sched: symmetric sync vs avg_overlap
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c
AV
23#include <linux/latencytop.h>
24
bf0f6f24 25/*
21805085 26 * Targeted preemption latency for CPU-bound tasks:
722aab0c 27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 28 *
21805085 29 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
bf0f6f24 33 *
d274a4ce
IM
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 36 */
19978ca6 37unsigned int sysctl_sched_latency = 20000000ULL;
2bd8e6d4
IM
38
39/*
b2be5e96 40 * Minimal preemption granularity for CPU-bound tasks:
722aab0c 41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 42 */
722aab0c 43unsigned int sysctl_sched_min_granularity = 4000000ULL;
21805085
PZ
44
45/*
b2be5e96
PZ
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
722aab0c 48static unsigned int sched_nr_latency = 5;
b2be5e96
PZ
49
50/*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
21805085 53 */
b2be5e96 54const_debug unsigned int sysctl_sched_child_runs_first = 1;
bf0f6f24 55
1799e35d
IM
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
bf0f6f24
IM
64/*
65 * SCHED_OTHER wake-up granularity.
103638d9 66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
103638d9 72unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
bf0f6f24 73
da84d961
IM
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
a4c2f00f
PZ
76static const struct sched_class fair_sched_class;
77
bf0f6f24
IM
78/**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
b758149c
PZ
82static inline struct task_struct *task_of(struct sched_entity *se)
83{
84 return container_of(se, struct task_struct, se);
85}
86
62160e3f 87#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 88
62160e3f 89/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
90static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91{
62160e3f 92 return cfs_rq->rq;
bf0f6f24
IM
93}
94
62160e3f
IM
95/* An entity is a task if it doesn't "own" a runqueue */
96#define entity_is_task(se) (!se->my_q)
bf0f6f24 97
b758149c
PZ
98/* Walk up scheduling entities hierarchy */
99#define for_each_sched_entity(se) \
100 for (; se; se = se->parent)
101
102static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
103{
104 return p->se.cfs_rq;
105}
106
107/* runqueue on which this entity is (to be) queued */
108static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
109{
110 return se->cfs_rq;
111}
112
113/* runqueue "owned" by this group */
114static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
115{
116 return grp->my_q;
117}
118
119/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
120 * another cpu ('this_cpu')
121 */
122static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
123{
124 return cfs_rq->tg->cfs_rq[this_cpu];
125}
126
127/* Iterate thr' all leaf cfs_rq's on a runqueue */
128#define for_each_leaf_cfs_rq(rq, cfs_rq) \
129 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
130
131/* Do the two (enqueued) entities belong to the same group ? */
132static inline int
133is_same_group(struct sched_entity *se, struct sched_entity *pse)
134{
135 if (se->cfs_rq == pse->cfs_rq)
136 return 1;
137
138 return 0;
139}
140
141static inline struct sched_entity *parent_entity(struct sched_entity *se)
142{
143 return se->parent;
144}
145
464b7527
PZ
146/* return depth at which a sched entity is present in the hierarchy */
147static inline int depth_se(struct sched_entity *se)
148{
149 int depth = 0;
150
151 for_each_sched_entity(se)
152 depth++;
153
154 return depth;
155}
156
157static void
158find_matching_se(struct sched_entity **se, struct sched_entity **pse)
159{
160 int se_depth, pse_depth;
161
162 /*
163 * preemption test can be made between sibling entities who are in the
164 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
165 * both tasks until we find their ancestors who are siblings of common
166 * parent.
167 */
168
169 /* First walk up until both entities are at same depth */
170 se_depth = depth_se(*se);
171 pse_depth = depth_se(*pse);
172
173 while (se_depth > pse_depth) {
174 se_depth--;
175 *se = parent_entity(*se);
176 }
177
178 while (pse_depth > se_depth) {
179 pse_depth--;
180 *pse = parent_entity(*pse);
181 }
182
183 while (!is_same_group(*se, *pse)) {
184 *se = parent_entity(*se);
185 *pse = parent_entity(*pse);
186 }
187}
188
62160e3f 189#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 190
62160e3f
IM
191static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
192{
193 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
194}
195
196#define entity_is_task(se) 1
197
b758149c
PZ
198#define for_each_sched_entity(se) \
199 for (; se; se = NULL)
bf0f6f24 200
b758149c 201static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 202{
b758149c 203 return &task_rq(p)->cfs;
bf0f6f24
IM
204}
205
b758149c
PZ
206static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
207{
208 struct task_struct *p = task_of(se);
209 struct rq *rq = task_rq(p);
210
211 return &rq->cfs;
212}
213
214/* runqueue "owned" by this group */
215static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
216{
217 return NULL;
218}
219
220static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
221{
222 return &cpu_rq(this_cpu)->cfs;
223}
224
225#define for_each_leaf_cfs_rq(rq, cfs_rq) \
226 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
227
228static inline int
229is_same_group(struct sched_entity *se, struct sched_entity *pse)
230{
231 return 1;
232}
233
234static inline struct sched_entity *parent_entity(struct sched_entity *se)
235{
236 return NULL;
237}
238
464b7527
PZ
239static inline void
240find_matching_se(struct sched_entity **se, struct sched_entity **pse)
241{
242}
243
b758149c
PZ
244#endif /* CONFIG_FAIR_GROUP_SCHED */
245
bf0f6f24
IM
246
247/**************************************************************
248 * Scheduling class tree data structure manipulation methods:
249 */
250
0702e3eb 251static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 252{
368059a9
PZ
253 s64 delta = (s64)(vruntime - min_vruntime);
254 if (delta > 0)
02e0431a
PZ
255 min_vruntime = vruntime;
256
257 return min_vruntime;
258}
259
0702e3eb 260static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
261{
262 s64 delta = (s64)(vruntime - min_vruntime);
263 if (delta < 0)
264 min_vruntime = vruntime;
265
266 return min_vruntime;
267}
268
0702e3eb 269static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 270{
30cfdcfc 271 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
272}
273
1af5f730
PZ
274static void update_min_vruntime(struct cfs_rq *cfs_rq)
275{
276 u64 vruntime = cfs_rq->min_vruntime;
277
278 if (cfs_rq->curr)
279 vruntime = cfs_rq->curr->vruntime;
280
281 if (cfs_rq->rb_leftmost) {
282 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
283 struct sched_entity,
284 run_node);
285
e17036da 286 if (!cfs_rq->curr)
1af5f730
PZ
287 vruntime = se->vruntime;
288 else
289 vruntime = min_vruntime(vruntime, se->vruntime);
290 }
291
292 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
293}
294
bf0f6f24
IM
295/*
296 * Enqueue an entity into the rb-tree:
297 */
0702e3eb 298static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
299{
300 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
301 struct rb_node *parent = NULL;
302 struct sched_entity *entry;
9014623c 303 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
304 int leftmost = 1;
305
306 /*
307 * Find the right place in the rbtree:
308 */
309 while (*link) {
310 parent = *link;
311 entry = rb_entry(parent, struct sched_entity, run_node);
312 /*
313 * We dont care about collisions. Nodes with
314 * the same key stay together.
