sched: Move load balance code into sched_fair.c
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
9745512c 25
bf0f6f24 26/*
21805085 27 * Targeted preemption latency for CPU-bound tasks:
172e082a 28 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 37 */
172e082a 38unsigned int sysctl_sched_latency = 5000000ULL;
0bcdcf28 39unsigned int normalized_sysctl_sched_latency = 5000000ULL;
2bd8e6d4 40
1983a922
CE
41/*
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
2bd8e6d4 53/*
b2be5e96 54 * Minimal preemption granularity for CPU-bound tasks:
172e082a 55 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 56 */
172e082a 57unsigned int sysctl_sched_min_granularity = 1000000ULL;
0bcdcf28 58unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL;
21805085
PZ
59
60/*
b2be5e96
PZ
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
722aab0c 63static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
64
65/*
2bba22c5 66 * After fork, child runs first. If set to 0 (default) then
b2be5e96 67 * parent will (try to) run first.
21805085 68 */
2bba22c5 69unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 70
1799e35d
IM
71/*
72 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77unsigned int __read_mostly sysctl_sched_compat_yield;
78
bf0f6f24
IM
79/*
80 * SCHED_OTHER wake-up granularity.
172e082a 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
172e082a 87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 89
da84d961
IM
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
a4c2f00f
PZ
92static const struct sched_class fair_sched_class;
93
bf0f6f24
IM
94/**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
62160e3f 98#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 99
62160e3f 100/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
101static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102{
62160e3f 103 return cfs_rq->rq;
bf0f6f24
IM
104}
105
62160e3f
IM
106/* An entity is a task if it doesn't "own" a runqueue */
107#define entity_is_task(se) (!se->my_q)
bf0f6f24 108
8f48894f
PZ
109static inline struct task_struct *task_of(struct sched_entity *se)
110{
111#ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113#endif
114 return container_of(se, struct task_struct, se);
115}
116
b758149c
PZ
117/* Walk up scheduling entities hierarchy */
118#define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
120
121static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122{
123 return p->se.cfs_rq;
124}
125
126/* runqueue on which this entity is (to be) queued */
127static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128{
129 return se->cfs_rq;
130}
131
132/* runqueue "owned" by this group */
133static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134{
135 return grp->my_q;
136}
137
138/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
140 */
141static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142{
143 return cfs_rq->tg->cfs_rq[this_cpu];
144}
145
146/* Iterate thr' all leaf cfs_rq's on a runqueue */
147#define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
149
150/* Do the two (enqueued) entities belong to the same group ? */
151static inline int
152is_same_group(struct sched_entity *se, struct sched_entity *pse)
153{
154 if (se->cfs_rq == pse->cfs_rq)
155 return 1;
156
157 return 0;
158}
159
160static inline struct sched_entity *parent_entity(struct sched_entity *se)
161{
162 return se->parent;
163}
164
464b7527
PZ
165/* return depth at which a sched entity is present in the hierarchy */
166static inline int depth_se(struct sched_entity *se)
167{
168 int depth = 0;
169
170 for_each_sched_entity(se)
171 depth++;
172
173 return depth;
174}
175
176static void
177find_matching_se(struct sched_entity **se, struct sched_entity **pse)
178{
179 int se_depth, pse_depth;
180
181 /*
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
185 * parent.
186 */
187
188 /* First walk up until both entities are at same depth */
189 se_depth = depth_se(*se);
190 pse_depth = depth_se(*pse);
191
192 while (se_depth > pse_depth) {
193 se_depth--;
194 *se = parent_entity(*se);
195 }
196
197 while (pse_depth > se_depth) {
198 pse_depth--;
199 *pse = parent_entity(*pse);
200 }
201
202 while (!is_same_group(*se, *pse)) {
203 *se = parent_entity(*se);
204 *pse = parent_entity(*pse);
205 }
206}
207
8f48894f
PZ
208#else /* !CONFIG_FAIR_GROUP_SCHED */
209
210static inline struct task_struct *task_of(struct sched_entity *se)
211{
212 return container_of(se, struct task_struct, se);
213}
bf0f6f24 214
62160e3f
IM
215static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
216{
217 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
218}
219
220#define entity_is_task(se) 1
221
b758149c
PZ
222#define for_each_sched_entity(se) \
223 for (; se; se = NULL)
bf0f6f24 224
b758149c 225static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 226{
b758149c 227 return &task_rq(p)->cfs;
bf0f6f24
IM
228}
229
b758149c
PZ
230static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
231{
232 struct task_struct *p = task_of(se);
233 struct rq *rq = task_rq(p);
234
235 return &rq->cfs;
236}
237
238/* runqueue "owned" by this group */
239static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
240{
241 return NULL;
242}
243
244static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
245{
246 return &cpu_rq(this_cpu)->cfs;
247}
248
249#define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
251
252static inline int
253is_same_group(struct sched_entity *se, struct sched_entity *pse)
254{
255 return 1;
256}
257
258static inline struct sched_entity *parent_entity(struct sched_entity *se)
259{
260 return NULL;
261}
262
464b7527
PZ
263static inline void
264find_matching_se(struct sched_entity **se, struct sched_entity **pse)
265{
266}
267
b758149c
PZ
268#endif /* CONFIG_FAIR_GROUP_SCHED */
269
bf0f6f24
IM
270
271/**************************************************************
272 * Scheduling class tree data structure manipulation methods:
273 */
274
0702e3eb 275static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 276{
368059a9
PZ
277 s64 delta = (s64)(vruntime - min_vruntime);
278 if (delta > 0)
02e0431a
PZ
279 min_vruntime = vruntime;
280
281 return min_vruntime;
282}
283
0702e3eb 284static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
285{
286 s64 delta = (s64)(vruntime - min_vruntime);
287 if (delta < 0)
288 min_vruntime = vruntime;
289
290 return min_vruntime;
291}
292
54fdc581
FC
293static inline int entity_before(struct sched_entity *a,
294 struct sched_entity *b)
295{
296 return (s64)(a->vruntime - b->vruntime) < 0;
297}
298
0702e3eb 299static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 300{
30cfdcfc 301 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
302}
303
1af5f730
PZ
304static void update_min_vruntime(struct cfs_rq *cfs_rq)
305{
306 u64 vruntime = cfs_rq->min_vruntime;
307
308 if (cfs_rq->curr)
309 vruntime = cfs_rq->curr->vruntime;
310
311 if (cfs_rq->rb_leftmost) {
312 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313 struct sched_entity,
314 run_node);
315
e17036da 316 if (!cfs_rq->curr)
1af5f730
PZ
317 vruntime = se->vruntime;
318 else
319 vruntime = min_vruntime(vruntime, se->vruntime);
320 }
321
322 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
323}
324
bf0f6f24
IM
325/*
326 * Enqueue an entity into the rb-tree:
327 */
0702e3eb 328static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
329{
330 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331 struct rb_node *parent = NULL;
332 struct sched_entity *entry;
9014623c 333 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
334 int leftmost = 1;
335
336 /*
337 * Find the right place in the rbtree:
338 */
339 while (*link) {
340 parent = *link;
341 entry = rb_entry(parent, struct sched_entity, run_node);
342 /*
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
345 */
9014623c 346 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
347 link = &parent->rb_left;
348 } else {
349 link = &parent->rb_right;
350 leftmost = 0;
351 }
352 }
353
354 /*
355 * Maintain a cache of leftmost tree entries (it is frequently
356 * used):
357 */
1af5f730 358 if (leftmost)
57cb499d 359 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
360
361 rb_link_node(&se->run_node, parent, link);
362 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
363}
364
0702e3eb 365static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 366{
3fe69747
PZ
367 if (cfs_rq->rb_leftmost == &se->run_node) {
368 struct rb_node *next_node;
3fe69747
PZ
369
370 next_node = rb_next(&se->run_node);
371 cfs_rq->rb_leftmost = next_node;
3fe69747 372 }
e9acbff6 373
bf0f6f24 374 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
375}
376
bf0f6f24
IM
377static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
378{
f4b6755f
PZ
379 struct rb_node *left = cfs_rq->rb_leftmost;
380
381 if (!left)
382 return NULL;
383
384 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
385}
386
f4b6755f 387static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 388{
7eee3e67 389 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 390
70eee74b
BS
391 if (!last)
392 return NULL;
7eee3e67
IM
393
394 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
395}
396
bf0f6f24
IM
397/**************************************************************
398 * Scheduling class statistics methods:
399 */
400
b2be5e96 401#ifdef CONFIG_SCHED_DEBUG
acb4a848 402int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 403 void __user *buffer, size_t *lenp,
b2be5e96
PZ
404 loff_t *ppos)
405{
8d65af78 406 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 407 int factor = get_update_sysctl_factor();
b2be5e96
PZ
408
409 if (ret || !write)
410 return ret;
411
412 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
413 sysctl_sched_min_granularity);
414
acb4a848
CE
415#define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity);
418 WRT_SYSCTL(sched_latency);
419 WRT_SYSCTL(sched_wakeup_granularity);
420 WRT_SYSCTL(sched_shares_ratelimit);
421#undef WRT_SYSCTL
422
b2be5e96
PZ
423 return 0;
424}
425#endif
647e7cac 426
a7be37ac 427/*
f9c0b095 428 * delta /= w
a7be37ac
PZ
429 */
430static inline unsigned long
431calc_delta_fair(unsigned long delta, struct sched_entity *se)
432{
f9c0b095
PZ
433 if (unlikely(se->load.weight != NICE_0_LOAD))
434 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
435
436 return delta;
437}
438
647e7cac
IM
439/*
440 * The idea is to set a period in which each task runs once.
441 *
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
444 *
445 * p = (nr <= nl) ? l : l*nr/nl
446 */
4d78e7b6
PZ
447static u64 __sched_period(unsigned long nr_running)
448{
449 u64 period = sysctl_sched_latency;
b2be5e96 450 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
451
452 if (unlikely(nr_running > nr_latency)) {
4bf0b771 453 period = sysctl_sched_min_granularity;
4d78e7b6 454 period *= nr_running;
4d78e7b6
PZ
455 }
456
457 return period;
458}
459
647e7cac
IM
460/*
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
463 *
f9c0b095 464 * s = p*P[w/rw]
647e7cac 465 */
6d0f0ebd 466static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 467{
0a582440 468 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 469
0a582440 470 for_each_sched_entity(se) {
6272d68c 471 struct load_weight *load;
3104bf03 472 struct load_weight lw;
6272d68c
LM
473
474 cfs_rq = cfs_rq_of(se);
475 load = &cfs_rq->load;
f9c0b095 476
0a582440 477 if (unlikely(!se->on_rq)) {
3104bf03 478 lw = cfs_rq->load;
0a582440
MG
479
480 update_load_add(&lw, se->load.weight);
481 load = &lw;
482 }
483 slice = calc_delta_mine(slice, se->load.weight, load);
484 }
485 return slice;
bf0f6f24
IM
486}
487
647e7cac 488/*
ac884dec 489 * We calculate the vruntime slice of a to be inserted task
647e7cac 490 *
f9c0b095 491 * vs = s/w
647e7cac 492 */
f9c0b095 493static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 494{
f9c0b095 495 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
496}
497
bf0f6f24
IM
498/*
499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
501 */
502static inline void
8ebc91d9
IM
503__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
504 unsigned long delta_exec)
bf0f6f24 505{
bbdba7c0 506 unsigned long delta_exec_weighted;
bf0f6f24 507
8179ca23 508 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
509
510 curr->sum_exec_runtime += delta_exec;
7a62eabc 511 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 512 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 513
e9acbff6 514 curr->vruntime += delta_exec_weighted;
1af5f730 515 update_min_vruntime(cfs_rq);
bf0f6f24
IM
516}
517
b7cc0896 518static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 519{
429d43bc 520 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 521 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
522 unsigned long delta_exec;
523
524 if (unlikely(!curr))
525 return;
526
527 /*
528 * Get the amount of time the current task was running
529 * since the last time we changed load (this cannot
530 * overflow on 32 bits):
531 */
8ebc91d9 532 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
533 if (!delta_exec)
534 return;
bf0f6f24 535
8ebc91d9
IM
536 __update_curr(cfs_rq, curr, delta_exec);
537 curr->exec_start = now;
d842de87
SV
538
539 if (entity_is_task(curr)) {
540 struct task_struct *curtask = task_of(curr);
541
f977bb49 542 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 543 cpuacct_charge(curtask, delta_exec);
f06febc9 544 account_group_exec_runtime(curtask, delta_exec);
d842de87 545 }
bf0f6f24
IM
546}
547
548static inline void
5870db5b 549update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 550{
d281918d 551 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
552}
553
bf0f6f24
IM
554/*
555 * Task is being enqueued - update stats:
556 */
d2417e5a 557static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 558{
bf0f6f24
IM
559 /*
560 * Are we enqueueing a waiting task? (for current tasks
561 * a dequeue/enqueue event is a NOP)
562 */
429d43bc 563 if (se != cfs_rq->curr)
5870db5b 564 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
565}
566
bf0f6f24 567static void
9ef0a961 568update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 569{
bbdba7c0
IM
570 schedstat_set(se->wait_max, max(se->wait_max,
571 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
572 schedstat_set(se->wait_count, se->wait_count + 1);
573 schedstat_set(se->wait_sum, se->wait_sum +
574 rq_of(cfs_rq)->clock - se->wait_start);
768d0c27
PZ
575#ifdef CONFIG_SCHEDSTATS
576 if (entity_is_task(se)) {
577 trace_sched_stat_wait(task_of(se),
578 rq_of(cfs_rq)->clock - se->wait_start);
579 }
580#endif
e1f84508 581 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
582}
583
584static inline void
19b6a2e3 585update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 586{
bf0f6f24
IM
587 /*
588 * Mark the end of the wait period if dequeueing a
589 * waiting task:
590 */
429d43bc 591 if (se != cfs_rq->curr)
9ef0a961 592 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
593}
594
595/*
596 * We are picking a new current task - update its stats:
597 */
598static inline void
79303e9e 599update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
600{
601 /*
602 * We are starting a new run period:
603 */
d281918d 604 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
605}
606
bf0f6f24
IM
607/**************************************************
608 * Scheduling class queueing methods:
609 */
610
c09595f6
PZ
611#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
612static void
613add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
614{
615 cfs_rq->task_weight += weight;
616}
617#else
618static inline void
619add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
620{
621}
622#endif
623
30cfdcfc
DA
624static void
625account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
626{
627 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
628 if (!parent_entity(se))
629 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 630 if (entity_is_task(se)) {
c09595f6 631 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
632 list_add(&se->group_node, &cfs_rq->tasks);
633 }
30cfdcfc
DA
634 cfs_rq->nr_running++;
635 se->on_rq = 1;
636}
637
638static void
639account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
640{
641 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
642 if (!parent_entity(se))
643 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 644 if (entity_is_task(se)) {
c09595f6 645 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
646 list_del_init(&se->group_node);
647 }
30cfdcfc
DA
648 cfs_rq->nr_running--;
649 se->on_rq = 0;
650}
651
2396af69 652static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 653{
bf0f6f24 654#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
655 struct task_struct *tsk = NULL;
656
657 if (entity_is_task(se))
658 tsk = task_of(se);
659
bf0f6f24 660 if (se->sleep_start) {
d281918d 661 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
662
663 if ((s64)delta < 0)
664 delta = 0;
665
666 if (unlikely(delta > se->sleep_max))
667 se->sleep_max = delta;
668
669 se->sleep_start = 0;
670 se->sum_sleep_runtime += delta;
9745512c 671
768d0c27 672 if (tsk) {
e414314c 673 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
674 trace_sched_stat_sleep(tsk, delta);
675 }
bf0f6f24
IM
676 }
677 if (se->block_start) {
d281918d 678 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
679
680 if ((s64)delta < 0)
681 delta = 0;
682
683 if (unlikely(delta > se->block_max))
684 se->block_max = delta;
685
686 se->block_start = 0;
687 se->sum_sleep_runtime += delta;
30084fbd 688
e414314c 689 if (tsk) {
8f0dfc34
AV
690 if (tsk->in_iowait) {
691 se->iowait_sum += delta;
692 se->iowait_count++;
768d0c27 693 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
694 }
695
e414314c
PZ
696 /*
697 * Blocking time is in units of nanosecs, so shift by
698 * 20 to get a milliseconds-range estimation of the
699 * amount of time that the task spent sleeping:
700 */
701 if (unlikely(prof_on == SLEEP_PROFILING)) {
702 profile_hits(SLEEP_PROFILING,
703 (void *)get_wchan(tsk),
704 delta >> 20);
705 }
706 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 707 }
bf0f6f24
IM
708 }
709#endif
710}
711
ddc97297
PZ
712static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
713{
714#ifdef CONFIG_SCHED_DEBUG
715 s64 d = se->vruntime - cfs_rq->min_vruntime;
716
717 if (d < 0)
718 d = -d;
719
720 if (d > 3*sysctl_sched_latency)
721 schedstat_inc(cfs_rq, nr_spread_over);
722#endif
723}
724
aeb73b04
PZ
725static void
726place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
727{
1af5f730 728 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 729
2cb8600e
PZ
730 /*
731 * The 'current' period is already promised to the current tasks,
732 * however the extra weight of the new task will slow them down a
733 * little, place the new task so that it fits in the slot that
734 * stays open at the end.
