sched: Turn off child_runs_first
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
2bba22c5 51 * After fork, child runs first. If set to 0 (default) then
b2be5e96 52 * parent will (try to) run first.
21805085 53 */
2bba22c5 54unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
103638d9 66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
103638d9 72unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
a4c2f00f
PZ
76static const struct sched_class fair_sched_class;
77
bf0f6f24
IM
78/**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
62160e3f 82#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 83
62160e3f 84/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
85static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
86{
62160e3f 87 return cfs_rq->rq;
bf0f6f24
IM
88}
89
62160e3f
IM
90/* An entity is a task if it doesn't "own" a runqueue */
91#define entity_is_task(se) (!se->my_q)
bf0f6f24 92
8f48894f
PZ
93static inline struct task_struct *task_of(struct sched_entity *se)
94{
95#ifdef CONFIG_SCHED_DEBUG
96 WARN_ON_ONCE(!entity_is_task(se));
97#endif
98 return container_of(se, struct task_struct, se);
99}
100
b758149c
PZ
101/* Walk up scheduling entities hierarchy */
102#define for_each_sched_entity(se) \
103 for (; se; se = se->parent)
104
105static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
106{
107 return p->se.cfs_rq;
108}
109
110/* runqueue on which this entity is (to be) queued */
111static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
112{
113 return se->cfs_rq;
114}
115
116/* runqueue "owned" by this group */
117static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
118{
119 return grp->my_q;
120}
121
122/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
123 * another cpu ('this_cpu')
124 */
125static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
126{
127 return cfs_rq->tg->cfs_rq[this_cpu];
128}
129
130/* Iterate thr' all leaf cfs_rq's on a runqueue */
131#define for_each_leaf_cfs_rq(rq, cfs_rq) \
132 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
133
134/* Do the two (enqueued) entities belong to the same group ? */
135static inline int
136is_same_group(struct sched_entity *se, struct sched_entity *pse)
137{
138 if (se->cfs_rq == pse->cfs_rq)
139 return 1;
140
141 return 0;
142}
143
144static inline struct sched_entity *parent_entity(struct sched_entity *se)
145{
146 return se->parent;
147}
148
464b7527
PZ
149/* return depth at which a sched entity is present in the hierarchy */
150static inline int depth_se(struct sched_entity *se)
151{
152 int depth = 0;
153
154 for_each_sched_entity(se)
155 depth++;
156
157 return depth;
158}
159
160static void
161find_matching_se(struct sched_entity **se, struct sched_entity **pse)
162{
163 int se_depth, pse_depth;
164
165 /*
166 * preemption test can be made between sibling entities who are in the
167 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
168 * both tasks until we find their ancestors who are siblings of common
169 * parent.
170 */
171
172 /* First walk up until both entities are at same depth */
173 se_depth = depth_se(*se);
174 pse_depth = depth_se(*pse);
175
176 while (se_depth > pse_depth) {
177 se_depth--;
178 *se = parent_entity(*se);
179 }
180
181 while (pse_depth > se_depth) {
182 pse_depth--;
183 *pse = parent_entity(*pse);
184 }
185
186 while (!is_same_group(*se, *pse)) {
187 *se = parent_entity(*se);
188 *pse = parent_entity(*pse);
189 }
190}
191
8f48894f
PZ
192#else /* !CONFIG_FAIR_GROUP_SCHED */
193
194static inline struct task_struct *task_of(struct sched_entity *se)
195{
196 return container_of(se, struct task_struct, se);
197}
bf0f6f24 198
62160e3f
IM
199static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
200{
201 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
202}
203
204#define entity_is_task(se) 1
205
b758149c
PZ
206#define for_each_sched_entity(se) \
207 for (; se; se = NULL)
bf0f6f24 208
b758149c 209static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 210{
b758149c 211 return &task_rq(p)->cfs;
bf0f6f24
IM
212}
213
b758149c
PZ
214static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
215{
216 struct task_struct *p = task_of(se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->cfs;
220}
221
222/* runqueue "owned" by this group */
223static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
224{
225 return NULL;
226}
227
228static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
229{
230 return &cpu_rq(this_cpu)->cfs;
231}
232
233#define for_each_leaf_cfs_rq(rq, cfs_rq) \
234 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
235
236static inline int
237is_same_group(struct sched_entity *se, struct sched_entity *pse)
238{
239 return 1;
240}
241
242static inline struct sched_entity *parent_entity(struct sched_entity *se)
243{
244 return NULL;
245}
246
464b7527
PZ
247static inline void
248find_matching_se(struct sched_entity **se, struct sched_entity **pse)
249{
250}
251
b758149c
PZ
252#endif /* CONFIG_FAIR_GROUP_SCHED */
253
bf0f6f24
IM
254
255/**************************************************************
256 * Scheduling class tree data structure manipulation methods:
257 */
258
0702e3eb 259static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 260{
368059a9
PZ
261 s64 delta = (s64)(vruntime - min_vruntime);
262 if (delta > 0)
02e0431a
PZ
263 min_vruntime = vruntime;
264
265 return min_vruntime;
266}
267
0702e3eb 268static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
269{
270 s64 delta = (s64)(vruntime - min_vruntime);
271 if (delta < 0)
272 min_vruntime = vruntime;
273
274 return min_vruntime;
275}
276
54fdc581
FC
277static inline int entity_before(struct sched_entity *a,
278 struct sched_entity *b)
279{
280 return (s64)(a->vruntime - b->vruntime) < 0;
281}
282
0702e3eb 283static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 284{
30cfdcfc 285 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
286}
287
1af5f730
PZ
288static void update_min_vruntime(struct cfs_rq *cfs_rq)
289{
290 u64 vruntime = cfs_rq->min_vruntime;
291
292 if (cfs_rq->curr)
293 vruntime = cfs_rq->curr->vruntime;
294
295 if (cfs_rq->rb_leftmost) {
296 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
297 struct sched_entity,
298 run_node);
299
e17036da 300 if (!cfs_rq->curr)
1af5f730
PZ
301 vruntime = se->vruntime;
302 else
303 vruntime = min_vruntime(vruntime, se->vruntime);
304 }
305
306 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
307}
308
bf0f6f24
IM
309/*
310 * Enqueue an entity into the rb-tree:
311 */
0702e3eb 312static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
313{
314 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
315 struct rb_node *parent = NULL;
316 struct sched_entity *entry;
9014623c 317 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
318 int leftmost = 1;
319
320 /*
321 * Find the right place in the rbtree:
322 */
323 while (*link) {
324 parent = *link;
325 entry = rb_entry(parent, struct sched_entity, run_node);
326 /*
327 * We dont care about collisions. Nodes with
328 * the same key stay together.