315 */
9014623c 316 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
317 link = &parent->rb_left;
318 } else {
319 link = &parent->rb_right;
320 leftmost = 0;
321 }
322 }
323
324 /*
325 * Maintain a cache of leftmost tree entries (it is frequently
326 * used):
327 */
1af5f730 328 if (leftmost)
57cb499d 329 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
330
331 rb_link_node(&se->run_node, parent, link);
332 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
333}
334
0702e3eb 335static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 336{
3fe69747
PZ
337 if (cfs_rq->rb_leftmost == &se->run_node) {
338 struct rb_node *next_node;
3fe69747
PZ
339
340 next_node = rb_next(&se->run_node);
341 cfs_rq->rb_leftmost = next_node;
3fe69747 342 }
e9acbff6 343
bf0f6f24 344 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
345}
346
bf0f6f24
IM
347static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
348{
f4b6755f
PZ
349 struct rb_node *left = cfs_rq->rb_leftmost;
350
351 if (!left)
352 return NULL;
353
354 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
355}
356
f4b6755f 357static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 358{
7eee3e67 359 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 360
70eee74b
BS
361 if (!last)
362 return NULL;
7eee3e67
IM
363
364 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
365}
366
bf0f6f24
IM
367/**************************************************************
368 * Scheduling class statistics methods:
369 */
370
b2be5e96
PZ
371#ifdef CONFIG_SCHED_DEBUG
372int sched_nr_latency_handler(struct ctl_table *table, int write,
373 struct file *filp, void __user *buffer, size_t *lenp,
374 loff_t *ppos)
375{
376 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
377
378 if (ret || !write)
379 return ret;
380
381 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
382 sysctl_sched_min_granularity);
383
384 return 0;
385}
386#endif
647e7cac 387
a7be37ac 388/*
f9c0b095 389 * delta /= w
a7be37ac
PZ
390 */
391static inline unsigned long
392calc_delta_fair(unsigned long delta, struct sched_entity *se)
393{
f9c0b095
PZ
394 if (unlikely(se->load.weight != NICE_0_LOAD))
395 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
396
397 return delta;
398}
399
647e7cac
IM
400/*
401 * The idea is to set a period in which each task runs once.
402 *
403 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
404 * this period because otherwise the slices get too small.
405 *
406 * p = (nr <= nl) ? l : l*nr/nl
407 */
4d78e7b6
PZ
408static u64 __sched_period(unsigned long nr_running)
409{
410 u64 period = sysctl_sched_latency;
b2be5e96 411 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
412
413 if (unlikely(nr_running > nr_latency)) {
4bf0b771 414 period = sysctl_sched_min_granularity;
4d78e7b6 415 period *= nr_running;
4d78e7b6
PZ
416 }
417
418 return period;
419}
420
647e7cac
IM
421/*
422 * We calculate the wall-time slice from the period by taking a part
423 * proportional to the weight.
424 *
f9c0b095 425 * s = p*P[w/rw]
647e7cac 426 */
6d0f0ebd 427static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 428{
0a582440 429 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 430
0a582440 431 for_each_sched_entity(se) {
6272d68c
LM
432 struct load_weight *load;
433
434 cfs_rq = cfs_rq_of(se);
435 load = &cfs_rq->load;
f9c0b095 436
0a582440
MG
437 if (unlikely(!se->on_rq)) {
438 struct load_weight lw = cfs_rq->load;
439
440 update_load_add(&lw, se->load.weight);
441 load = &lw;
442 }
443 slice = calc_delta_mine(slice, se->load.weight, load);
444 }
445 return slice;
bf0f6f24
IM
446}
447
647e7cac 448/*
ac884dec 449 * We calculate the vruntime slice of a to be inserted task
647e7cac 450 *
f9c0b095 451 * vs = s/w
647e7cac 452 */
f9c0b095 453static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 454{
f9c0b095 455 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
456}
457
bf0f6f24
IM
458/*
459 * Update the current task's runtime statistics. Skip current tasks that
460 * are not in our scheduling class.
461 */
462static inline void
8ebc91d9
IM
463__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
464 unsigned long delta_exec)
bf0f6f24 465{
bbdba7c0 466 unsigned long delta_exec_weighted;
bf0f6f24 467
8179ca23 468 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
469
470 curr->sum_exec_runtime += delta_exec;
7a62eabc 471 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 472 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
e9acbff6 473 curr->vruntime += delta_exec_weighted;
1af5f730 474 update_min_vruntime(cfs_rq);
bf0f6f24
IM
475}
476
b7cc0896 477static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 478{
429d43bc 479 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 480 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
481 unsigned long delta_exec;
482
483 if (unlikely(!curr))
484 return;
485
486 /*
487 * Get the amount of time the current task was running
488 * since the last time we changed load (this cannot
489 * overflow on 32 bits):
490 */
8ebc91d9 491 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
492 if (!delta_exec)
493 return;
bf0f6f24 494
8ebc91d9
IM
495 __update_curr(cfs_rq, curr, delta_exec);
496 curr->exec_start = now;
d842de87
SV
497
498 if (entity_is_task(curr)) {
499 struct task_struct *curtask = task_of(curr);
500
501 cpuacct_charge(curtask, delta_exec);
f06febc9 502 account_group_exec_runtime(curtask, delta_exec);
d842de87 503 }
bf0f6f24
IM
504}
505
506static inline void
5870db5b 507update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 508{
d281918d 509 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
510}
511
bf0f6f24
IM
512/*
513 * Task is being enqueued - update stats:
514 */
d2417e5a 515static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 516{
bf0f6f24
IM
517 /*
518 * Are we enqueueing a waiting task? (for current tasks
519 * a dequeue/enqueue event is a NOP)
520 */
429d43bc 521 if (se != cfs_rq->curr)
5870db5b 522 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
523}
524
bf0f6f24 525static void
9ef0a961 526update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
bbdba7c0
IM
528 schedstat_set(se->wait_max, max(se->wait_max,
529 rq_of(cfs_rq)->clock - se->wait_start));
6d082592
AV
530 schedstat_set(se->wait_count, se->wait_count + 1);
531 schedstat_set(se->wait_sum, se->wait_sum +
532 rq_of(cfs_rq)->clock - se->wait_start);
6cfb0d5d 533 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
534}
535
536static inline void
19b6a2e3 537update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 538{
bf0f6f24
IM
539 /*
540 * Mark the end of the wait period if dequeueing a
541 * waiting task:
542 */
429d43bc 543 if (se != cfs_rq->curr)
9ef0a961 544 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
545}
546
547/*
548 * We are picking a new current task - update its stats:
549 */
550static inline void
79303e9e 551update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
552{
553 /*