735 */
94dfb5e7 736 if (initial && sched_feat(START_DEBIT))
f9c0b095 737 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 738
a2e7a7eb
MG
739 /* sleeps up to a single latency don't count. */
740 if (!initial && sched_feat(FAIR_SLEEPERS)) {
741 unsigned long thresh = sysctl_sched_latency;
a7be37ac 742
a2e7a7eb
MG
743 /*
744 * Convert the sleeper threshold into virtual time.
745 * SCHED_IDLE is a special sub-class. We care about
746 * fairness only relative to other SCHED_IDLE tasks,
747 * all of which have the same weight.
748 */
749 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
750 task_of(se)->policy != SCHED_IDLE))
751 thresh = calc_delta_fair(thresh, se);
a7be37ac 752
a2e7a7eb
MG
753 /*
754 * Halve their sleep time's effect, to allow
755 * for a gentler effect of sleepers:
756 */
757 if (sched_feat(GENTLE_FAIR_SLEEPERS))
758 thresh >>= 1;
51e0304c 759
a2e7a7eb 760 vruntime -= thresh;
aeb73b04
PZ
761 }
762
b5d9d734
MG
763 /* ensure we never gain time by being placed backwards. */
764 vruntime = max_vruntime(se->vruntime, vruntime);
765
67e9fb2a 766 se->vruntime = vruntime;
aeb73b04
PZ
767}
768
88ec22d3
PZ
769#define ENQUEUE_WAKEUP 1
770#define ENQUEUE_MIGRATE 2
771
bf0f6f24 772static void
88ec22d3 773enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 774{
88ec22d3
PZ
775 /*
776 * Update the normalized vruntime before updating min_vruntime
777 * through callig update_curr().
778 */
779 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE))
780 se->vruntime += cfs_rq->min_vruntime;
781
bf0f6f24 782 /*
a2a2d680 783 * Update run-time statistics of the 'current'.
bf0f6f24 784 */
b7cc0896 785 update_curr(cfs_rq);
a992241d 786 account_entity_enqueue(cfs_rq, se);
bf0f6f24 787
88ec22d3 788 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 789 place_entity(cfs_rq, se, 0);
2396af69 790 enqueue_sleeper(cfs_rq, se);
e9acbff6 791 }
bf0f6f24 792
d2417e5a 793 update_stats_enqueue(cfs_rq, se);
ddc97297 794 check_spread(cfs_rq, se);
83b699ed
SV
795 if (se != cfs_rq->curr)
796 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
797}
798
a571bbea 799static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2002c695 800{
de69a80b 801 if (!se || cfs_rq->last == se)
2002c695
PZ
802 cfs_rq->last = NULL;
803
de69a80b 804 if (!se || cfs_rq->next == se)
2002c695
PZ
805 cfs_rq->next = NULL;
806}
807
a571bbea
PZ
808static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
809{
810 for_each_sched_entity(se)
811 __clear_buddies(cfs_rq_of(se), se);
812}
813
bf0f6f24 814static void
525c2716 815dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 816{
a2a2d680
DA
817 /*
818 * Update run-time statistics of the 'current'.
819 */
820 update_curr(cfs_rq);
821
19b6a2e3 822 update_stats_dequeue(cfs_rq, se);
db36cc7d 823 if (sleep) {
67e9fb2a 824#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
825 if (entity_is_task(se)) {
826 struct task_struct *tsk = task_of(se);
827
828 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 829 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 830 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 831 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 832 }
db36cc7d 833#endif
67e9fb2a
PZ
834 }
835
2002c695 836 clear_buddies(cfs_rq, se);
4793241b 837
83b699ed 838 if (se != cfs_rq->curr)
30cfdcfc
DA
839 __dequeue_entity(cfs_rq, se);
840 account_entity_dequeue(cfs_rq, se);
1af5f730 841 update_min_vruntime(cfs_rq);
88ec22d3
PZ
842
843 /*
844 * Normalize the entity after updating the min_vruntime because the
845 * update can refer to the ->curr item and we need to reflect this
846 * movement in our normalized position.
847 */
848 if (!sleep)
849 se->vruntime -= cfs_rq->min_vruntime;
bf0f6f24
IM
850}
851
852/*
853 * Preempt the current task with a newly woken task if needed:
854 */
7c92e54f 855static void
2e09bf55 856check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 857{
11697830
PZ
858 unsigned long ideal_runtime, delta_exec;
859
6d0f0ebd 860 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 861 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 862 if (delta_exec > ideal_runtime) {
bf0f6f24 863 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
864 /*
865 * The current task ran long enough, ensure it doesn't get
866 * re-elected due to buddy favours.
867 */
868 clear_buddies(cfs_rq, curr);
f685ceac
MG
869 return;
870 }
871
872 /*
873 * Ensure that a task that missed wakeup preemption by a
874 * narrow margin doesn't have to wait for a full slice.
875 * This also mitigates buddy induced latencies under load.
876 */
877 if (!sched_feat(WAKEUP_PREEMPT))
878 return;
879
880 if (delta_exec < sysctl_sched_min_granularity)
881 return;
882
883 if (cfs_rq->nr_running > 1) {
884 struct sched_entity *se = __pick_next_entity(cfs_rq);
885 s64 delta = curr->vruntime - se->vruntime;
886
887 if (delta > ideal_runtime)
888 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5 889 }
bf0f6f24
IM
890}
891
83b699ed 892static void
8494f412 893set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 894{
83b699ed
SV
895 /* 'current' is not kept within the tree. */
896 if (se->on_rq) {
897 /*
898 * Any task has to be enqueued before it get to execute on
899 * a CPU. So account for the time it spent waiting on the
900 * runqueue.
901 */
902 update_stats_wait_end(cfs_rq, se);
903 __dequeue_entity(cfs_rq, se);
904 }
905
79303e9e 906 update_stats_curr_start(cfs_rq, se);
429d43bc 907 cfs_rq->curr = se;
eba1ed4b
IM
908#ifdef CONFIG_SCHEDSTATS
909 /*
910 * Track our maximum slice length, if the CPU's load is at
911 * least twice that of our own weight (i.e. dont track it
912 * when there are only lesser-weight tasks around):
913 */
495eca49 914 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
915 se->slice_max = max(se->slice_max,
916 se->sum_exec_runtime - se->prev_sum_exec_runtime);
917 }
918#endif
4a55b450 919 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
920}
921
3f3a4904
PZ
922static int
923wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
924
f4b6755f 925static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 926{
f4b6755f 927 struct sched_entity *se = __pick_next_entity(cfs_rq);
f685ceac 928 struct sched_entity *left = se;
f4b6755f 929
f685ceac
MG
930 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
931 se = cfs_rq->next;
aa2ac252 932
f685ceac
MG
933 /*
934 * Prefer last buddy, try to return the CPU to a preempted task.
935 */
936 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
937 se = cfs_rq->last;
938
939 clear_buddies(cfs_rq, se);
4793241b
PZ
940
941 return se;
aa2ac252
PZ
942}
943
ab6cde26 944static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
945{
946 /*
947 * If still on the runqueue then deactivate_task()
948 * was not called and update_curr() has to be done:
949 */
950 if (prev->on_rq)
b7cc0896 951 update_curr(cfs_rq);
bf0f6f24 952
ddc97297 953 check_spread(cfs_rq, prev);
30cfdcfc 954 if (prev->on_rq) {
5870db5b 955 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
956 /* Put 'current' back into the tree. */
957 __enqueue_entity(cfs_rq, prev);
958 }
429d43bc 959 cfs_rq->curr = NULL;
bf0f6f24
IM
960}
961
8f4d37ec
PZ
962static void
963entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 964{
bf0f6f24 965 /*
30cfdcfc 966 * Update run-time statistics of the 'current'.
bf0f6f24 967 */
30cfdcfc 968 update_curr(cfs_rq);
bf0f6f24 969
8f4d37ec
PZ
970#ifdef CONFIG_SCHED_HRTICK
971 /*
972 * queued ticks are scheduled to match the slice, so don't bother
973 * validating it and just reschedule.
974 */
983ed7a6
HH
975 if (queued) {
976 resched_task(rq_of(cfs_rq)->curr);
977 return;
978 }
8f4d37ec
PZ
979 /*
980 * don't let the period tick interfere with the hrtick preemption
981 */
982 if (!sched_feat(DOUBLE_TICK) &&
983 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
984 return;
985#endif
986
ce6c1311 987 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 988 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
989}
990
991/**************************************************
992 * CFS operations on tasks:
993 */
994
8f4d37ec
PZ
995#ifdef CONFIG_SCHED_HRTICK
996static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
997{
8f4d37ec
PZ
998 struct sched_entity *se = &p->se;
999 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1000
1001 WARN_ON(task_rq(p) != rq);
1002
1003 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1004 u64 slice = sched_slice(cfs_rq, se);
1005 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1006 s64 delta = slice - ran;
1007
1008 if (delta < 0) {
1009 if (rq->curr == p)
1010 resched_task(p);
1011 return;
1012 }
1013
1014 /*
1015 * Don't schedule slices shorter than 10000ns, that just
1016 * doesn't make sense. Rely on vruntime for fairness.
1017 */
31656519 1018 if (rq->curr != p)
157124c1 1019 delta = max_t(s64, 10000LL, delta);
8f4d37ec 1020
31656519 1021 hrtick_start(rq, delta);
8f4d37ec
PZ
1022 }
1023}
a4c2f00f
PZ
1024
1025/*
1026 * called from enqueue/dequeue and updates the hrtick when the
1027 * current task is from our class and nr_running is low enough
1028 * to matter.
1029 */
1030static void hrtick_update(struct rq *rq)
1031{
1032 struct task_struct *curr = rq->curr;
1033
1034 if (curr->sched_class != &fair_sched_class)
1035 return;
1036
1037 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1038 hrtick_start_fair(rq, curr);
1039}
55e12e5e 1040#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1041static inline void
1042hrtick_start_fair(struct rq *rq, struct task_struct *p)
1043{
1044}
a4c2f00f
PZ
1045
1046static inline void hrtick_update(struct rq *rq)
1047{
1048}
8f4d37ec
PZ
1049#endif
1050
bf0f6f24
IM
1051/*
1052 * The enqueue_task method is called before nr_running is
1053 * increased. Here we update the fair scheduling stats and
1054 * then put the task into the rbtree:
1055 */
fd390f6a 1056static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
1057{
1058 struct cfs_rq *cfs_rq;
62fb1851 1059 struct sched_entity *se = &p->se;
88ec22d3
PZ
1060 int flags = 0;
1061
1062 if (wakeup)
1063 flags |= ENQUEUE_WAKEUP;
1064 if (p->state == TASK_WAKING)
1065 flags |= ENQUEUE_MIGRATE;
bf0f6f24
IM
1066
1067 for_each_sched_entity(se) {
62fb1851 1068 if (se->on_rq)
bf0f6f24
IM
1069 break;
1070 cfs_rq = cfs_rq_of(se);
88ec22d3
PZ
1071 enqueue_entity(cfs_rq, se, flags);
1072 flags = ENQUEUE_WAKEUP;
bf0f6f24 1073 }
8f4d37ec 1074
a4c2f00f 1075 hrtick_update(rq);
bf0f6f24
IM
1076}
1077
1078/*
1079 * The dequeue_task method is called before nr_running is
1080 * decreased. We remove the task from the rbtree and
1081 * update the fair scheduling stats:
1082 */
f02231e5 1083static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
1084{
1085 struct cfs_rq *cfs_rq;
62fb1851 1086 struct sched_entity *se = &p->se;
bf0f6f24
IM
1087
1088 for_each_sched_entity(se) {
1089 cfs_rq = cfs_rq_of(se);
525c2716 1090 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 1091 /* Don't dequeue parent if it has other entities besides us */
62fb1851 1092 if (cfs_rq->load.weight)
bf0f6f24 1093 break;
b9fa3df3 1094 sleep = 1;
bf0f6f24 1095 }
8f4d37ec 1096
a4c2f00f 1097 hrtick_update(rq);
bf0f6f24
IM
1098}
1099
1100/*
1799e35d
IM
1101 * sched_yield() support is very simple - we dequeue and enqueue.
1102 *
1103 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 1104 */
4530d7ab 1105static void yield_task_fair(struct rq *rq)
bf0f6f24 1106{
db292ca3
IM
1107 struct task_struct *curr = rq->curr;
1108 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1109 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
1110
1111 /*
1799e35d
IM
1112 * Are we the only task in the tree?
1113 */
1114 if (unlikely(cfs_rq->nr_running == 1))
1115 return;
1116
2002c695
PZ
1117 clear_buddies(cfs_rq, se);
1118
db292ca3 1119 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 1120 update_rq_clock(rq);
1799e35d 1121 /*
a2a2d680 1122 * Update run-time statistics of the 'current'.