329 */
9014623c 330 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
331 link = &parent->rb_left;
332 } else {
333 link = &parent->rb_right;
334 leftmost = 0;
335 }
336 }
337
338 /*
339 * Maintain a cache of leftmost tree entries (it is frequently
340 * used):
341 */
1af5f730 342 if (leftmost)
57cb499d 343 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
344
345 rb_link_node(&se->run_node, parent, link);
346 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
347}
348
0702e3eb 349static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 350{
3fe69747
PZ
351 if (cfs_rq->rb_leftmost == &se->run_node) {
352 struct rb_node *next_node;
3fe69747
PZ
353
354 next_node = rb_next(&se->run_node);
355 cfs_rq->rb_leftmost = next_node;
3fe69747 356 }
e9acbff6 357
bf0f6f24 358 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
359}
360
bf0f6f24
IM
361static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
362{
f4b6755f
PZ
363 struct rb_node *left = cfs_rq->rb_leftmost;
364
365 if (!left)
366 return NULL;
367
368 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
369}
370
f4b6755f 371static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 372{
7eee3e67 373 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 374
70eee74b
BS
375 if (!last)
376 return NULL;
7eee3e67
IM
377
378 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
379}
380
bf0f6f24
IM
381/**************************************************************
382 * Scheduling class statistics methods:
383 */
384
b2be5e96
PZ
385#ifdef CONFIG_SCHED_DEBUG
386int sched_nr_latency_handler(struct ctl_table *table, int write,
387 struct file *filp, void __user *buffer, size_t *lenp,
388 loff_t *ppos)
389{
390 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
391
392 if (ret || !write)
393 return ret;
394
395 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
396 sysctl_sched_min_granularity);
397
398 return 0;
399}
400#endif
647e7cac 401
a7be37ac 402/*
f9c0b095 403 * delta /= w
a7be37ac
PZ
404 */
405static inline unsigned long
406calc_delta_fair(unsigned long delta, struct sched_entity *se)
407{
f9c0b095
PZ
408 if (unlikely(se->load.weight != NICE_0_LOAD))
409 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
410
411 return delta;
412}
413
647e7cac
IM
414/*
415 * The idea is to set a period in which each task runs once.
416 *
417 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
418 * this period because otherwise the slices get too small.
419 *
420 * p = (nr <= nl) ? l : l*nr/nl
421 */
4d78e7b6
PZ
422static u64 __sched_period(unsigned long nr_running)
423{
424 u64 period = sysctl_sched_latency;
b2be5e96 425 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
426
427 if (unlikely(nr_running > nr_latency)) {
4bf0b771 428 period = sysctl_sched_min_granularity;
4d78e7b6 429 period *= nr_running;
4d78e7b6
PZ
430 }
431
432 return period;
433}
434
647e7cac
IM
435/*
436 * We calculate the wall-time slice from the period by taking a part
437 * proportional to the weight.
438 *
f9c0b095 439 * s = p*P[w/rw]
647e7cac 440 */
6d0f0ebd 441static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 442{
0a582440 443 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 444
0a582440 445 for_each_sched_entity(se) {
6272d68c 446 struct load_weight *load;
3104bf03 447 struct load_weight lw;
6272d68c
LM
448
449 cfs_rq = cfs_rq_of(se);
450 load = &cfs_rq->load;
f9c0b095 451
0a582440 452 if (unlikely(!se->on_rq)) {
3104bf03 453 lw = cfs_rq->load;
0a582440
MG
454
455 update_load_add(&lw, se->load.weight);
456 load = &lw;
457 }
458 slice = calc_delta_mine(slice, se->load.weight, load);
459 }
460 return slice;
bf0f6f24
IM
461}
462
647e7cac 463/*
ac884dec 464 * We calculate the vruntime slice of a to be inserted task
647e7cac 465 *
f9c0b095 466 * vs = s/w
647e7cac 467 */
f9c0b095 468static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 469{
f9c0b095 470 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
471}
472
bf0f6f24
IM
473/*
474 * Update the current task's runtime statistics. Skip current tasks that
475 * are not in our scheduling class.
476 */
477static inline void
8ebc91d9
IM
478__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
479 unsigned long delta_exec)
bf0f6f24 480{
bbdba7c0 481 unsigned long delta_exec_weighted;
bf0f6f24 482
8179ca23 483 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
484
485 curr->sum_exec_runtime += delta_exec;
7a62eabc 486 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 487 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
e9acbff6 488 curr->vruntime += delta_exec_weighted;
1af5f730 489 update_min_vruntime(cfs_rq);
bf0f6f24
IM
490}
491
b7cc0896 492static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 493{
429d43bc 494 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 495 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
496 unsigned long delta_exec;
497
498 if (unlikely(!curr))
499 return;
500
501 /*
502 * Get the amount of time the current task was running
503 * since the last time we changed load (this cannot
504 * overflow on 32 bits):
505 */
8ebc91d9 506 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
507 if (!delta_exec)
508 return;
bf0f6f24 509
8ebc91d9
IM
510 __update_curr(cfs_rq, curr, delta_exec);
511 curr->exec_start = now;
d842de87
SV
512
513 if (entity_is_task(curr)) {
514 struct task_struct *curtask = task_of(curr);
515
516 cpuacct_charge(curtask, delta_exec);
f06febc9 517 account_group_exec_runtime(curtask, delta_exec);
d842de87 518 }
bf0f6f24
IM
519}
520
521static inline void
5870db5b 522update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
d281918d 524 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
525}
526
bf0f6f24
IM
527/*
528 * Task is being enqueued - update stats:
529 */
d2417e5a 530static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 531{
bf0f6f24
IM
532 /*
533 * Are we enqueueing a waiting task? (for current tasks
534 * a dequeue/enqueue event is a NOP)
535 */
429d43bc 536 if (se != cfs_rq->curr)
5870db5b 537 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
538}
539
bf0f6f24 540static void
9ef0a961 541update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
bbdba7c0
IM
543 schedstat_set(se->wait_max, max(se->wait_max,
544 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
545 schedstat_set(se->wait_count, se->wait_count + 1);
546 schedstat_set(se->wait_sum, se->wait_sum +
547 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 548 schedstat_set(se->wait_start, 0);
768d0c27
PZ
549
550#ifdef CONFIG_SCHEDSTATS
551 if (entity_is_task(se)) {
552 trace_sched_stat_wait(task_of(se),
553 rq_of(cfs_rq)->clock - se->wait_start);
554 }
555#endif
bf0f6f24
IM
556}
557
558static inline void
19b6a2e3 559update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 560{
bf0f6f24
IM
561 /*
562 * Mark the end of the wait period if dequeueing a
563 * waiting task:
564 */
429d43bc 565 if (se != cfs_rq->curr)
9ef0a961 566 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
567}
568
569/*
570 * We are picking a new current task - update its stats:
571 */
572static inline void
79303e9e 573update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
574{
575 /*
576 * We are starting a new run period:
577 */
d281918d 578 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
579}
580
bf0f6f24
IM
581/**************************************************
582 * Scheduling class queueing methods:
583 */
584
c09595f6
PZ
585#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
586static void
587add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
588{
589 cfs_rq->task_weight += weight;
590}
591#else
592static inline void
593add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
594{
595}
596#endif
597
30cfdcfc
DA
598static void
599account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
600{
601 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
602 if (!parent_entity(se))
603 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 604 if (entity_is_task(se)) {
c09595f6 605 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
606 list_add(&se->group_node, &cfs_rq->tasks);
607 }
30cfdcfc
DA
608 cfs_rq->nr_running++;
609 se->on_rq = 1;
610}
611
612static void
613account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
614{
615 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
616 if (!parent_entity(se))
617 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 618 if (entity_is_task(se)) {
c09595f6 619 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
620 list_del_init(&se->group_node);
621 }
30cfdcfc
DA
622 cfs_rq->nr_running--;
623 se->on_rq = 0;
624}
625
2396af69 626static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 627{
bf0f6f24 628#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
629 struct task_struct *tsk = NULL;
630
631 if (entity_is_task(se))
632 tsk = task_of(se);
633
bf0f6f24 634 if (se->sleep_start) {
d281918d 635 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
636
637 if ((s64)delta < 0)
638 delta = 0;
639
640 if (unlikely(delta > se->sleep_max))
641 se->sleep_max = delta;
642
643 se->sleep_start = 0;
644 se->sum_sleep_runtime += delta;
9745512c 645
768d0c27 646 if (tsk) {
e414314c 647 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
648 trace_sched_stat_sleep(tsk, delta);
649 }
bf0f6f24
IM
650 }
651 if (se->block_start) {
d281918d 652 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
653
654 if ((s64)delta < 0)
655 delta = 0;
656
657 if (unlikely(delta > se->block_max))
658 se->block_max = delta;
659
660 se->block_start = 0;
661 se->sum_sleep_runtime += delta;
30084fbd 662
e414314c 663 if (tsk) {
8f0dfc34
AV
664 if (tsk->in_iowait) {
665 se->iowait_sum += delta;
666 se->iowait_count++;
768d0c27 667 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
668 }
669
e414314c
PZ
670 /*
671 * Blocking time is in units of nanosecs, so shift by
672 * 20 to get a milliseconds-range estimation of the
673 * amount of time that the task spent sleeping:
674 */
675 if (unlikely(prof_on == SLEEP_PROFILING)) {
676 profile_hits(SLEEP_PROFILING,
677 (void *)get_wchan(tsk),
678 delta >> 20);
679 }
680 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 681 }
bf0f6f24
IM
682 }
683#endif
684}
685
ddc97297
PZ
686static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
687{
688#ifdef CONFIG_SCHED_DEBUG
689 s64 d = se->vruntime - cfs_rq->min_vruntime;
690
691 if (d < 0)
692 d = -d;
693
694 if (d > 3*sysctl_sched_latency)
695 schedstat_inc(cfs_rq, nr_spread_over);
696#endif
697}
698
aeb73b04
PZ
699static void
700place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
701{
1af5f730 702 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 703
2cb8600e
PZ
704 /*
705 * The 'current' period is already promised to the current tasks,
706 * however the extra weight of the new task will slow them down a
707 * little, place the new task so that it fits in the slot that
708 * stays open at the end.
709 */
94dfb5e7 710 if (initial && sched_feat(START_DEBIT))
f9c0b095 711 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 712
8465e792 713 if (!initial) {
2cb8600e 714 /* sleeps upto a single latency don't count. */
a7be37ac
PZ
715 if (sched_feat(NEW_FAIR_SLEEPERS)) {
716 unsigned long thresh = sysctl_sched_latency;
717
718 /*
6bc912b7
PZ
719 * Convert the sleeper threshold into virtual time.
720 * SCHED_IDLE is a special sub-class. We care about
721 * fairness only relative to other SCHED_IDLE tasks,
722 * all of which have the same weight.
a7be37ac 723 */
6bc912b7 724 if (sched_feat(NORMALIZED_SLEEPER) &&
d07387b4
PT
725 (!entity_is_task(se) ||
726 task_of(se)->policy != SCHED_IDLE))
a7be37ac
PZ
727 thresh = calc_delta_fair(thresh, se);
728
729 vruntime -= thresh;
730 }
aeb73b04
PZ
731 }
732
b5d9d734
MG
733 /* ensure we never gain time by being placed backwards. */
734 vruntime = max_vruntime(se->vruntime, vruntime);
735
67e9fb2a 736 se->vruntime = vruntime;
aeb73b04
PZ
737}
738
bf0f6f24 739static void
83b699ed 740enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
741{
742 /*
a2a2d680 743 * Update run-time statistics of the 'current'.
bf0f6f24 744 */
b7cc0896 745 update_curr(cfs_rq);
a992241d 746 account_entity_enqueue(cfs_rq, se);
bf0f6f24 747
e9acbff6 748 if (wakeup) {
aeb73b04 749 place_entity(cfs_rq, se, 0);
2396af69 750 enqueue_sleeper(cfs_rq, se);
e9acbff6 751 }
bf0f6f24 752
d2417e5a 753 update_stats_enqueue(cfs_rq, se);
ddc97297 754 check_spread(cfs_rq, se);
83b699ed
SV
755 if (se != cfs_rq->curr)
756 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
757}
758
a571bbea 759static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2002c695
PZ
760{
761 if (cfs_rq->last == se)
762 cfs_rq->last = NULL;
763
764 if (cfs_rq->next == se)
765 cfs_rq->next = NULL;
766}
767
a571bbea
PZ
768static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
769{
770 for_each_sched_entity(se)
771 __clear_buddies(cfs_rq_of(se), se);
772}
773
bf0f6f24 774static void
525c2716 775dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 776{
a2a2d680
DA
777 /*
778 * Update run-time statistics of the 'current'.
779 */
780 update_curr(cfs_rq);
781
19b6a2e3 782 update_stats_dequeue(cfs_rq, se);
db36cc7d 783 if (sleep) {
67e9fb2a 784#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
785 if (entity_is_task(se)) {
786 struct task_struct *tsk = task_of(se);
787
788 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 789 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 790 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 791 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 792 }
db36cc7d 793#endif
67e9fb2a
PZ
794 }
795
2002c695 796 clear_buddies(cfs_rq, se);
4793241b 797
83b699ed 798 if (se != cfs_rq->curr)
30cfdcfc
DA
799 __dequeue_entity(cfs_rq, se);
800 account_entity_dequeue(cfs_rq, se);
1af5f730 801 update_min_vruntime(cfs_rq);
bf0f6f24
IM
802}
803
804/*
805 * Preempt the current task with a newly woken task if needed:
806 */
7c92e54f 807static void
2e09bf55 808check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 809{
11697830
PZ
810 unsigned long ideal_runtime, delta_exec;
811
6d0f0ebd 812 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 813 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 814 if (delta_exec > ideal_runtime) {
bf0f6f24 815 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
816 /*
817 * The current task ran long enough, ensure it doesn't get
818 * re-elected due to buddy favours.
819 */
820 clear_buddies(cfs_rq, curr);
821 }
bf0f6f24
IM
822}
823
83b699ed 824static void
8494f412 825set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 826{
83b699ed
SV
827 /* 'current' is not kept within the tree. */
828 if (se->on_rq) {
829 /*
830 * Any task has to be enqueued before it get to execute on
831 * a CPU. So account for the time it spent waiting on the
832 * runqueue.