554 * We are starting a new run period:
555 */
d281918d 556 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
557}
558
bf0f6f24
IM
559/**************************************************
560 * Scheduling class queueing methods:
561 */
562
c09595f6
PZ
563#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
564static void
565add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
566{
567 cfs_rq->task_weight += weight;
568}
569#else
570static inline void
571add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
572{
573}
574#endif
575
30cfdcfc
DA
576static void
577account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
578{
579 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
580 if (!parent_entity(se))
581 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 582 if (entity_is_task(se)) {
c09595f6 583 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
584 list_add(&se->group_node, &cfs_rq->tasks);
585 }
30cfdcfc
DA
586 cfs_rq->nr_running++;
587 se->on_rq = 1;
588}
589
590static void
591account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
592{
593 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
594 if (!parent_entity(se))
595 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 596 if (entity_is_task(se)) {
c09595f6 597 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
598 list_del_init(&se->group_node);
599 }
30cfdcfc
DA
600 cfs_rq->nr_running--;
601 se->on_rq = 0;
602}
603
2396af69 604static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 605{
bf0f6f24
IM
606#ifdef CONFIG_SCHEDSTATS
607 if (se->sleep_start) {
d281918d 608 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
9745512c 609 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
610
611 if ((s64)delta < 0)
612 delta = 0;
613
614 if (unlikely(delta > se->sleep_max))
615 se->sleep_max = delta;
616
617 se->sleep_start = 0;
618 se->sum_sleep_runtime += delta;
9745512c
AV
619
620 account_scheduler_latency(tsk, delta >> 10, 1);
bf0f6f24
IM
621 }
622 if (se->block_start) {
d281918d 623 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
9745512c 624 struct task_struct *tsk = task_of(se);
bf0f6f24
IM
625
626 if ((s64)delta < 0)
627 delta = 0;
628
629 if (unlikely(delta > se->block_max))
630 se->block_max = delta;
631
632 se->block_start = 0;
633 se->sum_sleep_runtime += delta;
30084fbd
IM
634
635 /*
636 * Blocking time is in units of nanosecs, so shift by 20 to
637 * get a milliseconds-range estimation of the amount of
638 * time that the task spent sleeping:
639 */
640 if (unlikely(prof_on == SLEEP_PROFILING)) {
e22f5bbf 641
30084fbd
IM
642 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
643 delta >> 20);
644 }
9745512c 645 account_scheduler_latency(tsk, delta >> 10, 0);
bf0f6f24
IM
646 }
647#endif
648}
649
ddc97297
PZ
650static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
651{
652#ifdef CONFIG_SCHED_DEBUG
653 s64 d = se->vruntime - cfs_rq->min_vruntime;
654
655 if (d < 0)
656 d = -d;
657
658 if (d > 3*sysctl_sched_latency)
659 schedstat_inc(cfs_rq, nr_spread_over);
660#endif
661}
662
aeb73b04
PZ
663static void
664place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
665{
1af5f730 666 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 667
2cb8600e
PZ
668 /*
669 * The 'current' period is already promised to the current tasks,
670 * however the extra weight of the new task will slow them down a
671 * little, place the new task so that it fits in the slot that
672 * stays open at the end.
673 */
94dfb5e7 674 if (initial && sched_feat(START_DEBIT))
f9c0b095 675 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 676
8465e792 677 if (!initial) {
2cb8600e 678 /* sleeps upto a single latency don't count. */
a7be37ac
PZ
679 if (sched_feat(NEW_FAIR_SLEEPERS)) {
680 unsigned long thresh = sysctl_sched_latency;
681
682 /*
6bc912b7
PZ
683 * Convert the sleeper threshold into virtual time.
684 * SCHED_IDLE is a special sub-class. We care about
685 * fairness only relative to other SCHED_IDLE tasks,
686 * all of which have the same weight.
a7be37ac 687 */
6bc912b7
PZ
688 if (sched_feat(NORMALIZED_SLEEPER) &&
689 task_of(se)->policy != SCHED_IDLE)
a7be37ac
PZ
690 thresh = calc_delta_fair(thresh, se);
691
692 vruntime -= thresh;
693 }
94359f05 694
2cb8600e
PZ
695 /* ensure we never gain time by being placed backwards. */
696 vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
697 }
698
67e9fb2a 699 se->vruntime = vruntime;
aeb73b04
PZ
700}
701
bf0f6f24 702static void
83b699ed 703enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
704{
705 /*
a2a2d680 706 * Update run-time statistics of the 'current'.
bf0f6f24 707 */
b7cc0896 708 update_curr(cfs_rq);
a992241d 709 account_entity_enqueue(cfs_rq, se);
bf0f6f24 710
e9acbff6 711 if (wakeup) {
aeb73b04 712 place_entity(cfs_rq, se, 0);
2396af69 713 enqueue_sleeper(cfs_rq, se);
e9acbff6 714 }
bf0f6f24 715
d2417e5a 716 update_stats_enqueue(cfs_rq, se);
ddc97297 717 check_spread(cfs_rq, se);
83b699ed
SV
718 if (se != cfs_rq->curr)
719 __enqueue_entity(cfs_rq, se);
bf0f6f24
IM
720}
721
2002c695
PZ
722static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
723{
724 if (cfs_rq->last == se)
725 cfs_rq->last = NULL;
726
727 if (cfs_rq->next == se)
728 cfs_rq->next = NULL;
729}
730
bf0f6f24 731static void
525c2716 732dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 733{
a2a2d680
DA
734 /*
735 * Update run-time statistics of the 'current'.
736 */
737 update_curr(cfs_rq);
738
19b6a2e3 739 update_stats_dequeue(cfs_rq, se);
db36cc7d 740 if (sleep) {
67e9fb2a 741#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
742 if (entity_is_task(se)) {
743 struct task_struct *tsk = task_of(se);
744
745 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 746 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 747 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 748 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 749 }
db36cc7d 750#endif
67e9fb2a
PZ
751 }
752
2002c695 753 clear_buddies(cfs_rq, se);
4793241b 754
83b699ed 755 if (se != cfs_rq->curr)
30cfdcfc
DA
756 __dequeue_entity(cfs_rq, se);
757 account_entity_dequeue(cfs_rq, se);
1af5f730 758 update_min_vruntime(cfs_rq);
bf0f6f24
IM
759}
760
761/*
762 * Preempt the current task with a newly woken task if needed:
763 */
7c92e54f 764static void
2e09bf55 765check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 766{
11697830
PZ
767 unsigned long ideal_runtime, delta_exec;
768
6d0f0ebd 769 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 770 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3e3e13f3 771 if (delta_exec > ideal_runtime)
bf0f6f24
IM
772 resched_task(rq_of(cfs_rq)->curr);
773}
774
83b699ed 775static void
8494f412 776set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 777{
83b699ed
SV
778 /* 'current' is not kept within the tree. */
779 if (se->on_rq) {
780 /*
781 * Any task has to be enqueued before it get to execute on
782 * a CPU. So account for the time it spent waiting on the
783 * runqueue.