1799e35d 1123 */
2b1e315d 1124 update_curr(cfs_rq);
1799e35d
IM
1125
1126 return;
1127 }
1128 /*
1129 * Find the rightmost entry in the rbtree:
bf0f6f24 1130 */
2b1e315d 1131 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1132 /*
1133 * Already in the rightmost position?
1134 */
54fdc581 1135 if (unlikely(!rightmost || entity_before(rightmost, se)))
1799e35d
IM
1136 return;
1137
1138 /*
1139 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1140 * Upon rescheduling, sched_class::put_prev_task() will place
1141 * 'current' within the tree based on its new key value.
1799e35d 1142 */
30cfdcfc 1143 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1144}
1145
e7693a36 1146#ifdef CONFIG_SMP
098fb9db 1147
88ec22d3
PZ
1148static void task_waking_fair(struct rq *rq, struct task_struct *p)
1149{
1150 struct sched_entity *se = &p->se;
1151 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1152
1153 se->vruntime -= cfs_rq->min_vruntime;
1154}
1155
bb3469ac 1156#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1157/*
1158 * effective_load() calculates the load change as seen from the root_task_group
1159 *
1160 * Adding load to a group doesn't make a group heavier, but can cause movement
1161 * of group shares between cpus. Assuming the shares were perfectly aligned one
1162 * can calculate the shift in shares.
1163 *
1164 * The problem is that perfectly aligning the shares is rather expensive, hence
1165 * we try to avoid doing that too often - see update_shares(), which ratelimits
1166 * this change.
1167 *
1168 * We compensate this by not only taking the current delta into account, but
1169 * also considering the delta between when the shares were last adjusted and
1170 * now.
1171 *
1172 * We still saw a performance dip, some tracing learned us that between
1173 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1174 * significantly. Therefore try to bias the error in direction of failing
1175 * the affine wakeup.
1176 *
1177 */
f1d239f7
PZ
1178static long effective_load(struct task_group *tg, int cpu,
1179 long wl, long wg)
bb3469ac 1180{
4be9daaa 1181 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1182
1183 if (!tg->parent)
1184 return wl;
1185
f5bfb7d9
PZ
1186 /*
1187 * By not taking the decrease of shares on the other cpu into
1188 * account our error leans towards reducing the affine wakeups.
1189 */
1190 if (!wl && sched_feat(ASYM_EFF_LOAD))
1191 return wl;
1192
4be9daaa 1193 for_each_sched_entity(se) {
cb5ef42a 1194 long S, rw, s, a, b;
940959e9
PZ
1195 long more_w;
1196
1197 /*
1198 * Instead of using this increment, also add the difference
1199 * between when the shares were last updated and now.
1200 */
1201 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1202 wl += more_w;
1203 wg += more_w;
4be9daaa
PZ
1204
1205 S = se->my_q->tg->shares;
1206 s = se->my_q->shares;
f1d239f7 1207 rw = se->my_q->rq_weight;
bb3469ac 1208
cb5ef42a
PZ
1209 a = S*(rw + wl);
1210 b = S*rw + s*wg;
4be9daaa 1211
940959e9
PZ
1212 wl = s*(a-b);
1213
1214 if (likely(b))
1215 wl /= b;
1216
83378269
PZ
1217 /*
1218 * Assume the group is already running and will
1219 * thus already be accounted for in the weight.
1220 *
1221 * That is, moving shares between CPUs, does not
1222 * alter the group weight.
1223 */
4be9daaa 1224 wg = 0;
4be9daaa 1225 }
bb3469ac 1226
4be9daaa 1227 return wl;
bb3469ac 1228}
4be9daaa 1229
bb3469ac 1230#else
4be9daaa 1231
83378269
PZ
1232static inline unsigned long effective_load(struct task_group *tg, int cpu,
1233 unsigned long wl, unsigned long wg)
4be9daaa 1234{
83378269 1235 return wl;
bb3469ac 1236}
4be9daaa 1237
bb3469ac
PZ
1238#endif
1239
c88d5910 1240static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1241{
c88d5910
PZ
1242 struct task_struct *curr = current;
1243 unsigned long this_load, load;
1244 int idx, this_cpu, prev_cpu;
098fb9db 1245 unsigned long tl_per_task;
c88d5910
PZ
1246 unsigned int imbalance;
1247 struct task_group *tg;
83378269 1248 unsigned long weight;
b3137bc8 1249 int balanced;
098fb9db 1250
c88d5910
PZ
1251 idx = sd->wake_idx;
1252 this_cpu = smp_processor_id();
1253 prev_cpu = task_cpu(p);
1254 load = source_load(prev_cpu, idx);
1255 this_load = target_load(this_cpu, idx);
098fb9db 1256
e69b0f1b
PZ
1257 if (sync) {
1258 if (sched_feat(SYNC_LESS) &&
1259 (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1260 p->se.avg_overlap > sysctl_sched_migration_cost))
1261 sync = 0;
1262 } else {
1263 if (sched_feat(SYNC_MORE) &&
1264 (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1265 p->se.avg_overlap < sysctl_sched_migration_cost))
1266 sync = 1;
1267 }
fc631c82 1268
b3137bc8
MG
1269 /*
1270 * If sync wakeup then subtract the (maximum possible)
1271 * effect of the currently running task from the load
1272 * of the current CPU:
1273 */
83378269
PZ
1274 if (sync) {
1275 tg = task_group(current);
1276 weight = current->se.load.weight;
1277
c88d5910 1278 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1279 load += effective_load(tg, prev_cpu, 0, -weight);
1280 }
b3137bc8 1281
83378269
PZ
1282 tg = task_group(p);
1283 weight = p->se.load.weight;
b3137bc8 1284
c88d5910
PZ
1285 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1286
71a29aa7
PZ
1287 /*
1288 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
1289 * due to the sync cause above having dropped this_load to 0, we'll
1290 * always have an imbalance, but there's really nothing you can do
1291 * about that, so that's good too.
71a29aa7
PZ
1292 *
1293 * Otherwise check if either cpus are near enough in load to allow this
1294 * task to be woken on this_cpu.
1295 */
c88d5910
PZ
1296 balanced = !this_load ||
1297 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
83378269 1298 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1299
098fb9db 1300 /*
4ae7d5ce
IM
1301 * If the currently running task will sleep within
1302 * a reasonable amount of time then attract this newly
1303 * woken task:
098fb9db 1304 */
2fb7635c
PZ
1305 if (sync && balanced)
1306 return 1;
098fb9db
IM
1307
1308 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1309 tl_per_task = cpu_avg_load_per_task(this_cpu);
1310
c88d5910
PZ
1311 if (balanced ||
1312 (this_load <= load &&
1313 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
1314 /*
1315 * This domain has SD_WAKE_AFFINE and
1316 * p is cache cold in this domain, and
1317 * there is no bad imbalance.
1318 */
c88d5910 1319 schedstat_inc(sd, ttwu_move_affine);
098fb9db
IM
1320 schedstat_inc(p, se.nr_wakeups_affine);
1321
1322 return 1;
1323 }
1324 return 0;
1325}
1326
aaee1203
PZ
1327/*
1328 * find_idlest_group finds and returns the least busy CPU group within the
1329 * domain.
1330 */
1331static struct sched_group *
78e7ed53 1332find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 1333 int this_cpu, int load_idx)
e7693a36 1334{
aaee1203
PZ
1335 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1336 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 1337 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 1338
aaee1203
PZ
1339 do {
1340 unsigned long load, avg_load;
1341 int local_group;
1342 int i;
e7693a36 1343
aaee1203
PZ
1344 /* Skip over this group if it has no CPUs allowed */
1345 if (!cpumask_intersects(sched_group_cpus(group),
1346 &p->cpus_allowed))
1347 continue;
1348
1349 local_group = cpumask_test_cpu(this_cpu,
1350 sched_group_cpus(group));
1351
1352 /* Tally up the load of all CPUs in the group */
1353 avg_load = 0;
1354
1355 for_each_cpu(i, sched_group_cpus(group)) {
1356 /* Bias balancing toward cpus of our domain */
1357 if (local_group)
1358 load = source_load(i, load_idx);
1359 else
1360 load = target_load(i, load_idx);
1361
1362 avg_load += load;
1363 }
1364
1365 /* Adjust by relative CPU power of the group */
1366 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1367
1368 if (local_group) {
1369 this_load = avg_load;
1370 this = group;
1371 } else if (avg_load < min_load) {
1372 min_load = avg_load;
1373 idlest = group;
1374 }
1375 } while (group = group->next, group != sd->groups);
1376
1377 if (!idlest || 100*this_load < imbalance*min_load)
1378 return NULL;
1379 return idlest;
1380}
1381
1382/*
1383 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1384 */
1385static int
1386find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1387{
1388 unsigned long load, min_load = ULONG_MAX;
1389 int idlest = -1;
1390 int i;
1391
1392 /* Traverse only the allowed CPUs */
1393 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1394 load = weighted_cpuload(i);
1395
1396 if (load < min_load || (load == min_load && i == this_cpu)) {
1397 min_load = load;
1398 idlest = i;
e7693a36
GH
1399 }
1400 }
1401
aaee1203
PZ
1402 return idlest;
1403}
e7693a36 1404
a50bde51
PZ
1405/*
1406 * Try and locate an idle CPU in the sched_domain.
1407 */
1408static int
1409select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1410{
1411 int cpu = smp_processor_id();
1412 int prev_cpu = task_cpu(p);
1413 int i;
1414
1415 /*
1416 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
1417 * test in select_task_rq_fair) and the prev_cpu is idle then that's
1418 * always a better target than the current cpu.
1419 */
fe3bcfe1
PZ
1420 if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
1421 return prev_cpu;
a50bde51
PZ
1422
1423 /*
1424 * Otherwise, iterate the domain and find an elegible idle cpu.
1425 */
fe3bcfe1
PZ
1426 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1427 if (!cpu_rq(i)->cfs.nr_running) {
1428 target = i;
1429 break;
a50bde51
PZ
1430 }
1431 }
1432
1433 return target;
1434}
1435
aaee1203
PZ
1436/*
1437 * sched_balance_self: balance the current task (running on cpu) in domains
1438 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1439 * SD_BALANCE_EXEC.
1440 *
1441 * Balance, ie. select the least loaded group.
1442 *
1443 * Returns the target CPU number, or the same CPU if no balancing is needed.
1444 *
1445 * preempt must be disabled.
1446 */
5158f4e4 1447static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 1448{
29cd8bae 1449 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
1450 int cpu = smp_processor_id();
1451 int prev_cpu = task_cpu(p);
1452 int new_cpu = cpu;
1453 int want_affine = 0;
29cd8bae 1454 int want_sd = 1;
5158f4e4 1455 int sync = wake_flags & WF_SYNC;
c88d5910 1456
0763a660 1457 if (sd_flag & SD_BALANCE_WAKE) {
3f04e8cd
MG
1458 if (sched_feat(AFFINE_WAKEUPS) &&
1459 cpumask_test_cpu(cpu, &p->cpus_allowed))
c88d5910
PZ
1460 want_affine = 1;
1461 new_cpu = prev_cpu;
1462 }
aaee1203
PZ
1463
1464 for_each_domain(cpu, tmp) {
e4f42888
PZ
1465 if (!(tmp->flags & SD_LOAD_BALANCE))
1466 continue;
1467
aaee1203 1468 /*
ae154be1
PZ
1469 * If power savings logic is enabled for a domain, see if we
1470 * are not overloaded, if so, don't balance wider.
aaee1203 1471 */
59abf026 1472 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
1473 unsigned long power = 0;
1474 unsigned long nr_running = 0;
1475 unsigned long capacity;
1476 int i;
1477
1478 for_each_cpu(i, sched_domain_span(tmp)) {
1479 power += power_of(i);
1480 nr_running += cpu_rq(i)->cfs.nr_running;
1481 }
1482
1483 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1484
59abf026
PZ
1485 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1486 nr_running /= 2;
1487
1488 if (nr_running < capacity)
29cd8bae 1489 want_sd = 0;
ae154be1 1490 }
aaee1203 1491
fe3bcfe1
PZ
1492 /*
1493 * While iterating the domains looking for a spanning
1494 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
1495 * in cache sharing domains along the way.
1496 */
1497 if (want_affine) {
a50bde51 1498 int target = -1;
c88d5910 1499
a50bde51
PZ
1500 /*
1501 * If both cpu and prev_cpu are part of this domain,
1502 * cpu is a valid SD_WAKE_AFFINE target.
1503 */
a1f84a3a 1504 if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
a50bde51 1505 target = cpu;
a1f84a3a
MG
1506
1507 /*
a50bde51
PZ
1508 * If there's an idle sibling in this domain, make that
1509 * the wake_affine target instead of the current cpu.
a1f84a3a 1510 */
a50bde51
PZ
1511 if (tmp->flags & SD_PREFER_SIBLING)
1512 target = select_idle_sibling(p, tmp, target);
a1f84a3a 1513
a50bde51 1514 if (target >= 0) {
fe3bcfe1
PZ
1515 if (tmp->flags & SD_WAKE_AFFINE) {
1516 affine_sd = tmp;
1517 want_affine = 0;
1518 }
a50bde51 1519 cpu = target;
a1f84a3a 1520 }
c88d5910
PZ
1521 }
1522
29cd8bae
PZ
1523 if (!want_sd && !want_affine)
1524 break;
1525
0763a660 1526 if (!(tmp->flags & sd_flag))
c88d5910
PZ
1527 continue;
1528
29cd8bae
PZ
1529 if (want_sd)
1530 sd = tmp;
1531 }
1532
1533 if (sched_feat(LB_SHARES_UPDATE)) {
1534 /*
1535 * Pick the largest domain to update shares over
1536 */
1537 tmp = sd;
1538 if (affine_sd && (!tmp ||
1539 cpumask_weight(sched_domain_span(affine_sd)) >
1540 cpumask_weight(sched_domain_span(sd))))
1541 tmp = affine_sd;
1542
1543 if (tmp)
1544 update_shares(tmp);
c88d5910 1545 }
aaee1203 1546
fb58bac5
PZ
1547 if (affine_sd && wake_affine(affine_sd, p, sync))
1548 return cpu;
e7693a36 1549
aaee1203 1550 while (sd) {
5158f4e4 1551 int load_idx = sd->forkexec_idx;
aaee1203 1552 struct sched_group *group;
c88d5910 1553 int weight;
098fb9db 1554
0763a660 1555 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
1556 sd = sd->child;
1557 continue;
1558 }
098fb9db 1559
5158f4e4
PZ
1560 if (sd_flag & SD_BALANCE_WAKE)
1561 load_idx = sd->wake_idx;
098fb9db 1562
5158f4e4 1563 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
1564 if (!group) {
1565 sd = sd->child;
1566 continue;
1567 }
4ae7d5ce 1568
d7c33c49 1569 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
1570 if (new_cpu == -1 || new_cpu == cpu) {
1571 /* Now try balancing at a lower domain level of cpu */
1572 sd = sd->child;
1573 continue;
e7693a36 1574 }
aaee1203
PZ
1575
1576 /* Now try balancing at a lower domain level of new_cpu */
1577 cpu = new_cpu;
1578 weight = cpumask_weight(sched_domain_span(sd));
1579 sd = NULL;
1580 for_each_domain(cpu, tmp) {
1581 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1582 break;
0763a660 1583 if (tmp->flags & sd_flag)
aaee1203
PZ
1584 sd = tmp;
1585 }
1586 /* while loop will break here if sd == NULL */
e7693a36
GH
1587 }
1588
c88d5910 1589 return new_cpu;
e7693a36
GH
1590}
1591#endif /* CONFIG_SMP */
1592
e52fb7c0
PZ
1593/*
1594 * Adaptive granularity
1595 *
1596 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1597 * with the limit of wakeup_gran -- when it never does a wakeup.