833 */
834 update_stats_wait_end(cfs_rq, se);
835 __dequeue_entity(cfs_rq, se);
836 }
837
79303e9e 838 update_stats_curr_start(cfs_rq, se);
429d43bc 839 cfs_rq->curr = se;
eba1ed4b
IM
840#ifdef CONFIG_SCHEDSTATS
841 /*
842 * Track our maximum slice length, if the CPU's load is at
843 * least twice that of our own weight (i.e. dont track it
844 * when there are only lesser-weight tasks around):
845 */
495eca49 846 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
847 se->slice_max = max(se->slice_max,
848 se->sum_exec_runtime - se->prev_sum_exec_runtime);
849 }
850#endif
4a55b450 851 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
852}
853
3f3a4904
PZ
854static int
855wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
856
f4b6755f 857static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 858{
f4b6755f
PZ
859 struct sched_entity *se = __pick_next_entity(cfs_rq);
860
4793241b
PZ
861 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
862 return cfs_rq->next;
aa2ac252 863
4793241b
PZ
864 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
865 return cfs_rq->last;
866
867 return se;
aa2ac252
PZ
868}
869
ab6cde26 870static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
871{
872 /*
873 * If still on the runqueue then deactivate_task()
874 * was not called and update_curr() has to be done:
875 */
876 if (prev->on_rq)
b7cc0896 877 update_curr(cfs_rq);
bf0f6f24 878
ddc97297 879 check_spread(cfs_rq, prev);
30cfdcfc 880 if (prev->on_rq) {
5870db5b 881 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
882 /* Put 'current' back into the tree. */
883 __enqueue_entity(cfs_rq, prev);
884 }
429d43bc 885 cfs_rq->curr = NULL;
bf0f6f24
IM
886}
887
8f4d37ec
PZ
888static void
889entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 890{
bf0f6f24 891 /*
30cfdcfc 892 * Update run-time statistics of the 'current'.
bf0f6f24 893 */
30cfdcfc 894 update_curr(cfs_rq);
bf0f6f24 895
8f4d37ec
PZ
896#ifdef CONFIG_SCHED_HRTICK
897 /*
898 * queued ticks are scheduled to match the slice, so don't bother
899 * validating it and just reschedule.
900 */
983ed7a6
HH
901 if (queued) {
902 resched_task(rq_of(cfs_rq)->curr);
903 return;
904 }
8f4d37ec
PZ
905 /*
906 * don't let the period tick interfere with the hrtick preemption
907 */
908 if (!sched_feat(DOUBLE_TICK) &&
909 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
910 return;
911#endif
912
ce6c1311 913 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 914 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
915}
916
917/**************************************************
918 * CFS operations on tasks:
919 */
920
8f4d37ec
PZ
921#ifdef CONFIG_SCHED_HRTICK
922static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
923{
8f4d37ec
PZ
924 struct sched_entity *se = &p->se;
925 struct cfs_rq *cfs_rq = cfs_rq_of(se);
926
927 WARN_ON(task_rq(p) != rq);
928
929 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
930 u64 slice = sched_slice(cfs_rq, se);
931 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
932 s64 delta = slice - ran;
933
934 if (delta < 0) {
935 if (rq->curr == p)
936 resched_task(p);
937 return;
938 }
939
940 /*
941 * Don't schedule slices shorter than 10000ns, that just
942 * doesn't make sense. Rely on vruntime for fairness.
943 */
31656519 944 if (rq->curr != p)
157124c1 945 delta = max_t(s64, 10000LL, delta);
8f4d37ec 946
31656519 947 hrtick_start(rq, delta);
8f4d37ec
PZ
948 }
949}
a4c2f00f
PZ
950
951/*
952 * called from enqueue/dequeue and updates the hrtick when the
953 * current task is from our class and nr_running is low enough
954 * to matter.
955 */
956static void hrtick_update(struct rq *rq)
957{
958 struct task_struct *curr = rq->curr;
959
960 if (curr->sched_class != &fair_sched_class)
961 return;
962
963 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
964 hrtick_start_fair(rq, curr);
965}
55e12e5e 966#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
967static inline void
968hrtick_start_fair(struct rq *rq, struct task_struct *p)
969{
970}
a4c2f00f
PZ
971
972static inline void hrtick_update(struct rq *rq)
973{
974}
8f4d37ec
PZ
975#endif
976
bf0f6f24
IM
977/*
978 * The enqueue_task method is called before nr_running is
979 * increased. Here we update the fair scheduling stats and
980 * then put the task into the rbtree:
981 */
fd390f6a 982static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
983{
984 struct cfs_rq *cfs_rq;
62fb1851 985 struct sched_entity *se = &p->se;
bf0f6f24
IM
986
987 for_each_sched_entity(se) {
62fb1851 988 if (se->on_rq)
bf0f6f24
IM
989 break;
990 cfs_rq = cfs_rq_of(se);
83b699ed 991 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 992 wakeup = 1;
bf0f6f24 993 }
8f4d37ec 994
a4c2f00f 995 hrtick_update(rq);
bf0f6f24
IM
996}
997
998/*
999 * The dequeue_task method is called before nr_running is
1000 * decreased. We remove the task from the rbtree and
1001 * update the fair scheduling stats:
1002 */
f02231e5 1003static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
1004{
1005 struct cfs_rq *cfs_rq;
62fb1851 1006 struct sched_entity *se = &p->se;
bf0f6f24
IM
1007
1008 for_each_sched_entity(se) {
1009 cfs_rq = cfs_rq_of(se);
525c2716 1010 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 1011 /* Don't dequeue parent if it has other entities besides us */
62fb1851 1012 if (cfs_rq->load.weight)
bf0f6f24 1013 break;
b9fa3df3 1014 sleep = 1;
bf0f6f24 1015 }
8f4d37ec 1016
a4c2f00f 1017 hrtick_update(rq);
bf0f6f24
IM
1018}
1019
1020/*
1799e35d
IM
1021 * sched_yield() support is very simple - we dequeue and enqueue.
1022 *
1023 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 1024 */
4530d7ab 1025static void yield_task_fair(struct rq *rq)
bf0f6f24 1026{
db292ca3
IM
1027 struct task_struct *curr = rq->curr;
1028 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1029 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
1030
1031 /*
1799e35d
IM
1032 * Are we the only task in the tree?
1033 */
1034 if (unlikely(cfs_rq->nr_running == 1))
1035 return;
1036
2002c695
PZ
1037 clear_buddies(cfs_rq, se);
1038
db292ca3 1039 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 1040 update_rq_clock(rq);
1799e35d 1041 /*
a2a2d680 1042 * Update run-time statistics of the 'current'.
1799e35d 1043 */
2b1e315d 1044 update_curr(cfs_rq);
1799e35d
IM
1045
1046 return;
1047 }
1048 /*
1049 * Find the rightmost entry in the rbtree:
bf0f6f24 1050 */
2b1e315d 1051 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1052 /*
1053 * Already in the rightmost position?
1054 */
54fdc581 1055 if (unlikely(!rightmost || entity_before(rightmost, se)))
1799e35d
IM
1056 return;
1057
1058 /*
1059 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1060 * Upon rescheduling, sched_class::put_prev_task() will place
1061 * 'current' within the tree based on its new key value.