784 */
785 update_stats_wait_end(cfs_rq, se);
786 __dequeue_entity(cfs_rq, se);
787 }
788
79303e9e 789 update_stats_curr_start(cfs_rq, se);
429d43bc 790 cfs_rq->curr = se;
eba1ed4b
IM
791#ifdef CONFIG_SCHEDSTATS
792 /*
793 * Track our maximum slice length, if the CPU's load is at
794 * least twice that of our own weight (i.e. dont track it
795 * when there are only lesser-weight tasks around):
796 */
495eca49 797 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
eba1ed4b
IM
798 se->slice_max = max(se->slice_max,
799 se->sum_exec_runtime - se->prev_sum_exec_runtime);
800 }
801#endif
4a55b450 802 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
803}
804
3f3a4904
PZ
805static int
806wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
807
f4b6755f 808static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 809{
f4b6755f
PZ
810 struct sched_entity *se = __pick_next_entity(cfs_rq);
811
4793241b
PZ
812 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
813 return cfs_rq->next;
aa2ac252 814
4793241b
PZ
815 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
816 return cfs_rq->last;
817
818 return se;
aa2ac252
PZ
819}
820
ab6cde26 821static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
822{
823 /*
824 * If still on the runqueue then deactivate_task()
825 * was not called and update_curr() has to be done:
826 */
827 if (prev->on_rq)
b7cc0896 828 update_curr(cfs_rq);
bf0f6f24 829
ddc97297 830 check_spread(cfs_rq, prev);
30cfdcfc 831 if (prev->on_rq) {
5870db5b 832 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
833 /* Put 'current' back into the tree. */
834 __enqueue_entity(cfs_rq, prev);
835 }
429d43bc 836 cfs_rq->curr = NULL;
bf0f6f24
IM
837}
838
8f4d37ec
PZ
839static void
840entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 841{
bf0f6f24 842 /*
30cfdcfc 843 * Update run-time statistics of the 'current'.
bf0f6f24 844 */
30cfdcfc 845 update_curr(cfs_rq);
bf0f6f24 846
8f4d37ec
PZ
847#ifdef CONFIG_SCHED_HRTICK
848 /*
849 * queued ticks are scheduled to match the slice, so don't bother
850 * validating it and just reschedule.
851 */
983ed7a6
HH
852 if (queued) {
853 resched_task(rq_of(cfs_rq)->curr);
854 return;
855 }
8f4d37ec
PZ
856 /*
857 * don't let the period tick interfere with the hrtick preemption
858 */
859 if (!sched_feat(DOUBLE_TICK) &&
860 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
861 return;
862#endif
863
ce6c1311 864 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 865 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
866}
867
868/**************************************************
869 * CFS operations on tasks:
870 */
871
8f4d37ec
PZ
872#ifdef CONFIG_SCHED_HRTICK
873static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
874{
8f4d37ec
PZ
875 struct sched_entity *se = &p->se;
876 struct cfs_rq *cfs_rq = cfs_rq_of(se);
877
878 WARN_ON(task_rq(p) != rq);
879
880 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
881 u64 slice = sched_slice(cfs_rq, se);
882 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
883 s64 delta = slice - ran;
884
885 if (delta < 0) {
886 if (rq->curr == p)
887 resched_task(p);
888 return;
889 }
890
891 /*
892 * Don't schedule slices shorter than 10000ns, that just
893 * doesn't make sense. Rely on vruntime for fairness.
894 */
31656519 895 if (rq->curr != p)
157124c1 896 delta = max_t(s64, 10000LL, delta);
8f4d37ec 897
31656519 898 hrtick_start(rq, delta);
8f4d37ec
PZ
899 }
900}
a4c2f00f
PZ
901
902/*
903 * called from enqueue/dequeue and updates the hrtick when the
904 * current task is from our class and nr_running is low enough
905 * to matter.
906 */
907static void hrtick_update(struct rq *rq)
908{
909 struct task_struct *curr = rq->curr;
910
911 if (curr->sched_class != &fair_sched_class)
912 return;
913
914 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
915 hrtick_start_fair(rq, curr);
916}
55e12e5e 917#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
918static inline void
919hrtick_start_fair(struct rq *rq, struct task_struct *p)
920{
921}
a4c2f00f
PZ
922
923static inline void hrtick_update(struct rq *rq)
924{
925}
8f4d37ec
PZ
926#endif
927
bf0f6f24
IM
928/*
929 * The enqueue_task method is called before nr_running is
930 * increased. Here we update the fair scheduling stats and
931 * then put the task into the rbtree:
932 */
fd390f6a 933static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
934{
935 struct cfs_rq *cfs_rq;
62fb1851 936 struct sched_entity *se = &p->se;
bf0f6f24
IM
937
938 for_each_sched_entity(se) {
62fb1851 939 if (se->on_rq)
bf0f6f24
IM
940 break;
941 cfs_rq = cfs_rq_of(se);
83b699ed 942 enqueue_entity(cfs_rq, se, wakeup);
b9fa3df3 943 wakeup = 1;
bf0f6f24 944 }
8f4d37ec 945
a4c2f00f 946 hrtick_update(rq);
bf0f6f24
IM
947}
948
949/*
950 * The dequeue_task method is called before nr_running is
951 * decreased. We remove the task from the rbtree and
952 * update the fair scheduling stats:
953 */
f02231e5 954static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
955{
956 struct cfs_rq *cfs_rq;
62fb1851 957 struct sched_entity *se = &p->se;
bf0f6f24
IM
958
959 for_each_sched_entity(se) {
960 cfs_rq = cfs_rq_of(se);
525c2716 961 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24 962 /* Don't dequeue parent if it has other entities besides us */
62fb1851 963 if (cfs_rq->load.weight)
bf0f6f24 964 break;
b9fa3df3 965 sleep = 1;
bf0f6f24 966 }
8f4d37ec 967
a4c2f00f 968 hrtick_update(rq);
bf0f6f24
IM
969}
970
971/*
1799e35d
IM
972 * sched_yield() support is very simple - we dequeue and enqueue.
973 *
974 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 975 */
4530d7ab 976static void yield_task_fair(struct rq *rq)
bf0f6f24 977{
db292ca3
IM
978 struct task_struct *curr = rq->curr;
979 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
980 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
981
982 /*
1799e35d
IM
983 * Are we the only task in the tree?
984 */
985 if (unlikely(cfs_rq->nr_running == 1))
986 return;
987
2002c695
PZ
988 clear_buddies(cfs_rq, se);
989
db292ca3 990 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 991 update_rq_clock(rq);
1799e35d 992 /*
a2a2d680 993 * Update run-time statistics of the 'current'.