1598 *
1599 * So the smaller avg_wakeup is the faster we want this task to preempt,
1600 * but we don't want to treat the preemptee unfairly and therefore allow it
1601 * to run for at least the amount of time we'd like to run.
1602 *
1603 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1604 *
1605 * NOTE: we use *nr_running to scale with load, this nicely matches the
1606 * degrading latency on load.
1607 */
1608static unsigned long
1609adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1610{
1611 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1612 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1613 u64 gran = 0;
1614
1615 if (this_run < expected_wakeup)
1616 gran = expected_wakeup - this_run;
1617
1618 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1619}
1620
1621static unsigned long
1622wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1623{
1624 unsigned long gran = sysctl_sched_wakeup_granularity;
1625
e52fb7c0
PZ
1626 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1627 gran = adaptive_gran(curr, se);
1628
0bbd3336 1629 /*
e52fb7c0
PZ
1630 * Since its curr running now, convert the gran from real-time
1631 * to virtual-time in his units.
0bbd3336 1632 */
e52fb7c0
PZ
1633 if (sched_feat(ASYM_GRAN)) {
1634 /*
1635 * By using 'se' instead of 'curr' we penalize light tasks, so
1636 * they get preempted easier. That is, if 'se' < 'curr' then
1637 * the resulting gran will be larger, therefore penalizing the
1638 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1639 * be smaller, again penalizing the lighter task.
1640 *
1641 * This is especially important for buddies when the leftmost
1642 * task is higher priority than the buddy.
1643 */
1644 if (unlikely(se->load.weight != NICE_0_LOAD))
1645 gran = calc_delta_fair(gran, se);
1646 } else {
1647 if (unlikely(curr->load.weight != NICE_0_LOAD))
1648 gran = calc_delta_fair(gran, curr);
1649 }
0bbd3336
PZ
1650
1651 return gran;
1652}
1653
464b7527
PZ
1654/*
1655 * Should 'se' preempt 'curr'.
1656 *
1657 * |s1
1658 * |s2
1659 * |s3
1660 * g
1661 * |<--->|c
1662 *
1663 * w(c, s1) = -1
1664 * w(c, s2) = 0
1665 * w(c, s3) = 1
1666 *
1667 */
1668static int
1669wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1670{
1671 s64 gran, vdiff = curr->vruntime - se->vruntime;
1672
1673 if (vdiff <= 0)
1674 return -1;
1675
e52fb7c0 1676 gran = wakeup_gran(curr, se);
464b7527
PZ
1677 if (vdiff > gran)
1678 return 1;
1679
1680 return 0;
1681}
1682
02479099
PZ
1683static void set_last_buddy(struct sched_entity *se)
1684{
6bc912b7
PZ
1685 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1686 for_each_sched_entity(se)
1687 cfs_rq_of(se)->last = se;
1688 }
02479099
PZ
1689}
1690
1691static void set_next_buddy(struct sched_entity *se)
1692{
6bc912b7
PZ
1693 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1694 for_each_sched_entity(se)
1695 cfs_rq_of(se)->next = se;
1696 }
02479099
PZ
1697}
1698
bf0f6f24
IM
1699/*
1700 * Preempt the current task with a newly woken task if needed:
1701 */
5a9b86f6 1702static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
1703{
1704 struct task_struct *curr = rq->curr;
8651a86c 1705 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1706 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5a9b86f6 1707 int sync = wake_flags & WF_SYNC;
f685ceac 1708 int scale = cfs_rq->nr_running >= sched_nr_latency;
bf0f6f24 1709
3a7e73a2
PZ
1710 if (unlikely(rt_prio(p->prio)))
1711 goto preempt;
aa2ac252 1712
d95f98d0
PZ
1713 if (unlikely(p->sched_class != &fair_sched_class))
1714 return;
1715
4ae7d5ce
IM
1716 if (unlikely(se == pse))
1717 return;
1718
f685ceac 1719 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
3cb63d52 1720 set_next_buddy(pse);
57fdc26d 1721
aec0a514
BR
1722 /*
1723 * We can come here with TIF_NEED_RESCHED already set from new task
1724 * wake up path.
1725 */
1726 if (test_tsk_need_resched(curr))
1727 return;
1728
91c234b4 1729 /*
6bc912b7 1730 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1731 * the tick):
1732 */
6bc912b7 1733 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1734 return;
bf0f6f24 1735
6bc912b7 1736 /* Idle tasks are by definition preempted by everybody. */
3a7e73a2
PZ
1737 if (unlikely(curr->policy == SCHED_IDLE))
1738 goto preempt;
bf0f6f24 1739
3a7e73a2
PZ
1740 if (sched_feat(WAKEUP_SYNC) && sync)
1741 goto preempt;
15afe09b 1742
3a7e73a2
PZ
1743 if (sched_feat(WAKEUP_OVERLAP) &&
1744 se->avg_overlap < sysctl_sched_migration_cost &&
1745 pse->avg_overlap < sysctl_sched_migration_cost)
1746 goto preempt;
1747
ad4b78bb
PZ
1748 if (!sched_feat(WAKEUP_PREEMPT))
1749 return;
1750
3a7e73a2 1751 update_curr(cfs_rq);
464b7527 1752 find_matching_se(&se, &pse);
002f128b 1753 BUG_ON(!pse);
3a7e73a2
PZ
1754 if (wakeup_preempt_entity(se, pse) == 1)
1755 goto preempt;
464b7527 1756
3a7e73a2 1757 return;
a65ac745 1758
3a7e73a2
PZ
1759preempt:
1760 resched_task(curr);
1761 /*
1762 * Only set the backward buddy when the current task is still
1763 * on the rq. This can happen when a wakeup gets interleaved
1764 * with schedule on the ->pre_schedule() or idle_balance()
1765 * point, either of which can * drop the rq lock.
1766 *
1767 * Also, during early boot the idle thread is in the fair class,
1768 * for obvious reasons its a bad idea to schedule back to it.
1769 */
1770 if (unlikely(!se->on_rq || curr == rq->idle))
1771 return;
1772
1773 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1774 set_last_buddy(se);
bf0f6f24
IM
1775}
1776
fb8d4724 1777static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1778{
8f4d37ec 1779 struct task_struct *p;
bf0f6f24
IM
1780 struct cfs_rq *cfs_rq = &rq->cfs;
1781 struct sched_entity *se;
1782
36ace27e 1783 if (!cfs_rq->nr_running)
bf0f6f24
IM
1784 return NULL;
1785
1786 do {
9948f4b2 1787 se = pick_next_entity(cfs_rq);
f4b6755f 1788 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1789 cfs_rq = group_cfs_rq(se);
1790 } while (cfs_rq);
1791
8f4d37ec
PZ
1792 p = task_of(se);
1793 hrtick_start_fair(rq, p);
1794
1795 return p;
bf0f6f24
IM
1796}
1797
1798/*
1799 * Account for a descheduled task:
1800 */
31ee529c 1801static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1802{
1803 struct sched_entity *se = &prev->se;
1804 struct cfs_rq *cfs_rq;
1805
1806 for_each_sched_entity(se) {
1807 cfs_rq = cfs_rq_of(se);
ab6cde26 1808 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1809 }
1810}
1811
681f3e68 1812#ifdef CONFIG_SMP
bf0f6f24
IM
1813/**************************************************
1814 * Fair scheduling class load-balancing methods:
1815 */
1816
1817/*
1818 * Load-balancing iterator. Note: while the runqueue stays locked
1819 * during the whole iteration, the current task might be
1820 * dequeued so the iterator has to be dequeue-safe. Here we
1821 * achieve that by always pre-iterating before returning
1822 * the current task:
1823 */
a9957449 1824static struct task_struct *
4a55bd5e 1825__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1826{
354d60c2
DG
1827 struct task_struct *p = NULL;
1828 struct sched_entity *se;
bf0f6f24 1829
77ae6513
MG
1830 if (next == &cfs_rq->tasks)
1831 return NULL;
1832
b87f1724
BR
1833 se = list_entry(next, struct sched_entity, group_node);
1834 p = task_of(se);
1835 cfs_rq->balance_iterator = next->next;
77ae6513 1836
bf0f6f24
IM
1837 return p;
1838}
1839
1840static struct task_struct *load_balance_start_fair(void *arg)
1841{
1842 struct cfs_rq *cfs_rq = arg;
1843
4a55bd5e 1844 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1845}
1846
1847static struct task_struct *load_balance_next_fair(void *arg)
1848{
1849 struct cfs_rq *cfs_rq = arg;
1850
4a55bd5e 1851 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1852}
1853
c09595f6
PZ
1854static unsigned long
1855__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1856 unsigned long max_load_move, struct sched_domain *sd,
1857 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1858 struct cfs_rq *cfs_rq)
62fb1851 1859{
c09595f6 1860 struct rq_iterator cfs_rq_iterator;
62fb1851 1861
c09595f6
PZ
1862 cfs_rq_iterator.start = load_balance_start_fair;
1863 cfs_rq_iterator.next = load_balance_next_fair;
1864 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1865
c09595f6
PZ
1866 return balance_tasks(this_rq, this_cpu, busiest,
1867 max_load_move, sd, idle, all_pinned,
1868 this_best_prio, &cfs_rq_iterator);
62fb1851 1869}
62fb1851 1870
c09595f6 1871#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1872static unsigned long
bf0f6f24 1873load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1874 unsigned long max_load_move,
a4ac01c3
PW
1875 struct sched_domain *sd, enum cpu_idle_type idle,
1876 int *all_pinned, int *this_best_prio)
bf0f6f24 1877{
bf0f6f24 1878 long rem_load_move = max_load_move;
c09595f6
PZ
1879 int busiest_cpu = cpu_of(busiest);
1880 struct task_group *tg;
18d95a28 1881
c09595f6 1882 rcu_read_lock();
c8cba857 1883 update_h_load(busiest_cpu);
18d95a28 1884
caea8a03 1885 list_for_each_entry_rcu(tg, &task_groups, list) {
c8cba857 1886 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1887 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1888 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
243e0e7b 1889 u64 rem_load, moved_load;
18d95a28 1890
c09595f6
PZ
1891 /*
1892 * empty group
1893 */
c8cba857 1894 if (!busiest_cfs_rq->task_weight)
bf0f6f24
IM
1895 continue;
1896
243e0e7b
SV
1897 rem_load = (u64)rem_load_move * busiest_weight;
1898 rem_load = div_u64(rem_load, busiest_h_load + 1);
bf0f6f24 1899
c09595f6 1900 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1901 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6 1902 tg->cfs_rq[busiest_cpu]);
bf0f6f24 1903
c09595f6 1904 if (!moved_load)
bf0f6f24
IM
1905 continue;
1906
42a3ac7d 1907 moved_load *= busiest_h_load;
243e0e7b 1908 moved_load = div_u64(moved_load, busiest_weight + 1);
bf0f6f24 1909
c09595f6
PZ
1910 rem_load_move -= moved_load;
1911 if (rem_load_move < 0)
bf0f6f24
IM
1912 break;
1913 }
c09595f6 1914 rcu_read_unlock();
bf0f6f24 1915
43010659 1916 return max_load_move - rem_load_move;
bf0f6f24 1917}
c09595f6
PZ
1918#else
1919static unsigned long
1920load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1921 unsigned long max_load_move,
1922 struct sched_domain *sd, enum cpu_idle_type idle,
1923 int *all_pinned, int *this_best_prio)
1924{
1925 return __load_balance_fair(this_rq, this_cpu, busiest,
1926 max_load_move, sd, idle, all_pinned,
1927 this_best_prio, &busiest->cfs);
1928}
1929#endif
bf0f6f24 1930
e1d1484f
PW
1931static int
1932move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1933 struct sched_domain *sd, enum cpu_idle_type idle)
1934{
1935 struct cfs_rq *busy_cfs_rq;
1936 struct rq_iterator cfs_rq_iterator;
1937
1938 cfs_rq_iterator.start = load_balance_start_fair;
1939 cfs_rq_iterator.next = load_balance_next_fair;
1940
1941 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1942 /*
1943 * pass busy_cfs_rq argument into
1944 * load_balance_[start|next]_fair iterators
1945 */
1946 cfs_rq_iterator.arg = busy_cfs_rq;
1947 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1948 &cfs_rq_iterator))
1949 return 1;
1950 }
1951
1952 return 0;
1953}
0bcdcf28 1954
1e3c88bd
PZ
1955/*
1956 * pull_task - move a task from a remote runqueue to the local runqueue.
1957 * Both runqueues must be locked.
1958 */
1959static void pull_task(struct rq *src_rq, struct task_struct *p,
1960 struct rq *this_rq, int this_cpu)
1961{
1962 deactivate_task(src_rq, p, 0);
1963 set_task_cpu(p, this_cpu);
1964 activate_task(this_rq, p, 0);
1965 check_preempt_curr(this_rq, p, 0);
1966}
1967
1968/*
1969 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1970 */
1971static
1972int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1973 struct sched_domain *sd, enum cpu_idle_type idle,
1974 int *all_pinned)
1975{
1976 int tsk_cache_hot = 0;
1977 /*
1978 * We do not migrate tasks that are:
1979 * 1) running (obviously), or
1980 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1981 * 3) are cache-hot on their current CPU.
1982 */
1983 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1984 schedstat_inc(p, se.nr_failed_migrations_affine);
1985 return 0;
1986 }
1987 *all_pinned = 0;
1988
1989 if (task_running(rq, p)) {
1990 schedstat_inc(p, se.nr_failed_migrations_running);
1991 return 0;
1992 }
1993
1994 /*
1995 * Aggressive migration if:
1996 * 1) task is cache cold, or
1997 * 2) too many balance attempts have failed.