1799e35d 1062 */
30cfdcfc 1063 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1064}
1065
e7693a36
GH
1066/*
1067 * wake_idle() will wake a task on an idle cpu if task->cpu is
1068 * not idle and an idle cpu is available. The span of cpus to
1069 * search starts with cpus closest then further out as needed,
1070 * so we always favor a closer, idle cpu.
e761b772 1071 * Domains may include CPUs that are not usable for migration,
00aec93d 1072 * hence we need to mask them out (rq->rd->online)
e7693a36
GH
1073 *
1074 * Returns the CPU we should wake onto.
1075 */
1076#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
00aec93d
GH
1077
1078#define cpu_rd_active(cpu, rq) cpumask_test_cpu(cpu, rq->rd->online)
1079
e7693a36
GH
1080static int wake_idle(int cpu, struct task_struct *p)
1081{
e7693a36
GH
1082 struct sched_domain *sd;
1083 int i;
7eb52dfa
VS
1084 unsigned int chosen_wakeup_cpu;
1085 int this_cpu;
00aec93d 1086 struct rq *task_rq = task_rq(p);
7eb52dfa
VS
1087
1088 /*
1089 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
1090 * are idle and this is not a kernel thread and this task's affinity
1091 * allows it to be moved to preferred cpu, then just move!
1092 */
1093
1094 this_cpu = smp_processor_id();
1095 chosen_wakeup_cpu =
1096 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
1097
1098 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
1099 idle_cpu(cpu) && idle_cpu(this_cpu) &&
1100 p->mm && !(p->flags & PF_KTHREAD) &&
1101 cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
1102 return chosen_wakeup_cpu;
e7693a36
GH
1103
1104 /*
1105 * If it is idle, then it is the best cpu to run this task.
1106 *
1107 * This cpu is also the best, if it has more than one task already.
1108 * Siblings must be also busy(in most cases) as they didn't already
1109 * pickup the extra load from this cpu and hence we need not check
1110 * sibling runqueue info. This will avoid the checks and cache miss
1111 * penalities associated with that.
1112 */
104f6454 1113 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
e7693a36
GH
1114 return cpu;
1115
1116 for_each_domain(cpu, sd) {
1d3504fc
HS
1117 if ((sd->flags & SD_WAKE_IDLE)
1118 || ((sd->flags & SD_WAKE_IDLE_FAR)
00aec93d 1119 && !task_hot(p, task_rq->clock, sd))) {
758b2cdc
RR
1120 for_each_cpu_and(i, sched_domain_span(sd),
1121 &p->cpus_allowed) {
00aec93d 1122 if (cpu_rd_active(i, task_rq) && idle_cpu(i)) {
e7693a36
GH
1123 if (i != task_cpu(p)) {
1124 schedstat_inc(p,
1125 se.nr_wakeups_idle);
1126 }
1127 return i;
1128 }
1129 }
1130 } else {
1131 break;
1132 }
1133 }
1134 return cpu;
1135}
55e12e5e 1136#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
e7693a36
GH
1137static inline int wake_idle(int cpu, struct task_struct *p)
1138{
1139 return cpu;
1140}
1141#endif
1142
1143#ifdef CONFIG_SMP
098fb9db 1144
bb3469ac 1145#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1146/*
1147 * effective_load() calculates the load change as seen from the root_task_group
1148 *
1149 * Adding load to a group doesn't make a group heavier, but can cause movement
1150 * of group shares between cpus. Assuming the shares were perfectly aligned one
1151 * can calculate the shift in shares.
1152 *
1153 * The problem is that perfectly aligning the shares is rather expensive, hence
1154 * we try to avoid doing that too often - see update_shares(), which ratelimits
1155 * this change.
1156 *
1157 * We compensate this by not only taking the current delta into account, but
1158 * also considering the delta between when the shares were last adjusted and
1159 * now.
1160 *
1161 * We still saw a performance dip, some tracing learned us that between
1162 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1163 * significantly. Therefore try to bias the error in direction of failing
1164 * the affine wakeup.
1165 *
1166 */
f1d239f7
PZ
1167static long effective_load(struct task_group *tg, int cpu,
1168 long wl, long wg)
bb3469ac 1169{
4be9daaa 1170 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1171
1172 if (!tg->parent)
1173 return wl;
1174
f5bfb7d9
PZ
1175 /*
1176 * By not taking the decrease of shares on the other cpu into
1177 * account our error leans towards reducing the affine wakeups.
1178 */
1179 if (!wl && sched_feat(ASYM_EFF_LOAD))
1180 return wl;
1181
4be9daaa 1182 for_each_sched_entity(se) {
cb5ef42a 1183 long S, rw, s, a, b;
940959e9
PZ
1184 long more_w;
1185
1186 /*
1187 * Instead of using this increment, also add the difference
1188 * between when the shares were last updated and now.
1189 */
1190 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1191 wl += more_w;
1192 wg += more_w;
4be9daaa
PZ
1193
1194 S = se->my_q->tg->shares;
1195 s = se->my_q->shares;
f1d239f7 1196 rw = se->my_q->rq_weight;
bb3469ac 1197
cb5ef42a
PZ
1198 a = S*(rw + wl);
1199 b = S*rw + s*wg;
4be9daaa 1200
940959e9
PZ
1201 wl = s*(a-b);
1202
1203 if (likely(b))
1204 wl /= b;
1205
83378269
PZ
1206 /*
1207 * Assume the group is already running and will
1208 * thus already be accounted for in the weight.
1209 *
1210 * That is, moving shares between CPUs, does not
1211 * alter the group weight.
1212 */
4be9daaa 1213 wg = 0;
4be9daaa 1214 }
bb3469ac 1215
4be9daaa 1216 return wl;
bb3469ac 1217}
4be9daaa 1218
bb3469ac 1219#else
4be9daaa 1220
83378269
PZ
1221static inline unsigned long effective_load(struct task_group *tg, int cpu,
1222 unsigned long wl, unsigned long wg)
4be9daaa 1223{
83378269 1224 return wl;
bb3469ac 1225}
4be9daaa 1226
bb3469ac
PZ
1227#endif
1228
098fb9db 1229static int
64b9e029 1230wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
4ae7d5ce
IM
1231 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1232 int idx, unsigned long load, unsigned long this_load,
098fb9db
IM
1233 unsigned int imbalance)
1234{
fc631c82
PZ
1235 struct task_struct *curr = this_rq->curr;
1236 struct task_group *tg;
098fb9db
IM
1237 unsigned long tl = this_load;
1238 unsigned long tl_per_task;
83378269 1239 unsigned long weight;
b3137bc8 1240 int balanced;
098fb9db 1241
b3137bc8 1242 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
098fb9db
IM
1243 return 0;
1244
fc631c82
PZ
1245 if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1246 p->se.avg_overlap > sysctl_sched_migration_cost))
1247 sync = 0;
1248
b3137bc8
MG
1249 /*
1250 * If sync wakeup then subtract the (maximum possible)
1251 * effect of the currently running task from the load
1252 * of the current CPU:
1253 */
83378269
PZ
1254 if (sync) {
1255 tg = task_group(current);
1256 weight = current->se.load.weight;
1257
1258 tl += effective_load(tg, this_cpu, -weight, -weight);
1259 load += effective_load(tg, prev_cpu, 0, -weight);
1260 }
b3137bc8 1261
83378269
PZ
1262 tg = task_group(p);
1263 weight = p->se.load.weight;
b3137bc8 1264
71a29aa7
PZ
1265 /*
1266 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1267 * due to the sync cause above having dropped tl to 0, we'll always have
1268 * an imbalance, but there's really nothing you can do about that, so
1269 * that's good too.