1799e35d 994 */
2b1e315d 995 update_curr(cfs_rq);
1799e35d
IM
996
997 return;
998 }
999 /*
1000 * Find the rightmost entry in the rbtree:
bf0f6f24 1001 */
2b1e315d 1002 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1003 /*
1004 * Already in the rightmost position?
1005 */
79b3feff 1006 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1799e35d
IM
1007 return;
1008
1009 /*
1010 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1011 * Upon rescheduling, sched_class::put_prev_task() will place
1012 * 'current' within the tree based on its new key value.
1799e35d 1013 */
30cfdcfc 1014 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1015}
1016
e7693a36
GH
1017/*
1018 * wake_idle() will wake a task on an idle cpu if task->cpu is
1019 * not idle and an idle cpu is available. The span of cpus to
1020 * search starts with cpus closest then further out as needed,
1021 * so we always favor a closer, idle cpu.
e761b772 1022 * Domains may include CPUs that are not usable for migration,
96f874e2 1023 * hence we need to mask them out (cpu_active_mask)
e7693a36
GH
1024 *
1025 * Returns the CPU we should wake onto.
1026 */
1027#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1028static int wake_idle(int cpu, struct task_struct *p)
1029{
e7693a36
GH
1030 struct sched_domain *sd;
1031 int i;
7eb52dfa
VS
1032 unsigned int chosen_wakeup_cpu;
1033 int this_cpu;
1034
1035 /*
1036 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
1037 * are idle and this is not a kernel thread and this task's affinity
1038 * allows it to be moved to preferred cpu, then just move!
1039 */
1040
1041 this_cpu = smp_processor_id();
1042 chosen_wakeup_cpu =
1043 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
1044
1045 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
1046 idle_cpu(cpu) && idle_cpu(this_cpu) &&
1047 p->mm && !(p->flags & PF_KTHREAD) &&
1048 cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
1049 return chosen_wakeup_cpu;
e7693a36
GH
1050
1051 /*
1052 * If it is idle, then it is the best cpu to run this task.
1053 *
1054 * This cpu is also the best, if it has more than one task already.
1055 * Siblings must be also busy(in most cases) as they didn't already
1056 * pickup the extra load from this cpu and hence we need not check
1057 * sibling runqueue info. This will avoid the checks and cache miss
1058 * penalities associated with that.
1059 */
104f6454 1060 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
e7693a36
GH
1061 return cpu;
1062
1063 for_each_domain(cpu, sd) {
1d3504fc
HS
1064 if ((sd->flags & SD_WAKE_IDLE)
1065 || ((sd->flags & SD_WAKE_IDLE_FAR)
1066 && !task_hot(p, task_rq(p)->clock, sd))) {
758b2cdc
RR
1067 for_each_cpu_and(i, sched_domain_span(sd),
1068 &p->cpus_allowed) {
1069 if (cpu_active(i) && idle_cpu(i)) {
e7693a36
GH
1070 if (i != task_cpu(p)) {
1071 schedstat_inc(p,
1072 se.nr_wakeups_idle);
1073 }
1074 return i;
1075 }
1076 }
1077 } else {
1078 break;
1079 }
1080 }
1081 return cpu;
1082}
55e12e5e 1083#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
e7693a36
GH
1084static inline int wake_idle(int cpu, struct task_struct *p)
1085{
1086 return cpu;
1087}
1088#endif
1089
1090#ifdef CONFIG_SMP
098fb9db 1091
bb3469ac 1092#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1093/*
1094 * effective_load() calculates the load change as seen from the root_task_group
1095 *
1096 * Adding load to a group doesn't make a group heavier, but can cause movement
1097 * of group shares between cpus. Assuming the shares were perfectly aligned one
1098 * can calculate the shift in shares.
1099 *
1100 * The problem is that perfectly aligning the shares is rather expensive, hence
1101 * we try to avoid doing that too often - see update_shares(), which ratelimits
1102 * this change.
1103 *
1104 * We compensate this by not only taking the current delta into account, but
1105 * also considering the delta between when the shares were last adjusted and
1106 * now.
1107 *
1108 * We still saw a performance dip, some tracing learned us that between
1109 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1110 * significantly. Therefore try to bias the error in direction of failing
1111 * the affine wakeup.
1112 *
1113 */
f1d239f7
PZ
1114static long effective_load(struct task_group *tg, int cpu,
1115 long wl, long wg)
bb3469ac 1116{
4be9daaa 1117 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1118
1119 if (!tg->parent)
1120 return wl;
1121
f5bfb7d9
PZ
1122 /*
1123 * By not taking the decrease of shares on the other cpu into
1124 * account our error leans towards reducing the affine wakeups.
1125 */
1126 if (!wl && sched_feat(ASYM_EFF_LOAD))
1127 return wl;
1128
4be9daaa 1129 for_each_sched_entity(se) {
cb5ef42a 1130 long S, rw, s, a, b;
940959e9
PZ
1131 long more_w;
1132
1133 /*
1134 * Instead of using this increment, also add the difference
1135 * between when the shares were last updated and now.
1136 */
1137 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1138 wl += more_w;
1139 wg += more_w;
4be9daaa
PZ
1140
1141 S = se->my_q->tg->shares;
1142 s = se->my_q->shares;
f1d239f7 1143 rw = se->my_q->rq_weight;
bb3469ac 1144
cb5ef42a
PZ
1145 a = S*(rw + wl);
1146 b = S*rw + s*wg;
4be9daaa 1147
940959e9
PZ
1148 wl = s*(a-b);
1149
1150 if (likely(b))
1151 wl /= b;
1152
83378269
PZ
1153 /*
1154 * Assume the group is already running and will
1155 * thus already be accounted for in the weight.
1156 *
1157 * That is, moving shares between CPUs, does not
1158 * alter the group weight.