1998 */
1999
2000 tsk_cache_hot = task_hot(p, rq->clock, sd);
2001 if (!tsk_cache_hot ||
2002 sd->nr_balance_failed > sd->cache_nice_tries) {
2003#ifdef CONFIG_SCHEDSTATS
2004 if (tsk_cache_hot) {
2005 schedstat_inc(sd, lb_hot_gained[idle]);
2006 schedstat_inc(p, se.nr_forced_migrations);
2007 }
2008#endif
2009 return 1;
2010 }
2011
2012 if (tsk_cache_hot) {
2013 schedstat_inc(p, se.nr_failed_migrations_hot);
2014 return 0;
2015 }
2016 return 1;
2017}
2018
2019static unsigned long
2020balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2021 unsigned long max_load_move, struct sched_domain *sd,
2022 enum cpu_idle_type idle, int *all_pinned,
2023 int *this_best_prio, struct rq_iterator *iterator)
2024{
2025 int loops = 0, pulled = 0, pinned = 0;
2026 struct task_struct *p;
2027 long rem_load_move = max_load_move;
2028
2029 if (max_load_move == 0)
2030 goto out;
2031
2032 pinned = 1;
2033
2034 /*
2035 * Start the load-balancing iterator:
2036 */
2037 p = iterator->start(iterator->arg);
2038next:
2039 if (!p || loops++ > sysctl_sched_nr_migrate)
2040 goto out;
2041
2042 if ((p->se.load.weight >> 1) > rem_load_move ||
2043 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2044 p = iterator->next(iterator->arg);
2045 goto next;
2046 }
2047
2048 pull_task(busiest, p, this_rq, this_cpu);
2049 pulled++;
2050 rem_load_move -= p->se.load.weight;
2051
2052#ifdef CONFIG_PREEMPT
2053 /*
2054 * NEWIDLE balancing is a source of latency, so preemptible kernels
2055 * will stop after the first task is pulled to minimize the critical
2056 * section.
2057 */
2058 if (idle == CPU_NEWLY_IDLE)
2059 goto out;
2060#endif
2061
2062 /*
2063 * We only want to steal up to the prescribed amount of weighted load.
2064 */
2065 if (rem_load_move > 0) {
2066 if (p->prio < *this_best_prio)
2067 *this_best_prio = p->prio;
2068 p = iterator->next(iterator->arg);
2069 goto next;
2070 }
2071out:
2072 /*
2073 * Right now, this is one of only two places pull_task() is called,
2074 * so we can safely collect pull_task() stats here rather than
2075 * inside pull_task().
2076 */
2077 schedstat_add(sd, lb_gained[idle], pulled);
2078
2079 if (all_pinned)
2080 *all_pinned = pinned;
2081
2082 return max_load_move - rem_load_move;
2083}
2084
2085/*
2086 * move_tasks tries to move up to max_load_move weighted load from busiest to
2087 * this_rq, as part of a balancing operation within domain "sd".
2088 * Returns 1 if successful and 0 otherwise.
2089 *
2090 * Called with both runqueues locked.
2091 */
2092static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2093 unsigned long max_load_move,
2094 struct sched_domain *sd, enum cpu_idle_type idle,
2095 int *all_pinned)
2096{
2097 const struct sched_class *class = sched_class_highest;
2098 unsigned long total_load_moved = 0;
2099 int this_best_prio = this_rq->curr->prio;
2100
2101 do {
2102 total_load_moved +=
2103 class->load_balance(this_rq, this_cpu, busiest,
2104 max_load_move - total_load_moved,
2105 sd, idle, all_pinned, &this_best_prio);
2106 class = class->next;
2107
2108#ifdef CONFIG_PREEMPT
2109 /*
2110 * NEWIDLE balancing is a source of latency, so preemptible
2111 * kernels will stop after the first task is pulled to minimize
2112 * the critical section.
2113 */
2114 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2115 break;
2116#endif
2117 } while (class && max_load_move > total_load_moved);
2118
2119 return total_load_moved > 0;
2120}
2121
2122static int
2123iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2124 struct sched_domain *sd, enum cpu_idle_type idle,
2125 struct rq_iterator *iterator)
2126{
2127 struct task_struct *p = iterator->start(iterator->arg);
2128 int pinned = 0;
2129
2130 while (p) {
2131 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2132 pull_task(busiest, p, this_rq, this_cpu);
2133 /*
2134 * Right now, this is only the second place pull_task()
2135 * is called, so we can safely collect pull_task()
2136 * stats here rather than inside pull_task().
2137 */
2138 schedstat_inc(sd, lb_gained[idle]);
2139
2140 return 1;
2141 }
2142 p = iterator->next(iterator->arg);
2143 }
2144
2145 return 0;
2146}
2147
2148/*
2149 * move_one_task tries to move exactly one task from busiest to this_rq, as
2150 * part of active balancing operations within "domain".
2151 * Returns 1 if successful and 0 otherwise.
2152 *
2153 * Called with both runqueues locked.
2154 */
2155static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2156 struct sched_domain *sd, enum cpu_idle_type idle)
2157{
2158 const struct sched_class *class;
2159
2160 for_each_class(class) {
2161 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2162 return 1;
2163 }
2164
2165 return 0;
2166}
2167/********** Helpers for find_busiest_group ************************/
2168/*
2169 * sd_lb_stats - Structure to store the statistics of a sched_domain
2170 * during load balancing.
2171 */
2172struct sd_lb_stats {
2173 struct sched_group *busiest; /* Busiest group in this sd */
2174 struct sched_group *this; /* Local group in this sd */
2175 unsigned long total_load; /* Total load of all groups in sd */
2176 unsigned long total_pwr; /* Total power of all groups in sd */
2177 unsigned long avg_load; /* Average load across all groups in sd */
2178
2179 /** Statistics of this group */
2180 unsigned long this_load;
2181 unsigned long this_load_per_task;
2182 unsigned long this_nr_running;
2183
2184 /* Statistics of the busiest group */
2185 unsigned long max_load;
2186 unsigned long busiest_load_per_task;
2187 unsigned long busiest_nr_running;
2188
2189 int group_imb; /* Is there imbalance in this sd */
2190#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2191 int power_savings_balance; /* Is powersave balance needed for this sd */
2192 struct sched_group *group_min; /* Least loaded group in sd */
2193 struct sched_group *group_leader; /* Group which relieves group_min */
2194 unsigned long min_load_per_task; /* load_per_task in group_min */
2195 unsigned long leader_nr_running; /* Nr running of group_leader */
2196 unsigned long min_nr_running; /* Nr running of group_min */
2197#endif
2198};
2199
2200/*
2201 * sg_lb_stats - stats of a sched_group required for load_balancing
2202 */
2203struct sg_lb_stats {
2204 unsigned long avg_load; /*Avg load across the CPUs of the group */
2205 unsigned long group_load; /* Total load over the CPUs of the group */
2206 unsigned long sum_nr_running; /* Nr tasks running in the group */
2207 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2208 unsigned long group_capacity;
2209 int group_imb; /* Is there an imbalance in the group ? */
2210};
2211
2212/**
2213 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2214 * @group: The group whose first cpu is to be returned.
2215 */
2216static inline unsigned int group_first_cpu(struct sched_group *group)
2217{
2218 return cpumask_first(sched_group_cpus(group));
2219}
2220
2221/**
2222 * get_sd_load_idx - Obtain the load index for a given sched domain.
2223 * @sd: The sched_domain whose load_idx is to be obtained.
2224 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2225 */
2226static inline int get_sd_load_idx(struct sched_domain *sd,
2227 enum cpu_idle_type idle)
2228{
2229 int load_idx;
2230
2231 switch (idle) {
2232 case CPU_NOT_IDLE:
2233 load_idx = sd->busy_idx;
2234 break;
2235
2236 case CPU_NEWLY_IDLE:
2237 load_idx = sd->newidle_idx;
2238 break;
2239 default:
2240 load_idx = sd->idle_idx;
2241 break;
2242 }
2243
2244 return load_idx;
2245}
2246
2247
2248#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2249/**
2250 * init_sd_power_savings_stats - Initialize power savings statistics for
2251 * the given sched_domain, during load balancing.
2252 *
2253 * @sd: Sched domain whose power-savings statistics are to be initialized.
2254 * @sds: Variable containing the statistics for sd.
2255 * @idle: Idle status of the CPU at which we're performing load-balancing.
2256 */
2257static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2258 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2259{
2260 /*
2261 * Busy processors will not participate in power savings
2262 * balance.
2263 */
2264 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2265 sds->power_savings_balance = 0;
2266 else {
2267 sds->power_savings_balance = 1;
2268 sds->min_nr_running = ULONG_MAX;
2269 sds->leader_nr_running = 0;
2270 }
2271}
2272
2273/**
2274 * update_sd_power_savings_stats - Update the power saving stats for a
2275 * sched_domain while performing load balancing.
2276 *
2277 * @group: sched_group belonging to the sched_domain under consideration.
2278 * @sds: Variable containing the statistics of the sched_domain
2279 * @local_group: Does group contain the CPU for which we're performing
2280 * load balancing ?
2281 * @sgs: Variable containing the statistics of the group.
2282 */
2283static inline void update_sd_power_savings_stats(struct sched_group *group,
2284 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2285{
2286
2287 if (!sds->power_savings_balance)
2288 return;
2289
2290 /*
2291 * If the local group is idle or completely loaded
2292 * no need to do power savings balance at this domain
2293 */
2294 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2295 !sds->this_nr_running))
2296 sds->power_savings_balance = 0;
2297
2298 /*
2299 * If a group is already running at full capacity or idle,
2300 * don't include that group in power savings calculations
2301 */
2302 if (!sds->power_savings_balance ||
2303 sgs->sum_nr_running >= sgs->group_capacity ||
2304 !sgs->sum_nr_running)
2305 return;
2306
2307 /*
2308 * Calculate the group which has the least non-idle load.
2309 * This is the group from where we need to pick up the load
2310 * for saving power
2311 */
2312 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2313 (sgs->sum_nr_running == sds->min_nr_running &&
2314 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2315 sds->group_min = group;
2316 sds->min_nr_running = sgs->sum_nr_running;
2317 sds->min_load_per_task = sgs->sum_weighted_load /
2318 sgs->sum_nr_running;
2319 }
2320
2321 /*
2322 * Calculate the group which is almost near its
2323 * capacity but still has some space to pick up some load
2324 * from other group and save more power
2325 */
2326 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2327 return;
2328
2329 if (sgs->sum_nr_running > sds->leader_nr_running ||
2330 (sgs->sum_nr_running == sds->leader_nr_running &&
2331 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2332 sds->group_leader = group;
2333 sds->leader_nr_running = sgs->sum_nr_running;
2334 }
2335}
2336
2337/**
2338 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2339 * @sds: Variable containing the statistics of the sched_domain
2340 * under consideration.
2341 * @this_cpu: Cpu at which we're currently performing load-balancing.
2342 * @imbalance: Variable to store the imbalance.
2343 *
2344 * Description:
2345 * Check if we have potential to perform some power-savings balance.
2346 * If yes, set the busiest group to be the least loaded group in the
2347 * sched_domain, so that it's CPUs can be put to idle.
2348 *
2349 * Returns 1 if there is potential to perform power-savings balance.
2350 * Else returns 0.
2351 */
2352static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2353 int this_cpu, unsigned long *imbalance)
2354{
2355 if (!sds->power_savings_balance)
2356 return 0;
2357
2358 if (sds->this != sds->group_leader ||
2359 sds->group_leader == sds->group_min)
2360 return 0;
2361
2362 *imbalance = sds->min_load_per_task;
2363 sds->busiest = sds->group_min;
2364
2365 return 1;
2366
2367}
2368#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2369static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2370 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2371{
2372 return;
2373}
2374
2375static inline void update_sd_power_savings_stats(struct sched_group *group,
2376 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2377{
2378 return;
2379}
2380
2381static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2382 int this_cpu, unsigned long *imbalance)
2383{
2384 return 0;
2385}
2386#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2387
2388
2389unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2390{
2391 return SCHED_LOAD_SCALE;
2392}
2393
2394unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2395{
2396 return default_scale_freq_power(sd, cpu);
2397}
2398
2399unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2400{
2401 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2402 unsigned long smt_gain = sd->smt_gain;
2403
2404 smt_gain /= weight;
2405
2406 return smt_gain;
2407}
2408
2409unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2410{
2411 return default_scale_smt_power(sd, cpu);
2412}
2413
2414unsigned long scale_rt_power(int cpu)
2415{
2416 struct rq *rq = cpu_rq(cpu);
2417 u64 total, available;
2418
2419 sched_avg_update(rq);
2420
2421 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2422 available = total - rq->rt_avg;
2423
2424 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2425 total = SCHED_LOAD_SCALE;
2426
2427 total >>= SCHED_LOAD_SHIFT;
2428
2429 return div_u64(available, total);
2430}
2431
2432static void update_cpu_power(struct sched_domain *sd, int cpu)
2433{
2434 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2435 unsigned long power = SCHED_LOAD_SCALE;
2436 struct sched_group *sdg = sd->groups;
2437
2438 if (sched_feat(ARCH_POWER))
2439 power *= arch_scale_freq_power(sd, cpu);
2440 else
2441 power *= default_scale_freq_power(sd, cpu);
2442
2443 power >>= SCHED_LOAD_SHIFT;
2444
2445 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2446 if (sched_feat(ARCH_POWER))
2447 power *= arch_scale_smt_power(sd, cpu);
2448 else
2449 power *= default_scale_smt_power(sd, cpu);
2450
2451 power >>= SCHED_LOAD_SHIFT;
2452 }
2453
2454 power *= scale_rt_power(cpu);
2455 power >>= SCHED_LOAD_SHIFT;
2456
2457 if (!power)
2458 power = 1;
2459
2460 sdg->cpu_power = power;
2461}
2462
2463static void update_group_power(struct sched_domain *sd, int cpu)
2464{
2465 struct sched_domain *child = sd->child;
2466 struct sched_group *group, *sdg = sd->groups;
2467 unsigned long power;
2468
2469 if (!child) {
2470 update_cpu_power(sd, cpu);
2471 return;
2472 }
2473
2474 power = 0;
2475
2476 group = child->groups;
2477 do {
2478 power += group->cpu_power;
2479 group = group->next;
2480 } while (group != child->groups);
2481
2482 sdg->cpu_power = power;
2483}
2484
2485/**
2486 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2487 * @sd: The sched_domain whose statistics are to be updated.
2488 * @group: sched_group whose statistics are to be updated.
2489 * @this_cpu: Cpu for which load balance is currently performed.
2490 * @idle: Idle status of this_cpu
2491 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2492 * @sd_idle: Idle status of the sched_domain containing group.
2493 * @local_group: Does group contain this_cpu.
2494 * @cpus: Set of cpus considered for load balancing.
2495 * @balance: Should we balance.
2496 * @sgs: variable to hold the statistics for this group.