1270 *
1271 * Otherwise check if either cpus are near enough in load to allow this
1272 * task to be woken on this_cpu.
1273 */
1274 balanced = !tl ||
1275 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
83378269 1276 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1277
098fb9db 1278 /*
4ae7d5ce
IM
1279 * If the currently running task will sleep within
1280 * a reasonable amount of time then attract this newly
1281 * woken task:
098fb9db 1282 */
2fb7635c
PZ
1283 if (sync && balanced)
1284 return 1;
098fb9db
IM
1285
1286 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1287 tl_per_task = cpu_avg_load_per_task(this_cpu);
1288
64b9e029
AA
1289 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1290 tl_per_task)) {
098fb9db
IM
1291 /*
1292 * This domain has SD_WAKE_AFFINE and
1293 * p is cache cold in this domain, and
1294 * there is no bad imbalance.
1295 */
1296 schedstat_inc(this_sd, ttwu_move_affine);
1297 schedstat_inc(p, se.nr_wakeups_affine);
1298
1299 return 1;
1300 }
1301 return 0;
1302}
1303
e7693a36
GH
1304static int select_task_rq_fair(struct task_struct *p, int sync)
1305{
e7693a36 1306 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1307 int prev_cpu, this_cpu, new_cpu;
098fb9db 1308 unsigned long load, this_load;
64b9e029 1309 struct rq *this_rq;
098fb9db 1310 unsigned int imbalance;
098fb9db 1311 int idx;
e7693a36 1312
ac192d39 1313 prev_cpu = task_cpu(p);
ac192d39 1314 this_cpu = smp_processor_id();
4ae7d5ce 1315 this_rq = cpu_rq(this_cpu);
ac192d39 1316 new_cpu = prev_cpu;
e7693a36 1317
ac192d39
IM
1318 /*
1319 * 'this_sd' is the first domain that both
1320 * this_cpu and prev_cpu are present in:
1321 */
e7693a36 1322 for_each_domain(this_cpu, sd) {
758b2cdc 1323 if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
e7693a36
GH
1324 this_sd = sd;
1325 break;
1326 }
1327 }
1328
96f874e2 1329 if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
f4827386 1330 goto out;
e7693a36
GH
1331
1332 /*
1333 * Check for affine wakeup and passive balancing possibilities.
1334 */
098fb9db 1335 if (!this_sd)
f4827386 1336 goto out;
e7693a36 1337
098fb9db
IM
1338 idx = this_sd->wake_idx;
1339
1340 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1341
ac192d39 1342 load = source_load(prev_cpu, idx);
098fb9db
IM
1343 this_load = target_load(this_cpu, idx);
1344
64b9e029 1345 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
4ae7d5ce
IM
1346 load, this_load, imbalance))
1347 return this_cpu;
1348
098fb9db
IM
1349 /*
1350 * Start passive balancing when half the imbalance_pct
1351 * limit is reached.
1352 */
1353 if (this_sd->flags & SD_WAKE_BALANCE) {
1354 if (imbalance*this_load <= 100*load) {
1355 schedstat_inc(this_sd, ttwu_move_balance);
1356 schedstat_inc(p, se.nr_wakeups_passive);
4ae7d5ce 1357 return this_cpu;
e7693a36
GH
1358 }
1359 }
1360
f4827386 1361out:
e7693a36
GH
1362 return wake_idle(new_cpu, p);
1363}
1364#endif /* CONFIG_SMP */
1365
e52fb7c0
PZ
1366/*
1367 * Adaptive granularity
1368 *
1369 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1370 * with the limit of wakeup_gran -- when it never does a wakeup.
1371 *
1372 * So the smaller avg_wakeup is the faster we want this task to preempt,
1373 * but we don't want to treat the preemptee unfairly and therefore allow it
1374 * to run for at least the amount of time we'd like to run.
1375 *
1376 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1377 *
1378 * NOTE: we use *nr_running to scale with load, this nicely matches the
1379 * degrading latency on load.
1380 */
1381static unsigned long
1382adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1383{
1384 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1385 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1386 u64 gran = 0;
1387
1388 if (this_run < expected_wakeup)
1389 gran = expected_wakeup - this_run;
1390
1391 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1392}
1393
1394static unsigned long
1395wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1396{
1397 unsigned long gran = sysctl_sched_wakeup_granularity;
1398
e52fb7c0
PZ
1399 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1400 gran = adaptive_gran(curr, se);
1401
0bbd3336 1402 /*
e52fb7c0
PZ
1403 * Since its curr running now, convert the gran from real-time
1404 * to virtual-time in his units.
0bbd3336 1405 */
e52fb7c0
PZ
1406 if (sched_feat(ASYM_GRAN)) {
1407 /*
1408 * By using 'se' instead of 'curr' we penalize light tasks, so
1409 * they get preempted easier. That is, if 'se' < 'curr' then
1410 * the resulting gran will be larger, therefore penalizing the
1411 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1412 * be smaller, again penalizing the lighter task.
1413 *
1414 * This is especially important for buddies when the leftmost
1415 * task is higher priority than the buddy.
1416 */
1417 if (unlikely(se->load.weight != NICE_0_LOAD))
1418 gran = calc_delta_fair(gran, se);
1419 } else {
1420 if (unlikely(curr->load.weight != NICE_0_LOAD))
1421 gran = calc_delta_fair(gran, curr);
1422 }
0bbd3336
PZ
1423
1424 return gran;
1425}
1426
464b7527
PZ
1427/*
1428 * Should 'se' preempt 'curr'.
1429 *
1430 * |s1
1431 * |s2
1432 * |s3
1433 * g
1434 * |<--->|c
1435 *
1436 * w(c, s1) = -1
1437 * w(c, s2) = 0
1438 * w(c, s3) = 1
1439 *
1440 */
1441static int
1442wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1443{
1444 s64 gran, vdiff = curr->vruntime - se->vruntime;
1445
1446 if (vdiff <= 0)
1447 return -1;
1448
e52fb7c0 1449 gran = wakeup_gran(curr, se);
464b7527
PZ
1450 if (vdiff > gran)
1451 return 1;
1452
1453 return 0;
1454}
1455
02479099
PZ
1456static void set_last_buddy(struct sched_entity *se)
1457{
6bc912b7
PZ
1458 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1459 for_each_sched_entity(se)
1460 cfs_rq_of(se)->last = se;
1461 }
02479099
PZ
1462}
1463
1464static void set_next_buddy(struct sched_entity *se)
1465{
6bc912b7
PZ
1466 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1467 for_each_sched_entity(se)
1468 cfs_rq_of(se)->next = se;
1469 }
02479099
PZ
1470}
1471
bf0f6f24
IM
1472/*
1473 * Preempt the current task with a newly woken task if needed:
1474 */
15afe09b 1475static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
bf0f6f24
IM
1476{
1477 struct task_struct *curr = rq->curr;
8651a86c 1478 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1479 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
bf0f6f24 1480
03e89e45 1481 update_curr(cfs_rq);
4793241b 1482
03e89e45 1483 if (unlikely(rt_prio(p->prio))) {
bf0f6f24
IM
1484 resched_task(curr);
1485 return;
1486 }
aa2ac252 1487
d95f98d0
PZ
1488 if (unlikely(p->sched_class != &fair_sched_class))
1489 return;
1490
4ae7d5ce
IM
1491 if (unlikely(se == pse))
1492 return;
1493
4793241b
PZ
1494 /*
1495 * Only set the backward buddy when the current task is still on the
1496 * rq. This can happen when a wakeup gets interleaved with schedule on
1497 * the ->pre_schedule() or idle_balance() point, either of which can
1498 * drop the rq lock.