1159 */
4be9daaa 1160 wg = 0;
4be9daaa 1161 }
bb3469ac 1162
4be9daaa 1163 return wl;
bb3469ac 1164}
4be9daaa 1165
bb3469ac 1166#else
4be9daaa 1167
83378269
PZ
1168static inline unsigned long effective_load(struct task_group *tg, int cpu,
1169 unsigned long wl, unsigned long wg)
4be9daaa 1170{
83378269 1171 return wl;
bb3469ac 1172}
4be9daaa 1173
bb3469ac
PZ
1174#endif
1175
098fb9db 1176static int
64b9e029 1177wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
4ae7d5ce
IM
1178 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1179 int idx, unsigned long load, unsigned long this_load,
098fb9db
IM
1180 unsigned int imbalance)
1181{
1182 unsigned long tl = this_load;
1183 unsigned long tl_per_task;
d942fb6c 1184 struct task_group *tg;
83378269 1185 unsigned long weight;
b3137bc8 1186 int balanced;
098fb9db 1187
b3137bc8 1188 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
098fb9db
IM
1189 return 0;
1190
b3137bc8
MG
1191 /*
1192 * If sync wakeup then subtract the (maximum possible)
1193 * effect of the currently running task from the load
1194 * of the current CPU:
1195 */
83378269
PZ
1196 if (sync) {
1197 tg = task_group(current);
1198 weight = current->se.load.weight;
1199
1200 tl += effective_load(tg, this_cpu, -weight, -weight);
1201 load += effective_load(tg, prev_cpu, 0, -weight);
1202 }
b3137bc8 1203
83378269
PZ
1204 tg = task_group(p);
1205 weight = p->se.load.weight;
b3137bc8 1206
83378269
PZ
1207 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1208 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
b3137bc8 1209
098fb9db 1210 /*
4ae7d5ce
IM
1211 * If the currently running task will sleep within
1212 * a reasonable amount of time then attract this newly
1213 * woken task:
098fb9db 1214 */
2fb7635c
PZ
1215 if (sync && balanced)
1216 return 1;
098fb9db
IM
1217
1218 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1219 tl_per_task = cpu_avg_load_per_task(this_cpu);
1220
64b9e029
AA
1221 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1222 tl_per_task)) {
098fb9db
IM
1223 /*
1224 * This domain has SD_WAKE_AFFINE and
1225 * p is cache cold in this domain, and
1226 * there is no bad imbalance.
1227 */
1228 schedstat_inc(this_sd, ttwu_move_affine);
1229 schedstat_inc(p, se.nr_wakeups_affine);
1230
1231 return 1;
1232 }
1233 return 0;
1234}
1235
e7693a36
GH
1236static int select_task_rq_fair(struct task_struct *p, int sync)
1237{
e7693a36 1238 struct sched_domain *sd, *this_sd = NULL;
ac192d39 1239 int prev_cpu, this_cpu, new_cpu;
098fb9db 1240 unsigned long load, this_load;
64b9e029 1241 struct rq *this_rq;
098fb9db 1242 unsigned int imbalance;
098fb9db 1243 int idx;
e7693a36 1244
ac192d39 1245 prev_cpu = task_cpu(p);
ac192d39 1246 this_cpu = smp_processor_id();
4ae7d5ce 1247 this_rq = cpu_rq(this_cpu);
ac192d39 1248 new_cpu = prev_cpu;
e7693a36 1249
64b9e029
AA
1250 if (prev_cpu == this_cpu)
1251 goto out;
ac192d39
IM
1252 /*
1253 * 'this_sd' is the first domain that both
1254 * this_cpu and prev_cpu are present in:
1255 */
e7693a36 1256 for_each_domain(this_cpu, sd) {
758b2cdc 1257 if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
e7693a36
GH
1258 this_sd = sd;
1259 break;
1260 }
1261 }
1262
96f874e2 1263 if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
f4827386 1264 goto out;
e7693a36
GH
1265
1266 /*
1267 * Check for affine wakeup and passive balancing possibilities.
1268 */
098fb9db 1269 if (!this_sd)
f4827386 1270 goto out;
e7693a36 1271
098fb9db
IM
1272 idx = this_sd->wake_idx;
1273
1274 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1275
ac192d39 1276 load = source_load(prev_cpu, idx);
098fb9db
IM
1277 this_load = target_load(this_cpu, idx);
1278
64b9e029 1279 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
4ae7d5ce
IM
1280 load, this_load, imbalance))
1281 return this_cpu;
1282
098fb9db
IM
1283 /*
1284 * Start passive balancing when half the imbalance_pct
1285 * limit is reached.
1286 */
1287 if (this_sd->flags & SD_WAKE_BALANCE) {
1288 if (imbalance*this_load <= 100*load) {
1289 schedstat_inc(this_sd, ttwu_move_balance);
1290 schedstat_inc(p, se.nr_wakeups_passive);
4ae7d5ce 1291 return this_cpu;
e7693a36
GH
1292 }
1293 }
1294
f4827386 1295out:
e7693a36
GH
1296 return wake_idle(new_cpu, p);
1297}
1298#endif /* CONFIG_SMP */
1299
0bbd3336
PZ
1300static unsigned long wakeup_gran(struct sched_entity *se)
1301{
1302 unsigned long gran = sysctl_sched_wakeup_granularity;
1303
1304 /*
a7be37ac
PZ
1305 * More easily preempt - nice tasks, while not making it harder for
1306 * + nice tasks.
0bbd3336 1307 */
464b7527
PZ
1308 if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD)
1309 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se);
0bbd3336
PZ
1310
1311 return gran;
1312}
1313
464b7527
PZ
1314/*
1315 * Should 'se' preempt 'curr'.
1316 *
1317 * |s1
1318 * |s2
1319 * |s3
1320 * g
1321 * |<--->|c
1322 *
1323 * w(c, s1) = -1
1324 * w(c, s2) = 0
1325 * w(c, s3) = 1
1326 *
1327 */
1328static int
1329wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1330{
1331 s64 gran, vdiff = curr->vruntime - se->vruntime;
1332
1333 if (vdiff <= 0)
1334 return -1;
1335
1336 gran = wakeup_gran(curr);
1337 if (vdiff > gran)
1338 return 1;
1339
1340 return 0;
1341}
1342
02479099
PZ
1343static void set_last_buddy(struct sched_entity *se)
1344{
6bc912b7
PZ
1345 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1346 for_each_sched_entity(se)
1347 cfs_rq_of(se)->last = se;
1348 }
02479099
PZ
1349}
1350
1351static void set_next_buddy(struct sched_entity *se)
1352{
6bc912b7
PZ
1353 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1354 for_each_sched_entity(se)
1355 cfs_rq_of(se)->next = se;
1356 }
02479099
PZ
1357}
1358
bf0f6f24
IM
1359/*
1360 * Preempt the current task with a newly woken task if needed:
1361 */
15afe09b 1362static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
bf0f6f24
IM
1363{
1364 struct task_struct *curr = rq->curr;
8651a86c 1365 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1366 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
bf0f6f24 1367
03e89e45 1368 update_curr(cfs_rq);
4793241b 1369
03e89e45 1370 if (unlikely(rt_prio(p->prio))) {
bf0f6f24
IM
1371 resched_task(curr);
1372 return;
1373 }
aa2ac252 1374
d95f98d0
PZ
1375 if (unlikely(p->sched_class != &fair_sched_class))
1376 return;
1377
4ae7d5ce
IM
1378 if (unlikely(se == pse))
1379 return;
1380
4793241b
PZ
1381 /*
1382 * Only set the backward buddy when the current task is still on the
1383 * rq. This can happen when a wakeup gets interleaved with schedule on
1384 * the ->pre_schedule() or idle_balance() point, either of which can
1385 * drop the rq lock.
