdef CONFIG_SMP
4ce72a2c
LZ
3884 .select_task_rq = select_task_rq_fair,
3885
0bcdcf28
CE
3886 .rq_online = rq_online_fair,
3887 .rq_offline = rq_offline_fair,
88ec22d3
PZ
3888
3889 .task_waking = task_waking_fair,
681f3e68 3890#endif
bf0f6f24 3891
83b699ed 3892 .set_curr_task = set_curr_task_fair,
bf0f6f24 3893 .task_tick = task_tick_fair,
cd29fe6f 3894 .task_fork = task_fork_fair,
cb469845
SR
3895
3896 .prio_changed = prio_changed_fair,
3897 .switched_to = switched_to_fair,
810b3817 3898
0d721cea
PW
3899 .get_rr_interval = get_rr_interval_fair,
3900
810b3817
PZ
3901#ifdef CONFIG_FAIR_GROUP_SCHED
3902 .moved_group = moved_group_fair,
3903#endif
bf0f6f24
IM
3904};
3905
3906#ifdef CONFIG_SCHED_DEBUG
5cef9eca 3907static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 3908{
bf0f6f24
IM
3909 struct cfs_rq *cfs_rq;
3910
5973e5b9 3911 rcu_read_lock();
c3b64f1e 3912 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 3913 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 3914 rcu_read_unlock();
bf0f6f24
IM
3915}
3916#endif