1499 *
1500 * Also, during early boot the idle thread is in the fair class, for
1501 * obvious reasons its a bad idea to schedule back to the idle thread.
1502 */
1503 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
02479099
PZ
1504 set_last_buddy(se);
1505 set_next_buddy(pse);
57fdc26d 1506
aec0a514
BR
1507 /*
1508 * We can come here with TIF_NEED_RESCHED already set from new task
1509 * wake up path.
1510 */
1511 if (test_tsk_need_resched(curr))
1512 return;
1513
91c234b4 1514 /*
6bc912b7 1515 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1516 * the tick):
1517 */
6bc912b7 1518 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1519 return;
bf0f6f24 1520
6bc912b7
PZ
1521 /* Idle tasks are by definition preempted by everybody. */
1522 if (unlikely(curr->policy == SCHED_IDLE)) {
1523 resched_task(curr);
91c234b4 1524 return;
6bc912b7 1525 }
bf0f6f24 1526
77d9cc44
IM
1527 if (!sched_feat(WAKEUP_PREEMPT))
1528 return;
8651a86c 1529
fc631c82
PZ
1530 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1531 (se->avg_overlap < sysctl_sched_migration_cost &&
1532 pse->avg_overlap < sysctl_sched_migration_cost))) {
15afe09b
PZ
1533 resched_task(curr);
1534 return;
1535 }
1536
464b7527
PZ
1537 find_matching_se(&se, &pse);
1538
002f128b 1539 BUG_ON(!pse);
464b7527 1540
002f128b
PT
1541 if (wakeup_preempt_entity(se, pse) == 1)
1542 resched_task(curr);
bf0f6f24
IM
1543}
1544
fb8d4724 1545static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1546{
8f4d37ec 1547 struct task_struct *p;
bf0f6f24
IM
1548 struct cfs_rq *cfs_rq = &rq->cfs;
1549 struct sched_entity *se;
1550
1551 if (unlikely(!cfs_rq->nr_running))
1552 return NULL;
1553
1554 do {
9948f4b2 1555 se = pick_next_entity(cfs_rq);
a9f3e2b5
MG
1556 /*
1557 * If se was a buddy, clear it so that it will have to earn
1558 * the favour again.
1559 */
a571bbea 1560 __clear_buddies(cfs_rq, se);
f4b6755f 1561 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1562 cfs_rq = group_cfs_rq(se);
1563 } while (cfs_rq);
1564
8f4d37ec
PZ
1565 p = task_of(se);
1566 hrtick_start_fair(rq, p);
1567
1568 return p;
bf0f6f24
IM
1569}
1570
1571/*
1572 * Account for a descheduled task:
1573 */
31ee529c 1574static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1575{
1576 struct sched_entity *se = &prev->se;
1577 struct cfs_rq *cfs_rq;
1578
1579 for_each_sched_entity(se) {
1580 cfs_rq = cfs_rq_of(se);
ab6cde26 1581 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1582 }
1583}
1584
681f3e68 1585#ifdef CONFIG_SMP
bf0f6f24
IM
1586/**************************************************
1587 * Fair scheduling class load-balancing methods:
1588 */
1589
1590/*
1591 * Load-balancing iterator. Note: while the runqueue stays locked
1592 * during the whole iteration, the current task might be
1593 * dequeued so the iterator has to be dequeue-safe. Here we
1594 * achieve that by always pre-iterating before returning
1595 * the current task:
1596 */
a9957449 1597static struct task_struct *
4a55bd5e 1598__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1599{
354d60c2
DG
1600 struct task_struct *p = NULL;
1601 struct sched_entity *se;
bf0f6f24 1602
77ae6513
MG
1603 if (next == &cfs_rq->tasks)
1604 return NULL;
1605
b87f1724
BR
1606 se = list_entry(next, struct sched_entity, group_node);
1607 p = task_of(se);
1608 cfs_rq->balance_iterator = next->next;
77ae6513 1609
bf0f6f24
IM
1610 return p;
1611}
1612
1613static struct task_struct *load_balance_start_fair(void *arg)
1614{
1615 struct cfs_rq *cfs_rq = arg;
1616
4a55bd5e 1617 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1618}
1619
1620static struct task_struct *load_balance_next_fair(void *arg)
1621{
1622 struct cfs_rq *cfs_rq = arg;
1623
4a55bd5e 1624 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1625}
1626
c09595f6
PZ
1627static unsigned long
1628__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1629 unsigned long max_load_move, struct sched_domain *sd,
1630 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1631 struct cfs_rq *cfs_rq)
62fb1851 1632{
c09595f6 1633 struct rq_iterator cfs_rq_iterator;
62fb1851 1634
c09595f6
PZ
1635 cfs_rq_iterator.start = load_balance_start_fair;
1636 cfs_rq_iterator.next = load_balance_next_fair;
1637 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1638
c09595f6
PZ
1639 return balance_tasks(this_rq, this_cpu, busiest,
1640 max_load_move, sd, idle, all_pinned,
1641 this_best_prio, &cfs_rq_iterator);
62fb1851 1642}
62fb1851 1643
c09595f6 1644#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1645static unsigned long
bf0f6f24 1646load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1647 unsigned long max_load_move,
a4ac01c3
PW
1648 struct sched_domain *sd, enum cpu_idle_type idle,
1649 int *all_pinned, int *this_best_prio)
bf0f6f24 1650{
bf0f6f24 1651 long rem_load_move = max_load_move;
c09595f6
PZ
1652 int busiest_cpu = cpu_of(busiest);
1653 struct task_group *tg;
18d95a28 1654
c09595f6 1655 rcu_read_lock();
c8cba857 1656 update_h_load(busiest_cpu);
18d95a28 1657
caea8a03 1658 list_for_each_entry_rcu(tg, &task_groups, list) {
c8cba857 1659 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1660 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1661 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
243e0e7b 1662 u64 rem_load, moved_load;
18d95a28 1663
c09595f6
PZ
1664 /*
1665 * empty group
1666 */
c8cba857 1667 if (!busiest_cfs_rq->task_weight)
bf0f6f24
IM
1668 continue;
1669
243e0e7b
SV
1670 rem_load = (u64)rem_load_move * busiest_weight;
1671 rem_load = div_u64(rem_load, busiest_h_load + 1);
bf0f6f24 1672
c09595f6 1673 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1674 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6 1675 tg->cfs_rq[busiest_cpu]);
bf0f6f24 1676
c09595f6 1677 if (!moved_load)
bf0f6f24
IM
1678 continue;
1679
42a3ac7d 1680 moved_load *= busiest_h_load;
243e0e7b 1681 moved_load = div_u64(moved_load, busiest_weight + 1);
bf0f6f24 1682
c09595f6
PZ
1683 rem_load_move -= moved_load;
1684 if (rem_load_move < 0)
bf0f6f24
IM
1685 break;
1686 }