1386 *
1387 * Also, during early boot the idle thread is in the fair class, for
1388 * obvious reasons its a bad idea to schedule back to the idle thread.
1389 */
1390 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
02479099
PZ
1391 set_last_buddy(se);
1392 set_next_buddy(pse);
57fdc26d 1393
aec0a514
BR
1394 /*
1395 * We can come here with TIF_NEED_RESCHED already set from new task
1396 * wake up path.
1397 */
1398 if (test_tsk_need_resched(curr))
1399 return;
1400
91c234b4 1401 /*
6bc912b7 1402 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1403 * the tick):
1404 */
6bc912b7 1405 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1406 return;
bf0f6f24 1407
6bc912b7
PZ
1408 /* Idle tasks are by definition preempted by everybody. */
1409 if (unlikely(curr->policy == SCHED_IDLE)) {
1410 resched_task(curr);
1411 return;
1412 }
1413
77d9cc44
IM
1414 if (!sched_feat(WAKEUP_PREEMPT))
1415 return;
8651a86c 1416
d942fb6c 1417 if (sched_feat(WAKEUP_OVERLAP) && sync) {
15afe09b
PZ
1418 resched_task(curr);
1419 return;
1420 }
1421
464b7527
PZ
1422 find_matching_se(&se, &pse);
1423
1424 while (se) {
1425 BUG_ON(!pse);
1426
1427 if (wakeup_preempt_entity(se, pse) == 1) {
1428 resched_task(curr);
1429 break;
1430 }
1431
1432 se = parent_entity(se);
1433 pse = parent_entity(pse);
1434 }
bf0f6f24
IM
1435}
1436
fb8d4724 1437static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1438{
8f4d37ec 1439 struct task_struct *p;
bf0f6f24
IM
1440 struct cfs_rq *cfs_rq = &rq->cfs;
1441 struct sched_entity *se;
1442
1443 if (unlikely(!cfs_rq->nr_running))
1444 return NULL;
1445
1446 do {
9948f4b2 1447 se = pick_next_entity(cfs_rq);
f4b6755f 1448 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1449 cfs_rq = group_cfs_rq(se);
1450 } while (cfs_rq);
1451
8f4d37ec
PZ
1452 p = task_of(se);
1453 hrtick_start_fair(rq, p);
1454
1455 return p;
bf0f6f24
IM
1456}
1457
1458/*
1459 * Account for a descheduled task:
1460 */
31ee529c 1461static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1462{
1463 struct sched_entity *se = &prev->se;
1464 struct cfs_rq *cfs_rq;
1465
1466 for_each_sched_entity(se) {
1467 cfs_rq = cfs_rq_of(se);
ab6cde26 1468 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1469 }
1470}
1471
681f3e68 1472#ifdef CONFIG_SMP
bf0f6f24
IM
1473/**************************************************
1474 * Fair scheduling class load-balancing methods:
1475 */
1476
1477/*
1478 * Load-balancing iterator. Note: while the runqueue stays locked
1479 * during the whole iteration, the current task might be
1480 * dequeued so the iterator has to be dequeue-safe. Here we
1481 * achieve that by always pre-iterating before returning
1482 * the current task:
1483 */
a9957449 1484static struct task_struct *
4a55bd5e 1485__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
bf0f6f24 1486{
354d60c2
DG
1487 struct task_struct *p = NULL;
1488 struct sched_entity *se;
bf0f6f24 1489
77ae6513
MG
1490 if (next == &cfs_rq->tasks)
1491 return NULL;
1492
b87f1724
BR
1493 se = list_entry(next, struct sched_entity, group_node);
1494 p = task_of(se);
1495 cfs_rq->balance_iterator = next->next;
77ae6513 1496
bf0f6f24
IM
1497 return p;
1498}
1499
1500static struct task_struct *load_balance_start_fair(void *arg)
1501{
1502 struct cfs_rq *cfs_rq = arg;
1503
4a55bd5e 1504 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
bf0f6f24
IM
1505}
1506
1507static struct task_struct *load_balance_next_fair(void *arg)
1508{
1509 struct cfs_rq *cfs_rq = arg;
1510
4a55bd5e 1511 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
bf0f6f24
IM
1512}
1513
c09595f6
PZ
1514static unsigned long
1515__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1516 unsigned long max_load_move, struct sched_domain *sd,
1517 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1518 struct cfs_rq *cfs_rq)
62fb1851 1519{
c09595f6 1520 struct rq_iterator cfs_rq_iterator;
62fb1851 1521
c09595f6
PZ
1522 cfs_rq_iterator.start = load_balance_start_fair;
1523 cfs_rq_iterator.next = load_balance_next_fair;
1524 cfs_rq_iterator.arg = cfs_rq;
62fb1851 1525
c09595f6
PZ
1526 return balance_tasks(this_rq, this_cpu, busiest,
1527 max_load_move, sd, idle, all_pinned,
1528 this_best_prio, &cfs_rq_iterator);
62fb1851 1529}
62fb1851 1530
c09595f6 1531#ifdef CONFIG_FAIR_GROUP_SCHED
43010659 1532static unsigned long
bf0f6f24 1533load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
e1d1484f 1534 unsigned long max_load_move,
a4ac01c3
PW
1535 struct sched_domain *sd, enum cpu_idle_type idle,
1536 int *all_pinned, int *this_best_prio)
bf0f6f24 1537{
bf0f6f24 1538 long rem_load_move = max_load_move;
c09595f6
PZ
1539 int busiest_cpu = cpu_of(busiest);
1540 struct task_group *tg;
18d95a28 1541
c09595f6 1542 rcu_read_lock();
c8cba857 1543 update_h_load(busiest_cpu);
18d95a28 1544
caea8a03 1545 list_for_each_entry_rcu(tg, &task_groups, list) {
c8cba857 1546 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
42a3ac7d
PZ
1547 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1548 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
243e0e7b 1549 u64 rem_load, moved_load;
18d95a28 1550
c09595f6
PZ
1551 /*
1552 * empty group
1553 */
c8cba857 1554 if (!busiest_cfs_rq->task_weight)
bf0f6f24
IM
1555 continue;
1556
243e0e7b
SV
1557 rem_load = (u64)rem_load_move * busiest_weight;
1558 rem_load = div_u64(rem_load, busiest_h_load + 1);
bf0f6f24 1559
c09595f6 1560 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
53fecd8a 1561 rem_load, sd, idle, all_pinned, this_best_prio,
c09595f6 1562 tg->cfs_rq[busiest_cpu]);
bf0f6f24 1563
c09595f6 1564 if (!moved_load)
bf0f6f24
IM
1565 continue;
1566
42a3ac7d 1567 moved_load *= busiest_h_load;
243e0e7b 1568 moved_load = div_u64(moved_load, busiest_weight + 1);
bf0f6f24 1569
c09595f6
PZ
1570 rem_load_move -= moved_load;
1571 if (rem_load_move < 0)
bf0f6f24
IM
1572 break;
1573 }
c09595f6 1574 rcu_read_unlock();
bf0f6f24 1575
43010659 1576 return max_load_move - rem_load_move;