2497 */
2498static inline void update_sg_lb_stats(struct sched_domain *sd,
2499 struct sched_group *group, int this_cpu,
2500 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2501 int local_group, const struct cpumask *cpus,
2502 int *balance, struct sg_lb_stats *sgs)
2503{
2504 unsigned long load, max_cpu_load, min_cpu_load;
2505 int i;
2506 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2507 unsigned long sum_avg_load_per_task;
2508 unsigned long avg_load_per_task;
2509
2510 if (local_group) {
2511 balance_cpu = group_first_cpu(group);
2512 if (balance_cpu == this_cpu)
2513 update_group_power(sd, this_cpu);
2514 }
2515
2516 /* Tally up the load of all CPUs in the group */
2517 sum_avg_load_per_task = avg_load_per_task = 0;
2518 max_cpu_load = 0;
2519 min_cpu_load = ~0UL;
2520
2521 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2522 struct rq *rq = cpu_rq(i);
2523
2524 if (*sd_idle && rq->nr_running)
2525 *sd_idle = 0;
2526
2527 /* Bias balancing toward cpus of our domain */
2528 if (local_group) {
2529 if (idle_cpu(i) && !first_idle_cpu) {
2530 first_idle_cpu = 1;
2531 balance_cpu = i;
2532 }
2533
2534 load = target_load(i, load_idx);
2535 } else {
2536 load = source_load(i, load_idx);
2537 if (load > max_cpu_load)
2538 max_cpu_load = load;
2539 if (min_cpu_load > load)
2540 min_cpu_load = load;
2541 }
2542
2543 sgs->group_load += load;
2544 sgs->sum_nr_running += rq->nr_running;
2545 sgs->sum_weighted_load += weighted_cpuload(i);
2546
2547 sum_avg_load_per_task += cpu_avg_load_per_task(i);
2548 }
2549
2550 /*
2551 * First idle cpu or the first cpu(busiest) in this sched group
2552 * is eligible for doing load balancing at this and above
2553 * domains. In the newly idle case, we will allow all the cpu's
2554 * to do the newly idle load balance.
2555 */
2556 if (idle != CPU_NEWLY_IDLE && local_group &&
2557 balance_cpu != this_cpu && balance) {
2558 *balance = 0;
2559 return;
2560 }
2561
2562 /* Adjust by relative CPU power of the group */
2563 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2564
2565
2566 /*
2567 * Consider the group unbalanced when the imbalance is larger
2568 * than the average weight of two tasks.
2569 *
2570 * APZ: with cgroup the avg task weight can vary wildly and
2571 * might not be a suitable number - should we keep a
2572 * normalized nr_running number somewhere that negates
2573 * the hierarchy?
2574 */
2575 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
2576 group->cpu_power;
2577
2578 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
2579 sgs->group_imb = 1;
2580
2581 sgs->group_capacity =
2582 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2583}
2584
2585/**
2586 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2587 * @sd: sched_domain whose statistics are to be updated.
2588 * @this_cpu: Cpu for which load balance is currently performed.
2589 * @idle: Idle status of this_cpu
2590 * @sd_idle: Idle status of the sched_domain containing group.
2591 * @cpus: Set of cpus considered for load balancing.
2592 * @balance: Should we balance.
2593 * @sds: variable to hold the statistics for this sched_domain.
2594 */
2595static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2596 enum cpu_idle_type idle, int *sd_idle,
2597 const struct cpumask *cpus, int *balance,
2598 struct sd_lb_stats *sds)
2599{
2600 struct sched_domain *child = sd->child;
2601 struct sched_group *group = sd->groups;
2602 struct sg_lb_stats sgs;
2603 int load_idx, prefer_sibling = 0;
2604
2605 if (child && child->flags & SD_PREFER_SIBLING)
2606 prefer_sibling = 1;
2607
2608 init_sd_power_savings_stats(sd, sds, idle);
2609 load_idx = get_sd_load_idx(sd, idle);
2610
2611 do {
2612 int local_group;
2613
2614 local_group = cpumask_test_cpu(this_cpu,
2615 sched_group_cpus(group));
2616 memset(&sgs, 0, sizeof(sgs));
2617 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
2618 local_group, cpus, balance, &sgs);
2619
2620 if (local_group && balance && !(*balance))
2621 return;
2622
2623 sds->total_load += sgs.group_load;
2624 sds->total_pwr += group->cpu_power;
2625
2626 /*
2627 * In case the child domain prefers tasks go to siblings
2628 * first, lower the group capacity to one so that we'll try
2629 * and move all the excess tasks away.
2630 */
2631 if (prefer_sibling)
2632 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2633
2634 if (local_group) {
2635 sds->this_load = sgs.avg_load;
2636 sds->this = group;
2637 sds->this_nr_running = sgs.sum_nr_running;
2638 sds->this_load_per_task = sgs.sum_weighted_load;
2639 } else if (sgs.avg_load > sds->max_load &&
2640 (sgs.sum_nr_running > sgs.group_capacity ||
2641 sgs.group_imb)) {
2642 sds->max_load = sgs.avg_load;
2643 sds->busiest = group;
2644 sds->busiest_nr_running = sgs.sum_nr_running;
2645 sds->busiest_load_per_task = sgs.sum_weighted_load;
2646 sds->group_imb = sgs.group_imb;
2647 }
2648
2649 update_sd_power_savings_stats(group, sds, local_group, &sgs);
2650 group = group->next;
2651 } while (group != sd->groups);
2652}
2653
2654/**
2655 * fix_small_imbalance - Calculate the minor imbalance that exists
2656 * amongst the groups of a sched_domain, during
2657 * load balancing.
2658 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2659 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2660 * @imbalance: Variable to store the imbalance.
2661 */
2662static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2663 int this_cpu, unsigned long *imbalance)
2664{
2665 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2666 unsigned int imbn = 2;
2667
2668 if (sds->this_nr_running) {
2669 sds->this_load_per_task /= sds->this_nr_running;
2670 if (sds->busiest_load_per_task >
2671 sds->this_load_per_task)
2672 imbn = 1;
2673 } else
2674 sds->this_load_per_task =
2675 cpu_avg_load_per_task(this_cpu);
2676
2677 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
2678 sds->busiest_load_per_task * imbn) {
2679 *imbalance = sds->busiest_load_per_task;
2680 return;
2681 }
2682
2683 /*
2684 * OK, we don't have enough imbalance to justify moving tasks,
2685 * however we may be able to increase total CPU power used by
2686 * moving them.
2687 */
2688
2689 pwr_now += sds->busiest->cpu_power *
2690 min(sds->busiest_load_per_task, sds->max_load);
2691 pwr_now += sds->this->cpu_power *
2692 min(sds->this_load_per_task, sds->this_load);
2693 pwr_now /= SCHED_LOAD_SCALE;
2694
2695 /* Amount of load we'd subtract */
2696 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2697 sds->busiest->cpu_power;
2698 if (sds->max_load > tmp)
2699 pwr_move += sds->busiest->cpu_power *
2700 min(sds->busiest_load_per_task, sds->max_load - tmp);
2701
2702 /* Amount of load we'd add */
2703 if (sds->max_load * sds->busiest->cpu_power <
2704 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2705 tmp = (sds->max_load * sds->busiest->cpu_power) /
2706 sds->this->cpu_power;
2707 else
2708 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2709 sds->this->cpu_power;
2710 pwr_move += sds->this->cpu_power *
2711 min(sds->this_load_per_task, sds->this_load + tmp);
2712 pwr_move /= SCHED_LOAD_SCALE;
2713
2714 /* Move if we gain throughput */
2715 if (pwr_move > pwr_now)
2716 *imbalance = sds->busiest_load_per_task;
2717}
2718
2719/**
2720 * calculate_imbalance - Calculate the amount of imbalance present within the
2721 * groups of a given sched_domain during load balance.
2722 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2723 * @this_cpu: Cpu for which currently load balance is being performed.
2724 * @imbalance: The variable to store the imbalance.
2725 */
2726static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2727 unsigned long *imbalance)
2728{
2729 unsigned long max_pull;
2730 /*
2731 * In the presence of smp nice balancing, certain scenarios can have
2732 * max load less than avg load(as we skip the groups at or below
2733 * its cpu_power, while calculating max_load..)
2734 */
2735 if (sds->max_load < sds->avg_load) {
2736 *imbalance = 0;
2737 return fix_small_imbalance(sds, this_cpu, imbalance);
2738 }
2739
2740 /* Don't want to pull so many tasks that a group would go idle */
2741 max_pull = min(sds->max_load - sds->avg_load,
2742 sds->max_load - sds->busiest_load_per_task);
2743
2744 /* How much load to actually move to equalise the imbalance */
2745 *imbalance = min(max_pull * sds->busiest->cpu_power,
2746 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2747 / SCHED_LOAD_SCALE;
2748
2749 /*
2750 * if *imbalance is less than the average load per runnable task
2751 * there is no gaurantee that any tasks will be moved so we'll have
2752 * a think about bumping its value to force at least one task to be
2753 * moved
2754 */
2755 if (*imbalance < sds->busiest_load_per_task)
2756 return fix_small_imbalance(sds, this_cpu, imbalance);
2757
2758}
2759/******* find_busiest_group() helpers end here *********************/
2760
2761/**
2762 * find_busiest_group - Returns the busiest group within the sched_domain
2763 * if there is an imbalance. If there isn't an imbalance, and
2764 * the user has opted for power-savings, it returns a group whose
2765 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2766 * such a group exists.
2767 *
2768 * Also calculates the amount of weighted load which should be moved
2769 * to restore balance.
2770 *
2771 * @sd: The sched_domain whose busiest group is to be returned.
2772 * @this_cpu: The cpu for which load balancing is currently being performed.
2773 * @imbalance: Variable which stores amount of weighted load which should
2774 * be moved to restore balance/put a group to idle.
2775 * @idle: The idle status of this_cpu.
2776 * @sd_idle: The idleness of sd
2777 * @cpus: The set of CPUs under consideration for load-balancing.
2778 * @balance: Pointer to a variable indicating if this_cpu
2779 * is the appropriate cpu to perform load balancing at this_level.
2780 *
2781 * Returns: - the busiest group if imbalance exists.
2782 * - If no imbalance and user has opted for power-savings balance,
2783 * return the least loaded group whose CPUs can be
2784 * put to idle by rebalancing its tasks onto our group.
2785 */
2786static struct sched_group *
2787find_busiest_group(struct sched_domain *sd, int this_cpu,
2788 unsigned long *imbalance, enum cpu_idle_type idle,
2789 int *sd_idle, const struct cpumask *cpus, int *balance)
2790{
2791 struct sd_lb_stats sds;
2792
2793 memset(&sds, 0, sizeof(sds));
2794
2795 /*
2796 * Compute the various statistics relavent for load balancing at
2797 * this level.
2798 */
2799 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2800 balance, &sds);
2801
2802 /* Cases where imbalance does not exist from POV of this_cpu */
2803 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2804 * at this level.
2805 * 2) There is no busy sibling group to pull from.
2806 * 3) This group is the busiest group.
2807 * 4) This group is more busy than the avg busieness at this
2808 * sched_domain.
2809 * 5) The imbalance is within the specified limit.
2810 * 6) Any rebalance would lead to ping-pong
2811 */
2812 if (balance && !(*balance))
2813 goto ret;
2814
2815 if (!sds.busiest || sds.busiest_nr_running == 0)
2816 goto out_balanced;
2817
2818 if (sds.this_load >= sds.max_load)
2819 goto out_balanced;
2820
2821 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
2822
2823 if (sds.this_load >= sds.avg_load)
2824 goto out_balanced;
2825
2826 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
2827 goto out_balanced;
2828
2829 sds.busiest_load_per_task /= sds.busiest_nr_running;
2830 if (sds.group_imb)
2831 sds.busiest_load_per_task =
2832 min(sds.busiest_load_per_task, sds.avg_load);
2833
2834 /*
2835 * We're trying to get all the cpus to the average_load, so we don't
2836 * want to push ourselves above the average load, nor do we wish to
2837 * reduce the max loaded cpu below the average load, as either of these
2838 * actions would just result in more rebalancing later, and ping-pong
2839 * tasks around. Thus we look for the minimum possible imbalance.
2840 * Negative imbalances (*we* are more loaded than anyone else) will
2841 * be counted as no imbalance for these purposes -- we can't fix that
2842 * by pulling tasks to us. Be careful of negative numbers as they'll
2843 * appear as very large values with unsigned longs.
2844 */
2845 if (sds.max_load <= sds.busiest_load_per_task)
2846 goto out_balanced;
2847
2848 /* Looks like there is an imbalance. Compute it */
2849 calculate_imbalance(&sds, this_cpu, imbalance);
2850 return sds.busiest;
2851
2852out_balanced:
2853 /*
2854 * There is no obvious imbalance. But check if we can do some balancing
2855 * to save power.
2856 */
2857 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
2858 return sds.busiest;
2859ret:
2860 *imbalance = 0;
2861 return NULL;
2862}
2863
2864/*
2865 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2866 */
2867static struct rq *
2868find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2869 unsigned long imbalance, const struct cpumask *cpus)
2870{
2871 struct rq *busiest = NULL, *rq;
2872 unsigned long max_load = 0;
2873 int i;
2874
2875 for_each_cpu(i, sched_group_cpus(group)) {
2876 unsigned long power = power_of(i);
2877 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
2878 unsigned long wl;
2879
2880 if (!cpumask_test_cpu(i, cpus))
2881 continue;
2882
2883 rq = cpu_rq(i);
2884 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
2885 wl /= power;
2886
2887 if (capacity && rq->nr_running == 1 && wl > imbalance)
2888 continue;
2889
2890 if (wl > max_load) {
2891 max_load = wl;
2892 busiest = rq;
2893 }
2894 }
2895
2896 return busiest;
2897}
2898
2899/*
2900 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2901 * so long as it is large enough.
2902 */
2903#define MAX_PINNED_INTERVAL 512
2904
2905/* Working cpumask for load_balance and load_balance_newidle. */
2906static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
2907
2908/*
2909 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2910 * tasks if there is an imbalance.
2911 */
2912static int load_balance(int this_cpu, struct rq *this_rq,
2913 struct sched_domain *sd, enum cpu_idle_type idle,
2914 int *balance)
2915{
2916 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2917 struct sched_group *group;
2918 unsigned long imbalance;
2919 struct rq *busiest;
2920 unsigned long flags;
2921 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
2922
2923 cpumask_copy(cpus, cpu_active_mask);
2924
2925 /*
2926 * When power savings policy is enabled for the parent domain, idle
2927 * sibling can pick up load irrespective of busy siblings. In this case,
2928 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2929 * portraying it as CPU_NOT_IDLE.
2930 */
2931 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2932 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2933 sd_idle = 1;
2934
2935 schedstat_inc(sd, lb_count[idle]);
2936
2937redo:
2938 update_shares(sd);
2939 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2940 cpus, balance);
2941
2942 if (*balance == 0)
2943 goto out_balanced;
2944
2945 if (!group) {
2946 schedstat_inc(sd, lb_nobusyg[idle]);
2947 goto out_balanced;
2948 }
2949
2950 busiest = find_busiest_queue(group, idle, imbalance, cpus);
2951 if (!busiest) {
2952 schedstat_inc(sd, lb_nobusyq[idle]);
2953 goto out_balanced;
2954 }
2955
2956 BUG_ON(busiest == this_rq);
2957
2958 schedstat_add(sd, lb_imbalance[idle], imbalance);
2959
2960 ld_moved = 0;
2961 if (busiest->nr_running > 1) {
2962 /*
2963 * Attempt to move tasks. If find_busiest_group has found
2964 * an imbalance but busiest->nr_running <= 1, the group is
2965 * still unbalanced. ld_moved simply stays zero, so it is
2966 * correctly treated as an imbalance.