c09595f6 1687 rcu_read_unlock();
bf0f6f24 1688
43010659 1689 return max_load_move - rem_load_move;
bf0f6f24 1690}
c09595f6
PZ
1691#else
1692static unsigned long
1693load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1694 unsigned long max_load_move,
1695 struct sched_domain *sd, enum cpu_idle_type idle,
1696 int *all_pinned, int *this_best_prio)
1697{
1698 return __load_balance_fair(this_rq, this_cpu, busiest,
1699 max_load_move, sd, idle, all_pinned,
1700 this_best_prio, &busiest->cfs);
1701}
1702#endif
bf0f6f24 1703
e1d1484f
PW
1704static int
1705move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1706 struct sched_domain *sd, enum cpu_idle_type idle)
1707{
1708 struct cfs_rq *busy_cfs_rq;
1709 struct rq_iterator cfs_rq_iterator;
1710
1711 cfs_rq_iterator.start = load_balance_start_fair;
1712 cfs_rq_iterator.next = load_balance_next_fair;
1713
1714 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1715 /*
1716 * pass busy_cfs_rq argument into
1717 * load_balance_[start|next]_fair iterators
1718 */
1719 cfs_rq_iterator.arg = busy_cfs_rq;
1720 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1721 &cfs_rq_iterator))
1722 return 1;
1723 }
1724
1725 return 0;
1726}
55e12e5e 1727#endif /* CONFIG_SMP */
e1d1484f 1728
bf0f6f24
IM
1729/*
1730 * scheduler tick hitting a task of our scheduling class:
1731 */
8f4d37ec 1732static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1733{
1734 struct cfs_rq *cfs_rq;
1735 struct sched_entity *se = &curr->se;
1736
1737 for_each_sched_entity(se) {
1738 cfs_rq = cfs_rq_of(se);
8f4d37ec 1739 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1740 }
1741}
1742
1743/*
1744 * Share the fairness runtime between parent and child, thus the
1745 * total amount of pressure for CPU stays equal - new tasks
1746 * get a chance to run but frequent forkers are not allowed to
1747 * monopolize the CPU. Note: the parent runqueue is locked,
1748 * the child is not running yet.
1749 */
ee0827d8 1750static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1751{
1752 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1753 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1754 int this_cpu = smp_processor_id();
bf0f6f24
IM
1755
1756 sched_info_queued(p);
1757
7109c442 1758 update_curr(cfs_rq);
b5d9d734
MG
1759 if (curr)
1760 se->vruntime = curr->vruntime;
aeb73b04 1761 place_entity(cfs_rq, se, 1);
4d78e7b6 1762
3c90e6e9 1763 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1764 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
54fdc581 1765 curr && entity_before(curr, se)) {
87fefa38 1766 /*
edcb60a3
IM
1767 * Upon rescheduling, sched_class::put_prev_task() will place
1768 * 'current' within the tree based on its new key value.
1769 */
4d78e7b6 1770 swap(curr->vruntime, se->vruntime);
aec0a514 1771 resched_task(rq->curr);
4d78e7b6 1772 }
bf0f6f24 1773
b9dca1e0 1774 enqueue_task_fair(rq, p, 0);
bf0f6f24
IM
1775}
1776
cb469845
SR
1777/*
1778 * Priority of the task has changed. Check to see if we preempt
1779 * the current task.
1780 */
1781static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1782 int oldprio, int running)
1783{
1784 /*
1785 * Reschedule if we are currently running on this runqueue and
1786 * our priority decreased, or if we are not currently running on
1787 * this runqueue and our priority is higher than the current's
1788 */
1789 if (running) {
1790 if (p->prio > oldprio)
1791 resched_task(rq->curr);
1792 } else
15afe09b 1793 check_preempt_curr(rq, p, 0);
cb469845
SR
1794}
1795
1796/*
1797 * We switched to the sched_fair class.
1798 */
1799static void switched_to_fair(struct rq *rq, struct task_struct *p,
1800 int running)
1801{
1802 /*
1803 * We were most likely switched from sched_rt, so
1804 * kick off the schedule if running, otherwise just see
1805 * if we can still preempt the current task.
1806 */
1807 if (running)
1808 resched_task(rq->curr);
1809 else
15afe09b 1810 check_preempt_curr(rq, p, 0);
cb469845
SR
1811}
1812
83b699ed
SV
1813/* Account for a task changing its policy or group.
1814 *
1815 * This routine is mostly called to set cfs_rq->curr field when a task
1816 * migrates between groups/classes.
1817 */
1818static void set_curr_task_fair(struct rq *rq)
1819{
1820 struct sched_entity *se = &rq->curr->se;
1821
1822 for_each_sched_entity(se)
1823 set_next_entity(cfs_rq_of(se), se);
1824}
1825
810b3817
PZ
1826#ifdef CONFIG_FAIR_GROUP_SCHED
1827static void moved_group_fair(struct task_struct *p)
1828{
1829 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1830
1831 update_curr(cfs_rq);
1832 place_entity(cfs_rq, &p->se, 1);
1833}
1834#endif
1835
bf0f6f24
IM
1836/*
1837 * All the scheduling class methods:
1838 */
5522d5d5
IM
1839static const struct sched_class fair_sched_class = {
1840 .next = &idle_sched_class,
bf0f6f24
IM
1841 .enqueue_task = enqueue_task_fair,
1842 .dequeue_task = dequeue_task_fair,
1843 .yield_task = yield_task_fair,
1844
2e09bf55 1845 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1846
1847 .pick_next_task = pick_next_task_fair,
1848 .put_prev_task = put_prev_task_fair,
1849
681f3e68 1850#ifdef CONFIG_SMP
4ce72a2c
LZ
1851 .select_task_rq = select_task_rq_fair,
1852
bf0f6f24 1853 .load_balance = load_balance_fair,
e1d1484f 1854 .move_one_task = move_one_task_fair,
681f3e68 1855#endif
bf0f6f24 1856
83b699ed 1857 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1858 .task_tick = task_tick_fair,
1859 .task_new = task_new_fair,
cb469845
SR
1860
1861 .prio_changed = prio_changed_fair,
1862 .switched_to = switched_to_fair,
810b3817
PZ
1863
1864#ifdef CONFIG_FAIR_GROUP_SCHED
1865 .moved_group = moved_group_fair,
1866#endif
bf0f6f24
IM
1867};
1868
1869#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1870static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1871{
bf0f6f24
IM
1872 struct cfs_rq *cfs_rq;
1873
5973e5b9 1874 rcu_read_lock();
c3b64f1e 1875 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1876 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1877 rcu_read_unlock();
bf0f6f24
IM
1878}
1879#endif