bf0f6f24 1577}
c09595f6
PZ
1578#else
1579static unsigned long
1580load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1581 unsigned long max_load_move,
1582 struct sched_domain *sd, enum cpu_idle_type idle,
1583 int *all_pinned, int *this_best_prio)
1584{
1585 return __load_balance_fair(this_rq, this_cpu, busiest,
1586 max_load_move, sd, idle, all_pinned,
1587 this_best_prio, &busiest->cfs);
1588}
1589#endif
bf0f6f24 1590
e1d1484f
PW
1591static int
1592move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1593 struct sched_domain *sd, enum cpu_idle_type idle)
1594{
1595 struct cfs_rq *busy_cfs_rq;
1596 struct rq_iterator cfs_rq_iterator;
1597
1598 cfs_rq_iterator.start = load_balance_start_fair;
1599 cfs_rq_iterator.next = load_balance_next_fair;
1600
1601 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1602 /*
1603 * pass busy_cfs_rq argument into
1604 * load_balance_[start|next]_fair iterators
1605 */
1606 cfs_rq_iterator.arg = busy_cfs_rq;
1607 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1608 &cfs_rq_iterator))
1609 return 1;
1610 }
1611
1612 return 0;
1613}
55e12e5e 1614#endif /* CONFIG_SMP */
e1d1484f 1615
bf0f6f24
IM
1616/*
1617 * scheduler tick hitting a task of our scheduling class:
1618 */
8f4d37ec 1619static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
1620{
1621 struct cfs_rq *cfs_rq;
1622 struct sched_entity *se = &curr->se;
1623
1624 for_each_sched_entity(se) {
1625 cfs_rq = cfs_rq_of(se);
8f4d37ec 1626 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
1627 }
1628}
1629
1630/*
1631 * Share the fairness runtime between parent and child, thus the
1632 * total amount of pressure for CPU stays equal - new tasks
1633 * get a chance to run but frequent forkers are not allowed to
1634 * monopolize the CPU. Note: the parent runqueue is locked,
1635 * the child is not running yet.
1636 */
ee0827d8 1637static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1638{
1639 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1640 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 1641 int this_cpu = smp_processor_id();
bf0f6f24
IM
1642
1643 sched_info_queued(p);
1644
7109c442 1645 update_curr(cfs_rq);
aeb73b04 1646 place_entity(cfs_rq, se, 1);
4d78e7b6 1647
3c90e6e9 1648 /* 'curr' will be NULL if the child belongs to a different group */
00bf7bfc 1649 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
3c90e6e9 1650 curr && curr->vruntime < se->vruntime) {
87fefa38 1651 /*
edcb60a3
IM
1652 * Upon rescheduling, sched_class::put_prev_task() will place
1653 * 'current' within the tree based on its new key value.
1654 */
4d78e7b6 1655 swap(curr->vruntime, se->vruntime);
aec0a514 1656 resched_task(rq->curr);
4d78e7b6 1657 }
bf0f6f24 1658
b9dca1e0 1659 enqueue_task_fair(rq, p, 0);
bf0f6f24
IM
1660}
1661
cb469845
SR
1662/*
1663 * Priority of the task has changed. Check to see if we preempt
1664 * the current task.
1665 */
1666static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1667 int oldprio, int running)
1668{
1669 /*
1670 * Reschedule if we are currently running on this runqueue and
1671 * our priority decreased, or if we are not currently running on
1672 * this runqueue and our priority is higher than the current's
1673 */
1674 if (running) {
1675 if (p->prio > oldprio)
1676 resched_task(rq->curr);
1677 } else
15afe09b 1678 check_preempt_curr(rq, p, 0);
cb469845
SR
1679}
1680
1681/*
1682 * We switched to the sched_fair class.
1683 */
1684static void switched_to_fair(struct rq *rq, struct task_struct *p,
1685 int running)
1686{
1687 /*
1688 * We were most likely switched from sched_rt, so
1689 * kick off the schedule if running, otherwise just see
1690 * if we can still preempt the current task.
1691 */
1692 if (running)
1693 resched_task(rq->curr);
1694 else
15afe09b 1695 check_preempt_curr(rq, p, 0);
cb469845
SR
1696}
1697
83b699ed
SV
1698/* Account for a task changing its policy or group.
1699 *
1700 * This routine is mostly called to set cfs_rq->curr field when a task
1701 * migrates between groups/classes.
1702 */
1703static void set_curr_task_fair(struct rq *rq)
1704{
1705 struct sched_entity *se = &rq->curr->se;
1706
1707 for_each_sched_entity(se)
1708 set_next_entity(cfs_rq_of(se), se);
1709}
1710
810b3817
PZ
1711#ifdef CONFIG_FAIR_GROUP_SCHED
1712static void moved_group_fair(struct task_struct *p)
1713{
1714 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1715
1716 update_curr(cfs_rq);
1717 place_entity(cfs_rq, &p->se, 1);
1718}
1719#endif
1720
bf0f6f24
IM
1721/*
1722 * All the scheduling class methods:
1723 */
5522d5d5
IM
1724static const struct sched_class fair_sched_class = {
1725 .next = &idle_sched_class,
bf0f6f24
IM
1726 .enqueue_task = enqueue_task_fair,
1727 .dequeue_task = dequeue_task_fair,
1728 .yield_task = yield_task_fair,
1729
2e09bf55 1730 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
1731
1732 .pick_next_task = pick_next_task_fair,
1733 .put_prev_task = put_prev_task_fair,
1734
681f3e68 1735#ifdef CONFIG_SMP
4ce72a2c
LZ
1736 .select_task_rq = select_task_rq_fair,
1737
bf0f6f24 1738 .load_balance = load_balance_fair,
e1d1484f 1739 .move_one_task = move_one_task_fair,
681f3e68 1740#endif
bf0f6f24 1741
83b699ed 1742 .set_curr_task = set_curr_task_fair,
bf0f6f24
IM
1743 .task_tick = task_tick_fair,
1744 .task_new = task_new_fair,
cb469845
SR
1745
1746 .prio_changed = prio_changed_fair,
1747 .switched_to = switched_to_fair,
810b3817
PZ
1748
1749#ifdef CONFIG_FAIR_GROUP_SCHED
1750 .moved_group = moved_group_fair,
1751#endif
bf0f6f24
IM
1752};
1753
1754#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1755static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1756{
bf0f6f24
IM
1757 struct cfs_rq *cfs_rq;
1758
5973e5b9 1759 rcu_read_lock();
c3b64f1e 1760 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1761 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 1762 rcu_read_unlock();
bf0f6f24
IM
1763}
1764#endif