2967 */
2968 local_irq_save(flags);
2969 double_rq_lock(this_rq, busiest);
2970 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2971 imbalance, sd, idle, &all_pinned);
2972 double_rq_unlock(this_rq, busiest);
2973 local_irq_restore(flags);
2974
2975 /*
2976 * some other cpu did the load balance for us.
2977 */
2978 if (ld_moved && this_cpu != smp_processor_id())
2979 resched_cpu(this_cpu);
2980
2981 /* All tasks on this runqueue were pinned by CPU affinity */
2982 if (unlikely(all_pinned)) {
2983 cpumask_clear_cpu(cpu_of(busiest), cpus);
2984 if (!cpumask_empty(cpus))
2985 goto redo;
2986 goto out_balanced;
2987 }
2988 }
2989
2990 if (!ld_moved) {
2991 schedstat_inc(sd, lb_failed[idle]);
2992 sd->nr_balance_failed++;
2993
2994 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2995
2996 raw_spin_lock_irqsave(&busiest->lock, flags);
2997
2998 /* don't kick the migration_thread, if the curr
2999 * task on busiest cpu can't be moved to this_cpu
3000 */
3001 if (!cpumask_test_cpu(this_cpu,
3002 &busiest->curr->cpus_allowed)) {
3003 raw_spin_unlock_irqrestore(&busiest->lock,
3004 flags);
3005 all_pinned = 1;
3006 goto out_one_pinned;
3007 }
3008
3009 if (!busiest->active_balance) {
3010 busiest->active_balance = 1;
3011 busiest->push_cpu = this_cpu;
3012 active_balance = 1;
3013 }
3014 raw_spin_unlock_irqrestore(&busiest->lock, flags);
3015 if (active_balance)
3016 wake_up_process(busiest->migration_thread);
3017
3018 /*
3019 * We've kicked active balancing, reset the failure
3020 * counter.
3021 */
3022 sd->nr_balance_failed = sd->cache_nice_tries+1;
3023 }
3024 } else
3025 sd->nr_balance_failed = 0;
3026
3027 if (likely(!active_balance)) {
3028 /* We were unbalanced, so reset the balancing interval */
3029 sd->balance_interval = sd->min_interval;
3030 } else {
3031 /*
3032 * If we've begun active balancing, start to back off. This
3033 * case may not be covered by the all_pinned logic if there
3034 * is only 1 task on the busy runqueue (because we don't call
3035 * move_tasks).
3036 */
3037 if (sd->balance_interval < sd->max_interval)
3038 sd->balance_interval *= 2;
3039 }
3040
3041 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3042 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3043 ld_moved = -1;
3044
3045 goto out;
3046
3047out_balanced:
3048 schedstat_inc(sd, lb_balanced[idle]);
3049
3050 sd->nr_balance_failed = 0;
3051
3052out_one_pinned:
3053 /* tune up the balancing interval */
3054 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3055 (sd->balance_interval < sd->max_interval))
3056 sd->balance_interval *= 2;
3057
3058 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3059 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3060 ld_moved = -1;
3061 else
3062 ld_moved = 0;
3063out:
3064 if (ld_moved)
3065 update_shares(sd);
3066 return ld_moved;
3067}
3068
3069/*
3070 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3071 * tasks if there is an imbalance.
3072 *
3073 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3074 * this_rq is locked.
3075 */
3076static int
3077load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
3078{
3079 struct sched_group *group;
3080 struct rq *busiest = NULL;
3081 unsigned long imbalance;
3082 int ld_moved = 0;
3083 int sd_idle = 0;
3084 int all_pinned = 0;
3085 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3086
3087 cpumask_copy(cpus, cpu_active_mask);
3088
3089 /*
3090 * When power savings policy is enabled for the parent domain, idle
3091 * sibling can pick up load irrespective of busy siblings. In this case,
3092 * let the state of idle sibling percolate up as IDLE, instead of
3093 * portraying it as CPU_NOT_IDLE.
3094 */
3095 if (sd->flags & SD_SHARE_CPUPOWER &&
3096 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3097 sd_idle = 1;
3098
3099 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3100redo:
3101 update_shares_locked(this_rq, sd);
3102 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3103 &sd_idle, cpus, NULL);
3104 if (!group) {
3105 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3106 goto out_balanced;
3107 }
3108
3109 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3110 if (!busiest) {
3111 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3112 goto out_balanced;
3113 }
3114
3115 BUG_ON(busiest == this_rq);
3116
3117 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3118
3119 ld_moved = 0;
3120 if (busiest->nr_running > 1) {
3121 /* Attempt to move tasks */
3122 double_lock_balance(this_rq, busiest);
3123 /* this_rq->clock is already updated */
3124 update_rq_clock(busiest);
3125 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3126 imbalance, sd, CPU_NEWLY_IDLE,
3127 &all_pinned);
3128 double_unlock_balance(this_rq, busiest);
3129
3130 if (unlikely(all_pinned)) {
3131 cpumask_clear_cpu(cpu_of(busiest), cpus);
3132 if (!cpumask_empty(cpus))
3133 goto redo;
3134 }
3135 }
3136
3137 if (!ld_moved) {
3138 int active_balance = 0;
3139
3140 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3141 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3142 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3143 return -1;
3144
3145 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3146 return -1;
3147
3148 if (sd->nr_balance_failed++ < 2)
3149 return -1;
3150
3151 /*
3152 * The only task running in a non-idle cpu can be moved to this
3153 * cpu in an attempt to completely freeup the other CPU
3154 * package. The same method used to move task in load_balance()
3155 * have been extended for load_balance_newidle() to speedup
3156 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3157 *
3158 * The package power saving logic comes from
3159 * find_busiest_group(). If there are no imbalance, then
3160 * f_b_g() will return NULL. However when sched_mc={1,2} then
3161 * f_b_g() will select a group from which a running task may be
3162 * pulled to this cpu in order to make the other package idle.
3163 * If there is no opportunity to make a package idle and if
3164 * there are no imbalance, then f_b_g() will return NULL and no
3165 * action will be taken in load_balance_newidle().
3166 *
3167 * Under normal task pull operation due to imbalance, there
3168 * will be more than one task in the source run queue and
3169 * move_tasks() will succeed. ld_moved will be true and this
3170 * active balance code will not be triggered.
3171 */
3172
3173 /* Lock busiest in correct order while this_rq is held */
3174 double_lock_balance(this_rq, busiest);
3175
3176 /*
3177 * don't kick the migration_thread, if the curr
3178 * task on busiest cpu can't be moved to this_cpu
3179 */
3180 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3181 double_unlock_balance(this_rq, busiest);
3182 all_pinned = 1;
3183 return ld_moved;
3184 }
3185
3186 if (!busiest->active_balance) {
3187 busiest->active_balance = 1;
3188 busiest->push_cpu = this_cpu;
3189 active_balance = 1;
3190 }
3191
3192 double_unlock_balance(this_rq, busiest);
3193 /*
3194 * Should not call ttwu while holding a rq->lock
3195 */
3196 raw_spin_unlock(&this_rq->lock);
3197 if (active_balance)
3198 wake_up_process(busiest->migration_thread);
3199 raw_spin_lock(&this_rq->lock);
3200
3201 } else
3202 sd->nr_balance_failed = 0;
3203
3204 update_shares_locked(this_rq, sd);
3205 return ld_moved;
3206
3207out_balanced:
3208 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3209 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3210 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3211 return -1;
3212 sd->nr_balance_failed = 0;
3213
3214 return 0;
3215}
3216
3217/*
3218 * idle_balance is called by schedule() if this_cpu is about to become
3219 * idle. Attempts to pull tasks from other CPUs.
3220 */
3221static void idle_balance(int this_cpu, struct rq *this_rq)
3222{
3223 struct sched_domain *sd;
3224 int pulled_task = 0;
3225 unsigned long next_balance = jiffies + HZ;
3226
3227 this_rq->idle_stamp = this_rq->clock;
3228
3229 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3230 return;
3231
3232 for_each_domain(this_cpu, sd) {
3233 unsigned long interval;
3234
3235 if (!(sd->flags & SD_LOAD_BALANCE))
3236 continue;
3237
3238 if (sd->flags & SD_BALANCE_NEWIDLE)
3239 /* If we've pulled tasks over stop searching: */
3240 pulled_task = load_balance_newidle(this_cpu, this_rq,
3241 sd);
3242
3243 interval = msecs_to_jiffies(sd->balance_interval);
3244 if (time_after(next_balance, sd->last_balance + interval))
3245 next_balance = sd->last_balance + interval;
3246 if (pulled_task) {
3247 this_rq->idle_stamp = 0;
3248 break;
3249 }
3250 }
3251 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3252 /*
3253 * We are going idle. next_balance may be set based on
3254 * a busy processor. So reset next_balance.
3255 */
3256 this_rq->next_balance = next_balance;
3257 }
3258}
3259
3260/*
3261 * active_load_balance is run by migration threads. It pushes running tasks
3262 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3263 * running on each physical CPU where possible, and avoids physical /
3264 * logical imbalances.
3265 *
3266 * Called with busiest_rq locked.
3267 */
3268static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3269{
3270 int target_cpu = busiest_rq->push_cpu;
3271 struct sched_domain *sd;
3272 struct rq *target_rq;
3273
3274 /* Is there any task to move? */
3275 if (busiest_rq->nr_running <= 1)
3276 return;
3277
3278 target_rq = cpu_rq(target_cpu);
3279
3280 /*
3281 * This condition is "impossible", if it occurs
3282 * we need to fix it. Originally reported by
3283 * Bjorn Helgaas on a 128-cpu setup.
3284 */
3285 BUG_ON(busiest_rq == target_rq);
3286
3287 /* move a task from busiest_rq to target_rq */
3288 double_lock_balance(busiest_rq, target_rq);
3289 update_rq_clock(busiest_rq);
3290 update_rq_clock(target_rq);
3291
3292 /* Search for an sd spanning us and the target CPU. */
3293 for_each_domain(target_cpu, sd) {
3294 if ((sd->flags & SD_LOAD_BALANCE) &&
3295 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3296 break;
3297 }
3298
3299 if (likely(sd)) {
3300 schedstat_inc(sd, alb_count);
3301
3302 if (move_one_task(target_rq, target_cpu, busiest_rq,
3303 sd, CPU_IDLE))
3304 schedstat_inc(sd, alb_pushed);
3305 else
3306 schedstat_inc(sd, alb_failed);
3307 }
3308 double_unlock_balance(busiest_rq, target_rq);
3309}
3310
3311#ifdef CONFIG_NO_HZ
3312static struct {
3313 atomic_t load_balancer;
3314 cpumask_var_t cpu_mask;
3315 cpumask_var_t ilb_grp_nohz_mask;
3316} nohz ____cacheline_aligned = {
3317 .load_balancer = ATOMIC_INIT(-1),
3318};
3319
3320int get_nohz_load_balancer(void)
3321{
3322 return atomic_read(&nohz.load_balancer);
3323}
3324
3325#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3326/**
3327 * lowest_flag_domain - Return lowest sched_domain containing flag.
3328 * @cpu: The cpu whose lowest level of sched domain is to
3329 * be returned.
3330 * @flag: The flag to check for the lowest sched_domain
3331 * for the given cpu.
3332 *
3333 * Returns the lowest sched_domain of a cpu which contains the given flag.
3334 */
3335static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3336{
3337 struct sched_domain *sd;
3338
3339 for_each_domain(cpu, sd)
3340 if (sd && (sd->flags & flag))
3341 break;
3342
3343 return sd;
3344}
3345
3346/**
3347 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3348 * @cpu: The cpu whose domains we're iterating over.
3349 * @sd: variable holding the value of the power_savings_sd
3350 * for cpu.
3351 * @flag: The flag to filter the sched_domains to be iterated.
3352 *
3353 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3354 * set, starting from the lowest sched_domain to the highest.
3355 */
3356#define for_each_flag_domain(cpu, sd, flag) \
3357 for (sd = lowest_flag_domain(cpu, flag); \
3358 (sd && (sd->flags & flag)); sd = sd->parent)
3359
3360/**
3361 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3362 * @ilb_group: group to be checked for semi-idleness
3363 *
3364 * Returns: 1 if the group is semi-idle. 0 otherwise.
3365 *
3366 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3367 * and atleast one non-idle CPU. This helper function checks if the given
3368 * sched_group is semi-idle or not.
3369 */
3370static inline int is_semi_idle_group(struct sched_group *ilb_group)
3371{
3372 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
3373 sched_group_cpus(ilb_group));
3374
3375 /*
3376 * A sched_group is semi-idle when it has atleast one busy cpu
3377 * and atleast one idle cpu.
3378 */
3379 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
3380 return 0;
3381
3382 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
3383 return 0;
3384
3385 return 1;
3386}
3387/**
3388 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3389 * @cpu: The cpu which is nominating a new idle_load_balancer.
3390 *
3391 * Returns: Returns the id of the idle load balancer if it exists,
3392 * Else, returns >= nr_cpu_ids.
3393 *
3394 * This algorithm picks the idle load balancer such that it belongs to a
3395 * semi-idle powersavings sched_domain. The idea is to try and avoid
3396 * completely idle packages/cores just for the purpose of idle load balancing
3397 * when there are other idle cpu's which are better suited for that job.
3398 */
3399static int find_new_ilb(int cpu)
3400{
3401 struct sched_domain *sd;
3402 struct sched_group *ilb_group;
3403
3404 /*
3405 * Have idle load balancer selection from semi-idle packages only
3406 * when power-aware load balancing is enabled
3407 */
3408 if (!(sched_smt_power_savings || sched_mc_power_savings))
3409 goto out_done;
3410
3411 /*
3412 * Optimize for the case when we have no idle CPUs or only one
3413 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3414 */
3415 if (cpumask_weight(nohz.cpu_mask) < 2)
3416 goto out_done;
3417
3418 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3419 ilb_group = sd->groups;
3420
3421 do {
3422 if (is_semi_idle_group(ilb_group))
3423 return cpumask_first(nohz.ilb_grp_nohz_mask);
3424
3425 ilb_group = ilb_group->next;
3426
3427 } while (ilb_group != sd->groups);
3428 }
3429
3430out_done:
3431 return cpumask_first(nohz.cpu_mask);
3432}
3433#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3434static inline int find_new_ilb(int call_cpu)
3435{
3436 return cpumask_first(nohz.cpu_mask);
3437}
3438#endif
3439
3440/*
3441 * This routine will try to nominate the ilb (idle load balancing)
3442 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3443 * load balancing on behalf of all those cpus. If all the cpus in the system
3444 * go into this tickless mode, then there will be no ilb owner (as there is
3445 * no need for one) and all the cpus will sleep till the next wakeup event
3446 * arrives...
3447 *
3448 * For the ilb owner, tick is not stopped. And this tick will be used
3449 * for idle load balancing. ilb owner will still be part of
3450 * nohz.cpu_mask..
3451 *
3452 * While stopping the tick, this cpu will become the ilb owner if there
3453 * is no other owner. And will be the owner till that cpu becomes busy
3454 * or if all cpus in the system stop their ticks at which point
3455 * there is no need for ilb owner.
3456 *
3457 * When the ilb owner becomes busy, it nominates another owner, during the
3458 * next busy scheduler_tick()
3459 */
3460int select_nohz_load_balancer(int stop_tick)
3461{
3462 int cpu = smp_processor_id();
3463
3464 if (stop_tick) {
3465 cpu_rq(cpu)->in_nohz_recently = 1;
3466
3467 if (!cpu_active(cpu)) {
3468 if (atomic_read(&nohz.load_balancer) != cpu)
3469 return 0;
3470
3471 /*
3472 * If we are going offline and still the leader,
3473 * give up!
3474 */
3475 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3476 BUG();
3477
3478 return 0;
3479 }
3480
3481 cpumask_set_cpu(cpu, nohz.cpu_mask);
3482
3483 /* time for ilb owner also to sleep */
3484 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
3485 if (atomic_read(&nohz.load_balancer) == cpu)
3486 atomic_set(&nohz.load_balancer, -1);
3487 return 0;
3488 }
3489
3490 if (atomic_read(&nohz.load_balancer) == -1) {
3491 /* make me the ilb owner */
3492 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3493 return 1;
3494 } else if (atomic_read(&nohz.load_balancer) == cpu) {
3495 int new_ilb;
3496
3497 if (!(sched_smt_power_savings ||
3498 sched_mc_power_savings))
3499 return 1;
3500 /*
3501 * Check to see if there is a more power-efficient
3502 * ilb.
3503 */
3504 new_ilb = find_new_ilb(cpu);
3505 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3506 atomic_set(&nohz.load_balancer, -1);
3507 resched_cpu(new_ilb);
3508 return 0;
3509 }
3510 return 1;
3511 }
3512 } else {
3513 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3514 return 0;
3515
3516 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3517
3518 if (atomic_read(&nohz.load_balancer) == cpu)
3519 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3520 BUG();
3521 }
3522 return 0;
3523}
3524#endif
3525
3526static DEFINE_SPINLOCK(balancing);
3527
3528/*
3529 * It checks each scheduling domain to see if it is due to be balanced,
3530 * and initiates a balancing operation if so.
3531 *
3532 * Balancing parameters are set up in arch_init_sched_domains.
3533 */
3534static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3535{
3536 int balance = 1;
3537 struct rq *rq = cpu_rq(cpu);
3538 unsigned long interval;
3539 struct sched_domain *sd;
3540 /* Earliest time when we have to do rebalance again */
3541 unsigned long next_balance = jiffies + 60*HZ;
3542 int update_next_balance = 0;
3543 int need_serialize;
3544
3545 for_each_domain(cpu, sd) {
3546 if (!(sd->flags & SD_LOAD_BALANCE))
3547 continue;
3548
3549 interval = sd->balance_interval;
3550 if (idle != CPU_IDLE)
3551 interval *= sd->busy_factor;
3552
3553 /* scale ms to jiffies */
3554 interval = msecs_to_jiffies(interval);
3555 if (unlikely(!interval))
3556 interval = 1;
3557 if (interval > HZ*NR_CPUS/10)
3558 interval = HZ*NR_CPUS/10;
3559
3560 need_serialize = sd->flags & SD_SERIALIZE;
3561
3562 if (need_serialize) {
3563 if (!spin_trylock(&balancing))
3564 goto out;
3565 }
3566
3567 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3568 if (load_balance(cpu, rq, sd, idle, &balance)) {
3569 /*
3570 * We've pulled tasks over so either we're no
3571 * longer idle, or one of our SMT siblings is
3572 * not idle.
3573 */
3574 idle = CPU_NOT_IDLE;
3575 }
3576 sd->last_balance = jiffies;
3577 }
3578 if (need_serialize)
3579 spin_unlock(&balancing);
3580out:
3581 if (time_after(next_balance, sd->last_balance + interval)) {
3582 next_balance = sd->last_balance + interval;
3583 update_next_balance = 1;
3584 }
3585
3586 /*
3587 * Stop the load balance at this level. There is another
3588 * CPU in our sched group which is doing load balancing more
3589 * actively.
3590 */
3591 if (!balance)
3592 break;
3593 }
3594
3595 /*
3596 * next_balance will be updated only when there is a need.
3597 * When the cpu is attached to null domain for ex, it will not be
3598 * updated.
3599 */
3600 if (likely(update_next_balance))
3601 rq->next_balance = next_balance;
3602}
3603
3604/*
3605 * run_rebalance_domains is triggered when needed from the scheduler tick.
3606 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3607 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3608 */
3609static void run_rebalance_domains(struct softirq_action *h)
3610{
3611 int this_cpu = smp_processor_id();
3612 struct rq *this_rq = cpu_rq(this_cpu);
3613 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3614 CPU_IDLE : CPU_NOT_IDLE;
3615
3616 rebalance_domains(this_cpu, idle);
3617
3618#ifdef CONFIG_NO_HZ
3619 /*
3620 * If this cpu is the owner for idle load balancing, then do the
3621 * balancing on behalf of the other idle cpus whose ticks are
3622 * stopped.
3623 */
3624 if (this_rq->idle_at_tick &&
3625 atomic_read(&nohz.load_balancer) == this_cpu) {
3626 struct rq *rq;
3627 int balance_cpu;
3628
3629 for_each_cpu(balance_cpu, nohz.cpu_mask) {
3630 if (balance_cpu == this_cpu)
3631 continue;
3632
3633 /*
3634 * If this cpu gets work to do, stop the load balancing
3635 * work being done for other cpus. Next load
3636 * balancing owner will pick it up.
3637 */
3638 if (need_resched())
3639 break;
3640
3641 rebalance_domains(balance_cpu, CPU_IDLE);
3642
3643 rq = cpu_rq(balance_cpu);
3644 if (time_after(this_rq->next_balance, rq->next_balance))
3645 this_rq->next_balance = rq->next_balance;
3646 }
3647 }
3648#endif
3649}
3650
3651static inline int on_null_domain(int cpu)
3652{
3653 return !rcu_dereference(cpu_rq(cpu)->sd);
3654}
3655
3656/*
3657 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3658 *
3659 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3660 * idle load balancing owner or decide to stop the periodic load balancing,
3661 * if the whole system is idle.
3662 */
3663static inline void trigger_load_balance(struct rq *rq, int cpu)
3664{
3665#ifdef CONFIG_NO_HZ
3666 /*
3667 * If we were in the nohz mode recently and busy at the current
3668 * scheduler tick, then check if we need to nominate new idle
3669 * load balancer.
3670 */
3671 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3672 rq->in_nohz_recently = 0;
3673
3674 if (atomic_read(&nohz.load_balancer) == cpu) {
3675 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3676 atomic_set(&nohz.load_balancer, -1);
3677 }
3678
3679 if (atomic_read(&nohz.load_balancer) == -1) {
3680 int ilb = find_new_ilb(cpu);
3681
3682 if (ilb < nr_cpu_ids)
3683 resched_cpu(ilb);
3684 }
3685 }
3686
3687 /*
3688 * If this cpu is idle and doing idle load balancing for all the
3689 * cpus with ticks stopped, is it time for that to stop?
3690 */
3691 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3692 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3693 resched_cpu(cpu);
3694 return;
3695 }
3696
3697 /*
3698 * If this cpu is idle and the idle load balancing is done by
3699 * someone else, then no need raise the SCHED_SOFTIRQ
3700 */
3701 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3702 cpumask_test_cpu(cpu, nohz.cpu_mask))
3703 return;
3704#endif
3705 /* Don't need to rebalance while attached to NULL domain */
3706 if (time_after_eq(jiffies, rq->next_balance) &&
3707 likely(!on_null_domain(cpu)))
3708 raise_softirq(SCHED_SOFTIRQ);
3709}
3710
0bcdcf28
CE
3711static void rq_online_fair(struct rq *rq)
3712{
3713 update_sysctl();
3714}
3715
3716static void rq_offline_fair(struct rq *rq)
3717{
3718 update_sysctl();
3719}
3720
1e3c88bd
PZ
3721#else /* CONFIG_SMP */
3722
3723/*
3724 * on UP we do not need to balance between CPUs:
3725 */
3726static inline void idle_balance(int cpu, struct rq *rq)
3727{
3728}
3729
55e12e5e 3730#endif /* CONFIG_SMP */
e1d1484f 3731
bf0f6f24
IM
3732/*
3733 * scheduler tick hitting a task of our scheduling class:
3734 */
8f4d37ec 3735static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
3736{
3737 struct cfs_rq *cfs_rq;
3738 struct sched_entity *se = &curr->se;
3739
3740 for_each_sched_entity(se) {
3741 cfs_rq = cfs_rq_of(se);
8f4d37ec 3742 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
3743 }
3744}
3745
3746/*
cd29fe6f
PZ
3747 * called on fork with the child task as argument from the parent's context
3748 * - child not yet on the tasklist
3749 * - preemption disabled
bf0f6f24 3750 */
cd29fe6f 3751static void task_fork_fair(struct task_struct *p)
bf0f6f24 3752{
cd29fe6f 3753 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 3754 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 3755 int this_cpu = smp_processor_id();
cd29fe6f
PZ
3756 struct rq *rq = this_rq();
3757 unsigned long flags;
3758
05fa785c 3759 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 3760
cd29fe6f
PZ
3761 if (unlikely(task_cpu(p) != this_cpu))
3762 __set_task_cpu(p, this_cpu);
bf0f6f24 3763
7109c442 3764 update_curr(cfs_rq);
cd29fe6f 3765
b5d9d734
MG
3766 if (curr)
3767 se->vruntime = curr->vruntime;
aeb73b04 3768 place_entity(cfs_rq, se, 1);
4d78e7b6 3769
cd29fe6f 3770 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 3771 /*
edcb60a3
IM
3772 * Upon rescheduling, sched_class::put_prev_task() will place
3773 * 'current' within the tree based on its new key value.
3774 */
4d78e7b6 3775 swap(curr->vruntime, se->vruntime);
aec0a514 3776 resched_task(rq->curr);
4d78e7b6 3777 }
bf0f6f24 3778
88ec22d3
PZ
3779 se->vruntime -= cfs_rq->min_vruntime;
3780
05fa785c 3781 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
3782}
3783
cb469845
SR
3784/*
3785 * Priority of the task has changed. Check to see if we preempt
3786 * the current task.
3787 */
3788static void prio_changed_fair(struct rq *rq, struct task_struct *p,
3789 int oldprio, int running)
3790{
3791 /*
3792 * Reschedule if we are currently running on this runqueue and
3793 * our priority decreased, or if we are not currently running on
3794 * this runqueue and our priority is higher than the current's
3795 */
3796 if (running) {
3797 if (p->prio > oldprio)
3798 resched_task(rq->curr);
3799 } else
15afe09b 3800 check_preempt_curr(rq, p, 0);
cb469845
SR
3801}
3802
3803/*
3804 * We switched to the sched_fair class.
3805 */
3806static void switched_to_fair(struct rq *rq, struct task_struct *p,
3807 int running)
3808{
3809 /*
3810 * We were most likely switched from sched_rt, so
3811 * kick off the schedule if running, otherwise just see
3812 * if we can still preempt the current task.
3813 */
3814 if (running)
3815 resched_task(rq->curr);
3816 else
15afe09b 3817 check_preempt_curr(rq, p, 0);
cb469845
SR
3818}
3819
83b699ed
SV
3820/* Account for a task changing its policy or group.
3821 *
3822 * This routine is mostly called to set cfs_rq->curr field when a task
3823 * migrates between groups/classes.
3824 */
3825static void set_curr_task_fair(struct rq *rq)
3826{
3827 struct sched_entity *se = &rq->curr->se;
3828
3829 for_each_sched_entity(se)
3830 set_next_entity(cfs_rq_of(se), se);
3831}
3832
810b3817 3833#ifdef CONFIG_FAIR_GROUP_SCHED
88ec22d3 3834static void moved_group_fair(struct task_struct *p, int on_rq)
810b3817
PZ
3835{
3836 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3837
3838 update_curr(cfs_rq);
88ec22d3
PZ
3839 if (!on_rq)
3840 place_entity(cfs_rq, &p->se, 1);
810b3817
PZ
3841}
3842#endif
3843
6d686f45 3844static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
3845{
3846 struct sched_entity *se = &task->se;
0d721cea
PW
3847 unsigned int rr_interval = 0;
3848
3849 /*
3850 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
3851 * idle runqueue:
3852 */
0d721cea
PW
3853 if (rq->cfs.load.weight)
3854 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
3855
3856 return rr_interval;
3857}
3858
bf0f6f24
IM
3859/*
3860 * All the scheduling class methods:
3861 */
5522d5d5
IM
3862static const struct sched_class fair_sched_class = {
3863 .next = &idle_sched_class,
bf0f6f24
IM
3864 .enqueue_task = enqueue_task_fair,
3865 .dequeue_task = dequeue_task_fair,
3866 .yield_task = yield_task_fair,
3867
2e09bf55 3868 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
3869
3870 .pick_next_task = pick_next_task_fair,
3871 .put_prev_task = put_prev_task_fair,
3872
681f3e68 3873#ifdef CONFIG_SMP
4ce72a2c
LZ
3874 .select_task_rq = select_task_rq_fair,
3875
bf0f6f24 3876 .load_balance = load_balance_fair,
e1d1484f 3877 .move_one_task = move_one_task_fair,
0bcdcf28
CE
3878 .rq_online = rq_online_fair,
3879 .rq_offline = rq_offline_fair,
88ec22d3
PZ
3880
3881 .task_waking = task_waking_fair,
681f3e68 3882#endif
bf0f6f24 3883
83b699ed 3884 .set_curr_task = set_curr_task_fair,
bf0f6f24 3885 .task_tick = task_tick_fair,
cd29fe6f 3886 .task_fork = task_fork_fair,
cb469845
SR
3887
3888 .prio_changed = prio_changed_fair,
3889 .switched_to = switched_to_fair,
810b3817 3890
0d721cea
PW
3891 .get_rr_interval = get_rr_interval_fair,
3892
810b3817
PZ
3893#ifdef CONFIG_FAIR_GROUP_SCHED
3894 .moved_group = moved_group_fair,
3895#endif
bf0f6f24
IM
3896};
3897
3898#ifdef CONFIG_SCHED_DEBUG
5cef9eca 3899static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 3900{
bf0f6f24
IM
3901 struct cfs_rq *cfs_rq;
3902
5973e5b9 3903 rcu_read_lock();
c3b64f1e 3904 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 3905 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 3906 rcu_read_unlock();
bf0f6f24
IM
3907}
3908#endif